

AN IMPROVED AUTOMATED ELECTRONIC SENSOR SYSTEM WITH

IOT

CREMENT ONG WEN YAO

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Technology (Honours) in Electronic Systems

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2022

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations, which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : CREMENT ONG WEN YAO

ID No. : 19AGB03721

Date : _________________________ 30 September 2022

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “AN IMPROVED AUTOMATED

ELECTRONIC SENSOR SYSTEM WITH IOT” was prepared by CREMENT

ONG WEN YAO has met the required standard for submission in partial fulfilment

of the requirements for the award of Bachelor of Engineering (Honours) in Electronic

Systems at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Lee Yu Jen

Date : _________________________ 30 September 2022

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2022, Crement Ong Wen Yao. All right reserved.

v

Specially dedicated to

my mother and father

vi

ACKNOWLEDGEMENTS

Firstly, I would like to thank Universiti Tunku Abdul Rahman for providing

me with the opportunity to complete this research and the necessary equipment and

facilities.

In addition, I would like to thank my supervisor, Dr. Lee Yu Jen, for giving me

a lot of helpful guidance and advice throughout the development of this project. In

addition, I'd like to thank my moderator, Ts. Dr. Toh Pek Lan, for providing me with

helpful feedback to improve the completion of my Final Year Project Report.

Furthermore, I am grateful to the Department of Electronic Engineering in the

Faculty of Engineering and Green Technology laboratory managers, Mr. Choon Chee

Ming, Miss Norazuani Binti Zaharudin, and Mr. Thong Marn Foo, who offered me a

great deal of help and assistance and assistance on the laboratory equipment and

facilities.

The study was completed with the assistance and support of friends who lent

me a hand when I encountered difficulties with this assignment. Lastly, I would like

to express my gratitude to my parents. They gave me both financial and emotional help.

I wish to express my sincere appreciation to each of you. This Final Year Project has

been completed thanks to your encouragement.

vii

AN IMPROVED AUTOMATED ELECTRONIC SENSOR SYSTEM WITH

IOT

ABSTRACT

An existing automated electronic sensor system for surface roughness profiling is

improved and renamed “ProSight Surface Profiler”. It is aimed to integrate a newly

developed automated surface roughness data analysis programme that connects with

the prototype surface profiler. The application is managed able to automate the output

of surface roughness parameters, including RMS and autocorrelation length. The

software supports real-time data analysis. The software can merge effortlessly with the

hardware. The resulting graph is flexible, allowing the user to examine it from any

angle desired. Moreover, the user can convert the graph into an image with a single

click. The software installation is straightforward, with an executable link. The Blynk

app is used to operate the Raspberry Pi's GPIO remotely. The data is uploaded

automatically to the cloud storage without the need to extract the data using a cable.

With these two functionalities, an Internet of Things-integrated contactless machine is

developed. The ProSight Surface Profiler application is user-friendly, fast, and

effortlessly controlled for surface roughness analysis.

viii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF SYMBOLS / ABBREVIATIONS xviii

LIST OF APPENDICES xxii

CHAPTER

 1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 3

1.3 Aims and Objectives 4

1.4 Organisation of Thesis 5

 2 LITERATURE REVIEW 7

2.1 Overview 7

2.2 Automated Electronic Sensor System 8

2.2.1 Physical Planning and Design 8

2.2.2 Hardware Specifications 9

2.2.3 Software Specifications 15

2.2.4 System Flow Chart 17

2.2.5 Case Study: Accuracy Test 18

ix

2.2.6 Summary 20

2.3 Graph Optimisation 20

2.3.1 Moving Average Filter 21

2.3.2 Median Filter 22

2.3.3 Savitzky-Golay Filter 24

2.4 Surface Roughness Parameters 26

2.4.1 Standard Deviation of Surface Heights / RMS Height 27

2.4.2 Surface Autocorrelation Length 28

2.5 Programming Languages 29

2.5.1 Python 30

2.5.2 Java 31

2.5.3 C++ 32

2.6 GUI Frameworks 32

2.6.1 Tkinter 33

2.6.2 Kivy 34

2.7 Existing Surface Profiler Analysis Software 34

2.7.1 MicroEpsilon scanCONTROL 35

2.7.2 In-Sight Laser Profile Software 36

2.7.3 Comparison of features 37

2.8 IoT Platform 38

2.8.1 RaspController 39

2.8.2 Blynk 40

2.9 Cloud Storage 41

2.9.1 Google Drive 41

2.9.2 Dropbox 42

2.9.3 Comparison of features 42

 3 METHODOLOGY 43

3.1 Overview 43

3.2 Selection of Programming language 43

3.3 GUI Framework Selection 44

3.4 System Overview 45

3.5 System Performance Definition 47

3.6 Technologies and Tools involved 48

x

3.7 Graph Optimisation 48

3.7.1 Moving Average Filter 49

3.7.2 Median Filter 51

3.7.3 Savitzky-Golay Filter 52

3.7.4 Conclusion (Graph Optimisation) 54

3.8 RMS Height 54

3.9 Surface Roughness Autocorrelation Length 55

3.10 Selection of the IoT platform 57

3.11 Selection of the cloud storage platform 60

3.12 Implementation and Testing 64

3.12.1 Import of library 64

3.12.2 Debugging errors 65

3.12.3 Global definition 66

3.12.4 Design for Homepage (Class I) 67

3.12.5 Widgets for Homepage (Class II) 68

3.12.6 PageOne (Class III) 69

3.12.7 Design of PageTwo (Class IV) 72

3.12.8 Design of PageThree (Class V) 76

3.12.9 Final Call 79

3.12.10 Setup for an executable extension 79

3.13 Project Management 80

 4 RESULTS AND DISCUSSION 81

4.1 Introduction 81

4.2 Surface Roughness Parameter 81

4.2.1 Surface Roughness Parameters (Calculated with Excel) 82

4.2.2 Surface Roughness Parameters (Software Algorithm) 84

4.2.3 Discussion of the results 87

4.3 Graph optimisation 88

4.3.1 Case Study 1 89

4.3.2 Case Study 2 90

4.3.3 Case Study 3 91

4.3.4 Case Study 4 93

4.3.5 Case Study 5 94

xi

4.3.6 Case Study 6 96

4.3.7 Case Study 7 97

4.3.8 Case Study 8 99

4.3.9 Summary of the case study of graph optimisation 100

4.4 Extra 101

 5 CONCLUSIONS AND RECOMMENDATIONS 103

5.1 Conclusion 103

5.2 Limitations 104

5.3 Recommendations for Future Improvement 104

REFERENCES 105

APPENDICES 109

xii

LIST OF TABLES

 TABLE TITLE PAGE

1.1 Table of organisation of the thesis 5

2.1 Table summarising the pros and cons of the
automated surface profiler 20

2.2 Table summarising the pros and cons of Python 30

2.3 Table summarising the pros and cons of Java 31

2.3 Table summarising the pros and cons of C++ 32

2.4 Table summarising the pros and cons of Tkinter 33

2.5 Table summarising the pros and cons of Kivy 34

2.6 Table of feature comparison between the existing
surface profiler analysis software 37

2.7 Table summarising the pros and cons of
RaspController 39

2.8 Table summarising the pros and cons of Blynk 40

2.9 Table of feature comparisons between Google
Drive and Dropbox 42

3.1 Table of laptop specifications 48

3.2 Optimised graph (Dark Blue) of Moving Average
Filter with different values of 𝑛𝑛 50

3.3 Optimised graph (Red) of Median Filter with
different values of 𝑛𝑛 51

3.4 Optimised graph (Green) of Median Filter with
different values of 𝑛𝑛 53

xiii

4.1 Autocorrelation Function graph and autocorrelation
length of 8 sites (Calculated with Excel) 82

4.2 RMS height of 9 sites (Calculated with Excel) 84

4.3 Autocorrelation Function graph and autocorrelation
length of 8 sites (Software Algorithm) 84

4.4 RMS height of 9 sites (Software algorithm) 86

4.5 Percentage error of the results obtained for
autocorrelation length 87

4.6 Percentage error of the results obtained for RMS
height 88

4.7 Raw data graph compared with the optimised graph
to the following object in case study 1. 89

4.8 Raw data graph compared with the optimised graph
to the following object in case study 2. 90

4.9 Raw data graph compared with the optimised graph
to the following object in case study 3. 92

4.10 Raw data graph compared with the optimised graph
to the following object in case study 4. 93

4.11 Raw data graph compared with the optimised graph
to the following object in case study 5. 95

4.12 Raw data graph compared with the optimised graph
to the following object in case study 6 96

4.13 Raw data graph compared with the optimised graph
to the following object in case study 7. 98

4.14 Raw data graph compared with the optimised graph
to the following object in case study 8. 99

xiv

LIST OF FIGURES

 FIGURE TITLE PAGE

1.1 Cognex Laser Profiler (Cognex, 2018) 1

2.1 Sketch of surface profiler (Kang, 2016) 8

2.2 Graph of distance vs voltage (Kang, 2016) 9

2.3 Experiment setup to measure the distance to
voltage (Kang, 2016) 10

2.4 Graph of distance vs voltage (average) (Kang,
2016) 10

2.5 ADC0804 IC connection (Kang, 2016) 11

2.6 Connection of SN74166 (Kang, 2016) 12

2.7 Dissembled slider from HP inkjet printer
(Kang, 2016) 12

2.8 DC motor attached to the slider (Kang, 2016) 13

2.9 Line follower infrared sensor (Kang, 2016) 13

2.10 Sketch of the encoder system (Kang, 2016) 14

2.11 DC-DC buck converter module (Kang, 2016) 14

2.12 Connection of battery, converter to the supply
other devices (Kang, 2016) 15

2.13 Duty cycle of PWM 15

2.14 Flow chart of surface profiler system (Kang,
2016) 17

2.15 Setup of the case study (Kang, 2016) 18

xv

2.16 The best result of the case study (Kang, 2016) 19

2.17 The worst result of the case study (Kang,
2016) 19

2.18 Illustration of least-squares smoothing by
locally fitting a second-degree polynomial
(solid line) to five input samples (Schafer,
2011) 25

2.19 Random height variations superimposed on a
periodic surface (Ulaby, Moore and Fung,
1981) 26

2.20 Random height variations superimposed on a
flat surface (Ulaby, Moore and Fung, 1981) 26

2.21 Autocorrelation Function (Ulaby, Moore and
Fung, 1981) 29

2.22 MicroEpsilon scanCONTROL software
interface (Micro-Epsilon Messtechnik, 2022) 35

2.23 In-Sight Laser Profile software interface
(Cognex, 2018) 36

3.1 Flowchart of system overview 45

3.2 Flowchart of software process 46

3.3 The box is used as the reference to the graph
optimising filter selection 49

3.4 Function of moving average filter in Python 49

3.5 Command of median filter in Python 51

3.6 Command for Savitzky-Golay Filter 52

3.7 Command to calculate RMS height of surface
roughness 54

3.8 Flowchart of finding the autocorrelation length
of surface roughness 55

3.9 Finding the intersection point between
y=0.36788 and autocorrelation function graph 56

3.10 Command for the generation of
autocorrelation function graph 56

xvi

3.11 Code to find the intersection point of 2 lines 57

3.12 Command line to sync Raspberry Pi with the
Blynk Cloud 58

3.13 Function of controlling the GPIO pin virtually 58

3.14 Flowchart of the Blynk controlling the GPIO 59

3.15 Blynk Cloud dashboard showing the device
status and virtual pin 59

3.16 Creating OAuth client ID in Google
Developer Console 61

3.17 A copy of information after the remote is
added 61

3.18 Rclone@.service file content 62

3.19 Mounted Google Drive in Linux system 63

3.20 Google Drive sync with the mounted drive in
Linux 63

3.21 Command for importing the libraries of the
program 65

3.22 Command to increase the recursion limit 65

3.23 Command to suppress the error of
ShapelyDeprecationWarning 66

3.24 Global definition in the program 66

3.25 Class for Homepage design interface 67

3.26 Frame structure of Homepage 68

3.27 Class of StartPage Widgets 68

3.28 Widgets and Fonts on Homepage 69

3.29 PageOne initialisation function 69

3.30 PageOne widgets and interface command 70

3.31 PageOne search file function 70

3.32 PageOne read excel file function 71

xvii

3.33 PageOne clear data in the list function 71

3.34 PageOne interface (without selected file) 72

3.35 PageOne interface (with the selected file) 72

3.36 PageTwo initialisation function 73

3.37 PageTwo graph plotting function 74

3.38 PageTwo new analysis function 74

3.39 PageTwo interface (without selected file) 75

3.40 PageTwo interface (with the selected file) 75

3.41 PageThree initialisation function 76

3.42 PageThree Surface Roughness Parameters
Calculation and Graph Plotting function 77

3.43 PageThree new analysis function 77

3.44 PageTwo interface (without selected file) 78

3.45 PageTwo interface (with selected file) 78

3.46 Coding part for the initialising stage 79

3.47 Coding part for the setup of executable
extension 79

3.48 Gantt Chart of FYP1 80

3.49 Gantt Chart of FYP2 80

4.1 Replace the old Raspberry Pi 2 with Raspberry
Pi 3 101

4.2 Replace a new step-down converter (12V to
5V) 102

4.3 Replace a new encoder strip 102

xviii

LIST OF SYMBOLS / ABBREVIATIONS

𝒛𝒛 mean

𝜎𝜎 standard deviation

𝝀𝝀 wavelength

𝒆𝒆 Euler’s number [2.71828]

∞ infinity

𝜄𝜄 surface correlation length

RMS Root Mean Square

GPIO General-Purpose Input/Output

GUI Graphical User Interface

IoT Internet of Things

HDMI High-Definition Multimedia Interface

LAN Local Area Network

PCB Printed Circuit Board

USB Universal Serial Bus

OS Operating System

IR Infrared

ADC Analog-to-Digital Converter

IC Integrated Circuit

PISO Parallel-In/Serial-Out

I/O Input/Output

DC Direct Current

PWM Pulse-Width Modulation

IP Internet Protocol

DSP Digital Signal Processor

API Application Programming Interface

RAM Random-Access Memory

xix

UI User Interface

PC Personal Computer

HMI Human-Machine Interface

PDF Portable Document Format

CAD Computer-Aided Design

WIFI Wireless Fidelity

xxii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Coding of Main Program 109

B Coding of Setup of Executional Extension 115

C Profiler System Coding 115

1

CHAPTER 1

INTRODUCTION

1.1 Background

In geomorphology, the earth's surface roughness, also known as landscape, terrain, and

topographic roughness, is directly related to the unevenness of surface elevation

values. (Day and Chenoweth, 2013). The surface roughness measurements are then

fed into surface dynamics modelling. The application examples are soil erosion, runoff

prediction, and microwave remote sensing scattering modelling and calibration.

(Gharechelou, Tateishi and A.Johnson, 2018). One of the laser profilers from Cognex

is shown in Figure 1.1 below.

Figure 1.1: Cognex Laser Profiler (Cognex, 2018)

2

In the past, researchers employed a variety of approaches to estimate roughness

parameters based on ground data. Surface measurement is classified into two types:

contact and non-contact. Non-contact measurement is faster than contact because

contact-type instruments must touch and transverse the object. Non-contact devices

can measure multiple points without placing pressure on the item. Although non-

contact measurements have advantages, contact-based measurements are preferable in

environments with poor cleanliness levels. (MTI Instruments, 2021). As the dust is not

affecting the measurement as the noise anymore. An example of a non-contact

instrument is a pin profilometer. It requires physical contact with the land and can be

time-consuming to conduct (Gharechelou, Tateishi and A.Johnson, 2018). In contrast,

non-contact instruments include laser profilers and ultrasonic techniques.

Surface roughness affects natural surfaces' scattering and emission

characteristics in microwave remote sensing. The study of height differences recorded

along transects characterises land surface roughness. The degree of random surface

roughness is defined by statistical characteristics assessed by the wavelength units of

the observing sensor (Campbell and Wynne, 2011). Surface roughness measurement

is critical in microwave remote sensing. However, the concept of roughness has yet to

be fully resolved. Methods of evaluating roughness have developed independently

with distinct yet parallel approaches emerging in different disciplines, often

originating from outside the Earth Sciences in engineering sciences (Smith, 2014).

 The research is inspired by the application of understanding the surface

roughness parameters by Dr. Lee Yu Jen and other researchers in Ross Island,

Antarctica. The researchers applied remote sensing on the snow and ice surface with

the surface profiler to deduce its physical properties and parameters such as

autocorrelation length and RMS surface height. Sea ice is a complex, polycrystalline

combination of pure ice with random brine and air inclusions, whose volume fraction

and geometry drastically depend on temperature, age, and growth conditions, making

research difficult. In addition, the surface of the sea ice has varying degrees of

roughness and may be coated with a layer of snow, which is still another complex

random composite with variable microstructure (Koay et al., 2017). Excel calculations

must be performed manually in order to extract surface roughness parameters.

3

1.2 Problem Statements

i. High instrument cost for a laser profiler

Developing a non-contact measurement is costly; the sensor's accuracy can be affected

by many factors. In order to maintain the precision of the measured data, the

instrument's specifications must decide cautiously. The specifications include:

• Building material

• Type of sensor

• Safety measure

The considerations above caused the manufacturers to raise their costs. Also,

it is difficult to find spare parts replacement. This is a burden for most users.

ii. Lack of portable non-contact surface measurement instruments in

the market

Finding a portable laser profiler measurement instrument in the existing market is

difficult. It is inconvenient for users to move to the desired place to collect the data.

The available instruments in the market are fixed at a location and non-movable. If the

specimen is bulky and fragile, it is difficult for the user to move it on the platform to

measure. The machines found in the market are heavy and cannot be easily

reassembled. It requires professionals that acquire technical skills to do the work.

Therefore, the maintenance and repair work needs a very high cost to sustain the

machine.

iii. Non-user-friendly in software GUI interface

Integrating data collection and obtaining the desired parameters is costly software

development. Now, highly accurate, smaller, intuitive packages that archive data

points and allow users to parse the data and explore more insights are coming at a

price. The main issue faced by the users is that the measured data is not easily accessed.

Users cannot get insights into the data and read it easily. The users need to follow the

manual to get their desired specific parameters.

4

iv. Lack of automated contactless surface roughness parameters

software in the market

No programme on the current market can automatically determine surface roughness

metrics such as autocorrelation length and RMS height from raw data input. The

researcher can only perform calculations manually, which is inefficient and time-

consuming.

1.3 Aims and Objectives

The project is aimed to develop software that integrates with the surface profiler

prototype in extracting the measured data. The surface profiler is run in a lateral

direction over a distance. Then, the measured data is stored in the system as an excel

file. Users can conveniently choose the file they want to analyse from the system. The

hardware and software of the instrument are connected seamlessly. Users can install

the software online and use it with their devices. The following are the precise project

objectives:

i. To develop an application that can optimise the graph by removing

unwanted noises with spikes.

ii. To design a user-friendly interface that increases the productivity of the

user, which can decrease the search time in finding the options and increase

the satisfaction of using the application.

iii. To develop an algorithm that can generate specific parameters such as

autocorrelation length and RMS height and automate the process to satisfy

the users' needs within seconds.

iv. To develop a contactless integration with the Internet of Things (IoT)

which highly increase user productivity in data analysis.

5

1.4 Organisation of Thesis

The content of each chapter is listed in Table 1.1 below.

Table 1.1 Table of organisation of the thesis

Chapter 1: Introduction • Introduce the surface profiler

and surface roughness with

remote sensing.

• Give a brief introduction to the

previous research by Dr. Lee Yu

Jen and other researchers on the

sea and snow surface physical

properties.

• Subchapters of this chapter

include background, problem

statements, aims and objectives.

Chapter 2: Literature Review • Reviews of working principles on

the previous project.

• Research on the filters optimising

the measured data.

• Research on the surface

roughness parameters

(Autocorrelation Length & RMS

Surface Height).

• Compare the programming

language and the GUI framework

to use.

• Compare the IoT and cloud

storage platforms to use.

• Reviews of existing surface data

analysis software.

6

 Chapter 3: Methodology • Provides an overview of the

proposed method and approach to

developing the project.

• Shows and visualises system

design in the form of system flow

charts.

• The hardware used is listed.

• Explain how the code is executed

and also highlight the features.

• Shows the timeline of deliverables.

Chapter 4: Result and

Discussion
• Measure the reliability and

accuracy of the software's

calculation on the surface

roughness parameters.

• Measure the reliability and

accuracy of the filter by

optimising the raw data and

generating a graph.

Chapter 5: Conclusion and

Recommendations
• Conclude the project.

• Reviews on the project by

providing the limitations and

areas of improvement.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

A review of the previous project – Automated Electronic Sensor System, is done to

understand the working principle and find out the limitations and areas of

improvement. A programming language is the first thing to research for developing

software with a GUI interface. This is to make sure that the GUI framework can be

more focused and ease the further decision next. Then, a few GUI frameworks are

compared to ensure the functionality and sustainability of the application can be

achieved. Furthermore, graph optimisation by comparing different filters and research

on the surface roughness parameters are done to achieve software automation on data

analysis. Then, IoT and cloud storage platforms are compared to achieve the

contactless machine objective. Afterwards, reviews of existing surface roughness

measurement software must be made to highlight the advantage and disadvantages of

each application. This is to trigger more innovations and functions to be added to the

project.

8

2.2 Automated Electronic Sensor System

This system is utilised to design and construct an automated electronic earth surface.

This system should be able to automatically measure and store data at predetermined

intervals for later extraction. This gadget is limited to profiling a 30 cm long, 1-

dimensional surface at 0.6 cm intervals. A Raspberry Pi in this project controls the

entire system. The Raspberry Pi is powered by a Raspbian OS, a Linux-based operating

system. A screen is attached to Raspberry Pi's HDMI connector to display the OS's

graphical user interface. The entire circuit is constructed with the PCB. Some circuits

are manufactured independently from the main PCB to accomplish specific functions.

The acquired data is stored in the memory card of the Raspberry Pi. Two methods are

available for data extraction: Connect a pendrive or use a LAN cable (Kang, 2016).

2.2.1 Physical Planning and Design

A holder or stand is required for measurements to be taken. The design drawing is

depicted in Figure 2.1. Aluminium was chosen to construct the profiler's stand.

Aluminium is a lightweight material that resists corrosion. Two PCBs: the main board

and the encoder board, are required in the design.

Figure 2.1: Sketch of surface profiler (Kang, 2016)

9

2.2.2 Hardware Specifications

For this project, a Sharp IR Analogue Distance Sensor was chosen. This sensor's beam

width is relatively limited. Additionally, it provides accurate measurements. The

sensor's measuring range is between 10 cm and 80 cm. Although inexpensive, this

sensor performs poorly on black surfaces and in direct sunshine. Due to the

inexpensive cost, it is appropriate for study. The Sharp IR sensor operates on the

triangulation technique. This sensor features an integrated circuit. The Sharp IR sensor

generates an analogue signal based on the detected distance. The distance versus

voltage graph from the datasheet is depicted in Figure 2.2 below. According to the

graph, the distance between approximately 7 cm and 20 cm has a steeper curve. This

study indicates that this sensor is more sensitive at this range and delivers more precise

detection at that distance. The maximum height of the sensor design must, therefore,

not exceed 20 cm above the ground (Kang, 2016).

Figure 2.2: Graph of distance vs voltage (Kang, 2016)

Since the Sharp IR sensor datasheet does not include an equation for measuring

the distance to voltage, an experimental measurement is conducted. The actual

experimental setup is depicted in Figure 2.3 below. The graph of average distance

versus voltage is depicted in Figure 2.4. After plotting the average graph, a trendline

based on the power function is added to the graph.

10

Figure 2.3: Experiment setup to measure the distance to voltage (Kang, 2016)

Figure 2.4: Graph of distance vs voltage (average) (Kang, 2016)

Then the equation of distance to voltage is generated using Microsoft Excel.

The equation is obtained as shown below:

y = 15.985x-0.866 (2.1)

where

y = voltage, V

x = distances, cm

11

To derive the voltage-to-distance equation, x is moved to the left side of the

equation, and y is moved to the right side through a series of mathematical calculations.

The derived equation is given by

 x = (y / 15.985) (1 / -0.866) (2.2)

where

x = distance, cm

y = voltage, V

To convert the analogue signal from the Sharp IR distance measuring sensor,

an ADC is required. The ADC is necessary because the Raspberry Pi lacks an inbuilt

ADC. ADC0804 IC was selected as the eight-bit ADC. The ADC 0804IC contains an

oscillator. Figure 2.5 depicts pin 19 as the oscillator's output and pin 4 as the ADC's

clock input. ADC0804's datasheet indicates that the ADC can accept a 640 kHz clock.

Connected to the output of the Sharp IR sensor is Pin 6. Pin 9 is the voltage reference

pin. The voltage provided to this terminal must be divided in half. The SN74166 PISO

8-bit shift register was chosen. This 8-bit shift register is responsible for moving the

data from the 8-bit ADC to the controller bit by bit to compensate for the lack of I/O

pins. Figure 2.6 below illustrates the IC's pin assignment.

Figure 2.5: ADC0804 IC connection (Kang, 2016)

12

Figure 2.6: Connection of SN74166 (Kang, 2016)

A slider purchased from the market is expensive, and its length is difficult to

find. Therefore, a slider pulled from a malfunctioning inkjet printer was selected. It

has a length of 35 cm, making it appropriate for carrying in a bag. The disassembled

slider from the HP inkjet printer is depicted in Figure 2.7 below. A DC motor was

chosen to mount on the slider. The DC motor is shown mounted on the slider in Figure

2.8. The DC motor is the only motor that can fit onto the slider, although it is not the

ideal option. The stepper motors could be positioned incorrectly on the slider.

Figure 2.7: Dissembled slider from HP inkjet printer (Kang, 2016)

13

Figure 2.8: DC motor attached to the slider (Kang, 2016)

A servo system has an encoder, motor, and motor driver. The encoder system

provides the controller with feedback. Components of the encoder system include an

encoder and an encoder strip. As the encoder, a line follower infrared sensor was

chosen. This circuit's primary components are an IR transmitter, receiver, IR resistors,

and an op-amp comparator. The selected operational amplifier, LM358N, is accessible

in the faculty laboratory. The line follower infrared sensor of choice is depicted in

Figure 2.9 below. The black and white strip of the encoder is sensed with the black

surface as logic "0" and the white surface as logic "1". The position of the slider is fed

back by the stripes. The encoder system is depicted in Figure 2.10.

Figure 2.9: Line follower infrared sensor (Kang, 2016)

14

Figure 2.10: Sketch of the encoder system (Kang, 2016)

A tiny lead acid battery with a capacity of 1.2 AH and an operating voltage of

12 V was chosen. This battery is appropriate for powering the DC motor. The 12 V

battery is used to power the DC motor, but it cannot power the Raspberry Pi, the Sharp

IR sensor, the encoder, the ADC, or the shift register. Consequently, a buck step-down

DC-DC converter was used. The selected module for the buck converter is depicted in

Figure 2.11 below. This bulk converter can convert voltages between 4.5 V and 35 V;

therefore, the fire is not caught when a 12 V source is supplied. The input of this bulk

converter module is supplied with 12 V, and 5 V is obtained by adjusting the rheostat

using a voltmeter attached to the module's output. The block diagram is depicted in

Figure 2.12 below.

Figure 2.11: DC-DC buck converter module (Kang, 2016)

15

Figure 2.12: Connection of battery, converter to the supply other devices (Kang, 2016)

2.2.3 Software Specifications

Python was selected to program the Raspberry Pi to control the hardware. Python is

already available in the Raspbian OS, and the libraries required to run the Python script

are also available in the OS. PWM is required to control the speed of the motor. The

explanation of the duty cycle is shown in Figure 2.13. After running many tests with

different duty cycles and frequencies, the maximum duty cycle obtained is 17% at 175

Hz.

Figure 2.13: Duty cycle of PWM

16

In order to compute the height of the surface, it is necessary to retrieve data

from the Sharp IR sensor using the ADC and shift register. The shift register's binary

code is translated to decimal. Using the formula v = 5*(the retrieved decimal

value)/255, the voltage value is calculated. By using the voltage to distance equation,

the distance between the surface and the Sharp IR sensor is calculated as x = (y/15,985)

(1/-0.866). In the code, the first value is designated as the reference distance. Then,

store the initial and subsequent values in reference distance1. The height of the surface

is then calculated using the formula height = distance - distance1.

 Python requires an additional library to save data in an Excel file. It was the

XlsxWriter library that was installed. The terminal command "sudo pip install

XlsxWriter" is used to install the library. Following installation, the library is

immediately usable. The code "import xlsxwriter" is placed at the beginning of the

script to import the library. Two lines of code are used to create an Excel file:

"workbook = xlswriter.Workbook (filename.xls>)" and "worksheet = workbook.add

worksheet()." After the data is transferred to the file, the file is closed. Excel is closed

using the "workbook.close()" function. The retrieved data files are kept at

/home/pi/Desktop. There are two methods of extraction. The first technique involves

transferring the Excel file to a flash drive. A flash drive is required to connect to the

Raspberry Pi's USB port. The excel files created in the /home/pi/Desktop directory are

then copied to a flash drive.

The second option is to use a LAN cable to transport data to the personal

computer. Software is necessary for data transfer over a LAN. The software is named

Filezilla. For this software to function, the IP address of the Raspberry Pi must be

obtained. Figure 3.34 depicts a screenshot of the Filezilla application. At the very top

of the software are four text boxes. The Raspberry Pi's IP address is entered in the Host

text box. The username is "pi", and the password is "raspberry", while the port number

is "22".

17

2.2.4 System Flow Chart

Figure 2.14 depicts the system flow for the surface profiler. The surface profiler is

initiated by pressing the button on the PCB. When the button is pressed, an Excel file

is created, and the motor is controlled via PWM. Along the encoder strip, the infrared

sensor collects data. The program's algorithm processes and saves the data in the Excel

file. The motor is finally returned to its initial position, and the Excel file is prepared

for analysis.

Figure 2.14: Flow chart of surface profiler system (Kang, 2016)

18

2.2.5 Case Study: Accuracy Test

The profiler is examined as it traversed a white, flat surface 19 cm beneath the Sharp

IR sensor. The physical arrangement is shown in Figure 2.15. The optimal outcome is

depicted in Figure 2.16, whereas the worst outcome is depicted in Figure 2.17. Due to

the highest fluctuations of the graphs being less than 0.5 cm, the result obtained is

deemed satisfactory. The optimal outcome yielded a maximum variation of 0.26 cm.

On the other side, the obtained value showed a maximum variation of greater than 1.3

cm. The highest fluctuation is 1.88 cm at its worst. The outcomes demonstrated that

the graphs had sharp edges and fluctuations along a flat surface. The accuracy is

improved when the surface is closer to the Sharp IR sensor.

Figure 2.15: Setup of the case study (Kang, 2016)

19

Figure 2.16: The best result of the case study (Kang, 2016)

Figure 2.17: The worst result of the case study (Kang, 2016)

20

2.2.6 Summary

The pros and cons of the automated surface profiler are summarised in Table 2.1

below.

Table 2.1: Table summarising the pros and cons of the automated surface

profiler

Pros Cons

Portable –

Easy to move around

Battery Consumption –

Short usage time

Data Automation –

Graph of surface measurement is

generated in Excel file every run

Unoptimized Data –

Data collected contain noise

Accessibility –

Easy to control and use

Surface Roughness Parameter –

Lack of data analysis on the surface

roughness

2.3 Graph Optimisation

Graph optimisation is a statistical technique for eliminating datasets' noise to identify

patterns. This is achieved by removing statistical noise from datasets using algorithms.

The data may be adjusted during compilation to decrease or remove significant

disparities. It focuses on establishing a fundamental direction for the key data points

by avoiding any volatile data points and simplifying the formation of a smoother curve

across all data points (Bhalerao, 2021). As data is compiled, it can be efficiently altered

to eliminate or reduce any volatility or other forms of disturbances. This is referred to

as the data smoothing procedure (Fincash, 2022).

 Digital Signal Processing (DSP) technology is being applied in data smoothing.

DSP is an integral component of several measurement systems and is used to post-

process data before real analysis. Signal processing aims to enhance the quality of a

21

signal by eliminating noise. It can also eliminate redundant information for more

effective data storage and transmission. DSP focuses on digital signal processing on

computers. Resistors, capacitors, and inductors are employed to execute analogue

signal processing. Digital filters are more precise, less expensive, and age-resistant

than analogue ones (Pastell, 2016). It is feasible to optimise a filter for either time

domain or frequency domain performance, but not both. There are several functions to

designing and analysing filters. For instance, the Moving Average Filter, Median

Filter, and Savitzky-Golay Filter (Pastell, 2016).

2.3.1 Moving Average Filter

The moving average is a simple lowpass filter. It substitutes the average of n samples

for each sample. The most common variation is the central moving average; here's how

to compute it for 5 points:

 𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡−2+ 𝑥𝑥𝑡𝑡−1+𝑥𝑥𝑡𝑡+𝑥𝑥𝑡𝑡+1+𝑥𝑥𝑡𝑡+2
5

 (2.3)

where yt is t th of the filtered signal and x is the original signal. The general formula of

such an averaging operation is 𝑦𝑦(𝑘𝑘). The value of 𝑦𝑦(𝑘𝑘) is defined to be the arithmetic

average of the preceding 𝑁𝑁 − 1 points of 𝑥𝑥(𝑘𝑘) itself:

 𝑦𝑦(𝑘𝑘) = 1
𝑁𝑁
∑ 𝑥𝑥(𝑗𝑗)𝑘𝑘
𝑗𝑗=𝑘𝑘−𝑁𝑁+1 (2.4)

Moving average is the ideal filter for white noise-containing time domain signals

(Pastell, 2016). The signal-to-noise ratio can be improved by widening the filter or

smoothing the data several times. After each filter run, the first n and last n points are

lost. This technique's findings are deceptively impressive due to excessive filtering.

Information is lost or corrupted due to giving too much statistical weight to points that

are distant from the focal point. The moving average method is highly detrimental

when the filter traverses narrow peaks compared to the filter width (Constantinos,

2018).

22

2.3.2 Median Filter

The median filter is a discrete-time operation in which a window with a width of 2N+1

points is moved across an input signal. At each phase, the points within the window

are sorted according to their respective values, with the median value of the sorted set

serving as the output value for each window position. Consider a real, discrete-time

sequence {𝑎𝑎(𝑛𝑛)}, where 𝑎𝑎 is an M-level signal. The output of the median filter 𝑦𝑦(𝑛𝑛)

is given by 𝑦𝑦(𝑛𝑛) = median [𝑎𝑎(𝑛𝑛 − 𝑁𝑁), . . . ,𝑎𝑎(𝑛𝑛), . . . ,𝑎𝑎(𝑛𝑛 + 𝑁𝑁)] . The median

operation has the property of commuting with the thresholding operation.

Consequently, a multilayer running median can be achieved by thresholding the input

signal at all potential levels, filtering each binary thresholded signal with a median

filter, and summing the filtered binary outputs. Define {𝑎𝑎𝑖𝑖(𝑛𝑛)}, 𝑖𝑖 = 1,2 , . . . ,𝑀𝑀 −

 1 as the 𝑖𝑖 𝑡𝑡ℎ level binary signal sequence of {𝑎𝑎𝑖𝑖(𝑛𝑛)}, where 𝑎𝑎𝑖𝑖(𝑛𝑛) = 0 if 𝑎𝑎(𝑛𝑛) < 𝑖𝑖,

and 𝑎𝑎𝑖𝑖(𝑛𝑛) = 1 if 𝑎𝑎(𝑛𝑛) > 𝑖𝑖. The output of the median filter at the 𝑖𝑖𝑖𝑖ℎ level is given by

𝑦𝑦𝑖𝑖(𝑛𝑛) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 [𝑎𝑎𝑖𝑖(𝑛𝑛 − 𝑁𝑁), . . . , 𝑎𝑎𝑖𝑖(𝑛𝑛), . . . ,𝑎𝑎𝑖𝑖(𝑛𝑛 + 𝑁𝑁)]. It has been shown in (2.4)

that median filtering of an arbitrary level signal is equivalent to decomposing the signal

into binary signals, filtering each binary signal with a binary median filter, and then

reversing the decomposition (Qiu, 1994).

 𝑦𝑦(𝑛𝑛) = ∑ 𝑦𝑦𝑖𝑖(𝑛𝑛)𝑀𝑀−1
𝑖𝑖=1 (2.5)

 For analysis purposes, the {0,1} binary of {𝑎𝑎𝑖𝑖(𝑛𝑛)} is transferred into {-1,1}

binary of 𝑏𝑏𝑖𝑖(𝑛𝑛) by the operation: 𝑏𝑏𝑖𝑖(𝑛𝑛) = 2𝑎𝑎𝑖𝑖(𝑛𝑛) − 1. Define 𝑉𝑉𝑖𝑖(𝑛𝑛) as the output

of the median filter of {𝑏𝑏𝑖𝑖(𝑛𝑛)} , which is given by 𝑉𝑉𝑖𝑖(𝑛𝑛) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 [𝑏𝑏𝑖𝑖(𝑛𝑛 −

 𝑁𝑁), . . . , 𝑏𝑏𝑖𝑖(𝑛𝑛), . . . , 𝑏𝑏𝑖𝑖(𝑛𝑛 + 𝑁𝑁)] and 𝑉𝑉𝑖𝑖(𝑛𝑛) = 2𝑦𝑦𝑖𝑖(𝑛𝑛) − 1.

 For median filtering of the binary sequence {𝑏𝑏𝑖𝑖(𝑛𝑛)}, the output of the median

filter is as follows:

 𝑉𝑉𝑖𝑖(𝑛𝑛) = �+1 𝑖𝑖𝑖𝑖 𝑆𝑆(𝑛𝑛) ≥ 0
−1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (2.6)

23

where

 𝑆𝑆(𝑛𝑛) = ∑ 𝑏𝑏𝑖𝑖(𝑛𝑛 + 𝑗𝑗) + 𝑏𝑏𝑖𝑖(𝑛𝑛)𝑗𝑗=𝑁𝑁
𝑗𝑗=−𝑁𝑁
𝑗𝑗≠0

 (2.7)

 The cost function of the output state of the median filter is defined as below:

𝐸𝐸𝑖𝑖(𝑉𝑉𝑖𝑖(𝑛𝑛)) = ∑ 𝑉𝑉𝑖𝑖(𝑛𝑛)𝑏𝑏𝑖𝑖(𝑛𝑛 + 𝑗𝑗) − 𝑉𝑉𝑖𝑖(𝑛𝑛)𝑏𝑏𝑖𝑖(𝑛𝑛)𝑗𝑗=𝑁𝑁
𝑗𝑗=−𝑁𝑁
𝑗𝑗≠0

 (2.8)

 It is straightforward to show that the median filter operation of (2.6) always

forces (2.8) into its minimum: 𝐸𝐸𝑖𝑖(+1) = −𝑆𝑆(𝑛𝑛) and 𝐸𝐸𝑖𝑖(−1) = 𝑆𝑆(𝑛𝑛) . If 𝑉𝑉𝑖𝑖(𝑛𝑛) =

 +1,𝑆𝑆(𝑛𝑛) ≥ 0,𝐸𝐸𝑖𝑖(+1) < 𝐸𝐸𝑖𝑖(−1). If 𝑉𝑉𝑖𝑖(𝑛𝑛) = −1, 𝑆𝑆(𝑛𝑛) < 0,𝐸𝐸𝑖𝑖(−1) < 𝐸𝐸𝑖𝑖(+1). This

property of median filtering is known as the functional optimization property. This

functional optimization characteristic holds at every level of the thresholded space.

Thus, median filtering is an optimization process in which the output of the filter is

always set to the least of a cost function of the filter's output state. The cost function

of (2.8) is called the median cost function (Qiu, 1994). It may appear odd at first look

because the equation (2.8) is written with two terms rather than a single sum. As will

become evident in the analysis that follows, these two concepts have distinct meanings.

The first term quantifies the smoothness between the filter output and its neighbouring

points inside the filtering window, while the second quantifies the difference between

the filter output and the original signal (Qiu, 1994).

 If the output of the filter is the same as its neighbouring input, 𝑉𝑉𝑖𝑖(𝑛𝑛) =

𝑏𝑏𝑖𝑖(𝑛𝑛 + 𝑗𝑗), 𝑗𝑗 ≠ 0), the median cost function is reduced. If the output of the filter differs

from its neighbour, 𝑉𝑉𝑖𝑖(𝑛𝑛) ≠ 𝑏𝑏𝑖𝑖(𝑛𝑛 + 𝑗𝑗), 𝑗𝑗 ≠ 0), the median cost function is increased.

The median filtering operation (2.6) encourages the output to have the same value as

its neighbours as it always minimises the cost function. Consequently, median filtering

has a tendency to smooth the signal. According to the above analysis, the median

filtering function consists of two components: The median filtering favours a smooth

signal that is identical to the original signal. This may explain why median filters have

the fundamental property of removing noise without considerable blurring or edge loss

(Qiu, 1994).

24

2.3.3 Savitzky-Golay Filter

Savitzky and Golay present a method for data smoothing based on approximating local

least-squares polynomials. It corresponds to discrete convolution with a fixed impulse

response. The lowpass filters resulting from this approach are commonly referred to

as Savitzky-Golay filters. Savitzky and Golay demonstrated that least squares

smoothing decreases noise while preserving a waveform's peak shape and height

(Schafer, 2011).

 The idea of least-squares polynomial smoothing is depicted in Figure 2.18,

which shows a sequence of samples 𝑥𝑥[𝑛𝑛] of a signal as solid dots. Considering, for the

moment, the group of 2𝑀𝑀 + 1 samples centred at 𝑛𝑛 = 0 , the coefficients of a

polynomial

 𝑝𝑝(𝑛𝑛) = ∑ 𝑎𝑎𝑘𝑘𝑛𝑛𝑘𝑘𝑁𝑁
𝑘𝑘=0 (2.9)

that minimises the mean-squared approximation error for the group of input

samples centred on 𝑛𝑛 = 0,

 𝜀𝜀𝑁𝑁 = ∑ (𝑝𝑝(𝑛𝑛) − 𝑥𝑥[𝑛𝑛])2𝑀𝑀
𝑛𝑛=−𝑀𝑀

 = ∑ (𝑎𝑎𝑘𝑘𝑛𝑛𝑘𝑘 − 𝑥𝑥[𝑛𝑛])2𝑀𝑀
𝑛𝑛=−𝑀𝑀 (2.10)

are obtained (Schafer, 2011).

25

Figure 2.18: Illustration of least-squares smoothing by locally fitting a second-degree

polynomial (solid line) to five input samples (Schafer, 2011)

 The analysis is the same for any other group of 2𝑀𝑀 + 1 input samples. M is the

“half width” of the approximation interval. In Figure 2.17, where N=2 and M=2, the

solid curve on the left in Figure 2.17 is the polynomial 𝑝𝑝(𝑛𝑛) evaluated on a fine grid

between -2 and +2, and the smoothed output value is obtained by evaluating 𝑝𝑝(𝑛𝑛) at

the central point n=0. That is, y[0], the output at n=0, is

 𝑦𝑦[0] = 𝑝𝑝(0) = 𝑎𝑎0 (2.11)

 The interval of approximation need not be symmetric about the evaluation point.

This results in nonlinear phase filters, which are useful for smoothing the endpoints of

sequences of finite length. Using these weighting coefficients, also known as

convolution integers, is exactly equal to fitting the data to a polynomial; nevertheless,

it is computationally more efficient and considerably faster. Therefore, the smoothed

data point (𝑦𝑦𝑘𝑘)𝑠𝑠 is given by the following equation:

 (𝑦𝑦𝑘𝑘)𝑠𝑠 = ∑ 𝐴𝐴𝑖𝑖𝑦𝑦𝑘𝑘+𝑖𝑖𝑛𝑛
𝑖𝑖=−𝑛𝑛
∑ 𝐴𝐴𝑖𝑖𝑛𝑛
𝑖𝑖=−𝑛𝑛

 (2.12)

26

2.4 Surface Roughness Parameters

A surface that "appears" very rough to an optical wave may seem very smooth to a

microwave. This is because the degree of roughness, or simply the roughness, of a

random surface is described by statistical characteristics measured in wavelengths. The

standard deviation of the surface height fluctuation (or RMS height) and the surface

correlation length are the two most frequently used metrics to assess surface roughness

(Ulaby, Moore and Fung, 1981).

 The standard deviation of surface height (𝜎𝜎) and the surface correlation length

(ℓ) reflect the statistical variance of the random surface height component compared

to a reference surface. The reference surface may be the undisturbed surface of a

periodic pattern (as in the case of row-tilled soil surfaces) or the mean surface if only

random changes exist, as depicted in Figures 2.19 and 2.20, respectively (Ulaby,

Moore and Fung, 1981).

Figure 2.19: Random height variations superimposed on a periodic surface (Ulaby,

Moore and Fung, 1981)

Figure 2.20: Random height variations superimposed on a flat surface (Ulaby, Moore

and Fung, 1981)

27

2.4.1 Standard Deviation of Surface Heights / RMS Height

Consider a surface in the x-y plane whose height at a point(𝑥𝑥,𝑦𝑦) is 𝑧𝑧(𝑥𝑥,𝑦𝑦) above the

x-y plane. For a statistically representative surface section of dimensions 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦,

centred at the origin, the mean height of the surface is

 𝑧𝑧 = 1
𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦

∫ ∫ 𝑧𝑧(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝐿𝐿𝑦𝑦
2

−
𝐿𝐿𝑦𝑦
2

𝐿𝐿𝑥𝑥
2
−𝐿𝐿𝑥𝑥2

 (2.13)

And the second moment is

 𝑧𝑧2 = 1
𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦

∫ ∫ 𝑧𝑧2(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑 𝑑𝑑𝑦𝑦
𝐿𝐿𝑦𝑦
2

−
𝐿𝐿𝑦𝑦
2

𝐿𝐿𝑥𝑥
2
− 𝐿𝐿𝑥𝑥2

 (2.14)

The standard deviation of the surface height, a, is then given by

 𝜎𝜎 = � 𝑧𝑧2 − 𝑧𝑧2�
1
2 (2.15)

 If 𝑧𝑧(𝑥𝑥,𝑦𝑦) is statistically independent of the x-y plane's azimuth angle, the above

formulation can be simplified to a single dimension (Ulaby, Moore and Fung, 1981).

For the one-dimensional surface profile, 𝜎𝜎 is computed, in practice, by digitising the

profile into discrete values 𝑧𝑧𝑖𝑖(𝑥𝑥𝑖𝑖) at an appropriate spacing ∆𝑥𝑥. Assuming that the

height variation ∆𝑧𝑧 corresponding to a horizontal segment ∆𝑥𝑥 is much smaller than the

wavelength λ of the incident wave, this variation ∆𝑥𝑥 will have no appreciable effect

on the reflection by the surface of the segment ∆𝑥𝑥. As a rule of thumb, the spacing ∆𝑥𝑥

should be chosen such that ∆𝑥𝑥 ≤ 0.1λ (Ulaby, Moore and Fung, 1981).

 The standard deviation for the discrete one-dimensional case is given by

 𝜎𝜎 = � 1
𝑁𝑁−1

(∑ (𝑧𝑧𝑖𝑖𝑁𝑁
𝑖𝑖=1)2 − 𝑁𝑁(𝑧𝑧)2)� (2.16)

28

where

 𝑧𝑧 = 1
𝑁𝑁
∑ 𝑧𝑧𝑖𝑖𝑁𝑁
𝑖𝑖=1 (2.17)

and N is the number of samples.

2.4.2 Surface Autocorrelation Length

The normalised autocorrelation function for a one-dimensional surface profile 𝑧𝑧(𝑥𝑥) is

defined as

 𝜌𝜌(𝑥𝑥′) =
∫ 𝑧𝑧(𝑥𝑥)𝑧𝑧�𝑥𝑥+𝑥𝑥′�𝑑𝑑𝑑𝑑
𝐿𝐿𝑥𝑥
2
− 𝐿𝐿𝑥𝑥2

∫ 𝑧𝑧2(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐿𝐿𝑥𝑥
2
− 𝐿𝐿𝑥𝑥2

 (2.18)

and is a comparison of similarities between the height 𝑧𝑧 at a point 𝑥𝑥 and a

point 𝑥𝑥′ distant from 𝑥𝑥. For the discrete case, the normalised autocorrelation

function for a spatial displacement 𝑥𝑥′ = (𝑗𝑗 − 1)∆𝑥𝑥, where 𝑗𝑗 is an integer ≥ 1, is given

by

 𝜌𝜌(𝑥𝑥′) =
∑ 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗+𝑖𝑖−1
𝑁𝑁+1−𝑗𝑗
𝑖𝑖=1

∑ 𝑧𝑧𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
 (2.19)

 A plot of 𝜌𝜌(𝑥𝑥′) as a function of the displacement x' for the surface profile is

shown in Figure 2.21. The surface correlation length usually is defined as the

displacement 𝑥𝑥′ for which 𝜌𝜌(𝑥𝑥′) is equal to 1
𝑒𝑒
 :

 𝜌𝜌(𝑙𝑙) = 1/𝑒𝑒 , (2.20)

as indicated in Figure 2.21.

29

Figure 2.21: Autocorrelation Function (Ulaby, Moore and Fung, 1981)

 If two points on a surface are separated by a horizontal distance greater than 𝑙𝑙,

their heights may be statistically independent. In the extreme case of a perfectly

smooth surface, every point on the surface is correlated with every other point with a

correlation coefficient of unity. Hence, 𝑙𝑙 = ∞ in this case (Ulaby, Moore and Fung,

1981).

2.5 Programming Languages

A programming language is used to communicate with computers. The computers can

perform a specific task with a set of instructions that the developer specifies. The

familiarisation of a developer directly affects the communication effectiveness

between the developer and the computer. Ineffective communication finds the

software to have many bugs left to be resolved by the developer. It is a significant

problem that all programmers are worried about. Therefore, a familiar and well-

handling programming language for software development is essential. Research is

done on different mainstream programming languages for GUI interfaces.

30

2.5.1 Python

Python is a modern language and widely used language since 2004 and was developed

in the 1980s. Python has the most popular because it has a solution for every field. It

can be used in Artificial Intelligence, Web, Data Analysis, and Application

Development. The efficiency of Python in multiple technical domains advocates the

reason for such a large and active Python community (upGrad, 2021).

Python is an easy-to-read language; it is interpretable even for amateur

programmers. It belongs to a dynamically typed language. It also has automatic

memory management. For GUI development, Python has an extensive library. Python

has a library that lets the developer detect the mouse and keyboard input and show it

on the screen (Shepherd, 2020). Furthermore, the pros and cons of the language are

summarised in Table 2.2 below.

Table 2.2: Table summarising the pros and cons of Python

Pros Cons

Faster build –

Easy to understand and write

Speed Limitations –

Slower reading speed than other

languages

Large libraries –

More options for GUI frameworks

Limited environment –

Weak language for the mobile

environment

Cross Platforms –

Coding run on any platforms

Memory Consumption –

High memory consumption with

active RAM

31

2.5.2 Java

Java is object-oriented and helps in creating programs on any platform. Java has ruled

over all languages for over 20 years (TechVidvan, 2020). Java was initially designed

for embedded network applications on multiple platforms (Austerlitz, 2003). The most

recognisable Android application is also written in the Java programming language.

Nowadays, Java is used by developers to build software in many forms. These products

serve in many fields, for instance, video games and websites. Due to its security,

maintainability, platform independence, and many other benefits, Java is one of the

most used languages in the software industry (BairesDev, 2022). Furthermore, the pros

and cons of the language are summarised in Table 2.3 below.

Table 2.3: Table summarising the pros and cons of Java

Pros Cons

Stable and Secure–

Avoiding the use of explicit pointers

to store a memory address

Verbose –

Results in a long and complex

coding

Various APIs –

More options for methods of

communication

Unattractive –

Less mature in good-looking UI

development

Cross Platforms –

Coding run on any platforms

Memory Consumption –

High memory consumption with

active RAM

32

2.5.3 C++

C++ is a C programming language framework introduced with object-oriented

programming principles. It was created as a cross-platform enhancement to C to give

developers more control over memory and system resources (Buttice, 2021). C++ is a

compiler-based programming language. The coding is pre-interpreted and makes the

code run faster. The syntax of C++ is similar to C#, C, and Java. It is easier for the

developer to familiarise the language well and switch quickly. C++ is widely used as

it can also be run as the C program without changing the code. The flexibility of the

language is the reason for its popularity. Furthermore, the pros and cons of the

language are summarised in Table 2.3 below.

Table 2.3: Table summarising the pros and cons of C++

Pros Cons

Fast and Powerful –

The code is pre-interpreted

Verbose –

Results in a long and complex

coding

Multi-paradigm –

Generic, imperative, and object-

oriented style of program

Unsafe –

The presence of pointers and global

variables made the system easily

corrupt

Cross Platforms –

Coding run on any platforms

Memory Consumption –

High memory consumption with

active RAM

2.6 GUI Frameworks

For application developers, choosing a suitable GUI framework is important to

simplify the work and increase the efficiency in developing an application with the

expected outcome. There are several criteria that developers have to consider, such as

overall complexity, ability to handle and adaptability to emerging technologies. In the

33

progress of developing a UI interface application, it alleviates a lot of grunt work.

Therefore, simplifying tasks such as error handling is important to reduce the

debugging job after the structure of the classes has been completed. Before choosing

a framework to learn, the developer can handle it. With the same function, different

types of frameworks address issues uniquely. Therefore, the developer must

understand the framework structure before working on it. The framework should be

able to update constantly to keep up with the latest technology. This is to ensure that

the platform can support the latest framework (Mckenzie, 2016).

2.6.1 Tkinter

Tkinter is the standard built-in GUI library for Python. It is the most used Python GUI

framework as it is a mature framework that provides many widgets such as canvas,

graph generation and pop-up messages. The 'Tk' extension actively involves a big

community on the web. Any extension is immediately accessible from Tkinter.

The logo of the framework is shown in Figure 2.24 below. Furthermore, the

pros and cons of the framework are summarised in Table 2.4 below.

Table 2.4: Table summarising the pros and cons of Tkinter

Pros Cons

User-friendly –

The syntax is simple, and no need to

download

Unattractive –

Lack of native look and feel

Free for all –

Free licensed for all usage

Platform Limitation –

Unable to develop a mobile

application

More accessible –

Many libraries can be accessed

online

34

2.6.2 Kivy

Kivy is an open-source multi-platform GUI development framework for Python.

It can run on Windows, OS X, and mobile OS such as iOS and Android. It assists

in developing apps that take advantage of creative, multi-touch user interfaces.

Kivy's core concept allows developers to create an app once and utilise it across

all devices, making the code reusable and deployable and enabling quick and

easy interaction design and rapid prototyping (GeeksforGeeks, 2020).

Furthermore, the framework's pros and cons are summarised in Table 2.5 below.

Table 2.5: Table summarising the pros and cons of Kivy

Pros Cons

User-friendly –

Easy-to-use widgets built with

multi-touch support

Unmature –

Lack of good examples and

community support

Free for all –

Free licensed for all usage

Storage –

Large package size

Multi-platforms –

Use across all devices

2.7 Existing Surface Profiler Analysis Software

In the current market, there is no software capable of receiving raw input data from

any equipment for surface roughness analysis. The majority of synchronisation

software is connected with the specific instrument. Therefore, MicroEpsilon

scanCONTROL and Insight Laser Profile software are compared in terms of their

capabilities.

35

2.7.1 MicroEpsilon scanCONTROL

The Smart series sensors contain an intelligent controller that enables simple profile

analysis without using a PC. The scanCONTROL Configuration Tools software is

used to configure the profile analysis parameters. As well as the configuration of the

sensor, this also enables the parameters of the measurement task to be set up and of

the outputs, resulting in a compact, industrial, inline measurement solution. The

software has the features of:

• Plug & Play solution for complex measurement tasks

• Real-time profile analysis inside the controller

• Real-time saving of profile data

• Load and save parameters

• Protocol feature for measured values

• Easy online and offline analysis

The interface of the software is shown in Figure 2.22 below.

Figure 2.22: MicroEpsilon scanCONTROL software interface (Micro-Epsilon

Messtechnik, 2022)

36

2.7.2 In-Sight Laser Profile Software

The In-Sight laser profiler uses In-Sight VC Explorer with EasyBuilder to set up and

monitor a variety of measurements. The user-friendly interface guides operators

through a step-by-step setup process, allowing rookie and expert users to deploy

measuring applications rapidly and easily. The In-Sight laser profiler toolset is

specifically designed for laser profiling and includes extraction, construction, and

measurement toolsets. The software has the features of:

• Real-time monitoring

• Load and save parameters

• Monitor across all devices

The interface of the software is shown in Figure 2.23 below.

Figure 2.23: In-Sight Laser Profile software interface (Cognex, 2018)

37

2.7.3 Comparison of features

The software's features are compared and shown in Table 2.6 below.

Table 2.6: Table of feature comparison between the existing surface profiler

analysis software

Features MicroEpsilon

scanCONTROL

In-Sight Laser Profiler

Plug-play /

Real-time

analysis

/ /

Real-time

saving data

/ /

Save analysis

as an image

Use across all

devices

 /

Compare data

38

2.8 IoT Platform

The Internet of Things (IoT) aims to connect objects remotely for streamlined

operation and convenience. A platform for the Internet of Things connects device

sensors to data networks. It provides visibility into the data utilised by the application's

backend. An IoT platform comprises components that enable developers to distribute

programmes, collect data remotely, secure connectivity, and manage sensors. An IoT

platform oversees the connectivity of the devices and allows developers to construct

new mobile software apps. It facilitates device data collecting and promotes business

change. It ensures a continuous flow of communication between devices by connecting

disparate components (Hcltech, 2022).

In light of the foregoing, an IoT platform can perform in various use-case

situations, depending on the requirements. It is also referred to as middleware,

especially when discussing its ability to connect remote devices to applications and

other devices and how it regulates interactions between the hardware and application

layers (Upswift, 2022).

39

2.8.1 RaspController

The RaspController application facilitates remote Raspberry Pi control. Now files may

control the GPIO ports, issue commands directly through the terminal, examine photos

from a linked camera, and acquire data from various sensors. Finally, wiring diagrams,

pins, and other relevant information are accessible to correctly use the Raspberry Pi

(Egal Net, 2022.). Furthermore, the pros and cons of the RaspController are shown in

Table 2.7 below. The application has the features:

• GPIO management (On/Off or impulsive function)

• File manager (Explore the content of Raspberry Pi, copy, paste, delete,

download and visualise properties of files, text editor)

• Shell SSH (Send custom commands to your Raspberry Pi)

• Cpu, Ram, Storage, Network Monitoring

Table 2.7: Table summarising the pros and cons of RaspController

Pros Cons

User-friendly –

Easy to connect and control

Unmature –

Lack of good examples and

community support

Free for all –

Free licensed for all usage

Uncustomizable –

Fewer settings to work on for

specific requirements

Multi-platforms –

Use across all mobile operating

systems (Android and iOS)

40

2.8.2 Blynk

Blynk is an IoT platform for iOS and Android devices that enables Internet-

based control of Arduino, Raspberry Pi, and NodeMCU. This application is used to

generate a graphical user interface (GUI) or human-machine interface (HMI) by

compiling and providing the correct widget address (Media's, Syufrijal and Rif'an,

2019). Blynk was developed for the Internet of Things. It can remotely manage

hardware, display sensor data, save data, analyse it, and do many other fascinating

things. Furthermore, the pros and cons of the Blynk are shown in Table 2.8. Three

primary components comprise the platform:

• Blynk App - It allows users to design stunning interfaces for projects utilising

the given widgets.

• Blynk Server - It is in charge of all smartphone-to-hardware communications.

• Blynk Cloud - It is open-source, can easily manage thousands of devices, and

can even be run on a Raspberry Pi.

Table 2.8: Table summarising the pros and cons of Blynk

Pros Cons

User-friendly –

Easy to connect and control

Payment Needed –

Need to pay for more features

Mature –

Lage community support with good

examples

Data Storage –

Readings from hardware are auto-

deleted after a specific time

Multi-platforms –

Use across all mobile operating

systems (Android and iOS)

41

2.9 Cloud Storage

Cloud storage is a service model in which data is transferred and kept on remote

storage devices, where it is managed, backed up, and made accessible to users over a

network — usually the internet. Users typically pay a monthly consumption-based fee

for cloud data storage. Cloud service providers manage and maintain cloud-stored

information. In the cloud, storage services are offered on demand, expanding capacity

and contracting as needed. Cloud service providers operate expansive data centres in

numerous global locations. Customers who acquire cloud storage from a provider

delegate the majority of data storage responsibilities to the provider, including

security, capacity, storage servers and computing resources, data availability, and

network delivery. The cloud data can be accessed via traditional storage protocols or

application programming interfaces (APIs), or customer applications can be migrated

to the cloud (Chai, Castagna and Lelii, 2021).

2.9.1 Google Drive

Google Drive is a cloud-based file storage and synchronisation service. It lets users

store and share their files and personal information. It offers 15 GB of free space for

storage. Google started the service in 2012. It is utilised by nearly everyone connected

to the internet in some way. Everyone uses this to store personal and professional

information (Mixon and Wigmore, 2016).

Drive connects with Docs, Sheets, and Slides, cloud-native collaboration apps

that enable the team to more effectively produce content and collaborate in real-time.

Drive enhances and connects with the team's existing technology. Collaborate in

Microsoft Office files without converting file formats, and edit and save over 100

different file kinds, including PDFs, CAD files, and pictures (Google, 2019).

42

2.9.2 Dropbox

Dropbox is a personal cloud storage service (sometimes known as an online backup

service) that is commonly used for file sharing and collaboration. Dropbox is

compatible with Windows, Mac OS X, and Linux desktop operating systems. Apps

are also available for the iPhone, iPad, Android, and Blackberry. The service offers 2

GB of free storage and up to 100 GB via various paid plans (Wigmore, 2011).

2.9.3 Comparison of features

Both cloud storage features are compared and shown in Table 2.9 below.

Table 2.9: Table of feature comparisons between Google Drive and Dropbox

Google Drive Dropbox

Charges $9.99 per month for

additional 2TB storage

Charges $11.99 per month for

additional 2TB storage

Provides full security of data Provides full security of data but

comparatively less

The file upload limit is 5TB The file upload limit is 50GB

Integrate with Google's software

suite

Integrate with Dropbox's

software suite

43

CHAPTER 3

METHODOLOGY

3.1 Overview

This chapter discusses software configuration via programming language choices and

GUI framework. The system overview is then presented, followed by a discussion of

the filter used to optimise the graph and the software's implementation of surface

roughness parameter calculation. The deployment of remote control and cloud storage

on the prototype is examined to automate the system further. Hardware debugging and

project management are discussed at the end of this chapter.

3.2 Selection of Programming language

After comparing the languages, Python is chosen as the primary language to code.

There are several reasons and concerns for choosing that. Python is less challenging to

learn than C++. C++features additional syntax rules and programming practices. C++'s

code is more extended, resulting in more challenging debugging duties. This is not

advantageous for the software developer. In addition, the Python library enables

customers to utilise whatever function they choose, particularly in data analysis and

machine learning. This characteristic suggests that Python is an excellent option for

the surface roughness parameters’ analysis task. Python is well-known for its ease of

use, less complex syntax, good readability, and active community support

(SoftwareTestingHelp, 2022).

44

Since its debut in 1995, Java has been the most popular and sought-after

programming language. Python has reached the top three most popular programming

languages within a few years, as its popularity increases annually. The apparent

disadvantage of Java compared to Python is that Java's syntax is far more complex

than Python's. In Java, a simple task such as reading the contents of a file requires the

import of numerous classes, but in Python, only two lines. Therefore, creating an

application with Python saves much time and enhances productivity. Python has a

built-in standard library known as TK (Tkinter for GUI interface), another feature.

They have fewer GUI features than C++ and Java (SoftwareTestingHelp, 2022).

3.3 GUI Framework Selection

Tkinter and Kivy are the Python language's GUI frameworks. Tkinter is selected as the

primary framework for several reasons. This framework requires no installation as

Tkinter is the standard Python interface to the TK GUI toolkit. By importing Tkinter,

developers may immediately use the framework; this saves time and makes learning

easier. However, Kivy requires installation, which is complicated for novice

application developers. Second, Tkinter is an established and robust framework with

an active community. It is well-documented on the Python website and in numerous

tutorials written by bloggers or developers. This allows a newbie developer to utilise

the community's excellent resources. Kivy is not popular enough to attract a large

community as Tkinter did. This is because the majority of Android developers prefer

to use Java. Java has additional capabilities and configuration flexibility. Therefore, it

is advisable to use Tkinter as the primary programme development framework for

simple stage development. Unquestionably, it is conceivable to use Kivy as the

framework after the fundamental structure and functionality have reached maturity and

are prepared for a platform move, such as a mobile application. It must be entertaining

and an added software function (Kravchenko, 2022).

45

3.4 System Overview

As an overview, the surface profiler is used to extract the surface measurement data.

Then, the extracted data is imported into the software to analyse the surface roughness.

The flowchart of the system between the hardware and software is shown in Figure

3.1 below.

Figure 3.1: Flowchart of system overview

The ProSight Surface Profiler software is an automated system that reads data

from the surface profiler's data file. A graph is constructed for analysis. Users can

easily relocate the graph to increase the efficiency and effectiveness of the analysis

task. In addition, users can save the graph as an image for record-keeping purposes

and distribute it to whomever they choose. With the software's.exe extension, the

developer can send the download link directly to the engineer. Figure 3.2 is a software

flowchart illustrating automated data analysis.

46

Figure 3.2: Flowchart of software process

47

3.5 System Performance Definition

The system performance can be defined in detail from multiple perspectives:

1. Real-time analysis

i. The file generated from the surface profiler can be imported in real-

time from Google Drive and run in the software.

ii. The software can calculate the autocorrelation length and RMS height

of the surface.

iii. Both .xlsx and .csv file are readable.

2. Data View

i. The imported data can be viewed in a table form with each heading.

ii. The data is used to extract for the generating graph purpose.

3. Graph generated

i. The data from the imported file is generated with the x-axis of

distance and the y-axis of height.

ii. The graph can compare with the following imported data.

iii. An optimised graph and autocorrelation function graph are generated

seamlessly.

4. Saved data

i. The graph can be saved as an image permanently on the pc.

ii. Users can save the image in any view they want.

48

3.6 Technologies and Tools involved

1. Hardware

As shown in Table 3.1 below, a laptop with specifications is used.

Table 3.1: Table of laptop specifications

2. Software

VNC Viewer is used to configure the Raspberry Pi 3 remotely. No cable is needed

when uploading the Python code to the Raspberry Pi 3. However, the IP address of

both devices has to be the same.

3.7 Graph Optimisation

As shown in Figure 3.3 below, the box is positioned and runs the scanning with the

Automated Electronic Sensor System. The box is measured with phone AI

measurement. The dimension calculated is 10 𝑐𝑐𝑐𝑐 𝑥𝑥 3 𝑐𝑐𝑐𝑐 . The raw data is being

compared with 3 different filters to optimise the graph generated.

 The filters used are moving average, median, and Savitzky-Golay Filter. These

filters are tested on different parameters to find the most suitable and accurate

outcome.

Hardware Specification

Operating System Windows 11

Processor Intel® Core™ i5-8250H CPU @

1.60GHz

Installed memory (RAM) 8GB

System type 64-bit operating system

49

Figure 3.3: The box is used as the reference to the graph optimising filter selection

3.7.1 Moving Average Filter

A library called SciPy must be imported into the system. The library is called to import

'signal'. SciPy does not have a built-in implementation of a moving average filter, but

it is easy to implement it. A moving average of order 𝑛𝑛 has an impulse response with

𝑛𝑛 elements that all have the value of 1/𝑛𝑛. The 𝑛𝑛 value can only be an odd number. So,

𝑛𝑛 =5, 7 & 9 are used to optimise the graph. The function and outcomes are shown in

Figure 3.4 and Table 3.2 below.

Figure 3.4: Function of moving average filter in Python

50

Table 3.2: Optimised graph (Dark Blue) of Moving Average Filter with different

values of 𝒏𝒏

𝑛𝑛 Optimised graph (Dark Blue)

5

7

9

The optimised graph removes spikes as 𝑛𝑛 increases. However, the object's

height is not optimally optimised. The upward gradient of the optimised graph is tilted,

which is a negative result. All optimised graphs for 𝑛𝑛 = 5, 7 & 9 show a sloping line

as it approaches 34 cm. The box's surface is not flat in the optimal graph for all n.

Therefore, the software does not employ the moving average filter.

51

3.7.2 Median Filter

A library called SciPy must be imported into the system. The library is called to import

'signal'. SciPy has a command for the median filter, as illustrated in Figure 3.7. Thus,

its implementation is straightforward. The filter has a parameter of 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. It is

a scalar or an N-length list giving the size of the median filter window in each

dimension. Elements of 𝑘𝑘𝑘𝑘𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 should be odd. If 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a scalar, then

this scalar is used as the size in each dimension (Virtanen et al., 2020). The default

size is 3 for each dimension. So, 𝑛𝑛 = 5, 7 & 9 are used to optimise the graph. The

function and outcomes are shown in Figure 3.5 and Table 3.3 below.

Figure 3.5: Command of median filter in Python

Table 3.3: Optimised graph (Red) of Median Filter with different values of 𝒏𝒏

𝑛𝑛 Optimised graph (Red)

5

7

52

9

When the value of 𝑛𝑛 increases, the optimised graph eliminates the spikes and

calculates the average height of the newly created spikes to retrieve the actual height

of the item. The box in Figure 3.6 has a dimension of 10 𝑐𝑐𝑐𝑐 in length and 3 𝑐𝑐𝑐𝑐 in

height. The optimised graph of 𝑛𝑛 = 9 shows that the height is between 3 − 4 𝑐𝑐𝑐𝑐.

However, the optimised graphs of 𝑛𝑛 = 5 & 7 show that the spikes are not eliminated

evenly. The state of the box's height is unfavourable. The box's surface is not flat in

the optimised graph of 𝑛𝑛 = 5 and 7. Therefore, 𝑛𝑛 = 9 of the median filter is the most

accurate among other values of n.

3.7.3 Savitzky-Golay Filter

A library called SciPy must be imported into the system. The library is called to import

'signal'. SciPy has a command for the median filter, so it is easy to implement. A

Savitzky-Golay filter calculates a polynomial fit of each window based on polynomial

degree and window size. Scipy savgol_filter() function requires one-dimensional array

data, window length, polynomial order, and other optional parameters. The parameters

are shown in the command in Figure 3.8 as (y, window size = 20, polynomial order =

5). So, polynomial order = 5, 7 & 9 are used to optimise the graph. The function and

outcomes are shown in Figure 3.6 and Table 3.4 below.

Figure 3.6: Command for Savitzky-Golay Filter

53

Table 3.4: Optimised graph (Green) of Median Filter with different values of 𝒏𝒏

Polynomial order Optimised graph (Green)

5

7

9

When the value of polynomial order increases, the optimised graph does not

eliminate the spikes. Also, the height of the object is not accurately optimised. When

moving up, the gradient of the optimised graph is slanted, which is a negative outcome.

All the optimised graph of polynomial order = 5, 7 & 9 shows the slanting line when

going up to 4 − 6 𝑐𝑐𝑐𝑐 . The box's surface is not flat in the optimised graph of all

polynomial order. Therefore, the Savitzky-Golay Filter is not being used in the

software.

54

3.7.4 Conclusion (Graph Optimisation)

After comparing 3 filters, the most accurate and suitable filter is the Median Filter

with the n value of 9. For the Moving Average Filter and Savitzky-Golay Filter, both

filters resulted in a negative result as they are not removing the spikes evenly, and the

height surface is non-flat as the actual object.

3.8 RMS Height

RMS height is also known as the standard deviation of surface height. Therefore, a

library called NumPy is imported. NumPy provides extensive mathematical functions,

random number generators, linear algebra operations, and Fourier transform, among

other things. The standard deviation measures the dispersion of an array of element

distributions. By default, the standard deviation is computed for the flattened array;

otherwise, it is computed for the chosen axis (Harris et al., 2020).

 The existing data from the previous research on the sea and snow surface

roughness measurement are used to validate the accuracy of the calculation. The

calculated data is given a tolerance of ±5%. There are 8 existing data to be used to

measure the precision of the calculation. The results are shown and discussed in

Chapter 4.

 The command below, shown in Figure 3.7, is used to calculate the RMS

height of input data. The 'y' is the height of the surface as input data. While

'np.float64' is to allow the calculated answer to be more accurate with more decimal

numbers.

Figure 3.7: Command to calculate RMS height of surface roughness

55

3.9 Surface Roughness Autocorrelation Length

Calculating the autocorrelation length of the surface roughness is a bit tricky. This is

because there is no existing library to calculate the length automatically. Therefore,

the. Next, a line of 1
𝑒𝑒

= 0.36788 is drawn horizontally in the autocorrelation function

graph. Then, the x value, which intersects between the 𝑦𝑦 = 0.36788 and the

autocorrelation function graph, is listed. The x-axis value is the correlation length. The

flowchart of the steps finding the autocorrelation length is shown in Figure 3.8 below.

Figure 3.8: Flowchart of finding the autocorrelation length of surface roughness

The graph shown in Figure 3.9 below is the autocorrelation function graph

(blue line) with the raw data from the snow site. The orange dot is the intersection

point between the horizontal line of y=0.36788 and the autocorrelation function graph.

The intersection point's x-axis value is the surface roughness's autocorrelation value.

56

Figure 3.9: Finding the intersection point between y=0.36788 and the autocorrelation

function graph

 The autocorrelation function graph is plotted by using tsaplots.plot_acf()

function from the Statsmodels library. The command is run as shown in Figure 3.10

below. The x-axis displays the number of lags, and the y-axis displays the

autocorrelation at that number of lags. By default, the plot starts at lag = 0, and the

autocorrelation is always 1 at lag = 0.

Figure 3.10: Command for the generation of the autocorrelation function graph

The intersection point is found using a library called “shapely.geometry” that

imports a function called LineString. The function separated the autocorrelation

function graph and the horizontal line of y=0.36788 into 2 lines, and then the

intersection of both is located. Finally, the autocorrelation length of the surface

roughness is found. The code to find the intersection point is stated as shown in Figure

3.11 below.

57

Figure 3.11: Code to find the intersection point of 2 lines

3.10 Selection of the IoT platform

In Chapter 2, RaspController and Blynk are compared. Blynk is picked for numerous

reasons. Although RaspController is the most suitable platform with Raspberry Pi for

monitoring the system and managing the GPIO, it is not the only option. Nonetheless,

the RaspController community is still immature. Compared to Blynk, there are fewer

resources and decent examples to refer. Blynk provides multiple platforms for

developers to simply configure the system. Blynk makes it simple for developers to

add additional sensors for data collection. Blynk requires the developer to pay for

additional functionality, but the free version is sufficient for enhancing the system. In

addition, Blynk can operate the Raspberry Pi GPIO from various devices, including

smartphones, tablets, and computers. It offers the developer a great deal of

convenience.

It is simple to configure Blynk and connect hardware to the Blynk app. Create

a Blynk account via the Blynk.Console. Then, Blynk will send an email containing the

Blynk.Cloud authorization code for the Raspberry Pi. On the Raspberry Pi running

Linux, the Blynk library must be downloaded. In order to synchronise with

Blynk.Cloud, the Blynk authorization code is inserted during the coding phase. Figure

3.12 depicts the format of the command. Following Raspberry Pi synchronisation, a

function is written to setup the GPIO.

58

Figure 3.12: Command line to sync Raspberry Pi with the Blynk Cloud

 During this pandemic, contactless machines are already a notable subject of

discussion. Therefore, a contactless function is implemented in the system by remotely

activating the start button compared to physically pressing it. By integrating the virtual

pin GPIO, the automated surface profiler researcher does not have to enter a hazardous

area to click the start button. As seen in Figure 3.13, a function is written to manage

the GPIO pin of the Raspberry Pi.

Figure 3.13: Function of controlling the GPIO pin virtually

 A condition is applied to the function. The signal is sent if the GPIO value is

determined to be one, allowing the motor to keep running. After the application has

been entirely executed, the system is restarted and continues to detect the GPIO's

value. If the detected value is zero, the motor is not driven, and the Python IDLE shell

displays "Pending." Figure 3.14 is the flowchart describing how the Blynk controls the

GPIO. The Blynk Cloud dashboard displays the online status when the device is

connected. Then, the device is prepared to operate the hardware by clicking the virtual

button illustrated in Figure 3.15 on the smartphone/display.

59

Figure 3.14: Flowchart of the Blynk controlling the GPIO

Figure 3.15: Blynk Cloud dashboard showing the device status and virtual pin

60

3.11 Selection of the cloud storage platform

In Chapter 2, Google Drive and Dropbox are evaluated to determine the best cloud

storage solution for the system. Google Drive is eventually selected as the cloud

storage for all measured data. This is because Google Drive is significantly less

expensive than Dropbox. Google Drive offers a bigger maximum storage capacity

even with the free version. In addition, Google Drive offers complete protection for

files that interface with Google's software suite, including Excel, Word, and Gmail. In

addition to the file format of our raw data, Google's software is highly well-known and

recognisable on the market.

The implementation of cloud storage is intended to automate data extraction.

In the previous project, data extraction was performed using a USB cable. This makes

it difficult for researchers to analyse data in real-time and slows job progress. The

automation of data extraction facilitates research and increases the efficiency of data

analysis tasks. Mounting Google Drive in a Linux environment on a Raspberry Pi

requires importing a library called 'rclone', which is actively maintained and offers a

great deal of functionality. With the assistance of the FUSE userspace filesystem layer,

it is possible to mount Google Drive as part of your Linux file system, dramatically

simplifying cloud storage from Raspberry Pi.

 Since remote files are exclusive to a given user, Rclone maintains distinct

configuration files for each user. All secret access tokens required to communicate

with cloud storage are kept in a user's configuration file, preventing access to cloud

storage by other users. By default, the config file is in

$HOME/.config/rclone/rclone.conf and should have permissions of 0600 (read-write

only for file owner) to ensure user access tokens remain private. For Google Drive,

there is an additional aspect to consider. With the default settings, the Rclone

application's client id is used. Google imposes per-client rate limits on Google Drive

interactions. This implies that by utilising the Rclone default client id, the user is

competing with all other Rclone users worldwide for operation bandwidth to Google

Drive. Even though the Rclone writers attempt to minimise this by requesting greater

quotas from Google, utilising the default is not ideal. This necessitates establishing a

client id with Google and avoiding the stampede.

61

First, go to the Google Developer Console in a web browser and sign in with

the Google account. A new project is established, and the Google Drive API and

services are enabled. The consent screen configuration is then selected on the

Credentials tab to generate an OAuth client ID. Finally, the client ID and client secret

are generated for the user's project. The tab appears as illustrated in Figure 3.16.

Figure 3.16: Creating OAuth client ID in Google Developer Console

 After obtaining the client ID and secret, the Rclone configuration must be

performed to mount Google Drive on the Linux system. The configuration is

performed by entering the command "Rclone config" in the Linux system's terminal.

By following the given instructions, a new remote is generated. An authorisation code

is issued after verification with the link provided at the end of the steps. The area

depicted in Figure 3.17 is a replica of the information displayed when the remote is

successfully inserted.

Figure 3.17: A copy of information after the remote is added

62

 Following Google Drive is added to a system, the Google Drive is unmounted

after a system restart. Consequently, a configuration is introduced to enable the storage

to be automatically mounted once the respective user logs in. This is possible with

systemd, a daemon that automatically launches and disables services. Systemd

operates in one of two modes: a system mode that handles hardware services such as

setting up networking, and a user mode that handles per-user services such as

launching the desktop environment. However, mounting the Rclone FUSE file system

for Google Drive is required in this circumstance.

 To tell systemd what to do depends on configuration files in some standard

locations. One of these locations where systemd looks for user config files is

$HOME/.config/systemd/user. To have the Rclone FUSE file system mounted

automatically at login, a ~/.config/systemd/user/rclone@.service file contains the

following contents, as shown in Figure 3.18 below.

Figure 3.18: rclone@.service file content

 The file is mounted in the system. Every time a user logs in to a Raspberry Pi,

Google Drive is automatically added to the file system, providing access to the cloud

storage's contents. Figures 3.19 and 3.20 depict that the Google Drive mounted on a

Linux system is synchronised with the online drive.

63

Figure 3.19: Mounted Google Drive in Linux system

Figure 3.20: Google Drive sync with the mounted drive in Linux

64

3.12 Implementation and Testing

3.12.1 Import of library

Beginning stage of the software development, a few libraries are imported.

• Matplotlib – Used to create a static, interactive and animated canvas.

• Tkinter – Used for the widget and button generation feature to design the

interface.

• Pandas – Used for data analysis, such as reading the excel data from pc.

• Shapely – Used for manipulation and analysis of planar geometric objects.

Mainly in finding the intersection point of graph analysis in the system.

• SciPy – Used for signal processing in the median filter of graph optimisation.

• NumPy – Used for comprehensive mathematical functions, integrated with

Scipy and Shapely to calculate autocorrelation function and RMS value.

• Stasmodels – Used for conducting statistical tests and data exploration. The

system is used for calculating the autocorrelation function in the data analysis.

• Pillow – Used for image processing. It is used to import and display an image

on the system's interface.

• System, Contextlib & Warnings – Used for managing resources within a

program to prevent the specific error message from popping out.

The command to import the libraries is shown in Figure 3.21 below.

65

Figure 3.21: Command for importing the libraries of the program

3.12.2 Debugging errors

When a recursive function is executed in Python on a large input (> 104), a "maximum

recursion depth exceeded error" might be encountered. This is a common error when

executing algorithms such as DFS and factorial on large inputs. This is common in

competitive programming on multiple platforms when running a recursive algorithm

on various test cases. Therefore, a command line is coded, as shown in Figure 3.22, to

modify the recursion limit in Python.

Figure 3.22: Command to increase the recursion limit

Shapely provides an array interface to access the coordinates, such as NumPy

array, easily. Starting with Shapely 1.8, converting a geometry object to a NumPy array

raises a warning: "ShapelyDeprecationWarning: The array interface is deprecated and

66

will no longer work in Shapely 2.0." NumPy attempts to access the array interface of

objects or determine if an object is iterable or has a length, which is now a deprecated

action. Even though the result is still correct, the warnings appear. In order to preserve

the code that depends on Shapely, the code seen in Figure 3.23 is used to suppress the

error and enable the programme to execute in various versions of Shapely.

Figure 3.23: Command to suppress the error of ShapelyDeprecationWarning

3.12.3 Global definition

The variables of df_columns, df_columns1, and file_path are used as the list for the

usage of different classes. The font elements are defined for the visual interface design.

The definitions 'f' and 'a' are used for plotting graphs from Matplotlib. The figure

below, shown in Figure 3.24, is the code for global definition to be used in the program.

Figure 3.24: Global definition in the program

67

3.12.4 Design for Homepage (Class I)

Class SeaofBTCapp has functioned for the homepage interface design. The design

elements include the icon and header of the software, logo interface, widget

orientation, menu bar, and most importantly, the frame for the buttons for entering the

main features page. The figures below, as shown in Figure 3.25 and Figure 3.26, are

the code for class I and the homepage interface, respectively.

Figure 3.25: Class for Homepage design interface

68

Figure 3.26: Frame structure of Homepage

3.12.5 Widgets for Homepage (Class II)

The class StartPage is used to set up font and buttons to press for entering the feature

page. The 'controller.show_frame' is to call the classes for the defined function. The

class “Startpage” command and homepage widgets are shown in Figure 3.27 and

Figure 3.28 below.

Figure 3.27: Class of StartPage Widgets

69

Figure 3.28: Widgets and Fonts on Homepage

3.12.6 PageOne (Class III)

The initialisation function (def _init_) defines the page's frame and font size. It also

initiates the TreeView for data visualisation purposes. The function is shown in Figure

3.29 below.

Figure 3.29: PageOne initialisation function

 The buttons to decide which action to perform next are implemented with

Tkinter and summon the function with "command=lambda". The functions of

"File_dialog" and Load_excel_data" are included. When there is no file selected on

the page, a label is shown to indicate "No File Selected". The command is shown in

Figure 3.30 below. Then a function called (File_dialog) is in the '_init_' function to

open the file explorer and assign the chosen file to 'label_file'. The function is shown

in Figure 3.31 below.

70

Figure 3.30: PageOne widgets and interface command

Figure 3.31: PageOne search file function

The 'Load excel data' function reads the previously selected Excel file and puts

the list into the treeview frame. The selected file is categorised into different lists to

facilitate the analysis process. The Pandas library handles the classification process.

The function also imports the data as a list into global variables for use by other classes.

The function is depicted in Figure 3.32. A clear_data is also defined to ensure the list

is clear after every data import. The function is shown in Figure 3.33 below. The

interface of PageOne without selected file and selected file are shown in Figure 3.34

and Figure 3.35 below, respectively.

71

Figure 3.32: PageOne read excel file function

Figure 3.33: PageOne clear data in the list function

72

Figure 3.34: PageOne interface (without selected file)

Figure 3.35: PageOne interface (with the selected file)

3.12.7 Design of PageTwo (Class IV)

The class initialise the frame, font, header, define a purpose, and widget button

generation. With the buttons widget features, the function of "graph" and "clear" is

called. Also, the function calls the canvas drawing and navigation tool function for the

graph generation. The function is shown in Figure 3.36 below.

73

Figure 3.36: PageTwo initialisation function

In the inner loop, a graph function is called to extract the data from the lists

that are defined as the global variables in the earlier stage. The raw data graph and

optimised graph with median filter are generated and displayed in a display. Canvas

library is called to plot and implement an interactive graph interface. The function is

shown in Figure 3.37 below. The clear function is used to open up a new window for

new analysis to be done so that 2 or more analyses can be done simultaneously. The

function is shown in Figure 3.38 below. The interface of PageTwo without selected

file and selected file are shown in Figure 3.39 and Figure 3.40 below, respectively.

74

Figure 3.37: PageTwo graph plotting function

Figure 3.38: PageTwo new analysis function

75

Figure 3.39: PageTwo interface (without selected file)

Figure 3.40: PageTwo interface (with the selected file)

76

3.12.8 Design of PageThree (Class V)

The class initialise the frame, font, header, define a purpose, and widget button

generation. With the buttons widget features, a function of "graph1" and "clear1" is

called. Also, the canvas drawing and navigation tool function for graph generation.

The function is shown in Figure 3.41 below.

Figure 3.41: PageThree initialisation function

In the inner loop, a graph function is called to extract the data from the lists

that are defined as the global variables in the earlier stage. A series of calculations with

Statmodels, NumPy and Shapely libraries are used to do the algorithm for

autocorrelation length and RMS surface height calculation. Canvas library is called to

plot and implement an interactive graph interface. The function is shown in Figure

3.42 below. The clear function is used to open up a new window for new analysis to

be done so that 2 or more analyses can be done simultaneously. The function is shown

in Figure 3.43 below. The interface of PageTwo without selected file and selected file

are shown in Figure 3.44 and Figure 3.45 below, respectively.

77

Figure 3.42: PageThree Surface Roughness Parameters Calculation and Graph Plotting

function

Figure 3.43: PageThree new analysis function

78

Figure 3.44: PageTwo interface (without selected file)

Figure 3.45: PageTwo interface (with selected file)

79

3.12.9 Final Call

Two lines of code are summoned to run the whole system, as shown in Figure 3.46

below.

Figure 3.46: Coding part for the initialising stage

3.12.10 Setup for an executable extension

The code shown in Figure 3.47 below is run to generate an executable extension (.exe)

for installation. Users can download the software with the extension on their PC easily.

Figure 3.47: Coding part for the setup of executable extension

80

3.13 Project Management

As shown in Figure 3.48 and Figure 3.49, the Gantt charts for FYP1 and FYP 2 are

constructed as follows.

Figure 3.48: Gantt Chart of FYP1

Figure 3.49: Gantt Chart of FYP2

81

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

The reliability and precision of the graph optimisation and surface roughness

parameter method are discussed. The software is evaluated using data collected by the

researcher regarding electromagnetic wave scattering in dense media at sea and snow

surface sites. Furthermore, the graph optimisation for the obtained raw data graph is

examined with respect to relevant surfaces. In addition, the hardware debugging is

highlighted.

4.2 Surface Roughness Parameter

The surface measurement results are from Dr. Lee Yu Jen and other researchers' efforts

to understand the surface roughness parameters on Ross Island, Antarctica. The

researchers used remote sensing to determine the snow and ice surface's physical

features and parameters, such as autocorrelation length and RMS surface height.

Therefore, the parameters computed manually by the researchers are compared to

those calculated automatically by the software's algorithm.

82

4.2.1 Surface Roughness Parameters (Calculated with Excel)

The calculated parameters and autocorrelation function graph of 8 sites are shown in

Table 4.1 and 4.2 below.

Table 4.1: Autocorrelation Function graph and autocorrelation length of 8 sites

(Calculated with Excel)

Site Autocorrelation Function Graph Autocorrelation

Length (mm)

1

12.8181

2

9.6609

3

15.036

83

4

12.3864

5

32.6075

6

19.5564

7

27.5201

8

31.4285

84

Table 4.2: RMS height of 9 sites (Calculated with Excel)

Site RMS Height (mm)

1 0.290219

2 0.857984

3 13.30681

4 3.625384

5 4.246466

6 2.761772

7 2.038615

8 3.540231

4.2.2 Surface Roughness Parameters (Software Algorithm)

The parameters and autocorrelation function graph of 8 sites from the software

algorithm are shown in Table 4.3 & 4.4 below.

Table 4.3: Autocorrelation Function graph and autocorrelation length of 8 sites

(Software Algorithm)

Site Autocorrelation Function Graph Autocorrelation

Length (mm)

1

12.8164

85

2

9.6587

3

15.036

4

12.3865

5

32.6076

6

19.5563

86

7

29.3448

8

31.4286

Table 4.4: RMS height of 9 sites (Software algorithm)

Site RMS Height (mm)

1 2.90219

2 0.857984

3 13.30681

4 3.625384

5 4.246466

6 2.761772

7 2.038615

8 3.540231

87

4.2.3 Discussion of the results

Based on the results obtained from the software algorithm for autocorrelation length

and RMS height, the percentage error is calculated as shown in Table 4.5 and 4.6.

Table 4.5: Percentage error of the results obtained for autocorrelation length

Site Accepted

Value, 𝑉𝑉𝐴𝐴

(Excel)

Observed Value, 𝑉𝑉𝑂𝑂

(Software Algorithm)

Percentage Error (%)

[|
𝑉𝑉𝑂𝑂 − 𝑉𝑉𝐴𝐴
𝑉𝑉𝑎𝑎

| × 100%]

1 12.8181

12.8164

0.0133

2 9.6609

9.6587

0.0228

3 15.036

15.036

0

4 12.3864

12.3865 0

5 32.6075

32.6076

0

6 19.5564

19.5563

0

7 27.5201

29.3448

6.2180

8 31.4285

31.4286

0

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.0133+0.0228+6.2180
8

= 0.7818 % (4.1)

The average percentage error of 8 sites is 0.7818%. The error is accepted and

can be neglected. Among 8 sites, 5 have 0% error, and the success rate is 62.5%.

Therefore, the software algorithm is accepted and can be used in the study.

88

Table 4.6: Percentage error of the results obtained for RMS height

Site Accepted

Value, 𝑉𝑉𝐴𝐴

(Excel)

Observed Value, 𝑉𝑉𝑂𝑂

(Software Algorithm)

Percentage Error (%)

[|
𝑉𝑉𝑂𝑂 − 𝑉𝑉𝐴𝐴
𝑉𝑉𝑎𝑎

| × 100%]

1 2.90219 2.843557

2.062

2 0.857984 0.840650

2.062

3 13.30681 13.037954

2.062

4 3.625384 3.552136

2.062

5 4.246466 4.160670

2.062

6 2.761772 2.705973

2.062

7 2.038615 1.997467

2.062

8 3.540231 3.468703

2.062

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 2.062 % (4.2)

The average percentage error of 8 sites is 2.062 %. The error is accepted as the

tolerance level set is 5%. Therefore, the software algorithm is accepted and can be used

in the study.

4.3 Graph optimisation

A median filter with a kernel size of 9 is applied to optimise the graph. There are a

total of 8 case studies to show the results of the optimisation. The object used is shown

with the raw data and optimised graph in the subchapters below.

89

4.3.1 Case Study 1

The object shown in Table 4.7 below is drawn with the red line to visualise the

expected outcome of the graph. The outcome of the optimised graph is plotted and

shown in the table.

Table 4.7: Raw data graph compared with the optimised graph to the following

object in case study 1

Object

Raw Data

Graph

Optimised

Graph

90

The used object is an empty cup. The raw data graph is shown, but it is full of

noise and spikes at the beginning and end. The bottom of the cup is quite uneven,

primarily because the interior is black. If the surrounding lighting is inadequate, noise

levels increases. As a result of the median filter's optimization, most of the spikes have

vanished, and the points have reclaimed their proper locations. The result of case study

1 is therefore accepted.

4.3.2 Case Study 2

The object shown in Table 4.8 below is drawn with a red line to visualise the expected

outcome of the graph. The outcome of the optimised graph is plotted and shown in the

table.

Table 4.8: Raw data graph compared with the optimised graph to the following

object in case study 2

Object

91

Raw Data Graph

Optimised Graph

The used object is a humidifier. The raw data graph is shown, but it is full of

noise and spikes at the beginning and end. The top of the form is quite irregular. As a

result of the median filter's optimisation, most of the spikes have vanished, and the

points have reclaimed their proper locations. Additionally, the upper surface of the

form became flat. The finding of the second case study is therefore accepted.

4.3.3 Case Study 3

The object shown in Table 4.9 below is drawn with a red line to visualise the expected

outcome of the graph. The outcome of the optimised graph is plotted and shown in the

table.

92

Table 4.9: Raw data graph compared with the optimised graph to the following

object in case study 3

Object

Raw Data Graph

Optimised Graph

93

The item used is a pair of hiking shoes. Unexpectedly, the central portion of

the plotted graph of raw data is in the negative region. The shoe's insole is on the

negative side of the graph due to the inadequate lighting within. If the surrounding

lighting is inadequate, noise levels increase. As a result of the median filter's

optimisation, most of the spikes have vanished, and the points have reclaimed their

proper locations. The graph's negative side is close to the origin. The result of case

study 3 is therefore accepted.

4.3.4 Case Study 4

The object shown in Table 4.10 below is drawn with a red line to visualise the expected

outcome of the graph. The outcome of the optimised graph is plotted and shown in the

table.

Table 4.10: Raw data graph compared with the optimised graph to the following

object in case study 4

Object

94

Raw Data

Graph

Optimised

Graph

The item used is an inverted cup holder and a bottle of detergent. The raw data

graph is shown, but it is full of noise and spikes at the beginning and end. The top of

the form is quite irregular. As a result of the median filter's optimisation, most of the

spikes have vanished, and the points have reclaimed their proper locations. However,

the detergent bottle's cap is inconsistent and not optimised. The finding of case study

4 is therefore rejected.

4.3.5 Case Study 5

The object, as shown in Table 4.11 below, is drawn with a red line to visualise the

expected outcome of the graph. The outcome of the optimised graph is plotted and

shown in the table.

95

Table 4.11: Raw data graph compared with the optimised graph to the following

object in case study 5

Object

Raw Data Graph

Optimised Graph

96

The item used was a slipper. The graph of raw data is depicted with fewer

spikes. As a result of the median filter's optimisation, most of the spikes have vanished,

and the points have reclaimed their proper locations. The result of case study 5 is

therefore accepted.

4.3.6 Case Study 6

The object shown in Table 4.12 below is drawn with a red line to visualise the expected

outcome of the graph. The outcome of the optimised graph is plotted and shown in the

table.

Table 4.12: Raw data graph compared with the optimised graph to the following

object in case study 6

Object

97

Raw Data Graph

Optimised

Graph

The object used is a cup with a handle. The raw data graph is shown, but it is

full of noise and spikes at the beginning and end. The bottom of the cup is quite uneven,

primarily because the interior is black. If the surrounding lighting is inadequate, noise

levels increase. As a result of the median filter's optimisation, most of the spikes have

vanished, and the points have reclaimed their proper locations. The result of case study

6 is therefore accepted.

4.3.7 Case Study 7

The object shown in Table 4.13 below is drawn with a red line to visualise the expected

outcome of the graph. The outcome of the optimised graph is plotted and shown in the

table.

98

Table 4.13: Raw data graph compared with the optimised graph to the following

object in case study 7

Object

Raw Data

Graph

Optimised

Graph

99

The item used is a box. The raw data graph is shown, but it is full of noise and

spikes at the beginning and end. The case study is used to determine whether or not a

flat surface may be optimised appropriately. As a result of the median filter's

optimisation, most of the spikes have vanished, and the points have reclaimed their

proper locations. The result of case study 7 is therefore accepted.

4.3.8 Case Study 8

The object shown in Table 4.14 below is drawn with a red line to visualise the expected

outcome of the graph. The outcome of the optimised graph is plotted and shown in the

table.

Table 4.14: Raw data graph compared with the optimised graph to the following

object in case study 8

Object

100

Raw Data Graph

Optimised Graph

The object used is a cap. The graph of raw data is drawn. However, it is full of

noise and spikes towards the end. As a result of the median filter's optimisation, most

of the spikes have vanished, and the points have reclaimed their proper locations. The

cap's little tip is recovered, and the outcome is positive overall. The result of case study

8 is therefore accepted.

4.3.9 Summary of the case study of graph optimisation

After the graph optimisation analysis, seven of the eight case study recommendations

are accepted. The majority of spikes are gone. However, the results are unreliable for

dark surface objects and gloomy environments. The issue can be resolved by

modifying the hardware. The graph optimisation returned the raw data graph to its

original form.

101

4.4 Extra

As the prototype ages, the hardware requires an upgrade. For instance, the Raspberry

Pi 2 is upgraded to the Raspberry Pi 3 to provide Bluetooth and internet wireless

connectivity. The Raspberry Pi 3 is mounted to the PCB board, as depicted in Figure

4.1.

Figure 4.1: Replace the old Raspberry Pi 2 with Raspberry Pi 3

 Also, the step-down converter is burnt and malfunctioned. The component has

to replace. The replacement is done by configuring the step-down converter, as shown

in Figure 4.2 below, to ensure the source's output is 5V.

102

Figure 4.2: Replace a new step-down converter (12V to 5V)

 The encoder strip is changed as the old one is decolourised, and the paper is

not in good condition for the servo system to function correctly. A new encoder strip

is printed and installed on the prototype, as shown in Figure 4.3 below.

Figure 4.3: Replace a new encoder strip

103

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

All objectives are accomplished. The ProSight Surface Profiler software can connect

to all Blynk Cloud devices and extract data in real-time from Google Drive. The clear

GUI interface increases the data analysis productivity of the user. In addition, the

software can automate the calculation of autocorrelation length and RMS height. The

calculation's output can be completed within a second. The output graph is optimised

so that spikes and noises are eliminated. With the executable file prepared, the software

can be downloaded publicly.

The autocorrelation length and RMS height error percentages are 0.7818 % and

2.062 %, respectively. Given that the tolerance limit is 5 %, the percentage error can

be neglected. For graph optimisation, if the surrounding condition has good lighting,

the optimisation result is positive. The outcome is still satisfactory, despite not all the

spikes being eliminated. The ProSight Surface Profiler programme is fully operational

with all its advanced features.

104

5.2 Limitations

The software has some drawbacks. First, the distance IR sensor has a limited sensitivity

when operating in low light. The output of the measured data is inconsistent, and the

data cannot be optimised accurately. Furthermore, the motor movement is sometimes

unstable, which affects the measurement's resolution. Next, the contactless system

cannot be implemented without a WIFI connection because the Blynk app and Google

Drive require an internet connection.

5.3 Recommendations for Future Improvement

• Software

With the existing Python library, image processing technology can be added to the

system for future implementation. The user can import an image and analyse the

surface's roughness in real-time without requiring an instrument. In addition, since

the RMS height has a predetermined error percentage of 2.062 %, the error can be

eliminated by adding a formula to the code. Additionally, files can be imported by

mounting Google Drive within the software, allowing the user to select the file

directly. Finally, the application can be implemented on the website, allowing users

worldwide to access it online.

• Hardware

The factors considered as the object's surface colour and the surrounding lightning

condition can affect the sensor accuracy. Therefore, the factors should be a topic

for further research because the measure of the factors is inaccurate and without

statistical support. A countermeasure should be implemented to increase the

sensor's precision after the research. Also, the servo system can be improved by

changing a newly developed servo system with stable readability so that the motor

moves in a smaller step and the resolution of the surface measurement increases.

105

REFERENCES

Arora, S., 2021, Smooth Data in Python [Online]. Available at:
https://www.delftstack.com/howto/python/smooth-data-in-python/ [Accessed: 5
September 2022].

Austerlitz, H., 2003. Computer Programming Languages. Data Acquisition
Techniques Using PCs, [e-journal] pp.326–360. Available at:
http://dx.doi.org/10.1016/B978-012068377-2/50013-9.

BairesDev, 2022, The Pros and Cons of Java Development - BairesDev [Online].
Available at: https://www.bairesdev.com/technologies/java-dev-pros-cons/
[Accessed: 15 April 2022].

Bhalerao, S., 2021, What is data smoothing and what are the effects? - MENTOR ME
CAREERS [Online]. Available at: https://mentormecareers.com/data-smoothing/
[Accessed: 5 September 2022].

Buttice, C., 2021, What is C++ Programming Language? - Definition from
Techopedia [Online]. Available at:
https://www.techopedia.com/definition/26184/c-plus-plus-programming-language
[Accessed: 16 August 2022].

Campbell, J.B. and Wynne, R.H., 2011. Introduction to remote sensing 5th ed.,
Guilford Press, New York.

Cass, S., 2018, The 2018 Top Programming Languages [Online]. Available at:
https://spectrum.ieee.org/the-2018-top-programming-languages [Accessed: 15
April 2022].

Chai, W., Castagna, R. and Lelii, S., 2021, What is Cloud Storage? Cloud Storage
Definition | Search Storage [Online]. Available at:
https://www.techtarget.com/searchstorage/definition/cloud-storage [Accessed: 16
August 2022].

Cognex, 2022, In-Sight Laser Profiler - Software & Tools| Cognex [Online]. Available
at: https://www.cognex.com/products/machine-vision/3d-machine-vision-
systems/in-sight-laser-profiler/software [Accessed: 15 April 2022].

Constantinos, E., 2018, Signal-Smoothing Algorithms [Online]. Available at:
http://195.134.76.37/applets/AppletSmooth/Appl_Smooth2.html [Accessed: 15
September 2022].

https://www.delftstack.com/howto/python/smooth-data-in-python/
https://www.bairesdev.com/technologies/java-dev-pros-cons/
https://mentormecareers.com/data-smoothing/
https://www.techopedia.com/definition/26184/c-plus-plus-programming-language
https://spectrum.ieee.org/the-2018-top-programming-languages
https://www.techtarget.com/searchstorage/definition/cloud-storage
https://www.cognex.com/products/machine-vision/3d-machine-vision-systems/in-sight-laser-profiler/software
https://www.cognex.com/products/machine-vision/3d-machine-vision-systems/in-sight-laser-profiler/software
http://195.134.76.37/applets/AppletSmooth/Appl_Smooth2.html

106

Day, M. and Chenoweth, S., 2013. 6.14 Surface Roughness of Karst Landscapes.
Treatise on Geomorphology, [e-journal] pp.157–163. Available at:
http://dx.doi.org/10.1016/B978-0-12-374739-6.00108-1.

Egal Net, 2022, RaspController Android [Online]. Available at:
https://www.gallinaettore.com/android_apps/raspcontroller/ [Accessed: 5
September 2022].

Fincash, 2022, Data Smoothing | What is Data Smoothing? - Fincash [Online].
Available at: https://www.fincash.com/l/basics/data-smoothing [Accessed: 5
September 2022].

GeeksforGeeks, 2020, What is Kivy? [Online]. Available at:
https://www.geeksforgeeks.org/what-is-kivy/ [Accessed: 15 April 2022].

Gharechelou, S., Tateishi, R. and A. Johnson, B., 2018. A Simple Method for the
Parameterization of Surface Roughness from Microwave Remote Sensing. Remote
Sensing, [e-journal] 10(11), p.1711. Available at:
http://dx.doi.org/10.3390/rs10111711.

Google, 2019, Google Drive: Free Cloud Storage for Personal Use [Online].
Available at: https://www.google.com/drive/ [Accessed: 16 August 2022].

Guoping Qiu, 1994. Functional optimization properties of median filtering. IEEE
Signal Processing Letters, [e-journal] 1(4), pp.64–65. Available at:
http://dx.doi.org/10.1109/97.295334.

Harris, C. et al., 2020, numpy.std — NumPy v1.21 Manual [Online]. Available at:
https://numpy.org/doc/stable/reference/generated/numpy.std.html [Accessed: 21
August 2022].

Hcltech, 2022, What are IoT platforms? | HCL Technologies [Online]. Available at:
https://www.hcltech.com/technology-qa/what-are-iot-platforms#main-content
[Accessed: 5 September 2022].

Kang, E.H., 2016 . Automated Electronic Sensor System. Final Year Project Universiti
Tunku Abdul Rahman, pp.24-53.

Koay, J.Y., Lee, Y.J., Ewe, HT and Chuah, H.T., 2017. Electromagnetic Wave
scattering In Dense Media: Applications In The Remote Sensing Of Sea Ice And
Vegetation. Electromagnetic Scattering, [e-journal] pp.303–339. Available at:
http://dx.doi.org/10.1142/9789813209954_0008.

Kravchenko, I., 2022, Pros and Cons of Java: Main Advantages and Disadvantages
[Online]. Available at: https://diceus.com/why-is-java-so-popular/ [Accessed: 1
September 2022].

Mckenzie, C., 2016, Five tips for choosing a UI development framework [Online].
Available at: https://www.theserverside.com/tip/Five-tips-for-choosing-a-UI-
development-framework [Accessed: 15 April 2022].

https://www.gallinaettore.com/android_apps/raspcontroller/
https://www.fincash.com/l/basics/data-smoothing
https://www.geeksforgeeks.org/what-is-kivy/
https://www.google.com/drive/
https://numpy.org/doc/stable/reference/generated/numpy.std.html
https://www.hcltech.com/technology-qa/what-are-iot-platforms#main-content
https://diceus.com/why-is-java-so-popular/
https://www.theserverside.com/tip/Five-tips-for-choosing-a-UI-development-framework
https://www.theserverside.com/tip/Five-tips-for-choosing-a-UI-development-framework

107

Media’s, E., Syufrijal and Rif’an, M., 2019. Internet of Things (IoT): BLYNK
Framework for Smart Home. KnE Social Sciences, 3(12), p.579.

Micro-Epsilon Messtechnik, 2022, Configuration Tools - easy setup for
scanCONTROL laser scanners [Online]. Available at: https://www.micro-
epsilon.com/2D_3D/laser-scanner/Software/scanCONTROL-Configuration-
Tools/ [Accessed: 15 April 2022].

Mixon, E. and Wigmore, I., 2016, What is Google Drive? - Definition from
WhatIs.com [Online]. Available at:
https://www.techtarget.com/searchmobilecomputing/definition/Google-Drive
[Accessed: 4 September 2022].

Pastell, M., 2016, Measurements and Data Analysis for Agricultural Engineers using
Python [Online]. Available at: https://pyageng.mpastell.com/book/dsp.html#fig-
ma_example [Accessed: 5 September 2022].

Schafer, R., 2011. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal
Processing Magazine, 28(4), pp.111–117. Available at:
http://dx.doi.org/10.1109/MSP.2011.941097.

Shepherd, A., 2020, What is the Best Programming Language for GUI? [Online].
Available at: https://mockitt.wondershare.com/ui-ux-design/gui-python.html
[Accessed: 15 April 2022].

Smith, M.W., 2014. Roughness in the Earth Sciences. Earth-Science Reviews, [e-
journal] 136, pp.202–225. Available at:
http://dx.doi.org/10.1016/j.earscirev.2014.05.016.

SoftwareTestingHelp, 2022, Python Vs C++ (Top 16 Differences Between C++ And
Python) [Online]. Available at: https://www.softwaretestinghelp.com/python-vs-
cpp/ [Accessed: 2 May 2022].

Ulaby, F.T., Moore, R.K. and Fung, A.K., 1981. Microwave remote sensing : active
and passive, Addison-Wesley Publishing Company, Advanced Book
Program/World Science Division, Reading, Massachusetts Etc.

UpGrad, 2021, Top 10 Reasons Why Python is So Popular With Developers in 2022
[Online]. Available at: https://www.upgrad.com/blog/reasons-why-python-
popular-with-developers/#Why_is_Python_becoming_so_popular_in_this_decade
[Accessed: 15 April 2022].

Upswift, 2022, What Is An IoT Platform? - JFrog Connect (formerly Upswift)
[Online]. Available at: https://jfrog.com/connect/post/what-is-an-iot-platform/
[Accessed: 5 September 2022].

Virtanen, P. et al., 2020, scipy.signal.medfilt — SciPy v1.7.1 Manual [Online].
Available at:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html
[Accessed: 16 August 2022].

https://www.micro-epsilon.com/2D_3D/laser-scanner/Software/scanCONTROL-Configuration-Tools/
https://www.micro-epsilon.com/2D_3D/laser-scanner/Software/scanCONTROL-Configuration-Tools/
https://www.micro-epsilon.com/2D_3D/laser-scanner/Software/scanCONTROL-Configuration-Tools/
https://www.techtarget.com/searchmobilecomputing/definition/Google-Drive
https://pyageng.mpastell.com/book/dsp.html#fig-ma_example
https://pyageng.mpastell.com/book/dsp.html#fig-ma_example
https://mockitt.wondershare.com/ui-ux-design/gui-python.html
https://www.softwaretestinghelp.com/python-vs-cpp/
https://www.softwaretestinghelp.com/python-vs-cpp/
https://www.upgrad.com/blog/reasons-why-python-popular-with-developers/#Why_is_Python_becoming_so_popular_in_this_decade
https://www.upgrad.com/blog/reasons-why-python-popular-with-developers/#Why_is_Python_becoming_so_popular_in_this_decade
https://jfrog.com/connect/post/what-is-an-iot-platform/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html

108

Vitrek, 2021, Contact vs. Non-Contact Measurement: Examples of Each [Online].
Available at: https://mtiinstruments.com/contact-vs-non-contact-measurement/
[Accessed: 15 April 2022].

Wigmore, I., 2011, What is Dropbox? - Definition from WhatIs.com [Online].
Available at:
https://www.techtarget.com/searchmobilecomputing/definition/Dropbox
[Accessed: 16 August 2022].

https://mtiinstruments.com/contact-vs-non-contact-measurement/
https://www.techtarget.com/searchmobilecomputing/definition/Dropbox

109

APPENDICES

APPENDIX A: Coding of Main Program

110

111

112

113

114

115

APPENDIX B: Coding of Setup of Executional Extension

APPENDIX C: Profiler System Coding

116

117

118

119

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	INTRODUCTION
	1.1 Background

	Figure 1.1: Cognex Laser Profiler (Cognex, 2018)
	1.2 Problem Statements
	1.3 Aims and Objectives
	1.4 Organisation of Thesis

	Table 1.1 Table of organisation of the thesis
	CHAPTER 2
	LITERATURE REVIEW
	2.1 Overview
	2.2 Automated Electronic Sensor System
	2.2.1 Physical Planning and Design

	Figure 2.1: Sketch of surface profiler (Kang, 2016)
	2.2.2 Hardware Specifications

	Figure 2.2: Graph of distance vs voltage (Kang, 2016)
	Figure 2.3: Experiment setup to measure the distance to voltage (Kang, 2016)
	Figure 2.4: Graph of distance vs voltage (average) (Kang, 2016)
	Figure 2.5: ADC0804 IC connection (Kang, 2016)
	Figure 2.6: Connection of SN74166 (Kang, 2016)
	Figure 2.7: Dissembled slider from HP inkjet printer (Kang, 2016)
	Figure 2.8: DC motor attached to the slider (Kang, 2016)
	Figure 2.9: Line follower infrared sensor (Kang, 2016)
	Figure 2.10: Sketch of the encoder system (Kang, 2016)
	Figure 2.11: DC-DC buck converter module (Kang, 2016)
	Figure 2.12: Connection of battery, converter to the supply other devices (Kang, 2016)
	2.2.3 Software Specifications

	Figure 2.13: Duty cycle of PWM
	2.2.4 System Flow Chart

	Figure 2.14: Flow chart of surface profiler system (Kang, 2016)
	2.2.5 Case Study: Accuracy Test

	Figure 2.15: Setup of the case study (Kang, 2016)
	Figure 2.16: The best result of the case study (Kang, 2016)
	Figure 2.17: The worst result of the case study (Kang, 2016)
	2.2.6 Summary

	Table 2.1: Table summarising the pros and cons of the automated surface profiler
	2.3 Graph Optimisation
	2.3.1 Moving Average Filter
	2.3.2 Median Filter
	2.3.3 Savitzky-Golay Filter

	Figure 2.18: Illustration of least-squares smoothing by locally fitting a second-degree polynomial (solid line) to five input samples (Schafer, 2011)
	2.4 Surface Roughness Parameters

	Figure 2.19: Random height variations superimposed on a periodic surface (Ulaby, Moore and Fung, 1981)
	Figure 2.20: Random height variations superimposed on a flat surface (Ulaby, Moore and Fung, 1981)
	2.4.1 Standard Deviation of Surface Heights / RMS Height
	2.4.2 Surface Autocorrelation Length

	Figure 2.21: Autocorrelation Function (Ulaby, Moore and Fung, 1981)
	2.5 Programming Languages
	2.5.1 Python

	Table 2.2: Table summarising the pros and cons of Python
	2.5.2 Java

	Table 2.3: Table summarising the pros and cons of Java
	2.5.3 C++

	Table 2.3: Table summarising the pros and cons of C++
	2.6 GUI Frameworks
	2.6.1 Tkinter

	Table 2.4: Table summarising the pros and cons of Tkinter
	2.6.2 Kivy

	Table 2.5: Table summarising the pros and cons of Kivy
	2.7 Existing Surface Profiler Analysis Software
	2.7.1 MicroEpsilon scanCONTROL

	Figure 2.22: MicroEpsilon scanCONTROL software interface (Micro-Epsilon Messtechnik, 2022)
	2.7.2 In-Sight Laser Profile Software

	Figure 2.23: In-Sight Laser Profile software interface (Cognex, 2018)
	2.7.3 Comparison of features

	Table 2.6: Table of feature comparison between the existing surface profiler analysis software
	2.8 IoT Platform
	2.8.1 RaspController

	Table 2.7: Table summarising the pros and cons of RaspController
	2.8.2 Blynk

	Table 2.8: Table summarising the pros and cons of Blynk
	2.9 Cloud Storage
	2.9.1 Google Drive
	2.9.2 Dropbox
	2.9.3 Comparison of features

	Table 2.9: Table of feature comparisons between Google Drive and Dropbox
	CHAPTER 3
	METHODOLOGY
	3.1 Overview
	3.2 Selection of Programming language
	3.3 GUI Framework Selection
	3.4 System Overview

	Figure 3.1: Flowchart of system overview
	Figure 3.2: Flowchart of software process
	3.5 System Performance Definition
	3.6 Technologies and Tools involved

	Table 3.1: Table of laptop specifications
	3.7 Graph Optimisation

	Figure 3.3: The box is used as the reference to the graph optimising filter selection
	3.7.1 Moving Average Filter

	Figure 3.4: Function of moving average filter in Python
	Table 3.2: Optimised graph (Dark Blue) of Moving Average Filter with different values of 𝒏
	3.7.2 Median Filter

	Figure 3.5: Command of median filter in Python
	Table 3.3: Optimised graph (Red) of Median Filter with different values of 𝒏
	3.7.3 Savitzky-Golay Filter

	Figure 3.6: Command for Savitzky-Golay Filter
	Table 3.4: Optimised graph (Green) of Median Filter with different values of 𝒏
	3.7.4 Conclusion (Graph Optimisation)
	3.8 RMS Height

	Figure 3.7: Command to calculate RMS height of surface roughness
	3.9 Surface Roughness Autocorrelation Length

	Figure 3.8: Flowchart of finding the autocorrelation length of surface roughness
	Figure 3.9: Finding the intersection point between y=0.36788 and the autocorrelation function graph
	Figure 3.10: Command for the generation of the autocorrelation function graph
	Figure 3.11: Code to find the intersection point of 2 lines
	3.10 Selection of the IoT platform

	Figure 3.12: Command line to sync Raspberry Pi with the Blynk Cloud
	Figure 3.13: Function of controlling the GPIO pin virtually
	Figure 3.14: Flowchart of the Blynk controlling the GPIO
	Figure 3.15: Blynk Cloud dashboard showing the device status and virtual pin
	3.11 Selection of the cloud storage platform

	Figure 3.16: Creating OAuth client ID in Google Developer Console
	Figure 3.17: A copy of information after the remote is added
	Figure 3.18: rclone@.service file content
	Figure 3.19: Mounted Google Drive in Linux system
	Figure 3.20: Google Drive sync with the mounted drive in Linux
	3.12 Implementation and Testing
	3.12.1 Import of library

	Figure 3.21: Command for importing the libraries of the program
	3.12.2 Debugging errors

	Figure 3.22: Command to increase the recursion limit
	Figure 3.23: Command to suppress the error of ShapelyDeprecationWarning
	3.12.3 Global definition

	Figure 3.24: Global definition in the program
	3.12.4 Design for Homepage (Class I)

	Figure 3.25: Class for Homepage design interface
	Figure 3.26: Frame structure of Homepage
	3.12.5 Widgets for Homepage (Class II)

	Figure 3.27: Class of StartPage Widgets
	Figure 3.28: Widgets and Fonts on Homepage
	3.12.6 PageOne (Class III)

	Figure 3.29: PageOne initialisation function
	Figure 3.30: PageOne widgets and interface command
	Figure 3.31: PageOne search file function
	Figure 3.32: PageOne read excel file function
	Figure 3.33: PageOne clear data in the list function
	Figure 3.34: PageOne interface (without selected file)
	Figure 3.35: PageOne interface (with the selected file)
	3.12.7 Design of PageTwo (Class IV)

	Figure 3.36: PageTwo initialisation function
	Figure 3.37: PageTwo graph plotting function
	Figure 3.38: PageTwo new analysis function
	Figure 3.39: PageTwo interface (without selected file)
	Figure 3.40: PageTwo interface (with the selected file)
	3.12.8 Design of PageThree (Class V)

	Figure 3.41: PageThree initialisation function
	Figure 3.42: PageThree Surface Roughness Parameters Calculation and Graph Plotting function
	Figure 3.43: PageThree new analysis function
	Figure 3.44: PageTwo interface (without selected file)
	Figure 3.45: PageTwo interface (with selected file)
	3.12.9 Final Call

	Figure 3.46: Coding part for the initialising stage
	3.12.10 Setup for an executable extension

	Figure 3.47: Coding part for the setup of executable extension
	3.13 Project Management

	Figure 3.48: Gantt Chart of FYP1
	Figure 3.49: Gantt Chart of FYP2
	CHAPTER 4
	RESULTS AND DISCUSSION
	4.1 Introduction
	4.2 Surface Roughness Parameter
	4.2.1 Surface Roughness Parameters (Calculated with Excel)

	Table 4.1: Autocorrelation Function graph and autocorrelation length of 8 sites (Calculated with Excel)
	Table 4.2: RMS height of 9 sites (Calculated with Excel)
	4.2.2 Surface Roughness Parameters (Software Algorithm)

	Table 4.3: Autocorrelation Function graph and autocorrelation length of 8 sites (Software Algorithm)
	Table 4.4: RMS height of 9 sites (Software algorithm)
	4.2.3 Discussion of the results

	Table 4.5: Percentage error of the results obtained for autocorrelation length
	Table 4.6: Percentage error of the results obtained for RMS height
	4.3 Graph optimisation
	4.3.1 Case Study 1

	Table 4.7: Raw data graph compared with the optimised graph to the following object in case study 1
	4.3.2 Case Study 2

	Table 4.8: Raw data graph compared with the optimised graph to the following object in case study 2
	4.3.3 Case Study 3

	Table 4.9: Raw data graph compared with the optimised graph to the following object in case study 3
	4.3.4 Case Study 4

	Table 4.10: Raw data graph compared with the optimised graph to the following object in case study 4
	4.3.5 Case Study 5

	Table 4.11: Raw data graph compared with the optimised graph to the following object in case study 5
	4.3.6 Case Study 6
	4.3.7 Case Study 7

	Table 4.13: Raw data graph compared with the optimised graph to the following object in case study 7
	4.3.8 Case Study 8

	Table 4.14: Raw data graph compared with the optimised graph to the following object in case study 8
	4.3.9 Summary of the case study of graph optimisation
	4.4 Extra

	Figure 4.1: Replace the old Raspberry Pi 2 with Raspberry Pi 3
	Figure 4.2: Replace a new step-down converter (12V to 5V)
	Figure 4.3: Replace a new encoder strip
	CHAPTER 5
	CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusion
	5.2 Limitations
	5.3 Recommendations for Future Improvement

	REFERENCES

	APPENDICES

