

AUTOMATED DETECTION AND CLASSIFICATION

OF LEUKEMIA USING DEEP LEARNING

LEE KYE FUNG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2022

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

Lee Kye Fung

1703320

20/4/2022

Aaron

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “AUTOMATED DETECTION AND

CLASSIFICATION OF LEUKEMIA USING DEEP LEARNING” was prepared

by LEE KYE FUNG has met the required standard for submission in partial fulfilment

of the requirements for the award of Bachelor of Engineering (Hons) Electronic

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : _________________________

Date : _________________________

Prof. Ts. Dr. Humaira Nisar

26.4.2022

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2022, LEE KYE FUNG. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Prof. Ts.

Dr. Humaira Nisar and my moderator, Dr. Lee Yu Jen, for their invaluable advice,

guidance and their enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement. I would also like to thank

everyone who supported me along the way through the completion of this project.

vi

AUTOMATED DETECTION AND CLASSIFICATION

OF LEUKEMIA USING DEEP LEARNING

ABSTRACT

Leukemia is a type of blood cancer that has been affecting the lives of many. The main

procedure to diagnose and classify leukemia is through microscopic examination of

blood smears, which can be costly, time-consuming, and labour-intensive. Hence, this

project aims to produce an efficient way to detect and classify leukemia by using deep

learning. In this project, transfer learning is implemented on three pre-trained deep

learning models, namely Inception-V3, ResNeXt, and SENet models. They were

trained to tackle two main tasks: binary classification between ALL and healthy cells,

and 5-class classification between ALL, AML, CLL, CML, and healthy cells. The

microscopic image samples of these classes are retrieved from two sources, including

the Acute Lymphoblastic Leukemia Image Database 1 (ALL-IDB1) and American

Society of Hematology (ASH) ImageBank. It is observed that the SENet model

performed the best out of the three, hence it is selected to undergo further fine-tuning

to improve its performance. With a slow converging feature selection process added

with the dropout regularization technique, the SENet model can achieve an average

testing accuracy of 99.84% and 84.48% in binary and 5-class classification problems.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xv

LIST OF SYMBOLS / ABBREVIATIONS xxiii

LIST OF APPENDICES xxv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 3

1.3 Aims and Objectives 3

2 LITERATURE REVIEW 4

2.1 Leukemia 4

2.1.1 Acute Lymphocytic Leukemia 6

2.1.2 Acute Myelogenous Leukemia 6

2.1.3 Chronic Lymphocytic Leukemia 7

2.1.4 Chronic Myelogenous Leukemia 7

2.2 Detection and Classification 8

viii

2.3 Morphology of Leukemia and Peripheral Blood Smear

Findings 9

2.4 Deep Learning 14

2.4.1 Deep Supervised Learning 17

2.4.2 Deep Unsupervised Learning 17

2.4.3 Deep Reinforcement Learning 18

2.4.4 Deep Semi-supervised Learning 19

2.4.5 Deep Transfer Learning 19

2.5 Types of Artificial Neural Networks 21

2.5.1 Recursive Neural Network 21

2.5.2 Recurrent Neural Network 23

2.5.3 Convolutional Neural Network 24

2.6 CNN Architecture 25

2.6.1 Convolution Layer 26

2.6.2 Pooling Layer 29

2.6.3 Activation Function 30

2.6.4 Batch Normalization 33

2.6.5 Dropout 34

2.6.6 Fully Connected Layer 35

2.7 Types of CNN Architectures 35

2.7.1 AlexNet 36

2.7.2 ZFNet 37

2.7.3 GoogLeNet 38

2.7.4 ResNet 42

2.7.5 ResNeXt 42

2.7.6 SENet 43

2.7.7 DenseNet 44

2.8 Performance Metrics 45

2.8.1 Accuracy 46

2.8.2 Precision 47

2.8.3 Recall 48

2.8.4 F1-score 48

2.8.5 Confusion Matrix 49

2.8.6 ROC Curve 50

ix

2.9 Related Works 52

3 METHODOLOGY 55

3.1 Project Flow 55

3.2 Project Requirements 56

3.2.1 Hardware Requirements 57

3.2.2 Software Requirements 57

3.2.3 Programming Language Used 57

3.2.4 Open-Source Libraries 58

3.3 Dataset Acquisition 59

3.4 Dataset Splitting 59

3.5 Dataset Augmentation 61

3.6 Model Training 65

3.7 Model Evaluation 67

3.8 Model Improvement 67

3.9 Project Costs 69

3.10 Project Management 70

4 RESULTS AND DISCUSSIONS 72

4.1 Binary Classification Problem for Inception-V3, ResNeXt.

And SENet 72

4.1.1 Fold 1 73

4.1.2 Fold 2 76

4.1.3 Fold 3 79

4.1.4 Fold 4 82

4.1.5 Fold 5 85

4.2 5-class Classification Problem for Inception-V3, ResNeXt.

And SENet 88

4.2.1 Fold 1 89

4.2.2 Fold 2 93

4.2.3 Fold 3 97

4.2.4 Fold 4 101

4.2.5 Fold 5 105

x

4.3 Fine-tuned SENet Models 109

4.3.1 Fold 1 110

4.3.2 Fold 2 114

4.3.3 Fold 3 118

4.3.4 Fold 4 122

4.3.5 Fold 5 126

4.4 Binary Classification Problem for SENet with 3 Hidden

Layers Plus Dropout Layers 130

4.4.1 Accuracy and Loss Against Number of Epochs 130

4.4.2 Precision, Recall, and F1-score for Leukemia

Subtypes Classification 131

4.4.3 ROC Curve 132

4.4.4 Confusion Matrix 133

4.5 Discussion 134

5 CONCLUSION AND RECOMMENDATIONS 150

5.1 Project Review 150

5.2 Project Findings 151

5.3 Recommendations for Future Improvements 153

5.4 Conclusion 154

REFERENCES 155

APPENDICES 164

xi

LIST OF TABLES

 TABLE TITLE PAGE

2.1 Morphology of ALL Subtypes According to FAB
Classification 11

2.2 Morphology of AML Subtypes According to FAB
Classification 12

2.3 DL Models and Their References 16

3.1 Commands to Install Open-Source Libraries 58

3.2 Dataset Count for Each Class and Its Source 59

3.3 Training Set Distribution for Each Fold 60

3.4 Testing Set Distribution for Each Fold 61

3.5 Training Set Distribution for Each Fold After
Augmentation 62

3.6 Testing Set Distribution for Each Fold After
Augmentation 63

3.7 Binary Classification Problem Training Set
Distribution 66

3.8 5-class Classification Problem Training Set
Distribution for Each Fold 66

3.9 Equipment and Materials Cost 69

3.10 FYP 1 Gantt Chart 70

3.11 FYP 2 Gantt Chart 71

4.1 Accuracy and Loss Result for Binary Classification
Problem of Each Fold for Inception-V3 72

xii

4.2 Accuracy and Loss Result for Binary Classification
Problem of Each Fold for ResNeXt 72

4.3 Accuracy and Loss Result for Binary Classification
Problem of Each Fold for SENet 73

4.4 Precision, Recall, and F1-score for Binary
Classification Problem in The First Fold Training
for Each Model 74

4.5 Precision, Recall, and F1-score for Binary
Classification Problem in The Second Fold
Training for Each Model 76

4.6 Precision, Recall, and F1-score for Binary
Classification Problem in The Third Fold Training
for Each Model 79

4.7 Precision, Recall, and F1-score for Binary
Classification Problem in The Fourth Fold Training
for Each Model 82

4.8 Precision, Recall, and F1-score for Binary
Classification Problem in The Fifth Fold Training
for Each Model 85

4.9 Accuracy and Loss Result for 5-class Classification
Problem of Each Fold for Inception-V3 88

4.10 Accuracy and Loss Result for 5-class Classification
Problem of Each Fold for ResNeXt 88

4.11 Accuracy and Loss Result for 5-class Classification
Problem of Each Fold for SENet 88

4.12 Precision, Recall, and F1-score for 5-class
Classification Problem in The First Fold Training
for Each Model 89

4.13 Precision, Recall, and F1-score for 5-class
Classification Problem in The Second Fold
Training for Each Model 93

4.14 Precision, Recall, and F1-score for 5-class
Classification Problem in The Third Fold Training
for Each Model 97

4.15 Precision, Recall, and F1-score for 5-class
Classification Problem in The Fourth Fold Training
for Inception-V3 101

xiii

4.16 Precision, Recall, and F1-score for 5-class
Classification Problem in The Fifth Fold Training
for Inception-V3 105

4.17 Accuracy and Loss Result for 5-class Classification
Problem of Each Fold for SENet + SVM 109

4.18 Accuracy and Loss Result for 5-class Classification
Problem of Each Fold for SENet with 3 Hidden
Layers 109

4.19 Accuracy and Loss Result for 5-class Classification
Problem of Each Fold for SENet with 3 Hidden
Layers Plus Dropout Layers 109

4.20 Precision, Recall, and F1-score for 5-class
Classification Problem in The First Fold Training
for Each Fine-tuned SENet Models 110

4.21 Precision, Recall, and F1-score for 5-class
Classification Problem in The Second Fold
Training for Each Fine-tuned SENet Models 114

4.22 Precision, Recall, and F1-score for 5-class
Classification Problem in The Third Fold Training
for Each Fine-tuned SENet Models 118

4.23 Precision, Recall, and F1-score for 5-class
Classification Problem in The Fourth Fold Training
for Each Fine-tuned SENet Models 122

4.24 Precision, Recall, and F1-score for 5-class
Classification Problem in The Fifth Fold Training
for Each Fine-tuned SENet Models 126

4.25 Accuracy and Loss Result for Binary Classification
Problem of Each Fold 130

4.26 Precision, Recall, and F1-score for Binary
Classification Problem 131

4.27 Average Precision, Recall, and F1-score for Binary
Classification Problem for Each Model 136

4.28 Average Precision, Recall, and F1-score for 5-class
Classification Problem for Each Model 139

4.29 Average Precision, Recall, and F1-score for 5-class
Classification Problem for SENet model A and B 141

xiv

4.30 Average Precision, Recall, and F1-score for 5-class
Classification Problem for SENet model A and C 143

4.31 Average Precision, Recall, and F1-score for 5-class
Classification Problem for SENet model A and D 147

xv

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 A Bar Chart Showing the Percentage of Deaths Due
to Leukemia 5

2.2 (a) Blood Smears of Healthy Blood Cells (Scotti,
Labati and Piuri, 2011). (b) ALL (Scotti, Labati and
Piuri, 2011). (c) AML (American Society of
Hematology, n.d.). (d) CLL (American Society of
Hematology, n.d.). (e) CML (American Society of
Hematology, n.d.) 10

2.3 Architecture of ANN (Adapted from Mishra and
Gupta, 2017) 14

2.4 Illustration of ML In Comparison with DL
(Adapted from Alzubaidi, et al., 2021) 15

2.5 ImageNet Top-5 Error Rate of DL Models
Compared to Human Errors (Adapted from
Alzubaidi, 2021) 16

2.6 Deep Supervised Learning (Qian, et al., 2020) 17

2.7 Deep Unsupervised Learning (Qian, et al., 2020) 18

2.8 Deep Reinforcement Learning (Amiri, et al., 2018) 18

2.9 Transfer Learning Process (Tan, et al., 2018) 21

2.10 Illustration of How RvNN Parses Scene Images
(Socher, et al., 2011) 22

2.11 (a) Typical RNN Structure (b) One-To-Many
Temporal Structure of RNN (c) Many-To-One
Temporal Structure of RNN (d) Many-To-Many
Temporal Structure of RNN (Adapted from Rezk,
et al., 2020; Su and Li, 2019) 23

xvi

2.12 CNN Architecture (Adapted from Mishra and
Gupta, 2017) 25

2.13 Image Classification Using CNN Architecture
(Adapted from Alzubaidi, et al., 2021) 26

2.14 Convolution Between Two Functions (Pihlajamäki,
2009) 26

2.15 Convolution Operation Between a Kernel and An
Input Tensor (Adapted from Reynolds, 2019;
Yamashita, et al., 2018) 28

2.16 Zero Padding Before Performing Convolution
Operation (Adapted from Reynolds, 2019;
Yamashita, et al., 2018) 28

2.17 Illustration of Max Pooling and Global Average
Pooling (Adapted from Alzubaidi, et al., 2021;
Yamashita, et al., 2018) 30

2.18 Sigmoid Function and Its Derivative (Omkar, 2019)
 31

2.19 Tanh Function and Its Derivative (Omkar, 2019) 31

2.20 ReLU Function and Its Derivative (Szandała, 2020)
 32

2.21 Leaky ReLU and PReLU Functions (Omkar, 2019) 33

2.22 Illustration of Dropout (Adapted from Srivastava, et
al., 2014) 35

2.23 AlexNet Architecture (Tsang, 2018) 36

2.24 ZFNet Architecture (Zeiler and Fergus, 2014) 37

2.25 GoogLeNet Architecture (Szegedy, et al., 2015) 39

2.26 (a) Unfactorized Inception Module (b) Factorized
Inception Module Where Filter Of Size 5 × 5 Is
Replaced with Two Filters of Size 3 × 3 (Szegedy,
et al., 2015) 40

2.27 Inception Module with Asymmetric Convolutional
Filters (Szegedy, et al., 2015) 41

2.28 Expanded Inception Module (Szegedy, et al., 2015)
 41

xvii

2.29 The Building Block of ResNet (He, et al., 2015) 42

2.30 Building Block of ResNeXt with Cardinality of 32
(Xie, et al., 2017) 43

2.31 SE-block (Hu, et al., 2017) 44

2.32 DenseNet Architecture (Huang, et al., 2017) 45

2.33 Visualizing Accuracy (Maleki, et al., 2020) 47

2.34 Visualizing Precision (Maleki, et al., 2020) 47

2.35 Visualizing Recall (Maleki, et al., 2020) 48

2.36 Illustration of Confusion Matrix 49

2.37 Illustration of ROC Curve with (a) AUC-ROC of 1
(b) AUC-ROC of 0.8 (c) AUC-ROC of 0 (Narkhede,
2018) 51

2.38 Bar Chart of The Accuracy Comparison Between
Related Works 53

2.39 Bar Chart of The Accuracy Comparison Between
Related Works 53

3.1 Flowchart of The Project 56

3.2 (a) Original (b) 20° Shearing (c) 30% Zoom (d) 40°
Rotation (e) 40% Height Shift (f) 40% Width Shift
(g) Vertical Flip (h) Horizontal Flip 63

3.3 Bar Chart of Dataset Allocation for Each Fold 64

3.4 Visualizing the Pre-Processed Dataset 64

3.5 Transfer Learning with Pretrained Models as
Feature Extractors 65

4.1 Accuracy and Loss Against Number of Epochs in
The First Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 73

4.2 ROC Curve in The First Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 74

4.3 Confusion Matrix in The First Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 75

xviii

4.4 Accuracy and Loss Against Number of Epochs in
The Second Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 76

4.5 ROC Curve in The Second Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 77

4.6 Confusion Matrix in The Second Fold Training for
(a) Inception-V3 (b) ResNeXt (c) SENet 78

4.7 Accuracy and Loss Against Number of Epochs in
The Third Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 79

4.8 ROC Curve in The Third Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 80

4.9 Confusion Matrix in The Third Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 81

4.10 Accuracy and Loss Against Number of Epochs in
The Fourth Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 82

4.11 ROC Curve in The Fourth Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 83

4.12 Confusion Matrix in The Fourth Fold Training for
(a) Inception-V3 (b) ResNeXt (c) SENet 84

4.13 Accuracy and Loss Against Number of Epochs in
The Fifth Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 85

4.14 ROC Curve in The Fifth Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 86

4.15 Confusion Matrix in The Fifth Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 87

4.16 Accuracy and Loss Against Number of Epochs in
The First Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 89

4.17 ROC Curve in The First Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 91

4.18 Confusion Matrix in The First Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 92

xix

4.19 Accuracy and Loss Against Number of Epochs in
The Second Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 93

4.20 ROC Curve in The Second Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 95

4.21 Confusion Matrix in The Second Fold Training for
(a) Inception-V3 (b) ResNeXt (c) SENet 96

4.22 Accuracy and Loss Against Number of Epochs in
The Third Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 97

4.23 ROC Curve in The Third Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 99

4.24 Confusion Matrix in The Third Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 100

4.25 Accuracy and Loss Against Number of Epochs in
The Fourth Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 101

4.26 ROC Curve in The Fourth Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 103

4.27 Confusion Matrix in The Fourth Fold Training for
(a) Inception-V3 (b) ResNeXt (c) SENet 104

4.28 Accuracy and Loss Against Number of Epochs in
The Fifth Fold Training for (a) Inception-V3 (b)
ResNeXt (c) SENet 105

4.29 ROC Curve in The Fifth Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 107

4.30 Confusion Matrix in The Fifth Fold Training for (a)
Inception-V3 (b) ResNeXt (c) SENet 108

4.31 Accuracy and Loss Against Number of Epochs in
The First Fold Training for (a) SENet with 3 Hidden
Layers (b) SENet with 3 Hidden Layers Plus
Dropout Layers 110

4.32 ROC Curve in The First Fold Training for (a) SENet
+ SVM (b) SENet with 3 Hidden Layers (c) SENet
with 3 Hidden Layers Plus Dropout Layers 112

xx

4.33 Confusion Matrix in The First Fold Training for (a)
SENet + SVM (b) SENet with 3 Hidden Layers (c)
SENet with 3 Hidden Layers Plus Dropout Layers 113

4.34 Accuracy and Loss Against Number of Epochs in
The Second Fold Training for (a) SENet with 3
Hidden Layers (b) SENet with 3 Hidden Layers
Plus Dropout Layers 114

4.35 ROC Curve in The Second Fold Training for (a)
SENet + SVM (b) SENet with 3 Hidden Layers (c)
SENet with 3 Hidden Layers Plus Dropout Layers 116

4.36 Confusion Matrix in The Second Fold Training for
(a) SENet + SVM (b) SENet with 3 Hidden Layers
(c) SENet with 3 Hidden Layers Plus Dropout
Layers 117

4.37 Accuracy and Loss Against Number of Epochs in
The Third Fold Training for (a) SENet with 3
Hidden Layers (b) SENet with 3 Hidden Layers
Plus Dropout Layers 118

4.38 ROC Curve in The Third Fold Training for (a)
SENet + SVM (b) SENet with 3 Hidden Layers (c)
SENet with 3 Hidden Layers Plus Dropout Layers 120

4.39 Confusion Matrix in The Third Fold Training for (a)
SENet + SVM (b) SENet with 3 Hidden Layers (c)
SENet with 3 Hidden Layers Plus Dropout Layers 121

4.40 Accuracy and Loss Against Number of Epochs in
The Fourth Fold Training for (a) SENet with 3
Hidden Layers (b) SENet with 3 Hidden Layers
Plus Dropout Layers 122

4.41 ROC Curve in The Fourth Fold Training for (a)
SENet + SVM (b) SENet with 3 Hidden Layers (c)
SENet with 3 Hidden Layers Plus Dropout Layers 124

4.42 Confusion Matrix in The Fourth Fold Training for
(a) SENet + SVM (b) SENet with 3 Hidden Layers
(c) SENet with 3 Hidden Layers Plus Dropout
Layers 125

4.43 Accuracy and Loss Against Number of Epochs in
The Fifth Fold Training for (a) SENet with 3
Hidden Layers (b) SENet with 3 Hidden Layers
Plus Dropout Layers 126

xxi

4.44 ROC Curve in The Fifth Fold Training for (a)
SENet + SVM (b) SENet with 3 Hidden Layers (c)
SENet with 3 Hidden Layers Plus Dropout Layers 128

4.45 Confusion Matrix in The Fifth Fold Training for (a)
SENet + SVM (b) SENet with 3 Hidden Layers (c)
SENet with 3 Hidden Layers Plus Dropout Layers 129

4.46 Accuracy and Loss Against Number of Epochs for
Each Fold 131

4.47 ROC Curve for Each Fold 132

4.48 Confusion Matrix in The Fourth Fold Training for
Each Fold 133

4.49 Overall Architecture of Each Model for (a) Binary
Classification Problem (b) 5-class Classification
Problem 134

4.50 Bar Chart of The Testing Accuracy Comparison of
The Studies on Binary Classification Problem 135

4.51 Bar Chart of The Testing Accuracy Comparison of
The Studies on 5-class Classificatino Problem 138

4.52 Overall Architecture of Each Model for SENet
model B 141

4.53 Bar Chart of The Average Precision, Recall, and F1-
score Comparison Between SENet Model A and B 142

4.54 Overall Architecture of Each Model for SENet
model C 143

4.55 Bar Chart of The Average Precision, Recall, and F1-
score Comparison Between SENet Model A and C 144

4.56 Overall Architecture of Each Model for SENet
model D 145

4.57 Bar Chart of The Testing Accuracy Comparison of
The Studies on 5-class Classification Problem
Including Fine-tuned Models 146

4.58 Bar Chart of The Average Precision, Recall, and F1-
score Comparison Between SENet Model A and D 147

xxii

4.59 Bar Chart of The Testing Accuracy Comparison of
The Studies on Binary Classification Problem
Including Fine-tuned Models 148

xxiii

LIST OF SYMBOLS / ABBREVIATIONS

𝒟𝒟 Domain

ℱ Feature space

f(·) Predictive function

P(X) Edge probability distribution

𝒯𝒯 Task

𝒴𝒴 Label space

L1 Lymphoblastic Leukemia with Homogenous Structure

L2 Lymphoblastic Leukemia with Varied Structure

L3 Burkitt’s leukemia

M0 Acute Myeloblastic Leukemia with Minimal Differentiation

M1 Acute Myeloblastic Leukemia without Maturation

M2 Acute Myeloblastic Leukemia with Maturation

M3 Promyelocytic Leukemia

M4 Acute Myelomonocytic Leukemia

M5a Acute Monoblastic Leukemia

M5b Acute Monocytic Leukemia

M6 Acute Erythroid Leukemia

M7 Acute Megakaryocytic Leukemia

ADAM Adaptive Moment Estimation

AI Artificial Intelligence

ALL Acute Lymphocytic Leukemia

ALL-IDB1 Acute Lymphoblastic Leukemia Image Database 1

AML Acute Myelogenous Leukemia

ANN Artificial Neural Network

ASH American Society of Hematology

xxiv

AUC Area Under the Curve

CLL Chronic lymphocytic leukemia

CML Chronic Myelogenous Leukemia

CNN Convolutional Neural Network

CSR Cancer Statistics Review

DL Deep Learning

DNN Deep Neural Network

FAB French-American-British

FFNN Feedforward Neural Network

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IR Interventional Radiology

LDI-PCR Long Distance Inverse Polymerase Chain Reaction

LGB Lateral Geniculate Body

ML Machine Learning

NC Nucleocytoplasmic

NIN Network in Network

RBC Red Blood Cells

ROC Receiver Operating Characteristics

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RvNN Recursive Neural Network

WBC White Blood Cells

PReLU Parametric Rectified Linear Unit

RMSProp Root Mean Square Propagation

SGD Stochastic Gradient Descent

SEER Surveillance, Epidemiology, and End Results Program

aCGH Array-based Comparative Genomic Hybridization

xxv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Code Listings 164

CHAPTER 1

1 INTRODUCTION

1.1 Background

Leukemia is a type of blood cancer that involves white blood cells (WBC), whereby

immature WBC produced in the body will affect the bone marrow and the blood. They

will then spread to other parts of the body, resulting in other deadly cancers. Leukemia

can be classified based on its development speed: acute or chronic, and based on the

types of cells involved: lymphoid and myeloid cells. Hence, there can be four subtypes

of leukemia: acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML),

chronic lymphocytic leukemia (CLL), and chronic myelogenous leukemia (CML).

According to Ahmed, et al. (2019), the detection and classification of leukemia

and its subtypes are usually done through a few techniques such as interventional

radiology (IR), Array-based Comparative Genomic Hybridization (aCGH), Molecular

Cytogenesis, and Long-Distance Inverse Polymerase Chain Reaction (LDI-PCR), but

they may be limited by the image resolution and may take a lot of time, cost and effort

to perform. Ergo, the main procedure to diagnose and classify leukemia is still through

microscopic examination of blood smears.

In a pursuit to efficiently detect and classify leukemia, deep learning is utilized

in this project. Deep learning is beneficial in medical image analysis because it does

not have human limitations such as fatigue and slow speed. They are also easy to

deploy compared to employing professional radiologists or oncologists to perform

examinations on the medical images (Ker, et al., 2018). The earliest talks of deploying

deep learning in the medical field date back to 1995 where Lo, et al. proposed a CNN

for lung nodule detection from chest X-rays. In 2016, Rajkomar, et al. used a pre-

trained GoogLeNet model to classify whether the chest x-ray image orientation is a

lateral or frontal side of view and achieved an accuracy of almost 100%. Though it

may be a simple task, it demonstrated the effectiveness of deep learning applications

on medical images. From then onwards, more and more successful implementations

of deep learning emerge, which includes the classification of 14 diseases from chest

x-rays done by Rajpukar, et al. in 2017, Alzheimer’s Disease detection done by

Hosseini-Asl, E., Gimel’farb, G. and El-Baz, A. in 2016, and diabetic retinopathy (DR)

detection done by Pratt, et al. in 2016, just to name a few. All in all, detection and

classification using deep learning is becoming more common in the medical field.

The main driving force that helped spread the significance of deep learning is

through annual challenges such as the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), which started in 2010 until the present. It prompts researchers

worldwide to best the previous model in a few challenges such as object localization,

image classification, and object detection. Some state-of-the-art CNN image

classification models that emerged from this challenge include AlexNet, DenseNet,

Inception, ResNet, ResNeXt, and SENet, but it is just getting started. As technology

advances, deep learning algorithms are also enabled to be deeper and smarter. The

growing community in deep learning also emerges new innovative algorithms,

improving the performance and feasibility of deep learning models for real-world

applications. Furthermore, competitions like the one hosted by Kaggle can drive

interest in many new or existing researchers to continuously push the boundaries of

deep learning. In addition, the emerging term known as big data will also propel the

evolution of deep learning algorithms due to the more extensive training set available.

In a nutshell, this project will demonstrate how deep learning can accurately

and efficiently detect and classify leukemia from microscopic images. The methods

for performing and tackling common problems in deep learning are discussed in the

following chapters.

1.2 Problem Statements

As aforementioned, microscopic examination of blood smears is still the standard

technique to diagnose and classify leukemia. However, according to Bain (2015), The

microscopic examination of blood smears requires a medically qualified pathologist

or haematologist to perform, which implies that it can be costly, time-consuming, and

labour-intensive.

 Besides that, based on the statistics obtain from the National Cancer Institute

(2021), all walks of life are susceptible to leukemia, with an estimation of 61090 new

cases of leukemia where 23660 people will succumb to the disease. That makes up

about 1 out of 3 people among the cases who will die of leukemia. Thus, a faster

solution to detect and classify leukemia is vital as each subtype requires different types

of medical treatment.

1.3 Aims and Objectives

This study aims to produce an efficient way of detecting and classifying leukemia by

using deep learning. The objectives of this thesis are shown below:

i) To select and train a suitable deep learning model which can detect leukemia

cells from healthy cells, and classify them into their subtypes.

ii) To fine-tune the selected model for a better performance rate in the detecting

and classifying leukemia.

4

CHAPTER 2

2 LITERATURE REVIEW

2.1 Leukemia

Leukemia, also spelt as leukaemia, is a cancer of the blood cells. It is a disease that

involves the leukocytes, also known as white blood cells (WBC). WBC are part of the

human body’s immune system, responsible for fending off infections and other

diseases. In leukemia, malignant WBC will be produced in the human body, affecting

the bone marrow and the blood. This will cause the human immune system to become

vulnerable, deteriorating the health of the body. Bone marrow failure caused by the

abnormal WBC may also affect all three major cell lineages, resulting in haemorrhage,

infections, and anaemia (Pejovic and Schwartz, 2002). In addition, the malignant WBC

can also spread to other parts of the body, such as the brain, kidney, liver, lymph nodes,

spleen, and nervous system, arising to other deadly forms of cancers (Shafique and

Tehsin, 2018).

 According to National Cancer Institute (2021), leukemia is a relatively

common type of cancer that occupies 3.2% of new cancer cases in the United States

(US). It is also estimated that in 2021, there will be an additional 61090 cases of

leukemia where 23660 people will succumb to this disease. The percentage of deaths

due to leukemia by age group in the United States based from the year 2014 to the year

2018 is illustrated on a bar chart as shown in Figure 2.1. It is observed that the older

age group has the highest mortality rate with the highest percentage of death between

the age group of 75 to 84, the second-highest percentage of death between the age

group of 65 to 74, and the third-highest percentage of death above the age of 84. This

5

is due mainly to their old age, whereby they have weaker immune systems to fend

cancer.

Figure 2.1: A Bar Chart Showing the Percentage of Deaths Due to Leukemia

Leukemia can be classified into two different types based on its development

speed: acute and chronic. In acute leukemia, the WBC cannot perform their normal

function and will multiply very fast. On the other hand, in chronic leukemia, the WBC

can still perform their normal function for a short period and multiply very slowly.

However, chronic leukemia may pose health threats as it may go undiagnosed since

they are indistinguishable from healthy WBC and will not produce any early symptoms.

There are also two additional subtypes from each type of leukemia based on the types

of cells involved: lymphoid cells and myeloid cells (Ahmed, et al., 2019). Lymphoid

cells are responsible for producing lymphoid or lymphatic tissues that help build our

immune system, whereas myeloid cells are cells that will soon be developed into red

blood cells (RBC), WBC, or platelets (Mayo Clinic, 2021). Therefore, there are a total

of four leukemia subtypes, namely acute lymphocytic leukemia (ALL), acute

myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic

myelogenous leukemia (CML).

2.00% 2.50% 2.30%
5.00%

12.30%

23.70%

29.80%

22.40%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

Below 20 20 – 34 35 – 44 45 – 54 55 – 64 65 – 74 75 – 84 Above 84

Percentage of Deaths due to Leukemia based
from the year 2014 to the year 2017

according to National Cancer Institute

Percentage of Deaths

6

2.1.1 Acute Lymphocytic Leukemia

Acute Lymphocytic Leukemia (ALL) is a type of leukemia that is mostly observed

among young children, but it may occur in adults as well (Shaheen, et al., 2021). In

the US from 2013 to 2017, ALL may occur for 3 to 4 per 100,000 in population from

the age of 0 to 14, while approximately 1 per 100,000 only in population with age older

than 14, according to the Surveillance, Epidemiology, and End Results Program

(SEER) Cancer Statistics Review (CSR) in 2020 by National Cancer Institute. ALL

can be further subdivided into three subtypes according to the French-American

British (FAB) classification system: lymphoblastic leukemia with homogeneous

structure (L1), lymphoblastic leukemia with varied structure (L2), and Burkitt’s

leukemia (L3) (Ladines-Castro, et al., 2016).

ALL primarily affects the bone marrow and the blood. It multiplies and

reproduces immature cells rapidly in the bone marrow, crowding out the healthy cells.

The leukemia cells then spread through the bloodstream to other parts of the body,

including the brain, nervous system, spleen, liver, and lymph nodes (Rehman, et al.,

2018). The symptoms of ALL are greatly similar to the flu, which includes signs of

weakness, exhaustion, as well as bone and joint pain, which implies that diagnosing

ALL is not an easy task (Bibi, et al., 2020). If timely treatment is not executed, ALL

can progress very fast and take a life in a short span of a few months.

2.1.2 Acute Myelogenous Leukemia

Acute Myelogenous Leukemia (AML) is the most common type of leukemia that

occurs primarily among adults. However, it may happen to children as well. AML is

seen for approximately 1 per 100,000 in population from the age 0 to 19, while 9 to 10

per 100,000 in population with age older than 19, in the US from 2013 to 2017

according to the SEER CSR in 2020 by National Cancer Institute. There is a further

subdivision of AML into eight subtypes according to the FAB classification system:

acute myeloblastic leukemia with minimal differentiation (M0), acute myeloblastic

leukemia without maturation (M1), acute myeloblastic leukemia with maturation (M2),

7

promyelocytic leukemia (M3), acute myelomonocytic leukemia (M4), acute

monoblastic leukemia (M5a) or acute monocytic leukemia (M5b), acute erythroid

leukemia (M6), and acute megakaryocytic leukemia (M7) (Ladines-Castro, et al.,

2016).

AML is mainly caused by the production of immature WBC and blasts by the

bone marrow, which may also produce abnormal RBC and platelets. The early

symptoms of AML have many similarities like influenza, which include signs of fever,

fatigue and tiredness, easy bruising or bleeding, shortness of breath, and pale skin (Bibi,

et al., 2020).

2.1.3 Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia (CLL) is the most common type of leukemia that

occurs among adults but is uncommon among children. There is no infection rate

reported for ages below 25, but it is observed that CLL occurs for 13 to 14 per 100,000

in population from the age of 25 and above, in the US from 2013 to 2017 according to

the SEER CSR in 2020 by National Cancer Institute. A person who suffers from CLL

may be asymptomatic for years and live without the need for treatment. However, CLL

symptoms may take time to develop, including fever, weight loss, recurring infections,

and night sweats (Bibi, et al., 2020).

2.1.4 Chronic Myelogenous Leukemia

Chronic Myelogenous Leukemia (CML) is also a type of leukemia that primarily

occurs among adults. According to the SEER CSR in 2020 by National Cancer

Institute, it is observed that CML occurs for approximately 1 per 100,000 in population

from the age 0 to 19, while 4 to 5 per 100,000 in population with age older than 19, in

the US from 2013 to 2017. Although CML is categorized as a chronic or slow

progression type of leukemia, it may develop into an acute or rapid progression type

8

of leukemia, spreading quickly throughout the body. This development can be

observed in 3 different phases: the chronic phase, accelerated phase, and blast phase

(Bibi, et al., 2020). In the chronic phase, the leukemia is still steadily developing, and

there may be no symptoms or have mild symptoms such as tiredness and a slight loss

of weight. For the second phase, which is the accelerated phase, symptoms may be

more obvious, such as increased tiredness, loss in weight, and a swollen stomach

caused by an enlarged spleen. As leukemia worsens, it will then fall into the third phase,

which is the blast phase. This phase is also known as the acute phase, whereby CML

develops into AML. In this phase, the blood contains more than 30% of blast cells or

immature WBC that fills the bone marrow and blood. The leukemia cells might also

have spread to other parts of the body (Cancer Research UK, 2019).

2.2 Detection and Classification

The detection and classification of leukemia are undeniably crucial as each subtype

requires different types of medical treatment. In this project, the main focus is to

classify the subtypes of leukemia, mainly ALL, AML, CLL, and CML, using deep

learning. However, the morphology of the subtypes and their further classifications

will also be explained in the later parts.

There are various advanced techniques to diagnose leukemia. One such

technique is interventional radiology (IR), whereby minimally invasive procedures are

performed by utilizing image-guided methods (Arnold, Keung and McCarragher,

2019). However, the limitations of this technique are the resolution of the radio images

as well as imaging modality sensitivity. On the other hand, there are different

techniques such as Array-based Comparative Genomic Hybridization (aCGH),

Molecular Cytogenesis, and Long-Distance Inverse Polymerase Chain Reaction (LDI-

PCR), but they require a great deal of hard work and time, and maybe costly (Ahmed,

et al., 2019).

On that account, the standard technique in diagnosing leukemia is still through

microscopic examination of blood smears. The subtypes are then classified based on

9

their morphological characteristics. The downside is that this procedure should be

performed by highly trained and experienced persons such as a medically qualified

pathologist or haematologist so that the most information from the blood smears can

be obtained (Bain, 2005). Hence, it can still be time-consuming, labour-intensive, thus

bears an exorbitant cost (Dwivedi, 2016).

2.3 Morphology of Leukemia and Peripheral Blood Smear Findings

Each subtype has its morphological features. However, before looking into the

subtypes, it is important to recognize the blood with leukemia cells from healthy cells.

Figure 2.2 shows the peripheral blood smears of healthy blood cells and the four

subtypes of leukemia. It is observed that a normal and healthy blood cells contains

RBC, a considerate amount of WBC, as well as platelets. On the contrary, in leukemia,

normal cells are often outnumbered by the leukemia cells.

 Generally, the findings on the peripheral blood smear of ALL is the presence

of leukemic blast cells. They may include early erythroblast, megakaryoblasts,

monoblasts, myeloblasts, promyelocytes, or a mixture of the population. The

morphology of ALL can be described as having a high nucleocytoplasmic (NC) ratio,

which is the ratio of the volume of the nucleus to the volume of the cytoplasm. It has

a discoid or ovoid-shaped nucleus with little cytoplasm that is agranular and

moderately basophilic (Löffler and Gassmann, 1994). Besides that, it also has

inapparent nucleoli and a coarse or clumped chromatin. The morphology

characteristics of its three subtypes are illustrated and tabulated in Table 2.1. On the

other hand, in AML, one may observe multiple myeloblasts on its peripheral blood

smears. The morphology features of AML typically are having large cells with scant

granular cytoplasm, fine chromatin, and a discoid or ovoid-shaped nucleus with 2 to 4

nucleoli. The cytoplasm may also have needle-shaped structures, called Auer rods.

They are crystalline cytoplasmic inclusion that is produced from the abnormal fusion

of azurophilic granules. The morphology characteristics of its eight subtypes are

illustrated and tabulated in Table 2.2.

10

Furthermore, in CLL, smudge cells may be observed in the peripheral blood

smears as neoplastic cells are fragile and might be smudged during the preparation of

blood slides. The morphology features of CLL are that it has small neoplastic

lymphocytes with scant cytoplasm. Its nuclei are also round or irregular in shape with

clumped chromatin, as well as small nucleoli. Lastly, the findings on the peripheral

blood smears of CML is that it has leucocytosis with left shift. This indicates that there

is presence of immature granulocytes such as bands, metamyelocytes, myelocytes, and

promyelocytes, as well as the presence of eosinophils and basophils (S, 2020).

(a) (b)

(c) (d)

(e)

Figure 2.2: (a) Blood Smears of Healthy Blood Cells (Scotti, Labati and Piuri, 2011).

(b) ALL (Scotti, Labati and Piuri, 2011). (c) AML (American Society of

Hematology, n.d.). (d) CLL (American Society of Hematology, n.d.). (e) CML

(American Society of Hematology, n.d.)

11

Table 2.1: Morphology of ALL Subtypes According to FAB Classification

(S, 2020; Bain, 2015; Ladines-Castro, et al., 2016)

Subtypes Illustration Description

L1

• Has a homogeneous blast cell

population

• Has a regular-shaped nucleus

• Diffused or condensed chromatin

• Minimal or no nucleoli

• Cytoplasm is scanty and mild to

moderately basophilic

L2

• Large blasts

• Nuclei is shaped irregularly

• Chromatin is structured

heterogeneously and is weakly to

strongly basophilic

• Large nucleoli

• Has more cytoplasm

L3

• Large-sized blasts

• Nucleus is surrounded by a copious

amount of chromatic vacuole

• Chromatin is structured homogenously

and granular

• Has prominent nucleoli

• Cytoplasm is moderately basophilic

12

Table 2.2: Morphology of AML Subtypes According to FAB Classification

(Bain, 2015; Ladines-Castro, et al., 2016)

Subtypes Illustration Morphology description

M0

• Medium-sized blasts

• Circular-shaped nucleus

• Has fine chromatin

• Has prominent nucleoli

• Has agranular and basophilic cytoplasm

M1

• High NC ratio

• Medium-sized blasts

• Has immature nuclei that is round in

shape

• Dispersed chromatin

• May have one or more nucleoli

• Cytoplasm may contain fine azurophilic

granulation or Auer rods that are isolated

M2

• High NC ratio

• Small to medium-sized blasts

• Circular-shaped nucleus

• Dispersed chromatin that is immature

• May have one or more nucleoli

• Basophilic cytoplasm and may contain

primary azurophilic granulation or Auer

rods

M3

• Nucleus is bean-shaped or bilobed with a

deep cleft

• Abundant azurophilic granulation

• Cytoplasm is weakly basophilic

M4

• Moderate NC ratio

• Large blasts

• Circular or kidney-shaped nucleus

• Has prominent nucleoli

13

M5a

M5b

• Circular-shaped nucleus

• Dispersed chromatin that is immature

• May have one to three nucleoli

• Cytoplasm is abundant and strongly

basophilic

• Auer rods may be present

• Circular or kidney-shaped nucleus

• Cytoplasm is weakly basophilic, highly

granulated, and may contain vacuoles

M6

• Mushroom-shaped cells

• Present as a circulating nucleated red

blood cells (NRBC)

M7

• Has similar appearance to platelets

• Eccentric nucleus

• Dispersed chromatin

• May have one to three nucleoli

• Has agranular and basophilic cytoplasm

14

2.4 Deep Learning

Deep learning (DL) is a sub-type of machine learning (ML) that is based on algorithms

to learn in multiple layers of representations in a hierarchical structure in order to

obtain a complex function that can extract the high-level features from the raw data

(Deng and Yu, 2014; Mishra and Gupta, 2017). It is mainly inspired by how the nerve

cells in the human brain work. Instead of nerve cells, DL models have artificial neurons

that interconnect to build multiple layers of artificial neural networks (ANN). Each

layer will provide its own interpretation of the input data to map them to their specific

labels, without predefined rules designed by humans (Alzubaidi, et al., 2021). ANN

mainly has three layers, including the input layer, hidden layer, and output layer.

Figure 2.3: Architecture of ANN (Adapted from Mishra and Gupta, 2017)

The implementation of DL can be found in most industries, and it is used in

several types of applications from day-to-day tasks such as object detection, image

recognition, speech recognition, and language translation, to improving human lives

with cancer detection, natural disaster prediction, brain circuitry reconstruction, and

predicting the aftermath of mutation in diseases (Alzubaidi, et al., 2021; LeCun,

Bengio and Hinton, 2015). Performing classification tasks using DL is also a walk in

the park as it is capable of learning feature sets on its own. Compared with

conventional machine learning (ML), several stages are required before completing

the classification tasks. These stages include data pre-processing, feature extraction,

feature selection, learning, and lastly, classification. Inaccurate classification among

labels may occur in ML due to the discriminatory feature selection (Alzubaidi, et al.,

2021). Figure 2.4 illustrates the difference between ML and DL.

15

Figure 2.4: Illustration of ML In Comparison with DL (Adapted from Alzubaidi, et

al., 2021)

Recent studies also prove that DL models had already surpassed humans in

classifying images. This is observed in Figure 2.5, where the top-5 error rate of state-

of-the-art DL models is compared with human errors estimated to be 5.1% according

to Russakovsky, et al. (2015). The top-5 error rate is the percentage of classification

made by the model on a given image where the correct label is not on its top 5

predictions. It is one of the methods used to evaluate machine learning models in the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The annual challenge

started from 2010 until present uses a subset of ImageNet with approximately 1000

images for each of the 1000 classes. The images are split into 1.2 million for training,

50 thousand for validation, and 150 thousand for testing (Krizhevsky, Sutskever and

Hinton, 2017). The goal for each year is to reduce the error rate of the previous models.

However, ImageNet had announced that starting from 2018, the classification of 3D

objects will be involved (Wikipedia, 2021). Hence, the DL models that participated in

ILSVRC, used for comparison in Figure 2.5, are dated until 2017 only.

The three main techniques for DL include deep supervised learning, deep

unsupervised learning, and deep reinforcement learning. There are also hybrid

techniques such as semi-supervised learning, while another common method that is

widely used is known as deep transfer learning. Deep transfer learning will be

discussed more in-depth than other techniques as it will be utilized in this project.

16

Figure 2.5: ImageNet Top-5 Error Rate of DL Models Compared to Human Errors

(Adapted from Alzubaidi, 2021)

Table 2.3: DL Models and Their References

DL models ILSVRC Results Reference

SENet 2017 Winner Hu, et al., 2019

ResNeXt 2016 1st Runner-up Xie, et al., 2017

Inception-V4 - Szegedy, et al., 2017

ResNet 2015 Winner He, et al., 2015

Inception-V3 2015 1st Runner Up Szegedy, et al., 2016

Inception-V2 - Ioffe and Szegedy, 2015

DenseNet - Huang, et al., 2017

Inception V1 (GoogLeNet) 2014 Winner Szegedy, et al., 2015

VGGNet 2014 1st Runner up Simonyan and Zisserman,

2015

ZFNet 2013 Winner Zeiler and Fergus, 2014

AlexNet 2012 winner Krizhevsky, Sutskever

and Hinton, 2017

XRCE 2011 winner Sanchez, et al., 2013

NEC-UIUC 2010 winner Lin, et al., 2011

28.20%
25.80%

16.40%
11.70%

7.30%
6.67%

5.54%
5.10%

4.80%
3.58%
3.57%

3.08%
3.03%

2.25%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00%

NEC-UIUC
XRCE

AlexNet
ZFNet

VGGNet
Inception V1

DenseNet
Human

Inception V2
Inception V3

ResNet
Inception V4

ResNeXt
SENet

Error Rate

ImageNet Top-5 Error Rate

17

2.4.1 Deep Supervised Learning

Deep supervised learning is the most common and simplest approach for DL. It is used

to train datasets that are labelled. During training, the input data are applied together

with the resultant output. The agent then predicts the input to the desired output,

optimizing the network’s internal parameters using the loss function computed from

previous predictions to minimize the error until the desired output is sufficiently met.

A few algorithms used for deep supervised learning may include recurrent neural

networks (RNN), convolutional neural networks (CNN), and deep neural networks

(DNN). This approach benefits in retrieving data or producing a data output from the

previous knowledge. However, it suffers from overstraining the decision boundary

when the training set lacks samples from an existing class (Alzubaidi, et al., 2021). An

illustration of deep supervised learning is shown below.

Figure 2.6: Deep Supervised Learning (Qian, et al., 2020)

2.4.2 Deep Unsupervised Learning

Deep unsupervised learning is a type of DL approach that involves unlabelled data.

This means that only input data is applied in the training process. Internal

representation or notable features are learnt instead to uncover the underlying links in

the input data. Several algorithms used for deep unsupervised learning include

dimensionality reduction, generative adversarial networks, and, most popularly,

clustering. The disadvantage of this approach is that it is complex, and the data output

18

generated may be inaccurate for tasks related to sorting data (Alzubaidi, et al., 2021).

An illustration of deep unsupervised learning is shown below.

Figure 2.7: Deep Unsupervised Learning (Qian, et al., 2020)

2.4.3 Deep Reinforcement Learning

Deep reinforcement learning is another approach for DL that involves the agent

interacting with its environment. The agent will make a series of actions whereby, for

each iteration, a reward function will be produced from the environment in which the

agent uses it to optimize its state for the next iteration (Amiri, et al., 2018). This

approach will perform an infinite amount of iterations with an objective to reduce loss

while maximizing reward (Neftci and Averback, 2019). Deep reinforcement learning

can be seen used to plan corporate strategy as well as industrial robots. This is because

this approach can help identify the preferred action to obtain the maximum reward.

However, it can take more time and computing power to achieve it in a larger

workspace (Alzubaidi, et al., 2021).

Figure 2.8: Deep Reinforcement Learning (Amiri, et al., 2018)

19

2.4.4 Deep Semi-supervised Learning

Deep semi-supervised learning is a hybrid approach for DL that involves both labelled

and unlabelled data. It contains the pros and cons of both supervised and unsupervised

learning. This approach is favourable when labelled data are difficult to collect

compared to the widely available unlabelled data. Hence, it can benefit DL where there

is a lack of labelled data. The main drawback is that assumptions must be made so that

this approach can work effectively. These assumptions include smoothness, cluster,

and manifold assumptions (Ouali, Hudelot and Tami, 2020). One application of deep

semi-supervised learning can be seen in classification tasks concerning text documents

(Alzubaidi, et al., 2021).

2.4.5 Deep Transfer Learning

Following the widespread use of deep architectures, most notably the convolutional

neural network (CNN), deep transfer learning becomes increasingly popular for DL.

This is because it is an effective approach for DL on undersized annotated datasets

where overfitting is a major issue (Tan, et al., 2018). In contrast, traditional approaches

often demand vast amount of datasets, which also requires a lot of time and computing

resources, to train and build a DL model from scratch (Alzubaidi, et al., 2021). The

main idea behind transfer learning is to repurpose existing DL models trained

previously for one task to another novel task (Best, Ott and Linstead, 2020). These DL

models are also known as pre-trained models.

The two common terminologies used in transfer learning are source and target,

whereby each is further described by domain and task. The domain where knowledge

will be learned is known as the source domain, 𝒟𝒟S , while the domain where the

knowledge will be transferred to is known as the target domain, 𝒟𝒟T. The following

notations and definitions will match closely on the survey paper done by Pan and Yang

(2010).

20

Domain, denoted as 𝒟𝒟, can be expressed mathematically as 𝒟𝒟 = {ℱ, P(X)}. It

is observed that there are two components in the expression: a feature space, ℱ, and

an edge probability distribution, P(X), where X = {x1, ..., xm} ∈ ℱ (Tan, et al., 2018).

For a task concerning binary classification problem, ℱ is the space with a collection

of all feature vectors, xi is the ith feature vector corresponding to the ith term, while X

is the particular samples used for training. Generally, if two domains are different, this

could mean that either their feature spaces or the marginal probability distributions are

different. Then, for a given 𝒟𝒟, a task, denoted as 𝒯𝒯, can be expressed mathematically

as 𝒯𝒯 = { 𝒴𝒴, f(·)}. It also consists of two parts, where the first part is a label space, 𝒴𝒴.

The second part is a predictive function, f(·), which is learned from the instances and

label training pairs {xi, yi}, where xi ∈ X and yi ∈ 𝒴𝒴, and it can also be alternatively

viewed as a conditional probability distribution P(y|x). The source task is denoted as

𝒯𝒯𝑆𝑆 and the source predictive function is denoted as fS(·), whereas the target task is

denoted as 𝒯𝒯𝑇𝑇 and the target predictive function can be denoted as fT(·). Recalling back

to the binary classification problem, 𝒴𝒴 is the collection of all labels that contains true

and false, and yi can have a value of either true or false (Weiss, Khoshgoftaar and

Wang, 2016).

With the notation defined above, 𝒟𝒟S can be formally expressed as 𝒟𝒟S = {(xS1,

yS1), …, (xSm, ySm)}, where ySi ∈ 𝒴𝒴 is the class label corresponding to the data instance,

xSi ∈ ℱS. Likewise, 𝒟𝒟T can be formally expressed as 𝒟𝒟T = {(xT1, yT1), …, (xTm, yTm)},

where yTi ∈ 𝒴𝒴 is the class label corresponding to the data instance, xTi ∈ ℱT. Finally,

the definition of transfer learning can be formally described. For a given 𝒟𝒟S and its

corresponding learning tasks 𝒯𝒯𝑆𝑆, and a 𝒟𝒟T and its corresponding learning tasks 𝒯𝒯𝑇𝑇 the

goal of transfer learning is to enhance the performance of fT(·) by leveraging the

knowledge in 𝒟𝒟S and 𝒯𝒯𝑆𝑆 , where 𝒟𝒟S ≠ 𝒟𝒟T or 𝒯𝒯𝑆𝑆 ≠ 𝒯𝒯𝑇𝑇 (Tan, et al., 2018). The

performance of transfer learning can be categorized into positive transfer and negative

transfer. For a given predictive learner fT1(·) that is trained with 𝒟𝒟T only, and another

predictive learner fT2(·) that is trained with 𝒟𝒟S and 𝒟𝒟T combined, the transfer is said to

be negative if fT1(·) performs better than fT2(·), whereas the transfer is said to be positive

if fT2(·) performs better than fT1(·) (Weiss, Khoshgoftaar and Wang, 2016). Figure 2.9

illustrates the transfer learning process.

21

There are two types of approaches to perform transfer learning using pre-

trained models: feature extraction, and fine-tuning. The former extracts the feature

maps from the pre-trained model to be built on top of a shallow model, while the latter

makes fine adjustments on the pre-trained model to increase its accuracy and

performance whilst retaining the initial weights learned by the model for the new task

(Mustafid, Pamuji and Helmiyah, 2020). All in all, transfer learning benefits in

requiring lesser dataset and time for training while improving performance and

network generalization (Alzubaidi, et al., 2021).

Figure 2.9: Transfer Learning Process (Tan, et al., 2018)

2.5 Types of Artificial Neural Networks

Few of the commonly known artificial neural networks (ANN) include recursive

neural network (RvNN), recurrent neural network (RNN), and convolutional neural

network (CNN). CNN will be discussed in-depth compared to others as it is the most

widely used type of artificial neural network for DL.

2.5.1 Recursive Neural Network

Recursive neural network (RvNN) is a type of artificial neural network that can predict

outputs from data that are structured hierarchically. It can process information of

22

different sizes with various topologies such as trees and graphs compared to

conventional techniques that are based on features, which use fixed-size vectors to

encode the information relevant to the problem (Chinea, 2009). Socher, et al. (2011)

provided some examples of the application of RvNN such as parsing scene images,

which can be helpful for computer vision. Figure 2.10 illustrates how RvNN parses

scene images.

The approach of RvNN is to over-segment the image into smaller regions of

interest, then the features of the image are extracted and mapped into a semantic space.

The semantic representations of each region are then fed into the RvNN where it will

compute a score. The ones with the highest score will be merged to the neighbouring

units, producing a larger unit. A new feature and the class labels that represent the unit

are generated for every large unit produced. The merging process happens recursively

on the same neural network. As a result, an RvNN tree structure is implicitly created

for each merging decision, whereby the final output is the complete scene image,

which is said to be the root of the structure (Alzubaidi, et al., 2021). RvNN is still

uncommon among the research community due to its intricately complex

characteristics, requiring a steep learning curve (Chinea, 2009).

Figure 2.10: Illustration of How RvNN Parses Scene Images (Socher, et al., 2011)

23

2.5.2 Recurrent Neural Network

Recurrent neural network (RNN) is a type of artificial neural network that deals with

information that is time-continuous by implementing feedback to feedforward neural

networks (FFNN). The purpose of feedback neural networks is to possess the idea

similar to the short-term and long-term memory demonstrated by humans. In the case

of RNN, it uses past outputs to process the present input. Hence, RNN is mainly used

in speech recognition, human activity recognition, and language translation (Rezk, et

al., 2020). There are three collections of layers in RNN: input layers denoted as x,

recurrent or hidden layers denoted as h, and output layers denoted as y.

Though RNN may seem like it has a deep network, whereby the input at time

𝑚𝑚 < 𝑡𝑡 propagates through multiple nonlinear layers before producing the output at

time 𝑡𝑡. However, upon unfolding the network through steps of time, it has a temporal

structure with shallow functions. These functions include input-to-hidden (𝑥𝑥𝑡𝑡 → ℎ𝑡𝑡),

hidden-to-output (ℎ𝑡𝑡 → 𝑦𝑦𝑡𝑡), and hidden-to-hidden (ℎ𝑡𝑡−1 → ℎ𝑡𝑡) (Pascanu, et al., 2014).

RNN can be unfolded into different types of structure as shown in Figure 2.11: one-

to-many, many-to-one, and many-to-many. An RNN is called a deep transition RNN

if additional nonlinear layers are stacked within the hidden layer; it is called a deep

output RNN if additional nonlinear layers are stacked between the output and the

hidden layer (Rezk, et al., 2020).

Figure 2.11: (a) Typical RNN Structure (b) One-To-Many Temporal Structure of

RNN (c) Many-To-One Temporal Structure of RNN (d) Many-To-Many Temporal

Structure of RNN (Adapted from Rezk, et al., 2020; Su and Li, 2019)

24

2.5.3 Convolutional Neural Network

Convolutional neural network (CNN, or ConvNet) is a type of neural network designed

specifically to process two-dimensional inputs, which includes images and videos. It

is the first artificial neural network that can truly accomplish DL where it successfully

trained hierarchically structured layers in a robust way (Mishra and Gupta, 2017). An

illustration of the CNN architecture is shown in Figure 2.12. It is an architecture

inspired by the structure of the visual system of humans and animals, discovered in

1962 by Hubel and Wiesel, and digitalized in 1980 by Fukushima.

Through the discovery from the receptive fields of the cells in the primary

visual cortex of a cat, Hubel and Wiesel proposed a hierarchy model of the visual

neural network. The structure starts from the lateral geniculate body (LGB) to simple

cells, followed by complex cells, lower-order hypercomplex cells, and finally, to the

higher-order hypercomplex cells (Fukushima, 1980). Then, Fukushima presented an

artificial neural network model called Neocognitron that followed the works of Hubel

and Wiesel. Neocognitron was one of the first models that can be simulated on a

computer. It is also considered the earliest version of CNNs since it was based on the

hierarchical, multi-layered structure of neurons for image processing (Shamsaldin, et

al., 2019).

CNNs are still obscured from the public until 1990. LeCun, et al. (1990)

brought the idea to the limelight by using a multi-layered artificial neural network,

known as LeNet, to recognize and classify handwritten digits. LeNet was the first CNN

architecture that is able to perform image classification using deep learning. It utilizes

an algorithm known as back-propagation to train the model, allowing patterns to be

recognized from raw pixels. Though LeNet is incapable of solving complex

classification problems, it instilled interest among the research community, paving the

way for upcoming CNNs (Shamsaldin, et al., 2019).

One of the main interests in employing CNNs is the concept of shared weights,

which reduced the number of parameters that had to be learned, enabling a better

generalization and avoiding overfitting problems. The utilization of temporal and

spatial relationships in the CNN architecture is also an effort in reducing the number

25

of parameters (Mishra and Gupta, 2017). Besides that, the classification stage is also

combined with the feature extraction stage, which expedites the training process and

ensuring the optimum output. Furthermore, CNNs also allows large-scale networks to

be implemented easier compared to other types of neural networks (Alzubaidi, et al.,

2021). Hence, due to the exceptional performance that CNNs is able to provide, it is

currently widely applied in multiple applications such as face detection, object

detection, image classification, facial expression recognition, speech recognition, and

so on (Indolia, et al., 2019).

Figure 2.12: CNN Architecture (Adapted from Mishra and Gupta, 2017)

2.6 CNN Architecture

The typical architecture of CNN consists of several alternative layers of convolution

layers and pooling layers, followed by activation function or non-linearity layer, and

lastly, a fully connected layer (Indolia, et al., 2018). Other layers such as batch

normalization and dropout are also added as regulatory units to improve the

performance of CNN (Khan, et al., 2020).

The input format of CNN is a three-dimensional vector. The dimensions

include height, width, and depth. The height and width will always have an equal

length such that the three-dimensional input can be expressed as 𝑎𝑎 × 𝑎𝑎 × 𝑚𝑚, where 𝑚𝑚

is the channel number. Figure 2.13 illustrates an example of image classification using

CNN architecture (Alzubaidi, et al., 2021).

26

Figure 2.13: Image Classification Using CNN Architecture (Adapted from Alzubaidi,

et al., 2021)

2.6.1 Convolution Layer

The convolutional layer is the core layer of the CNN architecture (Alzubaidi, et al.,

2021). As the name suggests, it utilizes convolution, an operation that is widely used

in applications such as image and signal processing, digital data processing, computer

vision, and other mathematical problems. The convolution operation is a mathematical

process that generates the third function from two primary functions f and g. This third

function is the expression that describes how one of the functions modifies the other,

providing the overlapping area between the two functions (Behl, Bhatia and Puri,

2014). An illustration of the convolution between two functions is shown in the figure

below.

Figure 2.14: Convolution Between Two Functions (Pihlajamäki, 2009)

27

According to Behl, Bhatia and Puri (2014), the convolution operation between the

functions f and g, written with an asterisk (*) as the operator, can be mathematically

defined as shown below.

(𝑓𝑓 ∗ 𝑔𝑔)(𝑡𝑡) ≔ � 𝑓𝑓(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 (2.1)

 ≔ � 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
 (2.2)

As shown in the expression, convolution can be defined as integrating the outcome

after one function multiplied by another that is reversed and shifted (Behl, Bhatia and

Puri, 2014).

In CNNs, convolution operations are used to perform feature extraction. The

convolutional layers contain convolutional filters, also known as kernels, to perform

the convolution operations. The number of kernels used is typically 32 to 512 so that

features can be learned and in parallel using 32 to 512 ways to see the input data

(Brownlee, 2019). The kernel is a grid of numbers, where each value in the grid is

known as weights, and it is used to convolve the array of numbers at the input, also

known as tensors. The initial weights of the kernel are selected arbitrarily but will be

adjusted after each batch of training (Alzubaidi, et al., 2021). The convolution

operation is determined by a few hyperparameters of the kernel such as size, number,

and stride. The common choice for the size of the kernel is typically 3 × 3, but it can

also be 5 × 5 , or 7 × 7 . On the other hand, the number of the kernel is decided

depending on the complexity of the datasets. Besides, the stride is typically set as 1

pixel, meaning that the kernel will shift 1 pixel for each iteration of the convolution

operation. Still, a larger stride can also be used to achieve sub-sampling of the feature

map (Yamashita, et al., 2018).

To expand the knowledge on convolution operation in CNNs, the following

example will be used. Given an 5 × 5 grey-scaled image convolving a kernel of

arbitrary weights with a size of 3 × 3 pixel and stride of 1 pixel as shown in Figure

2.15. For each iteration of convolution operation, the kernel will perform horizontal

and vertical shifts over the input tensor, dissecting the input image into smaller regions

28

called the receptive fields while evaluating the dot product between the receptive field

and the kernel weights. The feature map generated is the output of the dot products.

Figure 2.15: Convolution Operation Between a Kernel and An Input Tensor

(Adapted from Reynolds, 2019; Yamashita, et al., 2018)

Since the convolution operation is done without padding, the feature map

generated appears to have a reduced height and width compared to the input tensor.

This will significantly reduce the performance of CNN if the size of feature maps keeps

getting smaller for each complete convolution operation. However, this problem can

be easily solved with the help of the padding technique. By zero-padding the input

tensor, the outermost input tensor can then convolve with the centre of the kernel,

allowing the feature map to retain the size of the input tensor.

Figure 2.16: Zero Padding Before Performing Convolution Operation (Adapted from

Reynolds, 2019; Yamashita, et al., 2018)

All in all, the convolutional layer is the reason why CNNs are preferred over other

neural network architectures because they manifest the ability of shared weights,

which avoids the need to learn weights for each available neuron in the layer. Hence,

the time required for training is reduced. In addition, since the number of weights

29

between two neighbouring layers is typically less, the weights can be stored in a

sufficiently small amount of memory, which reduces the computational cost for

training compared to other neural network models.

2.6.2 Pooling Layer

The pooling layer is responsible for down-sampling the feature map that is generated

from the convolutional layer (Yamashita, et al., 2018). The pooling operation works

by gathering the dominant response within a region of interest and include them in the

output vector, thereby shrinking the resolution of the feature map to generate a smaller

feature map (Albelwi and Mahmood, 2017; Alzubaidi, et al., 2021). This resolution

reduction helps decrease the number of learnable parameters and introduces

translational invariances to small shifts and distortions (Indolia, et al., 2018; Yamashita,

et al., 2018). However, the main drawback of the pooling layer is that it may reduce

the performance of the CNN because it approximates the location of the features

(Alzubaidi, et al., 2021; Khan, et al., 2020). The hyperparameters of the pooling layer

are also somewhat similar to that of the convolutional layer. These hyperparameters

include the size of the filter, padding, and stride (Yamashita, et al., 2018).

A few pooling techniques can be employed in the pooling layer, but those

commonly used are max pooling and global average pooling (Alzubaidi, et al., 2021).

Max pooling works by extracting the maximum value of the region of interest and

generates an output vector based on those values. The typical filter size of max pooling

used is 2 × 2. The striding of the filter is also commonly set to 2, which will reduce

the resolution of the feature map by twice the original size. On the other hand, global

average pooling works by averaging all the elements in the feature map, thus

generating a feature map of size 1 × 1 pixel. It is usually used prior to the fully

connected layers. By utilizing global average pooling, trainable parameters will be

reduced and input of various sizes can be fed into the CNN (Yamashita, et al., 2018).

Both pooling operations only affect the height and width but not the depth of the

feature map. An illustration of both pooling operations is shown in Figure 2.17.

30

Figure 2.17: Illustration of Max Pooling and Global Average Pooling (Adapted from

Alzubaidi, et al., 2021; Yamashita, et al., 2018)

2.6.3 Activation Function

Activation functions are used to map the input to the output, and it also decides whether

to activate a neuron or not by computing the input neuron’s weighted sum and its bias

(Alzubaidi, et al., 2021; Szandała, 2020). There are two types of activation function:

linear activation function that provides a constant output, and non-linear activation

function, which is widely used in building neural networks due to the variations they

create. A non-linear activation function is differentiable, which makes it useful for

backpropagation algorithms. It also enables network generalization, allowing the

network to adapt to different types of data (Feng and Lu, 2019).

The most commonly used non-linear activation functions are sigmoid, tanh,

and the popularly used rectified linear unit (ReLU). The sigmoid is a function that

takes in real numbers as its input and generates an output that ranges between 0 and 1

(Alzubaidi, et al., 2021). According to Feng and Lu (2019), it can be mathematically

expressed as shown below.

𝑓𝑓(𝑥𝑥)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1

1 + 𝑒𝑒−𝑥𝑥
 (2.4)

The sigmoid function curve, as shown in Figure 2.18 has an S-shape, revealing that

the slight shifts in the input can significantly affect the output when the input is near

0. However, when the input is diverging away from 0, the output response obtained is

31

less pronounced. This will pose a problem known as “vanishing gradients” where the

gradient becomes smaller to the point that it reaches its asymptotic ends, and the neural

network is said to be saturated and will stop learning further (Rakitianskaia and

Engelbrecht, 2015). Hence, it is important to carefully initialize the sigmoid function’s

weights so that saturation will not happen (Feng and Lu, 2019).

Figure 2.18: Sigmoid Function and Its Derivative (Omkar, 2019)

Next, the tanh function or Tangent Hyperbolic Function is a function that is

similarly like the sigmoid function where it takes in real numbers as an input, but it

generates an output that ranges between -1 and 1 (Alzubaidi, et al., 2021). According

to Feng and Lu (2019), it can be mathematically expressed as shown below.

𝑓𝑓(𝑥𝑥)𝑡𝑡𝑡𝑡𝑡𝑡ℎ =
𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
 (2.3)

The curve of the tanh function and its derivative is illustrated in the figure below.

Figure 2.19: Tanh Function and Its Derivative (Omkar, 2019)

32

The “vanishing gradient” in the sigmoid function can also be observed in the tanh

function. However, tanh function is able to concentrate the data and allows an easier

training process because the output's mean is near 0 (Feng and Lu, 2019).

Lastly, ReLU is a function that outputs the input data if it is positive, and

generates a zero if the input data is negative. According to Feng and Lu (2019), it can

be mathematically expressed as shown below.

𝑓𝑓(𝑥𝑥)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = max(0, 𝑥𝑥) = �𝑥𝑥, 𝑥𝑥 > 0
0, 𝑥𝑥 < 0 (2.4)

The curve of the ReLU function and its derivative is illustrated in the figure below.

Figure 2.20: ReLU Function and Its Derivative (Szandała, 2020)

The benefits of utilizing the ReLU function are that the “vanishing gradient”

problem observed in the activations discussed earlier is omitted. It also reduces the

computational load that significantly speeds up the training process. However, when a

larger gradient passes through the network using the backpropagation algorithm, the

weights of the neurons for negative inputs will not be adjusted, or in another sense, the

neurons become inactive and “die” (Feng and Lu, 2019; Szandała, 2020). This is

known as the “Dying ReLU” problem (Alzubaidi, et al., 2021). The solution to this

problem is to use one of the multiple variants of the ReLU functions, such as the Leaky

ReLU and the Parametric ReLU (PReLU). In the Leaky ReLU, a small constant 𝛼𝛼,

typically with a value of 0.01, is added to ensure that the negative inputs are not

33

ignored by creating a small incline at the negative side of the function (Szandała, 2020).

According to Feng and Lu (2019), it can be mathematically expressed as shown below.

𝑓𝑓(𝑥𝑥)𝑅𝑅𝑅𝑅𝑡𝑡𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 𝑥𝑥, 𝑥𝑥 > 0
𝛼𝛼𝑥𝑥, 𝑥𝑥 < 0 (2.5)

On the other hand, PReLU is somewhat similar to the Leaky ReLU but the value of 𝛼𝛼

is learned through the training process (Feng and Lu, 2019). According to Feng and

Lu (2019), it can be mathematically expressed as shown below.

𝑓𝑓(𝑥𝑥)𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 𝑥𝑥, 𝑥𝑥 > 0
𝛼𝛼𝑥𝑥, 𝑥𝑥 < 0 (2.6)

The figure below illustrates the curve of the Leaky ReLU and the PReLU functions.

Figure 2.21: Leaky ReLU and PReLU Functions (Omkar, 2019)

2.6.4 Batch Normalization

Batch normalization is used to reduce the shift in network activation distribution

caused by the change in network parameters in the course of training. This shift can

also be called the internal covariate shift (Ioffe and Szegedy, 2015). When the shift is

very high, the model will take more time to converge the inputs from multiple neurons

to their target neurons (Mpitsos and Burton, 1992). Hence, batch normalization

addresses the issue by normalizing the output at each layer such that the mean is

subtracted and the standard deviation is divided from it (Alzubaidi, et al., 2021).

34

According to Ioffe and Szegedy (2015), batch normalization can be mathematically

expressed as shown in Equation 2.7. The normalized feature-map is denoted as 𝑥𝑥�𝑠𝑠

while the input feature-map is denoted as 𝑥𝑥𝑠𝑠. The mini-batch mean and variance for

the feature maps are denoted as 𝜇𝜇𝐵𝐵 and 𝜎𝜎𝐵𝐵2 respectively. Furthermore, 𝜖𝜖 is added to

prevent being divided by zero, allowing for numerical stability.

𝑥𝑥𝚤𝚤� =
𝑥𝑥𝑠𝑠 − 𝜇𝜇𝐵𝐵
�𝜎𝜎𝐵𝐵2 + 𝜖𝜖

 (2.7)

Batch normalization benefits in accelerating the speed to train the network, improving

network generalization, and allows for a faster training rate (Bjorck, et al., 2018).

2.6.5 Dropout

Dropout is a method that addresses overfitting issues and improves network

generalization by introducing regularization into the network (Khan, et al., 2020).

Overfitting is when a network matches the training data too well and predicts poorly

on the testing data. In other words, the training data, including any noise in it, are

memorized instead of learning their abstract features (Ying, 2019). Hence, dropout is

utilized to randomly select nodes and remove them, along with their connections, from

the network. The hyperparameter to control how high the intensity of the dropout

should be is known as the dropout rate 𝑝𝑝. There will be no dropout when 𝑝𝑝 = 1, while

a lower 𝑝𝑝 will have a higher intensity of dropout. The typical value of 𝑝𝑝 ranges

between 0.5 and 0.8. An illustration of how dropout works is shown in Figure 2.22.

After dropout, various thinned networks will be generated, but only one network with

smaller weights will be used. The selected network is therefore regarded as a close

approximation to all of the network that is proposed. The main drawback of applying

dropout is that it elongates the training time of 2 to 3 times compared to training a

standard network (Srivastava, et al., 2014).

35

Figure 2.22: Illustration of Dropout (Adapted from Srivastava, et al., 2014)

2.6.6 Fully Connected Layer

The fully connected layer is commonly found at the end of a CNN architecture

(Alzubaidi, et al., 2021). This layer consists of one or more dense layers whereby each

node of the layers is interconnected with one another, with learnable weights. The input

of this layer is typically the flattened output from the previous layer, which is an array

of numbers that is one-dimensional (1D). Whereas the output of this layer is the

probability to the class labels given that the task at hand is a classification problem.

The last layer of the fully connected layer usually has the number of nodes that is the

same as the number of classes (Yamashita, et al., 2018).

2.7 Types of CNN Architectures

Following the rise of the LeNet, more and more deep CNN architectures started to

surface to best the benchmark set by their predecessors. ILSVRC is one of the main

driving forces in this advancement, which enabled the birth of a few state-of-the-art

CNN architectures such as AlexNet, ZFNet, GoogLenet, ResNet, ResNeXt, SeNet,

and DenseNet.

36

2.7.1 AlexNet

AlexNet was proposed by Krizhevsky, Sutskever and Hinton in 2012 and won first

place in ILSVRC 2012 with a minimum 15.3% top-5 error rate, averaging around

16.4%. Although LeNet is the pioneer of deep CNN architecture, AlexNet was able to

perform better than LeNet in tasks related to recognizing and classifying images.

AlexNet was able to tackle the tasks even with images with diverse classes, while

LeNet is limited to handwritten digits (Khan, et al., 2020). Thus, AlexNet surpassed

LeNet, and it is regarded as the first deep CNN architecture.

AlexNet has a deeper network than LeNet, with three additional layers from

LeNet that only has five layers. This enables AlexNet to be applicable in images with

various types of categories. The increase in depth can improve network generalization,

but there will be a greater chance of overfitting issues. This issue was able to be

overcome by implementing dropout, local response normalization, as well as

overlapping pooling (Khan, et al., 2020; Krizhevsky, Sutskever and Hinton, 2017).

Furthermore, non-saturating activation functions such as ReLU function is also used

to avoid the “vanishing gradient” problem, and enhancing the convergence rate of the

network (Alzubaidi, et al., 2021). In addition, AlexNet was also trained on two

Graphical Processing Units (GPU), both NVIDIA GTX 580 with 3GB of memory, to

accelerate the training process of the network. Moreover, to further improve its

performance, larger filter sizes such as 5 × 5 and 11 × 11 are utilized at the first few

layers (Khan et al., 2020). The figure below illustrates the architecture of AlexNet.

Figure 2.23: AlexNet Architecture (Tsang, 2018)

37

2.7.2 ZFNet

ZFNet was proposed by Zeiler and Fergus in 2013 and emerges as the winner of

ILSVRC 2013 with a top-5 error rate of 11.7%. Before Zeiler and Fergus introduced

the multilayer Deconvolutional Neural Network (DeconvNet), the insights on how the

CNN can achieve its performance are unknown, prompting to train CNNs in a heuristic

approach. With DeconvNet, the internal activity of the network can be visualized,

allowing the evolution of features to be observed so that potential problems can be

diagnosed and debugged easier (Zeiler and Fergus, 2014).

 DeconvNet still operates like a standard forward pass CNN, but the locations

of convolutional and pooling layers are swapped. This approach allows image patterns

to be visually observable and reveals the feature representations learned at each layer

in a neuron-level interpretation. Zeiler and Fergus demonstrated the idea by

experimenting with it on AlexNet and came out with the architecture as shown in

Figure 2.24. They discovered that most of the neurons are inactive with a few active

neurons in the network. They then tweak the model and are able to achieve a top-5

error rate of 14.8% by visualizing and adjusting the network parameters (Khan, et al.,

2020). All in all, the concept behind ZFNet is much like supervised learning whereby

visualizations are used to monitor how the model is learning, and then debugging or

tweaking the network parameters to achieve the desired performance (Alzubaidi, et al.,

2021).

Figure 2.24: ZFNet Architecture (Zeiler and Fergus, 2014)

38

2.7.3 GoogLeNet

GoogLeNet, also known as Inception-V1, was proposed in 2014 by researchers at

Google in collaboration with a few other universities. It was the winner of ILSVRC

2014 with a top-5 error rate of 6.67%. With an ambition to achieve a lower power

consumption, reducing memory usage, and decrease the number of trainable

parameters while maintaining a minimum budget, Szegedy, et al. proposed the idea of

an inception module that performs feature extraction at multiple scales using split,

transform, and merge functions. This idea is similar to the Network in Network (NIN)

architecture proposed by Lin, et al. in 2013, in which micro neural networks are used

to replace the conventional convolutional layers. Instead, GoogLeNet used smaller

blocks of filters consisting of several sizes such as 1 × 1, 3 × 3, and 5 × 5 to replace

the convolutional layers. Spatial information from the roughest to the finest detail at

various scales are then learned by the blocks. However, using a larger filter such as the

5 × 5 cause the network to suffer from representational bottleneck whereby useful

information may be lost due to the significant reduce in feature space (Alzubaidi, et

al., 2021).

On the other hand, the convolutional filters of size 1 × 1 pixel is heavily used

in the GoogLeNet architecture, and they are placed before kernels with a larger size to

remove bottlenecks during computation. This approach allows the depth and width of

the network to be increased without incurring substantial performance penalties.

(Szegedy, et al., 2015). Furthermore, GoogLeNet utilizes an architecture that is

sparsely connected instead of a fully connected one. This is because the fully

connected architecture has limitations in hardware implementations due to their higher

complexity, which requires a larger footprint, thus resulting in higher power

consumption (Ardakani, Condo and Gross, 2017). With a sparsely connected

architecture, the computational cost can be reduced by neglecting channels that are

irrelevant, as well as rectifying the problem of having redundant information. The

downside of this topology is that any required modifications need to be done from

module to module. In addition, contrary to the use of a fully connected layer in the last

layer as observed in AlexNet and ZFNet, a global average pooling layer is used instead

to reduce the density of the connections (Khan, et al., 2020). These fine-tunings on the

parameters are able to significantly reduce a total of 12 million trainable parameters

39

compared to AlexNet (Indolia, et al., 2018). On top of that, auxiliary classifiers are

also implemented to improve the convergence rate of the network (Khan, et al., 2020).

With that said, the overall architecture of GoogLeNet contains a total of 22 layers with

almost 100 independent building blocks to build the network, and it is shown in the

figure below.

Figure 2.25: GoogLeNet Architecture (Szegedy, et al., 2015)

40

 In hopes to tackle the problems encountered in GoogLeNet, Szegedy, et al. had

given the architecture a few upgrades, namely Inception-V2 in 2015, Inception-V3 in

2015, and Inception-V4 in 2016. Inception-V2 is used to overcome representational

bottlenecks by factorizing the larger convolutional filters to smaller in size. An

example would be to reduce the filter of size 5 × 5 into two filters of size 3 × 3 as

shown in the figure below.

(a) (b)

Figure 2.26: (a) Unfactorized Inception Module (b) Factorized Inception Module

Where Filter Of Size 5 × 5 Is Replaced with Two Filters of Size 3 × 3

(Szegedy, et al., 2015)

This factorization also helped to reduce the number of trainable parameters by weight

sharing, and is able to effectively reduce the computational cost by 28%. In addition,

the filter of size 𝑛𝑛 × 𝑛𝑛 can be replaced with asymmetric convolutional filter such that

a filter of size 1 × 𝑛𝑛 followed by a filter of size 𝑛𝑛 × 1 is used. Figure 2.27 shows a

filter of size 3× 3 replaced with a filter of size 1 × 3 followed by a filter of size 3 × 1.

This approach can further reduce the computational cost by 33%. For a coarser grid,

the asymmetric convolutional filters are expanded instead of stacking on top of each

other to produce sparse representations of multiple dimensions. The expanded

Inception module is shown in Figure 2.28. All in all, Inception-V2 is able to obtain a

top-5 error rate of 4.8% (Szegedy, et al., 2015).

Inception-V3 is, in a sense, Inception-V2 but with a few more upgrades. It uses

the Root Mean Square Propagation (RMSProp) optimizer, and performs label

41

smoothing to improve model regularization. It also utilizes factorized convolutional

filters of size 7 × 7, and batch normalized auxiliary classifiers to accelerate the rate of

convergence. All these newer upgrades enabled Inception-V3 to obtain a top-5 error

rate of 3.58% (Szegedy, et al., 2015).

Figure 2.27: Inception Module with Asymmetric Convolutional Filters

(Szegedy, et al., 2015)

Figure 2.28: Expanded Inception Module (Szegedy, et al., 2015)

 The evolution of Inception-V4 came about when Szegedy, et al. found out that

the previous networks looked unnecessarily complicated. In this version, the Inception

modules are more uniform, and a few reduction modules are added for grid reduction.

This improvement allows Inception-V4 to obtain a top-5 error rate of 3.08% (Szegedy,

et al., 2016).

42

2.7.4 ResNet

Residual Network (ResNet) was proposed by He, et al. in 2015 and won ILSVRC 2015

with a top-5 error rate of 3.57%. There are multiple types of ResNet according to the

number of layers available in the network, typically from 34 to 1202 layers, and the

network that won the challenge consists of 152 layers. The main objective of this

network is to address the vanishing gradient issue that is commonly encountered when

training deep neural networks (Khan, et al., 2020). To achieve this objective, skip

connections that connect a residual block's input to its output are implemented. The

residual block, consisting of a feedforward network and a skip connection, is the

building block of ResNet and is shown in Figure 2.29. With the implementation of

skip connections, the lower-level features can be preserved and the performance can

be prevented from deteriorating, as more layers are added (Wu, et al., 2020).

Figure 2.29: The Building Block of ResNet (He, et al., 2015)

2.7.5 ResNeXt

Aggregate Residual Transform Network, or popularly known as ResNeXt was

proposed by Xie, et al. in 2016, which won ILSVRC 2016 with a top-5 error rate of

3.03%. It utilizes the idea of the split, transform, and merge functions similar to that

in the architecture of Inception networks. However, in addition to the existing width

and depth dimensions, Xie, et al. introduced a new dimension called cardinality, which

corresponds to the size of the set of transformations. This is an improvement from the

Inception networks whereby the need to modify the transformation branches from

module to module is omitted (Khan, et al., 2020). Moreover, an experiment was

conducted by Xie, et al., which shows that the increase in cardinality is able to improve

43

the accuracy in image classification. Besides Inception, ResNeXt also utilized residual

learning from ResNet to have a better convergence and adopted VGGNet’s deep

homogenous topology with the simplified architecture of GoogLeNet by configuring

spatial resolution of the Inception modules to 3 × 3 filters (Alzubaidi, et al., 2021).

The building block of ResNeXt is shown in the figure below.

Figure 2.30: Building Block of ResNeXt with Cardinality of 32 (Xie, et al., 2017)

2.7.6 SENet

ILSVRC 2017 was won by Hu, et al., who proposed Squeeze-and-Excitation Network

(SENet) in 2017, and obtained a top-5 error rate of 2.25%. In contrast to previous

models that focus on spatial representations, Hu, et al. took a different route to

investigate the relationship between channels. They introduced a new block called the

SE-block in which the interdependencies across channels are modelled unequivocally

to recalibrate channel-wise feature responses dynamically. This approach highlights

the important class specifying features while suppressing those that are least

informative. The block is designed in such a way that it can be easily stacked to create

a network (Hu, et al., 2019). An illustration of the SE-block is shown in Figure 2.31.

As the name suggests, the block uses the squeeze and excitation operations to

perform its functions. The squeeze operation uses global average pooling to aggregate

global spatial information into channel-wise statistics. The excitation operation then

uses the information by utilizing a sigmoid activation as the gating mechanism to

44

produce a collection of channel weights that describe the channel-wise dependencies

(Hu, et al., 2019; Khan, et al., 2020).

Figure 2.31: SE-block (Hu, et al., 2017)

2.7.7 DenseNet

Dense Convolutional Network (DenseNet) was proposed by Huang, et al. in 2017 and

gotten the Best Paper Award in the 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), with more than 2000 citations. When implemented on

the ImageNet dataset, DenseNet was able to obtain a top-5 error rate of 5.54%. The

direction of DenseNet is typically the same as ResNet, which is to overcome the

problem of vanishing gradient. However, ResNet has its shortcoming when in

comparison with traditional feedforward networks. In traditional feedforward

networks, each layer changes the preceding layer's state and preserves the information

that needs to be passed to the following layer. Whereas ResNet preserves the

information explicitly by summing the identity mapping, but as a matter of fact, most

layers can only provide a small amount of information or even none. DenseNet

overcomes this problem by concatenating the identity mapping instead, which

explicitly enables differentiation between preserved information and newly added

information.

The architecture of DenseNet directly connects all the layers in the network

together with one another, whereby feature maps of each layer will also be inputted to

every subsequent layer in addition to the feedforward network. This architecture is

illustrated in Figure 2.32. DenseNet has very thin layers, which is parametrically more

efficient. It is also easier to train due to the increase in information flow and gradient

45

across the network. In addition, overfitting issues can also be overcome as dense

connections exhibits regularization (Huang, et al., 2017).

Figure 2.32: DenseNet Architecture (Huang, et al., 2017)

2.8 Performance Metrics

Prediction is one of the main focus in the topic of machine learning and deep learning.

The task to predict an outcome represented in numeric measurements is known as a

“regression problem”, while the task to predict an outcome that reflects distinct classes

is known as a “classification problem”. The typical setting in “classification problems”

mostly consists of two classes only, but there are also cases where there are three or

more number of classes. Hence, the latter is dubbed as a “multi-class classification

problem”. In the typical classification problem, the data, X will be used to make

predictions of the outcome variable, 𝑌𝑌, where the predicted outcome is denoted as 𝑌𝑌�.

As for multi-class classification problem, 𝑌𝑌 and 𝑌𝑌� are seen as two discrete random

variables, in which they are written as {1, … ,𝑁𝑁}, where N is the number of classes.

Each element of the variables are numbers that represents a particular class. A

classification model will generate 𝑌𝑌� , where the elements are the probability that a

given data is of a certain class. The rule of thumb to perform the classification is that

the class with the highest probability will be assigned to the given data (Grandini, Bagli

and Visani, 2020).

46

 Metrics are a good performance indicator when evaluating and comparing

multiple models of different algorithms and techniques. Some of the widely used

performance metrics include accuracy, precision, recall, F1-score, ROC curve, and

confusion matrix. Before diving into them, it is important to first understand a few key

words, namely: true positive (tp), true negative (tn), false positive (fp), and false

negative (fn). True positives are positive predictions made by the model, and the actual

label is also positive, while true negatives are negative predictions made by the model,

and the actual label is also negative. On the other hand, false positives are positive

predictions made by the model, but the actual label is negative, whereas false negatives

are negative predictions made by the model, but the actual label is positive. Henceforth,

tp and tn are correct predictions, while fp and fn are incorrect predictions.

2.8.1 Accuracy

Accuracy is the most popular performance metric used for multi-class classification

problems. As shown in the Equation 2.7, accuracy measures the ratio of the number of

correct predictions made by the model to the number of data given. However, it is not

the best performance metric to use on a problem with an imbalanced dataset because

the class with the larger dataset will have more significance than the class with the

smaller dataset (Grandini, Bagli and Visani, 2020). Consider a dataset with class A

occupying 96% of the total while class B occupying 4% of the total, the model can

simply predict that all samples belong to class A and easily achieve a training accuracy

of 96%. Figure 2.33 gives a better illustration on how accuracy is determined.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝑦𝑦 =
𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛

𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛 + 𝑓𝑓𝑝𝑝 + 𝑓𝑓𝑛𝑛
 (2.7)

47

Figure 2.33: Visualizing Accuracy (Maleki, et al., 2020)

2.8.2 Precision

Precision tells about how much a model can be trusted when it labels a data as positive.

As shown in Equation 2.8, precision measures the amount of true positives to all of the

data where data that the model labels as positive. A model with high precision shows

that the prediction of the model has a higher quality in labelling data with positive

labels, whereas a model with low precision shows that the prediction model has a lower

quality when labelling data with positive labels (Grandini, Bagli and Visani, 2020).

Figure 2.34 gives a better illustration on how precision is determined.

𝑃𝑃𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 =
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝
 (2.8)

Figure 2.34: Visualizing Precision (Maleki, et al., 2020)

48

2.8.3 Recall

Recall, also referred to as sensitivity, tells about how well the model predicts data of

positive labels. As shown in Equation 2.9, recall measures the amount of true positives

to all of the data where its actual labels are positive. A model with a high recall shows

that the model can find out a high amount of data with actual positive labels, whereas

a model with a low recall shows that the model has a hard time trying to identify the

data with actual positive labels (Grandini, Bagli and Visani, 2020). Figure 2.35 gives

a better illustration on how recall is determined.

𝑅𝑅𝑒𝑒𝐴𝐴𝑎𝑎𝑅𝑅𝑅𝑅 =
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑛𝑛
 (2.9)

Figure 2.35: Visualizing Recall (Maleki, et al., 2020)

2.8.4 F1-score

Although with the precision and recall, it can still be quite confusing to determine

whether the model is performing well or not. Henceforth, F1-score, which combines

both of the metrics by determining their harmonic mean, is helpful in finding the best

trade-off between the two metrics. Consider a Model X with a precision of 50% and a

recall of 90%, the F1-score calculated as 0.3214 using the equation shown below.

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑒𝑒 = 2 �
𝑝𝑝𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 × 𝐴𝐴𝑒𝑒𝐴𝐴𝑎𝑎𝑅𝑅𝑅𝑅
𝑝𝑝𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 + 𝐴𝐴𝑒𝑒𝐴𝐴𝑎𝑎𝑅𝑅𝑅𝑅�

 (2.10)

Next, consider Model Y with the same precision and recall of 70%, the F1-score is

calculated as 0.7. The mean of the precision and recall for both models are the same,

49

but the harmonic mean computed says otherwise. With that said, The F1-score rewards

the models if the precision and recall does not differ too much (Grandini, Bagli and

Visani, 2020). Hence, the higher the F1-score, the better the performance of the model.

2.8.5 Confusion Matrix

The confusion matrix is a N x N cross table, where N corresponds to the number of

classes. All of the predictions done by the model are plotted onto the confusion matrix,

which allows better visualization of its performance. The columns of the confusion

matrix are the predicted labels, while the rows of the confusion matrix are the true

labels. The diagonal elements of the confusion matrix are known as the true positives

or true negatives. With that said, the confusion matrix can immediately present how

many correct predictions the model makes just by looking at the diagonal elements.

The other elements of the confusion matrix are known as false positives or false

negatives. The performance metrics mentioned earlier are mostly based on the

confusion matrix since it encompasses all of the information regarding the

classification rule performance and algorithm (Grandini, Bagli and Visani, 2020).

Figure 2.36 shows an illustration of the confusion matrix. Note that the values in the

elements are usually complemented with background colours for a better visualization,

whereby a higher value will be given a darker tone, while a lower value will be given

a lighter tone.

Figure 2.36: Illustration of Confusion Matrix

50

2.8.6 ROC Curve

The Receiver Operating Characteristics (ROC) curve is another useful metric for

determining a model's performance, primarily in classification problems. It is used to

measure the class separability of a model. The ROC curve is plotted using the true

positive rate (TPR), also known as the recall, as the y-axis, while the false positive rate

(FPR) is the x-axis. The false positive rate is calculated using Equation 2.11. Multiple

curves can be plotted on the same graph for a multi-class classification problem to

visualize how the model is performing in each class. The area under the ROC curve

(AUC-ROC) then measures the degree of the model’s class separability for each class.

The values of AUC-ROC can range between 0 to 1, and the closer the value is to 1, the

better the model is at distinguishing the class against the rest (Narkhede, 2018). An

illustration of the ROC curves with different AUC-ROC values is shown in Figure

2.37.

𝐹𝐹𝑎𝑎𝑅𝑅𝑃𝑃𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 𝑅𝑅𝑎𝑎𝑡𝑡𝑒𝑒 =
𝑓𝑓𝑛𝑛

𝑡𝑡𝑛𝑛 + 𝑓𝑓𝑝𝑝
 (2.11)

(a)

51

(b)

(c)

Figure 2.37: Illustration of ROC Curve with (a) AUC-ROC of 1

(b) AUC-ROC of 0.8 (c) AUC-ROC of 0 (Narkhede, 2018)

Notice that a well-performing model with an ideal class separability will

exhibit a sharp bent on the ROC curve with an AUC-ROC of 1. It tells that the model

has no problem distinguishing between the positive and negative classes. As the model

performs poorer, the sharp bent will slowly curve downwards, and for an AUC-ROC

value of 0.8, the model is said to have an 80% chance of distinguishing between

positive and negative classes. If a sharp bent is formed at the bottom of the graph with

an AUC-ROC of 0, the model is performing very poorly, and the positive class is

predicted as the negative class and vice versa.

52

2.9 Related Works

There is extensive research to provide solutions in detecting and classifying leukemia

through deep learning approaches, but they are mostly done on binary classification

between ALL and healthy cells and lesser on 5-class classification between ALL,

AML, CLL, CML, and healthy cells. In the works by Ahmed, et al. (2019), a CNN

model with 2 convolution layers is proposed to tackle both the binary and 5-class

classification problem. The model successfully detects and classifies leukemia with

88.25% and 81.74% accuracy for binary and 5-class classification problems. On the

other hand, Thanh, et al. (2018) proposed a deeper CNN model which consists of 5

convolution layers to tackle the binary classification problem. The proposed model can

also successfully detect leukemia with an accuracy of 96.60%.

Instead of training CNN models from scratch, Shafique, et al. (2018) proposed

implementing the transfer learning method on a pre-trained model called the AlexNet

model for an efficient and faster model training process. The last 3 layers of the

AlexNet model were removed, and the fully connected network was tuned to facilitate

the binary classification problem. Multiple input feature vectors are also implemented

in the fully connected network, and it is noticed that the input feature vector with the

smallest dimension achieved the highest accuracy of 99.50%. Bibi, et al. (2020) also

tackled the 5-class classification problem using the transfer learning method. Two pre-

trained models, ResNet-34 and DenseNet-121, are utilized to detect and classify

leukemia, and the highest accuracy achieved was 99.91% by the DenseNet-121 model.

Vogado, et al. (2019) also tackled the binary classification problem by

implementing the transfer learning technique on the pre-trained models, including

AlexNet, CaffeNet, and Vgg-f models. However, unlike Shafique et al. (2018), who

used the softmax function as the classifier, Vogado, et al. (2019) proposed using a

machine learning algorithm, the Support Vector Machine (SVM), as the classifier

instead. Besides, they also proposed using attribute selection techniques called the gain

ratio algorithm for feature selection. To take advantage of all three models in their

feature extraction capability, a hybrid approach, which consists of all three models

concatenated together, was proposed, and an accuracy of 99.20% was achieved.

Another literature that focuses on hybrid approaches to detect leukemia is Das and

53

Meher (2021), in which the MobileNetV2 and ResNet18 models are hybridized into

one model, and the transfer learning technique is also utilized in the training process.

As a result, the proposed hybrid model is able to achieve an accuracy of 99.39% in the

binary classification problem. All in all, the deep learning approaches utilized in the

detection and classification of leukemia and their accuracies are accumulated and

illustrated in the bar charts plotted below.

Figure 2.38: Bar Chart of The Accuracy Comparison Between Related Works

on the Binary Classification Problem

Figure 2.39: Bar Chart of The Accuracy Comparison Between Related Works

on the 5-class Classification Problem

In the studies discussed earlier, most of the models are trained using

microscopic samples primarily from the Acute Lymphoblastic Leukemia Image

Database (ALL-IDB) (Scotti, Labati, and Piuri, 2011). The samples it provides come

with the locations for the ALL blast cells annotated by qualified oncologists; therefore,

it is much more reliable to use. Another widely used source to gather leukemia images

is the American Society of Hematology (ASH) ImageBank (American Society of

99.50%

99.39%

99.20%

96.60%

88.25%

85.00% 87.00% 89.00% 91.00% 93.00% 95.00% 97.00% 99.00%

Shafique, et al. (2018)

Das and Meher (2021)

Vogado, et al. (2019)

Thanh, et al. (2018)

Ahmed, et al. (2019)

Accuracy Comparison Between Related Works
on the Binary Classification Problem

99.91%

81.74%

70.00% 75.00% 80.00% 85.00% 90.00% 95.00% 100.00%

Bibi, et al. (2020)

Ahmed, et al. (2019)

Accuracy Comparison Between Related Works
on the 5-class Classification Problem

54

Hematology, n.d.), an online library containing all kinds of images involving

haematology. On top of that, most literature is also faced with the scarcity of samples

available for training and testing. Henceforth, several data augmentation techniques

commonly implemented to increase the dataset size include histogram equalization,

translation, reflection, rotation, shearing, shifting, zooming, and blurring.

55

CHAPTER 3

3 METHODOLOGY

3.1 Project Flow

In this project, five classes of data will undergo detection and classification using deep

learning: healthy cell, ALL, AML, CLL, and CML. Based on the literature review, it

is observed the detection and classification of leukemia are highly accurate when pre-

trained models are used instead of training from scratch. Therefore, transfer learning

is also utilized in this project for the detection and classification of leukemia. Three

state-of-the-art pre-trained models, namely Inception-V3, SENet, ResNeXt, are

selected because they have one of the lowest top-5 error rate compared to other models

and have not been used before on this kind of project.

The project flow is illustrated in the flowchart shown in Figure 3.1. The first

step is to acquire the dataset of leukemia subtypes and healthy cells from online

sources. Then, the samples will be pre-processed through data augmentation

techniques to increase the dataset count. In the meantime, the pre-trained models will

be downloaded from the web to be ready for transfer learning. When the dataset is

sufficiently enough, the training of the models will start, and they will be evaluated

based on a few performance metrics. After achieving the desired accuracy, the best

model among the pre-trained models will be selected to be utilized on any suitable

applications.

56

Figure 3.1: Flowchart of The Project

3.2 Project Requirements

The required hardware and software, as well as the programming language and open-

source libraries used to perform the detection and classification of leukemia are

discussed in the following sub-sections.

57

3.2.1 Hardware Requirements

Besides a computer, there is no additional hardware required. The computer used in

this project is an Asus ROG GL552VX packed with NVIDIA GeForce GTX 950M,

Intel Core i7-6700HQ, and two 4GB RAM sticks.

3.2.2 Software Requirements

The software used is an Internet browser that allows the use of two websites called

Google Colab and Google Drive for the purpose of training DL models. There is a

selection of Internet browsers on the market, such as Google Chrome, Mozilla Firefox,

and Opera, where all of them are not limited to browse Google Colab and Google

Drive.

Google Colab is an online environment that allows executing code on the

browser, or more specifically on the cloud. It is targeted to AI researchers and data

scientists allowing them to perform machine learning or deep learning by leveraging

Google’s cloud servers and GPUs. They offer a wide range of NVIDIA Tensor Core

GPUs, including Tesla ® K80, Tesla ® P100, Tesla ® P4, Tesla ® T4, Tesla ® V100,

and A100, that can accelerate the speed for DL training, offering an efficient way

compared to training on the local computer. On the other hand, Google Drive is an

online service that provides cloud storage for all kinds of files and folders. The use of

Google Drive allows the dataset to be available on the line and ready for use on any

device by just mounting it onto Google Colab.

3.2.3 Programming Language Used

The primary programming language that will be used for this project is Python 3.7.11

version. It is the most well-known high-level programming language, and according

to Srivastava (2020), it is dubbed the programming language most preferred for

58

Artificial Intelligence (AI) projects in 2020. Though Python is often limited by its

development speed, it still does not stop people from using it. Python is very similar

to the English language, which allows better readability and understanding of the code.

Besides, there is also an active and large community behind Python, which allows a

problem to be easily solved. It also offers all kinds of open-source libraries made by

other developers for all sorts of applications (Basel, 2018).

3.2.4 Open-Source Libraries

A few Python open-source libraries will be required, and they are tabulated in the Table

3.1. The table contains the version used, as well as the commands to install and import

the libraries.

Table 3.1: Commands to Install Open-Source Libraries

Python libraries Version used Install command Import command

Google-colab 0.0.1a2 pip install google-colab import

google.colab

Itertools - - import itertools

Keras 2.8.0 pip install keras import keras

Matplotlib 3.2.2 pip install matplotlib import matplotlib

NumPy 1.21.5 pip install numpy import numpy

OpenCV 4.1.2 pip install opencv-python import cv2

OS - - import os

Pandas 1.3.5 pip install pandas import pandas

Pretrainedmodels 0.7.4 pip install

pretrainedmodels

import

pretrainedmodels

PyTorch 1.10.0+cu111 pip install pytorch import torch

Random - - import random

Scikit-learn 1.0.2 pip install scikit-learn import sklearn

Torchvision 0.11.1+cu111 pip install torchvision import torchvision

TensorFlow 2.8.0 pip install tensorflow import tensorflow

59

3.3 Dataset Acquisition

The microscopic image samples for each class are retrieved from various sources,

including ALL-IDB1 and ASH ImageBank. The datasets for healthy cells and ALL

are obtained from ALL-IDB1, while the AML, CLL, and CML datasets are obtained

from ASH ImageBank. The total dataset count acquired is 266 samples, whereby there

are 59 images of healthy cells, and 49 images of ALL, 58 images of AML, 46 images

of CLL, and 54 images of CML. The dataset is then uploaded to Google Drive. The

number of samples obtained for each class and its source is tabulated as shown below.

Table 3.2: Dataset Count for Each Class and Its Source

Sources

Classes

ALL-IDB1

ASH ImageBank

Total

ALL - 49 49

AML 58 - 58

CLL 46 - 46

CML 54 - 54

Healthy - 59 59

Total number of samples 266

3.4 Dataset Splitting

To start with, Google Drive is first mounted onto Google Colab using the code listed

in Code Listing 1 in Appendix A to access the dataset. Then, the modules of the open-

source libraries are imported as listed in Code Listing 2 in Appendix A. After that, the

images are imported into the Google Colab notebook using the OS module available

in the Python standard library. The images are then read using OpenCV, which

automatically convert the images into array of numbers. The images are also resized

to 224 × 224 pixels and normalized. The collection of images turned into array are

stored in a list. The labels of the images are also stored in the list in the form of whole

numbers such that 0 represents ALL, 1 represents AML, 2 represents CLL, 3 represents

60

CML, and 4 represents healthy cells or HLT in short. The code for this segment is

listed in Code Listing 3 in Appendix A.

Next, in order to ensure that the models will not be tested with images that are

used for training, the training and testing set will be separated among the dataset.

Furthermore, to properly estimate the performance and generalization of the models,

a data resampling method known as k-fold cross-validation is implemented. This is

done by using the ‘KFold’ class from scikit-learn library that splits the dataset into k

folds of train and test sets, in which this project, a k of 5 is implemented. In order to

preserve a balanced class distribution in the datasets, the stratified k-fold cross-

validator, which is the ‘StratifiedKFold’ class will be used instead of the ‘KFold’ class.

The code for this segment is listed in Code Listing 4 in Appendix A.

With that said, the dataset for binary and 5-class classification problem in each

fold is distributed as shown in the Tables 3.3 and 3.4. It is observed that the dataset for

each fold is distributed based on the 80/20 rule in which the training set consists of 80%

of the dataset, whereas the testing set consists of 20% of the dataset. However, some

imbalanced class distribution is still present, and the number of data is barely enough

to train the models. Thus, the methods to tackle these problems is explained in the

following sub chapters.

Table 3.3: Training Set Distribution for Each Fold

Fold

Classes

1

2

3

4

5

ALL 39 39 39 39 40

AML 46 46 47 47 46

CLL 37 37 36 37 37

CML 43 43 44 43 43

Healthy 47 48 47 47 47

Total 212 213 213 213 213

61

Table 3.4: Testing Set Distribution for Each Fold

Fold

Classes

1

2

3

4

5

ALL 10 10 10 10 9

AML 12 12 11 11 12

CLL 9 9 10 9 9

CML 11 11 10 11 11

Healthy 12 11 12 12 12

Total 54 53 53 53 53

3.5 Dataset Augmentation

It is evident that the current dataset available are too limited and unfit for training.

Hence, following the footsteps of Ahmed, et al. (2020), 7 data augmentation

techniques are implemented to avoid overfitting by increasing the size of the existing

dataset. The methods include vertical and horizontal flipping, rotation, height and

width shifting, shearing, and zooming.

With the dataset in place, data augmentation is then done using the

‘ImageDataGenerator’ class available in the Keras library and the flipping functions

available in the NumPy library. The augmentation parameters to be used are translated

as the shear range for shearing, zoom range for zooming, rotation range for rotating,

height shift range and width shift range for shifting, as well as ‘flipud’ and ‘fliplr’ for

flipping. They are fed in as arguments and parameters for the ‘ImageDataGenerator’

class and the flipping functions. The shear range is set to 20, which means that a

20° shearing in the counter-clockwise direction will be applied onto the images. Next,

for a 30% zoom, the zoom range is set to 0.3, which means that a random zoom

between 1.3 to 0.7 will be applied onto the images. On the other hand, the rotation is

set to 40°, which implies that a random rotation between 0° to 40° or a range of 0° to

−320° will be applied onto the images. Furthermore, for a 40% shifting, the height

shift range is set to 0.4 so that the images will be shifted up or down for 0.4 pixels of

62

the total height, whereas the width shift range is set to 0.4 so that the images will be

shifted left or right for 0.4 pixels of the total width. Lastly, by calling the ‘flipud’

function will flip the arrays vertically while the ‘fliplr’ function will flip the arrays

horizontally.

Figure 3.2 illustrates the resultant images after one of the image samples is

augmented. Figure 3.2a is the original image while Figures 3.2b to 3.2h are the

augmented images. Figure 3.2b is the resultant image after a 20° shear whereas Figure

3.2c is the resultant image after a 30% zoom. Besides that, Figure 3.2d is the resultant

image after a 40° rotation. On the other hand, Figure 3.2e is the resultant image after a

40% height shift while Figure 3.2f is the resultant image after a 40% width shift.

Furthermore, Figure 3.2g is the resultant image after flipping vertically while Figure

3.2h is the resultant image after flipping horizontally.

The images are augmented in such a way that the images are sheared, zoomed,

rotated, and shifted for 2 times each, which increases the dataset by 11-fold. Then, the

original and augmented images, are flipped horizontally and vertically, which again

increases the size of the dataset by another 3-fold. Hence, after the image

transformations, each image sample are increased by a factor of 33-fold, effectively

increasing the overall dataset for each class. The code for this segment is listed in Code

Listing 5 in Appendix A and the new number of samples for each class and its source

is tabulated as shown in Tables 3.5 and 3.6.

Table 3.5: Training Set Distribution for Each Fold After Augmentation

Fold

Classes

1

2

3

4

5

ALL 1287 1287 1287 1287 1320

AML 1518 1518 1551 1551 1518

CLL 1221 1221 1188 1221 1221

CML 1419 1419 1452 1419 1419

Healthy 1551 1584 1551 1551 1551

Total 6996 7029 7029 7029 7029

63

Table 3.6: Testing Set Distribution for Each Fold After Augmentation

Fold

Classes

1

2

3

4

5

ALL 330 330 330 330 297

AML 396 396 363 363 396

CLL 297 297 330 297 297

CML 363 363 330 363 363

Healthy 396 363 396 396 396

Total 1782 1749 1749 1749 1749

(a) (b) (c)

 (d) (e) (f)

(g) (h)

Figure 3.2: (a) Original (b) 20° Shearing (c) 30% Zoom (d) 40° Rotation

(e) 40% Height Shift (f) 40% Width Shift (g) Vertical Flip (h) Horizontal Flip

64

With the overfitting issue out of the way, there is still one problem to address:

the imbalance class distribution. It is observed that the number of CLL cells is always

the least in each fold. Henceforth, the dataset will be equalized to have the same count

as the number of CLL cells of each fold. The code for this segment is listed in Code

Listing 6 in Appendix A. The bar chart shown in Figure 3.3 illustrates how the dataset

for each fold is allocated. The dataset after pre-processing is visualized using

Matplotlib as shown in Figure 3.4.

Figure 3.3: Bar Chart of Dataset Allocation for Each Fold

Figure 3.4: Visualizing the Pre-Processed Dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Testing Set 1485 1485 1650 1485 1485
Training Set 6105 6105 5940 6105 6105

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Dataset Allocation for Each Fold

65

3.6 Model Training

The training process will be done through Google Colab since the hardware used is

low performance and would take a long time to train the models. With that said, the

models and their pretrained weights are accessed and downloaded through multiple

application programming interfaces (API) available online. The Inception-V3 model

is downloaded from the Keras’s applications API, ResNeXT model from PyTorch’s

models API, and SENet model from the pretrainedmodels library that provides a

unique API to access pre-trained ConvNets models for PyTorch. Transfer learning is

performed by freezing the layers of the models’ base network, then their fully

connected networks are fine-tuned by replacing them with a hidden layer and an output

layer that corresponds to the number of classes for binary and 5-class classification

problem. The frozen network is known as the feature extractor, while the fully

connected network is known as the classifier network. The image below illustrates the

process of transfer learning. The code for this segment is listed in Code Listing 8 to 13

in Appendix A.

Figure 3.5: Transfer Learning with Pretrained Models as Feature Extractors

66

 After the models are set up, they will be trained with the pre-processed dataset

distributed for each fold. Starting with the binary classification problem, the final layer

will have 2 nodes, and the sigmoid activation function will be utilized as the classifier.

Besides, the binary cross entropy will be used as the loss function, ADAM as the

optimizer, and accuracy as the evaluation metric. Then, the models will be fed with

ALL and healthy cells images for training. On the other hand, the final layer will have

5 nodes instead for the 5-class classification problem, and the softmax activation

function will be utilized as the classifier. Furthermore, categorical cross entropy will

be used instead of binary cross entropy, while the loss function and evaluation metrics

remain the same. Table 3.7 and 3.8 shows the dataset count of each classes used for

binary and 5-class classification problem training respectively. The code for this

segment is listed in Code Listing to 14 to 19 in Appendix A.

Table 3.7: Binary Classification Problem Training Set Distribution

for Each Fold

Fold

Classes

1

2

3

4

5

ALL 1221 1221 1188 1221 1221

Healthy 1221 1221 1188 1221 1221

Total 2442 2442 2376 2442 2442

Table 3.8: 5-class Classification Problem Training Set Distribution for Each

Fold

Fold

Classes

1

2

3

4

5

ALL 1221 1221 1188 1221 1221

AML 1221 1221 1188 1221 1221

CLL 1221 1221 1188 1221 1221

CML 1221 1221 1188 1221 1221

Healthy 1221 1221 1188 1221 1221

Total 6105 6105 5940 6105 6105

The training dataset is split again during training based on the 80/20 rule,

whereby 80% of the training set will be used for training while the remaining 20% will

be used for model validation purposes. Therefore, as the models are being trained, the

67

metrics outputted include training accuracy, validation accuracy, training loss, and

validation loss. The number of epochs for the binary classification problem training

will be set to 10, whereas, during the 5-class classification problem training, it will be

set to 25. In each epoch, the models with the highest validation accuracy will be kept

as the final models, while the ones lower than the previous highest values will be

neglected.

3.7 Model Evaluation

The final models will be tested for binary and 5-class classification with unseen testing

data using the code listed in Code Listing 20 to 24 in Appendix A, then evaluated based

on a few performance metrics: accuracy, loss, precision, recall, F1-score, receiver

operating characteristic (ROC) curve, area under the ROC curve (AUC-ROC), and the

confusion matrix. For this project, accuracy will be used as the main evaluation metrics

as it is used as the benchmark for improvement from other related works. The other

metrics will be used to justify the findings from the binary and 5-class classification

problem, as well as to make comparisons between the different type of models used in

this project. The performance metrices will be implemented using the functions

available in the ‘metrics’ class from scikit-learn library. In addition, the pandas library

will be used to plot the graph of accuracy and loss against number of epochs, while the

matplotlib library is used to visualize the ROC curve and the confusion matrix. The

code for this segment is listed in Code Listing 25 to 30 in Appendix A.

3.8 Model Improvement

After models are evaluated with the testing data, the model that got the highest testing

accuracy out of the chosen models will be further fine-tuned to improve its overall

performance. The fine-tuning methods will be implemented based on several factors

such as the ideas adapted from related works, the feature selection process by the

model, and the bias and variance of the model towards the data provided. Bias is the

68

difference between the predicted value by the model and the actual value of the data.

A model with a high bias is said to be very simple, and is making basic assumptions

about the given data (Singh, 2018). This phenomenon happens when the model is

underfitting the data, resulting in the poor performance on the training data, which also

leads to a high error on the unseen testing data as well. One of the ways to lower the

bias of a model is to train a model with a larger and more complex network, or to train

the model long enough so that the important features of the data can be learnt.

 On the other hand, variance is the variability of the model in making

predictions, such that it measures how much adjustments the model can make based

on the data given. A model with a high variance is said to be very complex, and is

unable to make generalized predictions on data that it had not seen before. This

phenomenon happens when the model is overfitting the data, where the model shows

a good performance on the training data, but a high error is observed on the unseen

testing data. In order to lower the variance of a model, more data should be used to

train the model, or implement regularization in the model (Wickramasinghe, 2021).

69

3.9 Project Costs

The equipment and material costs required to carry out this project is listed as shown

in the table below.

Table 3.9: Equipment and Materials Cost

No. Equipment

and materials

Price (RM) Quantity Cost (RM) Descriptions

1 Computer 0.00 1 0.00 Any computer in-use

can run the project.

2 Google Colab 0.00 - 0.00 Google Colab’s

cloud service is free

for all to be used.

3 Google Drive 8.49/month 4 months 33.96 Google Drive’s

cloud service is free

for all to be used.

4 Opera 0.00 - 0.00 Opera is free for

download.

Total cost 33.96

70

3.10 Project Management

The Gantt chart for FYP 1 is tabulated in Table 3.10, whereas the Gantt chart for FYP

2 is tabulated in Table 3.11. The Gantt chart contains the timeline of the project

whereby the activities and their duration are shown clearly to ensure the project runs

smoothly.

Table 3.10: FYP 1 Gantt Chart

Activities

Duration (Week)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Learn TensorFlow
and Keras

Learn to Build and
Train Basic DL
Models

Dataset
Acquisition and
Preparation

Reading
Literatures

FYP 1 Report
Writing

Training DL
models

FYP 1 Presentation
Slide Preparation

FYP 1 Report
Submission

FYP 1 Presentation

71

Table 3.11: FYP 2 Gantt Chart

Activities

Duration (Week)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Training and
Improving DL
models

Result Analysis

FYP 2 Report
Writing

FYP 2 Presentation
Slide Preparation

FYP 2 Report
Submission

FYP 2 Presentation

72

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Binary Classification Problem for Inception-V3, ResNeXt. And SENet

Table 4.1: Accuracy and Loss Result for Binary Classification Problem

of Each Fold for Inception-V3

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 99.33% 98.99% 98.79% 92.26% 95.79% 97.03%

val_acc 99.39% 99.39% 100.00% 99.39% 99.80% 99.59%

trn_acc 99.85% 99.90% 99.21% 100.00% 99.13% 99.62%

test_loss 0.0219 0.0261 0.0323 0.3694 0.1565 0.1212

val_loss 0.0225 0.0324 0.0086 0.0211 0.0089 0.0187

trn_loss 0.0084 0.0064 0.0244 0.0025 0.0210 0.0125

Table 4.2: Accuracy and Loss Result for Binary Classification Problem

of Each Fold for ResNeXt

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 99.66% 100.00% 99.09% 93.43% 96.13% 97.66%

val_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

trn_acc 98.77% 99.23% 99.79% 99.44% 99.08% 99.26%

test_loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

val_loss 0.0132 0.0015 0.0090 0.0083 0.0093 0.0083

trn_loss 0.0412 0.0245 0.0170 0.0235 0.0352 0.0283

73

Table 4.3: Accuracy and Loss Result for Binary Classification Problem

of Each Fold for SENet

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 100.00% 99.83% 99.70% 100.00% 99.83% 99.87%

val_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

trn_acc 98.82% 99.39% 100.00% 100.00% 97.08% 99.26%

test_loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

val_loss 0.0006 0.0006 0.0011 0.0003 0.0028 0.0011

trn_loss 0.0296 0.0183 0.0002 0.0005 0.0831 0.0263

4.1.1 Fold 1

(a) (b)

(c)

Figure 4.1: Accuracy and Loss Against Number of Epochs in The First Fold Training

for (a) Inception-V3 (b) ResNeXt (c) SENet

74

Table 4.4: Precision, Recall, and F1-score for Binary Classification Problem in

The First Fold Training for Each Model

Models Precision Recall F1-score

Inception-V3 99.66% 98.99% 99.32%

ResNeXt 99.66% 99.66% 99.66%

SENet 100.00% 100.00% 100.00%

(a) (b)

(c)

Figure 4.2: ROC Curve in The First Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

75

(a) (b)

(c)

Figure 4.3: Confusion Matrix in The First Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

76

4.1.2 Fold 2

(a) (b)

(c)

Figure 4.4: Accuracy and Loss Against Number of Epochs in The Second Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.5: Precision, Recall, and F1-score for Binary Classification Problem in

The Second Fold Training for Each Model

Models Precision Recall F1-score

Inception-V3 98.02% 100.00% 99.00%

ResNeXt 100.00% 100.00% 100.00%

SENet 99.66% 100.00% 99.83%

77

(a) (b)

(c)

Figure 4.5: ROC Curve in The Second Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

78

(a) (b)

(c)

Figure 4.6: Confusion Matrix in The Second Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

79

4.1.3 Fold 3

(a) (b)

(c)

Figure 4.7: Accuracy and Loss Against Number of Epochs in The Third Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.6: Precision, Recall, and F1-score for Binary Classification Problem in

The Third Fold Training for Each Model

Models Precision Recall F1-score

Inception-V3 98.79% 98.79% 98.79%

ResNeXt 100.00% 98.18% 99.08%

SENet 99.40% 100.00% 99.70%

80

(a) (b)

(c)

Figure 4.8: ROC Curve in The Third Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

81

(a) (b)

(c)

Figure 4.9: Confusion Matrix in The Third Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

82

4.1.4 Fold 4

(a) (b)

(c)

Figure 4.10: Accuracy and Loss Against Number of Epochs in The Fourth Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.7: Precision, Recall, and F1-score for Binary Classification Problem in

The Fourth Fold Training for Each Model

Models Precision Recall F1-score

Inception 97.36% 86.87% 91.81%

ResNeXt 100.00% 86.87% 92.97%

SENet 100.00% 100.00% 100.00%

83

(a) (b)

(c)

Figure 4.11: ROC Curve in The Fourth Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

84

(a) (b)

(c)

Figure 4.12: Confusion Matrix in The Fourth Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

85

4.1.5 Fold 5

(a) (b)

(c)

Figure 4.13: Accuracy and Loss Against Number of Epochs in The Fifth Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.8: Precision, Recall, and F1-score for Binary Classification Problem in

The Fifth Fold Training for Each Model

Models Precision Recall F1-score

Inception-V3 99.64% 91.92% 95.62%

ResNeXt 100.00% 92.26% 95.97%

SENet 100.00% 99.66% 99.83%

86

(a) (b)

(c)

Figure 4.14: ROC Curve in The Fifth Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

87

(a) (b)

(c)

Figure 4.15: Confusion Matrix in The Fifth Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

88

4.2 5-class Classification Problem for Inception-V3, ResNeXt. And SENet

Table 4.9: Accuracy and Loss Result for 5-class Classification Problem

of Each Fold for Inception-V3

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 80.07% 73.60% 67.58% 69.43% 76.43% 73.42%

val_acc 98.44% 98.03% 97.64% 98.03% 97.71% 97.97%

trn_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

test_loss 0.9687 1.6426 1.5015 1.5968 1.1512 1.3722

val_loss 0.0537 0.0837 0.0608 0.0568 0.0768 0.0664

trn_loss 0.0041 0.0034 0.0011 0.0008 0.0027 0.0024

Table 4.10: Accuracy and Loss Result for 5-class Classification Problem

of Each Fold for ResNeXt

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 83.37% 72.93% 80.55% 83.03% 84.04% 80.78%

val_acc 99.18% 99.59% 99.83% 99.51% 99.59% 99.54%

trn_acc 100.00% 98.81% 100.00% 99.92% 99.98% 99.74%

test_loss 0.9151 1.6140 1.1333 0.7043 0.8641 1.0462

val_loss 0.0280 0.0193 0.0072 0.0235 0.0191 0.0194

trn_loss 0.0004 0.0302 0.0006 0.0028 0.0022 0.0072

Table 4.11: Accuracy and Loss Result for 5-class Classification Problem

of Each Fold for SENet

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 85.99% 78.18% 84.30% 79.26% 87.41% 83.03%

val_acc 99.84% 99.92% 99.75% 100.00% 99.75% 99.85%

trn_acc 99.92% 99.92% 99.98% 99.98% 99.63% 99.89%

test_loss 1.0089 1.4780 0.7474 1.1206 0.0066 0.8723

val_loss 0.0023 0.0032 0.0088 0.0027 0.0098 0.0054

trn_loss 0.0039 0.0021 0.0016 0.0012 0.0113 0.0040

89

4.2.1 Fold 1

(a) (b)

(c)

Figure 4.16: Accuracy and Loss Against Number of Epochs in The First Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.12: Precision, Recall, and F1-score for 5-class Classification Problem in

The First Fold Training for Each Model

Model Classes Precision Recall F1-score

Inception-

V3

ALL 95.70% 97.31% 96.49%

AML 61.18% 62.63% 61.90%

CLL 85.25% 70.03% 76.89%

CML 63.47% 71.38% 67.19%

Healthy 97.67% 98.99% 98.33%

ResNeXt ALL 100.00% 99.66% 99.83%

AML 99.33% 73.40% 67.81%

CLL 100.00% 74.41% 80.36%

90

CML 96.78% 69.36% 70.43%

Healthy 100.00% 100.00% 99.17%

SENet ALL 100.00% 100.00% 100.00%

AML 73.61% 71.38% 72.48%

CLL 91.06% 75.42% 82.50%

CML 71.59% 83.16% 76.95%

Healthy 96.12% 100.00% 98.02%

(a)

(b)

91

(c)

Figure 4.17: ROC Curve in The First Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

(a)

92

(b)

(c)

Figure 4.18: Confusion Matrix in The First Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

93

4.2.2 Fold 2

(a) (b)

(c)

Figure 4.19: Accuracy and Loss Against Number of Epochs in The Second Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.13: Precision, Recall, and F1-score for 5-class Classification Problem in

The Second Fold Training for Each Model

Model Classes Precision Recall F1-score

Inception-

V3

ALL 95.10% 97.98% 96.52%

AML 58.56% 35.69% 44.35%

CLL 64.06% 69.02% 66.45%

CML 53.44% 65.32% 58.79%

Healthy 94.29% 100.00% 97.06%

ResNeXt ALL 92.21% 99.66% 95.79%

AML 56.20% 22.90% 32.54%

CLL 68.71% 68.01% 68.36%

94

CML 48.89% 74.41% 59.01%

Healthy 99.66% 99.66% 99.66%

SENet ALL 99.00% 100.00% 99.50%

AML 60.25% 48.48% 53.73%

CLL 69.65% 73.40% 71.48%

CML 61.01% 69.02% 64.77%

Healthy 100.00% 100.00% 100.00%

(a)

(b)

95

(c)

Figure 4.20: ROC Curve in The Second Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

(a)

96

(b)

(c)

Figure 4.21: Confusion Matrix in The Second Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

97

4.2.3 Fold 3

(a) (b)

(c)

Figure 4.22: Accuracy and Loss Against Number of Epochs in The Third Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.14: Precision, Recall, and F1-score for 5-class Classification Problem in

The Third Fold Training for Each Model

Model Classes Precision Recall F1-score

Inception-

V3

ALL 83.46% 99.39% 90.73%

AML 46.19% 59.79% 51.73%

CLL 58.43% 31.52% 40.94%

CML 50.32% 48.18% 49.23%

Healthy 96.21% 100.00% 98.07%

ResNeXt ALL 99.70% 100.00% 99.85%

AML 61.20% 76.97% 68.19%

CLL 89.79% 63.94% 74.69%

98

CML 62.50% 62.12% 62.31%

Healthy 96.48% 99.70% 98.06%

SENet ALL 99.70% 100.00% 99.85%

AML 63.41% 84.55% 72.47%

CLL 90.88% 78.48% 84.23%

CML 73.95% 58.48% 65.31%

Healthy 99.10% 100.00% 99.55%

(a)

(b)

99

(c)

Figure 4.23: ROC Curve in The Third Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

(a)

100

(b)

(c)

Figure 4.24: Confusion Matrix in The Third Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

101

4.2.4 Fold 4

(a) (b)

(c)

Figure 4.25: Accuracy and Loss Against Number of Epochs in The Fourth Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.15: Precision, Recall, and F1-score for 5-class Classification Problem in

The Fourth Fold Training for Inception-V3

Model Classes Precision Recall F1-score

Inception-

V3

ALL 95.75% 98.65% 97.18%

AML 45.91% 49.16% 47.48%

CLL 71.86% 63.64% 67.50%

CML 40.92% 44.78% 42.77%

Healthy 99.90% 90.91% 94.74%

ResNeXt ALL 86.76% 99.33% 92.62%

AML 72.20% 76.09% 74.10%

CLL 84.62% 66.67% 74.58%

102

CML 76.59% 89.23% 82.43%

Healthy 98.81% 83.84% 90.71%

SENet ALL 100.00% 100.00% 100.00%

AML 62.04% 51.18% 56.09%

CLL 73.95% 59.26% 65.79%

CML 62.90% 86.20% 72.73%

Healthy 99.33% 99.66% 99.50%

(a)

(b)

103

(c)

Figure 4.26: ROC Curve in The Fourth Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

(a)

104

(b)

(c)

Figure 4.27: Confusion Matrix in The Fourth Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

105

4.2.5 Fold 5

(a) (b)

(c)

Figure 4.28: Accuracy and Loss Against Number of Epochs in The Fifth Fold

Training for (a) Inception-V3 (b) ResNeXt (c) SENet

Table 4.16: Precision, Recall, and F1-score for 5-class Classification Problem in

The Fifth Fold Training for Inception-V3

Model Classes Precision Recall F1-score

Inception-

V3

ALL 91.51% 97.98% 94.63%

AML 59.14% 55.56% 57.29%

CLL 65.62% 77.10% 70.90%

CML 67.45% 57.91% 62.32%

Healthy 97.89% 93.60% 95.70%

ResNeXt ALL 96.12% 100.00% 98.02%

AML 72.62% 61.62% 66.67%

CLL 81.93% 88.55% 85.11%

106

CML 69.65% 73.40% 71.48%

Healthy 98.97% 96.63% 97.79%

SENet ALL 97.70% 100.00% 98.84%

AML 83.58% 56.57% 67.47%

CLL 79.78% 98.32% 88.08%

CML 76.97% 82.15% 79.48%

Healthy 100.00% 100.00% 100.00%

(a)

(b)

107

(c)

Figure 4.29: ROC Curve in The Fifth Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

(a)

108

(b)

(c)

Figure 4.30: Confusion Matrix in The Fifth Fold Training for (a) Inception-V3

(b) ResNeXt (c) SENet

109

4.3 Fine-tuned SENet Models

Table 4.17: Accuracy and Loss Result for 5-class Classification Problem

of Each Fold for SENet + SVM

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 84.04% 75.22% 85.52% 75.22% 83.83% 80.77%

Table 4.18: Accuracy and Loss Result for 5-class Classification Problem

of Each Fold for SENet with 3 Hidden Layers

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 85.19% 78.59% 87.15% 79.60% 87.21% 83.55%

val_acc 99.92% 99.92% 99.66% 99.92% 100.00% 99.88%

trn_acc 99.63% 99.65% 99.66% 99.96% 99.65% 99.71%

test_loss 0.8970 1.3803 0.4585 1.5448 0.6734 0.9908

val_loss 0.0067 0.0020 0.0109 0.0026 0.0008 0.0046

trn_loss 0.0126 0.0128 0.0151 0.0005 0.0134 0.0109

Table 4.19: Accuracy and Loss Result for 5-class Classification Problem

of Each Fold for SENet with 3 Hidden Layers Plus Dropout Layers

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 86.33% 79.19% 86.55% 82.49% 87.68% 84.48%

val_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

trn_acc 99.65% 99.22% 99.22% 99.22% 99.22% 99.31%

test_loss 0.9953 1.4517 0.3992 0.8036 0.6182 0.8536

val_loss 0.0008 0.0017 0.0017 0.0017 0.0017 0.0015

trn_loss 0.0134 0.0307 0.0307 0.0307 0.0307 0.0272

110

4.3.1 Fold 1

(a) (b)

Figure 4.31: Accuracy and Loss Against Number of Epochs in The First Fold

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus

Dropout Layers

Table 4.20: Precision, Recall, and F1-score for 5-class Classification Problem in

The First Fold Training for Each Fine-tuned SENet Models

Model Classes Precision Recall F1-score

SENet +

SVM

ALL 98.02% 100.00% 99.00%

AML 68.46% 68.69% 68.57%

CLL 85.66% 72.39% 78.47%

CML 71.82% 79.80% 75.60%

Healthy 97.36% 99.33% 98.33%

SENet with

3 Hidden

Layers

ALL 100.00% 100.00% 100.00%

AML 66.76 % 80.47% 72.98%

CLL 97.12% 68.01% 80.00%

CML 73.02% 77.44% 75.16%

Healthy 96.74% 100.00% 98.34%

SENet with

3 Hidden

Layers Plus

Dropout

Layers

ALL 100.00% 100.00% 100.00%

AML 70.93% 74.75% 72.79%

CLL 93.00% 76.09% 83.70%

CML 72.29% 80.81% 76.31%

Healthy 99.00% 100.00% 99.50%

111

(a)

(b)

112

(c)

Figure 4.32: ROC Curve in The First Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

(a)

113

(b)

(c)

Figure 4.33: Confusion Matrix in The First Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

114

4.3.2 Fold 2

(a) (b)

Figure 4.34: Accuracy and Loss Against Number of Epochs in The Second Fold

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus

Dropout Layers

Table 4.21: Precision, Recall, and F1-score for 5-class Classification Problem in

The Second Fold Training for Each Fine-tuned SENet Models

Model Classes Precision Recall F1-score

SENet +

SVM

ALL 98.64% 97.98% 98.31%

AML 49.50% 50.51% 50.00%

CLL 64.55% 64.98% 64.77%

CML 64.60% 63.30% 63.95%

Healthy 99.33% 99.33% 99.33%

SENet with

3 Hidden

Layers

ALL 98.99% 99.33% 99.16%

AML 57.04% 55.89% 56.46%

CLL 73.33% 62.96% 67.75%

CML 64.91% 74.75% 69.48%

Healthy 99.33% 100.00% 99.66%

SENet with

3 Hidden

Layers Plus

Dropout

Layers

ALL 99.00% 99.66% 99.33%

AML 61.16% 46.13% 52.59%

CLL 73.84% 69.36% 71.53%

CML 62.34% 80.81% 70.38%

Healthy 99.66% 100.00% 99.83%

115

(a)

(b)

116

(c)

Figure 4.35: ROC Curve in The Second Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

(a)

117

(b)

(c)

Figure 4.36: Confusion Matrix in The Second Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

118

4.3.3 Fold 3

(a) (b)

Figure 4.37: Accuracy and Loss Against Number of Epochs in The Third Fold

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus

Dropout Layers

Table 4.22: Precision, Recall, and F1-score for 5-class Classification Problem in

The Third Fold Training for Each Fine-tuned SENet Models

Model Classes Precision Recall F1-score

SENet +

SVM

ALL 100.00% 99.39% 99.70%

AML 66.84% 78.18% 72.07%

CLL 90.82% 80.91% 85.58%

CML 74.03% 69.09% 71.47%

Healthy 98.80% 100.00% 99.40%

SENet with

3 Hidden

Layers

ALL 99.70% 99.39% 99.54%

AML 65.52% 92.73% 76.79%

CLL 96.86% 74.85% 84.44%

CML 85.98% 68.79% 76.43%

Healthy 98.51% 100.00% 99.25%

SENet with

3 Hidden

Layers Plus

Dropout

Layers

ALL 100.00% 100.00% 100.00%

AML 70.13% 81.82% 75.52%

CLL 85.82% 73.33% 79.08%

CML 79.75% 77.58% 78.65%

Healthy 99.40% 100.00% 99.70%

119

(a)

(b)

120

(c)

Figure 4.38: ROC Curve in The Third Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

(a)

121

(b)

(c)

Figure 4.39: Confusion Matrix in The Third Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

122

4.3.4 Fold 4

(a) (b)

Figure 4.40: Accuracy and Loss Against Number of Epochs in The Fourth Fold

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus

Dropout Layers

Table 4.23: Precision, Recall, and F1-score for 5-class Classification Problem in

The Fourth Fold Training for Each Fine-tuned SENet Models

Model Classes Precision Recall F1-score

SENet +

SVM

ALL 94.89% 100.00% 97.38%

AML 58.09% 47.14% 52.04%

CLL 67.05% 58.25% 62.34%

CML 59.35% 80.13% 68.19%

Healthy 98.90% 90.57% 94.55%

SENet with

3 Hidden

Layers

ALL 98.01% 99.33% 98.66%

AML 68.70% 53.20% 59.96%

CLL 73.04% 56.57% 63.76%

CML 63.04% 93.60% 75.34%

Healthy 100.00% 95.29% 97.59%

SENet with

3 Hidden

Layers Plus

Dropout

Layers

ALL 100.00% 100.00% 100.00%

AML 69.83% 56.90% 62.71%

CLL 70.30% 71.72% 71.00%

CML 73.35% 86.20% 79.26%

Healthy 98.64% 97.64% 98.14%

123

(a)

(b)

124

(c)

Figure 4.41: ROC Curve in The Fourth Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

(a)

125

(b)

(c)

Figure 4.42: Confusion Matrix in The Fourth Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

126

4.3.5 Fold 5

(a) (b)

Figure 4.43: Accuracy and Loss Against Number of Epochs in The Fifth Fold

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus

Dropout Layers

Table 4.24: Precision, Recall, and F1-score for 5-class Classification Problem in

The Fifth Fold Training for Each Fine-tuned SENet Models

Model Classes Precision Recall F1-score

SENet +

SVM

ALL 97.06% 100.00% 98.51%

AML 76.67% 54.21% 63.51%

CLL 80.91% 89.90% 85.17%

CML 66.67% 78.11% 71.94%

Healthy 98.97% 96.97% 97.96%

SENet with

3 Hidden

Layers

ALL 99.33% 100.00% 99.66%

AML 96.99% 43.43% 60.00%

CLL 80.05% 98.65% 88.39%

CML 71.54% 93.94% 81.22%

Healthy 100.00% 100.00% 100.00%

SENet with

3 Hidden

Layers Plus

Dropout

Layers

ALL 98.67% 100.00% 99.33%

AML 90.17% 52.53% 66.38%

CLL 83.00% 96.97% 89.44%

CML 72.53% 88.89% 79.88%

Healthy 99.00% 100.00% 99.50%

127

(a)

(b)

128

(c)

Figure 4.44: ROC Curve in The Fifth Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

(a)

129

(b)

(c)

Figure 4.45: Confusion Matrix in The Fifth Fold Training for (a) SENet + SVM

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout

Layers

130

4.4 Binary Classification Problem for SENet with 3 Hidden Layers Plus

Dropout Layers

Table 4.25: Accuracy and Loss Result for Binary Classification Problem

of Each Fold

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

test_acc 100.00% 100.00% 99.55% 100.00% 99.66% 99.84%

val_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

trn_acc 99.13% 99.80% 94.16% 99.80% 99.80% 98.54%

test_loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

val_loss 0.0000 0.0000 0.0016 0.0009 0.0022 0.0009

trn_loss 0.0262 0.0070 0.1477 0.0076 0.0091 0.0395

4.4.1 Accuracy and Loss Against Number of Epochs

131

Figure 4.46: Accuracy and Loss Against Number of Epochs for Each Fold

4.4.2 Precision, Recall, and F1-score for Leukemia Subtypes Classification

Table 4.26: Precision, Recall, and F1-score for Binary Classification Problem

for Each Fold

Fold Precision Recall F1-score

1 100.00% 100.00% 100.00%

2 100.00% 100.00% 100.00%

3 99.40% 99.70% 99.55%

4 100.00% 100.00% 100.00%

5 100.00% 99.33% 99.66%

Average Precision, Recall, and F1-score for Binary Classification Problem

ALL Against

Healthy Class

Precision Recall F1-score

99.88% 99.81% 99.84%

132

4.4.3 ROC Curve

Figure 4.47: ROC Curve for Each Fold

133

4.4.4 Confusion Matrix

Figure 4.48: Confusion Matrix in The Fourth Fold Training for Each Fold

134

4.5 Discussion

For this project, three models are selected based on their performance in the ILSVRC

competition (ImageNet, n.d.), namely Inception-V3, ResNeXt, and SENet. The

method of using deep learning to detect and classify leukemia is through transfer

learning. With that said, the pretrained models will first be downloaded from the

Internet. Then their fully connected layer is replaced with a shallow network that

consists of one hidden layer and an output prediction layer. After that, the models will

be trained with the images of leukemia. The models will first be trained for the binary

classification problem between ALL and healthy classes, followed by the 5-class

classification problem between ALL, AML, CLL, CML, and healthy classes. The

overall architecture and hyperparameters of the models used to tackle the binary and

5-class classification problems are illustrated as shown below.

(a)

Figure 4.49: Overall Architecture of Each Model for (a) Binary Classification

Problem (b) 5-class Classification Problem

135

During the models’ training and testing, a method known as k-fold cross-validation is

implemented, in which k of 5 is used for this project. This means that the dataset will

be split into data groups consisting of 80% training set and 20% testing set.

For the binary classification problem, the accuracies and losses of the models

after training and testing are tabulated as shown in Tables 4.1, 4.2, and 4.3. As

observed, all of the models were able to obtain a high average training and validation

accuracy at approximately 99.38% and 99.86%, respectively. However, during testing,

the SENet model generated the highest average accuracy, which is 99.87%, followed

by ResNeXt, which is 97.66%, and Inception-V3, which is 97.03%. Among the folds

trained, the SENet model achieved a 100.00% testing accuracy in the first and the

fourth fold. The SENet model also holds the best score compared to the other literature

studies. It is followed closely by the model proposed by Shafique, et al. (2018), in

which they achieved an average testing accuracy of 99.50%. The bar chart in Figure

4.50 compares the proposed models in this project to the other literature studies on the

binary classification problem.

Figure 4.50: Bar Chart of The Testing Accuracy Comparison of The Studies on

Binary Classification Problem

In terms of the precision, recall, and F1-score, the SENet model exhibited the

best score with 100.00% on all three metrics in the first fold compared to the other

models. However, in the second fold, it is observed that the ResNeXt model exhibited

99.87%

99.50%

99.39%

99.20%

97.66%

97.03%

96.60%

88.25%

85.00% 87.00% 89.00% 91.00% 93.00% 95.00% 97.00% 99.00%

SENet

Shafique, et al. (2018)

Das and Meher (2021)

Vogado, et al. (2019)

ResNeXt

Inception-V3

Thanh, et al. (2018)

Ahmed, et al. (2019)

Testing Accuracy Comparison of The Studies on Binary
Classification Problem

136

the best score of 100.00% on all three metrics compared to the other models. In the

third fold, the ResNext model has the highest precision, while the SENet model has

the highest recall. Nevertheless, the SENet model exhibited a higher F1-score than the

ResNeXt model by 0.62%. In the fourth fold, the SENet model once again exhibited

the best score of 100.00% on all three metrics compared to the other models. Finally,

the SENet model obtained the highest score on all three metrics in the fifth fold with a

precision of 100.00%, a recall of 99.66%, and an F1-score of 99.83%. The average

precision, average recall, and average F1-score is calculated and tabulated as shown in

the table below. The table also includes studies that provided precision, recall, and F1-

score of their proposed models on the binary classification problem.

Table 4.27: Average Precision, Recall, and F1-score for Binary Classification

Problem for Each Model

Models Precision Recall F1-score

Inception-V3 98.69% 95.31% 96.91%

ResNeXt 99.93% 95.39% 97.54%

SENet 99.81% 99.93% 99.87%

Vogado, et al. (2018) 99.20% 99.20% 99.20%

Das and Meher (2021) 99.33% 99.55% 99.44%

Without a doubt, the higher the recall and precision of the model, the better it

is. However, it is crucial to avoid models with low recall in the medical field. This is

because a model with a low recall may diagnose a patient who actually has leukemia

as not having it at all. It will cause the patient to miss its window of opportunity for

treatment, leading to undesirable consequences. Nevertheless, the precision of a model

should still be taken into account so that patients who do not have leukemia will not

be treated for it. All in all, it is better to look at the F1-score, since it provides a better

measurement of the performance of the model in terms of precision and recall. The

closer the F1-score is to 100.00%, the better the model's performance.

It is observed in Table 4.27 that the SENet has the highest average F1-score

compared to other models. This shows that it can correctly classify most of the images

into their correct classes, such that images with ALL cells are correctly classified as

137

ALL class, whereas images with no ALL cells are correctly classified as the healthy

class. This can also be justified in the ROC curves, where sharp bents are observed in

each fold, and the AUC-ROC values are determined to be at an average value of 1. It

shows that the SENet model has an excellent class separability. It is also observed in

the confusion matrixes, where the number in the diagonal elements is much higher and

has a darker colour than the neighbouring elements. Thus, in the binary classification

problem, it is without a doubt that the SENet model provides the best performance rate

in detecting leukemia cells from healthy cells.

 The 5-class classification problem concerns the detection of leukemia cells and

the classification of leukemia subtypes between ALL, AML, CLL, and CML classes.

The accuracies and losses of the models after training and testing are tabulated as

shown in Tables 4.9, 4.10, and 4.11. It is observed that all of the models were able to

obtain a high average training and validation accuracy but were unable to achieve an

average testing accuracy close to them. The highest recorded average testing accuracy

is 83.03%, achieved by the SENet model. On the other hand, the ResNeXt model

achieved an average testing accuracy of 80.78%, while the Inception-V3 model

achieved 73.42%. It is important to consider that the SENet model is much more

complex than the other two models. Therefore, without a doubt, more important

features can be captured and learned from the images, which results in a high

prediction score.

Among the folds trained, the SENet model achieved a reasonably high testing

accuracy of 87.41% in the fifth fold. Nevertheless, the SENet model still holds the best

score compared with other literature studies. It is followed closely by the model

proposed by Ahmed, et al. (2019), which achieved an average accuracy of 81.74%.

The bar chart in Figure 4.51 compares the proposed models in this project to the other

literature studies on the 5-class classification problem. The accuracy obtained by Bibi,

et al. (2020) is not included in the bar chart because there is no indication on how the

accuracy was obtained. Hence, it is assumed that the accuracy of 99.91% obtained

from their studies was the training accuracy, in which all three of the models used in

this project were approximately close to it. The highest average training accuracy of

100.00% is obtained by the Inception-V3 model, followed by 99.89% obtained by the

SENet model and 99.74% obtained by the ResNeXt model.

138

Figure 4.51: Bar Chart of The Testing Accuracy Comparison of The Studies on

5-class Classification Problem

In terms of the precision, recall, and F1-score, the SENet model obtained a

higher average score in each class compared to the other models. Note that no other

studies had provided the precision, recall, and F1-score of their proposed model on the

5-class classification problem. Nevertheless, the average precision, average recall, and

average F1-scores for all models proposed in this project are calculated and tabulated

in Table 4.28. The numbers obtained show that most models have a hard time

classifying images of AML and CML cells while working moderately well in

classifying images of CLL cells, and do not have much problems classifying images

of ALL and healthy cells. For ALL class, the SENet model achieved the highest

average score for all metrics, whereby precision is 99.28%, recall is 100.00%, and F1-

score is 99.64%. As for AML class, the highest average precision of 72.31% is

achieved by the ResNeXt model, while the highest average recall and F1-score of

62.43% and 64.45%, respectively, are achieved by the SENet model. In the case of

CLL class, the highest average prediction score of 85.01% is achieved by the ResNeXt

model, while the highest average recall and F1-score of 76.98% and 78.42%,

respectively, are achieved by the SENet model. For CML class, the highest average

precision of 70.88% is achieved by the ResNeXt model, while the highest average

recall and F1-score of 75.80% and 71.85%, respectively, are achieved by the SENet

model. Lastly, for healthy class, the SENet model achieved the highest average score

for all metrics, whereby precision is 98.91%, recall is 99.93%, and F1-score is 99.41%.

Although the ResNeXt model exhibited a good performance as observed in its

precision, the SENet model still has a better performance as observed in its recall and

F1-score for all classes. This finding will be justified by looking at the ROC curves,

AUC-ROC values, and confusion matrixes generated by the models.

83.03%

81.74%

80.78%

73.42%

70.00% 72.00% 74.00% 76.00% 78.00% 80.00% 82.00% 84.00%

SENet

Ahmed, et al. (2019)

ResNeXt

Inception-V3

Testing Accuracy Comparison of The Studies on
5-class Classification Problem

139

Table 4.28: Average Precision, Recall, and F1-score for 5-class Classification

Problem for Each Model

Model Classes Precision Recall F1-score

Inception-

V3

ALL 92.30% 98.26% 95.11%

AML 54.20% 52.57% 52.55%

CLL 69.04% 62.26% 64.54%

CML 55.12% 57.51% 56.06%

Healthy 97.19% 96.70% 96.78%

ResNeXt ALL 94.96% 99.73% 97.22%

AML 72.31% 62.20% 61.86%

CLL 85.01% 72.32% 76.62%

CML 70.88% 73.70% 69.13%

Healthy 98.78% 95.97% 97.08%

SENet ALL 99.28% 100.00% 99.64%

AML 68.58% 62.43% 64.45%

CLL 81.06% 76.98% 78.42%

CML 69.28% 75.80% 71.85%

Healthy 98.91% 99.93% 99.41%

By only observing the ROC curve in the fold where most of the models were

able to achieve the highest testing accuracy, which is the fifth fold, it is evident that

the SENet model has sharper bents on most of the classes compared to the ResNeXt

model and the Inception-V3 model. On top of that, the AUC-ROC values of the SENet

model for ALL class against the rest is 1, AML class against the rest is 0.9342, CLL

class against the rest is 0.9921, CML class against the rest is 0.9588, and healthy class

against the rest is 1. This shows that the SENet model has a stronger class separability

for ALL and healthy classes while the weakest for AML class. Besides, the class

separability can be observed in the confusion matrixes, whereby the higher the number

and the darker the colour of the diagonal elements is, the better the model is in

classifying the images into their correct classes. The confusion matrixes of the

Inception-V3 model shows that the model exhibited good performance in classifying

images of ALL and healthy cells but becomes weaker when it comes to classifying

images of AML, CLL, and CML cells. As for the ResNeXt model, it is observed that

140

there is an improvement in classifying images of CLL class compared to the Inception-

V3 model. Lastly, the SENet model is seen to be able to classify images of AML, CLL,

CML, and healthy cells better, but it lacks behind when classifying images of AML

cells compared to the ResNeXt model. Thus, in the 5-class classification problem, it is

concluded that the SENet model provides the best performance rate in detecting

leukemia cells from healthy cells and classifying the leukemia cells into their subtypes.

After evaluating the models, it is without a doubt that the SENet model is the

clear winner among the three models. Henceforth, the SENet model will be fine-tuned

to improve its accuracy and overall performance further. The 5-class classification

problem will be tackled first, and when a reasonable improvement in the results is

observed, the model will be implemented on the binary classification problem. The

goal of fine-tuning is to increase the testing accuracy for the 5-classification task as

much as possible by making two different adjustments to the model, which include

replacing the model’s classifier with a machine learning algorithm or increasing the

layers in the fully connected network with different dimensional feature vectors.

The first idea of using machine learning algorithms as a classifier comes from

the literature studies done by Vogado, et al. (2018). Their studies focus on using CNN

models as the feature extractor and machine learning algorithms, such as the SVM, as

the classifier. Their proposed model was used to tackle the same binary classification

problem in this project which is leukemia detection. It is observed that they can achieve

reasonably high accuracy, but the method was not applied to 5-class classification

problems. Henceforth, an experiment is conducted to test the technique on the 5-class

classification problem by replacing the softmax classifier of the SENet model with an

SVM classifier. The overall architecture of the model is shown in Figure 4.52, and its

code is listed in Code Listing 31 in Appendix A. Note that there are no training and

validation data since only the classifier is being replaced while the previous weights

and biases of the SENet model are preserved. The previous SENet model will be

denoted as SENet model A, whereas the SENet model with an SVM classifier will be

denoted as SENet model B to allow easier referencing in the subsequent discussion.

141

Figure 4.52: Overall Architecture of Each Model for SENet model B

The testing accuracies of each fold and their average value for the SENet model

B are tabulated as shown in Table 4.17. Besides, the average precision, recall, and F1-

score is calculated and tabulated together with the values for SENet model A as shown

in Table 4.29. The bar chart shown in Figure 4.53 compares the average precision,

recall, and F1-score between SENet model A and B.

Table 4.29: Average Precision, Recall, and F1-score for 5-class Classification

Problem for SENet model A and B

Model Classes Precision Recall F1-score

SENet

Model A

ALL 99.28% 100.00% 99.64%

AML 68.58% 62.43% 64.45%

CLL 81.06% 76.98% 78.42%

CML 69.28% 75.80% 71.85%

Healthy 98.91% 99.93% 99.41%

SENet

Model B

ALL 97.72% 99.47% 98.58%

AML 63.91% 59.75% 61.24%

CLL 77.80% 73.29% 75.27%

CML 67.29% 74.09% 70.23%

Healthy 98.67% 97.24% 97.91%

142

Figure 4.53: Bar Chart of The Average Precision, Recall, and F1-score Comparison

Between SENet Model A and B

It is observed that the SENet model B has a reduction in accuracy by 2.26% compared

to the SENet model A. In addition, the model is also unable to surpass the average

precision, recall, and F1-score for all classes of the SENet model A. This can also be

observed in the ROC curves, AUC-ROC values, and the confusion matrixes, whereby

the model exhibits a weaker class separability than the SENet model A. All in all,

although the use of machine learning algorithm as the classifier can tackle the binary

classification problem, it lacks behind when implemented on 5-class classification

problems.

Moving on to the second fine-tuning method, more layers consisting of

different dimensional feature vectors are added to the fully connected network of the

SENet model A to observe whether a slow converging feature selection process can

improve the training accuracy. The fully connected network, which initially has 1

hidden layer, is further increased to 3 hidden layers with different dimensional feature

vectors. This model will be denoted as SENet model C. The overall architecture of the

model is shown in Figure 4.54, and its code is listed in Code Listing 32 in Appendix

A.

55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

Average Precision, Recall, and F1-score Comparison Between
SENet Model A and B

SENet A SENet B

143

Figure 4.54: Overall Architecture of Each Model for SENet model C

Its accuracies and losses are tabulated as shown in Table 4.18. Furthermore, the

average precision, recall, and F1-score is calculated and tabulated together with the

values for SENet model A as shown in Table 4.30. The bar chart shown in Figure 4.55

compares the average precision, recall, and F1-score between SENet model A and C.

Table 4.30: Average Precision, Recall, and F1-score for 5-class Classification

Problem for SENet model A and C

Model Classes Precision Recall F1-score

SENet

Model A

ALL 99.28% 100.00% 99.64%

AML 68.58% 62.43% 64.45%

CLL 81.06% 76.98% 78.42%

CML 69.28% 75.80% 71.85%

Healthy 98.91% 99.93% 99.41%

SENet

Model C

ALL 99.21% 99.61% 99.40%

AML 71.00% 65.14% 65.24%

CLL 84.08% 72.21% 76.87%

CML 71.70% 81.70% 75.53%

Healthy 98.92% 99.06% 98.97%

144

Figure 4.55: Bar Chart of The Average Precision, Recall, and F1-score Comparison

Between SENet Model A and C

It is observed that there is an increase of 0.52% in the average testing accuracy

for the SENet model C compared to the SENet model A. In terms of the average

precision of the SENet model C, a slight decrease of 0.07% is observed for ALL class

compared to the SENet model A. In contrast, the other 4 classes observed an

improvement in the average precision, such that there is an increase of 2.42% for AML

class, 3.02% for CLL class, 2.42% for CML class, and 0.01% for healthy class. On the

other hand, the average recall of the SENet model C saw a decrease for ALL, CLL,

and healthy classes of 0.39%, 4.77%, and 0.87%, respectively, while an increase for

AML and CML classes of 2.71%, and 5.9%, respectively, compared to the SENet

model A. For the average F1-score, compared to the SENet model A, there is a slight

decrease for ALL, CLL, and healthy classes of 0.24%, 1.55%, and 0.44%, respectively.

However, this decrease is compensated with an increase in the average F1-score for

AML and CML classes of 0.79% and 3.68%, respectively.

Following on the fifth fold comparison, in which both SENet models have the

highest testing accuracy, it is observed that the ROC curves of the SENet model C has

a sharper bent on the AML class compared to the SENet model A, while other classes

remain approximately the same. Furthermore, looking into the AUC-ROC values, an

improvement is observed in the SENet model C compared to the SENet model A,

whereby there is an increase for the AUC-ROC value of AML class, CLL class, and

CML class against the rest of 0.025275, 0.002817, and 0.013433, respectively. This

60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

Average Precision, Recall, and F1-score Comparison Between
SENet Model A and C

SENet A SENet C

145

shows that SENet model C has a stronger class separability for all classes than SENet

model A. Furthermore, by looking into the confusion matrixes, it is observed that the

SENet model C has improved in correctly classifying images of CLL and CML cells

but lacks behind when classifying images of AML cells compared to the SENet model

A. All in all, minor improvements are observed in the SENet model C as it is able to

surpass the testing accuracy and exhibits a slightly stronger class separability

compared to the SENet Model A.

Additionally, the SENet model C is further fine-tuned by attempting to reduce

the variance problem exhibited, such that the testing accuracy is much lower compared

to the training accuracy. This shows that the model is somewhat overfitting the training

dataset, causing it to perform poorly in the unseen testing dataset. Henceforth, a

regularization technique known as dropout is implemented into the fully connected

network of the SENet model C. The dropout layers are added in between the ReLU

layers of the model, and the dropout rate, 𝑝𝑝, is set to 0.5. This model will be denoted

as SENet model D. The overall architecture of the model is shown in Figure 4.56, and

its code is listed in Code Listing 33 in Appendix A.

Figure 4.56: Overall Architecture of Each Model for SENet model D

Its accuracies and losses are tabulated as shown in Table 4.19. The bar chart in

Figure 4.58 compares all proposed models, including the fine-tuned SENet models, to

146

the other literature studies on the 5-class classification problem. It is observed that

there is an increase of 0.93% in the average testing accuracy for the SENet model D

compared to the SENet model C, whereas an increase of 1.45% is observed when

compared to the SENet model A. The SENet model D also surpassed both the

Inception-V3 and ResNeXt models, as well as the model proposed by Ahmed, et al.

Figure 4.57: Bar Chart of The Testing Accuracy Comparison of The Studies on

5-class Classification Problem Including Fine-tuned Models

Furthermore, the average precision, recall, and F1-score is calculated and

tabulated as shown in Table 4.31. The bar chart shown in Figure 4.57 compares the

average precision, recall, and F1-score between SENet model A and D. In terms of the

average precision, when compared with the SENet model A, most of the classes

observed an improvement, such that an increase of 0.25% for ALL class, 3.86% for

AML class, 0.13% for CLL class, 2.77% for CML class, and 0.23% for healthy class.

On the other hand, the average recall of the SENet model D saw a minor decrease for

ALL and healthy classes of 0.07% and 0.40%, respectively, while an increase for CLL

and CML classes of 0.51% and 7.06%, respectively, compared to the SENet model A.

For the average F1-score, compared to the SENet model A, there is a slight decrease

for healthy cells of 0.08% only, but the other classes observed an improvement such

that there is an increase of 0.09% for ALL class, 1.55% for AML class, 0.53% for CLL

class, and 5.05% for CML class.

84.48%
83.55%
83.03%
81.74%
80.78%
80.77%
73.42%

70.00% 72.00% 74.00% 76.00% 78.00% 80.00% 82.00% 84.00% 86.00%

SENet D
SENet C
SENet A

Ahmed, et al.
ResNeXt
SENet B

Inception-V3

Testing Accuracy Comparison of The Studies on 5-class
Classification Problem Including Fine-tuned Models

147

Table 4.31: Average Precision, Recall, and F1-score for 5-class Classification

Problem for SENet model A and D

Model Classes Precision Recall F1-score

SENet

Model A

ALL 99.28% 100.00% 99.64%

AML 68.58% 62.43% 64.45%

CLL 81.06% 76.98% 78.42%

CML 69.28% 75.80% 71.85%

Healthy 98.91% 99.93% 99.41%

SENet

Model D

ALL 99.53% 99.93% 99.73%

AML 72.44% 62.43% 66.00%

CLL 81.19% 77.49% 78.95%

CML 72.05% 82.86% 76.90%

Healthy 99.14% 99.53% 99.33%

Figure 4.58: Bar Chart of The Average Precision, Recall, and F1-score Comparison

Between SENet Model A and D

Next, taking into account only the fold where both SENet models have the

highest testing accuracy, which is the fifth fold, it is also observed that the ROC curves

of the SENet model D have a sharper bent on the AML class compared to the SENet

model A, while other classes remain approximately the same. Looking into the AUC-

ROC values, an improvement is observed in the SENet model D compared to the

SENet model A, whereby there is an increase for the AUC-ROC values of AML

60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

Average Precision, Recall, and F1-score Comparison Between
SENet Model A and D

SENet A SENet D

148

class, CLL class, and CML class against the rest by 0.02021, 0.002036, and 0.004552

respectively. This shows that the SENet model D has a stronger class separability for

all classes than the SENet model A but slightly lacks behind compared to the SENet

model C. Furthermore, by looking into the confusion matrixes, it is observed that the

SENet model D also has improved in correctly classifying images of CLL and CML

cells compared to the SENet model A but lacks behind when classifying images of

AML cells. All in all, improvements are observed in the SENet model D as it is able

to surpass the testing accuracy of both the SENet model A and C. It also has a higher

average F1-score, as well as a stronger class separability. With that said, the SENet

model D will be implemented on the binary classification problem.

The accuracies and losses for the binary classification problem are tabulated as

shown in Table 4.25. The bar chart shown in Figure 4.59 compares all the proposed

models in this project, including fine-tuned SENet models, to the other literature

studies on the binary classification problem. It is observed that there is a minor

decrease of 0.03% in the average testing accuracy compared to the SENet model A,

while still surpassing both the Inception-V3 and ResNeXt model, as well as all other

models proposed by related works.

Figure 4.59: Bar Chart of The Testing Accuracy Comparison of The Studies on

Binary Classification Problem Including Fine-tuned Models

99.87%
99.84%
99.66%
99.50%
99.39%
99.20%
97.66%
97.03%
96.60%
93.84%
88.25%

85.00% 87.00% 89.00% 91.00% 93.00% 95.00% 97.00% 99.00%

SENet A
SENet D

Misha, Majhi and Sa (2019)
Shafique, et al. (2018)
Das and Meher (2021)
Vogado, et al. (2019)

ResNeXt
Inception-V3

Thanh, et al. (2018)
Tuba and Tuba (2019)

Ahmed, et al. (2019)

Testing Accuracy Comparison of The Studies on Binary
Classification Problem Including Fine-tuned Models

149

Besides, the average precision, recall, and F1-score are calculated as 99.88%,

99.81%, and 99.84%, respectively. It is observed that the SENet model D has a minor

improvement in terms of precision but has a slightly lower recall and F1-score

compared to the SENet model A. Whereas, in terms of the ROC curves, AUC-ROC

values, and confusion matrixes, both models have similar results. Overall, the SENet

model D can still tackle the binary classification problem as good as the SENet model

A, and it is also capable of tackling the 5-class classification problem very well.

Therefore, it is without a doubt that the SENet model D provides the best performance

rate in detecting leukemia cells from healthy cells and classifying the leukemia cells

into their subtypes.

150

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Project Review

This project aims to produce an efficient way of detecting and classifying leukemia

using deep learning models. The first objective is to select and train a suitable deep

learning model to detect leukemia cells from healthy cells and classify them into their

subtypes. Therefore, three models are selected for this project, namely the Inception-

V3, ResNeXt, and SENet models, and are made to achieve this objective. The models

are downloaded as pretrained models through multiple APIs available online, leukemia

images are then fed to train the models, and unseen testing data are used to evaluate

their capability in detecting and classifying leukemia.

The second objective of this project is to fine-tune the selected model for a

better performance rate in detecting and classifying leukemia. Throughout the project,

it is determined that the SENet model provides the best performance rate among the

three selected models. Henceforth, the SENet model was fine-tuned to improve its

performance rate further. The modifications include replacing the softmax classifier

with an SVM classifier, increasing the layers in the fully connected network with

different dimensional feature vectors, and implementing dropout layers in the fully

connected network.

151

5.2 Project Findings

Among the models, before fine tunings are made, the SENet model produces the best

performance rate in both binary and 5-class classification problems. The average

testing accuracy achieved by the SENet model in the binary classification problem is

99.87%, whereby the highest it can obtain is 100.00% in the first and fifth fold. It holds

the best score compared to the other literature studies, with the model proposed by

Shafique, et al., following closely at an average testing accuracy of 99.50%. Besides,

the SENet model also exhibited the highest average recall and F1-score of 99.93% and

99.87%, respectively, compared to the other models. Furthermore, by observing the

ROC curves generated by the model, sharp bents are exhibited in each fold, and the

AUC-ROC values are determined to be at an average value of 1. In addition, the

diagonal elements of its confusion matrixes have a higher value and have a darker

colour than the neighbouring elements. These performance metrics prove that the

SENet model has an excellent class separability for the binary classification problem.

 On the other hand, the average testing accuracy achieved by the SENet model

in the 5-class classification problem is 83.03%, whereby the highest it can obtain is

87.41% in the fifth fold. It holds the best score compared to the other literature studies,

with the model proposed by Ahmed, et al., closely following an average testing

accuracy of 81.74%. In terms of precision, recall, and F1-score, it is found that the

ResNeXt model exhibited a good performance as observed in its average precision for

all classes, while the SENet model has a better performance as observed in its average

recall and F1-score for all classes. It has been mentioned before that the F1-score

provides a better measurement of the model's performance in terms of precision and

recall. Besides, it is also better to avoid models with low recall in the medical field

because it may result in a patient who actually has leukemia being diagnosed as not

having it. It will cause the patient to miss its window of opportunity for treatment,

leading to undesirable consequences. With that, it can be said that the SENet model

provides the best performance compared to the other models. This finding is justified

further by the ROC curves, AUC-ROC values, and confusion matrixes generated by

the SENet model, whereby a strong class separability for most of the classes compared

to the other models. Thus, it is concluded that the SENet model also provides the best

performance rate in the 5-class classification problem.

152

It is obvious that the SENet model aced both binary and 5-class classification

problem compared to the other models. Therefore, it will be fine-tuned to improve its

accuracy and overall performance. Two modifications are experimented on the SENet

model, or SENet model A, which includes replacing the model’s classifier with a

machine learning algorithm, and increasing the layers in the fully connected network

with different dimensional feature vectors. It is observed that the latter model, SENet

model C, saw a minor increase in the model’s accuracy by 0.52% in tackling the 5-

class classification problem, while the former, SENet model B, degrades it by 2.26%.

The SENet model C also had a minor improvement on the class separability compared

to the SENet model A. This shows that the slow converging feature selection process

enabled by the different dimensional feature vectors allowed more important features

to be captured by the model. Hence, the SENet model C is further fine-tuned by adding

a regularization technique known as dropout into its fully connected network,

producing the SENet model D. Dropouts are added to reduce the variance problem

exhibited, such that the testing accuracy is much lower compared to the training

accuracy.

From the results obtained, an increase of 0.93% in the average testing accuracy

is observed compared to the SENet model C, whereas an increase of 1.45% is observed

compared to the SENet model A. This shows that regularization techniques such as

dropouts had effectively reduced the variance problem, allowing the model to perform

better predictions on the unseen testing images. Furthermore, the SENet model D saw

an improvement in the precision, recall, and F1-score for most of the classes compared

to the SENet model A. The ROC curves, AUC-ROC values, and confusion matrixes

also show that the SENet model D has a stronger class separability for all classes. With

that said, the SENet model D will be implemented on the binary classification problem.

Minor improvements are observed in terms of precision, but the model has a slightly

lower recall and F1-score than the SENet model A. It is also found that both models

have similar results in the ROC curves, AUC-ROC values, and confusion matrixes.

Overall, the SENet model D is capable of tackling the binary classification problem as

good as the SENet model A and tackling the 5-class classification problem very well.

153

5.3 Recommendations for Future Improvements

Though this project produced a model, the SENet model D, that can generate excellent

results in detecting and classifying leukemia compared to other literature studies, there

are still limitations that can be overcome to create a better model with higher

performance. The first limitation is the scarcity of the cell images used to train the

model. It is without a doubt that the larger the dataset, the better. However, in this

project, although the dataset is large, the data are mostly augmented, affecting how the

models learn the features from the images. Data augmentation may be a good

technique to increase dataset size but should still be used considerably to avoid having

the model capture random noise instead of the important features. Hence, it is

recommended that more cell images of higher quality be used to train the models for

this project, which could effectively improve the model’s prediction.

 Furthermore, the following limitation is the software and hardware used to train

the models. The models chosen for this project have a complex architecture that

requires a high-performance unit to train and test them. Although the current method

of using Google Colab works well, the RAM size allowed to be used is 25.46GB only

if the program is running on Intel Xeon CPU provided by the website. On the other

hand, if GPU is selected, the only RAM size allowed to be used is only 12.69GB,

which is too little for such a heavy computation required by the models. Needless to

say, the hardware used in this project, which has Intel Core i7-6700HQ and RAM size

of 8GB, has the worst computing performance but still allows websites such as Google

Colab to be accessed smoothly. Henceforth, seeing no other options available, CPUs

provided by the Google Colob are used to train the models, which took a long time,

with the longest being one day of non-stop training. In addition, if the SENet model D

were to detect and classify leukemia, it would also require a powerful processing unit

or a cloud server to host the model. Thus, it is recommended that a much light-weight

model be used for this project. Besides needing lesser time to train, the models may

also be implemented on mobile devices or programmable circuit boards such as the

Raspbssserry Pi or the Jetson Nano for a cheaper and more convenient usage.

 On top of that, this project only focuses on detecting and classifying leukemia

into the main types: ALL class, AML class, CLL class, and CML class. However, it is

154

studied that these leukemia classes can be further differentiated into more subtypes.

For example, the ALL class can be further categorized into 3 subtypes: ALL-L1, ALL-

L2, and ALL-L3. On the other hand, the AML class can be further categorized into 8

more subtypes: AML-M0, AML-M1, AML-M2, AML-M3, AML-M4, AML-M5a,

AML-M5b, AML-M6, and AML-M7. Therefore, it is recommended that these

subtypes are to be included in future projects so that a more specific prediction can be

made, allowing efficient and accurate treatment of the types of leukemia detected and

classified.

5.4 Conclusion

The objectives of this project are achieved. The models trained are able to detect

leukemia cells from healthy cells and classify them into their subtypes. Among the

three models selected for this project, the SENet model exhibited the best performance

with the highest average testing accuracy of 99.87% and 83.03% for binary and 5-class

classification, respectively. The SENet model is then fine-tuned by replacing the

model’s classifier with a machine learning algorithm, and increasing the layers in the

fully connected network with different dimensional feature vectors. The latter

modification saw a minor increase in the model’s accuracy by 0.52% when tackling

the 5-class classification problem, while the former degrades it by 2.26%. The latter

model is further fine-tuned by adding a regularization technique known as dropout into

its fully connected network, producing the SENet model D. The average testing

accuracy obtained is 99.84% and 84.48% for binary and 5-class classification,

respectively. All in all, the SENet model D is capable of tackling both binary and 5-

class classification problem very well. It also achieved the highest testing accuracy on

binary and 5-class classification problems compared to other works of literature.

155

REFERENCES

Ahmed, N., Yigit, A., Isik, Z. and Alpkocak, A., 2019. Identification of Leukemia
Subtypes from Microscopic Images Using Convolutional Neural Network.
Diagnostics, 9(3), pp. 104. https://dx.doi.org/10.3390/diagnostics9030104.

Abhishek, A., Jha, R. K., Sinha, R. and Jha, K., 2021. Automated classification of
acute leukemia on a heterogeneous dataset using machine learning and deep
learning techniques. Biomedical Signal Processing and Control, 72(B).
https://doi.org/10.1016/j.bspc.2021.103341.

Ahmed, N., Yigit, A., Isik, Z. and Alpkocak, A., 2019. Identification of Leukemia
Subtypes from Microscopic Images Using Convolutional Neural Network.
Diagnostics, 9(3), pp. 104. https://dx.doi.org/10.3390/diagnostics9030104.

Albelwi, S. and Mahmood, A., 2017. A Framework for Designing the Architectures of
Deep Convolutional Neural Networks. Entropy, 19(6).
https://doi.org/10.3390/e19060242.

Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O.,
Santamaria, J., Fadhel, M.A., Al-Amidie, M. and Farhan, L., 2021. Review of deep
learning: concepts, CNN architectures, challenges, applications, future directions.
J Big Data, 8(53). https://dx.doi.org/10.1186/s40537-021-00444-8.

American Society of Hematology, n.d.. Image Bank. [online] Available at:
<http://imagebank.hematology.org> [Accessed 24 June 2021].

Amiri, R., Mehrpouyan, H., Fridman, L., Mallik, R.K., Nallanathan, A. and Matolak,
D., 2018. A Machine Learning Approach for Power Allocation in HetNets
Considering QoS. 2018 IEEE International Conference on Communications (ICC).
https://dx.doi.org/10.1109/icc.2018.8422864.

Ardakani, A., Condo, C. and Gross, W.J., 2017. Sparsely-Connected Neural Networks:
Towards Efficient VLSI Implementation of Deep Neural Networks.
https://arxiv.org/abs/1611.01427v3.

Arnold, M.J., Keung, J.J. and McCarragher, B., 2019. Interventional radiology:
Indications and Best Practices. American Family Physician, 99(9), pp. 547-556.
https://www.aafp.org/afp/2019/0501/p547.html.

156

Bain, B.J. 2005. Diagnosis from the Blood Smear. New England Journal of Medicine,
353(5), pp. 498-507. https://dx.doi.org/10.1056/nejmra043442.

Bain, B.J., 2015. Blood cells. 5th ed. Chichester: John Wiley & Sons Ltd.

Basel, K., 2018. Python Pros and Cons. [online] Available at:
<https://www.netguru.com/blog/python-pros-and-cons> [Accessed 17 August
2021].

Behl, A., Bhatiam, A. and Puri, A., 2014. Convolution and Applications of
Convolution. International Journal of Innovative Research in Technology, 1(6), pp.
2122-2126. http://ijirt.org/Article?manuscript=101029.

Best, N., Ott, J. and Linstead E.J., 2020. Exploring the efficacy of transfer learning in
mining image-based software artifacts. Journal of Big Data, 7(59).
https://dx.doi.org/10.1186/s40537-020-00335-4.

Bibi, N., Sikandar, M., Ud Din, I., Almogren, A. and Ali, S., 2020. IoMT-Based
Automated Detection and Classification of Leukemia Using Deep Learning.
Journal of Healthcare Engineering, 2020, pp. 1-12.
https://dx.doi.org/10.1155/2020/6648574.

Bjorck, J., Gomes, C., Selman, B. and Weinberger, K.Q., 2018. Understanding Batch
Normalization. https://arxiv.org/abs/1806.02375v4.

Brownlee, J., 2019. How Do Convolutional Layers Work in Deep Learning Neural
Networks?. [online] Available at:
<https://machinelearningmastery.com/convolutional-layers-for-deep-learning-
neural-networks/> [Accessed 16 August 2021].

Cancer Research UK, 2019. Stages. [online] Available at:
<https://www.cancerresearchuk.org/about-cancer/chronic-myeloid-leukaemia-
cml/stages> [Accessed 9 July 2021].

Chinea, A., 2009. Understanding the Principles of Recursive Neural Networks: A
Generative Approach to Tackle Model Complexity. Lecture Notes in Computer
Science, 5768, pp. 952-963. https://dx.doi.org/10.1007/978-3-642-04274-4_98.

Das, P. K. and Meher, S, 2021. An efficient deep Convolutional Neural Network based
detection and classification of Acute Lymphoblastic Leukemia. Expert Systems
with Applications. https://doi.org/10.1016/j.eswa.2021.115311.

Deng, L. and Yu, D., 2014. Deep learning: Methods and Applications. Foundations
and Trends® in Signal Processing, 7(3-4), pp. 197–387.
https://dx.doi.org/10.1561/2000000039.

157

Dwivedi, A.K., 2018. Artificial neural network model for effective cancer
classification using microarray gene expression data. Neural Computing &
Applications, 29, pp. 1545–1554. https://dx.doi.org/10.1007/s00521-016-2701-1.

Feng, J. and Lu, S., 2019. Performance Analysis of Various Activation Functions in
Artificial Neural Networks. http://dx.doi.org/10.1088/1742-6596/1237/2/022030.

Fukushima, K., 1980. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36(4), pp. 193–202. https://dx.doi.org/10.1007/bf00344251.

Grandini, M., Bagli, E. and Visani, G., 2020. Metrics for Multi-Class Classification:
An Overview. https://doi.org/10.48550/arXiv.2008.05756.

He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image
Recognition. https://arxiv.org/abs/1512.03385v1.

Hosseini-Asl, E., Gimel’farb, G. and El-Baz, A., 2016. Alzheimer's Disease
Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network.
https://arxiv.org/abs/1607.00556v1.

Hu, J., Shen, L., Albanie, S., Sun, G. and Wu, E., 2019. Squeeze-and-Excitation
Networks. https://arxiv.org/abs/1709.01507v4.

Huang, G., Liu, Z., Maaten, L. van der and Weinberger, K. Q., 2017. Densely
Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). https://dx.doi.org/10.1109/cvpr.2017.243.

ImageNet, n.d.. ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
[online] Available at: <https://www.image-net.org/challenges/LSVRC/>
[Accessed 14 April 2022].

Indolia, S., Goswami, A. K., Mishra, S. P. and Asopa, P., 2018. Conceptual
Understanding of Convolutional Neural Network- A Deep Learning Approach.
Procedia Computer Science, 132, pp. 679–688.
https://dx.doi.org/10.1016/j.procs.2018.05.069.

Ioffe, S. and Szegedy, C., 2015. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. ICML’15 Proceedings of the 32nd
International Conference on International Conference on Machine Learning, 37,
pp. 448-456. https://dl.acm.org/doi/10.5555/3045118.3045167.

Ker, J., Wang, L., Rao, J. and Lim, T., 2018. Deep Learning Applications in Medical
Image Analysis. IEEE Access, 6, pp. 9375–9389.
https://dx.doi.org/10.1109/access.2017.2788044.

158

Khan, A., Sohail, A., Zahoora, U. and Qureshi, A.S., 2020. A survey of recent
architectures of deep convolutional neural networks. Artificial Intelligence Review,
53, pp. 5455-5516. https://doi.org/10.1007/s10462-020-09825-6.

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2017. ImageNet classification with
deep convolutional neural networks. Communications of the ACM, 60(6), pp. 84–
90. https://dx.doi.org/10.1145/3065386.

Ladines-Castro, W., Barragán-Ibañez, G., Luna-Pérez, M.A., Santoyo-Sánchez, A.,
Collazo-Jaloma, J., Mendoza-Garcia, E. and Ramos-Peñafiel, C.O., 2016.
Morphology of leukaemias. Revista Médica Del Hospital General de México, 79(2),
pp. 107-113. https://dx.doi.org/10.1016/j.hgmx.2015.06.007.

LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553), pp.
436–444. https://dx.doi.org/10.1038/nature14539.

LeCun, Y., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson, D.,
Howard, R.E. and Hubbard, W., 1990. Handwritten Digit Recognition:
Applications of Neural Net Chips and Automatic Learning. Neurocomputing, pp.
303–318. https://dx.doi.org/10.1007/978-3-642-76153-9_35.

Lin, M., Chen, Q. and Yan, S., 2014. Network In Network.
https://arxiv.org/abs/1312.4400v3.

Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T. and Yu, K., 2011. Large-scale Image
Classification: Fast Feature Extraction and SVM Training. CVPR 2011.
https://dx.doi.org/10.1109/CVPR.2011.5995477.

Lo, S.-C. B., Lou, S.-L. A., Lin, J.-S., Freedman, M.T., Chien, M.V. and Mun, S.K.,
1995. Artificial convolution neural network techniques and applications for lung
nodule detection. IEEE Transactions on Medical Imaging, 14(4), pp. 711–718.
https://dx.doi.org/10.1109/42.476112.

Löffler, H. and Gassmann, W., 1994. Morphology and cytochemistry of acute
lymphoblastic leukaemia. Bailliere’s Clinical Haematology, 7(2), pp. 263-272.
https://dx.doi.org/10.1016/s0950-3536(05)80202-1.

Ma, H., Liu, Y., Ren, Y. and Yu, J., 2019. Detection of Collapsed Buildings in Post-
Earthquake Remote Sensing Images Based on the Improved YOLOv3. Remote
Sensing, 12(1), 44. https://dx.doi.org/10.3390/rs12010044.

Maleki, F., Ovens, K., Najafian, K., Forghani, B., Reinhold, C. and Forghani, R., 2020.
Overview of Machine Learning Part 1. Neuroimaging Clinics of North America,
30(4), pp. e17–e32. https://doi.org/10.1016/j.nic.2020.08.007.

159

Mayo Clinic, 2021. Leukemia. [online] Available at:
<https://www.mayoclinic.org/diseases-conditions/leukemia/symptoms-causes/syc-
20374373> [Accessed 9 July 2021].

Mishra, C. and Gupta, D.L., 2017. Deep Machine Learning and Neural Networks: An
Overview. IAES International Journal of Artificial Intelligence, 6(2), pp. 66-73.
https://dx.doi.org/10.11591/ijai.v6.i2.pp66-73.

Mpitsos, G.J. and Burton, R.M., Jr., 1992. Convergence and divergence in neural
networks: Processing of chaos and biological analogy. Neural Networks, 5(4), pp.
605–625. https://doi.org/10.1016/S0893-6080(05)80039-5.

Mustafid, A., Pamuji M.M. and Helmiyah, S., 2020. A Comparative Study of Transfer
Learning and Fine-Tuning Method on deep Learning Models for Wayang Dataset
Classification. International Journal on Informatics for Development, 9(2), pp.
100-110. https://dx.doi.org/10.14421/ijid.2020.09207.

National Cancer Institute, 2020. SEER Cancer Statistics Review (CSR) 1975-2017.
[online] Available at: <https://seer.cancer.gov/archive/csr/1975_2017/> [Accessed
9 July 2021].

Narkhede, S., 2018. Understanding AUC-ROC Curve. [online] Available at: <
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5>
[Accessed 15 April 2022].

National Cancer Institute, 2021. Cancer Stat Facts: Leukemia. [online] Available at:
<https://seer.cancer.gov/statfacts/html/leuks.html> [Accessed 9 July 2021].

Neftci, E.O. and Averback, B.B., 2019. Reinforcement learning in artificial and
biological systems. Nature Machine Intelligence, 1, pp. 133-143.
https://dx.doi.org/10.1038/s42256-019-0025-4.

Omkar, N., 2019. Activation Functions with Derivative and Python code: Sigmoid vs
Tanh Vs ReLU. [online] Available at:
<https://medium.com/@omkar.nallagoni/activation-functions-with-derivative-
and-python-code-sigmoid-vs-tanh-vs-relu-44d23915c1f4> [Accessed 14 August
2021].

Onciu, M., 2009. Acute Lymphoblastic Leukemia. Hematology/Oncology Clinics of
North America, 23(4), pp. 655–674. https://dx.doi.org/10.1016/j.hoc.2009.04.009.

Ouali, Y., Hudelot C. and Tami, M., 2020. An Overview of Deep Semi-Supervised
Learning. https://arxiv.org/abs/2006.05278v2.

Pan, S.J. and Yang, Q., 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10), pp. 1345-1359.
https://dx.doi.org/10.1109/TKDE.2009.191.

https://www.mayoclinic.org/diseases-conditions/leukemia/symptoms-causes/syc-20374373
https://www.mayoclinic.org/diseases-conditions/leukemia/symptoms-causes/syc-20374373

160

Pascanu, R., Gulcehre, C., Cho, K. and Bengio, Y., 2014. How to Construct Deep
Recurrent Neural Networks. https://arxiv.org/abs/1312.6026v5.

Pejovic, T. and Schwartz, P.E., 2002. Leukemias. Clinical Obstetrics and Gynecology,
45(3), pp. 866–878. https://dx.doi.org/10.1097/00003081-200209000-00033.

Pihlajamäki, T., 2009. Multi-resolution Short-time Fourier Transform Implementation
of Directional Audio Coding.
https://www.researchgate.net/publication/267239829_Multi-resolution_Short-
time_Fourier_Transform_Im-_plementation_of_Directional_Audio_Coding.

Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P. and Zheng, Y., 2016.
Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer
Science, 90, pp. 200–205. https://doi.org/10.1016/j.procs.2016.07.014.

Qian, B., Su, J., Wen, Z., Jha, D.N., Li, Y., Guan, Y., Puthal, D., James, P., Yang, R.,
Zomaya, A.Y., Rana, O., Wang, L., Koutny, M. and Ranjan, R., 2020. Orchestrating
the Development Lifecycle of Machine Learning–based IoT Applications: A
Taxonomy and Survey. ACM Computing Surveys, 53(4), pp. 1-47.
https://dx.doi.org/10.1145/3398020.

Rajkomar, A., Lingam, S., Taylor, A.G., Blum, M. and Mongan, J., 2016. High-
Throughput Classification of Radiographs Using Deep Convolutional Neural
Networks. Journal of Digital Imaging, 30(1), pp. 95–101.
https://dx.doi.org/10.1007/s10278-016-9914-9.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A.,
Ball, R.L., Langlotz, C., Shpanskaya, K., Lungren, M.P. and Ng. A.Y., 2017.
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep
Learning. https://arxiv.org/abs/1711.05225v3.

Rakitianskaia, A. and Engelbrecht, A., 2015. Measuring Saturation in Neural
Networks. 2015 IEEE Symposium Series on Computational Intelligence. doi:
https://dx.doi.org/10.1109/ssci.2015.202.

Rehman, A., Abbas, N., Saba, T., Rahman, S.I. ur, Mehmood, Z. and Kolivand, H.,
2018. Classification of acute lymphoblastic leukemia using deep learning.
Microscopy Research and Technique, 81(11), pp. 1310-1317.
https://dx.doi.org/10.1002/jemt.23139.

Reynolds, A.H., 2019. Convolutional Neural Networks (CNNs). [online] Available at:
<https://anhreynolds.com/blogs/cnn.html> [Accessed 12 August 2021].

Rezk, N.M., Purnaprajna, M., Nordström, T. and Ul-Abdin, Z., 2020. Recurrent Neural
Networks: An Embedded Computing Perspective. IEEE Access, 8, pp. 57967-
57996. https://dx.doi.org/10.1109/ACCESS.2020.2982416.

161

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma., S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C. and Fei-Fei, L., 2015.
ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision, 115(3), pp. 211-252. https://dx.doi.org/10.1007/s11263-015-
0816-y.

S, V.S., 2020. Peripheral Smear Findings in Leukemia – Illustrated. [online] Available
at: <http://ilovepathology.com/microscopy-of-leukemia-illustrated/> [Accessed 9
July 2021].

Sanchez, J., Perronnin, F., Mensink, T. and Verbeek, J., 2013. Compressed Fisher
Vectors for Large-Scale Image Classification. RR-8209, 2013. https://hal.archives-
ouvertes.fr/hal-00779493v1.

Scotti, F., Labati, R.D. and Piuri, V., 2011. ALL-IDB: The acute lymphoblastic
leukemia image database for image processing. 2011 18th IEEE International
Conference on Image Processing (ICIP 2011), Brussels, Belgium, pp. 2045-2048,
September 11-14, 2011. https://dx.doi.org/10.1109/icip.2011.6115881.

Shafique, S. and Tehsin, S., 2018. Acute Lymphoblastic Leukemia Detection and
Classification of Its Subtypes Using Pretrained Deep Convolutional Neural
Networks. Technology in Cancer Research & Treatment.
https://dx.doi.org/10.1177/1533033818802789.

Shaheen, M., Khan, R., Biswal, R.R., Ullah, M., Khan, A., Uddin, M.I., Zareei, M. and
Waheed, A., 2021. Acute Myeloid Leukemia (AML) Detection Using AlexNet
Model. Complexity, 2021. https://dx.doi.org/10.1155/2021/6658192.

Shamsaldin, A.S., Fattah, P., Rashid, T.A. and Al-Salihi, N.K., 2019. A Study of the
Applications of Convolutional Neural Networks. UKH Journal of Science and
Engineering, 3(2), pp. 31-40. https://dx.doi.org/10.25079/ukhjse.v3n2y2019.pp31-
40.

Simonyan, K. and Zisserman, A., 2015. Very Deep Convolutional Networks for Large-
Scale Image Recognition. https://arxiv.org/abs/1409.1556v6.

Singh, S. Understanding the Bias-Variance Tradeoff. [online] Available at:
<https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e69
42b229> [Accessed 30 March 2022].

Socher, R., Lin C.C., Ng, A.Y. and Manning, C.D., 2011. Parsing natural scenes and
natural language with recursive neural networks. ICML’11: Proceedings of the 28th
International Conference on International Conference on Machine Learning, pp.
129-136. https://dl.acm.org/doi/10.5555/3104482.3104499.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R., 2014.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of

162

Machine Learning Research, 15(1), pp. 1929-1958.
https://dl.acm.org/doi/10.5555/2627435.2670313.

Srivastava, S., 2020. Top Programming Languages in Trend for AI Projects in 2020.
[online] Available at: <https://www.analyticsinsight.net/top-programming-
languages-in-trend-for-ai-projects-in-2020/> [Accessed 17 August 2021].

Su, C.-J. and Li, Y., 2019. Recurrent neural network based real-time failure detection
of storage devices. Microsystem Technologies. https://dx.doi.org/10.1007/s00542-
019-04454-8.

Szandała, T., 2020. Review and Comparison of Commonly Used Activation Functions
for Deep Neural Networks. https://arxiv.org/abs/2010.09458.

Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A., 2017.–v4, Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning. AAAI’17:
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2017,
pp. 4278-4284. https://dl.acm.org/doi/10.5555/3298023.3298188.

Szegedy, C., Liu W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V. and Rabinovich, A., 2015. Going deeper with convolutions. 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp.
1-9. https://dx.doi.org/10.1109/CVPR.2015.7298594.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2016. Rethinking the
Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). https://dx.doi.org/10.1109/cvpr.2016.308.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C. and Liu, C., 2018. A Survey on Deep
Transfer Learning. Lecture Notes in Computer Science, pp. 270–279.
https://dx.doi.org/10.1007/978-3-030-01424-7_27.

Thanh, T.T.P., Vununu, C., Atoev, S., Lee S.-H. and Kwon, K.-R., 2018. Leukemia
Blood Cell Image Classification Using Convolutional Neural Network.
International Journal of Computer Theory and Engineering, 10(2), pp. 54-58.
https://doi.org/10.7763/IJCTE.2018.V10.1198.

Tsang, S.-H., 2018. Review: AlexNet, CaffeNet – Winner of ILSVRC 2012 (Image
Classification). [online] Available at: <https://medium.com/coinmonks/paper-
review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-
b93598314160> [Accessed 17 August 2021].

Vogado, L.H.S., Veras, R.M.S., Araujo, F.H.D., Silva, R.R.V. and Aires, K.R.T., 2018.
Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for
classification. Engineering Applications of Artificial Intelligence, 72, pp. 415–422.
https://dx.doi.org/10.1016/j.engappai.2018.04.024.

163

Weiss, K., Khoshgoftaar, T.M. and Wang, D., 2016. A survey of transfer learning.
Journal of Big Data, 3(1). https://dx.doi.org/10.1186/s40537-016-0043-6.

Wickramasinghe, S. Bias & Variance in Machine Learning: Concepts & Tutorials.
[online] Available at: <https://www.bmc.com/blogs/bias-variance-machine-
learning/> [Accessed 30 March 2022].

Wikipedia, 2021. ImageNet. [online] Available at:
<https://en.wikipedia.org/wiki/ImageNet> [Accessed 6 August 2021].

Wu, D., Wang, Y., Xia, S.-T., Bailey, J. and Ma, X., 2020. Skip Connections Matter:
On the Transferability of Adversarial Examples Generated with ResNets.
https://arxiv.org/abs/2002.05990v1.

Xie, S., Girshick, R., Dollár, P., Tu, Z. and He, K., 2017. Aggregated Residual
Transformations for Deep Neural Networks. https://arxiv.org/abs/1611.05431.

Yamashita, R., Nishio, M., Do, R.K.G. and Tagoshi, K., 2018. Convolutional neural
networks: an overview and application in radiology. Insights into Imaging, 9, pp.
611-629. https://doi.org/10.1007/s13244-018-0639-9.

Ying, X., 2019. An Overview of Overfitting and its Solutions. Journal of Physics:
Conference Series, 1168. https://iopscience.iop.org/article/10.1088/1742-
6596/1168/2/022022/pdf.

Zeiler, M.D. and Fergus, R., 2014. Visualizing and Understanding Convolutional
Networks. Lecture Notes in Computer Science, pp. 818–833.
https://dx.doi.org/10.1007/978-3-319-10590-1_53.

164

APPENDICES

APPENDIX A: Code Listings

from google.colab import drive
drive.mount('/content/drive')

Listing A.1: Mount Google Drive onto Google Colab

Import open-source libraries
import os
import cv2
import torch
import pickle
import random
import itertools
import torchvision
import numpy as np
import pandas as pd
import torch.nn as nn
import tensorflow as tf
import torch.optim as optim
from torchvision import models
import matplotlib.pyplot as plt
from sklearn.svm import LinearSVC
from keras import optimizers, losses, models
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential, Model
from sklearn.calibration import CalibratedClassifierCV
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import roc_curve, roc_auc_score, auc
from keras.layers import Dense, Dropout, GlobalAveragePooling2D
from sklearn.metrics import recall, f1_score, precision,
accuracy_score, confusion_matrix

Listing A.2: Import Open-Source Libraries

165

Dataset directory in Google Drive
DIR = ‘/content/drive/MyDrive/Dataset/’
Class labels in a list
classes = [‘ALL’, ‘AML’, ‘CLL’, ‘CML’, ‘HLT’]

New list to store images
dataset = []
class_num = 0

for class_names in classes:
 path = os.path.join(DIR, class_names)
 for img in os.listdir(path):
 # Read images into array of numbers

img_arr = cv2.imread(os.path.join(path, img))
Resize images
new_arr = cv2.resize(img_arr, (224, 224))
Normalize images
norm_arr = new_arr/255.0
Store images
dataset.append([norm_arr, class_num])

 class_num += 1
Listing A.3: Import Dataset from Google Drive, Resize And

Normalize It, Then Store into A List

X = []
Y = []

for data, label in dataset:
 X.append(data)
 Y.append(label)

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42
)

fold_index = []

for train_index, test_index in skf.split(X, Y):
 fold_index.append([train_index, test_index])

fold_var = int(input("Fold (0-4): "))

train_set = [dataset[train] for train in fold_index[fold_var][0
]]
test_set = [dataset[test] for test in fold_index[fold_var][1]]
all_set = [train_set, test_set]

Listing A.4: Split Dataset into Stratified K Folds of Train and Test Sets

166

all_aug = []

#data augmentation
zooming = ImageDataGenerator(zoom_range=0.3)
shearing = ImageDataGenerator(shear_range=20)
rotating = ImageDataGenerator(rotation_range=40)
hshfiting = ImageDataGenerator(height_shift_range=0.4)
wshfiting = ImageDataGenerator(width_shift_range=0.4)

for get_set in all_set:
 aug_dataset = []
 for ori_img, class_num in get_set:
 aug_dataset.append([ori_img, class_num])
 aug_dataset.append([np.flipud(ori_img), class_num])
 aug_dataset.append([np.fliplr(ori_img), class_num])
 for _ in range(2):
 it = zooming.flow(np.expand_dims(ori_img*255.0, axis=0),
batch_size=1)
 batch = it.next()
 aug_img = (batch[0].astype('uint8'))/255.0
 aug_dataset.append([aug_img, class_num])
 aug_dataset.append([np.flipud(aug_img), class_num])
 aug_dataset.append([np.fliplr(aug_img), class_num])
 for _ in range(2):
 it = shearing.flow(np.expand_dims(ori_img*255.0, axis=0),
 batch_size=1)
 batch = it.next()
 aug_img = (batch[0].astype('uint8'))/255.0
 aug_dataset.append([aug_img, class_num])
 aug_dataset.append([np.flipud(aug_img), class_num])
 aug_dataset.append([np.fliplr(aug_img), class_num])
 for _ in range(2):
 it = rotating.flow(np.expand_dims(ori_img*255.0, axis=0),
 batch_size=1)
 batch = it.next()
 aug_img = (batch[0].astype('uint8'))/255.0
 aug_dataset.append([aug_img, class_num])
 aug_dataset.append([np.flipud(aug_img), class_num])
 aug_dataset.append([np.fliplr(aug_img), class_num])
 for _ in range(2):
 it = hshfiting.flow(np.expand_dims(ori_img*255.0, axis=0)
, batch_size=1)
 batch = it.next()
 aug_img = (batch[0].astype('uint8'))/255.0
 aug_dataset.append([aug_img, class_num])
 aug_dataset.append([np.flipud(aug_img), class_num])
 aug_dataset.append([np.fliplr(aug_img), class_num])
 for _ in range(2):

167

 it = wshfiting.flow(np.expand_dims(ori_img*255.0, axis=0)
, batch_size=1)
 batch = it.next()
 aug_img = (batch[0].astype('uint8'))/255.0
 aug_dataset.append([aug_img, class_num])
 aug_dataset.append([np.flipud(aug_img), class_num])
 aug_dataset.append([np.fliplr(aug_img), class_num])
 all_aug.append(aug_dataset)

Listing A.5: Augment the Datasets and Store into A List Called ‘aug_dataset’

Training set
split_train = [[], [], [], [], []]

for new_img, class_num in all_aug[0]:
 if class_num == 0:
 split_train[class_num].append([new_img, class_num])
 if class_num == 1:
 split_train[class_num].append([new_img, class_num])
 if class_num == 2:
 split_train[class_num].append([new_img, class_num])
 if class_num == 3:
 split_train[class_num].append([new_img, class_num])
 if class_num == 4:
 split_train[class_num].append([new_img, class_num])

Testing set
split_test = [[], [], [], [], []]

for new_img, class_num in all_aug[1]:
 if class_num == 0:
 split_test[class_num].append([new_img, class_num])
 if class_num == 1:
 split_test[class_num].append([new_img, class_num])
 if class_num == 2:
 split_test[class_num].append([new_img, class_num])
 if class_num == 3:
 split_test[class_num].append([new_img, class_num])
 if class_num == 4:
 split_test[class_num].append([new_img, class_num])

Shuffles the images within the classes
random.seed(42)
for num in range(5):
 random.shuffle(split_train[num])
 random.shuffle(split_test[num])

Training set
smallest_train = 10000

168

print("Training set:")
for num in range(5):
 print(f'{classes[num]}: {len(split_train[num])}')
 if smallest_train > len(split_train[num]):
 smallest_train = len(split_train[num])

print(f'\nSmallest number of samples in training set: {smallest
_train}')

Testing set
smallest_test = 10000

print("\nTesting set:")
for num in range(5):
 print(f'{classes[num]}: {len(split_test[num])}')
 if smallest_test > len(split_test[num]):
 smallest_test = len(split_test[num])

print(f'\nSmallest number of samples in testing set: {smallest_
test}')

fold_train = []
for num in range(5):
 fold_train += split_train[num][:smallest_train]
print(f'Total training set count: {len(fold_train)} samples\nEa
ch class: {int(len(fold_train)/5)} samples')

fold_test = []
for num in range(5):
 fold_test += split_test[num][:smallest_test]
print(f'\nTotal testing set count: {len(fold_test)} samples\nEa
ch class: {int(len(fold_test)/5)} samples')

random.seed(42)
random.shuffle(fold_train)
random.shuffle(fold_test)

Listing A.6: Equalize and Split the Dataset into Train and Test Sets

def train_model(model, criterion, optimizer, num_epochs=3):
 prev_acc = 0

 print("Current K-
Fold Cross Validation: {}".format(fold_var + 1))
 print("Previous validation accuracy: {:.5f}\n".format(prev_
acc))

 for epoch in range(num_epochs):

169

 trn_acc = 0
 val_acc = 0
 trn_loss = 0
 val_loss = 0

 print('Epoch {}/{}'.format(epoch+1, num_epochs))
 print('-' * 10)

 for phase in ['train', 'validation']:
 if phase == 'train':
 model.train()
 else:
 model.eval()

 running_loss = 0.0
 running_corrects = 0

 for inputs, labels in dataloaders[phase]:
 inputs = inputs.to(device)
 labels = labels.unsqueeze(1)
 labels = labels.to(device)
 outputs = model(inputs.float())
 loss = criterion(outputs, labels.float())

 if phase == "train":
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 preds = torch.sigmoid(outputs) >= 0.5
 running_loss += loss.item() * inputs.size(0)
 running_corrects += torch.sum(preds == (labels.
data == 1))

 if phase == "train":
 epoch_loss = running_loss / len(train)
 epoch_acc = running_corrects.double() / len(tra
in)
 trn_loss = float(epoch_loss)
 trn_acc = float(epoch_acc)
 else:
 epoch_loss = running_loss / len(valid)
 epoch_acc = running_corrects.double() / len(val
id)
 val_loss = float(epoch_loss)
 val_acc = float(epoch_acc)

 print("{} loss: {:.5f}, acc: {:.5f}".format(phase,

170

 epoch_l
oss,
 epoch_a
cc))

 if phase == "validation":
 if epoch_acc > prev_acc:
 save_path = '/content/drive/MyDrive/SNsaved
model/SN' + str(fold_var) + '.h5'
 torch.save(model.state_dict(), save_path)
 print("Epoch {}: val_accuracy improved from
 {:.5f} to {:.5f}, saving model to {}".format(str(epoch+1).zfil
l(5), prev_acc, epoch_acc, save_path))
 prev_acc = epoch_acc
 else:
 print("Epoch {}: val_accuracy did not impro
ve from {:.5f}".format(str(epoch+1).zfill(5),

 prev_acc))

 try:
 str_history = pickle.load(open(('/content/drive/MyD
rive/SNsaved_model/historySN_' + str(fold_var)), "rb"))
 str_trn_loss = str_history['train loss']
 str_trn_acc = str_history['train accuracy']
 str_val_loss = str_history['validation loss']
 str_val_acc = str_history['validation accuracy']
 except Exception as e:
 str_trn_loss = []
 str_trn_acc = []
 str_val_loss = []
 str_val_acc = []
 str_trn_loss.append(trn_loss)
 str_trn_acc.append(trn_acc)
 str_val_loss.append(val_loss)
 str_val_acc.append(val_acc)

 history = {"train loss": str_trn_loss, "train accuracy"
: str_trn_acc, "validation loss": str_val_loss, "validation acc
uracy": str_val_acc}

 with open(('/content/drive/MyDrive/SNsaved_model/histor
ySN_' + str(fold_var)), 'wb') as wfile:
 pickle.dump(history, wfile)

 data = pickle.load(open(('/content/drive/MyDrive/SNsaved_mo
del/historySN_' + str(fold_var)), "rb"))
 return data

Listing A.7: Function to Train ResNeXt and SENet Models

171

inception = InceptionV3(weights = 'imagenet',
 include_top = False,
 input_shape = (224, 224, 3))
inception.trainable=False

add_model = Sequential()
add_model.add(inception)
add_model.add(GlobalAveragePooling2D())
add_model.add(Dropout(0.2))
add_model.add(Flatten())
add_model.add(Dense(128, activation='relu'))
add_model.add(Dense(1, activation='softmax'))

model = add_model

Listing A.8: Transfer Learning of Inception-V3 Model for

Binary Classification Problem

inception = InceptionV3(weights = 'imagenet',
 include_top = False,
 input_shape = (224, 224, 3))
inception.trainable=False

add_model = Sequential()
add_model.add(inception)
add_model.add(GlobalAveragePooling2D())
add_model.add(Dropout(0.2))
add_model.add(Flatten())
add_model.add(Dense(128, activation='relu'))
add_model.add(Dense(5, activation='sigmoid'))

model = add_model

Listing A.9: Transfer Learning of Inception-V3 Model for

5-class Classification Problem

resnext = models.resnext101_32x8d(pretrained=True).to(device)

for param in resnext.parameters():
 param.requires_grad = False

resnext.fc = nn.Sequential(
 nn.Linear(2048, 128),
 nn.ReLU(inplace=True),
 nn.Linear(128, 1)).to(device)

Listing A.10: Transfer Learning of ResNeXt Model for

Binary Classification Problem

172

resnext = models.resnext101_32x8d(pretrained=True).to(device)

for param in resnext.parameters():
 param.requires_grad = False

resnext.fc = nn.Sequential(
 nn.Linear(2048, 128),
 nn.ReLU(inplace=True),
 nn.Linear(128, 5)).to(device)

Listing A.11: Transfer Learning of ResNeXt Model for

5-class Classification Problem

model_name = 'senet154'
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,
 pretrained='imagenet')

for param in senet.parameters():
 param.requires_grad = False

senet.last_linear = nn.Sequential(
 nn.Linear(2048, 128),
 nn.ReLU(inplace=True),
 nn.Linear(128, 1)).to(device)

Listing A.12: Transfer Learning of SENet Model for

Binary Classification Problem

model_name = 'senet154'
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,
 pretrained='imagenet')

for param in senet.parameters():
 param.requires_grad = False

senet.last_linear = nn.Sequential(
 nn.Linear(2048, 128),
 nn.ReLU(inplace=True),
 nn.Linear(128, 5)).to(device)

Listing A.13: Transfer Learning of SENet Model for

5-class Classification Problem

save_dir = ‘/content/drive/MyDrive/IV3saved_model/’
filepath = save_dir + 'BIN_IV3_'+ str(fold_var) + '.h5'
checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath, monit
or='val_accuracy', verbose=1, save_best_only=True, mode='max')

173

model.compile(loss=tf.keras.losses.BinaryCrossentropy(),
 optimizer=tf.keras.optimizers.Adam(),
 metrics=["accuracy"])

history = model.fit(x_bin, y_bin, validation_split=0.2, epochs=
10, callbacks=[checkpoint])

with open(('/content/drive/MyDrive/IV3saved_model/BIN_historyIV
3_' + str(fold_var)), 'wb') as wfile:
 pickle.dump(history.history, wfile)

tf.keras.backend.clear_session()
Listing A.14:Training the Inception-V3 Model for Binary Classification Problem

save_dir = ‘/content/drive/MyDrive/IV3saved_model/’
filepath = save_dir + ‘newIV3_’+ str(fold_var) + ‘.h5’
checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath, monit
or=’val_accuracy’, verbose=1, save_best_only=True, mode=’max’)

model.compile(loss=tf.keras.losses.CategoricalCrossentropy(),
 optimizer=tf.keras.optimizers.Adam(),
 metrics=["accuracy"])

history = model.fit(x_train, tf.one_hot(y_train, depth=5), vali
dation_data=(x_valid, tf.one_hot(y_valid, depth=5)), epochs=25,
 callbacks=[checkpoint])

with open((‘/content/drive/MyDrive/IV3saved_model/historyIV3_’
+ str(fold_var)), ‘wb’) as wfile:

pickle.dump(history.history, wfile)

tf.keras.backend.clear_session()
Listing A.15:Training the Inception-V3 Model for 5-class Classification Problem

criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(resnext.fc.parameters())
history = train_model(resnext, criterion, optimizer, num_epochs
=10)

Listing A.16: Training the ResNeXt Model for Binary Classification Problem

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(resnext.fc.parameters())
history = train_model(resnext, criterion, optimizer, num_epochs
=25)

Listing A.17: Training the ResNeXt Model for 5-class Classification Problem

174

criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(senet.last_linear.parameters())
history = train_model(senet, criterion, optimizer, num_epochs=1
0)

Listing A.18: Training the SENet model for Binary Classification Problem

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(senet.last_linear.parameters())
history = train_model(senet, criterion, optimizer, num_epochs=2
5)

Listing A.19: Training the SENet model for 5-class Classification Problem

y_preds = model.predict(x_test)
Listing A.20: Testing the Inception-V3 Model for Binary and 5-class Classification

Problems with Unseen Testing Data

criterion = nn.BCEWithLogitsLoss()
resnext.eval()

y_preds = []
tup_preds = []
running_loss = 0.0
running_corrects = 0

for inputs, labels in dataloaders['test']:
 inputs = inputs.to(device)
 labels = labels.unsqueeze(1)
 labels = labels.to(device)
 outputs = resnext(inputs.float())
 loss = criterion(outputs, labels.float())

 tup_preds.append(outputs)
 preds = torch.sigmoid(outputs) >= 0.5
 running_loss += loss.item() * inputs.size(0)
 running_corrects += torch.sum(preds == (labels.data == 1))

for p in tup_preds:
 for q in p:
 pred_list = []
 for s in torch.sigmoid(q):
 pred_list.append(float(s))
 y_preds.append(pred_list)

y_preds = np.array(y_preds, dtype="float32")

175

loss = running_loss / len(test)
acc = running_corrects.double() / len(test)
print("Loss: {:.4f}\nAccuracy: {:.2f}%".format(loss, acc*100))

Listing A.21: Testing the ResNeXt Model for Binary Classification Problem

criterion = nn.CrossEntropyLoss()
resnext.eval()

y_preds = []
tup_preds = []
running_loss = 0.0
running_corrects = 0

for inputs, labels in dataloaders['test']:
 inputs = inputs.to(device)
 labels = labels.to(device)
 outputs = resnext(inputs.float())
 loss = criterion(outputs, labels)

 _, preds = torch.max(outputs, 1)
 tup_preds.append(outputs)
 running_loss += loss.item() * inputs.size(0)
 running_corrects += torch.sum(preds == labels.data)

for p in tup_preds:
 for q in p:
 pred_list = []
 for s in torch.nn.functional.softmax(q, dim=-1):
 pred_list.append(float(s))
 y_preds.append(pred_list)

y_preds = np.array(y_preds, dtype="float32")

loss = running_loss / len(test)
acc = running_corrects.double() / len(test)
print("Loss: {:.2f}\nAccuracy: {:.2f}%".format(loss, acc*100))

Listing A.22: Testing the ResNeXt Model for 5-class Classification Problem

criterion = nn.BCEWithLogitsLoss()
senet.eval()

y_preds = []
tup_preds = []
running_loss = 0.0
running_corrects = 0

176

for inputs, labels in dataloaders['test']:
 inputs = inputs.to(device)
 labels = labels.unsqueeze(1)
 labels = labels.to(device)
 outputs = senet(inputs.float())
 loss = criterion(outputs, labels.float())

 tup_preds.append(outputs)
 preds = torch.sigmoid(outputs) >= 0.5
 running_loss += loss.item() * inputs.size(0)
 running_corrects += torch.sum(preds == (labels.data == 1))

for p in tup_preds:
 for q in p:
 pred_list = []
 for s in torch.sigmoid(q):
 pred_list.append(float(s))
 y_preds.append(pred_list)

y_preds = np.array(y_preds, dtype="float32")

loss = running_loss / len(test)
acc = running_corrects.double() / len(test)
print("Loss: {:.4f}\nAccuracy: {:.2f}%".format(loss, acc*100))

Listing A.23: Testing the SENet Model for Binary Classification Problem

criterion = nn.CrossEntropyLoss()
senet.eval()

y_preds = []
tup_preds = []
running_loss = 0.0
running_corrects = 0

for inputs, labels in dataloaders['test']:
 inputs = inputs.to(device)
 labels = labels.to(device)
 outputs = senet(inputs.float())
 loss = criterion(outputs, labels)

 _, preds = torch.max(outputs, 1)
 tup_preds.append(outputs)
 running_loss += loss.item() * inputs.size(0)
 running_corrects += torch.sum(preds == labels.data)

for p in tup_preds:
 for q in p:
 pred_list = []

177

 for s in torch.nn.functional.softmax(q, dim=-1):
 pred_list.append(float(s))
 y_preds.append(pred_list)

y_preds = np.array(y_preds, dtype="float32")

loss = running_loss / len(test)
acc = running_corrects.double() / len(test)
print("Loss: {:.4f}\nAccuracy: {:.2f}%".format(loss, acc*100))

Listing A.24: Testing the SENet Model for 5-class Classification Problem

pd.DataFrame(history).plot(title="SENet with 3 Hidden Layers: {
} Fold".format(str_fold), xlabel="epoch", ylabel="Percentage")

Listing A.25: Plot the Graph of Accuracy and Loss Against Number of Epochs

fpr = {}
tpr = {}
roc_auc = {}
thresh ={}

n_class = 5

for i in range(n_class):
 fpr[i], tpr[i], thresh[i] = roc_curve(y_test, y_preds[:,i],
 pos_label=i)
 roc_auc[i] = auc(fpr[i], tpr[i])

plt.figure(figsize=(10,10))
plt.plot(fpr[0], tpr[0], linestyle='--
',color='orange', label='ALL vs Rest (Area = {1:0.6f})'.format(
i, roc_auc[0]))
plt.plot(fpr[1], tpr[1], linestyle='--
',color='green', label='AML vs Rest (Area = {1:0.6f})'.format(i
, roc_auc[1]))
plt.plot(fpr[2], tpr[2], linestyle='--
',color='blue', label='CLL vs Rest (Area = {1:0.6f})'.format(i,
 roc_auc[2]))
plt.plot(fpr[3], tpr[3], linestyle='--
',color='purple', label='CML vs Rest (Area = {1:0.6f})'.format(
i, roc_auc[3]))
plt.plot(fpr[4], tpr[4], linestyle='--
',color='red', label='HLT vs Rest (Area = {1:0.6f})'.format(i,
roc_auc[4]))
plt.title('SENet with 3 Hidden Layers: {} Fold'.format(str_fold
))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive rate')

178

plt.legend(loc='best')
Listing A.26: Plot ROC curve

Create the confusion matrix
def plot_confusion_matrix(y_true, y_pred, classes=None, figsize
=(10, 10), text_size=15):
 cm = confusion_matrix(y_true, y_pred)
 cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]
 n_classes=cm.shape[0]

 fig, ax = plt.subplots(figsize=figsize)

 # Create a matrix plot
 cax = ax.matshow(cm, cmap=plt.cm.Blues)
 fig.colorbar(cax)

 # labels to be classes
 if classes:
 labels = classes
 else:
 labels = np.arange(cm.shape[0])

 # Label the axes
 ax.set(title="SENet with 3 Hidden Layers: {} Fold".format(str
_fold),
 xlabel="Predicted label",
 ylabel="True label",
 xticks=np.arange(n_classes),
 yticks=np.arange(n_classes),
 xticklabels=labels,
 yticklabels=labels)

 # Set x-axis label to bottom
 ax.xaxis.set_label_position("bottom")
 ax.xaxis.tick_bottom()

 # Adjust label size
 ax.yaxis.label.set_size(text_size)
 ax.xaxis.label.set_size(text_size)
 ax.title.set_size(text_size)

 # Set threshold for different colors
 threshold = (cm.max() + cm.min()) / 2

 # Plot the text on each cell
 for i, j in itertools.product(range(cm.shape[0]), range(cm.sh
ape[1])):
 plt.text(i, j, f"{cm[j, i]} ({cm_norm[j, i]*100:.1f}%)",

179

 horizontalalignment="center",
 color="white" if cm[i, j] > threshold else "black",
 size=text_size)

plot_confusion_matrix(y_test, y_preds.argmax(axis=1), classes=c
lasses, text_size=10)

Listing A.27: Plot the Confusion Matrix

totalPrecision= 0

prec = precision_score(y_test, y_preds.argmax(axis=1), average=
None)

for i in range(n_class):
 totalPrecision += prec[i]
 print("For {} Precision: {:.2f}%".format(classes[i], prec[i]*
100))
print("Macro Precision: {:.2f}%".format(totalPrecision/n_class*
100))

Listing A.28: Calculate Precision of Each Class

totalRecall = 0

rec = recall_score(y_test, y_preds.argmax(axis=1), average=None
)

for i in range(n_class):
 totalRecall += rec[i]
 print("For {} Recall: {:.2f}%".format(classes[i], rec[i]*100)
)
print("Macro Recall: {:.2f}%".format(totalRecall/n_class*100))

Listing A.29: Calculate Recall of Each Class

totalF1 = 0

f1 = f1_score(y_test, y_preds.argmax(axis=1), average=None)

for i in range(n_class):
 totalF1 += rec[i]
 print("For {} F1-score: {:.2f}%".format(classes[i], f1[i] *
100))
print("Macro F1-score: {:.2f}%".format(totalF1/n_class*100))

Listing A.30: Calculate F1-score of Each Class

180

model_name = 'senet154'
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,
pretrained='imagenet')

for param in senet.parameters():
 param.requires_grad = False

senet.last_linear = nn.Sequential(
 nn.Linear(2048, 128),
 nn.ReLU(inplace=True),
 nn.Linear(128, 5)).to(device)

#Load model
senet.load_state_dict(torch.load('/content/drive/MyDrive/SNsave
d_model/SN_' + str(fold_var) +'.h5'))

senet.last_linear = nn.Sequential(*[senet.last_linear[x] for x
in range(len(senet.last_linear) - 1)])

for param in senet.parameters():
 param.requires_grad = False

#Extract features
cnn_features = []
cnn_labels = []

for inputs, labels in trainloaders['train']:
 inputs = inputs.to(device)
 labels = labels.to(device)
 outputs = senet(inputs.float())

 for feature in outputs:
 cnn_features.append(np.array(feature))

 for label in labels:

cnn_labels.append(label)

#SVM classifier
svm = LinearSVC()
clf = CalibratedClassifierCV(svm)
clf.fit(cnn_features, cnn_labels)

svm_preds = []
svm_labels = []

for inputs, labels in testloaders['test']:
 inputs = inputs.to(device)

181

 labels = labels.to(device)
 cnn_output = senet(inputs.float())

 predicted = clf.predict_proba(cnn_output)
 for p in predicted:

svm_preds.append(p)

Listing A.31: SENet + SVM Model

model_name = 'senet154'
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,
 pretrained='imagenet')

for param in senet.parameters():
 param.requires_grad = False

senet.last_linear = nn.Sequential(
 nn.Linear(2048, 1024),
 nn.ReLU(inplace=True),
 nn.Dropout(0.5),
 nn.Linear(1024, 512),
 nn.ReLU(inplace=True),
 nn.Dropout(0.5),
 nn.Linear(512, 128),
 nn.ReLU(inplace=True),
 nn.Dropout(0.5),
 nn.Linear(128, 5)).to(device)

Listing A.32: SENet Model with 3 Hidden Layers

model_name = 'senet154'
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,
pretrained='imagenet')

for param in senet.parameters():
 param.requires_grad = False

senet.last_linear = nn.Sequential(
 nn.Linear(2048, 1024),
 nn.ReLU(inplace=True),
 nn.Dropout(0.5),
 nn.Linear(1024, 512),
 nn.ReLU(inplace=True),
 nn.Dropout(0.5),
 nn.Linear(512, 128),
 nn.ReLU(inplace=True),
 nn.Dropout(0.5),
 nn.Linear(128, 5)).to(device)

Listing A.33: SENet Model with 3 Hidden Layers Plus Dropout Layers

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background
	1.2 Problem Statements
	1.3 Aims and Objectives

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Leukemia
	2.1.1 Acute Lymphocytic Leukemia
	2.1.2 Acute Myelogenous Leukemia
	2.1.3 Chronic Lymphocytic Leukemia
	2.1.4 Chronic Myelogenous Leukemia

	2.2 Detection and Classification
	2.3 Morphology of Leukemia and Peripheral Blood Smear Findings
	2.4 Deep Learning
	2.4.1 Deep Supervised Learning
	2.4.2 Deep Unsupervised Learning
	2.4.3 Deep Reinforcement Learning
	2.4.4 Deep Semi-supervised Learning
	2.4.5 Deep Transfer Learning

	2.5 Types of Artificial Neural Networks
	2.5.1 Recursive Neural Network
	2.5.2 Recurrent Neural Network
	2.5.3 Convolutional Neural Network

	2.6 CNN Architecture
	2.6.1 Convolution Layer
	2.6.2 Pooling Layer
	2.6.3 Activation Function
	2.6.4 Batch Normalization
	2.6.5 Dropout
	2.6.6 Fully Connected Layer

	2.7 Types of CNN Architectures
	2.7.1 AlexNet
	2.7.2 ZFNet
	2.7.3 GoogLeNet
	2.7.4 ResNet
	2.7.5 ResNeXt
	2.7.6 SENet
	2.7.7 DenseNet

	2.8 Performance Metrics
	2.8.1 Accuracy
	2.8.2 Precision
	2.8.3 Recall
	2.8.4 F1-score
	2.8.5 Confusion Matrix
	2.8.6 ROC Curve

	2.9 Related Works

	CHAPTER 3
	3 METHODOLOGY
	3.1 Project Flow
	3.2 Project Requirements
	3.2.1 Hardware Requirements
	3.2.2 Software Requirements
	3.2.3 Programming Language Used
	3.2.4 Open-Source Libraries

	3.3 Dataset Acquisition
	3.4 Dataset Splitting
	3.5 Dataset Augmentation
	3.6 Model Training
	3.7 Model Evaluation
	3.8 Model Improvement
	3.9 Project Costs
	3.10 Project Management

	CHAPTER 4
	4 RESULTS AND DISCUSSIONS
	4.1 Binary Classification Problem for Inception-V3, ResNeXt. And SENet
	4.1.1 Fold 1
	4.1.2 Fold 2
	4.1.3 Fold 3
	4.1.4 Fold 4
	4.1.5 Fold 5

	4.2 5-class Classification Problem for Inception-V3, ResNeXt. And SENet
	4.2.1 Fold 1
	4.2.2 Fold 2
	4.2.3 Fold 3
	4.2.4 Fold 4
	4.2.5 Fold 5

	4.3 Fine-tuned SENet Models
	4.3.1 Fold 1
	4.3.2 Fold 2
	4.3.3 Fold 3
	4.3.4 Fold 4
	4.3.5 Fold 5

	4.4 Binary Classification Problem for SENet with 3 Hidden Layers Plus Dropout Layers
	4.4.1 Accuracy and Loss Against Number of Epochs
	4.4.2 Precision, Recall, and F1-score for Leukemia Subtypes Classification
	4.4.3 ROC Curve
	4.4.4 Confusion Matrix

	4.5 Discussion

	CHAPTER 5
	5 CONCLUSION AND RECOMMENDATIONS
	5.1 Project Review
	5.2 Project Findings
	5.3 Recommendations for Future Improvements
	5.4 Conclusion

	REFERENCES
	APPENDICES

