
 

 

 

AUTOMATED DETECTION AND CLASSIFICATION 

OF LEUKEMIA USING DEEP LEARNING 

 

 

 

 

 

 

 

LEE KYE FUNG 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of the degree of 

Bachelor of Engineering (Hons) Electronic Engineering 

 

 

 

 

 

Faculty of Engineering and Green Technology 

Universiti Tunku Abdul Rahman 

 

 

May 2022 



ii 

 

 

 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged.  I also declare that it has 

not been previously and concurrently submitted for any other degree or award at 

UTAR or other institutions. 

 

 

 

 

 

Signature : _________________________ 

 

Name : _________________________ 

 

ID No. : _________________________ 

 

Date  : _________________________ 

 

 

  

Lee Kye Fung 

1703320 

20/4/2022 

Aaron 



iii 

 

 

 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “AUTOMATED DETECTION AND 

CLASSIFICATION OF LEUKEMIA USING DEEP LEARNING” was prepared 

by LEE KYE FUNG has met the required standard for submission in partial fulfilment 

of the requirements for the award of Bachelor of Engineering (Hons) Electronic 

Engineering at Universiti Tunku Abdul Rahman. 

 

 

 

 

 

Approved by, 

 

 

Signature :   _________________________ 

 

Supervisor :   _________________________ 

 

Date  :   _________________________ 

 

 

  

Prof. Ts. Dr. Humaira Nisar 

26.4.2022



iv 

 

 

 

 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of the 

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku 

Abdul Rahman. Due acknowledgement shall always be made of the use of any material 

contained in, or derived from, this report. 

 

 

© 2022, LEE KYE FUNG. All right reserved. 

  



v 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

I would like to thank everyone who had contributed to the successful completion of 

this project.  I would like to express my gratitude to my research supervisor, Prof. Ts. 

Dr. Humaira Nisar and my moderator, Dr. Lee Yu Jen, for their invaluable advice, 

guidance and their enormous patience throughout the development of the research. 

 

In addition, I would also like to express my gratitude to my loving parent and 

friends who had helped and given me encouragement. I would also like to thank 

everyone who supported me along the way through the completion of this project. 

 

  

 

 

  



vi 

 

 

 

AUTOMATED DETECTION AND CLASSIFICATION 

OF LEUKEMIA USING DEEP LEARNING 

 

 

ABSTRACT 

 

 

Leukemia is a type of blood cancer that has been affecting the lives of many. The main 

procedure to diagnose and classify leukemia is through microscopic examination of 

blood smears, which can be costly, time-consuming, and labour-intensive. Hence, this 

project aims to produce an efficient way to detect and classify leukemia by using deep 

learning. In this project, transfer learning is implemented on three pre-trained deep 

learning models, namely Inception-V3, ResNeXt, and SENet models. They were 

trained to tackle two main tasks: binary classification between ALL and healthy cells, 

and 5-class classification between ALL, AML, CLL, CML, and healthy cells. The 

microscopic image samples of these classes are retrieved from two sources, including 

the Acute Lymphoblastic Leukemia Image Database 1 (ALL-IDB1) and American 

Society of Hematology (ASH) ImageBank. It is observed that the SENet model 

performed the best out of the three, hence it is selected to undergo further fine-tuning 

to improve its performance. With a slow converging feature selection process added 

with the dropout regularization technique, the SENet model can achieve an average 

testing accuracy of 99.84% and 84.48% in binary and 5-class classification problems.  
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Leukemia is a type of blood cancer that involves white blood cells (WBC), whereby 

immature WBC produced in the body will affect the bone marrow and the blood. They 

will then spread to other parts of the body, resulting in other deadly cancers. Leukemia 

can be classified based on its development speed: acute or chronic, and based on the 

types of cells involved: lymphoid and myeloid cells. Hence, there can be four subtypes 

of leukemia: acute lymphocytic leukemia (ALL), acute myelogenous leukemia (AML), 

chronic lymphocytic leukemia (CLL), and chronic myelogenous leukemia (CML). 

 

According to Ahmed, et al. (2019), the detection and classification of leukemia 

and its subtypes are usually done through a few techniques such as interventional 

radiology (IR), Array-based Comparative Genomic Hybridization (aCGH), Molecular 

Cytogenesis, and Long-Distance Inverse Polymerase Chain Reaction (LDI-PCR), but 

they may be limited by the image resolution and may take a lot of time, cost and effort 

to perform. Ergo, the main procedure to diagnose and classify leukemia is still through 

microscopic examination of blood smears.  

 

In a pursuit to efficiently detect and classify leukemia, deep learning is utilized 

in this project. Deep learning is beneficial in medical image analysis because it does 

not have human limitations such as fatigue and slow speed. They are also easy to 

deploy compared to employing professional radiologists or oncologists to perform 

examinations on the medical images (Ker, et al., 2018). The earliest talks of deploying 



 

deep learning in the medical field date back to 1995 where Lo, et al. proposed a CNN 

for lung nodule detection from chest X-rays. In 2016, Rajkomar, et al. used a pre-

trained GoogLeNet model to classify whether the chest x-ray image orientation is a 

lateral or frontal side of view and achieved an accuracy of almost 100%. Though it 

may be a simple task, it demonstrated the effectiveness of deep learning applications 

on medical images. From then onwards, more and more successful implementations 

of deep learning emerge, which includes the classification of 14 diseases from chest 

x-rays done by Rajpukar, et al. in 2017, Alzheimer’s Disease detection done by 

Hosseini-Asl, E., Gimel’farb, G. and El-Baz, A. in 2016, and diabetic retinopathy (DR) 

detection done by Pratt, et al. in 2016, just to name a few. All in all, detection and 

classification using deep learning is becoming more common in the medical field. 

 

The main driving force that helped spread the significance of deep learning is 

through annual challenges such as the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC), which started in 2010 until the present. It prompts researchers 

worldwide to best the previous model in a few challenges such as object localization, 

image classification, and object detection. Some state-of-the-art CNN image 

classification models that emerged from this challenge include AlexNet, DenseNet, 

Inception, ResNet, ResNeXt, and SENet, but it is just getting started. As technology 

advances, deep learning algorithms are also enabled to be deeper and smarter. The 

growing community in deep learning also emerges new innovative algorithms, 

improving the performance and feasibility of deep learning models for real-world 

applications. Furthermore, competitions like the one hosted by Kaggle can drive 

interest in many new or existing researchers to continuously push the boundaries of 

deep learning. In addition, the emerging term known as big data will also propel the 

evolution of deep learning algorithms due to the more extensive training set available. 

 

In a nutshell, this project will demonstrate how deep learning can accurately 

and efficiently detect and classify leukemia from microscopic images. The methods 

for performing and tackling common problems in deep learning are discussed in the 

following chapters. 

  



 

1.2 Problem Statements 

 

As aforementioned, microscopic examination of blood smears is still the standard 

technique to diagnose and classify leukemia. However, according to Bain (2015), The 

microscopic examination of blood smears requires a medically qualified pathologist 

or haematologist to perform, which implies that it can be costly, time-consuming, and 

labour-intensive. 

 

 Besides that, based on the statistics obtain from the National Cancer Institute 

(2021), all walks of life are susceptible to leukemia, with an estimation of 61090 new 

cases of leukemia where 23660 people will succumb to the disease. That makes up 

about 1 out of 3 people among the cases who will die of leukemia. Thus, a faster 

solution to detect and classify leukemia is vital as each subtype requires different types 

of medical treatment. 

 

 

 

1.3 Aims and Objectives 

 

This study aims to produce an efficient way of detecting and classifying leukemia by 

using deep learning. The objectives of this thesis are shown below: 

i) To select and train a suitable deep learning model which can detect leukemia 

cells from healthy cells, and classify them into their subtypes. 

ii) To fine-tune the selected model for a better performance rate in the detecting 

and classifying leukemia.  
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Leukemia 

 

Leukemia, also spelt as leukaemia, is a cancer of the blood cells. It is a disease that 

involves the leukocytes, also known as white blood cells (WBC). WBC are part of the 

human body’s immune system, responsible for fending off infections and other 

diseases. In leukemia, malignant WBC will be produced in the human body, affecting 

the bone marrow and the blood. This will cause the human immune system to become 

vulnerable, deteriorating the health of the body. Bone marrow failure caused by the 

abnormal WBC may also affect all three major cell lineages, resulting in haemorrhage, 

infections, and anaemia (Pejovic and Schwartz, 2002). In addition, the malignant WBC 

can also spread to other parts of the body, such as the brain, kidney, liver, lymph nodes, 

spleen, and nervous system, arising to other deadly forms of cancers (Shafique and 

Tehsin, 2018). 

 

 According to National Cancer Institute (2021), leukemia is a relatively 

common type of cancer that occupies 3.2% of new cancer cases in the United States 

(US). It is also estimated that in 2021, there will be an additional 61090 cases of 

leukemia where 23660 people will succumb to this disease. The percentage of deaths 

due to leukemia by age group in the United States based from the year 2014 to the year 

2018 is illustrated on a bar chart as shown in Figure 2.1. It is observed that the older 

age group has the highest mortality rate with the highest percentage of death between 

the age group of 75 to 84, the second-highest percentage of death between the age 

group of 65 to 74, and the third-highest percentage of death above the age of 84. This 
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is due mainly to their old age, whereby they have weaker immune systems to fend 

cancer. 

 

 
Figure 2.1: A Bar Chart Showing the Percentage of Deaths Due to Leukemia 

 

Leukemia can be classified into two different types based on its development 

speed: acute and chronic. In acute leukemia, the WBC cannot perform their normal 

function and will multiply very fast. On the other hand, in chronic leukemia, the WBC 

can still perform their normal function for a short period and multiply very slowly. 

However, chronic leukemia may pose health threats as it may go undiagnosed since 

they are indistinguishable from healthy WBC and will not produce any early symptoms. 

There are also two additional subtypes from each type of leukemia based on the types 

of cells involved: lymphoid cells and myeloid cells (Ahmed, et al., 2019). Lymphoid 

cells are responsible for producing lymphoid or lymphatic tissues that help build our 

immune system, whereas myeloid cells are cells that will soon be developed into red 

blood cells (RBC), WBC, or platelets (Mayo Clinic, 2021). Therefore, there are a total 

of four leukemia subtypes, namely acute lymphocytic leukemia (ALL), acute 

myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic 

myelogenous leukemia (CML). 
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2.1.1 Acute Lymphocytic Leukemia 

 

Acute Lymphocytic Leukemia (ALL) is a type of leukemia that is mostly observed 

among young children, but it may occur in adults as well (Shaheen, et al., 2021). In 

the US from 2013 to 2017, ALL may occur for 3 to 4 per 100,000 in population from 

the age of 0 to 14, while approximately 1 per 100,000 only in population with age older 

than 14, according to the Surveillance, Epidemiology, and End Results Program 

(SEER) Cancer Statistics Review (CSR) in 2020 by National Cancer Institute. ALL 

can be further subdivided into three subtypes according to the French-American 

British (FAB) classification system: lymphoblastic leukemia with homogeneous 

structure (L1), lymphoblastic leukemia with varied structure (L2), and Burkitt’s 

leukemia (L3) (Ladines-Castro, et al., 2016).  

 

ALL primarily affects the bone marrow and the blood. It multiplies and 

reproduces immature cells rapidly in the bone marrow, crowding out the healthy cells. 

The leukemia cells then spread through the bloodstream to other parts of the body, 

including the brain, nervous system, spleen, liver, and lymph nodes (Rehman, et al., 

2018). The symptoms of ALL are greatly similar to the flu, which includes signs of 

weakness, exhaustion, as well as bone and joint pain, which implies that diagnosing 

ALL is not an easy task (Bibi, et al., 2020). If timely treatment is not executed, ALL 

can progress very fast and take a life in a short span of a few months. 

 

 

 

2.1.2 Acute Myelogenous Leukemia 

 

Acute Myelogenous Leukemia (AML) is the most common type of leukemia that 

occurs primarily among adults. However, it may happen to children as well. AML is 

seen for approximately 1 per 100,000 in population from the age 0 to 19, while 9 to 10 

per 100,000 in population with age older than 19, in the US from 2013 to 2017 

according to the SEER CSR in 2020 by National Cancer Institute. There is a further 

subdivision of AML into eight subtypes according to the FAB classification system: 

acute myeloblastic leukemia with minimal differentiation (M0), acute myeloblastic 

leukemia without maturation (M1), acute myeloblastic leukemia with maturation (M2), 
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promyelocytic leukemia (M3), acute myelomonocytic leukemia (M4), acute 

monoblastic leukemia (M5a) or acute monocytic leukemia (M5b), acute erythroid 

leukemia (M6), and acute megakaryocytic leukemia (M7) (Ladines-Castro, et al., 

2016).  

 

AML is mainly caused by the production of immature WBC and blasts by the 

bone marrow, which may also produce abnormal RBC and platelets. The early 

symptoms of AML have many similarities like influenza, which include signs of fever, 

fatigue and tiredness, easy bruising or bleeding, shortness of breath, and pale skin (Bibi, 

et al., 2020).  

 

 

 

2.1.3 Chronic Lymphocytic Leukemia 

 

Chronic Lymphocytic Leukemia (CLL) is the most common type of leukemia that 

occurs among adults but is uncommon among children. There is no infection rate 

reported for ages below 25, but it is observed that CLL occurs for 13 to 14 per 100,000 

in population from the age of 25 and above, in the US from 2013 to 2017 according to 

the SEER CSR in 2020 by National Cancer Institute. A person who suffers from CLL 

may be asymptomatic for years and live without the need for treatment. However, CLL 

symptoms may take time to develop, including fever, weight loss, recurring infections, 

and night sweats (Bibi, et al., 2020).  

 

 

 

2.1.4 Chronic Myelogenous Leukemia 

 

Chronic Myelogenous Leukemia (CML) is also a type of leukemia that primarily 

occurs among adults. According to the SEER CSR in 2020 by National Cancer 

Institute, it is observed that CML occurs for approximately 1 per 100,000 in population 

from the age 0 to 19, while 4 to 5 per 100,000 in population with age older than 19, in 

the US from 2013 to 2017. Although CML is categorized as a chronic or slow 

progression type of leukemia, it may develop into an acute or rapid progression type 
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of leukemia, spreading quickly throughout the body. This development can be 

observed in 3 different phases: the chronic phase, accelerated phase, and blast phase 

(Bibi, et al., 2020). In the chronic phase, the leukemia is still steadily developing, and 

there may be no symptoms or have mild symptoms such as tiredness and a slight loss 

of weight. For the second phase, which is the accelerated phase, symptoms may be 

more obvious, such as increased tiredness, loss in weight, and a swollen stomach 

caused by an enlarged spleen. As leukemia worsens, it will then fall into the third phase, 

which is the blast phase. This phase is also known as the acute phase, whereby CML 

develops into AML. In this phase, the blood contains more than 30% of blast cells or 

immature WBC that fills the bone marrow and blood. The leukemia cells might also 

have spread to other parts of the body (Cancer Research UK, 2019). 

 

 

 

2.2 Detection and Classification 

 

The detection and classification of leukemia are undeniably crucial as each subtype 

requires different types of medical treatment. In this project, the main focus is to 

classify the subtypes of leukemia, mainly ALL, AML, CLL, and CML, using deep 

learning. However, the morphology of the subtypes and their further classifications 

will also be explained in the later parts.  

 

There are various advanced techniques to diagnose leukemia. One such 

technique is interventional radiology (IR), whereby minimally invasive procedures are 

performed by utilizing image-guided methods (Arnold, Keung and McCarragher, 

2019). However, the limitations of this technique are the resolution of the radio images 

as well as imaging modality sensitivity. On the other hand, there are different 

techniques such as Array-based Comparative Genomic Hybridization (aCGH), 

Molecular Cytogenesis, and Long-Distance Inverse Polymerase Chain Reaction (LDI-

PCR), but they require a great deal of hard work and time, and maybe costly  (Ahmed, 

et al., 2019). 

 

On that account, the standard technique in diagnosing leukemia is still through 

microscopic examination of blood smears. The subtypes are then classified based on 
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their morphological characteristics. The downside is that this procedure should be 

performed by highly trained and experienced persons such as a medically qualified 

pathologist or haematologist so that the most information from the blood smears can 

be obtained (Bain, 2005). Hence, it can still be time-consuming, labour-intensive, thus 

bears an exorbitant cost (Dwivedi, 2016).  

 

 

 

2.3 Morphology of Leukemia and Peripheral Blood Smear Findings 

 

Each subtype has its morphological features. However, before looking into the 

subtypes, it is important to recognize the blood with leukemia cells from healthy cells. 

Figure 2.2 shows the peripheral blood smears of healthy blood cells and the four 

subtypes of leukemia. It is observed that a normal and healthy blood cells contains 

RBC, a considerate amount of WBC, as well as platelets. On the contrary, in leukemia, 

normal cells are often outnumbered by the leukemia cells. 

 

 Generally, the findings on the peripheral blood smear of ALL is the presence 

of leukemic blast cells. They may include early erythroblast, megakaryoblasts, 

monoblasts, myeloblasts, promyelocytes, or a mixture of the population. The 

morphology of ALL can be described as having a high nucleocytoplasmic (NC) ratio, 

which is the ratio of the volume of the nucleus to the volume of the cytoplasm. It has 

a discoid or ovoid-shaped nucleus with little cytoplasm that is agranular and 

moderately basophilic (Löffler and Gassmann, 1994). Besides that, it also has 

inapparent nucleoli and a coarse or clumped chromatin. The morphology 

characteristics of its three subtypes are illustrated and tabulated in Table 2.1. On the 

other hand, in AML, one may observe multiple myeloblasts on its peripheral blood 

smears. The morphology features of AML typically are having large cells with scant 

granular cytoplasm, fine chromatin, and a discoid or ovoid-shaped nucleus with 2 to 4 

nucleoli. The cytoplasm may also have needle-shaped structures, called Auer rods. 

They are crystalline cytoplasmic inclusion that is produced from the abnormal fusion 

of azurophilic granules. The morphology characteristics of its eight subtypes are 

illustrated and tabulated in Table 2.2. 
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Furthermore, in CLL, smudge cells may be observed in the peripheral blood 

smears as neoplastic cells are fragile and might be smudged during the preparation of 

blood slides. The morphology features of CLL are that it has small neoplastic 

lymphocytes with scant cytoplasm. Its nuclei are also round or irregular in shape with 

clumped chromatin, as well as small nucleoli. Lastly, the findings on the peripheral 

blood smears of CML is that it has leucocytosis with left shift. This indicates that there 

is presence of immature granulocytes such as bands, metamyelocytes, myelocytes, and 

promyelocytes, as well as the presence of eosinophils and basophils (S, 2020). 

 

   
(a)                 (b) 

 

   
(c)               (d) 

 

 
(e) 

Figure 2.2: (a) Blood Smears of Healthy Blood Cells (Scotti, Labati and Piuri, 2011). 

(b) ALL (Scotti, Labati and Piuri, 2011). (c) AML (American Society of 

Hematology, n.d.). (d) CLL (American Society of Hematology, n.d.). (e) CML 

(American Society of Hematology, n.d.) 
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Table 2.1: Morphology of ALL Subtypes According to FAB Classification  

(S, 2020; Bain, 2015; Ladines-Castro, et al., 2016) 

Subtypes Illustration Description 

L1 

 

• Has a homogeneous blast cell 

population 

• Has a regular-shaped nucleus 

• Diffused or condensed chromatin 

• Minimal or no nucleoli 

• Cytoplasm is scanty and mild to 

moderately basophilic 

L2 

 

• Large blasts 

• Nuclei is shaped irregularly 

• Chromatin is structured 

heterogeneously and is weakly to 

strongly basophilic 

• Large nucleoli 

• Has more cytoplasm 

L3 

 

• Large-sized blasts 

• Nucleus is surrounded by a copious 

amount of chromatic vacuole 

• Chromatin is structured homogenously 

and granular 

• Has prominent nucleoli 

• Cytoplasm is moderately basophilic 
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Table 2.2: Morphology of AML Subtypes According to FAB Classification 

(Bain, 2015; Ladines-Castro, et al., 2016) 

Subtypes Illustration Morphology description 

M0 

 

• Medium-sized blasts 

• Circular-shaped nucleus 

• Has fine chromatin 

• Has prominent nucleoli 

• Has agranular and basophilic cytoplasm 

M1 

 

• High NC ratio 

• Medium-sized blasts 

• Has immature nuclei that is round in 

shape 

• Dispersed chromatin 

• May have one or more nucleoli 

• Cytoplasm may contain fine azurophilic 

granulation or Auer rods that are isolated 

M2 

 

• High NC ratio 

• Small to medium-sized blasts 

• Circular-shaped nucleus 

• Dispersed chromatin that is immature 

• May have one or more nucleoli 

• Basophilic cytoplasm and may contain 

primary  azurophilic granulation or Auer 

rods 

M3 

 

• Nucleus is bean-shaped or bilobed with a 

deep cleft 

• Abundant azurophilic granulation 

• Cytoplasm is weakly basophilic 

M4 

 

• Moderate NC ratio 

• Large blasts 

• Circular or kidney-shaped nucleus 

• Has prominent nucleoli 
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M5a 

 

 

 

 

 

 

 

M5b 

 
 

 

 

 

 

• Circular-shaped nucleus 

• Dispersed chromatin that is immature 

• May have one to three nucleoli 

• Cytoplasm is abundant and strongly 

basophilic 

• Auer rods may be present 

 

 

• Circular or kidney-shaped nucleus 

• Cytoplasm is weakly basophilic, highly 

granulated, and may contain vacuoles 

M6 

 

• Mushroom-shaped cells 

• Present as a circulating nucleated red 

blood cells (NRBC) 

M7 

 

• Has similar appearance to platelets 

• Eccentric nucleus 

• Dispersed chromatin 

• May have one to three nucleoli 

• Has agranular and basophilic cytoplasm 
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2.4 Deep Learning 

 

Deep learning (DL) is a sub-type of machine learning (ML) that is based on algorithms 

to learn in multiple layers of representations in a hierarchical structure in order to 

obtain a complex function that can extract the high-level features from the raw data 

(Deng and Yu, 2014; Mishra and Gupta, 2017). It is mainly inspired by how the nerve 

cells in the human brain work. Instead of nerve cells, DL models have artificial neurons 

that interconnect to build multiple layers of artificial neural networks (ANN). Each 

layer will provide its own interpretation of the input data to map them to their specific 

labels, without predefined rules designed by humans (Alzubaidi, et al., 2021). ANN 

mainly has three layers, including the input layer, hidden layer, and output layer. 

 

 
Figure 2.3: Architecture of ANN (Adapted from Mishra and Gupta, 2017) 

 

The implementation of DL can be found in most industries, and it is used in 

several types of applications from day-to-day tasks such as object detection, image 

recognition, speech recognition, and language translation, to improving human lives 

with cancer detection, natural disaster prediction, brain circuitry reconstruction, and 

predicting the aftermath of mutation in diseases (Alzubaidi, et al., 2021; LeCun, 

Bengio and Hinton, 2015). Performing classification tasks using DL is also a walk in 

the park as it is capable of learning feature sets on its own. Compared with 

conventional machine learning (ML), several stages are required before completing 

the classification tasks. These stages include data pre-processing, feature extraction, 

feature selection, learning, and lastly, classification. Inaccurate classification among 

labels may occur in ML due to the discriminatory feature selection (Alzubaidi, et al., 

2021). Figure 2.4 illustrates the difference between ML and DL. 
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Figure 2.4: Illustration of ML In Comparison with DL (Adapted from Alzubaidi, et 

al., 2021) 

 

Recent studies also prove that DL models had already surpassed humans in 

classifying images. This is observed in Figure 2.5, where the top-5 error rate of state-

of-the-art DL models is compared with human errors estimated to be 5.1% according 

to Russakovsky, et al. (2015). The top-5 error rate is the percentage of classification 

made by the model on a given image where the correct label is not on its top 5 

predictions. It is one of the methods used to evaluate machine learning models in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The annual challenge 

started from 2010 until present uses a subset of ImageNet with approximately 1000 

images for each of the 1000 classes. The images are split into 1.2 million for training, 

50 thousand for validation, and 150 thousand for testing (Krizhevsky, Sutskever and 

Hinton, 2017). The goal for each year is to reduce the error rate of the previous models. 

However, ImageNet had announced that starting from 2018, the classification of 3D 

objects will be involved (Wikipedia, 2021). Hence, the DL models that participated in 

ILSVRC, used for comparison in Figure 2.5, are dated until 2017 only. 

 

The three main techniques for DL include deep supervised learning, deep 

unsupervised learning, and deep reinforcement learning. There are also hybrid 

techniques such as semi-supervised learning, while another common method that is 

widely used is known as deep transfer learning. Deep transfer learning will be 

discussed more in-depth than other techniques as it will be utilized in this project. 
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Figure 2.5: ImageNet Top-5 Error Rate of DL Models Compared to Human Errors 

(Adapted from Alzubaidi, 2021) 

 

Table 2.3: DL Models and Their References 

DL models ILSVRC Results Reference 

SENet  2017 Winner Hu, et al., 2019 

ResNeXt 2016 1st Runner-up Xie, et al., 2017 

Inception-V4 - Szegedy, et al., 2017 

ResNet 2015 Winner He, et al., 2015 

Inception-V3 2015 1st Runner Up Szegedy, et al., 2016 

Inception-V2 - Ioffe and Szegedy, 2015 

DenseNet - Huang, et al., 2017 

Inception V1 (GoogLeNet) 2014 Winner Szegedy, et al., 2015 

VGGNet 2014 1st Runner up Simonyan and Zisserman, 

2015 

ZFNet 2013 Winner Zeiler and Fergus, 2014 

AlexNet 2012 winner Krizhevsky, Sutskever 

and Hinton, 2017 

XRCE  2011 winner Sanchez, et al., 2013 

NEC-UIUC 2010 winner Lin, et al., 2011 
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2.4.1 Deep Supervised Learning 

  

Deep supervised learning is the most common and simplest approach for DL. It is used 

to train datasets that are labelled. During training, the input data are applied together 

with the resultant output. The agent then predicts the input to the desired output, 

optimizing the network’s internal parameters using the loss function computed from 

previous predictions to minimize the error until the desired output is sufficiently met. 

A few algorithms used for deep supervised learning may include recurrent neural 

networks (RNN), convolutional neural networks (CNN), and deep neural networks 

(DNN). This approach benefits in retrieving data or producing a data output from the 

previous knowledge. However, it suffers from overstraining the decision boundary 

when the training set lacks samples from an existing class (Alzubaidi, et al., 2021). An 

illustration of deep supervised learning is shown below. 

 

 
Figure 2.6: Deep Supervised Learning (Qian, et al., 2020) 

 

 

 

2.4.2 Deep Unsupervised Learning 

 

Deep unsupervised learning is a type of DL approach that involves unlabelled data. 

This means that only input data is applied in the training process. Internal 

representation or notable features are learnt instead to uncover the underlying links in 

the input data. Several algorithms used for deep unsupervised learning include 

dimensionality reduction, generative adversarial networks, and, most popularly, 

clustering. The disadvantage of this approach is that it is complex, and the data output 
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generated may be inaccurate for tasks related to sorting data (Alzubaidi, et al., 2021). 

An illustration of deep unsupervised learning is shown below. 

 

 
Figure 2.7: Deep Unsupervised Learning (Qian, et al., 2020) 

 

 

 

2.4.3 Deep Reinforcement Learning 

 

Deep reinforcement learning is another approach for DL that involves the agent 

interacting with its environment. The agent will make a series of actions whereby, for 

each iteration, a reward function will be produced from the environment in which the 

agent uses it to optimize its state for the next iteration (Amiri, et al., 2018). This 

approach will perform an infinite amount of iterations with an objective to reduce loss 

while maximizing reward (Neftci and Averback, 2019). Deep reinforcement learning 

can be seen used to plan corporate strategy as well as industrial robots. This is because 

this approach can help identify the preferred action to obtain the maximum reward. 

However, it can take more time and computing power to achieve it in a larger 

workspace (Alzubaidi, et al., 2021). 

 

 
Figure 2.8: Deep Reinforcement Learning (Amiri, et al., 2018) 
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2.4.4 Deep Semi-supervised Learning 

 

Deep semi-supervised learning is a hybrid approach for DL that involves both labelled 

and unlabelled data. It contains the pros and cons of both supervised and unsupervised 

learning. This approach is favourable when labelled data are difficult to collect 

compared to the widely available unlabelled data. Hence, it can benefit DL where there 

is a lack of labelled data. The main drawback is that assumptions must be made so that 

this approach can work effectively. These assumptions include smoothness, cluster, 

and manifold assumptions (Ouali, Hudelot and Tami, 2020). One application of deep 

semi-supervised learning can be seen in classification tasks concerning text documents 

(Alzubaidi, et al., 2021). 

 

 

 

2.4.5 Deep Transfer Learning 

  

Following the widespread use of deep architectures, most notably the convolutional 

neural network (CNN), deep transfer learning becomes increasingly popular for DL. 

This is because it is an effective approach for DL on undersized annotated datasets 

where overfitting is a major issue (Tan, et al., 2018). In contrast, traditional approaches 

often demand vast amount of datasets, which also requires a lot of time and computing 

resources, to train and build a DL model from scratch (Alzubaidi, et al., 2021). The 

main idea behind transfer learning is to repurpose existing DL models trained 

previously for one task to another novel task (Best, Ott and Linstead, 2020). These DL 

models are also known as pre-trained models. 

 

The two common terminologies used in transfer learning are source and target, 

whereby each is further described by domain and task. The domain where knowledge 

will be learned is known as the source domain, 𝒟𝒟S , while the domain where the 

knowledge will be transferred to is known as the target domain, 𝒟𝒟T. The following 

notations and definitions will match closely on the survey paper done by Pan and Yang 

(2010).  
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Domain, denoted as 𝒟𝒟, can be expressed mathematically as 𝒟𝒟 = {ℱ, P(X)}. It 

is observed that there are two components in the expression: a feature space, ℱ, and 

an edge probability distribution, P(X), where X = {x1, ..., xm} ∈ ℱ (Tan, et al., 2018). 

For a task concerning binary classification problem, ℱ is the space with a collection 

of all feature vectors, xi is the ith feature vector corresponding to the ith term, while X 

is the particular samples used for training. Generally, if two domains are different, this 

could mean that either their feature spaces or the marginal probability distributions are 

different. Then, for a given 𝒟𝒟, a task, denoted as 𝒯𝒯, can be expressed mathematically 

as 𝒯𝒯 = { 𝒴𝒴, f(·)}. It also consists of two parts, where the first part is a label space, 𝒴𝒴. 

The second part is a predictive function, f(·), which is learned from the instances and 

label training pairs {xi, yi}, where xi ∈ X and yi ∈ 𝒴𝒴, and it can also be alternatively 

viewed as a conditional probability distribution P(y|x). The source task is denoted as 

𝒯𝒯𝑆𝑆  and the source predictive function is denoted as fS(·), whereas the target task is 

denoted as 𝒯𝒯𝑇𝑇 and the target predictive function can be denoted as fT(·). Recalling back 

to the binary classification problem, 𝒴𝒴 is the collection of all labels that contains true 

and false, and yi can have a value of either true or false (Weiss, Khoshgoftaar and 

Wang, 2016). 

 

With the notation defined above, 𝒟𝒟S can be formally expressed as 𝒟𝒟S = {(xS1, 

yS1), …, (xSm, ySm)}, where ySi ∈ 𝒴𝒴 is the class label corresponding to the data instance, 

xSi ∈ ℱS. Likewise, 𝒟𝒟T can be formally expressed as 𝒟𝒟T = {(xT1, yT1), …, (xTm, yTm)}, 

where yTi ∈ 𝒴𝒴 is the class label corresponding to the data instance, xTi ∈ ℱT. Finally, 

the definition of transfer learning can be formally described. For a given 𝒟𝒟S and its 

corresponding learning tasks 𝒯𝒯𝑆𝑆, and a 𝒟𝒟T and its corresponding learning tasks 𝒯𝒯𝑇𝑇 the 

goal of transfer learning is to enhance the performance of fT(·) by leveraging the 

knowledge in 𝒟𝒟S  and 𝒯𝒯𝑆𝑆 , where 𝒟𝒟S ≠ 𝒟𝒟T  or 𝒯𝒯𝑆𝑆 ≠ 𝒯𝒯𝑇𝑇  (Tan, et al., 2018). The 

performance of transfer learning can be categorized into positive transfer and negative 

transfer. For a given predictive learner fT1(·) that is trained with 𝒟𝒟T only, and another 

predictive learner fT2(·) that is trained with 𝒟𝒟S and 𝒟𝒟T combined, the transfer is said to 

be negative if fT1(·) performs better than fT2(·), whereas the transfer is said to be positive 

if fT2(·) performs better than fT1(·) (Weiss, Khoshgoftaar and Wang, 2016). Figure 2.9 

illustrates the transfer learning process. 
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There are two types of approaches to perform transfer learning using pre-

trained models: feature extraction, and fine-tuning. The former extracts the feature 

maps from the pre-trained model to be built on top of a shallow model, while the latter 

makes fine adjustments on the pre-trained model to increase its accuracy and 

performance whilst retaining the initial weights learned by the model for the new task 

(Mustafid, Pamuji and Helmiyah, 2020). All in all, transfer learning benefits in 

requiring lesser dataset and time for training while improving performance and 

network generalization (Alzubaidi, et al., 2021). 

 

 
Figure 2.9: Transfer Learning Process (Tan, et al., 2018) 

 

 

 

2.5 Types of Artificial Neural Networks 

 

Few of the commonly known artificial neural networks (ANN) include recursive 

neural network (RvNN), recurrent neural network (RNN), and convolutional neural 

network (CNN). CNN will be discussed in-depth compared to others as it is the most 

widely used type of artificial neural network for DL. 

 

 

 

2.5.1 Recursive Neural Network 

 

Recursive neural network (RvNN) is a type of artificial neural network that can predict 

outputs from data that are structured hierarchically. It can process information of 
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different sizes with various topologies such as trees and graphs compared to 

conventional techniques that are based on features, which use fixed-size vectors to 

encode the information relevant to the problem (Chinea, 2009). Socher, et al. (2011) 

provided some examples of the application of RvNN such as parsing scene images, 

which can be helpful for computer vision. Figure 2.10 illustrates how RvNN parses 

scene images.  

 

The approach of RvNN is to over-segment the image into smaller regions of 

interest, then the features of the image are extracted and mapped into a semantic space. 

The semantic representations of each region are then fed into the RvNN where it will 

compute a score. The ones with the highest score will be merged to the neighbouring 

units, producing a larger unit. A new feature and the class labels that represent the unit 

are generated for every large unit produced. The merging process happens recursively 

on the same neural network. As a result, an RvNN tree structure is implicitly created 

for each merging decision, whereby the final output is the complete scene image, 

which is said to be the root of the structure (Alzubaidi, et al., 2021). RvNN is still 

uncommon among the research community due to its intricately complex 

characteristics, requiring a steep learning curve (Chinea, 2009). 

 

 
Figure 2.10: Illustration of How RvNN Parses Scene Images (Socher, et al., 2011) 
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2.5.2 Recurrent Neural Network 

 

Recurrent neural network (RNN) is a type of artificial neural network that deals with 

information that is time-continuous by implementing feedback to feedforward neural 

networks (FFNN). The purpose of feedback neural networks is to possess the idea 

similar to the short-term and long-term memory demonstrated by humans. In the case 

of RNN, it uses past outputs to process the present input. Hence, RNN is mainly used 

in speech recognition, human activity recognition, and language translation (Rezk, et 

al., 2020). There are three collections of layers in RNN: input layers denoted as x, 

recurrent or hidden layers denoted as h, and output layers denoted as y.  

 

Though RNN may seem like it has a deep network, whereby the input at time 

𝑚𝑚 < 𝑡𝑡 propagates through multiple nonlinear layers before producing the output at 

time 𝑡𝑡. However, upon unfolding the network through steps of time, it has a temporal 

structure with shallow functions. These functions include input-to-hidden (𝑥𝑥𝑡𝑡 → ℎ𝑡𝑡), 

hidden-to-output (ℎ𝑡𝑡 → 𝑦𝑦𝑡𝑡), and hidden-to-hidden (ℎ𝑡𝑡−1 → ℎ𝑡𝑡) (Pascanu, et al., 2014). 

RNN can be unfolded into different types of structure as shown in Figure 2.11: one-

to-many, many-to-one, and many-to-many. An RNN is called a deep transition RNN 

if additional nonlinear layers are stacked within the hidden layer; it is called a deep 

output RNN if additional nonlinear layers are stacked between the output and the 

hidden layer (Rezk, et al., 2020). 

 

 
Figure 2.11: (a) Typical RNN Structure (b) One-To-Many Temporal Structure of 

RNN (c) Many-To-One Temporal Structure of RNN (d) Many-To-Many Temporal 

Structure of RNN (Adapted from Rezk, et al., 2020; Su and Li, 2019) 
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2.5.3 Convolutional Neural Network 

 

Convolutional neural network (CNN, or ConvNet) is a type of neural network designed 

specifically to process two-dimensional inputs, which includes images and videos. It 

is the first artificial neural network that can truly accomplish DL where it successfully 

trained hierarchically structured layers in a robust way (Mishra and Gupta, 2017). An 

illustration of the CNN architecture is shown in Figure 2.12. It is an architecture 

inspired by the structure of the visual system of humans and animals, discovered in 

1962 by Hubel and Wiesel, and digitalized in 1980 by Fukushima.  

 

Through the discovery from the receptive fields of the cells in the primary 

visual cortex of a cat, Hubel and Wiesel proposed a hierarchy model of the visual 

neural network. The structure starts from the lateral geniculate body (LGB) to simple 

cells, followed by complex cells, lower-order hypercomplex cells, and finally, to the 

higher-order hypercomplex cells (Fukushima, 1980). Then, Fukushima presented an 

artificial neural network model called Neocognitron that followed the works of Hubel 

and Wiesel. Neocognitron was one of the first models that can be simulated on a 

computer. It is also considered the earliest version of CNNs since it was based on the 

hierarchical, multi-layered structure of neurons for image processing (Shamsaldin, et 

al., 2019).  

 

CNNs are still obscured from the public until 1990. LeCun, et al. (1990) 

brought the idea to the limelight by using a multi-layered artificial neural network, 

known as LeNet, to recognize and classify handwritten digits. LeNet was the first CNN 

architecture that is able to perform image classification using deep learning.  It utilizes 

an algorithm known as back-propagation to train the model, allowing patterns to be 

recognized from raw pixels. Though LeNet is incapable of solving complex 

classification problems, it instilled interest among the research community, paving the 

way for upcoming CNNs (Shamsaldin, et al., 2019).  

 

One of the main interests in employing CNNs is the concept of shared weights, 

which reduced the number of parameters that had to be learned, enabling a better 

generalization and avoiding overfitting problems. The utilization of temporal and 

spatial relationships in the CNN architecture is also an effort in reducing the number 
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of parameters (Mishra and Gupta, 2017). Besides that, the classification stage is also 

combined with the feature extraction stage, which expedites the training process and 

ensuring the optimum output. Furthermore, CNNs also allows large-scale networks to 

be implemented easier compared to other types of neural networks (Alzubaidi, et al., 

2021). Hence, due to the exceptional performance that CNNs is able to provide, it is 

currently widely applied in multiple applications such as face detection, object 

detection, image classification, facial expression recognition, speech recognition, and 

so on (Indolia, et al., 2019). 

 

 
Figure 2.12: CNN Architecture (Adapted from Mishra and Gupta, 2017) 

 

 

 

2.6 CNN Architecture 

 

The typical architecture of CNN consists of several alternative layers of convolution 

layers and pooling layers, followed by activation function or non-linearity layer, and 

lastly, a fully connected layer (Indolia, et al., 2018). Other layers such as batch 

normalization and dropout are also added as regulatory units to improve the 

performance of CNN (Khan, et al., 2020).  

 

The input format of CNN is a three-dimensional vector. The dimensions 

include height, width, and depth. The height and width will always have an equal 

length such that the three-dimensional input can be expressed as 𝑎𝑎 × 𝑎𝑎 × 𝑚𝑚, where 𝑚𝑚 

is the channel number. Figure 2.13 illustrates an example of image classification using 

CNN architecture (Alzubaidi, et al., 2021). 
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Figure 2.13: Image Classification Using CNN Architecture (Adapted from Alzubaidi, 

et al., 2021) 

 

 

 

2.6.1 Convolution Layer 

 

The convolutional layer is the core layer of the CNN architecture (Alzubaidi, et al., 

2021). As the name suggests, it utilizes convolution, an operation that is widely used 

in applications such as image and signal processing, digital data processing, computer 

vision, and other mathematical problems. The convolution operation is a mathematical 

process that generates the third function from two primary functions f and g. This third 

function is the expression that describes how one of the functions modifies the other, 

providing the overlapping area between the two functions (Behl, Bhatia and Puri, 

2014). An illustration of the convolution between two functions is shown in the figure 

below.  

 

 
Figure 2.14: Convolution Between Two Functions (Pihlajamäki, 2009) 
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According to Behl, Bhatia and Puri (2014), the convolution operation between the 

functions f and g, written with an asterisk (*) as the operator, can be mathematically 

defined as shown below. 

 

(𝑓𝑓 ∗ 𝑔𝑔)(𝑡𝑡) ≔ � 𝑓𝑓(𝜏𝜏)𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
                                     (2.1) 

                    ≔ � 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
                                     (2.2) 

 

As shown in the expression, convolution can be defined as integrating the outcome 

after one function multiplied by another that is reversed and shifted (Behl, Bhatia and 

Puri, 2014).  

 

In CNNs, convolution operations are used to perform feature extraction. The 

convolutional layers contain convolutional filters, also known as kernels, to perform 

the convolution operations. The number of kernels used is typically 32 to 512 so that 

features can be learned and in parallel using 32 to 512 ways to see the input data 

(Brownlee, 2019). The kernel is a grid of numbers, where each value in the grid is 

known as weights, and it is used to convolve the array of numbers at the input, also 

known as tensors. The initial weights of the kernel are selected arbitrarily but will be 

adjusted after each batch of training (Alzubaidi, et al., 2021). The convolution 

operation is determined by a few hyperparameters of the kernel such as size, number, 

and stride. The common choice for the size of the kernel is typically 3 × 3, but it can 

also be 5 × 5 , or 7 × 7 . On the other hand, the number of the kernel is decided 

depending on the complexity of the datasets. Besides, the stride is typically set as 1 

pixel, meaning that the kernel will shift 1 pixel for each iteration of the convolution 

operation. Still, a larger stride can also be used to achieve sub-sampling of the feature 

map (Yamashita, et al., 2018). 

 

To expand the knowledge on convolution operation in CNNs, the following 

example will be used. Given an 5 × 5  grey-scaled image convolving a kernel of 

arbitrary weights with a size of 3 × 3 pixel and stride of 1 pixel as shown in Figure 

2.15. For each iteration of convolution operation, the kernel will perform horizontal 

and vertical shifts over the input tensor, dissecting the input image into smaller regions 
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called the receptive fields while evaluating the dot product between the receptive field 

and the kernel weights. The feature map generated is the output of the dot products. 

 

 
Figure 2.15: Convolution Operation Between a Kernel and An Input Tensor 

(Adapted from Reynolds, 2019; Yamashita, et al., 2018) 

 

Since the convolution operation is done without padding, the feature map 

generated appears to have a reduced height and width compared to the input tensor. 

This will significantly reduce the performance of CNN if the size of feature maps keeps 

getting smaller for each complete convolution operation. However, this problem can 

be easily solved with the help of the padding technique. By zero-padding the input 

tensor, the outermost input tensor can then convolve with the centre of the kernel, 

allowing the feature map to retain the size of the input tensor. 

 

 
Figure 2.16: Zero Padding Before Performing Convolution Operation (Adapted from 

Reynolds, 2019; Yamashita, et al., 2018) 

 

All in all, the convolutional layer is the reason why CNNs are preferred over other 

neural network architectures because they manifest the ability of shared weights, 

which avoids the need to learn weights for each available neuron in the layer. Hence, 

the time required for training is reduced. In addition, since the number of weights 
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between two neighbouring layers is typically less, the weights can be stored in a 

sufficiently small amount of memory, which reduces the computational cost for 

training compared to other neural network models. 

 

 

 

2.6.2 Pooling Layer 

 

The pooling layer is responsible for down-sampling the feature map that is generated 

from the convolutional layer (Yamashita, et al., 2018). The pooling operation works 

by gathering the dominant response within a region of interest and include them in the 

output vector, thereby shrinking the resolution of the feature map to generate a smaller 

feature map (Albelwi and Mahmood, 2017; Alzubaidi, et al., 2021). This resolution 

reduction helps decrease the number of learnable parameters and introduces 

translational invariances to small shifts and distortions (Indolia, et al., 2018; Yamashita, 

et al., 2018). However, the main drawback of the pooling layer is that it may reduce 

the performance of the CNN because it approximates the location of the features 

(Alzubaidi, et al., 2021; Khan, et al., 2020). The hyperparameters of the pooling layer 

are also somewhat similar to that of the convolutional layer. These hyperparameters 

include the size of the filter, padding, and stride (Yamashita, et al., 2018). 

 

A few pooling techniques can be employed in the pooling layer, but those 

commonly used are max pooling and global average pooling (Alzubaidi, et al., 2021). 

Max pooling works by extracting the maximum value of the region of interest and 

generates an output vector based on those values. The typical filter size of max pooling 

used is 2 × 2. The striding of the filter is also commonly set to 2, which will reduce 

the resolution of the feature map by twice the original size. On the other hand, global 

average pooling works by averaging all the elements in the feature map, thus 

generating a feature map of size 1 × 1  pixel. It is usually used prior to the fully 

connected layers. By utilizing global average pooling, trainable parameters will be 

reduced and input of various sizes can be fed into the CNN (Yamashita, et al., 2018). 

Both pooling operations only affect the height and width but not the depth of the 

feature map. An illustration of both pooling operations is shown in Figure 2.17. 
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Figure 2.17: Illustration of Max Pooling and Global Average Pooling (Adapted from 

Alzubaidi, et al., 2021; Yamashita, et al., 2018) 

 

 

 

2.6.3 Activation Function 

 

Activation functions are used to map the input to the output, and it also decides whether 

to activate a neuron or not by computing the input neuron’s weighted sum and its bias 

(Alzubaidi, et al., 2021; Szandała, 2020). There are two types of activation function: 

linear activation function that provides a constant output, and non-linear activation 

function, which is widely used in building neural networks due to the variations they 

create. A non-linear activation function is differentiable, which makes it useful for 

backpropagation algorithms. It also enables network generalization, allowing the 

network to adapt to different types of data (Feng and Lu, 2019). 

 

The most commonly used non-linear activation functions are sigmoid, tanh, 

and the popularly used rectified linear unit (ReLU). The sigmoid is a function that 

takes in real numbers as its input and generates an output that ranges between 0 and 1 

(Alzubaidi, et al., 2021). According to Feng and Lu (2019), it can be mathematically 

expressed as shown below.  

 

𝑓𝑓(𝑥𝑥)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1

1 + 𝑒𝑒−𝑥𝑥
                                            (2.4) 

 

The sigmoid function curve, as shown in Figure 2.18 has an S-shape, revealing that 

the slight shifts in the input can significantly affect the output when the input is near 

0. However, when the input is diverging away from 0, the output response obtained is 
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less pronounced. This will pose a problem known as “vanishing gradients” where the 

gradient becomes smaller to the point that it reaches its asymptotic ends, and the neural 

network is said to be saturated and will stop learning further (Rakitianskaia and 

Engelbrecht, 2015). Hence, it is important to carefully initialize the sigmoid function’s 

weights so that saturation will not happen (Feng and Lu, 2019). 

 

 
Figure 2.18: Sigmoid Function and Its Derivative (Omkar, 2019) 

 

Next, the tanh function or Tangent Hyperbolic Function is a function that is 

similarly like the sigmoid function where it takes in real numbers as an input, but it 

generates an output that ranges between -1 and 1 (Alzubaidi, et al., 2021). According 

to Feng and Lu (2019), it can be mathematically expressed as shown below.  

 

𝑓𝑓(𝑥𝑥)𝑡𝑡𝑡𝑡𝑡𝑡ℎ =
𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
                                               (2.3) 

 

The curve of the tanh function and its derivative is illustrated in the figure below.  

 

 
Figure 2.19: Tanh Function and Its Derivative (Omkar, 2019) 
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The “vanishing gradient” in the sigmoid function can also be observed in the tanh 

function. However, tanh function is able to concentrate the data and allows an easier 

training process because the output's mean is near 0 (Feng and Lu, 2019). 

 

Lastly, ReLU is a function that outputs the input data if it is positive, and 

generates a zero if the input data is negative. According to Feng and Lu (2019), it can 

be mathematically expressed as shown below. 

 

𝑓𝑓(𝑥𝑥)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = max(0, 𝑥𝑥) = �𝑥𝑥, 𝑥𝑥 > 0 
0, 𝑥𝑥 < 0                                  (2.4) 

 

The curve of the ReLU function and its derivative is illustrated in the figure below.  

 

 
Figure 2.20: ReLU Function and Its Derivative (Szandała, 2020) 

 

The benefits of utilizing the ReLU function are that the “vanishing gradient” 

problem observed in the activations discussed earlier is omitted. It also reduces the 

computational load that significantly speeds up the training process. However, when a 

larger gradient passes through the network using the backpropagation algorithm, the 

weights of the neurons for negative inputs will not be adjusted, or in another sense, the 

neurons become inactive and “die” (Feng and Lu, 2019; Szandała, 2020). This is 

known as the “Dying ReLU” problem (Alzubaidi, et al., 2021). The solution to this 

problem is to use one of the multiple variants of the ReLU functions, such as the Leaky 

ReLU and the Parametric ReLU (PReLU). In the Leaky ReLU, a small constant 𝛼𝛼, 

typically with a value of 0.01, is added to ensure that the negative inputs are not 
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ignored by creating a small incline at the negative side of the function (Szandała, 2020). 

According to Feng and Lu (2019), it can be mathematically expressed as shown below. 

 

𝑓𝑓(𝑥𝑥)𝑅𝑅𝑅𝑅𝑡𝑡𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 𝑥𝑥, 𝑥𝑥 > 0 
𝛼𝛼𝑥𝑥, 𝑥𝑥 < 0                                    (2.5) 

 

On the other hand, PReLU is somewhat similar to the Leaky ReLU but the value of 𝛼𝛼 

is learned through the training process (Feng and Lu, 2019). According to Feng and 

Lu (2019), it can be mathematically expressed as shown below. 

 

𝑓𝑓(𝑥𝑥)𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = � 𝑥𝑥, 𝑥𝑥 > 0 
𝛼𝛼𝑥𝑥, 𝑥𝑥 < 0                                         (2.6) 

 

The figure below illustrates the curve of the Leaky ReLU and the PReLU functions. 

 

 
Figure 2.21: Leaky ReLU and PReLU Functions (Omkar, 2019) 

 

 

 

2.6.4 Batch Normalization 

 

Batch normalization is used to reduce the shift in network activation distribution 

caused by the change in network parameters in the course of training. This shift can 

also be called the internal covariate shift (Ioffe and Szegedy, 2015). When the shift is 

very high, the model will take more time to converge the inputs from multiple neurons 

to their target neurons (Mpitsos and Burton, 1992). Hence, batch normalization 

addresses the issue by normalizing the output at each layer such that the mean is 

subtracted and the standard deviation is divided from it (Alzubaidi, et al., 2021). 
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According to Ioffe and Szegedy (2015), batch normalization can be mathematically 

expressed as shown in Equation 2.7. The normalized feature-map is denoted as 𝑥𝑥�𝑠𝑠 

while the input feature-map is denoted as 𝑥𝑥𝑠𝑠. The mini-batch mean and variance for 

the feature maps are denoted as 𝜇𝜇𝐵𝐵  and 𝜎𝜎𝐵𝐵2 respectively. Furthermore, 𝜖𝜖 is added to 

prevent being divided by zero, allowing for numerical stability. 

 

𝑥𝑥𝚤𝚤� =
𝑥𝑥𝑠𝑠 − 𝜇𝜇𝐵𝐵
�𝜎𝜎𝐵𝐵2 + 𝜖𝜖

                                                        (2.7) 

 

Batch normalization benefits in accelerating the speed to train the network, improving 

network generalization, and allows for a faster training rate (Bjorck, et al., 2018). 

 

 

 

2.6.5 Dropout 

 

Dropout is a method that addresses overfitting issues and improves network 

generalization by introducing regularization into the network (Khan, et al., 2020). 

Overfitting is when a network matches the training data too well and predicts poorly 

on the testing data. In other words, the training data, including any noise in it, are 

memorized instead of learning their abstract features (Ying, 2019). Hence, dropout is 

utilized to randomly select nodes and remove them, along with their connections, from 

the network. The hyperparameter to control how high the intensity of the dropout 

should be is known as the dropout rate 𝑝𝑝. There will be no dropout when 𝑝𝑝 = 1, while 

a lower 𝑝𝑝  will have a higher intensity of dropout. The typical value of 𝑝𝑝  ranges 

between 0.5 and 0.8. An illustration of how dropout works is shown in Figure 2.22. 

After dropout, various thinned networks will be generated, but only one network with 

smaller weights will be used. The selected network is therefore regarded as a close 

approximation to all of the network that is proposed. The main drawback of applying 

dropout is that it elongates the training time of 2 to 3 times compared to training a 

standard network (Srivastava, et al., 2014). 
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Figure 2.22: Illustration of Dropout (Adapted from Srivastava, et al., 2014) 

 

 

 

2.6.6 Fully Connected Layer 

 

The fully connected layer is commonly found at the end of a CNN architecture 

(Alzubaidi, et al., 2021). This layer consists of one or more dense layers whereby each 

node of the layers is interconnected with one another, with learnable weights. The input 

of this layer is typically the flattened output from the previous layer, which is an array 

of numbers that is one-dimensional (1D). Whereas the output of this layer is the 

probability to the class labels given that the task at hand is a classification problem. 

The last layer of the fully connected layer usually has the number of nodes that is the 

same as the number of classes (Yamashita, et al., 2018). 

 

 

 

2.7 Types of CNN Architectures 

 

Following the rise of the LeNet, more and more deep CNN architectures started to 

surface to best the benchmark set by their predecessors. ILSVRC is one of the main 

driving forces in this advancement, which enabled the birth of a few state-of-the-art 

CNN architectures such as AlexNet, ZFNet, GoogLenet, ResNet, ResNeXt, SeNet, 

and DenseNet. 
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2.7.1 AlexNet 

 

AlexNet was proposed by Krizhevsky, Sutskever and Hinton in 2012 and won first 

place in ILSVRC 2012 with a minimum 15.3% top-5 error rate, averaging around 

16.4%. Although LeNet is the pioneer of deep CNN architecture, AlexNet was able to 

perform better than LeNet in tasks related to recognizing and classifying images. 

AlexNet was able to tackle the tasks even with images with diverse classes, while 

LeNet is limited to handwritten digits (Khan, et al., 2020). Thus, AlexNet surpassed 

LeNet, and it is regarded as the first deep CNN architecture.  

 

AlexNet has a deeper network than LeNet, with three additional layers from 

LeNet that only has five layers. This enables AlexNet to be applicable in images with 

various types of categories. The increase in depth can improve network generalization, 

but there will be a greater chance of overfitting issues. This issue was able to be 

overcome by implementing dropout, local response normalization, as well as 

overlapping pooling (Khan, et al., 2020; Krizhevsky, Sutskever and Hinton, 2017). 

Furthermore, non-saturating activation functions such as ReLU function is also used 

to avoid the “vanishing gradient” problem, and enhancing the convergence rate of the 

network (Alzubaidi, et al., 2021). In addition, AlexNet was also trained on two 

Graphical Processing Units (GPU), both NVIDIA GTX 580 with 3GB of memory, to 

accelerate the training process of the network. Moreover, to further improve its 

performance, larger filter sizes such as 5 × 5 and 11 × 11 are utilized at the first few 

layers (Khan et al., 2020). The figure below illustrates the architecture of AlexNet. 

 

 
Figure 2.23: AlexNet Architecture (Tsang, 2018) 
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2.7.2 ZFNet 

 

ZFNet was proposed by Zeiler and Fergus in 2013 and emerges as the winner of 

ILSVRC 2013 with a top-5 error rate of 11.7%. Before Zeiler and Fergus introduced 

the multilayer Deconvolutional Neural Network (DeconvNet), the insights on how the 

CNN can achieve its performance are unknown, prompting to train CNNs in a heuristic 

approach. With DeconvNet, the internal activity of the network can be visualized, 

allowing the evolution of features to be observed so that potential problems can be 

diagnosed and debugged easier (Zeiler and Fergus, 2014). 

 

 DeconvNet still operates like a standard forward pass CNN, but the locations 

of convolutional and pooling layers are swapped. This approach allows image patterns 

to be visually observable and reveals the feature representations learned at each layer 

in a neuron-level interpretation. Zeiler and Fergus demonstrated the idea by 

experimenting with it on AlexNet and came out with the architecture as shown in 

Figure 2.24. They discovered that most of the neurons are inactive with a few active 

neurons in the network. They then tweak the model and are able to achieve a top-5 

error rate of 14.8% by visualizing and adjusting the network parameters (Khan, et al., 

2020). All in all, the concept behind ZFNet is much like supervised learning whereby 

visualizations are used to monitor how the model is learning, and then debugging or 

tweaking the network parameters to achieve the desired performance (Alzubaidi, et al., 

2021). 

 

 
Figure 2.24: ZFNet Architecture (Zeiler and Fergus, 2014) 
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2.7.3 GoogLeNet 

 

GoogLeNet, also known as Inception-V1, was proposed in 2014 by researchers at 

Google in collaboration with a few other universities. It was the winner of ILSVRC 

2014 with a top-5 error rate of 6.67%. With an ambition to achieve a lower power 

consumption, reducing memory usage, and decrease the number of trainable 

parameters while maintaining a minimum budget, Szegedy, et al. proposed the idea of 

an inception module that performs feature extraction at multiple scales using split, 

transform, and merge functions. This idea is similar to the Network in Network (NIN) 

architecture proposed by Lin, et al. in 2013, in which micro neural networks are used 

to replace the conventional convolutional layers. Instead, GoogLeNet used smaller 

blocks of filters consisting of several sizes such as 1 × 1, 3 × 3, and 5 × 5 to replace 

the convolutional layers. Spatial information from the roughest to the finest detail at 

various scales are then learned by the blocks. However, using a larger filter such as the 

5 × 5 cause the network to suffer from representational bottleneck whereby useful 

information may be lost due to the significant reduce in feature space (Alzubaidi, et 

al., 2021).  

 

On the other hand, the convolutional filters of size 1 × 1 pixel is heavily used 

in the GoogLeNet architecture, and they are placed before kernels with a larger size to 

remove bottlenecks during computation. This approach allows the depth and width of 

the network to be increased without incurring substantial performance penalties. 

(Szegedy, et al., 2015). Furthermore, GoogLeNet utilizes an architecture that is 

sparsely connected instead of a fully connected one. This is because the fully 

connected architecture has limitations in hardware implementations due to their higher 

complexity, which requires a larger footprint, thus resulting in higher power 

consumption (Ardakani, Condo and Gross, 2017). With a sparsely connected 

architecture, the computational cost can be reduced by neglecting channels that are 

irrelevant, as well as rectifying the problem of having redundant information. The 

downside of this topology is that any required modifications need to be done from 

module to module. In addition, contrary to the use of a fully connected layer in the last 

layer as observed in AlexNet and ZFNet, a global average pooling layer is used instead 

to reduce the density of the connections (Khan, et al., 2020). These fine-tunings on the 

parameters are able to significantly reduce a total of 12 million trainable parameters 
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compared to AlexNet (Indolia, et al., 2018). On top of that, auxiliary classifiers are 

also implemented to improve the convergence rate of the network (Khan, et al., 2020). 

With that said, the overall architecture of GoogLeNet contains a total of 22 layers with 

almost 100 independent building blocks to build the network, and it is shown in the 

figure below. 

 

 
Figure 2.25: GoogLeNet Architecture (Szegedy, et al., 2015) 
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 In hopes to tackle the problems encountered in GoogLeNet, Szegedy, et al. had 

given the architecture a few upgrades, namely Inception-V2 in 2015, Inception-V3 in 

2015, and Inception-V4 in 2016. Inception-V2 is used to overcome representational 

bottlenecks by factorizing the larger convolutional filters to smaller in size. An 

example would be to reduce the filter of size 5 × 5 into two filters of size 3 × 3 as 

shown in the figure below. 

 

  
(a)      (b) 

 

Figure 2.26: (a) Unfactorized Inception Module (b) Factorized Inception Module 

Where Filter Of Size 5 × 5 Is Replaced with Two Filters of Size 3 × 3  

(Szegedy, et al., 2015) 

 

This factorization also helped to reduce the number of trainable parameters by weight 

sharing, and is able to effectively reduce the computational cost by 28%. In addition, 

the filter of size 𝑛𝑛 × 𝑛𝑛 can be replaced with asymmetric convolutional filter such that 

a filter of size 1 × 𝑛𝑛 followed by a filter of size 𝑛𝑛 × 1 is used. Figure 2.27 shows a 

filter of size 3× 3 replaced with a filter of size 1 × 3 followed by a filter of size 3 × 1. 

This approach can further reduce the computational cost by 33%. For a coarser grid, 

the asymmetric convolutional filters are expanded instead of stacking on top of each 

other to produce sparse representations of multiple dimensions. The expanded 

Inception module is shown in Figure 2.28. All in all, Inception-V2 is able to obtain a 

top-5 error rate of 4.8% (Szegedy, et al., 2015). 

 

Inception-V3 is, in a sense, Inception-V2 but with a few more upgrades. It uses 

the Root Mean Square Propagation (RMSProp) optimizer, and performs label 
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smoothing to improve model regularization. It also utilizes factorized convolutional 

filters of size 7 × 7, and batch normalized auxiliary classifiers to accelerate the rate of 

convergence. All these newer upgrades enabled Inception-V3 to obtain a top-5 error 

rate of 3.58% (Szegedy, et al., 2015). 

 

 
Figure 2.27: Inception Module with Asymmetric Convolutional Filters  

(Szegedy, et al., 2015) 

 

 
Figure 2.28: Expanded Inception Module (Szegedy, et al., 2015) 

 

 The evolution of Inception-V4 came about when Szegedy, et al. found out that 

the previous networks looked unnecessarily complicated. In this version, the Inception 

modules are more uniform, and a few reduction modules are added for grid reduction. 

This improvement allows Inception-V4 to obtain a top-5 error rate of 3.08% (Szegedy, 

et al., 2016).  
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2.7.4 ResNet 

 

Residual Network (ResNet) was proposed by He, et al. in 2015 and won ILSVRC 2015 

with a top-5 error rate of 3.57%. There are multiple types of ResNet according to the 

number of layers available in the network, typically from 34 to 1202 layers, and the 

network that won the challenge consists of 152 layers. The main objective of this 

network is to address the vanishing gradient issue that is commonly encountered when 

training deep neural networks (Khan, et al., 2020). To achieve this objective, skip 

connections that connect a residual block's input to its output are implemented. The 

residual block, consisting of a feedforward network and a skip connection, is the 

building block of ResNet and is shown in Figure 2.29. With the implementation of 

skip connections, the lower-level features can be preserved and the performance can 

be prevented from deteriorating, as more layers are added (Wu, et al., 2020). 

 

 
Figure 2.29: The Building Block of ResNet (He, et al., 2015) 

 

 

 

2.7.5 ResNeXt 

 

Aggregate Residual Transform Network, or popularly known as ResNeXt was 

proposed by Xie, et al. in 2016, which won ILSVRC 2016 with a top-5 error rate of 

3.03%. It utilizes the idea of the split, transform, and merge functions similar to that 

in the architecture of Inception networks. However, in addition to the existing width 

and depth dimensions, Xie, et al. introduced a new dimension called cardinality, which 

corresponds to the size of the set of transformations. This is an improvement from the 

Inception networks whereby the need to modify the transformation branches from 

module to module is omitted (Khan, et al., 2020). Moreover, an experiment was 

conducted by Xie, et al., which shows that the increase in cardinality is able to improve 
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the accuracy in image classification. Besides Inception, ResNeXt also utilized residual 

learning from ResNet to have a better convergence and adopted VGGNet’s deep 

homogenous topology with the simplified architecture of GoogLeNet by configuring 

spatial resolution of the Inception modules to 3 × 3 filters (Alzubaidi, et al., 2021). 

The building block of ResNeXt is shown in the figure below. 

 

 
Figure 2.30: Building Block of ResNeXt with Cardinality of 32 (Xie, et al., 2017) 

 

 

 

2.7.6 SENet 

 

ILSVRC 2017 was won by Hu, et al., who proposed Squeeze-and-Excitation Network 

(SENet) in 2017, and obtained a top-5 error rate of 2.25%. In contrast to previous 

models that focus on spatial representations, Hu, et al. took a different route to 

investigate the relationship between channels. They introduced a new block called the 

SE-block in which the interdependencies across channels are modelled unequivocally 

to recalibrate channel-wise feature responses dynamically. This approach highlights 

the important class specifying features while suppressing those that are least 

informative. The block is designed in such a way that it can be easily stacked to create 

a network (Hu, et al., 2019). An illustration of the SE-block is shown in Figure 2.31.  

 

As the name suggests, the block uses the squeeze and excitation operations to 

perform its functions. The squeeze operation uses global average pooling to aggregate 

global spatial information into channel-wise statistics. The excitation operation then 

uses the information by utilizing a sigmoid activation as the gating mechanism to 
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produce a collection of channel weights that describe the channel-wise dependencies 

(Hu, et al., 2019; Khan, et al., 2020).  

 

 
Figure 2.31: SE-block (Hu, et al., 2017) 

 

 

 

2.7.7 DenseNet 

 

Dense Convolutional Network (DenseNet) was proposed by Huang, et al. in 2017 and 

gotten the Best Paper Award in the 2017 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), with more than 2000 citations. When implemented on 

the ImageNet dataset, DenseNet was able to obtain a top-5 error rate of 5.54%. The 

direction of DenseNet is typically the same as ResNet, which is to overcome the 

problem of vanishing gradient. However, ResNet has its shortcoming when in 

comparison with traditional feedforward networks. In traditional feedforward 

networks, each layer changes the preceding layer's state and preserves the information 

that needs to be passed to the following layer. Whereas ResNet preserves the 

information explicitly by summing the identity mapping, but as a matter of fact, most 

layers can only provide a small amount of information or even none. DenseNet 

overcomes this problem by concatenating the identity mapping instead, which 

explicitly enables differentiation between preserved information and newly added 

information. 

 

The architecture of DenseNet directly connects all the layers in the network 

together with one another, whereby feature maps of each layer will also be inputted to 

every subsequent layer in addition to the feedforward network. This architecture is 

illustrated in Figure 2.32. DenseNet has very thin layers, which is parametrically more 

efficient. It is also easier to train due to the increase in information flow and gradient 
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across the network. In addition, overfitting issues can also be overcome as dense 

connections exhibits regularization (Huang, et al., 2017).   

 

 
Figure 2.32: DenseNet Architecture (Huang, et al., 2017) 

 

 

 

2.8 Performance Metrics 

 

Prediction is one of the main focus in the topic of machine learning and deep learning. 

The task to predict an outcome represented in numeric measurements is known as a 

“regression problem”, while the task to predict an outcome that reflects distinct classes 

is known as a “classification problem”. The typical setting in “classification problems” 

mostly consists of two classes only, but there are also cases where there are three or 

more number of classes. Hence, the latter is dubbed as a “multi-class classification 

problem”. In the typical classification problem, the data, X will be used to make 

predictions of the outcome variable, 𝑌𝑌, where the predicted outcome is denoted as 𝑌𝑌�. 

As for multi-class classification problem, 𝑌𝑌 and 𝑌𝑌�  are seen as two discrete random 

variables, in which they are written as {1, … ,𝑁𝑁}, where N is the number of classes. 

Each element of the variables are numbers that represents a particular class. A 

classification model will generate 𝑌𝑌� , where the elements are the probability that a 

given data is of a certain class. The rule of thumb to perform the classification is that 

the class with the highest probability will be assigned to the given data (Grandini, Bagli 

and Visani, 2020).  
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 Metrics are a good performance indicator when evaluating and comparing 

multiple models of different algorithms and techniques. Some of the widely used 

performance metrics include accuracy, precision, recall, F1-score, ROC curve, and 

confusion matrix. Before diving into them, it is important to first understand a few key 

words, namely: true positive (tp), true negative (tn), false positive (fp), and false 

negative (fn). True positives are positive predictions made by the model, and the actual 

label is also positive, while true negatives are negative predictions made by the model, 

and the actual label is also negative. On the other hand, false positives are positive 

predictions made by the model, but the actual label is negative, whereas false negatives 

are negative predictions made by the model, but the actual label is positive. Henceforth, 

tp and tn are correct predictions, while fp and fn are incorrect predictions. 

 

 

 

2.8.1 Accuracy 

 

Accuracy is the most popular performance metric used for multi-class classification 

problems. As shown in the Equation 2.7, accuracy measures the ratio of the number of 

correct predictions made by the model to the number of data given. However, it is not 

the best performance metric to use on a problem with an imbalanced dataset because 

the class with the larger dataset will have more significance than the class with the 

smaller dataset (Grandini, Bagli and Visani, 2020). Consider a dataset with class A 

occupying 96% of the total while class B occupying 4% of the total, the model can 

simply predict that all samples belong to class A and easily achieve a training accuracy 

of 96%. Figure 2.33 gives a better illustration on how accuracy is determined. 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝑦𝑦 =
𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛

𝑡𝑡𝑝𝑝 + 𝑡𝑡𝑛𝑛 + 𝑓𝑓𝑝𝑝 + 𝑓𝑓𝑛𝑛
                                  (2.7) 
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Figure 2.33: Visualizing Accuracy (Maleki, et al., 2020) 

 

 

 

2.8.2 Precision 

 

Precision tells about how much a model can be trusted when it labels a data as positive. 

As shown in Equation 2.8, precision measures the amount of true positives to all of the 

data where data that the model labels as positive. A model with high precision shows 

that the prediction of the model has a higher quality in labelling data with positive 

labels, whereas a model with low precision shows that the prediction model has a lower 

quality when labelling data with positive labels (Grandini, Bagli and Visani, 2020). 

Figure 2.34 gives a better illustration on how precision is determined. 

 

𝑃𝑃𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 =
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝
                                             (2.8) 

 

  
Figure 2.34: Visualizing Precision (Maleki, et al., 2020) 
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2.8.3 Recall 

 

Recall, also referred to as sensitivity, tells about how well the model predicts data of 

positive labels. As shown in Equation 2.9, recall measures the amount of true positives 

to all of the data where its actual labels are positive. A model with a high recall shows 

that the model can find out a high amount of data with actual positive labels, whereas 

a model with a low recall shows that the model has a hard time trying to identify the 

data with actual positive labels (Grandini, Bagli and Visani, 2020). Figure 2.35 gives 

a better illustration on how recall is determined. 

 

𝑅𝑅𝑒𝑒𝐴𝐴𝑎𝑎𝑅𝑅𝑅𝑅 =
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑛𝑛
                                             (2.9) 

 

 
Figure 2.35: Visualizing Recall (Maleki, et al., 2020) 

 
 

 

2.8.4 F1-score 

 

Although with the precision and recall, it can still be quite confusing to determine 

whether the model is performing well or not. Henceforth, F1-score, which combines 

both of the metrics by determining their harmonic mean, is helpful in finding the best 

trade-off between the two metrics. Consider a Model X with a precision of 50% and a 

recall of 90%, the F1-score calculated as 0.3214 using the equation shown below.  

 

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑒𝑒 = 2 �
𝑝𝑝𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 × 𝐴𝐴𝑒𝑒𝐴𝐴𝑎𝑎𝑅𝑅𝑅𝑅
𝑝𝑝𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 + 𝐴𝐴𝑒𝑒𝐴𝐴𝑎𝑎𝑅𝑅𝑅𝑅�

                             (2.10) 

 
Next, consider Model Y with the same precision and recall of 70%, the F1-score is 

calculated as 0.7. The mean of the precision and recall for both models are the same, 
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but the harmonic mean computed says otherwise. With that said, The F1-score rewards 

the models if the precision and recall does not differ too much (Grandini, Bagli and 

Visani, 2020). Hence, the higher the F1-score, the better the performance of the model. 

 

 

 

2.8.5 Confusion Matrix 

 

The confusion matrix is a N x N cross table, where N corresponds to the number of 

classes. All of the predictions done by the model are plotted onto the confusion matrix, 

which allows better visualization of its performance. The columns of the confusion 

matrix are the predicted labels, while the rows of the confusion matrix are the true 

labels. The diagonal elements of the confusion matrix are known as the true positives 

or true negatives. With that said, the confusion matrix can immediately present how 

many correct predictions the model makes just by looking at the diagonal elements. 

The other elements of the confusion matrix are known as false positives or false 

negatives. The performance metrics mentioned earlier are mostly based on the 

confusion matrix since it encompasses all of the information regarding the 

classification rule performance and algorithm (Grandini, Bagli and Visani, 2020). 

Figure 2.36 shows an illustration of the confusion matrix. Note that the values in the 

elements are usually complemented with background colours for a better visualization, 

whereby a higher value will be given a darker tone, while a lower value will be given 

a lighter tone.  

 

 
Figure 2.36: Illustration of Confusion Matrix  
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2.8.6 ROC Curve 

 

The Receiver Operating Characteristics (ROC) curve is another useful metric for 

determining a model's performance, primarily in classification problems. It is used to 

measure the class separability of a model. The ROC curve is plotted using the true 

positive rate (TPR), also known as the recall, as the y-axis, while the false positive rate 

(FPR) is the x-axis. The false positive rate is calculated using Equation 2.11. Multiple 

curves can be plotted on the same graph for a multi-class classification problem to 

visualize how the model is performing in each class. The area under the ROC curve 

(AUC-ROC) then measures the degree of the model’s class separability for each class. 

The values of AUC-ROC can range between 0 to 1, and the closer the value is to 1, the 

better the model is at distinguishing the class against the rest (Narkhede, 2018). An 

illustration of the ROC curves with different AUC-ROC values is shown in Figure 

2.37. 

 

𝐹𝐹𝑎𝑎𝑅𝑅𝑃𝑃𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑒𝑒 𝑅𝑅𝑎𝑎𝑡𝑡𝑒𝑒 =
𝑓𝑓𝑛𝑛

𝑡𝑡𝑛𝑛 + 𝑓𝑓𝑝𝑝
                                (2.11) 

 

 
(a) 



51 

 
(b) 

 

 
(c) 

 

Figure 2.37: Illustration of ROC Curve with (a) AUC-ROC of 1 

(b) AUC-ROC of 0.8 (c) AUC-ROC of 0 (Narkhede, 2018) 

 
Notice that a well-performing model with an ideal class separability will 

exhibit a sharp bent on the ROC curve with an AUC-ROC of 1. It tells that the model 

has no problem distinguishing between the positive and negative classes. As the model 

performs poorer, the sharp bent will slowly curve downwards, and for an AUC-ROC 

value of 0.8, the model is said to have an 80% chance of distinguishing between 

positive and negative classes. If a sharp bent is formed at the bottom of the graph with 

an AUC-ROC of 0, the model is performing very poorly, and the positive class is 

predicted as the negative class and vice versa. 
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2.9 Related Works 

 

There is extensive research to provide solutions in detecting and classifying leukemia 

through deep learning approaches, but they are mostly done on binary classification 

between ALL and healthy cells and lesser on 5-class classification between ALL, 

AML, CLL, CML, and healthy cells. In the works by Ahmed, et al. (2019), a CNN 

model with 2 convolution layers is proposed to tackle both the binary and 5-class 

classification problem. The model successfully detects and classifies leukemia with 

88.25% and 81.74% accuracy for binary and 5-class classification problems. On the 

other hand, Thanh, et al. (2018) proposed a deeper CNN model which consists of 5 

convolution layers to tackle the binary classification problem. The proposed model can 

also successfully detect leukemia with an accuracy of 96.60%. 

 

Instead of training CNN models from scratch, Shafique, et al. (2018) proposed 

implementing the transfer learning method on a pre-trained model called the AlexNet 

model for an efficient and faster model training process. The last 3 layers of the 

AlexNet model were removed, and the fully connected network was tuned to facilitate 

the binary classification problem. Multiple input feature vectors are also implemented 

in the fully connected network, and it is noticed that the input feature vector with the 

smallest dimension achieved the highest accuracy of 99.50%. Bibi, et al. (2020) also 

tackled the 5-class classification problem using the transfer learning method. Two pre-

trained models, ResNet-34 and DenseNet-121, are utilized to detect and classify 

leukemia, and the highest accuracy achieved was 99.91% by the DenseNet-121 model. 

 

Vogado, et al. (2019) also tackled the binary classification problem by 

implementing the transfer learning technique on the pre-trained models, including 

AlexNet, CaffeNet, and Vgg-f models. However, unlike Shafique et al. (2018), who 

used the softmax function as the classifier, Vogado, et al. (2019) proposed using a 

machine learning algorithm, the Support Vector Machine (SVM), as the classifier 

instead. Besides, they also proposed using attribute selection techniques called the gain 

ratio algorithm for feature selection. To take advantage of all three models in their 

feature extraction capability, a hybrid approach, which consists of all three models 

concatenated together, was proposed, and an accuracy of 99.20% was achieved. 

Another literature that focuses on hybrid approaches to detect leukemia is Das and 
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Meher (2021), in which the MobileNetV2 and ResNet18 models are hybridized into 

one model, and the transfer learning technique is also utilized in the training process. 

As a result, the proposed hybrid model is able to achieve an accuracy of 99.39% in the 

binary classification problem. All in all, the deep learning approaches utilized in the 

detection and classification of leukemia and their accuracies are accumulated and 

illustrated in the bar charts plotted below. 

 

 
Figure 2.38: Bar Chart of The Accuracy Comparison Between Related Works  

on the Binary Classification Problem 

 

 
Figure 2.39: Bar Chart of The Accuracy Comparison Between Related Works  

on the 5-class Classification Problem 

 

In the studies discussed earlier, most of the models are trained using 

microscopic samples primarily from the Acute Lymphoblastic Leukemia Image 

Database (ALL-IDB) (Scotti, Labati, and Piuri, 2011). The samples it provides come 

with the locations for the ALL blast cells annotated by qualified oncologists; therefore, 

it is much more reliable to use. Another widely used source to gather leukemia images 

is the American Society of Hematology (ASH) ImageBank (American Society of 
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Hematology, n.d.), an online library containing all kinds of images involving 

haematology. On top of that, most literature is also faced with the scarcity of samples 

available for training and testing. Henceforth, several data augmentation techniques 

commonly implemented to increase the dataset size include histogram equalization, 

translation, reflection, rotation, shearing, shifting, zooming, and blurring. 
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Project Flow 

 

In this project, five classes of data will undergo detection and classification using deep 

learning: healthy cell, ALL, AML, CLL, and CML. Based on the literature review, it 

is observed the detection and classification of leukemia are highly accurate when pre-

trained models are used instead of training from scratch. Therefore, transfer learning 

is also utilized in this project for the detection and classification of leukemia. Three 

state-of-the-art pre-trained models, namely Inception-V3, SENet, ResNeXt, are 

selected because they have one of the lowest top-5 error rate compared to other models 

and have not been used before on this kind of project.  

 

The project flow is illustrated in the flowchart shown in Figure 3.1. The first 

step is to acquire the dataset of leukemia subtypes and healthy cells from online 

sources. Then, the samples will be pre-processed through data augmentation 

techniques to increase the dataset count. In the meantime, the pre-trained models will 

be downloaded from the web to be ready for transfer learning. When the dataset is 

sufficiently enough, the training of the models will start, and they will be evaluated 

based on a few performance metrics. After achieving the desired accuracy, the best 

model among the pre-trained models will be selected to be utilized on any suitable 

applications. 
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Figure 3.1: Flowchart of The Project 

 

 

 

3.2 Project Requirements 

 

The required hardware and software, as well as the programming language and open-

source libraries used to perform the detection and classification of leukemia are 

discussed in the following sub-sections. 
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3.2.1 Hardware Requirements 

 

Besides a computer, there is no additional hardware required. The computer used in 

this project is an Asus ROG GL552VX packed with NVIDIA GeForce GTX 950M, 

Intel Core i7-6700HQ, and two 4GB RAM sticks.  

 

 

 

3.2.2 Software Requirements 

 

The software used is an Internet browser that allows the use of two websites called 

Google Colab and Google Drive for the purpose of training DL models. There is a 

selection of Internet browsers on the market, such as Google Chrome, Mozilla Firefox, 

and Opera, where all of them are not limited to browse Google Colab and Google 

Drive. 

 

Google Colab is an online environment that allows executing code on the 

browser, or more specifically on the cloud. It is targeted to AI researchers and data 

scientists allowing them to perform machine learning or deep learning by leveraging 

Google’s cloud servers and GPUs. They offer a wide range of NVIDIA Tensor Core 

GPUs, including Tesla ® K80, Tesla ® P100, Tesla ® P4, Tesla ® T4, Tesla ® V100, 

and A100, that can accelerate the speed for DL training, offering an efficient way 

compared to training on the local computer. On the other hand, Google Drive is an 

online service that provides cloud storage for all kinds of files and folders. The use of 

Google Drive allows the dataset to be available on the line and ready for use on any 

device by just mounting it onto Google Colab. 

 

 

 

3.2.3 Programming Language Used 

 

The primary programming language that will be used for this project is Python 3.7.11 

version. It is the most well-known high-level programming language, and according 

to Srivastava (2020), it is dubbed the programming language most preferred for 
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Artificial Intelligence (AI) projects in 2020. Though Python is often limited by its 

development speed, it still does not stop people from using it. Python is very similar 

to the English language, which allows better readability and understanding of the code. 

Besides, there is also an active and large community behind Python, which allows a 

problem to be easily solved. It also offers all kinds of open-source libraries made by 

other developers for all sorts of applications (Basel, 2018). 

 

 

 

3.2.4 Open-Source Libraries 

 

A few Python open-source libraries will be required, and they are tabulated in the Table 

3.1. The table contains the version used, as well as the commands to install and import 

the libraries.  

 

Table 3.1: Commands to Install Open-Source Libraries 

Python libraries Version used Install command Import command 

Google-colab 0.0.1a2 pip install google-colab import 

google.colab 

Itertools - - import itertools 

Keras 2.8.0 pip install keras import keras 

Matplotlib 3.2.2 pip install matplotlib import matplotlib 

NumPy 1.21.5 pip install numpy import numpy 

OpenCV 4.1.2 pip install opencv-python import cv2 

OS - - import os 

Pandas 1.3.5 pip install pandas import pandas 

Pretrainedmodels 0.7.4 pip install 

pretrainedmodels 

import 

pretrainedmodels 

PyTorch 1.10.0+cu111 pip install pytorch import torch 

Random - - import random 

Scikit-learn 1.0.2 pip install scikit-learn import sklearn 

Torchvision 0.11.1+cu111 pip install torchvision import torchvision 

TensorFlow 2.8.0 pip install tensorflow import tensorflow 
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3.3 Dataset Acquisition 

 

The microscopic image samples for each class are retrieved from various sources, 

including ALL-IDB1 and ASH ImageBank. The datasets for healthy cells and ALL 

are obtained from ALL-IDB1, while the AML, CLL, and CML datasets are obtained 

from ASH ImageBank. The total dataset count acquired is 266 samples, whereby there 

are 59 images of healthy cells, and 49 images of ALL, 58 images of AML, 46 images 

of CLL, and 54 images of CML. The dataset is then uploaded to Google Drive. The 

number of samples obtained for each class and its source is tabulated as shown below. 

 

Table 3.2: Dataset Count for Each Class and Its Source 

Sources 

Classes 

 

ALL-IDB1 

 

ASH ImageBank 

 

Total 

ALL - 49 49 

AML 58 - 58 

CLL 46 - 46 

CML 54 - 54 

Healthy - 59 59 

Total number of samples 266 

 

 

 

3.4 Dataset Splitting 

 

To start with, Google Drive is first mounted onto Google Colab using the code listed 

in Code Listing 1 in Appendix A to access the dataset. Then, the modules of the open-

source libraries are imported as listed in Code Listing 2 in Appendix A. After that, the 

images are imported into the Google Colab notebook using the OS module available 

in the Python standard library. The images are then read using OpenCV, which 

automatically convert the images into array of numbers. The images are also resized 

to 224 × 224 pixels and normalized. The collection of images turned into array are 

stored in a list. The labels of the images are also stored in the list in the form of whole 

numbers such that 0 represents ALL, 1 represents AML, 2 represents CLL, 3 represents 
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CML, and 4 represents healthy cells or HLT in short. The code for this segment is 

listed in Code Listing 3 in Appendix A.  

 

Next, in order to ensure that the models will not be tested with images that are 

used for training, the training and testing set will be separated among the dataset. 

Furthermore, to properly estimate the performance and generalization of the models, 

a data resampling method known as k-fold cross-validation is implemented. This is 

done by using the ‘KFold’ class from scikit-learn library that splits the dataset into k 

folds of train and test sets, in which this project, a k of 5 is implemented. In order to 

preserve a balanced class distribution in the datasets, the stratified k-fold cross-

validator, which is the ‘StratifiedKFold’ class will be used instead of the ‘KFold’ class. 

The code for this segment is listed in Code Listing 4 in Appendix A.  

 

With that said, the dataset for binary and 5-class classification problem in each 

fold is distributed as shown in the Tables 3.3 and 3.4. It is observed that the dataset for 

each fold is distributed based on the 80/20 rule in which the training set consists of 80% 

of the dataset, whereas the testing set consists of 20% of the dataset. However, some 

imbalanced class distribution is still present, and the number of data is barely enough 

to train the models. Thus, the methods to tackle these problems is explained in the 

following sub chapters. 

 
Table 3.3: Training Set Distribution for Each Fold 

Fold 

Classes 

 

1 

 

2 

 

3 

 

4 

 

5 

ALL 39 39 39 39 40 

AML 46 46 47 47 46 

CLL 37 37 36 37 37 

CML 43 43 44 43 43 

Healthy 47 48 47 47 47 

Total 212 213 213 213 213 
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Table 3.4: Testing Set Distribution for Each Fold 

Fold 

Classes 

 

1 

 

2 

 

3 

 

4 

 

5 

ALL 10 10 10 10 9 

AML 12 12 11 11 12 

CLL 9 9 10 9 9 

CML 11 11 10 11 11 

Healthy 12 11 12 12 12 

Total 54 53 53 53 53 

 

 

 

3.5 Dataset Augmentation 

 

It is evident that the current dataset available are too limited and unfit for training. 

Hence, following the footsteps of Ahmed, et al. (2020), 7 data augmentation 

techniques are implemented to avoid overfitting by increasing the size of the existing 

dataset. The methods include vertical and horizontal flipping, rotation, height and 

width shifting, shearing, and zooming. 

 

With the dataset in place, data augmentation is then done using the 

‘ImageDataGenerator’ class available in the Keras library and the flipping functions 

available in the NumPy library. The augmentation parameters to be used are translated 

as the shear range for shearing, zoom range for zooming, rotation range for rotating, 

height shift range and width shift range for shifting, as well as ‘flipud’ and ‘fliplr’ for 

flipping. They are fed in as arguments and parameters for the ‘ImageDataGenerator’ 

class and the flipping functions. The shear range is set to 20, which means that a 

20° shearing in the counter-clockwise direction will be applied onto the images. Next, 

for a 30% zoom, the zoom range is set to 0.3, which means that a random zoom 

between 1.3 to 0.7 will be applied onto the images. On the other hand, the rotation is 

set to 40°, which implies that a random rotation between 0° to 40° or a range of 0° to 

−320° will be applied onto the images. Furthermore, for a 40% shifting, the height 

shift range is set to 0.4 so that the images will be shifted up or down for 0.4 pixels of 
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the total height, whereas the width shift range is set to 0.4 so that the images will be 

shifted left or right for 0.4 pixels of the total width. Lastly, by calling the ‘flipud’ 

function will flip the arrays vertically while the ‘fliplr’ function will flip the arrays 

horizontally.  

 

Figure 3.2 illustrates the resultant images after one of the image samples is 

augmented. Figure 3.2a is the original image while Figures 3.2b to 3.2h are the 

augmented images. Figure 3.2b is the resultant image after a 20° shear whereas Figure 

3.2c is the resultant image after a 30% zoom. Besides that, Figure 3.2d is the resultant 

image after a 40° rotation. On the other hand, Figure 3.2e is the resultant image after a 

40% height shift while Figure 3.2f is the resultant image after a 40% width shift. 

Furthermore, Figure 3.2g is the resultant image after flipping vertically while Figure 

3.2h is the resultant image after flipping horizontally. 

 
The images are augmented in such a way that the images are sheared, zoomed, 

rotated, and shifted for 2 times each, which increases the dataset by 11-fold. Then, the 

original and augmented images, are flipped horizontally and vertically, which again 

increases the size of the dataset by another 3-fold. Hence, after the image 

transformations, each image sample are increased by a factor of 33-fold, effectively 

increasing the overall dataset for each class. The code for this segment is listed in Code 

Listing 5 in Appendix A and the new number of samples for each class and its source 

is tabulated as shown in Tables 3.5 and 3.6. 

 

Table 3.5: Training Set Distribution for Each Fold After Augmentation 

Fold 

Classes 

 

1 

 

2 

 

3 

 

4 

 

5 

ALL 1287 1287 1287 1287 1320 

AML 1518 1518 1551 1551 1518 

CLL 1221 1221 1188 1221 1221 

CML 1419 1419 1452 1419 1419 

Healthy 1551 1584 1551 1551 1551 

Total 6996 7029 7029 7029 7029 
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Table 3.6: Testing Set Distribution for Each Fold After Augmentation 

Fold 

Classes 

 

1 

 

2 

 

3 

 

4 

 

5 

ALL 330 330 330 330 297 

AML 396 396 363 363 396 

CLL 297 297 330 297 297 

CML 363 363 330 363 363 

Healthy 396 363 396 396 396 

Total 1782 1749 1749 1749 1749 

 

 
(a)      (b)    (c) 

 
 (d)    (e)    (f) 

 
(g)     (h) 

 

Figure 3.2: (a) Original (b) 20° Shearing (c) 30% Zoom (d) 40° Rotation  

(e) 40% Height Shift (f) 40% Width Shift (g) Vertical Flip (h) Horizontal Flip 
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With the overfitting issue out of the way, there is still one problem to address: 

the imbalance class distribution. It is observed that the number of CLL cells is always 

the least in each fold. Henceforth, the dataset will be equalized to have the same count 

as the number of CLL cells of each fold. The code for this segment is listed in Code 

Listing 6 in Appendix A. The bar chart shown in Figure 3.3 illustrates how the dataset 

for each fold is allocated. The dataset after pre-processing is visualized using 

Matplotlib as shown in Figure 3.4. 

 

 
Figure 3.3: Bar Chart of Dataset Allocation for Each Fold 

 

 
Figure 3.4: Visualizing the Pre-Processed Dataset 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Testing Set 1485 1485 1650 1485 1485
Training Set 6105 6105 5940 6105 6105

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Dataset Allocation for Each Fold
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3.6 Model Training 

 

The training process will be done through Google Colab since the hardware used is 

low performance and would take a long time to train the models. With that said, the 

models and their pretrained weights are accessed and downloaded through multiple 

application programming interfaces (API) available online. The Inception-V3 model 

is downloaded from the Keras’s applications API, ResNeXT model from PyTorch’s 

models API, and SENet model from the pretrainedmodels library that provides a 

unique API to access pre-trained ConvNets models for PyTorch. Transfer learning is 

performed by freezing the layers of the models’ base network, then their fully 

connected networks are fine-tuned by replacing them with a hidden layer and an output 

layer that corresponds to the number of classes for binary and 5-class classification 

problem. The frozen network is known as the feature extractor, while the fully 

connected network is known as the classifier network. The image below illustrates the 

process of transfer learning. The code for this segment is listed in Code Listing 8 to 13 

in Appendix A. 

 

 
Figure 3.5: Transfer Learning with Pretrained Models as Feature Extractors 
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 After the models are set up, they will be trained with the pre-processed dataset 

distributed for each fold. Starting with the binary classification problem, the final layer 

will have 2 nodes, and the sigmoid activation function will be utilized as the classifier. 

Besides, the binary cross entropy will be used as the loss function, ADAM as the 

optimizer, and accuracy as the evaluation metric. Then, the models will be fed with 

ALL and healthy cells images for training. On the other hand, the final layer will have 

5 nodes instead for the 5-class classification problem, and the softmax activation 

function will be utilized as the classifier. Furthermore, categorical cross entropy will 

be used instead of binary cross entropy, while the loss function and evaluation metrics 

remain the same. Table 3.7 and 3.8 shows the dataset count of each classes used for 

binary and 5-class classification problem training respectively. The code for this 

segment is listed in Code Listing to 14 to 19 in Appendix A.  

 
Table 3.7: Binary Classification Problem Training Set Distribution  

for Each Fold 

Fold 

Classes 

 

1 

 

2 

 

3 

 

4 

 

5 

ALL 1221 1221 1188 1221 1221 

Healthy 1221 1221 1188 1221 1221 

Total 2442 2442 2376 2442 2442 

 
Table 3.8: 5-class Classification Problem Training Set Distribution for Each 

Fold 

Fold 

Classes 

 

1 

 

2 

 

3 

 

4 

 

5 

ALL 1221 1221 1188 1221 1221 

AML 1221 1221 1188 1221 1221 

CLL 1221 1221 1188 1221 1221 

CML 1221 1221 1188 1221 1221 

Healthy 1221 1221 1188 1221 1221 

Total 6105 6105 5940 6105 6105 

 

The training dataset is split again during training based on the 80/20 rule, 

whereby 80% of the training set will be used for training while the remaining 20% will 

be used for model validation purposes. Therefore, as the models are being trained, the 
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metrics outputted include training accuracy, validation accuracy, training loss, and 

validation loss. The number of epochs for the binary classification problem training 

will be set to 10, whereas, during the 5-class classification problem training, it will be 

set to 25. In each epoch, the models with the highest validation accuracy will be kept 

as the final models, while the ones lower than the previous highest values will be 

neglected.  

 

 

 

3.7 Model Evaluation  

 

The final models will be tested for binary and 5-class classification with unseen testing 

data using the code listed in Code Listing 20 to 24 in Appendix A, then evaluated based 

on a few performance metrics: accuracy, loss, precision, recall, F1-score, receiver 

operating characteristic (ROC) curve, area under the ROC curve (AUC-ROC), and the 

confusion matrix. For this project, accuracy will be used as the main evaluation metrics 

as it is used as the benchmark for improvement from other related works. The other 

metrics will be used to justify the findings from the binary and 5-class classification 

problem, as well as to make comparisons between the different type of models used in 

this project. The performance metrices will be implemented using the functions 

available in the ‘metrics’ class from scikit-learn library. In addition, the pandas library 

will be used to plot the graph of accuracy and loss against number of epochs, while the 

matplotlib  library is used to visualize the ROC curve and the confusion matrix. The 

code for this segment is listed in Code Listing 25 to 30 in Appendix A. 

 

 

 

3.8 Model Improvement  

 

After models are evaluated with the testing data, the model that got the highest testing 

accuracy out of the chosen models will be further fine-tuned to improve its overall 

performance. The fine-tuning methods will be implemented based on several factors 

such as the ideas adapted from related works, the feature selection process by the 

model, and the bias and variance of the model towards the data provided. Bias is the 
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difference between the predicted value by the model and the actual value of the data. 

A model with a high bias is said to be very simple, and is making basic assumptions 

about the given data (Singh, 2018). This phenomenon happens when the model is 

underfitting the data, resulting in the poor performance on the training data, which also 

leads to a high error on the unseen testing data as well. One of the ways to lower the 

bias of a model is to train a model with a larger and more complex network, or to train 

the model long enough so that the important features of the data can be learnt. 

  

 On the other hand, variance is the variability of the model in making 

predictions, such that it measures how much adjustments the model can make based 

on the data given. A model with a high variance is said to be very complex, and is 

unable to make generalized predictions on data that it had not seen before. This 

phenomenon happens when the model is overfitting the data, where the model shows 

a good performance on the training data, but a high error is observed on the unseen 

testing data. In order to lower the variance of a model, more data should be used to 

train the model, or implement regularization in the model (Wickramasinghe, 2021). 
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3.9 Project Costs 

 

The equipment and material costs required to carry out this project is listed as shown 

in the table below. 

 

Table 3.9: Equipment and Materials Cost 

No. Equipment 

and materials 

Price (RM) Quantity Cost (RM) Descriptions 

1 Computer 0.00 1 0.00 Any computer in-use 

can run the project. 

2 Google Colab 0.00 - 0.00 Google Colab’s 

cloud service is free 

for all to be used. 

3 Google Drive 8.49/month 4 months 33.96 Google Drive’s 

cloud service is free 

for all to be used. 

4 Opera 0.00 - 0.00 Opera is free for 

download. 

Total cost 33.96  
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3.10 Project Management 

 

The Gantt chart for FYP 1 is tabulated in Table 3.10, whereas the Gantt chart for FYP 

2 is tabulated in Table 3.11. The Gantt chart contains the timeline of the project 

whereby the activities and their duration are shown clearly to ensure the project runs 

smoothly. 

 

Table 3.10: FYP 1 Gantt Chart 

 

Activities 

Duration (Week) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Learn TensorFlow 
and Keras 

              

Learn to Build and 
Train Basic DL 
Models 

              

Dataset 
Acquisition and 
Preparation 

              

Reading 
Literatures 

              

FYP 1 Report 
Writing 

              

Training DL 
models 

              

FYP 1 Presentation 
Slide Preparation 

              

FYP 1 Report 
Submission 

              

FYP 1 Presentation               
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Table 3.11: FYP 2 Gantt Chart 

 

Activities 

Duration (Week) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Training and 
Improving DL 
models 

              

Result Analysis               

FYP 2 Report 
Writing 

              

FYP 2 Presentation 
Slide Preparation 

              

FYP 2 Report 
Submission 

              

FYP 2 Presentation               
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CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Binary Classification Problem for Inception-V3, ResNeXt. And SENet 

 

Table 4.1: Accuracy and Loss Result for Binary Classification Problem 

of Each Fold for Inception-V3 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 99.33% 98.99% 98.79% 92.26% 95.79% 97.03% 

val_acc 99.39% 99.39% 100.00% 99.39% 99.80% 99.59% 

trn_acc 99.85% 99.90% 99.21% 100.00% 99.13% 99.62% 

test_loss 0.0219 0.0261 0.0323 0.3694 0.1565 0.1212 

val_loss 0.0225 0.0324 0.0086 0.0211 0.0089 0.0187 

trn_loss 0.0084 0.0064 0.0244 0.0025 0.0210 0.0125 

 

Table 4.2: Accuracy and Loss Result for Binary Classification Problem 

of Each Fold for ResNeXt 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 99.66% 100.00% 99.09% 93.43% 96.13% 97.66% 

val_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

trn_acc 98.77% 99.23% 99.79% 99.44% 99.08% 99.26% 

test_loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

val_loss 0.0132 0.0015 0.0090 0.0083 0.0093 0.0083 

trn_loss 0.0412 0.0245 0.0170 0.0235 0.0352 0.0283 
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Table 4.3: Accuracy and Loss Result for Binary Classification Problem 

of Each Fold for SENet 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 100.00% 99.83% 99.70% 100.00% 99.83% 99.87% 

val_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

trn_acc 98.82% 99.39% 100.00% 100.00% 97.08% 99.26% 

test_loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

val_loss 0.0006 0.0006 0.0011 0.0003 0.0028 0.0011 

trn_loss 0.0296 0.0183 0.0002 0.0005 0.0831 0.0263 

 

 

 

4.1.1 Fold 1 

 

  
(a)     (b) 

 
(c) 

 

Figure 4.1: Accuracy and Loss Against Number of Epochs in The First Fold Training 

for (a) Inception-V3 (b) ResNeXt (c) SENet 



74 

Table 4.4: Precision, Recall, and F1-score for Binary Classification Problem in 

The First Fold Training for Each Model 

Models Precision Recall F1-score 

Inception-V3 99.66% 98.99% 99.32% 

ResNeXt 99.66% 99.66% 99.66% 

SENet 100.00% 100.00% 100.00% 

 

  
(a)     (b) 

 
(c) 

 

Figure 4.2: ROC Curve in The First Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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(a)     (b) 

 
(c) 

 

Figure 4.3: Confusion Matrix in The First Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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4.1.2 Fold 2 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.4: Accuracy and Loss Against Number of Epochs in The Second Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 

Table 4.5: Precision, Recall, and F1-score for Binary Classification Problem in 

The Second Fold Training for Each Model 

Models Precision Recall F1-score 

Inception-V3 98.02% 100.00% 99.00% 

ResNeXt 100.00% 100.00% 100.00% 

SENet 99.66% 100.00% 99.83% 
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(a)     (b) 

 
(c) 

 

Figure 4.5: ROC Curve in The Second Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet   
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(a)     (b) 

 
(c) 

 

Figure 4.6: Confusion Matrix in The Second Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 

 

  



79 

4.1.3 Fold 3 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.7: Accuracy and Loss Against Number of Epochs in The Third Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 

Table 4.6: Precision, Recall, and F1-score for Binary Classification Problem in 

The Third Fold Training for Each Model 

Models Precision Recall F1-score 

Inception-V3 98.79% 98.79% 98.79% 

ResNeXt 100.00% 98.18% 99.08% 

SENet 99.40% 100.00% 99.70% 
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(a)     (b) 

 
(c) 

 

Figure 4.8: ROC Curve in The Third Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 

  



81 

 
(a)     (b) 

 
(c) 

 

Figure 4.9: Confusion Matrix in The Third Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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4.1.4 Fold 4 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.10: Accuracy and Loss Against Number of Epochs in The Fourth Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 

Table 4.7: Precision, Recall, and F1-score for Binary Classification Problem in 

The Fourth Fold Training for Each Model 

Models Precision Recall F1-score 

Inception 97.36% 86.87% 91.81% 

ResNeXt 100.00% 86.87% 92.97% 

SENet 100.00% 100.00% 100.00% 
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(a)     (b) 

 
(c) 

 

Figure 4.11: ROC Curve in The Fourth Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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(a)     (b) 

 
(c) 

 

Figure 4.12: Confusion Matrix in The Fourth Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet   
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4.1.5 Fold 5 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.13: Accuracy and Loss Against Number of Epochs in The Fifth Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 

Table 4.8: Precision, Recall, and F1-score for Binary Classification Problem in 

The Fifth Fold Training for Each Model 

Models Precision Recall F1-score 

Inception-V3 99.64% 91.92% 95.62% 

ResNeXt 100.00% 92.26% 95.97% 

SENet 100.00% 99.66% 99.83% 
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(a)     (b) 

 
(c) 

 

Figure 4.14: ROC Curve in The Fifth Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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(a)     (b) 

 
(c) 

 

Figure 4.15: Confusion Matrix in The Fifth Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet   
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4.2 5-class Classification Problem for Inception-V3, ResNeXt. And SENet 

 

Table 4.9: Accuracy and Loss Result for 5-class Classification Problem  

of Each Fold for Inception-V3 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 80.07% 73.60% 67.58% 69.43% 76.43% 73.42% 

val_acc 98.44% 98.03% 97.64% 98.03% 97.71% 97.97% 

trn_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

test_loss 0.9687 1.6426 1.5015 1.5968 1.1512 1.3722 

val_loss 0.0537 0.0837 0.0608 0.0568 0.0768 0.0664 

trn_loss 0.0041 0.0034 0.0011 0.0008 0.0027 0.0024 

 

Table 4.10: Accuracy and Loss Result for 5-class Classification Problem  

of Each Fold for ResNeXt 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 83.37% 72.93% 80.55% 83.03% 84.04% 80.78% 

val_acc 99.18% 99.59% 99.83% 99.51% 99.59% 99.54% 

trn_acc 100.00% 98.81% 100.00% 99.92% 99.98% 99.74% 

test_loss 0.9151 1.6140 1.1333 0.7043 0.8641 1.0462 

val_loss 0.0280 0.0193 0.0072 0.0235 0.0191 0.0194 

trn_loss 0.0004 0.0302 0.0006 0.0028 0.0022 0.0072 

 

Table 4.11: Accuracy and Loss Result for 5-class Classification Problem  

of Each Fold for SENet 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 85.99% 78.18% 84.30% 79.26% 87.41% 83.03% 

val_acc 99.84% 99.92% 99.75% 100.00% 99.75% 99.85% 

trn_acc 99.92% 99.92% 99.98% 99.98% 99.63% 99.89% 

test_loss 1.0089 1.4780 0.7474 1.1206 0.0066 0.8723 

val_loss 0.0023 0.0032 0.0088 0.0027 0.0098 0.0054 

trn_loss 0.0039 0.0021 0.0016 0.0012 0.0113 0.0040 
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4.2.1 Fold 1 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.16: Accuracy and Loss Against Number of Epochs in The First Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 
Table 4.12: Precision, Recall, and F1-score for 5-class Classification Problem in 

The First Fold Training for Each Model 

Model Classes Precision Recall F1-score 

Inception-

V3 

ALL 95.70% 97.31% 96.49% 

AML 61.18% 62.63% 61.90% 

CLL 85.25% 70.03% 76.89% 

CML 63.47% 71.38% 67.19% 

Healthy 97.67% 98.99% 98.33% 

ResNeXt ALL 100.00% 99.66% 99.83% 

AML 99.33% 73.40% 67.81% 

CLL 100.00% 74.41% 80.36% 
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CML 96.78% 69.36% 70.43% 

Healthy 100.00% 100.00% 99.17% 

SENet ALL 100.00% 100.00% 100.00% 

AML 73.61% 71.38% 72.48% 

CLL 91.06% 75.42% 82.50% 

CML 71.59% 83.16% 76.95% 

Healthy 96.12% 100.00% 98.02% 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 4.17: ROC Curve in The First Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 

 

 
(a) 
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(b) 

 
(c) 

 
Figure 4.18: Confusion Matrix in The First Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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4.2.2 Fold 2 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.19: Accuracy and Loss Against Number of Epochs in The Second Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 
Table 4.13: Precision, Recall, and F1-score for 5-class Classification Problem in 

The Second Fold Training for Each Model 

Model Classes Precision Recall F1-score 

Inception-

V3 

ALL 95.10% 97.98% 96.52% 

AML 58.56% 35.69% 44.35% 

CLL 64.06% 69.02% 66.45% 

CML 53.44% 65.32% 58.79% 

Healthy 94.29% 100.00% 97.06% 

ResNeXt ALL 92.21% 99.66% 95.79% 

AML 56.20% 22.90% 32.54% 

CLL 68.71% 68.01% 68.36% 
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CML 48.89% 74.41% 59.01% 

Healthy 99.66% 99.66% 99.66% 

SENet ALL 99.00% 100.00% 99.50% 

AML 60.25% 48.48% 53.73% 

CLL 69.65% 73.40% 71.48% 

CML 61.01% 69.02% 64.77% 

Healthy 100.00% 100.00% 100.00% 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 4.20: ROC Curve in The Second Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 

 

 
(a) 
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(b) 

 

 
(c) 

 
Figure 4.21: Confusion Matrix in The Second Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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4.2.3 Fold 3 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.22: Accuracy and Loss Against Number of Epochs in The Third Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 

Table 4.14: Precision, Recall, and F1-score for 5-class Classification Problem in 

The Third Fold Training for Each Model 

Model Classes Precision Recall F1-score 

Inception-

V3 

ALL 83.46% 99.39% 90.73% 

AML 46.19% 59.79% 51.73% 

CLL 58.43% 31.52% 40.94% 

CML 50.32% 48.18% 49.23% 

Healthy 96.21% 100.00% 98.07% 

ResNeXt ALL 99.70% 100.00% 99.85% 

AML 61.20% 76.97% 68.19% 

CLL 89.79% 63.94% 74.69% 
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CML 62.50% 62.12% 62.31% 

Healthy 96.48% 99.70% 98.06% 

SENet ALL 99.70% 100.00% 99.85% 

AML 63.41% 84.55% 72.47% 

CLL 90.88% 78.48% 84.23% 

CML 73.95% 58.48% 65.31% 

Healthy 99.10% 100.00% 99.55% 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 4.23: ROC Curve in The Third Fold Training for (a) Inception-V3 

(b) ResNeXt (c) SENet 

 

 
(a) 
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(b) 

 
(c) 

 
Figure 4.24: Confusion Matrix in The Third Fold Training for (a) Inception-V3 

(b) ResNeXt (c) SENet 
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4.2.4 Fold 4 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.25: Accuracy and Loss Against Number of Epochs in The Fourth Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 

Table 4.15: Precision, Recall, and F1-score for 5-class Classification Problem in 

The Fourth Fold Training for Inception-V3 

Model Classes Precision Recall F1-score 

Inception-

V3 

ALL 95.75% 98.65% 97.18% 

AML 45.91% 49.16% 47.48% 

CLL 71.86% 63.64% 67.50% 

CML 40.92% 44.78% 42.77% 

Healthy 99.90% 90.91% 94.74% 

ResNeXt ALL 86.76% 99.33% 92.62% 

AML 72.20% 76.09% 74.10% 

CLL 84.62% 66.67% 74.58% 
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CML 76.59% 89.23% 82.43% 

Healthy 98.81% 83.84% 90.71% 

SENet ALL 100.00% 100.00% 100.00% 

AML 62.04% 51.18% 56.09% 

CLL 73.95% 59.26% 65.79% 

CML 62.90% 86.20% 72.73% 

Healthy 99.33% 99.66% 99.50% 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 4.26: ROC Curve in The Fourth Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 

 

 
(a) 



104 

 
(b) 

 
(c) 

 
Figure 4.27: Confusion Matrix in The Fourth Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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4.2.5 Fold 5 

 

 
(a)     (b) 

 
(c) 

 

Figure 4.28: Accuracy and Loss Against Number of Epochs in The Fifth Fold 

Training for (a) Inception-V3 (b) ResNeXt (c) SENet 

 

Table 4.16: Precision, Recall, and F1-score for 5-class Classification Problem in 

The Fifth Fold Training for Inception-V3 

Model Classes Precision Recall F1-score 

Inception-

V3 

ALL 91.51% 97.98% 94.63% 

AML 59.14% 55.56% 57.29% 

CLL 65.62% 77.10% 70.90% 

CML 67.45% 57.91% 62.32% 

Healthy 97.89% 93.60% 95.70% 

ResNeXt ALL 96.12% 100.00% 98.02% 

AML 72.62% 61.62% 66.67% 

CLL 81.93% 88.55% 85.11% 
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CML 69.65% 73.40% 71.48% 

Healthy 98.97% 96.63% 97.79% 

SENet ALL 97.70% 100.00% 98.84% 

AML 83.58% 56.57% 67.47% 

CLL 79.78% 98.32% 88.08% 

CML 76.97% 82.15% 79.48% 

Healthy 100.00% 100.00% 100.00% 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 4.29: ROC Curve in The Fifth Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 4.30: Confusion Matrix in The Fifth Fold Training for (a) Inception-V3  

(b) ResNeXt (c) SENet 
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4.3 Fine-tuned SENet Models 

 
Table 4.17: Accuracy and Loss Result for 5-class Classification Problem  

of Each Fold for SENet + SVM 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 84.04% 75.22% 85.52% 75.22% 83.83% 80.77% 

 

Table 4.18: Accuracy and Loss Result for 5-class Classification Problem  

of Each Fold for SENet with 3 Hidden Layers 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 85.19% 78.59% 87.15% 79.60% 87.21% 83.55% 

val_acc 99.92% 99.92% 99.66% 99.92% 100.00% 99.88% 

trn_acc 99.63% 99.65% 99.66% 99.96% 99.65% 99.71% 

test_loss 0.8970 1.3803 0.4585 1.5448 0.6734 0.9908 

val_loss 0.0067 0.0020 0.0109 0.0026 0.0008 0.0046 

trn_loss 0.0126 0.0128 0.0151 0.0005 0.0134 0.0109 

 

Table 4.19: Accuracy and Loss Result for 5-class Classification Problem  

of Each Fold for SENet with 3 Hidden Layers Plus Dropout Layers 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 86.33% 79.19% 86.55% 82.49% 87.68% 84.48% 

val_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

trn_acc 99.65% 99.22% 99.22% 99.22% 99.22% 99.31% 

test_loss 0.9953 1.4517 0.3992 0.8036 0.6182 0.8536 

val_loss 0.0008 0.0017 0.0017 0.0017 0.0017 0.0015 

trn_loss 0.0134 0.0307 0.0307 0.0307 0.0307 0.0272 
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4.3.1 Fold 1 

 

 
(a)     (b) 

 

Figure 4.31: Accuracy and Loss Against Number of Epochs in The First Fold 

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus 

Dropout Layers 

 

Table 4.20: Precision, Recall, and F1-score for 5-class Classification Problem in 

The First Fold Training for Each Fine-tuned SENet Models 

Model Classes Precision Recall F1-score 

SENet + 

SVM 

ALL 98.02% 100.00% 99.00% 

AML 68.46% 68.69% 68.57% 

CLL 85.66% 72.39% 78.47% 

CML 71.82% 79.80% 75.60% 

Healthy 97.36% 99.33% 98.33% 

SENet with 

3 Hidden 

Layers 

ALL 100.00% 100.00% 100.00% 

AML 66.76 % 80.47% 72.98% 

CLL 97.12% 68.01% 80.00% 

CML 73.02% 77.44% 75.16% 

Healthy 96.74% 100.00% 98.34% 

SENet with 

3 Hidden 

Layers Plus 

Dropout 

Layers 

ALL 100.00% 100.00% 100.00% 

AML 70.93% 74.75% 72.79% 

CLL 93.00% 76.09% 83.70% 

CML 72.29% 80.81% 76.31% 

Healthy 99.00% 100.00% 99.50% 



111 

 
(a) 

 
(b) 
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(c) 

 

Figure 4.32: ROC Curve in The First Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 

 

 
(a) 
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(b) 

 
(c) 

 
Figure 4.33: Confusion Matrix in The First Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 
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4.3.2 Fold 2 

 
(a)     (b) 

 

Figure 4.34: Accuracy and Loss Against Number of Epochs in The Second Fold 

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus 

Dropout Layers 

 

Table 4.21: Precision, Recall, and F1-score for 5-class Classification Problem in 

The Second Fold Training for Each Fine-tuned  SENet Models 

Model Classes Precision Recall F1-score 

SENet + 

SVM 

ALL 98.64% 97.98% 98.31% 

AML 49.50% 50.51% 50.00% 

CLL 64.55% 64.98% 64.77% 

CML 64.60% 63.30% 63.95% 

Healthy 99.33% 99.33% 99.33% 

SENet with 

3 Hidden 

Layers 

ALL 98.99% 99.33% 99.16% 

AML 57.04% 55.89% 56.46% 

CLL 73.33% 62.96% 67.75% 

CML 64.91% 74.75% 69.48% 

Healthy 99.33% 100.00% 99.66% 

SENet with 

3 Hidden 

Layers Plus 

Dropout 

Layers 

ALL 99.00% 99.66% 99.33% 

AML 61.16% 46.13% 52.59% 

CLL 73.84% 69.36% 71.53% 

CML 62.34% 80.81% 70.38% 

Healthy 99.66% 100.00% 99.83% 
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(a) 

 
(b) 
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(c) 

 

Figure 4.35: ROC Curve in The Second Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 

 

 
(a) 
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(b) 

 
(c) 

 
Figure 4.36: Confusion Matrix in The Second Fold Training for (a) SENet + SVM 

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 
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4.3.3 Fold 3 

 

 
(a)     (b) 

Figure 4.37: Accuracy and Loss Against Number of Epochs in The Third Fold 

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus 

Dropout Layers 

 

Table 4.22: Precision, Recall, and F1-score for 5-class Classification Problem in 

The Third Fold Training for Each Fine-tuned  SENet Models 

Model Classes Precision Recall F1-score 

SENet + 

SVM 

ALL 100.00% 99.39% 99.70% 

AML 66.84% 78.18% 72.07% 

CLL 90.82% 80.91% 85.58% 

CML 74.03% 69.09% 71.47% 

Healthy 98.80% 100.00% 99.40% 

SENet with 

3 Hidden 

Layers 

ALL 99.70% 99.39% 99.54% 

AML 65.52% 92.73% 76.79% 

CLL 96.86% 74.85% 84.44% 

CML 85.98% 68.79% 76.43% 

Healthy 98.51% 100.00% 99.25% 

SENet with 

3 Hidden 

Layers Plus 

Dropout 

Layers 

ALL 100.00% 100.00% 100.00% 

AML 70.13% 81.82% 75.52% 

CLL 85.82% 73.33% 79.08% 

CML 79.75% 77.58% 78.65% 

Healthy 99.40% 100.00% 99.70% 
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(a) 

 
(b) 
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(c) 

 

Figure 4.38: ROC Curve in The Third Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 

 

 
(a) 
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(b) 

 
(c) 

 
Figure 4.39: Confusion Matrix in The Third Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 
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4.3.4 Fold 4 

 

 
(a)     (b) 

 

Figure 4.40: Accuracy and Loss Against Number of Epochs in The Fourth Fold 

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus 

Dropout Layers 

 
Table 4.23: Precision, Recall, and F1-score for 5-class Classification Problem in 

The Fourth Fold Training for Each Fine-tuned  SENet Models 

Model Classes Precision Recall F1-score 

SENet + 

SVM 

ALL 94.89% 100.00% 97.38% 

AML 58.09% 47.14% 52.04% 

CLL 67.05% 58.25% 62.34% 

CML 59.35% 80.13% 68.19% 

Healthy 98.90% 90.57% 94.55% 

SENet with 

3 Hidden 

Layers 

ALL 98.01% 99.33% 98.66% 

AML 68.70% 53.20% 59.96% 

CLL 73.04% 56.57% 63.76% 

CML 63.04% 93.60% 75.34% 

Healthy 100.00% 95.29% 97.59% 

SENet with 

3 Hidden 

Layers Plus 

Dropout 

Layers 

ALL 100.00% 100.00% 100.00% 

AML 69.83% 56.90% 62.71% 

CLL 70.30% 71.72% 71.00% 

CML 73.35% 86.20% 79.26% 

Healthy 98.64% 97.64% 98.14% 
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(a) 

 
(b) 



124 

 
(c) 

 

Figure 4.41: ROC Curve in The Fourth Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 

 

 
(a) 
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(b) 

 
(c) 

 
Figure 4.42: Confusion Matrix in The Fourth Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 
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4.3.5 Fold 5 

 

 
(a)     (b) 

 

Figure 4.43: Accuracy and Loss Against Number of Epochs in The Fifth Fold 

Training for (a) SENet with 3 Hidden Layers (b) SENet with 3 Hidden Layers Plus 

Dropout Layers 

 

Table 4.24: Precision, Recall, and F1-score for 5-class Classification Problem in 

The Fifth Fold Training for Each Fine-tuned  SENet Models 

Model Classes Precision Recall F1-score 

SENet + 

SVM 

ALL 97.06% 100.00% 98.51% 

AML 76.67% 54.21% 63.51% 

CLL 80.91% 89.90% 85.17% 

CML 66.67% 78.11% 71.94% 

Healthy 98.97% 96.97% 97.96% 

SENet with 

3 Hidden 

Layers 

ALL 99.33% 100.00% 99.66% 

AML 96.99% 43.43% 60.00% 

CLL 80.05% 98.65% 88.39% 

CML 71.54% 93.94% 81.22% 

Healthy 100.00% 100.00% 100.00% 

SENet with 

3 Hidden 

Layers Plus 

Dropout 

Layers 

ALL 98.67% 100.00% 99.33% 

AML 90.17% 52.53% 66.38% 

CLL 83.00% 96.97% 89.44% 

CML 72.53% 88.89% 79.88% 

Healthy 99.00% 100.00% 99.50% 
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(a) 

 
(b) 
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(c) 

 

Figure 4.44: ROC Curve in The Fifth Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 

 

 
(a) 
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(b) 

 
(c) 

 
Figure 4.45: Confusion Matrix in The Fifth Fold Training for (a) SENet + SVM  

(b) SENet with 3 Hidden Layers (c) SENet with 3 Hidden Layers Plus Dropout 

Layers 
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4.4 Binary Classification Problem for SENet with 3 Hidden Layers Plus 

Dropout Layers 

 

Table 4.25: Accuracy and Loss Result for Binary Classification Problem 

of Each Fold 

Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

test_acc 100.00% 100.00% 99.55% 100.00% 99.66% 99.84% 

val_acc 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

trn_acc 99.13% 99.80% 94.16% 99.80% 99.80% 98.54% 

test_loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

val_loss 0.0000 0.0000 0.0016 0.0009 0.0022 0.0009 

trn_loss 0.0262 0.0070 0.1477 0.0076 0.0091 0.0395 

 

 

 

4.4.1 Accuracy and Loss Against Number of Epochs 
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Figure 4.46: Accuracy and Loss Against Number of Epochs for Each Fold 

 

 

 

4.4.2 Precision, Recall, and F1-score for Leukemia Subtypes Classification 

 

Table 4.26: Precision, Recall, and F1-score for Binary Classification Problem 

for Each Fold 

Fold Precision Recall F1-score 

1 100.00% 100.00% 100.00% 

2 100.00% 100.00% 100.00% 

3 99.40% 99.70% 99.55% 

4 100.00% 100.00% 100.00% 

5 100.00% 99.33% 99.66% 

 
Average Precision, Recall, and F1-score for Binary Classification Problem 

ALL Against 

Healthy Class 

Precision Recall F1-score 

99.88% 99.81% 99.84% 
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4.4.3 ROC Curve 

 

 

 

 
Figure 4.47: ROC Curve for Each Fold 
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4.4.4 Confusion Matrix 

 

 

 

 
Figure 4.48: Confusion Matrix in The Fourth Fold Training for Each Fold  
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4.5 Discussion 

 

For this project, three models are selected based on their performance in the ILSVRC 

competition (ImageNet, n.d.), namely Inception-V3, ResNeXt, and SENet. The 

method of using deep learning to detect and classify leukemia is through transfer 

learning. With that said, the pretrained models will first be downloaded from the 

Internet. Then their fully connected layer is replaced with a shallow network that 

consists of one hidden layer and an output prediction layer. After that, the models will 

be trained with the images of leukemia. The models will first be trained for the binary 

classification problem between ALL and healthy classes, followed by the 5-class 

classification problem between ALL, AML, CLL, CML, and healthy classes. The 

overall architecture and hyperparameters of the models used to tackle the binary and 

5-class classification problems are illustrated as shown below. 

 

 
(a) 

 
Figure 4.49: Overall Architecture of Each Model for (a) Binary Classification 

Problem (b) 5-class Classification Problem  
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During the models’ training and testing, a method known as k-fold cross-validation is 

implemented, in which k of 5 is used for this project. This means that the dataset will 

be split into data groups consisting of 80% training set and 20% testing set. 

 

For the binary classification problem, the accuracies and losses of the models 

after training and testing are tabulated as shown in Tables 4.1, 4.2, and 4.3. As 

observed, all of the models were able to obtain a high average training and validation 

accuracy at approximately 99.38% and 99.86%, respectively. However, during testing, 

the SENet model generated the highest average accuracy, which is 99.87%, followed 

by ResNeXt, which is 97.66%, and Inception-V3, which is 97.03%. Among the folds 

trained, the SENet model achieved a 100.00% testing accuracy in the first and the 

fourth fold. The SENet model also holds the best score compared to the other literature 

studies. It is followed closely by the model proposed by Shafique, et al. (2018), in 

which they achieved an average testing accuracy of 99.50%. The bar chart in Figure 

4.50 compares the proposed models in this project to the other literature studies on the 

binary classification problem. 

 

 
Figure 4.50: Bar Chart of The Testing Accuracy Comparison of The Studies on 

Binary Classification Problem 

 
In terms of the precision, recall, and F1-score, the SENet model exhibited the 

best score with 100.00% on all three metrics in the first fold compared to the other 

models. However, in the second fold, it is observed that the ResNeXt model exhibited 

99.87%

99.50%

99.39%

99.20%

97.66%

97.03%

96.60%

88.25%

85.00% 87.00% 89.00% 91.00% 93.00% 95.00% 97.00% 99.00%

SENet

Shafique, et al. (2018)

Das and Meher (2021)

Vogado, et al. (2019)

ResNeXt

Inception-V3

Thanh, et al. (2018)

Ahmed, et al. (2019)

Testing Accuracy Comparison of The Studies on Binary 
Classification Problem
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the best score of 100.00% on all three metrics compared to the other models. In the 

third fold, the ResNext model has the highest precision, while the SENet model has 

the highest recall. Nevertheless, the SENet model exhibited a higher F1-score than the 

ResNeXt model by 0.62%. In the fourth fold, the SENet model once again exhibited 

the best score of 100.00% on all three metrics compared to the other models. Finally, 

the SENet model obtained the highest score on all three metrics in the fifth fold with a 

precision of 100.00%, a recall of 99.66%, and an F1-score of 99.83%. The average 

precision, average recall, and average F1-score is calculated and tabulated as shown in 

the table below. The table also includes studies that provided precision, recall, and F1-

score of their proposed models on the binary classification problem.  

 

Table 4.27: Average Precision, Recall, and F1-score for Binary Classification 

Problem for Each Model 

Models Precision Recall F1-score 

Inception-V3 98.69% 95.31% 96.91% 

ResNeXt 99.93% 95.39% 97.54% 

SENet 99.81% 99.93% 99.87% 

Vogado, et al. (2018) 99.20% 99.20% 99.20% 

Das and Meher (2021) 99.33% 99.55% 99.44% 

 

Without a doubt, the higher the recall and precision of the model, the better it 

is. However, it is crucial to avoid models with low recall in the medical field. This is 

because a model with a low recall may diagnose a patient who actually has leukemia 

as not having it at all. It will cause the patient to miss its window of opportunity for 

treatment, leading to undesirable consequences. Nevertheless, the precision of a model 

should still be taken into account so that patients who do not have leukemia will not 

be treated for it. All in all, it is better to look at the F1-score, since it provides a better 

measurement of the performance of the model in terms of precision and recall. The 

closer the F1-score is to 100.00%, the better the model's performance. 

 

It is observed in Table 4.27 that the SENet has the highest average F1-score 

compared to other models. This shows that it can correctly classify most of the images 

into their correct classes, such that images with ALL cells are correctly classified as 
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ALL class, whereas images with no ALL cells are correctly classified as the healthy 

class. This can also be justified in the ROC curves, where sharp bents are observed in 

each fold, and the AUC-ROC values are determined to be at an average value of 1. It 

shows that the SENet model has an excellent class separability. It is also observed in 

the confusion matrixes, where the number in the diagonal elements is much higher and 

has a darker colour than the neighbouring elements. Thus, in the binary classification 

problem, it is without a doubt that the SENet model provides the best performance rate 

in detecting leukemia cells from healthy cells. 

 

 The 5-class classification problem concerns the detection of leukemia cells and 

the classification of leukemia subtypes between ALL, AML, CLL, and CML classes. 

The accuracies and losses of the models after training and testing are tabulated as 

shown in Tables 4.9, 4.10, and 4.11. It is observed that all of the models were able to 

obtain a high average training and validation accuracy but were unable to achieve an 

average testing accuracy close to them. The highest recorded average testing accuracy 

is 83.03%, achieved by the SENet model. On the other hand, the ResNeXt model 

achieved an average testing accuracy of 80.78%, while the Inception-V3 model 

achieved 73.42%. It is important to consider that the SENet model is much more 

complex than the other two models. Therefore, without a doubt, more important 

features can be captured and learned from the images, which results in a high 

prediction score. 

 

Among the folds trained, the SENet model achieved a reasonably high testing 

accuracy of 87.41% in the fifth fold. Nevertheless, the SENet model still holds the best 

score compared with other literature studies. It is followed closely by the model 

proposed by Ahmed, et al. (2019), which achieved an average accuracy of 81.74%. 

The bar chart in Figure 4.51 compares the proposed models in this project to the other 

literature studies on the 5-class classification problem. The accuracy obtained by Bibi, 

et al. (2020) is not included in the bar chart because there is no indication on how the 

accuracy was obtained. Hence, it is assumed that the accuracy of 99.91% obtained 

from their studies was the training accuracy, in which all three of the models used in 

this project were approximately close to it. The highest average training accuracy of 

100.00% is obtained by the Inception-V3 model, followed by 99.89% obtained by the 

SENet model and 99.74% obtained by the ResNeXt model. 
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Figure 4.51: Bar Chart of The Testing Accuracy Comparison of The Studies on  

5-class Classification Problem 

 
In terms of the precision, recall, and F1-score, the SENet model obtained a 

higher average score in each class compared to the other models. Note that no other 

studies had provided the precision, recall, and F1-score of their proposed model on the 

5-class classification problem. Nevertheless, the average precision, average recall, and 

average F1-scores for all models proposed in this project are calculated and tabulated 

in Table 4.28. The numbers obtained show that most models have a hard time 

classifying images of AML and CML cells while working moderately well in 

classifying images of CLL cells, and do not have much problems classifying images 

of ALL and healthy cells. For ALL class, the SENet model achieved the highest 

average score for all metrics, whereby precision is 99.28%, recall is 100.00%, and F1-

score is 99.64%. As for AML class, the highest average precision of 72.31% is 

achieved by the ResNeXt model, while the highest average recall and F1-score of 

62.43% and 64.45%, respectively, are achieved by the SENet model. In the case of 

CLL class, the highest average prediction score of 85.01% is achieved by the ResNeXt 

model, while the highest average recall and F1-score of 76.98% and 78.42%, 

respectively, are achieved by the SENet model. For CML class, the highest average 

precision of 70.88% is achieved by the ResNeXt model, while the highest average 

recall and F1-score of 75.80% and 71.85%, respectively, are achieved by the SENet 

model. Lastly, for healthy class, the SENet model achieved the highest average score 

for all metrics, whereby precision is 98.91%, recall is 99.93%, and F1-score is 99.41%. 

Although the ResNeXt model exhibited a good performance as observed in its 

precision, the SENet model still has a better performance as observed in its recall and 

F1-score for all classes. This finding will be justified by looking at the ROC curves, 

AUC-ROC values, and confusion matrixes generated by the models. 
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Table 4.28: Average Precision, Recall, and F1-score for 5-class Classification 

Problem for Each Model 

Model Classes Precision Recall F1-score 

Inception-

V3 

ALL 92.30% 98.26% 95.11% 

AML 54.20% 52.57% 52.55% 

CLL 69.04% 62.26% 64.54% 

CML 55.12% 57.51% 56.06% 

Healthy 97.19% 96.70% 96.78% 

ResNeXt ALL 94.96% 99.73% 97.22% 

AML 72.31% 62.20% 61.86% 

CLL 85.01% 72.32% 76.62% 

CML 70.88% 73.70% 69.13% 

Healthy 98.78% 95.97% 97.08% 

SENet ALL 99.28% 100.00% 99.64% 

AML 68.58% 62.43% 64.45% 

CLL 81.06% 76.98% 78.42% 

CML 69.28% 75.80% 71.85% 

Healthy 98.91% 99.93% 99.41% 

 

By only observing the ROC curve in the fold where most of the models were 

able to achieve the highest testing accuracy, which is the fifth fold, it is evident that 

the SENet model has sharper bents on most of the classes compared to the ResNeXt 

model and the Inception-V3 model. On top of that, the AUC-ROC values of the SENet 

model for ALL class against the rest is 1, AML class against the rest is 0.9342, CLL 

class against the rest is 0.9921, CML class against the rest is 0.9588, and healthy class 

against the rest is 1. This shows that the SENet model has a stronger class separability 

for ALL and healthy classes while the weakest for AML class. Besides, the class 

separability can be observed in the confusion matrixes, whereby the higher the number 

and the darker the colour of the diagonal elements is, the better the model is in 

classifying the images into their correct classes. The confusion matrixes of the 

Inception-V3 model shows that the model exhibited good performance in classifying 

images of ALL and healthy cells but becomes weaker when it comes to classifying 

images of AML, CLL, and CML cells. As for the ResNeXt model, it is observed that 
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there is an improvement in classifying images of CLL class compared to the Inception-

V3 model. Lastly, the SENet model is seen to be able to classify images of AML, CLL, 

CML, and healthy cells better, but it lacks behind when classifying images of AML 

cells compared to the ResNeXt model. Thus, in the 5-class classification problem, it is 

concluded that the SENet model provides the best performance rate in detecting 

leukemia cells from healthy cells and classifying the leukemia cells into their subtypes. 

 

After evaluating the models, it is without a doubt that the SENet model is the 

clear winner among the three models. Henceforth, the SENet model will be fine-tuned 

to improve its accuracy and overall performance further. The 5-class classification 

problem will be tackled first, and when a reasonable improvement in the results is 

observed, the model will be implemented on the binary classification problem. The 

goal of fine-tuning is to increase the testing accuracy for the 5-classification task as 

much as possible by making two different adjustments to the model, which include 

replacing the model’s classifier with a machine learning algorithm or increasing the 

layers in the fully connected network with different dimensional feature vectors. 

 

The first idea of using machine learning algorithms as a classifier comes from 

the literature studies done by Vogado, et al. (2018). Their studies focus on using CNN 

models as the feature extractor and machine learning algorithms, such as the SVM, as 

the classifier. Their proposed model was used to tackle the same binary classification 

problem in this project which is leukemia detection. It is observed that they can achieve 

reasonably high accuracy, but the method was not applied to 5-class classification 

problems. Henceforth, an experiment is conducted to test the technique on the 5-class 

classification problem by replacing the softmax classifier of the SENet model with an 

SVM classifier. The overall architecture of the model is shown in Figure 4.52, and its 

code is listed in Code Listing 31 in Appendix A. Note that there are no training and 

validation data since only the classifier is being replaced while the previous weights 

and biases of the SENet model are preserved. The previous SENet model will be 

denoted as SENet model A, whereas the SENet model with an SVM classifier will be 

denoted as SENet model B to allow easier referencing in the subsequent discussion. 
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Figure 4.52: Overall Architecture of Each Model for SENet model B 

 

The testing accuracies of each fold and their average value for the SENet model 

B are tabulated as shown in Table 4.17. Besides, the average precision, recall, and F1-

score is calculated and tabulated together with the values for SENet model A as shown 

in Table 4.29. The bar chart shown in Figure 4.53 compares the average precision, 

recall, and F1-score between SENet model A and B.  

 

Table 4.29: Average Precision, Recall, and F1-score for 5-class Classification 

Problem for SENet model A and B 

Model Classes Precision Recall F1-score 

SENet 

Model A 

ALL 99.28% 100.00% 99.64% 

AML 68.58% 62.43% 64.45% 

CLL 81.06% 76.98% 78.42% 

CML 69.28% 75.80% 71.85% 

Healthy 98.91% 99.93% 99.41% 

SENet 

Model B 

ALL 97.72% 99.47% 98.58% 

AML 63.91% 59.75% 61.24% 

CLL 77.80% 73.29% 75.27% 

CML 67.29% 74.09% 70.23% 

Healthy 98.67% 97.24% 97.91% 
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Figure 4.53: Bar Chart of The Average Precision, Recall, and F1-score Comparison 

Between SENet Model A and B 

 

It is observed that the SENet model B has a reduction in accuracy by 2.26% compared 

to the SENet model A. In addition, the model is also unable to surpass the average 

precision, recall, and F1-score for all classes of the SENet model A. This can also be 

observed in the ROC curves, AUC-ROC values, and the confusion matrixes, whereby 

the model exhibits a weaker class separability than the SENet model A. All in all, 

although the use of machine learning algorithm as the classifier can tackle the binary 

classification problem, it lacks behind when implemented on 5-class classification 

problems. 

 

 
Moving on to the second fine-tuning method, more layers consisting of 

different dimensional feature vectors are added to the fully connected network of the 

SENet model A to observe whether a slow converging feature selection process can 

improve the training accuracy. The fully connected network, which initially has 1 

hidden layer, is further increased to 3 hidden layers with different dimensional feature 

vectors. This model will be denoted as SENet model C. The overall architecture of the 

model is shown in Figure 4.54, and its code is listed in Code Listing 32 in Appendix 

A. 
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Figure 4.54: Overall Architecture of Each Model for SENet model C 

 

Its accuracies and losses are tabulated as shown in Table 4.18. Furthermore, the 

average precision, recall, and F1-score is calculated and tabulated together with the 

values for SENet model A as shown in Table 4.30. The bar chart shown in Figure 4.55 

compares the average precision, recall, and F1-score between SENet model A and C. 

 
Table 4.30: Average Precision, Recall, and F1-score for 5-class Classification 

Problem for SENet model A and C 

Model Classes Precision Recall F1-score 

SENet 

Model A 

ALL 99.28% 100.00% 99.64% 

AML 68.58% 62.43% 64.45% 

CLL 81.06% 76.98% 78.42% 

CML 69.28% 75.80% 71.85% 

Healthy 98.91% 99.93% 99.41% 

SENet 

Model C 

ALL 99.21% 99.61% 99.40% 

AML 71.00% 65.14% 65.24% 

CLL 84.08% 72.21% 76.87% 

CML 71.70% 81.70% 75.53% 

Healthy 98.92% 99.06% 98.97% 
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Figure 4.55: Bar Chart of The Average Precision, Recall, and F1-score Comparison 

Between SENet Model A and C 

 

It is observed that there is an increase of 0.52% in the average testing accuracy 

for the SENet model C compared to the SENet model A. In terms of the average 

precision of the SENet model C, a slight decrease of 0.07% is observed for ALL class 

compared to the SENet model A. In contrast, the other 4 classes observed an 

improvement in the average precision, such that there is an increase of 2.42% for AML 

class, 3.02% for CLL class, 2.42% for CML class, and 0.01% for healthy class. On the 

other hand, the average recall of the SENet model C saw a decrease for ALL, CLL, 

and healthy classes of 0.39%, 4.77%, and 0.87%, respectively, while an increase for 

AML and CML classes of 2.71%, and 5.9%, respectively, compared to the SENet 

model A. For the average F1-score, compared to the SENet model A, there is a slight 

decrease for ALL, CLL, and healthy classes of 0.24%, 1.55%, and 0.44%, respectively. 

However, this decrease is compensated with an increase in the average F1-score for 

AML and CML classes of 0.79% and 3.68%, respectively. 

 

Following on the fifth fold comparison, in which both SENet models have the 

highest testing accuracy, it is observed that the ROC curves of the SENet model C has 

a sharper bent on the AML class compared to the SENet model A, while other classes 

remain approximately the same. Furthermore, looking into the AUC-ROC values, an 

improvement is observed in the SENet model C compared to the SENet model A, 

whereby there is an increase for the AUC-ROC value of AML class, CLL class, and 

CML class against the rest of 0.025275, 0.002817, and 0.013433, respectively. This 
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shows that SENet model C has a stronger class separability for all classes than SENet 

model A. Furthermore, by looking into the confusion matrixes, it is observed that the 

SENet model C has improved in correctly classifying images of CLL and CML cells 

but lacks behind when classifying images of AML cells compared to the SENet model 

A. All in all, minor improvements are observed in the SENet model C as it is able to 

surpass the testing accuracy and exhibits a slightly stronger class separability 

compared to the SENet Model A. 

 

Additionally, the SENet model C is further fine-tuned by attempting to reduce 

the variance problem exhibited, such that the testing accuracy is much lower compared 

to the training accuracy. This shows that the model is somewhat overfitting the training 

dataset, causing it to perform poorly in the unseen testing dataset. Henceforth, a 

regularization technique known as dropout is implemented into the fully connected 

network of the SENet model C. The dropout layers are added in between the ReLU 

layers of the model, and the dropout rate, 𝑝𝑝, is set to 0.5. This model will be denoted 

as SENet model D. The overall architecture of the model is shown in Figure 4.56, and 

its code is listed in Code Listing 33 in Appendix A. 

 

 
Figure 4.56: Overall Architecture of Each Model for SENet model D 

 

Its accuracies and losses are tabulated as shown in Table 4.19. The bar chart in 

Figure 4.58 compares all proposed models, including the fine-tuned SENet models, to 
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the other literature studies on the 5-class classification problem. It is observed that 

there is an increase of 0.93% in the average testing accuracy for the SENet model D 

compared to the SENet model C, whereas an increase of 1.45% is observed when 

compared to the SENet model A. The SENet model D also surpassed both the 

Inception-V3 and ResNeXt models, as well as the model proposed by Ahmed, et al.  

 

 
Figure 4.57: Bar Chart of The Testing Accuracy Comparison of The Studies on  

5-class Classification Problem Including Fine-tuned Models 

 

Furthermore, the average precision, recall, and F1-score is calculated and 

tabulated as shown in Table 4.31. The bar chart shown in Figure 4.57 compares the 

average precision, recall, and F1-score between SENet model A and D. In terms of the 

average precision, when compared with the SENet model A, most of the classes 

observed an improvement, such that an increase of 0.25% for ALL class, 3.86% for 

AML class, 0.13% for CLL class, 2.77% for CML class, and 0.23% for healthy class. 

On the other hand, the average recall of the SENet model D saw a minor decrease for 

ALL and healthy classes of 0.07% and 0.40%, respectively, while an increase for CLL 

and CML classes of 0.51% and 7.06%, respectively, compared to the SENet model A. 

For the average F1-score, compared to the SENet model A, there is a slight decrease 

for healthy cells of 0.08% only, but the other classes observed an improvement such 

that there is an increase of 0.09% for ALL class, 1.55% for AML class, 0.53% for CLL 

class, and 5.05% for CML class.  
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Table 4.31: Average Precision, Recall, and F1-score for 5-class Classification 

Problem for SENet model A and D 

Model Classes Precision Recall F1-score 

SENet 

Model A 

ALL 99.28% 100.00% 99.64% 

AML 68.58% 62.43% 64.45% 

CLL 81.06% 76.98% 78.42% 

CML 69.28% 75.80% 71.85% 

Healthy 98.91% 99.93% 99.41% 

SENet 

Model D 

ALL 99.53% 99.93% 99.73% 

AML 72.44% 62.43% 66.00% 

CLL 81.19% 77.49% 78.95% 

CML 72.05% 82.86% 76.90% 

Healthy 99.14% 99.53% 99.33% 

 

 
Figure 4.58: Bar Chart of The Average Precision, Recall, and F1-score Comparison 

Between SENet Model A and D 

 

Next, taking into account only the fold where both SENet models have the 

highest testing accuracy, which is the fifth fold, it is also observed that the ROC curves 

of the SENet model D have a sharper bent on the AML class compared to the SENet 

model A, while other classes remain approximately the same. Looking into the AUC-

ROC values, an improvement is observed in the SENet model D compared to the 

SENet model A, whereby there is  an increase for the AUC-ROC values of AML 
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class, CLL class, and CML class against the rest by 0.02021, 0.002036, and 0.004552 

respectively. This shows that the SENet model D has a stronger class separability for 

all classes than the SENet model A but slightly lacks behind compared to the SENet 

model C. Furthermore, by looking into the confusion matrixes, it is observed that the 

SENet model D also has improved in correctly classifying images of CLL and CML 

cells compared to the SENet model A but lacks behind when classifying images of 

AML cells. All in all, improvements are observed in the SENet model D as it is able 

to surpass the testing accuracy of both the SENet model A and C. It also has a higher 

average F1-score, as well as a stronger class separability. With that said, the SENet 

model D will be implemented on the binary classification problem. 

 

The accuracies and losses for the binary classification problem are tabulated as 

shown in Table 4.25. The bar chart shown in Figure 4.59 compares all the proposed 

models in this project, including fine-tuned SENet models, to the other literature 

studies on the binary classification problem. It is observed that there is a minor 

decrease of 0.03% in the average testing accuracy compared to the SENet model A, 

while still surpassing both the Inception-V3 and ResNeXt model, as well as all other 

models proposed by related works.  

 

 
Figure 4.59: Bar Chart of The Testing Accuracy Comparison of The Studies on  

Binary Classification Problem Including Fine-tuned Models 
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Besides, the average precision, recall, and F1-score are calculated as 99.88%, 

99.81%, and 99.84%, respectively. It is observed that the SENet model D has a minor 

improvement in terms of precision but has a slightly lower recall and F1-score 

compared to the SENet model A. Whereas, in terms of the ROC curves, AUC-ROC 

values, and confusion matrixes, both models have similar results. Overall, the SENet 

model D can still tackle the binary classification problem as good as the SENet model 

A, and it is also capable of tackling the 5-class classification problem very well. 

Therefore, it is without a doubt that the SENet model D provides the best performance 

rate in detecting leukemia cells from healthy cells and classifying the leukemia cells 

into their subtypes.  
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CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Project Review 

 

This project aims to produce an efficient way of detecting and classifying leukemia 

using deep learning models. The first objective is to select and train a suitable deep 

learning model to detect leukemia cells from healthy cells and classify them into their 

subtypes. Therefore, three models are selected for this project, namely the Inception-

V3, ResNeXt, and SENet models, and are made to achieve this objective. The models 

are downloaded as pretrained models through multiple APIs available online, leukemia 

images are then fed to train the models, and unseen testing data are used to evaluate 

their capability in detecting and classifying leukemia. 

  

The second objective of this project is to fine-tune the selected model for a 

better performance rate in detecting and classifying leukemia. Throughout the project, 

it is determined that the SENet model provides the best performance rate among the 

three selected models. Henceforth, the SENet model was fine-tuned to improve its 

performance rate further. The modifications include replacing the softmax classifier 

with an SVM classifier, increasing the layers in the fully connected network with 

different dimensional feature vectors, and implementing dropout layers in the fully 

connected network. 
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5.2 Project Findings 

 

Among the models, before fine tunings are made, the SENet model produces the best 

performance rate in both binary and 5-class classification problems. The average 

testing accuracy achieved by the SENet model in the binary classification problem is 

99.87%, whereby the highest it can obtain is 100.00% in the first and fifth fold. It holds 

the best score compared to the other literature studies, with the model proposed by 

Shafique, et al., following closely at an average testing accuracy of 99.50%. Besides, 

the SENet model also exhibited the highest average recall and F1-score of 99.93% and 

99.87%, respectively, compared to the other models. Furthermore, by observing the 

ROC curves generated by the model, sharp bents are exhibited in each fold, and the 

AUC-ROC values are determined to be at an average value of 1. In addition, the 

diagonal elements of its confusion matrixes have a higher value and have a darker 

colour than the neighbouring elements. These performance metrics prove that the 

SENet model has an excellent class separability for the binary classification problem. 

 

 On the other hand, the average testing accuracy achieved by the SENet model 

in the 5-class classification problem is 83.03%, whereby the highest it can obtain is 

87.41% in the fifth fold. It holds the best score compared to the other literature studies, 

with the model proposed by Ahmed, et al., closely following an average testing 

accuracy of 81.74%. In terms of precision, recall, and F1-score, it is found that the 

ResNeXt model exhibited a good performance as observed in its average precision for 

all classes, while the SENet model has a better performance as observed in its average 

recall and F1-score for all classes. It has been mentioned before that the F1-score 

provides a better measurement of the model's performance in terms of precision and 

recall. Besides, it is also better to avoid models with low recall in the medical field 

because it may result in a patient who actually has leukemia being diagnosed as not 

having it. It will cause the patient to miss its window of opportunity for treatment, 

leading to undesirable consequences. With that, it can be said that the SENet model 

provides the best performance compared to the other models. This finding is justified 

further by the ROC curves, AUC-ROC values, and confusion matrixes generated by 

the SENet model, whereby a strong class separability for most of the classes compared 

to the other models. Thus, it is concluded that the SENet model also provides the best 

performance rate in the 5-class classification problem. 
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It is obvious that the SENet model aced both binary and 5-class classification 

problem compared to the other models. Therefore, it will be fine-tuned to improve its 

accuracy and overall performance. Two modifications are experimented on the SENet 

model, or SENet model A, which includes replacing the model’s classifier with a 

machine learning algorithm, and increasing the layers in the fully connected network 

with different dimensional feature vectors. It is observed that the latter model, SENet 

model C, saw a minor increase in the model’s accuracy by 0.52% in tackling the 5-

class classification problem, while the former, SENet model B, degrades it by 2.26%. 

The SENet model C also had a minor improvement on the class separability compared 

to the SENet model A. This shows that the slow converging feature selection process 

enabled by the different dimensional feature vectors allowed more important features 

to be captured by the model. Hence, the SENet model C is further fine-tuned by adding 

a regularization technique known as dropout into its fully connected network, 

producing the SENet model D. Dropouts are added to reduce the variance problem 

exhibited, such that the testing accuracy is much lower compared to the training 

accuracy. 

 

From the results obtained, an increase of 0.93% in the average testing accuracy 

is observed compared to the SENet model C, whereas an increase of 1.45% is observed 

compared to the SENet model A. This shows that regularization techniques such as 

dropouts had effectively reduced the variance problem, allowing the model to perform 

better predictions on the unseen testing images. Furthermore, the SENet model D saw 

an improvement in the precision, recall, and F1-score for most of the classes compared 

to the SENet model A. The ROC curves, AUC-ROC values, and confusion matrixes 

also show that the SENet model D has a stronger class separability for all classes. With 

that said, the SENet model D will be implemented on the binary classification problem. 

Minor improvements are observed in terms of precision, but the model has a slightly 

lower recall and F1-score than the SENet model A. It is also found that both models 

have similar results in the ROC curves, AUC-ROC values, and confusion matrixes. 

Overall, the SENet model D is capable of tackling the binary classification problem as 

good as the SENet model A and tackling the 5-class classification problem very well. 
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5.3 Recommendations for Future Improvements 

 

Though this project produced a model, the SENet model D, that can generate excellent 

results in detecting and classifying leukemia compared to other literature studies, there 

are still limitations that can be overcome to create a better model with higher 

performance. The first limitation is the scarcity of the cell images used to train the 

model. It is without a doubt that the larger the dataset, the better. However, in this 

project, although the dataset is large, the data are mostly augmented, affecting how the 

models learn the features from the images. Data augmentation may be a good 

technique to increase dataset size but should still be used considerably to avoid having 

the model capture random noise instead of the important features. Hence, it is 

recommended that more cell images of higher quality be used to train the models for 

this project, which could effectively improve the model’s prediction. 

 

           Furthermore, the following limitation is the software and hardware used to train 

the models. The models chosen for this project have a complex architecture that 

requires a high-performance unit to train and test them. Although the current method 

of using Google Colab works well, the RAM size allowed to be used is 25.46GB only 

if the program is running on Intel Xeon CPU provided by the website. On the other 

hand, if GPU is selected, the only RAM size allowed to be used is only 12.69GB, 

which is too little for such a heavy computation required by the models. Needless to 

say, the hardware used in this project, which has Intel Core i7-6700HQ and RAM size 

of 8GB, has the worst computing performance but still allows websites such as Google 

Colab to be accessed smoothly. Henceforth, seeing no other options available, CPUs 

provided by the Google Colob are used to train the models, which took a long time, 

with the longest being one day of non-stop training. In addition, if the SENet model D 

were to detect and classify leukemia, it would also require a powerful processing unit 

or a cloud server to host the model. Thus, it is recommended that a much light-weight 

model be used for this project. Besides needing lesser time to train, the models may 

also be implemented on mobile devices or programmable circuit boards such as the 

Raspbssserry Pi or the Jetson Nano for a cheaper and more convenient usage. 

 

           On top of that, this project only focuses on detecting and classifying leukemia 

into the main types: ALL class, AML class, CLL class, and CML class. However, it is 
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studied that these leukemia classes can be further differentiated into more subtypes. 

For example, the ALL class can be further categorized into 3 subtypes: ALL-L1, ALL-

L2, and ALL-L3. On the other hand, the AML class can be further categorized into 8 

more subtypes: AML-M0, AML-M1, AML-M2, AML-M3, AML-M4, AML-M5a, 

AML-M5b, AML-M6, and AML-M7. Therefore, it is recommended that these 

subtypes are to be included in future projects so that a more specific prediction can be 

made, allowing efficient and accurate treatment of the types of leukemia detected and 

classified. 

 

 

 

5.4 Conclusion 

 

The objectives of this project are achieved. The models trained are able to detect 

leukemia cells from healthy cells and classify them into their subtypes. Among the 

three models selected for this project, the SENet model exhibited the best performance 

with the highest average testing accuracy of 99.87% and 83.03% for binary and 5-class 

classification, respectively. The SENet model is then fine-tuned by replacing the 

model’s classifier with a machine learning algorithm, and increasing the layers in the 

fully connected network with different dimensional feature vectors. The latter 

modification saw a minor increase in the model’s accuracy by 0.52% when tackling 

the 5-class classification problem, while the former degrades it by 2.26%. The latter 

model is further fine-tuned by adding a regularization technique known as dropout into 

its fully connected network, producing the SENet model D. The average testing 

accuracy obtained is 99.84% and 84.48% for binary and 5-class classification, 

respectively. All in all, the SENet model D is capable of tackling both binary and 5-

class classification problem very well. It also achieved the highest testing accuracy on 

binary and 5-class classification problems compared to other works of literature. 
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APPENDIX A: Code Listings 

 

 

 

from google.colab import drive 
drive.mount('/content/drive') 

Listing A.1: Mount Google Drive onto Google Colab 

 

# Import open-source libraries  
import os 
import cv2 
import torch 
import pickle 
import random 
import itertools 
import torchvision 
import numpy as np 
import pandas as pd 
import torch.nn as nn 
import tensorflow as tf 
import torch.optim as optim 
from torchvision import models 
import matplotlib.pyplot as plt 
from sklearn.svm import LinearSVC 
from keras import optimizers, losses, models 
from sklearn.model_selection import StratifiedKFold 
from sklearn.model_selection import train_test_split 
from tensorflow.keras.models import Sequential, Model 
from sklearn.calibration import CalibratedClassifierCV 
from keras.applications.inception_v3 import InceptionV3 
from keras.preprocessing.image import ImageDataGenerator 
from sklearn.metrics import roc_curve, roc_auc_score, auc 
from keras.layers import Dense, Dropout, GlobalAveragePooling2D 
from sklearn.metrics import recall, f1_score, precision, 
accuracy_score, confusion_matrix 

Listing A.2: Import Open-Source Libraries 
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# Dataset directory in Google Drive  
DIR = ‘/content/drive/MyDrive/Dataset/’ 
# Class labels in a list 
classes = [‘ALL’, ‘AML’, ‘CLL’, ‘CML’, ‘HLT’] 
 

# New list to store images 
dataset = [] 
class_num = 0 
 
for class_names in classes: 
  path = os.path.join(DIR, class_names) 
  for img in os.listdir(path): 
    # Read images into array of numbers 

img_arr = cv2.imread(os.path.join(path, img)) 
# Resize images 
new_arr = cv2.resize(img_arr, (224, 224))  
# Normalize images 
norm_arr = new_arr/255.0  
# Store images 
dataset.append([norm_arr, class_num])  

  class_num += 1 
Listing A.3: Import Dataset from Google Drive, Resize And  

Normalize It, Then Store into A List 

 

X = [] 
Y = [] 
 
for data, label in dataset: 
  X.append(data) 
  Y.append(label) 
 
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42
)  
 
fold_index = [] 
 
for train_index, test_index in skf.split(X, Y): 
  fold_index.append([train_index, test_index]) 
 

fold_var = int(input("Fold (0-4): ")) 
 
train_set = [dataset[train] for train in fold_index[fold_var][0
]] 
test_set = [dataset[test] for test in fold_index[fold_var][1]] 
all_set = [train_set, test_set] 

Listing A.4: Split Dataset into Stratified K Folds of Train and Test Sets 
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all_aug = [] 
 
#data augmentation 
zooming = ImageDataGenerator(zoom_range=0.3) 
shearing = ImageDataGenerator(shear_range=20) 
rotating = ImageDataGenerator(rotation_range=40) 
hshfiting = ImageDataGenerator(height_shift_range=0.4) 
wshfiting = ImageDataGenerator(width_shift_range=0.4) 
 
for get_set in all_set: 
  aug_dataset = [] 
  for ori_img, class_num in get_set: 
    aug_dataset.append([ori_img, class_num]) 
    aug_dataset.append([np.flipud(ori_img), class_num]) 
    aug_dataset.append([np.fliplr(ori_img), class_num]) 
    for _ in range(2): 
      it = zooming.flow(np.expand_dims(ori_img*255.0, axis=0), 
batch_size=1) 
      batch = it.next() 
      aug_img = (batch[0].astype('uint8'))/255.0 
      aug_dataset.append([aug_img, class_num]) 
      aug_dataset.append([np.flipud(aug_img), class_num]) 
      aug_dataset.append([np.fliplr(aug_img), class_num]) 
    for _ in range(2): 
      it = shearing.flow(np.expand_dims(ori_img*255.0, axis=0),
 batch_size=1) 
      batch = it.next() 
      aug_img = (batch[0].astype('uint8'))/255.0 
      aug_dataset.append([aug_img, class_num]) 
      aug_dataset.append([np.flipud(aug_img), class_num]) 
      aug_dataset.append([np.fliplr(aug_img), class_num]) 
    for _ in range(2): 
      it = rotating.flow(np.expand_dims(ori_img*255.0, axis=0),
 batch_size=1) 
      batch = it.next() 
      aug_img = (batch[0].astype('uint8'))/255.0 
      aug_dataset.append([aug_img, class_num]) 
      aug_dataset.append([np.flipud(aug_img), class_num]) 
      aug_dataset.append([np.fliplr(aug_img), class_num]) 
    for _ in range(2): 
      it = hshfiting.flow(np.expand_dims(ori_img*255.0, axis=0)
, batch_size=1) 
      batch = it.next() 
      aug_img = (batch[0].astype('uint8'))/255.0 
      aug_dataset.append([aug_img, class_num]) 
      aug_dataset.append([np.flipud(aug_img), class_num]) 
      aug_dataset.append([np.fliplr(aug_img), class_num]) 
    for _ in range(2): 
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      it = wshfiting.flow(np.expand_dims(ori_img*255.0, axis=0)
, batch_size=1) 
      batch = it.next() 
      aug_img = (batch[0].astype('uint8'))/255.0 
      aug_dataset.append([aug_img, class_num]) 
      aug_dataset.append([np.flipud(aug_img), class_num]) 
      aug_dataset.append([np.fliplr(aug_img), class_num]) 
  all_aug.append(aug_dataset) 

Listing A.5: Augment the Datasets and Store into A List Called ‘aug_dataset’ 

 
# Training set 
split_train = [[], [], [], [], []] 
 
for new_img, class_num in all_aug[0]: 
  if class_num == 0: 
    split_train[class_num].append([new_img, class_num]) 
  if class_num == 1: 
    split_train[class_num].append([new_img, class_num]) 
  if class_num == 2: 
    split_train[class_num].append([new_img, class_num]) 
  if class_num == 3: 
    split_train[class_num].append([new_img, class_num]) 
  if class_num == 4: 
    split_train[class_num].append([new_img, class_num]) 
 
# Testing set 
split_test = [[], [], [], [], []] 
 
for new_img, class_num in all_aug[1]: 
  if class_num == 0: 
    split_test[class_num].append([new_img, class_num]) 
  if class_num == 1: 
    split_test[class_num].append([new_img, class_num]) 
  if class_num == 2: 
    split_test[class_num].append([new_img, class_num]) 
  if class_num == 3: 
    split_test[class_num].append([new_img, class_num]) 
  if class_num == 4: 
    split_test[class_num].append([new_img, class_num]) 
 
# Shuffles the images within the classes 
random.seed(42) 
for num in range(5): 
  random.shuffle(split_train[num]) 
  random.shuffle(split_test[num]) 
 
# Training set 
smallest_train = 10000 
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print("Training set:") 
for num in range(5): 
  print(f'{classes[num]}: {len(split_train[num])}') 
  if smallest_train > len(split_train[num]): 
    smallest_train = len(split_train[num]) 
 
print(f'\nSmallest number of samples in training set: {smallest
_train}') 
 
# Testing set 
smallest_test = 10000 
 
print("\nTesting set:") 
for num in range(5): 
  print(f'{classes[num]}: {len(split_test[num])}') 
  if smallest_test > len(split_test[num]): 
    smallest_test = len(split_test[num]) 
 
print(f'\nSmallest number of samples in testing set: {smallest_
test}') 
 
fold_train = [] 
for num in range(5): 
  fold_train += split_train[num][:smallest_train] 
print(f'Total training set count: {len(fold_train)} samples\nEa
ch class: {int(len(fold_train)/5)} samples') 
 
fold_test = [] 
for num in range(5): 
  fold_test += split_test[num][:smallest_test] 
print(f'\nTotal testing set count: {len(fold_test)} samples\nEa
ch class: {int(len(fold_test)/5)} samples') 
 
random.seed(42) 
random.shuffle(fold_train) 
random.shuffle(fold_test) 

Listing A.6: Equalize and Split the Dataset into Train and Test Sets 

 
def train_model(model, criterion, optimizer, num_epochs=3): 
    prev_acc = 0 
 
    print("Current K-
Fold Cross Validation: {}".format(fold_var + 1)) 
    print("Previous validation accuracy: {:.5f}\n".format(prev_
acc)) 
 
    for epoch in range(num_epochs): 
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        trn_acc = 0 
        val_acc = 0 
        trn_loss = 0 
        val_loss = 0 
 
        print('Epoch {}/{}'.format(epoch+1, num_epochs)) 
        print('-' * 10) 
 
        for phase in ['train', 'validation']: 
            if phase == 'train': 
                model.train() 
            else: 
                model.eval() 
 
            running_loss = 0.0 
            running_corrects = 0 
 
            for inputs, labels in dataloaders[phase]: 
                inputs = inputs.to(device) 
                labels = labels.unsqueeze(1) 
                labels = labels.to(device) 
                outputs = model(inputs.float()) 
                loss = criterion(outputs, labels.float()) 
 
                if phase == "train": 
                    optimizer.zero_grad() 
                    loss.backward() 
                    optimizer.step() 
 
                preds = torch.sigmoid(outputs) >= 0.5 
                running_loss += loss.item() * inputs.size(0) 
                running_corrects += torch.sum(preds == (labels.
data == 1)) 
 
            if phase == "train": 
                epoch_loss = running_loss / len(train) 
                epoch_acc = running_corrects.double() / len(tra
in) 
                trn_loss = float(epoch_loss) 
                trn_acc = float(epoch_acc) 
            else: 
                epoch_loss = running_loss / len(valid) 
                epoch_acc = running_corrects.double() / len(val
id) 
                val_loss = float(epoch_loss) 
                val_acc = float(epoch_acc) 
 
            print("{} loss: {:.5f}, acc: {:.5f}".format(phase, 
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                                                        epoch_l
oss, 
                                                        epoch_a
cc)) 
 
            if phase == "validation": 
                if epoch_acc > prev_acc: 
                    save_path = '/content/drive/MyDrive/SNsaved
_model/SN_' + str(fold_var) + '.h5' 
                    torch.save(model.state_dict(), save_path) 
                    print("Epoch {}: val_accuracy improved from
 {:.5f} to {:.5f}, saving model to {}".format(str(epoch+1).zfil
l(5), prev_acc, epoch_acc, save_path)) 
                    prev_acc = epoch_acc 
                else: 
                    print("Epoch {}: val_accuracy did not impro
ve from {:.5f}".format(str(epoch+1).zfill(5), 
                                                               
                      prev_acc)) 
 
        try: 
            str_history = pickle.load(open(('/content/drive/MyD
rive/SNsaved_model/historySN_' + str(fold_var)), "rb")) 
            str_trn_loss = str_history['train loss'] 
            str_trn_acc = str_history['train accuracy'] 
            str_val_loss = str_history['validation loss'] 
            str_val_acc = str_history['validation accuracy'] 
        except Exception as e: 
            str_trn_loss = [] 
            str_trn_acc = [] 
            str_val_loss = [] 
            str_val_acc = [] 
        str_trn_loss.append(trn_loss) 
        str_trn_acc.append(trn_acc) 
        str_val_loss.append(val_loss) 
        str_val_acc.append(val_acc) 
 
        history = {"train loss": str_trn_loss, "train accuracy"
: str_trn_acc, "validation loss": str_val_loss, "validation acc
uracy": str_val_acc} 
 
        with open(('/content/drive/MyDrive/SNsaved_model/histor
ySN_' + str(fold_var)), 'wb') as wfile: 
            pickle.dump(history, wfile)         
             
    data = pickle.load(open(('/content/drive/MyDrive/SNsaved_mo
del/historySN_' + str(fold_var)), "rb")) 
    return data 

Listing A.7: Function to Train ResNeXt and SENet Models 
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inception = InceptionV3(weights = 'imagenet',  
                        include_top = False,  
                        input_shape = (224, 224, 3)) 
inception.trainable=False 
 
add_model = Sequential() 
add_model.add(inception) 
add_model.add(GlobalAveragePooling2D()) 
add_model.add(Dropout(0.2)) 
add_model.add(Flatten()) 
add_model.add(Dense(128, activation='relu')) 
add_model.add(Dense(1, activation='softmax')) 
 
model = add_model 

Listing A.8: Transfer Learning of Inception-V3 Model for  

Binary Classification Problem 

 

inception = InceptionV3(weights = 'imagenet',  
                        include_top = False,  
                        input_shape = (224, 224, 3)) 
inception.trainable=False 
 
add_model = Sequential() 
add_model.add(inception) 
add_model.add(GlobalAveragePooling2D()) 
add_model.add(Dropout(0.2)) 
add_model.add(Flatten()) 
add_model.add(Dense(128, activation='relu')) 
add_model.add(Dense(5, activation='sigmoid')) 
 
model = add_model 

Listing A.9: Transfer Learning of Inception-V3 Model for  

5-class Classification Problem 

 

resnext = models.resnext101_32x8d(pretrained=True).to(device) 
     
for param in resnext.parameters(): 
    param.requires_grad = False    
     
resnext.fc = nn.Sequential( 
               nn.Linear(2048, 128), 
               nn.ReLU(inplace=True), 
               nn.Linear(128, 1)).to(device) 

Listing A.10: Transfer Learning of ResNeXt Model for  

Binary Classification Problem 
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resnext = models.resnext101_32x8d(pretrained=True).to(device) 
     
for param in resnext.parameters(): 
    param.requires_grad = False    
     
resnext.fc = nn.Sequential( 
               nn.Linear(2048, 128), 
               nn.ReLU(inplace=True), 
               nn.Linear(128, 5)).to(device) 

Listing A.11: Transfer Learning of ResNeXt Model for  

5-class Classification Problem 

 

model_name = 'senet154' 
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,
 pretrained='imagenet') 
 
for param in senet.parameters(): 
  param.requires_grad = False 
 
senet.last_linear = nn.Sequential( 
               nn.Linear(2048, 128), 
               nn.ReLU(inplace=True), 
               nn.Linear(128, 1)).to(device) 

Listing A.12: Transfer Learning of SENet Model for  

Binary Classification Problem 

 

model_name = 'senet154' 
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,
 pretrained='imagenet') 
 
for param in senet.parameters(): 
  param.requires_grad = False 
 
senet.last_linear = nn.Sequential( 
               nn.Linear(2048, 128), 
               nn.ReLU(inplace=True), 
               nn.Linear(128, 5)).to(device) 

Listing A.13: Transfer Learning of SENet Model for  

5-class Classification Problem 

 

save_dir = ‘/content/drive/MyDrive/IV3saved_model/’ 
filepath = save_dir + 'BIN_IV3_'+ str(fold_var) + '.h5' 
checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath, monit
or='val_accuracy', verbose=1, save_best_only=True, mode='max') 
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model.compile(loss=tf.keras.losses.BinaryCrossentropy(), 
              optimizer=tf.keras.optimizers.Adam(), 
              metrics=["accuracy"]) 
 
history = model.fit(x_bin, y_bin, validation_split=0.2, epochs=
10, callbacks=[checkpoint])  
 
with open(('/content/drive/MyDrive/IV3saved_model/BIN_historyIV
3_' + str(fold_var)), 'wb') as wfile: 
    pickle.dump(history.history, wfile) 
 
tf.keras.backend.clear_session() 
Listing A.14:Training the Inception-V3 Model for Binary Classification Problem 

 

save_dir = ‘/content/drive/MyDrive/IV3saved_model/’ 
filepath = save_dir + ‘newIV3_’+ str(fold_var) + ‘.h5’ 
checkpoint = tf.keras.callbacks.ModelCheckpoint(filepath, monit
or=’val_accuracy’, verbose=1, save_best_only=True, mode=’max’) 
 
model.compile(loss=tf.keras.losses.CategoricalCrossentropy(), 
              optimizer=tf.keras.optimizers.Adam(), 
              metrics=["accuracy"]) 
 
history = model.fit(x_train, tf.one_hot(y_train, depth=5), vali
dation_data=(x_valid, tf.one_hot(y_valid, depth=5)), epochs=25,
 callbacks=[checkpoint])  
 
with open((‘/content/drive/MyDrive/IV3saved_model/historyIV3_’ 
+ str(fold_var)), ‘wb’) as wfile: 

pickle.dump(history.history, wfile) 
 
tf.keras.backend.clear_session() 
Listing A.15:Training the Inception-V3 Model for 5-class Classification Problem 

 

criterion = nn.BCEWithLogitsLoss() 
optimizer = optim.Adam(resnext.fc.parameters()) 
history = train_model(resnext, criterion, optimizer, num_epochs
=10) 

Listing A.16: Training the ResNeXt Model for Binary Classification Problem 

 

criterion = nn.CrossEntropyLoss() 
optimizer = optim.Adam(resnext.fc.parameters()) 
history = train_model(resnext, criterion, optimizer, num_epochs
=25) 

Listing A.17: Training the ResNeXt Model for 5-class Classification Problem 
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criterion = nn.BCEWithLogitsLoss() 
optimizer = optim.Adam(senet.last_linear.parameters()) 
history = train_model(senet, criterion, optimizer, num_epochs=1
0) 

Listing A.18: Training the SENet model for Binary Classification Problem 

 

criterion = nn.CrossEntropyLoss() 
optimizer = optim.Adam(senet.last_linear.parameters()) 
history = train_model(senet, criterion, optimizer, num_epochs=2
5) 

Listing A.19: Training the SENet model for 5-class Classification Problem 

 

y_preds = model.predict(x_test) 
Listing A.20: Testing the Inception-V3 Model for Binary and 5-class Classification 

Problems with Unseen Testing Data 

 

criterion = nn.BCEWithLogitsLoss() 
resnext.eval() 
 
y_preds = [] 
tup_preds = [] 
running_loss = 0.0 
running_corrects = 0 
 
for inputs, labels in dataloaders['test']: 
    inputs = inputs.to(device) 
    labels = labels.unsqueeze(1) 
    labels = labels.to(device) 
    outputs = resnext(inputs.float()) 
    loss = criterion(outputs, labels.float()) 
 
    tup_preds.append(outputs) 
    preds = torch.sigmoid(outputs) >= 0.5 
    running_loss += loss.item() * inputs.size(0) 
    running_corrects += torch.sum(preds == (labels.data == 1)) 
 
for p in tup_preds: 
  for q in p: 
    pred_list = [] 
    for s in torch.sigmoid(q): 
      pred_list.append(float(s))   
    y_preds.append(pred_list) 
 
y_preds = np.array(y_preds, dtype="float32") 
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loss = running_loss / len(test) 
acc = running_corrects.double() / len(test) 
print("Loss: {:.4f}\nAccuracy: {:.2f}%".format(loss, acc*100)) 

Listing A.21: Testing the ResNeXt Model for Binary Classification Problem 

 

criterion = nn.CrossEntropyLoss() 
resnext.eval() 
 
y_preds = [] 
tup_preds = [] 
running_loss = 0.0 
running_corrects = 0 
 
for inputs, labels in dataloaders['test']: 
    inputs = inputs.to(device) 
    labels = labels.to(device) 
    outputs = resnext(inputs.float()) 
    loss = criterion(outputs, labels) 
 
    _, preds = torch.max(outputs, 1) 
    tup_preds.append(outputs) 
    running_loss += loss.item() * inputs.size(0) 
    running_corrects += torch.sum(preds == labels.data) 
 
for p in tup_preds: 
  for q in p: 
    pred_list = [] 
    for s in torch.nn.functional.softmax(q, dim=-1): 
      pred_list.append(float(s))   
    y_preds.append(pred_list) 
 
y_preds = np.array(y_preds, dtype="float32") 
 
loss = running_loss / len(test) 
acc = running_corrects.double() / len(test) 
print("Loss: {:.2f}\nAccuracy: {:.2f}%".format(loss, acc*100)) 

Listing A.22: Testing the ResNeXt Model for 5-class Classification Problem 

 

criterion = nn.BCEWithLogitsLoss() 
senet.eval() 
 
y_preds = [] 
tup_preds = [] 
running_loss = 0.0 
running_corrects = 0 
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for inputs, labels in dataloaders['test']: 
    inputs = inputs.to(device) 
    labels = labels.unsqueeze(1) 
    labels = labels.to(device) 
    outputs = senet(inputs.float()) 
    loss = criterion(outputs, labels.float()) 
 
    tup_preds.append(outputs) 
    preds = torch.sigmoid(outputs) >= 0.5 
    running_loss += loss.item() * inputs.size(0) 
    running_corrects += torch.sum(preds == (labels.data == 1)) 
 
for p in tup_preds: 
  for q in p: 
    pred_list = [] 
    for s in torch.sigmoid(q): 
      pred_list.append(float(s))   
    y_preds.append(pred_list) 
 
y_preds = np.array(y_preds, dtype="float32") 
 
loss = running_loss / len(test) 
acc = running_corrects.double() / len(test) 
print("Loss: {:.4f}\nAccuracy: {:.2f}%".format(loss, acc*100)) 

Listing A.23: Testing the SENet Model for Binary Classification Problem 

 

criterion = nn.CrossEntropyLoss() 
senet.eval() 
 
y_preds = [] 
tup_preds = [] 
running_loss = 0.0 
running_corrects = 0 
 
for inputs, labels in dataloaders['test']: 
    inputs = inputs.to(device) 
    labels = labels.to(device) 
    outputs = senet(inputs.float()) 
    loss = criterion(outputs, labels) 
 
    _, preds = torch.max(outputs, 1) 
    tup_preds.append(outputs) 
    running_loss += loss.item() * inputs.size(0) 
    running_corrects += torch.sum(preds == labels.data) 
 
for p in tup_preds: 
  for q in p: 
    pred_list = [] 
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    for s in torch.nn.functional.softmax(q, dim=-1): 
      pred_list.append(float(s))   
    y_preds.append(pred_list) 
 
y_preds = np.array(y_preds, dtype="float32") 
 
loss = running_loss / len(test) 
acc = running_corrects.double() / len(test) 
print("Loss: {:.4f}\nAccuracy: {:.2f}%".format(loss, acc*100)) 

Listing A.24: Testing the SENet Model for 5-class Classification Problem 

 

pd.DataFrame(history).plot(title="SENet with 3 Hidden Layers: {
} Fold".format(str_fold), xlabel="epoch", ylabel="Percentage") 

Listing A.25: Plot the Graph of Accuracy and Loss Against Number of Epochs 

 

fpr = {} 
tpr = {} 
roc_auc = {} 
thresh ={} 
 
n_class = 5 
 
for i in range(n_class):     
    fpr[i], tpr[i], thresh[i] = roc_curve(y_test, y_preds[:,i],
 pos_label=i) 
    roc_auc[i] = auc(fpr[i], tpr[i]) 
 
plt.figure(figsize=(10,10)) 
plt.plot(fpr[0], tpr[0], linestyle='--
',color='orange', label='ALL vs Rest (Area = {1:0.6f})'.format(
i, roc_auc[0])) 
plt.plot(fpr[1], tpr[1], linestyle='--
',color='green', label='AML vs Rest (Area = {1:0.6f})'.format(i
, roc_auc[1])) 
plt.plot(fpr[2], tpr[2], linestyle='--
',color='blue', label='CLL vs Rest (Area = {1:0.6f})'.format(i,
 roc_auc[2])) 
plt.plot(fpr[3], tpr[3], linestyle='--
',color='purple', label='CML vs Rest (Area = {1:0.6f})'.format(
i, roc_auc[3])) 
plt.plot(fpr[4], tpr[4], linestyle='--
',color='red', label='HLT vs Rest (Area = {1:0.6f})'.format(i, 
roc_auc[4])) 
plt.title('SENet with 3 Hidden Layers: {} Fold'.format(str_fold
)) 
plt.xlabel('False Positive Rate') 
plt.ylabel('True Positive rate') 
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plt.legend(loc='best') 
Listing A.26: Plot ROC curve 

 

# Create the confusion matrix 
def plot_confusion_matrix(y_true, y_pred, classes=None, figsize
=(10, 10), text_size=15): 
  cm = confusion_matrix(y_true, y_pred) 
  cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] 
  n_classes=cm.shape[0] 
 
  fig, ax = plt.subplots(figsize=figsize) 
 
  # Create a matrix plot 
  cax = ax.matshow(cm, cmap=plt.cm.Blues) 
  fig.colorbar(cax) 
 
  # labels to be classes 
  if classes: 
    labels = classes 
  else: 
    labels = np.arange(cm.shape[0]) 
 
  # Label the axes 
  ax.set(title="SENet with 3 Hidden Layers: {} Fold".format(str
_fold), 
        xlabel="Predicted label", 
        ylabel="True label", 
        xticks=np.arange(n_classes), 
        yticks=np.arange(n_classes), 
        xticklabels=labels, 
        yticklabels=labels) 
 
  # Set x-axis label to bottom 
  ax.xaxis.set_label_position("bottom") 
  ax.xaxis.tick_bottom() 
 
  # Adjust label size 
  ax.yaxis.label.set_size(text_size) 
  ax.xaxis.label.set_size(text_size) 
  ax.title.set_size(text_size) 
 
  # Set threshold for different colors 
  threshold = (cm.max() + cm.min()) / 2 
 
  # Plot the text on each cell 
  for i, j in itertools.product(range(cm.shape[0]), range(cm.sh
ape[1])): 
    plt.text(i, j, f"{cm[j, i]} ({cm_norm[j, i]*100:.1f}%)", 
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            horizontalalignment="center", 
            color="white" if cm[i, j] > threshold else "black", 
            size=text_size) 
 
plot_confusion_matrix(y_test, y_preds.argmax(axis=1), classes=c
lasses, text_size=10) 

Listing A.27: Plot the Confusion Matrix 

 

totalPrecision= 0 
 
prec = precision_score(y_test, y_preds.argmax(axis=1), average=
None) 
 
for i in range(n_class): 
  totalPrecision += prec[i] 
  print("For {} Precision: {:.2f}%".format(classes[i], prec[i]*
100)) 
print("Macro Precision: {:.2f}%".format(totalPrecision/n_class*
100)) 

Listing A.28: Calculate Precision of Each Class 

 

totalRecall = 0 
 
rec = recall_score(y_test, y_preds.argmax(axis=1), average=None
) 
 
for i in range(n_class): 
  totalRecall += rec[i] 
  print("For {} Recall: {:.2f}%".format(classes[i], rec[i]*100)
) 
print("Macro Recall: {:.2f}%".format(totalRecall/n_class*100)) 

Listing A.29: Calculate Recall of Each Class 

 

totalF1 = 0 
 
f1 = f1_score(y_test, y_preds.argmax(axis=1), average=None) 
 
for i in range(n_class): 
  totalF1 += rec[i] 
  print("For {} F1-score: {:.2f}%".format(classes[i], f1[i] * 
100)) 
print("Macro F1-score: {:.2f}%".format(totalF1/n_class*100)) 

Listing A.30: Calculate F1-score of Each Class 
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model_name = 'senet154' 
senet = pretrainedmodels.__dict__[model_name](num_classes=1000, 
pretrained='imagenet') 
 
for param in senet.parameters(): 
  param.requires_grad = False 
 
senet.last_linear = nn.Sequential( 
               nn.Linear(2048, 128), 
               nn.ReLU(inplace=True), 
               nn.Linear(128, 5)).to(device) 

 
#Load model 
senet.load_state_dict(torch.load('/content/drive/MyDrive/SNsave
d_model/SN_' + str(fold_var) +'.h5')) 
 
senet.last_linear = nn.Sequential(*[senet.last_linear[x] for x 
in range(len(senet.last_linear) - 1)]) 
 

for param in senet.parameters(): 
  param.requires_grad = False 
 

#Extract features 
cnn_features = [] 
cnn_labels = [] 
 
for inputs, labels in trainloaders['train']: 
  inputs = inputs.to(device) 
  labels = labels.to(device) 
  outputs = senet(inputs.float()) 
   
  for feature in outputs: 
    cnn_features.append(np.array(feature)) 
   
  for label in labels: 

cnn_labels.append(label) 
 

#SVM classifier 
svm = LinearSVC() 
clf = CalibratedClassifierCV(svm)  
clf.fit(cnn_features, cnn_labels) 
 
svm_preds = [] 
svm_labels = [] 
 
for inputs, labels in testloaders['test']: 
  inputs = inputs.to(device) 
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  labels = labels.to(device) 
  cnn_output = senet(inputs.float()) 
 
  predicted = clf.predict_proba(cnn_output) 
  for p in predicted: 

svm_preds.append(p) 

Listing A.31: SENet + SVM Model 

 

model_name = 'senet154' 
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,
 pretrained='imagenet') 
 
for param in senet.parameters(): 
  param.requires_grad = False 
 
senet.last_linear = nn.Sequential( 
               nn.Linear(2048, 1024), 
               nn.ReLU(inplace=True), 
               nn.Dropout(0.5), 
               nn.Linear(1024, 512), 
               nn.ReLU(inplace=True), 
               nn.Dropout(0.5), 
               nn.Linear(512, 128), 
               nn.ReLU(inplace=True), 
               nn.Dropout(0.5), 
               nn.Linear(128, 5)).to(device) 

Listing A.32: SENet Model with 3 Hidden Layers  

 
model_name = 'senet154' 
senet = pretrainedmodels.__dict__[model_name](num_classes=1000,  
pretrained='imagenet') 
 
for param in senet.parameters(): 
  param.requires_grad = False 
 
senet.last_linear = nn.Sequential( 
               nn.Linear(2048, 1024), 
               nn.ReLU(inplace=True), 
               nn.Dropout(0.5), 
               nn.Linear(1024, 512), 
               nn.ReLU(inplace=True), 
               nn.Dropout(0.5), 
               nn.Linear(512, 128), 
               nn.ReLU(inplace=True), 
               nn.Dropout(0.5), 
               nn.Linear(128, 5)).to(device) 

Listing A.33: SENet Model with 3 Hidden Layers Plus Dropout Layers  
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