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VERIFICATION OF RISC-V DESIGN WITH UNIVERSAL VERIFICATION 

METHODLOGY (UVM) 

 

 

ABSTRACT 

 

 

Throughout the design life cycle of a processor, verification plays a crucial part in 

affirming the functionalities of the features implemented based on the computer 

architecture used. Functional verification increases the level of confidence in 

conformance of the processor design to its specification. In the case of a processor with 

advanced microarchitectural features implemented, a simulation-based approach is 

taken for its functional verification. More specifically, Universal Verification 

Methodology (UVM) is utilized for the verification methodology of the RISC-V 

processor implementation in this report. UVM provides a set of guidelines for the 

verification testbenches to be generated. With a well-defined testbench structure, 

UVM allows for a standardized approach towards verification works and verifications 

of systems to be performed consistently and uniformly, greatly improving verification 

quality and reusability of testbenches. For the verification approach, constrained-

random verification and direct verification approaches will be taken to verify the 

functionality of the RISC-V processor. In the verification methodology, results 

validation has been utilized whereby the output data of the simulation model is 

compared with comparable output data from an existing system. For verification 

purpose, a reference model is developed and will be utilized for the results validation 

methodology mentioned. On verification simulations, discrepancies between the 

output data from the simulation models and the reference model are identified as 

design bugs in the system and debugs will be performed to fix the design bugs in the 

system. Through numerous test runs on the RISC-V processor implementation, the 

bugs on the RTL design of the processor designed are reduced to a minimum and the 

processor can function as specified by the computer architecture.  
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Chapter 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Integrated circuits (ICs) are microchips with miniaturized electronic components such 

as transistors, resistors, and diodes fabricated into a single unit (Saint, 2020). These 

microchips can perform simple functions such as amplifying voltage to complex 

functions such as operating as a microprocessor for a complex electrical system. In 

today’s life, nearly all electronic device uses ICs for its high reliability and efficiency 

along with its small size. The compact design of an IC allowed our modern electronic 

gadgets to be much smaller and capable of performing in one-millionth of a second.  

 

 In this era of rapid advancement whereby ICs continue to shrink in size and at 

the same time improving in processing power and speed, Moore’s law, a prediction 

named after the cofounder of Intel, Gordon E. Moore is now truer than ever. According 

to Moore’s Law, the number of transistors be fitted onto a microchip increases by twice 

of its amount every two years whereas the cost of computers is cut by half. With this 

rapid rate of growth in a microchip’s speed and capability, the complexity and 

difficulty of IC design becomes even more prevalent than before. Back in 2013, the 

executive vice president and general manager of Intel’s Technology Manufacturing 

Group, William Holt states that as the technology becomes smaller and smaller, the 

effort taken to design them becomes increasingly difficult and more effort needs to be 

taken to optimize the technology (Shah, 2013). The effort required may include 

introduction of new tools and innovations to compensate for this uprising challenge.  
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1.1.1 IC Design Flow 

 

IC design is a very complex process that involves multiple stages. The following 

flowchart shows the typical design flow for an integrated circuit: 

 

 
Figure 1.1: Integrated Circuit Design Flow. 

 

 

In a typical design flow for an integrated circuit, the design flow begins with chip 

specification, whereby the features, microarchitecture, functionalities, and 

specifications of the chip are defined. These system specifications are often provided 

by the customers and are known as the high-level representation of the system. These 

specifications help the design team understand the specific requirements for the chip 

design (Vij, 2013). 

  

The architectural design further defines the IC's required functionality and 

partitions them into various functional blocks. The relationship between each 

functional block for hardware allocation and scheduling is defined. Interface and 



3 

 

 

signals between each functional block are also defined, and a time budget is assigned 

to each functional block (University of Texas at Dallas, 2011). 

  

Functional design codes the functional blocks specified in the architectural 

specification into register transfer level (RTL) descriptions, including the specification 

of the interconnections between each block and the exact behaviour of the respective 

functional blocks. The design team works alongside the verification team and performs 

behavioural simulations to verify the functional and logical behaviour of the circuit. 

Through the verification performed, various test vectors are generated and utilized to 

verify the RTL's functional behavior (Chauhan, 2020).  

  

In circuit design, the high-level functional descriptions of circuit elements are 

further defined and decomposed into low-level circuit elements through the process 

known as logic synthesis. RTL code elements are converted into pre-existing building 

blocks such as memory units and multiplexing units with the help of synthesis tools. 

Upon successful logic synthesis, a gate-level netlist that contains information on the 

gates and the connections between each gate is produced (Synopsys, n.d). The gate-

level netlist can also be known as the gate-level representation of the architectural 

specification of the system, providing insight into the physical implementation of the 

system. 

  

Physical design converts the gate-level netlist into a manufacturable physical 

layout through several processes of optimization, which include floorplanning, 

partitioning, placement, clock tree synthesis, and routing. Floorplanning places 

relevant structures at particular locations with consideration of various constraints, 

requirements, and restrictions specified (Semiconductor Engineering, n.d.). Through 

effective and efficient partitioning, the complex design is divided into small blocks 

through a divide and conquer strategy, resulting in a system with better performance 

as well as lowering the production cost (Chen and Cheng, 2000). Placement determines 

the specific locations of the circuit modules in the netlist, optimizing the performance 

as well as timing delays introduced by interconnecting wires (Lavagno, Scheffer and 

Martin, eds., 2018). Clock tree synthesis involves the insertion of buffers to ensure an 

even distribution of clock signals to the sequential elements in the design to minimize 
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the clock skew and latency and ensure the proper timing closure is attained (Monteiro 

and Van Leuken, eds., 2010.). Lastly, based on logical connections between each cell, 

routing is performed on the design to create physical connections through metal 

interconnects and through the use of various routing algorithms, ensuring the best 

timing performance and adhering to the design rule. 

  

Upon completion of the physical design, the physical layout of the system is 

obtained and physical verification is performed to validate the design functional 

behaviour. When the design layout is verified, the chip is then ready for fabrication. 

The layout data is converted into layers of masks which are then through the processes 

of deposition, diffusion, and removal, eventually transforming a silicon wafer into a 

prototype and tested. When the prototype passes the verifications performed, the 

design flow enters the last stage, where packaging and testing are performed. Wafers 

are mass-fabricated and converted into individual chips, packaged, and tested before 

delivering the chips to the customers (Vij, 2013).  

 

 

 

1.1.2 Verification and Validation in IC Design Flow 

 

In integrated circuit design, verification is crucial to a large-scale integrated circuit 

design life cycle. Verification aims to perform design functional correctness checking, 

detecting and debugging functional bugs in the system, eliminating human errors 

introduced in the design through various functional simulation tests (Ackland and 

Weste, 1981). Pre-silicon verification performs a functional check and identifies bugs 

before tape-out. In contrast, post-silicon validation captures bugs missed by pre-silicon 

verification through functional validation of the silicon manufactured system (Adir et 

al., 2011). In complex designs, a significant challenge is posed to design validation. 

The most challenging validation problem is the affirmation of the correctness of the 

ever-increasing amount of microarchitectural features implemented in the RTL 

description (Shen and Abraham, 1999). In the functional verification of a design, 

coverage is responsible for measuring the verification progress, assisting design 

engineers in identifying and understanding the progress towards design completion 
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(Pizialim, 2006). For a general-purpose processor design, coverage of the functional 

verification performed should include all functionalities implemented through 

multiple stages of simulation, verification, and evaluation before tape-out (Gupta and 

Harakchand, 2014). As processor design and verification progress through the design 

flow, the cost of identifying and fixing bugs increases significantly, thereby making it 

advisable for earlier detection and fixing of the design bugs (Gupta and Harakchand, 

2014). 

 

 

 

1.2 Problem Statements 

 

In designing the RTL code for a processor, human errors are often introduced to the 

system. Functional verifications are crucial in identifying and eliminating these design 

bugs in the system and ensuring the system conforms to the design specifications 

specified in the computer architecture utilized. However, due to the complexity of a 

processor with millions of test cases to be considered, functional verifications with 

complete coverage of the design functionality are difficult to be executed and often 

spans for a long duration throughout the design flow due to the necessity of designing 

the testbench and test environment from scratch. To ease the process of functional 

verification, a reusable approach needs to be taken in the functional verification 

process.  

 

For a standardized and reusable approach towards verification methodology, 

the guidelines and the complete testbench structure provided by Universal Verification 

Methodology (UVM) are to be utilized for the functional verification. By integrating 

UVM alongside functional verification of a RISC-V processor, a UVM testbench 

capable of performing test set generation, test driving, test monitoring, and test 

reporting can be constructed. Test set generation refers to the generation of random 

sets of instruction defined in the base set of the RISC instruction set. Test driving refers 

to the proper driving of the random sets of instructions generated to the design under 

test. Test monitoring refers to monitoring the output values from the design under test 

for validation purposes. Test reporting is to report the success or failure of a test run 
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and provide sufficient information for debug procedures. In UVM, the standardized 

approach supports reusability by allowing UVM-standardized Intellectual Properties 

to be obtained from other sources and used in the user’s environment. By designing 

components of functional verification in modular components such as sequence, the 

functional verification components, otherwise known as Verification Intellectual 

Property (VIP), can be reused for the verification on various levels and even across 

different projects. 

 

 

 

1.3 Aims and Objectives 

 

The objectives of the thesis are shown as following: 

 

i) To utilize Universal Verification Methodology (UVM) for the functional 

verification of a system. 

 

ii) To perform thorough verification of a RISC-V processor with pipeline 

implementation. 

 

 

 

1.4 Report Overview 

 

The following chapter will discuss the overall literature review regarding RISC-V 

computer architecture, SystemVerilog as functional verification language, and the 

Universal Verification Methodology. In Chapter 3, the methodology of this project 

which includes the process of development of the UVM functional verification 

environment and the functional verification of a RISC-V processor with pipeline 

implementation will be explained. Chapter 4 will showcase the various results obtained 

from the project and explain the results obtained. Lastly, Chapter 5 will conclude the 

project and provide insight into future improvements. 
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Chapter 2 

 

 

 

1 LITERATURE REVIEW 

 

 

 

2.1  RISC-V Computer Architecture 

 

A computer architecture, also known as instruction set architecture (ISA), is the 

attributes of a computer system visible to a programmer and the system’s 

characteristics that directly affect the logical execution of a program. The ISA of a 

computer system specifies the instruction format, instruction opcode, registers, 

instruction operations, data memory, and the effect of the instructions executed on the 

registers and memory alongside the control mechanism for the instruction execution.  

 

Reduced Instruction Set Computer (RISC) is an instruction set architecture 

renowned for its performance and capability. It is capable of handling a wide range of 

applications, ranging from powering micro-power embedded devices up to high-

performance cloud server microprocessors. Contrasting against most instruction set 

architecture, RISC is an open-source ISA, free to be used by anyone, thus allowing its 

use for the project. RISC provides a complete set of base ISA with minimal capabilities 

such as arithmetic, loads and stores, branch, whereby additional extensions are 

available for more advanced capabilities (Ledin, 2020). The minimal yet complete set 

of capabilities set a proper scope for the project, thus making the RISC-V base ISA a 

perfect choice. 
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2.1.1  RISC-V Base Instruction Set Architecture 

 

The base RISC-V ISA utilizes a 32-bit system and features 32-bits instructions that 

perform arithmetic, data transfer, logical, data-shifting, conditional branching, 

and unconditional branching operations. The following table shows the base 

instructions and their corresponding assembly code instruction example: 

 

Table 2.1: RISC-V Base Instructions (Patterson and Hennessy, 2017). 

Category Instruction Example Meaning 
    

Arithmetic Add add x5, x6, x7 x5 = x6 + x7 

Subtract sub x5, x6, x7 x5 = x6 – x7 

Add immediate addi x5, x6, 20 x5 = x6 + 20 

Data Transfer Load word lw x5, 40(x6) x5 = Memory [x6 + 40] 

Store word sw x5, 40(x6) Memory [x6 + 40] = x5 

Load halfword lh x5, 40(x6) x5 = Memory [x6 + 40] 

Load halfword, unsigned lhu x5, 40(x6) x5 = Memory [x6 + 40] 

Store halfword sh x5, 40(x6) Memory [x6 + 40] = x5 

Load byte lb x5, 40(x6) x5 = Memory [x6 + 40] 

Load byte, unsigned lbu x5, 40(x6) x5 = Memory [x6 + 40] 

Store byte sb x5, 40(x6) Memory [x6 + 40] = x5 

Load upper immediate lui, x5, 0x12345 x5 = 0x12345000 

Logical And and x5, x6, x7 x5 = x6 & x7 

Inclusive or or x5, x6, x7 x5 = x6 | x7 

Exclusive or xor x5, x6, x7 x5 = x6 ^ x7 

And immediate andi x5, x6, 20 x5 = x6 & 20 

Inclusive or immediate ori x5, x6, 20 x5 = x6 | 20 

Exclusive or immediate xori x5, x6, 20 x5 = x6 ^ 20 

Set if less than slt x5, x6, x7 If (x6 < x7), x5 = 1 otherwise x5 = 0 

Set if less than, unsigned sltu x5, x6, x7 If (x6 < x7), x5 = 1 otherwise x5 = 0 

Set if less than immediate slti x5, x6, x7 If (x6 < x7), x5 = 1 otherwise x5 = 0 

Set if less than immediate, unsigned sltiu x5, x6, x7 If (x6 < x7), x5 = 1 otherwise x5 = 0 

Shift Shift left logical sll x5, x6, x7 x5 = x6 << x7 

Shift right logical srl x5, x6, x7 x5 = x6 >> x7 

Shift right arithmetic sra x5, x6, x7 x5 = x6 >>> x7 

Shift left logical immediate slli x5, x6, 3 x5 = x6 << 3 

Shift right logical immediate srli x5, x6, 3  x5 = x6 >> 3 

Shift right arithmetic immediate srai x5, x6, 3 x5 = x6 >>> 3 

Conditional Branch Branch if equal beq x5, x6, 100 if (x5 == x6) go to PC + 100 

Branch if not equal bne x5, x6, 100 if (x5 != x6) go to PC + 100 

Branch if greater or equal bge x5, x6, 100 if (x5 >= x6) go to PC + 100 

Branch if greater or equal, unsigned bgeu x5, x6, 100 if (x5 >= x6) go to PC + 100 

Branch if less than blt x5, x6, 100 if (x5 < x6) go to PC + 100 

Branch if less than, unsigned bltu x5, x6, 100 if (x5 < x6) go to PC + 100 

Unconditional Branch Jump and link jal x1, 100 x1 = PC + 4; go to PC +100 

Jump and link register jalr x1, 100(x5) x1 = PC + 4; go to x5 +100 
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These instructions can also be differentiated into several types based on the encoding 

formats used by the instructions, such as R-type (arithmetic and logical), I-type 

(immediate), S-type (store), SB-type (conditional branch), U-type (load upper 

immediate), and UJ-type (jump and link). The following table shows the type 

categorization for the instructions listed in the previous table: 

 

Table 2.2: RISC-V Base Instruction Encoding Formats (Waterman and Asanovic, 

2017). 

Type Instruction Opcode Funct3 Funct6/7 
     

R-type add 0110011 000 0000000 

sub 0110011 000 0100000 

sll 0110011 001 0000000 

slt 0110011 010 0000000 

sltu 0110011 011 0000000 

xor 0110011 100 0000000 

srl 0110011 101 0000000 

sra 0110011 101 0100000 

or 0110011 110 0000000 

and 0110011 111 0000000 

I-type lb 0000011 000 n.a. 

lh 0000011 001 n.a. 

lw 0000011 010 n.a. 

lbu 0000011 100 n.a. 

lhu 0000011 101 n.a. 

addi 0010011 000 n.a. 

slli 0010011 001 000000 

slti 0010011 010 n.a. 

sltiu 0010011 011 n.a. 

xori 0010011 100 n.a. 

srli 0010011 101 000000 

srai 0010011 101 010000 

ori 0010011 110 n.a. 

andi 0010011 111 n.a. 

jalr 1100111 000 n.a. 

S-type sb 0100011 000 n.a. 

sh 0100011 001 n.a. 

sw 0100011 010 n.a. 

SB-type beq 1100011 000 n.a. 

bne 1100011 001 n.a. 

blt 1100011 100 n.a. 

bge 1100011 101 n.a. 

bltu 1100011 110 n.a. 

bgeu 1100011 111 n.a. 

U-type lui 0110111 n.a. n.a. 

UJ-type jal 1101111 n.a. n.a. 
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The instruction encoding format utilized is different for different types of 

instructions, whereby specific fields within the 32-bit instruction code may signify 

different information. The information specified within an instruction code may 

include the destination register address, the source register address, an immediate 

value or an offset value, and the opcode, funct3, and funct7 to specify the operation to 

be carried out. The following table shows the different encoding formats based on the 

instruction type for the RISC-V base instruction set: 

 

Table 2.3: RISC-V Instruction Field Specifications of Different Instruction Types 

(Patterson and Hennessy, 2017). 

Type Field Comments 7 bits 5 bits 5 bits 3 bits 5 bits 7 bits 
        

R-type funct7 rs2 rs1 funct3 rd opcode Arithmetic Instruction Format 

I-type immediate[11:0] rs1 funct3 rd opcode Loads/Immediate Arithmetic 

S-type immediate[11:5] rs2 rs1 funct3 immediate[4:0] opcode Stores 

SB-type immediate[12,10:5] rs2 rs1 funct3 immediate[4:1,11] opcode Conditional Branch Format 

UJ-type immediate[20,10:1,11,19:12] rd opcode Unconditional Jump Format 

U-type immediate[31:12] rd opcode Upper Immediate Format 

 

 

The base RISC-V instruction set architecture also features 32 general-purpose 

registers in the system that are 32-bits wide and can be used without any restrictions, 

with the exception of the register x0 being physically grounded, returning zero 

whenever it is read. Each general-purpose register among the 32 registers has an 

alternate name that corresponds to their usage in a standard RISC-V application binary 

interface (ABI). Due to the interchangeability of the functionalities of the general-

purpose registers, the ABI is crucial for dictating the roles of the registers (Ledin, 

2020). The following table provides detailed information for the 32 general-purpose 

registers:   
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Table 2.4: Alternate Names and Functionality of Base RISC-V General Purpose 

Registers. 

Register Alternate Name Alternate Functionality 
   

x0 zero - 

x1 ra Function return address 

x2 sp Stack pointer 

x3 gp Global data pointer 

x4 tp Thread-local data pointer 

x5 t0 

Temporary storage x6 t1 

x7 t2 

x8 
fp Frame pointer for function-local stack data 

s0 
Saved registers 

x9 s1 

x10 a0 

Arguments passed to functions. Additional 

arguments are passed onto stack. Function return 

values are stored in a0 and a1. 

x11 a1 

x12 a2 

x13 a3 

x14 a4 

x15 a5 

x16 a6 

x17 a7 

x18 s2 

Saved registers 

x19 s3 

x20 s4 

x21 s5 

x22 s6 

x23 s7 

x24 s8 

x25 s9 

x26 s10 

x27 s11 

x28 t3 

Temporary storage 
x29 t4 

x30 t5 

x31 t6 
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2.1.2  RISC-V Computer Organization  

 

Computer organization refers to the operational units and linkages that allow the 

architectural standards to be realized. Organizational characteristics refer to the 

hardware elements of a computer system such as the control signals, the interfaces 

between computer and peripherals, the memory technology employed. The 

architectural design of a computer system defines the operations to be performed by a 

computer and the fundamental principles applied in the creation and design of the 

datapath and its control system. In contrast, organizational design determines the 

implementation of various functions, whether through hardware or software 

implementation. 

 

The two main logic elements utilized in computer systems are combinational 

elements and state elements. Combinational elements operate on data values and 

provide output data asynchronously. In contrast, state elements have internal storage, 

and data is only written into the storage when a proper clock signal is applied. State 

elements can also be described as sequential elements in which the output (next state) 

of the element depends on external inputs and the current state of the state element. An 

example of a combinational element within the RISC-V datapath would be the ALU 

unit, whereas a state element would be the general-purpose register used for storing 

useful information in the register file. For a standard clocking methodology, edge-

triggered clocking is commonly used whereby data are only written when a positive or 

negative edge of a clock signal arrives at the sequential element. On every clock cycle, 

information from state elements is inputted to combinational elements, and the 

processed information is sent to a subsequent state element for storing. Signals need 

to arrive at subsequent state elements before the next clock cycle. Failing to do so will 

result in a loss of information.  

 

The detailed explanation for the RISC-V computer organization will be divided 

into sections, each describing a specific functional block, otherwise known as a 

datapath element. These datapath elements work together to process an instruction, 

producing a desired outcome based on the instruction code supplied. 
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2.1.2.1  Program Counter 

 

 
Figure 2.1: Program Counter Unit (Patterson and Hennessy, 2017). 

 

 

The program counter is a simple 32-bit register that holds the instruction address, 

pointing towards the instruction to be executed by the microprocessor. The instruction 

address is sent to the instruction memory to fetch the corresponding instruction code 

from the program memory. On normal operations, the instruction address is 

incremented by 4 on each clock cycle. If a jump instruction is executed and the branch 

condition is fulfilled (zero flag is set), the program counter will be updated with a new 

effective target address specified by the sign-extended immediate value within the 

instruction. For a jump and link register instruction (JALR), the new effective target 

address is obtained through the sum of an offset and the content of a register both 

specified by the instruction. On the other hand, the effective target address of other 

jump or branch instructions are obtained from the immediate generate unit. The 

multiplexing of the new address to be updated onto the program counter is performed 

based on the Branch as well as the JumpReg control signals. The following table 

shows the new instruction address to be updated on the next cycle: 

 

Table 2.5: Multiplexing of Instruction Address to be updated. 

Control Signal New Instruction Address 
  

Branch and Zero Effective target address is the sign-extended and left-

shifted by 1 bit immediate value specified within 

instruction code 

JumpReg  

(JALR instructions) 

Effective target address is the sum of the register 

content (rs1) and the sign-extended offset 

(Instruction [31:20]) specified by the instruction 

Otherwise Instruction address is incremented by 4 
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2.1.2.2  Instruction Memory 

 

 
Figure 2.2: Instruction Memory Unit (Patterson and Hennessy, 2017). 

 

 

The instruction memory block is a read-only memory block that contains all of the 

program instruction codes. The instruction address obtained from the program counter 

is used to fetch a 32-bit instruction code. The 32-bit instruction code contains useful 

information such as the opcode, source and destination register address, function code, 

immediate value or offset depending on the instruction type. The fetched instruction 

code is sent to several functional blocks in the datapath for further action. For a 

standard memory technology, each address points towards an 8-bit register, storing a 

byte (8 bits) of data. Thus, a 32-bit instruction code would require access to 4 registers 

in the memory to fetch the complete instruction code. 
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2.1.2.3  Register File 

 

 
Figure 2.3: Register File Unit (Patterson and Hennessy, 2017). 

 

 

The register file for a base RISC-V ISA contains 32 general-purpose registers that are 

each 32 bits wide. These general-purpose registers can be read or written and are 

accessed based on the register address specified in the instruction code. On register 

read operation, one or two data from the registers are read and sent to the ALU for 

further operations. The write operations of the registers are performed on clock edges 

whereby processed data from the ALU is rewritten onto the destination register or 

information from other sources are written onto the register. The multiplexing of the 

information to be written onto the register is controlled by explicit control signals such 

as RegWrite and LinkReg, which will be discussed in the control unit section. 
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2.1.2.4  Control Unit 

 

 
Figure 2.4: Control Unit (Patterson and Hennessy, 2017). 

 

 

Control unit serves as the main decoding and control centre for the computer system. 

The fetched instruction code is decoded based on its opcode, and various control 

signals are subsequently adjusted to ensure proper functioning of the hardware. The 

control unit also outputs a 2-bit ALUOp control signal to the ALU control unit which 

will be further decoded to specify the instruction to be executed for the ALU. The 

following table shows the control signal values based on the instruction type decoded: 

 

Table 2.6: Control Signal Values based on Instruction Type. 

Instruction JumpReg LinkReg ALUSrc MemtoReg RegWrite MemRead MemWrite Branch 
  

       

R-type 0 0 0 0 1 0 0 0 

Load 0 0 1 1 1 1 0 0 

I-type 
0 0 1 0 1 0 0 0 

U-type 

JALR 1 1 1 0 1 0 0 0 

S-type  0 0 1 0 0 0 1 0 

SB-type 0 0 0 0 0 0 0 1 

UJ-type 0 1 0 0 1 0 0 0 
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The following table shows the various control signals utilized for controlling 

the hardware within the datapath and their corresponding description: 

 

 

Table 2.7: Control Signals from the Control Unit (Patterson and Hennessy, 2017). 

Control Signal Description 
  

RegWrite Allows data on the Write Data input to be written onto the register 

specified by Write Register when asserted.  

ALUSrc Determines the source of second ALU operand. If asserted, the second 

ALU operand comes from the second register file output (Read Data 2). 

Otherwise, the second ALU operand is the sign-extended immediate 

specified in the instruction code. 

Branch Determines the instruction address to be updated for the next cycle. If 

asserted, and the condition is fulfilled (signified by assertion of the zero 

flag), the program counter is updated with the computed branch target 

address. Otherwise, the program counter is updated with the instruction 

address incremented by 4. 

MemRead Allows data memory contents designated by the memory address input to 

be read and placed onto the Read Data output when asserted. 

MemWrite Allows data memory contents designated by the memory address input to 

be replaced by the value placed on the Write Data input when asserted. 

MemtoReg Determines the source of the Write Data input to the register file. If 

asserted, the value fed to the register Write Data input is the data loaded 

from the data memory. Otherwise, the ALU output is written onto the 

register. 

JumpReg Determines the instruction address to be updated for the next cycle. If 

asserted, the program counter is updated with the target address formed 

by summing a register content and an offset specified in the instruction. 

Otherwise, the program counter is updated with the result determined 

from the branch control signal. 

LinkReg Allows return address (current instruction address + 4) to be utilized as 

input data for the Write Data input to the register when asserted. If de-

asserted, the results from MemtoReg control signal is used as data for 

Write Data input. 
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2.1.2.5  ALU Control Unit 

 

 
Figure 2.5: ALU Control Unit (Patterson and Hennessy, 2017). 

 

 

ALU control unit is a functional unit that specifies the operation to be carried out by 

the arithmetic logic unit (ALU). From the ALUOp control signal received from the 

control unit as well as the funct3 and funct7 information specified in the instruction 

code, ALU control unit outputs a corresponding ALU control signal to the ALU. The 

following table shows the ALU control signal for several instructions: 

 

Table 2.8: ALU Control Signal based on Instruction. 

Instruction ALU
Op Operation funct7 func

t3 ALU Action ALU Control 
Signal 

  
     

lw 00 load word - - add 0010 

sw 00 store word - - add 0010 

add 10 add 0000000 000 add 0010 

addi 10 add immediate 0000000 000 add 0010 

sra 10 shift right arithmetic 0100000 101 shift right arithmetic 0110 

blt 01 branch if less than - 100 compare and set (<) 1101 

beq 01 branch if not equal - 001 compare and set (=) 1000 
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2.1.2.6  Arithmetic Logic Unit 

 

 
Figure 2.6: Arithmetic Logic Unit (Patterson and Hennessy, 2017). 

 

 

The Arithmetic Logic Unit (ALU) performs arithmetic or logical operation on the data 

inputs. Depending on the instruction code decoded, different operations are performed 

by the ALU on the input data. Depending on the instruction type, the input data may 

originate from the register file or immediate generate unit. The multiplexing of the 

input data is controlled by ALUSrc control signal. The control unit first decodes the 

instruction code into a 2-bit ALUOp control signal followed by further specification 

by the ALU control unit into a 4-bit ALU control signal. The 4-bit ALU control signal 

specifies the specific operation on the input data. The processed 32-bit data is outputted 

to the register file for update, or it may be sent to the data memory to be used as 

memory address. Aside from the 32-bit data, an additional flag known as zero is also 

asserted if the processed output is zero. This zero flag is utilized for conditional branch 

instructions to signify condition fulfilment. The zero flag is asserted when the 

condition specified in the branch instruction is fulfilled. 
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2.1.2.7  Data Memory Unit 

 

 
Figure 2.7: Data Memory Unit (Patterson and Hennessy, 2017). 

 

 

Data memory is also known as the system's random-access memory (RAM). Based on 

the standard memory technology, the memory block comes with 8-bit registers that 

can be used as temporary data storage. The register within the memory block is 

accessed by first providing a memory address. Then, based on the control signals, the 

register content in the memory block can be updated (MemWrite) or read and used to 

update the system registers (MemRead). The data memory can only perform read or 

write operations one at a time and never both simultaneously. 
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2.1.2.8  Immediate Generation Unit 

 

 
Figure 2.8: Immediate Generation Unit (Patterson and Hennessy, 2017). 

 

 

The immediate generation unit constructs the immediate value or address from the 

instruction code based on the instruction's opcode. Depending on the instruction, the 

immediate value may be shifted left by 1 bit (Jump and Branch instructions), or sign-

extended to 32 bits. The immediate value is sent to the arithmetic logic unit as data 

input for instructions that utilizes immediate values such as addi (add immediate). The 

following table shows the immediate value generated for different types of instructions: 

 

Table 2.9: Immediate Value Generated corresponding to Instruction Type. 

Instruction Type Immediate Value 
  

Load {20{Instruction [31]}, Instruction [31:20]} 

Store {20{Instruction [31]}, Instruction [31:25], Instruction [11:8]} 

I-type {20{Instruction [31]}, Instruction [31:20]} 

J-type {19{Instruction [31]}, Instruction [31:20], 0} 

SB-type {19{Instruction [31]}, Instruction [31], Instruction [7], Instruction [30:25], 

Instruction [11:8] ,0} 

UJ-type {Instruction [31], Instruction [19:12], Instruction [20], Instruction [30:21]} 

U-type {Instruction [31:12], 12{0}} 
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2.1.3  Datapath Flow 

 

By interconnecting the functional units, the full datapath for the processor can be 

visualized as shown in the figure below:  

 

 
Figure 2.9: Simple Datapath of the Base RISC-V Processor (Patterson and Hennessy, 

2017). 

 

 

The functional units shown in the datapath interact through the interconnections and 

carries out the instruction fetched from the instruction memory. The datapath flow may 

differ depending on the instruction executed. Some instructions, however, may exhibit 

similar datapath flow with only minor differences such as the operation performed by 

the ALU. The datapath flow of various types of instruction for a single-cycle processor 

implementation will be discussed in the following section.   
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2.1.3.1  R-Type Instruction Datapath Flow 

 

R-type instructions comprise of arithmetic and logical operations that utilize registers 

as operands. Upon performing the specified operation, the result from the ALU is to 

be written into the register specified by the instruction. The following shows an 

example datapath flow for an add instruction: 

 

add x3, x6, x7 

 

1. The program counter provides the instruction address which is utilized to 

access and fetch the corresponding instruction (add) from the instruction 

memory. The program counter is incremented by 4. 

  

2. The two registers (x6 and x7) specified in the instruction are accessed and their 

corresponding data are read and sent to ALU for processing. The control unit 

decodes the instruction opcode, funct7 and funct3 fields and generates the 

required control signal (RegWrite) to control the hardware in the datapath. 

 

3. The ALU performs the operation (add) specified by the ALU control unit on 

the data read from the registers (x6 and x7). 

 

4. The ALU output is written onto the destination register specified (x3). 
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2.1.3.2  I-Type Instruction Datapath Flow 

 

I-type instructions comprise of load and immediate arithmetic and logical operations. 

Instead of a second register as an operand, these instructions have an immediate value 

or offset as the second operand. After performing the specified operation, the 

destination register is to be updated with a new data from ALU or data memory unit 

depending on the type of instruction. If the instruction is a load instruction, the data 

loaded from the data memory is used as register write data. Otherwise, the register 

write data for immediate arithmetic and logical instruction would be the ALU output 

data. The following shows an example datapath flow for a load instruction: 

 

lw, x10, 100(x5) 

 

1. The program counter provides the instruction address which is utilized to 

access and fetch the corresponding instruction (load word) from the instruction 

memory. The program counter is incremented by 4. 

 

2. The register specified (x5) is accessed and the data read is sent to the ALU for 

further processing. The immediate value offset (100) specified by the 

instruction is generated by the immediate generation unit and sent to the ALU 

as the second operand. The control unit decodes the instruction opcode and 

funct3 fields and generates the required control signal (MemRead, ALUSrc, 

MemtoReg) to control the hardware in the datapath. 

 

3. The ALU performs the operation (add) specified by the ALU control unit on 

the operands (x5 and 100). The resulting ALU output is utilized as the memory 

address for accessing the data memory unit. 

 

4. The data stored on the data memory register specified by the memory address 

is read. 

 

5. The data loaded from the data memory is written onto the destination register 

specified (x10).  
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2.1.3.3  S-Type Instruction Datapath Flow 

 

S-type instruction consists of mainly store operations. Store operations stores the 

content of a general-purpose register onto the data memory unit, which requires 

MemWrite control signal to be set. The following example shows the datapath flow of 

a store instruction: 

 

sb x5, 040(x6) 

 

1. The program counter provides the instruction address which is utilized to 

access and fetch the corresponding instruction (store byte) from the instruction 

memory. The program counter is incremented by 4. 

 

2. The two registers (x5 and x6) specified in the instruction are accessed. The 

content of the first source register (x6) is to be added to the immediate offset 

(40) specified by the instruction and generated by the immediate generation 

unit whereas the content of the second source register (x5) is to be stored onto 

the data memory. The control unit decodes the instruction opcode and funct3 

fields and generates the required control signal (MemWrite, ALUSrc) to 

control the hardware in the datapath. 

 

3. The ALU performs the operation (add) specified by the ALU control unit on 

the operands (x6 and 40). The resulting ALU output is utilized as the memory 

address for accessing the data memory unit. 

 

4. The contents in the second source register (x5) are stored onto the data memory 

register specified by the memory address computed. 
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2.1.3.4  SB-Type Instruction Datapath Flow 

 

Conditional branch operations are categorized as SB-type instructions. Depending on 

the conditions specified by the instruction, the contents of the registers accessed are 

compared. If the condition is fulfilled, a branch occurs and the program counter is 

updated with the PC-relative effective target address specified by the instruction. The 

following shows an example datapath flow of a conditional branch instruction:  

 

beq x20, x22, 100 

 

1. The program counter provides the instruction address which is utilized to 

access and fetch the corresponding instruction (branch if equal) from the 

instruction memory. 

 

2. The two registers (x20 and x22) specified in the instruction are accessed and 

their corresponding data are read and sent to ALU for processing. The 

immediate generation unit generates the effective target address by summing 

the immediate offset (100) specified by the instruction with the current 

program counter address. The control unit decodes the instruction opcode and 

funct3 fields and generates the required control signal (Branch) to control the 

hardware in the datapath. 

 

3. The ALU performs the operation (compare) specified by the ALU control unit 

on the operands (x20 and x22). If the condition is true (x20 == x22), the result 

is set to zero and the zero flag is set. Otherwise the result is set to one and the 

zero flag is not set. 

 

4. If the branch condition is fulfilled, the effective target address (PC + 100) is 

updated into the program counter. Otherwise, the program counter is updated 

with the instruction address incremented by 4.  
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2.1.3.5  U-Type Instruction Datapath Flow 

 

U-type instructions are special data transfer instructions that provides a 20-bit 

immediate value as an operand. The two instructions in this type are load upper 

immediate (lui) and add upper immediate to program counter (auipc) instructions. The 

following shows the datapath of a load upper immediate instruction: 

 

lui x7, 0x12345 

 

1. The program counter provides the instruction address which is utilized to 

access and fetch the corresponding instruction (load upper immediate) from 

the instruction memory. The program counter is incremented by 4. 

 

2. The immediate generation unit forms the data from the immediate value 

specified (12345000hex). The control unit decodes the instruction opcode and 

funct3 fields and generates the required control signal (ALUSrc, RegWrite) 

to control the hardware in the datapath. 

 

3. The ALU loads the immediate value (12345000hex) as its output. 

 

4. The ALU output (12345000hex) is used as the register write data and the data 

is written into the destination register specified (x7).   
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2.1.3.6  UJ-Type Instruction Datapath Flow 

 

Unconditional branch instructions are categorized as UJ-type instructions. In the latest 

base version of RISC-V ISA, the UJ-type instruction comprises of only jump and link 

instruction (jal). The following shows an example datapath flow for a jump and link 

instruction: 

 

jal x20, 100 

 

1. The program counter provides the instruction address which is utilized to 

access and fetch the corresponding instruction (jump and link) from the 

instruction memory.  

 

2. The immediate generation unit generates the effective target address by 

summing the immediate offset (100) specified by the instruction with the 

current program counter address. The control unit decodes the instruction 

opcode and funct3 fields and generates the required control signal (LinkReg, 

RegWrite) to control the hardware in the datapath. 

 

3. The ALU output is set to zero and the zero flag is raised.  

 

4. Instruction address of the instruction following the jump instruction (PC + 4) 

is utilized as the register write data and written into the register specified by 

the instruction (x20). The program counter is updated with the PC-relative 

effective target address computed by the immediate generation unit (PC + 100).  
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2.1.4  Processor Pipelining 

 

For a single-cycle processor system, the datapath can only process one instruction at a 

time. The performance is then limited by load type instructions with the longest signal 

path, accessing up to five functional units (program counter, instruction memory, 

register file, ALU, data memory). The limitation imposed on the clock rate and the 

inefficiency regarding the usage of the functional units can be resolved through 

pipeline implementation which will be discussed in this section. 

 

 

 

2.1.4.1  Pipeline Implementation 

 

Pipelining aims to improve the efficiency and throughput of the processor data flow 

by overlapping instruction executions. Instruction execution in a computer system can 

be categorized into the following five stages: 

 

Instruction fetch / IF:    Fetch instruction from memory. 

 

Instruction decode / ID: Read registers and decode the instruction. 

Generate the corresponding control 

signal to control the hardware. Also 

generate the immediate value or offset if 

necessary. 

 

Execution or address calculation / EX: Execute the operation or calculate the 

target address based on the control signal 

provided. 

 

Data memory access / MEM: Access an operand in data memory for 

read or write operation if necessary. 

 

Writeback / WB: Write result into register if necessary. 



30 

 

 

By separating the single-clock cycle datapath flow into five pipeline stages, the 

performance of the processor is improved by approximately four times. The following 

figure shows the concept of separating the datapath flow into several stages: 

 

 
Figure 2.10: Separation of Single-Cycle Datapath for Pipeline Implementation 

(Patterson and Hennessy, 2017). 

 

 

Pipelining segregates the different stages of instruction execution and utilize 

each of the stages to execute different instructions. This allows the processor to process 

multiple instructions at different stages at a given time, significantly increasing its 

throughput. The following graphical pipeline diagram showcases the instruction 

execution of different instructions at a given clock cycle: 

 

 
Figure 2.11: Multiple Instructions executed with Pipeline Implementation (Patterson 

and Hennessy, 2017). 
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To retain the information of an instruction and pass it down the pipeline stages, 

several registers known as pipeline registers will be required to be placed between 

stages. By placing the pipeline registers between the pipeline stages, the information 

processed on a pipeline stage will be stored onto the pipeline register on the next cycle 

and utilized for processing on the subsequent pipeline stage. This effectively advances 

the execution of an instruction from one pipeline stage to another on each clock cycle. 

The naming convention for these pipeline registers are based on the pipeline stages 

separated by the pipeline registers. For an example, the pipeline register separating the 

instruction fetch (IF) and instruction decode (ID) stages is named as IF/ID pipeline 

register. The following figure shows the pipelined datapath with the pipeline registers: 

 

 
Figure 2.12: Pipelined Datapath (Patterson and Hennessy, 2017). 
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As the control signals decoded from an instruction by the control unit on the 

instruction decode (ID) stage transcends multiple pipeline stages, the control signals 

decoded for a given instruction will have to be passed down the pipeline register to 

ensure the hardware control signals for a given instruction is passed down alongside 

the execution of the instruction. The following pipelined datapath shows the addition 

of control elements to the pipeline system and the passing of the control signals down 

the pipeline stages:  

 

 
Figure 2.13: Pipelined Datapath with Control Elements integrated (Patterson and 

Hennessy, 2017). 
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The following section provides a thorough explanation of the operations at 

each pipeline stages: 

 

Instruction Fetch / IF:  The program counter provides the instruction address 

which is utilized to access and fetch the corresponding 

instruction code from the instruction memory. 

Instruction address and instruction code are stored onto 

the IF/ID pipeline register. 

 

Instruction Decode / ID:  The instruction code obtained from the IF/ID pipeline 

register is used to access registers (register file), 

generate immediate value (immediate generation unit), 

as well as generating control signals (control unit). The 

outputs from the functional units are stored onto the 

ID/EX pipeline register. 

 

Execution / EX: The operands to be processed, alongside the control 

signal specifying the operation to be executed are 

obtained from the ID/EX pipeline register and sent to 

the ALU. The processed output is then stored onto the 

EX/MEM pipeline register. 

 

Memory Access / MEM: The register content to be stored for store operations and 

the memory address for data memory access are 

obtained from EX/MEM pipeline register. Data loaded 

from the data memory and the ALU output from 

EX/MEM pipeline register is written onto MEM/WB 

pipeline register. 

 

Write back / WB: The data to be written into the register file is obtained 

from the MEM/WB pipeline register and written into the 

register destination specified by the instruction stored on 

the MEM/WB pipeline register. 
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Implementing pipeline in RISC-V architecture is relatively straightforward 

than x86 computer architecture due to the fixed 32-bit length of the instructions. The 

few variants of instruction formats with the same fields for defining information, such 

as destination register address and source register addresses, also made it easy for 

pipeline implementation. Aside from that, the simplicity of the base instructions in 

which memory operands are only utilized in loads or stores allowed the use of the 

execution stage to calculate the memory address and immediately access the memory 

address in the following memory access stage. 

 

 Along with improving performance and efficiency, pipeline implementation 

can also bring complicated situations whereby the pipeline flow needs to be halted due 

to hardware limitations. These events are known as pipeline hazards, and there is a 

total of three different types of hazards: structural hazards, data hazards, and control 

hazards. The following section provides information for each hazard that needs to be 

considered for the pipeline implementation. 

 

 

 

2.1.4.2  Structural Hazards 

 

Structural hazards occur when there is multiple access to the same hardware by 

different instructions in the pipeline at a given time. Due to hardware limitations, 

hardware in the datapath can only be accessed by one instruction at a time, thus 

necessitating the halting of the datapath for multiple hardware accesses. This form of 

hazard can be seen in cases where Von-Neumann Architecture is employed, whereby 

the same memory unit is utilized for storing program instructions and data. When the 

memory unit is accessed for fetching instructions, memory access for memory write 

or memory read would be halted. However, this hazard can be resolved if Harvard 

Architecture is employed whereby separate memory units are utilized for storing 

program instructions and data. The instruction fetch and data memory access can then 

be performed simultaneously as each operation accesses different hardware. 
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2.1.4.3  Data Hazards 

 

Data hazard occurs when there is data dependency between different instructions 

processed at different pipeline stages at a given time. With pipeline implementation, 

the datapath processes multiple instructions at a given time. In situations where there 

is a data dependency between the instructions in the pipeline datapath, the processed 

data needs to be forwarded to the corresponding pipeline stage to ensure the correct 

data is processed. Consider the following instruction segment: 

 

and x11, x3, x16 

add x12, x5, x11 

 

From the instruction segment shown, the result of the and operation which is 

to be updated to the register x11 is to be immediately be used as an operand of the 

subsequent add instruction. To ensure the correct information is utilized for the add 

instruction, the pipeline will have to be halted for three clock cycles to ensure 

completion of execution of the and instruction up to the writeback stage. Alternatively, 

forwarding of the data from a later pipeline stage to the pipeline stage requiring the 

data can resolve the hazard through additional hardware. 

 

In situations where the processed data arrives at a later time, pipeline stalling 

becomes necessary. These situations often arise from load instructions followed by 

instructions with data dependency on the data to be loaded from data memory, known 

as load-use cases. Consider the following example instruction segment: 

 

lw x11,       02a(x5) 

add x12, x5, x11 

 

The updated data for the register x11 only arrives at MEM stage upon memory 

read by the load word instruction, which necessitates pipeline stalling for at least one 

cycle. Through the combination of pipeline stalling and data forwarding mechanisms, 

the pipeline stall can be minimized to only one cycle.  
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2.1.4.4  Control Hazards 

 

When branch or jump instructions are introduced to the pipeline, the instructions 

following the branch or jump instructions may originate from a new address or remain 

the fetched instructions. In cases where branch or jump is executed, the fetched 

instructions are invalidated and need to be removed from the pipeline. This form of 

hazard is known as control hazards, also known as branch hazards. Consider the 

following instruction segment:  

 

add x4, x6, x6 

beq x1, x0, 40 

lw x3,    400(x0) 

sw x3,    400(x0) 

 

or x7, x8, x9 

 

The decision of whether the instruction (lw) following the conditional branch 

instruction (beq) or the instruction from the new target address (or) is to be executed 

can only be known upon the condition checking by ALU on the execution pipeline 

stage (EX). If the branch condition is fulfilled, the subsequent instruction (lw) in the 

instruction decode (ID) stage and the following instruction (sw) in the instruction fetch 

(IF) stage would need to be removed. One method of overcoming this hazard is to stall 

whenever a conditional branch instruction is fetched from the instruction memory. 

This, however, would cause a significant reduction in the processor’s performance, 

especially when there is a large number of conditional branch instructions in the 

program. 

 

 Alternatively, branch prediction can be utilized. By predicting conditional 

branches are untaken by default, pipeline flow will be at full speed if the prediction is 

correct. Only if the prediction is incorrect whereby the branches are taken, the pipeline 

flushes the incorrect information from the pipeline and fetches instructions from the 

new address. The following figures show the utilization of branch prediction as a 

solution to control hazard: 

Branch Address: 
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Figure 2.14: Pipeline flows at full speed when Branch Prediction is correct (Patterson 

and Hennessy, 2017). 

 

 

 
Figure 2.15: Pipeline flushes only when Branch Prediction is incorrect (Patterson and 

Hennessy, 2017). 

 

 

The branch prediction algorithm for can be coded in a sophisticated manner to 

further enhance the processor’s overall performance. This would however, require an 

advanced implementation for the branch prediction.  
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2.1.4.5  Data Forwarding 

 

Data forwarding refers to the passing of processed data from a later pipeline stages to 

the pipeline stage requiring the updated data. Through hardware implementation, data 

forwarding serves as the primary solution for data hazards. Considering the following 

instruction segment with data hazard: 

 

and x11, x3, x16 

add x12, x5, x11 

 

When the add instruction enters the instruction decode (ID) stage, the 

information required for the execution (EX) stage would require the processed 

information from x11 register which is still in the execution (EX) stage. As the and 

instruction only updates the register x11 on writeback (WB) stage, the add instruction 

will utilize the outdated data for x11. Data forwarding forwards the output result of the 

and instruction from the EX/MEM pipeline register to the ALU for the execution (EX) 

stage of add instruction. The following figure provides graphical representation of the 

data forwarding process: 

 

 
Figure 2.16: Graphical Representation of Forwarding (Patterson and Hennessy, 

2017). 

 

 

Through data forwarding, the data required can be forwarded, bypassing the 

memory access (MEM) and writeback (WB) pipeline stages. This allows the pipeline 

data flow to be correct and instructions to be executed using the updated information. 

The hardware implementation for the data forwarding unit can be done by checking 
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the source register addresses from the ID/EX pipeline register and the destination 

register address from both EX/MEM and MEM/WB pipeline registers. If the source 

register address at the ID/EX pipeline register matches the destination register of 

previous instructions, forwarding of data from either EX/MEM or MEM/WB pipeline 

registers can then be performed, sending the updated information from the respective 

pipeline to the ALU as input operands. Such implementation would also require 

additional multiplexing to be performed at the ALU input, as shown in the following 

figure:  

 

 
Figure 2.17: Implementation of Data Forwarding on the Pipelined Datapath 

(Patterson and Hennessy, 2017). 

 

 

Table 2.10: Forwarding Control Signal and their Description. 

Forwarding 
Control Signal Value Description 

 
 

 

ForwardA 

00 Data from first source register is sent to ALU. 

01 Data from MEM/WB pipeline register is forwarded to ALU. 

10 Data from EX/MEM pipeline register is forwarded to ALU. 

ForwardB 

00 Data from ALUSrc multiplexing is sent to ALU.  

01 Data from MEM/WB pipeline register is forwarded to ALU. 

10 Data from EX/MEM pipeline register is forwarded to ALU. 
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2.1.4.6  Pipeline Stalling 

 

Pipeline stalls are a crucial mechanism in pipelining due to the unpreventable 

circumstances whereby stalling is necessitated to ensure the correct data or instruction 

is processed. Upon stalling, writes to program counter and IF/ID, ID/EX and EX/MEM 

pipeline registers are halted whereas MEM/WB pipeline register continue executing 

the instructions they contain. Consider the following load-use case: 

 

lw x11,       020(x5) 

add x12, x5, x11 

 

As the updated information of x11 register can only be obtained when the load 

word instruction reaches memory access (MEM) stage, the pipeline needs to be stalled 

for one cycle to accommodate for the address calculation (execution stage). The 

following figure shows the graphical representation of the stalling mechanism of the 

pipeline: 

 

 
Figure 2.18: Graphical Representation of Stalling and Forwarding (Patterson and 

Hennessy, 2017). 

 

 

 Upon stalling, bubbles are inserted into the pipeline datapath, which represents 

no operation (nops) in terms of instruction execution. For RISC-V ISA, pipeline 

stalling halts the writing of new data onto program counter, IF/ID and ID/EX pipeline 
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registers whereby the pipeline registers retain the old instruction until the stall signal 

is removed. The EX/MEM pipeline register is inserted with bubble by setting the 

instruction code and control signal to be written to zero. The hardware implementation 

of pipeline stall mechanism is done through a hazard detection unit. The hazard 

detection unit detects for load use cases by checking the MemRead control signal on 

the EX/MEM pipeline register and comparing the destination register address on the 

EX/MEM pipeline register against the source register addresses stored on ID/EX 

pipeline register. If data is to be read from the data memory unit onto the destination 

register (MemRead) and the destination register address matches the source register 

addresses, the hazard detection unit asserts the stall control signal. The information 

stored on the program counter, IF/ID, ID/EX and EX/MEM pipeline registers will be 

retained whereas MEM/WB pipeline register continue with the instruction execution. 

When the load instruction proceeds to the memory access (MEM) stage and stores the 

data loaded onto MEM/WB pipeline register, the updated information can then be 

forwarded to the execution stage for the subsequent instruction and the stall signal can 

then be removed. The following figure shows the datapath with the hazard detection 

unit implemented: 

 

 
Figure 2.19: Implementation of Data Forwarding and Data Stalling on the Pipelined 

Datapath (Patterson and Hennessy, 2017). 
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2.1.4.7  Pipeline Flushing 

 

Aside from data forwarding and data stalling, another key mechanism known as 

pipeline flushing is required for the proper functioning of branching in a pipelined 

datapath. Pipeline flushing resolves control hazards by flushing the invalidated 

instructions out of the pipeline registers when a branch condition is fulfilled, 

preventing the system from executing the invalidated instructions fetched.  

 

 Flushing of the information on the pipeline can be performed by loading zero 

values onto the pipeline registers. By loading zero values as instruction code and 

control signals, hardware components in other stages of the pipeline will perform no 

action. As the branch comparison result is only known at the execution stage (EX), the 

pipeline registers prior to the execution stage containing the invalidated instructions 

will be flushed. The pipeline flush mechanism can be implemented alongside the 

hazard detection unit whereby control signals from ID/EX pipeline register (Branch, 

RegLink) and the zero flag from ALU will trigger the flushing mechanism.  
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To provide a thorough understanding on the flushing mechanism, consider the 

following instruction segment: 

 

beq x1, x1, 40 

add x4, x6, x6 

lw x3,    400(x0) 

 

Clock Cycle 1:  The branch instruction is fetched from the instruction memory 

and stored onto the IF/ID pipeline register on the next cycle.  

 

Clock Cycle 2: The information of the branch instruction is decoded and passed 

to the ID/EX pipeline register on the next cycle. The add 

instruction is fetched and stored onto IF/ID pipeline register on 

the next cycle. 

 

Clock Cycle 3: The information of branch instruction from ID/EX pipeline 

register are processed. As the branch condition is fulfilled, ALU 

sets the zero flag to HIGH. The hazard detection unit receives 

HIGH value for both Branch and Zero, thus asserting flush 

control signal. The information of add instruction is processed 

and passed onto ID/EX pipeline register on the next cycle 

whereas lw instruction is fetched and stored onto IF/ID pipeline 

register on the next cycle.  

 

Clock Cycle 4: The assertion of flush control signal loads the contents within 

IF/ID, ID/EX and EX/MEM pipeline registers with zero values 

to ensure no operation, removing the invalidated instructions. 

The program counter is updated with the new target effective 

address on the next cycle. 

 

Clock Cycle 5: Instruction from the new target address is fetched and stored 

onto IF/ID pipeline register. 
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From the description provided, the pipeline flush mechanism can resolve 

control hazards at the cost of two clock cycles, which can take a heavy toll on the 

processor performance if there are many conditional branch instructions in the 

program. Alternatively, the conditional branch comparison execution can be advanced 

to the instruction decode pipeline stage to further reduce the branch flush delay by one 

clock cycle. However, advancing the branch comparison would require data 

forwarding and pipeline stalling to be reworked and more complicated control. 

Nevertheless, reducing one clock cycle for branch execution would significantly 

improve the overall processor performance. The following figure shows the datapath 

implemented with the branch comparison forwarded to the instruction decode stage: 

 

 

 
Figure 2.20: Pipelined Datapath with Branch Comparison forwarded to Instruction 

Decode Stage (Patterson and Hennessy, 2017). 
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2.1.5  Summarized Review for RISC-V Computer Architecture 

 

From the detailed description for the RISC-V computer architecture provided by the 

textbook “Computer Organization and Design RISC-V Edition” published by 

Patterson and Hennessy, a well-established fundamental understanding of the datapath 

flow of RISC-V computer architecture with pipeline implementation is achieved. 

Despite not providing the full description for all the workings of a RISC-V system, 

such as examples for all the instructions within the RISC-V base instruction set and 

the complete RTL coding for the RISC-V processor, the textbook “Computer 

Organization and Design: RISC-V Edition” has done well in conveying information 

on the datapath flow of a RISC-V pipeline implementation with the detailed 

description for several examples.  

 

Although the project's primary focus is the verification portion, a well-

established understanding of the computer architecture is just as crucial as verifying 

the system. With a well-established understanding of how the system works, a 

thorough verification can be performed with the test engineer understanding the 

architecture flow and greatly aiding the debugging process. Aside from verifying the 

design under test with the fundamental knowledge on the datapath flow, the knowledge 

on the RISC-V computer architecture is also helpful for implementing a reference 

model to be compared with the design under test. A reference model is a model that 

produces the expected outcome in a simulation whereby the results from a design under 

verification will be compared to. Despite the nature of the reference model to be 

deemed as the model that provides the expected outputs, in the industry, the reference 

model may have bugs within the model. Therefore, a verification engineer must have 

a well-established understanding of the computer architecture such that such cases 

whereby the reference model is at fault can be detected and fixed.  

 

The detailed information obtained from the textbook has encouraged and 

provided sufficient information to build a reference model from scratch. As such, the 

information listed in this report is the main reference document for the architecture of 

the RISC-V reference model alongside the RISC-V instruction set architecture manual. 
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2.2  Functional Verification 

 

Functional defects are often introduced to the system design during RTL code design. 

These functional defects can be caused by logical errors in the coding, 

miscommunication between the design team, complexity of the design, and more. 

Verification is a much-needed process in the design flow as it ensures these functional 

defects are captured and maintains the integrity of the design functionality with the 

design specifications. Capturing these functional defects at an earlier stage can help 

prevent the manufacture and deployment of functionally defective designs, losing 

many resources, money, and time (Kaeslin, 2014). Therefore, design verification is a 

much-emphasized process in product development whereby design verification often 

consumes as much as 80% of the total product development time (Wang, Chang and 

Cheng, K.T.T., 2009).  

 

 

 

2.2.1  SystemVerilog as Functional Verification Language 

 

Verilog is an industrial standard Hardware Description Language (HDL) used mainly 

to describe circuits and systems. In electronic design, Verilog is utilized for simple 

verification of digital circuits at RTL abstraction level, timing analysis, test analysis, 

and logic synthesis (Doulos, n.d.). Despite the capability to perform verification, 

Verilog has very limited features, which is insufficient to meet the verification 

requirement for today’s standards. In today’s design complexity, a tool better than 

Verilog needs to be utilized to verify systems with a complex design.  

 

           SystemVerilog, an extension of Verilog that supports object-oriented 

programming, allows for advanced functional verification constructs, further opening 

up possibilities for incorporating advanced functional verification methodologies such 

as universal verification methodology (UVM) and more. With the added capability to 

perform constrained random stimuli generation and incorporate object-oriented 

programming (OOP) in test environment construction, SystemVerilog is a much-

developed functional verification language compared to Verilog (Chip Verify, n.d.). 
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2.2.2  Functional Verification Requirements 

 

The basis of functional verification is to verify the features implemented in a design 

and capture all functional defects. With the increasing complexity of modern-day 

system designs, incorporating additional criteria towards the longevity of functional 

verification is much needed. 

 

Reusability of the verification methodology is one of the highly-focused 

aspects of functional verification. Manual design of verification testbench for complex 

designs often consumes a lot of time. Incorporating reusability in verification testbench 

with object-oriented programming through reusable verification components can 

allow the verification environment to be designed much shorter and robustly. 

Verification components designed for reusability allow verification intellectual 

properties (VIP) to be reused across components, multiple chips, and in different 

organizations. 

 

 Automation is another critical aspect of design verification that can 

significantly enhance verification effectiveness. Automation of test case execution 

allows verification to be performed without manually driving the inputs to the design 

under test. Automation of result analysis through the implementation of self-checking 

testbench helps identify discrepancies between results obtained and the expected 

outcome, removing the requirement of manual inspection on the results obtained and 

significantly improving the efficiency of the verification process. Automation of 

functional coverage analysis helps track and measure the progress of functional 

verification by providing insights on the design features that have and have yet been 

tested. 

 

 Standardized coding guidelines for verification component and environment 

development is another crucial aspect for design verification. A standardized approach 

towards verification environment design ensures a consistent working design and aids 

with the debugging process of the verification environment (Singhal, 2015). The 

guidelines provided also allow codes to be written and maintained easily.  
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2.2.3  Functional Verification Technologies 

 

Simulation-based and formal verification are the two main functional verification 

technologies used in the industry. Simulation-based verifications generate and drive 

stimuli to a design under test and a reference model. The outputs from both models are 

then obtained and compared. Discrepancies between the results obtained are 

categorized as functional defects within the design. On the other hand, formal 

verification does not require input vectors but instead is an output-driven form of 

verification. Formal verification first defines the output behaviour for the design and 

identifies the possible inputs and state conditions for failures. 

 

           The main difference between the two types of verification stated is the 

requirement of input vectors for the verification process. As aforementioned, 

simulation-based verification is input-driven, whereas formal verification is output-

driven. In simulation-based verification, inputs are driven to the design under test one 

at a time, whereby a scoreboard checks for the correctness of the design behaviour. 

Formal verification utilizes constraints to identify the legal input behaviours. Through 

sufficient runtime, input patterns corresponding to the constraints set can be identified 

and verified by the scoreboard for behavioural correctness of the design (Oski 

Technology, 2020). Abstractly speaking, simulation-based verification checks for one 

output point at a time, whereas formal verification checks groups of points at a time. 

By performing verification in groups of points at a time, the set properties of the groups 

of points tested must be further verified against the design specifications, thus making 

formal verification less intuitive and harder to use (Lam, 2005.). 

 

           Due to the lack of intuitiveness, formal verification is applicable for designs of 

moderate complexity. As the project is concerned with verifying a processor system 

with a large number of blocks integrated, functional verification becomes unsuitable 

to be utilized. Therefore, the project will use simulation-based verification whereby 

input stimuli are generated and driven to the design. The results obtained from the 

design are subsequently compared with a reference model.  
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2.2.4  Functional Verification Approaches 

 

For simulation-based verification, a total of five different verification approaches can 

be taken. Multiple approaches are often required for a complex design to achieve 

sufficient functional coverage. 

  

           Directed verification manually generates test stimulus and test cases and drives 

them to design under test for verification. As manual test stimulus generation is 

involved, this form of verification allows specific functionality of the design to be 

tested. It is, however, unsuitable and inefficient to be used as the sole approach taken 

for designs with many functionalities to be tested (Singhal, 2015). On the other 

hand, constrained random verification generates user-defined constrained-random 

stimuli through automation. This form of verification provides broad functional 

coverage for complex designs and is often used with directed verifications to further 

provide coverage for corner cases (Singhal, 2015). 

 

           Coverage-driven verification identifies holes in the verification progress. It 

provides insight on features of the design that has yet to be sufficiently verified, 

tracking the functional coverage progress of the verification process. Coverage is an 

essential metric in design verification, whereby most functional verifications are 

guided by the metrics provided by coverage-driven verification (Singhal, 

2015). Assertion-based verification is a useful form of verification approach for 

pinpointing the sources of error and significantly reducing debugging time. Assertions 

are executable specifications that control the execution of passive code segments, 

providing controllability and observability to the design. However, the implementation 

of assertion-based verification poses challenges in increased coding and debugging 

complexity and customization limitation (Tech Design Forum, n.d.). 

 

           Emulation-based verification verifies the gate-level model or RTL 

representation of the design mapped onto an FPGA through emulation. Proper 

emulation of the system allows for a high-performance system for verification. 

However, the long time required for setup and compilation can pose challenges 

towards the time-to-market aspect of the design flow (Singhal, 2016). 
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2.2.5  Summarized Review for Functional Verification 

 

From the literature review performed for the requirements, technologies, and 

approaches of functional verification, a general idea for the verification of a RISC-V 

pipelined processor implementation is established.  

 

The verification environment is coded using SystemVerilog to utilize object-

oriented programming to incorporate reusability in design verification. Other 

capabilities such as the randomization capability in SystemVerilog will also play a 

considerable role in constrained-random stimuli generation for functional verification. 

From the discussion of requirements for functional verification, the basis of the 

functional verification is to verify and validate the features implemented by design 

under test. When constructing the verification environment, additional criteria such as 

reusability in the verification components, automation in the process execution, and 

standardization of coding guidelines will also be considered. From the verification 

technologies discussed, simulation-based verification has been deemed to be 

preferable for the RISC-V processor design with many functionalities to be tested. 

Among the functional verification approaches discussed, a combination of verification 

approaches that include constrained-random, directed, and coverage-driven 

verification will be utilized. Using a variety of verification approaches, a broader 

functional coverage can be achieved.  
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2.3  Universal Verification Methodology 

 

Universal Verification Methodology (UVM) is a standardized methodology for 

verification that emphasizes reusability. UVM provides a standardized approach 

towards designing verification environment that promotes reusability and 

compatibility. UVM is widely used in the industry. It dramatically helps companies 

develop a modular, reusable and scalable testbench structure, encouraging the growth 

of a verification intellectual property (VIP) marketplace (Francesconi, Rodriguez and 

Julian, 2014). Through the standardized approach provided by the UVM, a layer of 

abstraction is integrated into the verification environment, whereby each verification 

component has a specific role. The layer of abstraction, in turn, helps the verification 

testbench to be more efficiently coded and maintainable. The following section 

provides a detailed analysis of the verification components within the UVM 

verification environment and insight into the verification flow. 
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2.3.1  UVM Testbench Architecture 

 

UVM provides class libraries that allow for generic utilities such as configuration 

databases, transaction library modelling, and component hierarchy. The generic 

utilities provided to the user allow for creating a dynamic testbench structure. The 

building blocks allow for the rapid development of well-constructed, reusable 

verification components and test environments. In a typical UVM verification 

environment, the verification environment can be built using readily available UVM 

classes. The UVM classes components have a well-established standard 

communication infrastructure, allowing the verification components to send data 

packets between each other and work synchronously (Chip Verify, n.d.). The 

following figure showcases an example of a testbench architecture: 

 

 
Figure 2.21 UVM Testbench Architecture. 
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2.3.2  UVM Component Class 

 

UVM components are verification components that construct the complete 

hierarchical verification environment for UVM. These verification components are 

used for processing UVM objects, passing transactional data from one component to 

another. The hierarchical environment of the components also allows each component 

to be configured for specific features and different test scenarios. The various 

components of the UVM component class will be described in this section. 

 

 

 

2.3.2.1  UVM Testbench 

 

In UVM, a typical testbench is the root node, otherwise known as the top-level module. 

which serves as a static container that holds and instantiates all the verification 

components, interfaces, and the design under test. It is responsible for invoking the test 

to be performed on the design. 

 

 

 

2.3.2.2  UVM Test 

 

The test component is the top-level verification component in the component hierarchy. 

It instantiates and configures the environment component, the next level down in the 

component hierarchy. It is also responsible for initiating stimuli generation by starting 

virtual sequences. A test case is the specification of a verification test whereby the 

stimuli and conditions for the test run are set to test out specific design features under 

the specified condition. Through the configuration made to the environment, the test 

component can configure the environment component to generate different test cases, 

therefore exhibiting the aspect of reusability in the verification environment. 
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2.3.2.3  UVM Environment 

 

The environment component is a hierarchical component that groups and instantiates 

interrelated verification components such as the agent, scoreboard, and other 

components. It has several configuration parameters set by the test component, 

allowing the environment to be configured for different test scenarios. 

 

 

 

2.3.2.4  UVM Agent 

 

The agent component is another hierarchical component that encapsulates the 

verification components dealing with a specific design under test interface. These 

components include a sequencer, a driver, and a monitor. The verification components 

encapsulated are instantiated and interconnected through transaction-level modelling 

interfaces. Like the environment component, the agent component also has 

configuration options to enable or disable features or even set the agent component as 

an active driving component or a passive monitoring component. 

 

 

 

2.3.2.5  UVM Sequencer 

 

The sequencer is a verification component that generates sequence items as data 

transactions and sends them to the driver component for further execution. Upon 

receiving the request for sequence items made by the driver component, the sequencer 

initializes sequence item generation and sends them upon finishing the item generation. 
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2.3.2.6  UVM Driver 

 

The driver is an active component within the verification environment that actively 

drives the sequence items obtained from the sequencer to the design under test via the 

interface. The driver pulls sequence items downstream on a test run by sending a 

request to the sequencer component to generate sequence items. The sequence items 

generated and received by the driver component are further mapped to signal level 

formats compatible with the interface to be driven to the design under test.  

 

 

 

2.3.2.7  UVM Monitor 

 

Monitor captures information from the design under test from the interface and 

converts the captured signals to transaction level sequence items. These transactions 

containing the captured information are then sent to other components such as the 

scoreboard for functionality checking. It can also perform internal processing such as 

coverage collection on the data received. 

 

 

 

2.3.2.8  UVM Scoreboard 

 

The scoreboard component is the verification component within the testbench that 

performs the functionality checking. From the data transactions received from the 

monitor component via an analysis port, the actual values from the design under test 

and the expected values are compared. One methodology often used for generating 

expected values to be compared is through the use of a reference model. The input 

stimuli to be driven to the design under test are also sent to the reference model. The 

obtained result for the given stimuli by both reference model and design under test can 

then be checked for functionality correctness. 

 

 



56 

 

 

2.3.3  UVM Transaction Base Class 

 

UVM transaction class contains objects that represent data within the verification 

environment.  

 

 

 

2.3.3.1  UVM Sequence Items  

 

Sequence items are the information or data transactions passed between verification 

components. They may also include the stimuli to be driven to or monitored from the 

design under test. On an abstract level, sequence items can be viewed as the 

communication data between the components in the UVM environment. 

 

 

 

2.3.3.2  UVM Sequence 

 

Sequences are a set of sequence items often initiated by the sequencer component to 

be driven to the driver component. The set of sequence items are assembled to form a 

stimuli for the verification process. 
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Chapter 3 

 

 

 

METHODOLOGY 

 

 

 

3.1  Verification Flow 

 

 
Figure 3.1: Design Verification Flow. 
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A project flow has been created to provide a systematic approach towards the design 

verification project. A well-planned project flow can give complete coverage and 

encapsulate the tasks needed to be done.  

  

For design verification, the first stage is to capture the design specification. 

Reference documents such as the textbook “Computer Organization and Design RISC-

V Edition” and RISC-V's instruction set architecture manual are studied to understand 

the design's functioning properly. Documents and articles on UVM and design 

verification are also read to generate ideas on how the design verification should be 

done. 

  

The project flow then separates into two parallel paths upon document study 

and research. One of the paths involves verification environment development and the 

other consists of reference model development. On the verification environment 

development path, the testbench architecture planning stage is performed to define 

the verification testbench architecture. As the project utilizes UVM for verification, a 

UVM testbench architecture is used for the design verification. The UVM components 

that constructs the UVM testbench architecture planned are then coded to construct 

the functional verification environment. On the other hand, reference 

model development is to develop a reference model based on the reference documents 

studied. The reference model provides the expected data for functionality checking of 

the design under test. Therefore, extensive verification needs to be performed to ensure 

its functionality correctness. 

  

When both reference model and verification environment are constructed and 

verified, the project flow proceeds to the simulation and verification stage which 

comprises of the main design verification work. Simulation-based verification is 

performed to check the functionality correctness of the design under test. Bugs 

encountered during simulations are debugged, and the simulation runs are reiterated. 

The cycle of simulation and debugging are repeated until the design is bug-free.  

  

Following the simulation-based verification stage, verification analysis is 

performed to determine the sufficiency and thoroughness of the design verification. 

Through a well-planned functional coverage plan, the functional coverage analysis 
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helps identify the design functionalities verified and help provide insight on the overall 

design verification progress. When the functional verification of the design is 

sufficiently performed, verification closure can be performed to file the necessary 

documentation for future reference purposes. 

 

 

 

3.1.1  Design Specification 

 

Design verification requires extensive knowledge and understanding of the 

functionalities of the design to be verified. This project's subject to be verified is a 

RISC-V base instruction set architecture pipelined processor. As such, RISC-V base 

instruction set architecture and pipeline implementation need to be thoroughly studied 

and understood. The design principles in the reference documents utilized for the 

processor design studied must be aligned with the design principles used by the design 

team to ensure a mutual understanding of the architecture of the design. Discussion 

also needs to be held with the design team to determine the design functionalities to 

be implemented, providing information on design functionalities that require 

verification.  

 

 

 

3.1.2  Testbench Architecture Planning 

 

A well-planned testbench architecture can help create a reusable testbench architecture 

that caters to various functional verification scenarios and approaches. Providing 

configurability to the testbench components allows the aforementioned functional 

verification approaches such as constrained-random verification and directed 

verification to be implemented using the same testbench. As a reference model is to 

be utilized for the functionality checking, the UVM testbench architecture shown 

in Figure 2.21 has been modified and is shown on the following page. The revised 

implementation allows synchronized operation between the reference model and the 

design under test. The synchronized operation allows the UVM monitor component to 
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capture the synchronized output and send it to the UVM scoreboard component for 

further analysis. 

 

 
Figure 3.2: Revised Verification Testbench Architecture. 

 

   

 

3.1.3  Functional Verification Environment 

 

The UVM components that construct the functional environment and the testbench 

architecture are developed. The verification components developed are derived from 

the UVM standardized class library and further defined based on design verification 

requirements. ModelSim has been selected as the platform for the code designing, 

simulation, and verification process due to its capability to handle system simulations 

and produce waveforms for detailed debugging. 

 

 

 

3.1.4  Reference Model Development 

 

Simulation-based verification for a complex system usually deploys a reference model. 

A reference model has been developed based on the reference documents on RISC-V 
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base instruction set architecture studied. The reference model design is done based on 

the functionalities implemented by the design team to allow for synchronized 

operation between the reference model and the design under test. The functionality 

correctness of the reference model developed is verified using the verification 

testbench developed. The verifications provide insight into improvement opportunities 

on the functional verification environment and possible features to be added. The 

reference model development is completed when all agreed design functionalities are 

implemented and verified. 

 

 

 

3.1.5  Simulation and Verification 

 

The simulation-based verification is executed when the design prototype, reference 

model, and functional verification environment are constructed. Bugs identified in the 

verification models or discrepancies identified in the models are debugged. 

Communication is established with the design team to discuss the bugs identified. The 

debugged design provided by the design team is sent for regression test to ensure the 

debug fix does not introduce new bugs to the system. The process of simulation and 

debugging is repeated until the design is bug-free. 

 

 

 

3.1.6  Verification Analysis 

 

A functional coverage plan written for the design verification is utilized for functional 

coverage analysis. Functional coverage analysis provides a coverage metric that offers 

insight into design verification progress. Additional test cases are generated for the 

verification process if insufficient testing is performed. Directed verification is also 

utilized to verify corner cases. If additional features are added to the verification 

environment or the design, the reference model and testbench development, simulation, 

and verification stages are repeated. When sufficient verification is performed on the 

design, the design verification proceeds to the verification closure stage. 
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3.1.7  Verification Closure 

 

The final stage of the design verification flow involves the documentation of the design 

verification, such as the functionalities tested and reports on the overall verification 

coverage to determine the robustness of the verification performed. 

 

 

 

3.2  Project Timeline 

 

Gantt charts have been created to schedule the tasks to be carried out for the project. 

The task scheduling allows the project to progress without unwanted delays and to 

complete on time. The following Gantt charts show the planning for the first phase and 

second phase of the project: 

 

 
Figure 3.3: Gantt Chart for Phase 1 of Final Year Project. 

 

 

 
Figure 3.4: Gantt Chart for Phase 2 of Final Year Project. 



63 

 

3.3  Verification Simulation Flow 

 

This section provides a detailed explanation on the simulation-based verification flow.  

 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
Figure 3.5: Verification Simulation Flow. 
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3.3.1  Verification Specification 

 

The verification environment alongside the reference model and the design under test 

is first compiled and checked for syntax errors. Through the use of command line 

arguments, specifications can be provided to configure the testbench components and 

the nature of the test case, allowing the verification environment to be reused for 

various test scenarios. The following table provides information on the specifications 

that can be inputted to modify the verification test: 

 

Table 3.1: Test Arguments for Verification Specification. 

Test Arguments Description 
  

+TESTLOG Configures the verification environment to generate test log  

+SEED=<val> Specifies the test seed to be tested. The verification environment clones 

pre-existing test case or creates the test case using instruction code 

generation and stores the created test case onto repository. If 

unspecified, a default seed number of “0000” is used. 

+INSTR=<val> Specifies the amount of instructions to be generated for a given test 

case. If unspecified, a default amount of 500 instructions is generated. 

+FORCE_GEN Configures verification environment to generate new instruction set for 

specified test seeds, renewing pre-existing test case in the repository. 

+INSTR_TYPE=<val> Specifies the instruction types (R-type, SB-type) to be generated. If 

unspecified, all instruction types will be generated by default. 

+BATCH_TEST Configures the verification environment to execute multiple test cases 

specified in a seed file. 

+CONT Configures the verification environment to run all the test cases 

provided in a batch test. Instead of ending the simulation upon 

encountering mismatch, the mismatch and the test case failed are 

recorded onto a file named “FAILED.txt” for further debug. 

+BATCH_SEED=<val> Specifies the seed file containing the test cases for multiple test case 

run. If unspecified, a default file named “SEED.txt” is accessed. 

+DIRECTED_TEST Configures the verification environment to perform directed 

verification. The test instructions written in a file named “TEST.txt” 

are translated to machine language and driven to the test models for 

simulation, 

+SKIP_MACRO_CHECK Bypasses macro checking of stall and flush conditions. 

+MACRO_OVERWRITE Configures the verification environment to renew the historical values 

of stall and flush conditions executed for a test case. 
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3.3.2  Instruction Code Generation 

 

Upon starting the simulation, the testbench first instantiates all the verification 

components and models. The models are first applied with a reset signal, halting them 

until the verification environment finishes setting up the test case. While the reset 

signal is asserted, the driver component sends requests for sequence generation, 

requesting for generation of sequence items which are the instruction codes to be sent 

to the models. Upon completion of instruction code generation, the instruction code 

transactions are stored externally onto files named "ASM.txt" and "PROM.txt". A data 

transaction signalling the completion of instruction generation will also be sent to the 

driver to inform the completion of instruction generation. 

 

The methodology utilized ensures that the full program instructions are 

generated before the models start operating. In contrast to the traditional transaction-

to-transaction simulation, the availability of the entire program allows the pipelined 

processor to execute jump or branch instructions without issue. In the case of jump or 

branch instructions, the instruction code at the target address specified by the jump or 

branch instruction needs to be available to the instruction memory on the next clock 

cycle. In traditional transaction to transaction simulation, instruction codes are 

generated and driven to the models upon prompt, which may result in a bad test case 

when the models attempt to access an instruction code at an instruction address that is 

yet to be generated by the testbench. 

 

The instruction code generation function represents the constrained-random 

verification for the design verification. The instruction codes are randomized but are 

constrained such that they remain as valid instruction codes that the processor models 

can process. Among the specifications that can be provided to the system, the 

“+INSTR_TYPE=” argument specifies the instruction type to be generated. When 

specific instruction types are provided, the corresponding opcode for the instruction 

type is added to a pool from which the instruction generator will randomly select an 

opcode. If no instruction type is specified, all instruction types will be added to the 

pool, allowing the generator to generate any valid instruction type. The following code 

segment shows how the randomization of specified instruction type is performed: 
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Figure 3.6: Randomization of specified Instruction Type. 

 

 

For instruction fields requiring fewer constraints, the instruction field is 

specified as a randomized variable, allowing a randomized value within the specified 

range to be assigned to the instruction field. The following figure shows the declaration 

of randomized instruction fields and randomizer variables: 

 

 
Figure 3.7: Declaration of Randomized Instruction Fields. 
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For the specification of funct3 and funct7 fields for the opcode generated from 

the valid pool, specific values are assigned through randcase, a randomized case 

statement that randomly selects one of its statements based on the probability assigned. 

The following shows how the funct3 and funct7 fields are selected based on the opcode 

generated and the randcase statement: 

 

 
Figure 3.8: Assigning valid funct3 field using randcase. 

 

 

 
Figure 3.9: Assigning valid funct7 field using randcase. 
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Lastly, the instruction code is constructed using the instruction fields generated 

by concatenating the appropriate fields in the correct order based on the instruction 

type. An additional constraint is imposed for branch instructions to ensure a 

constrained branch range for better test case quality. The following code segment 

shows how the instruction code is formed from the instruction fields generated: 

 

 
Figure 3.10: Concatenation of Instruction Fields into Instruction Codes. 

 

 

The constructed instruction codes are then stored into ASM.txt and PROM.txt, 

as shown in the code segment below: 

 

 
Figure 3.11: Storing of Instruction Code and Address onto ASM.txt and PROM.txt. 

 

 

This instruction generation process is reiterated until the specified number of 

generated instruction codes is achieved. The number of instruction codes to be 

generated can be specified in the command line through the argument “+INSTR=”. 

The following figures show the instruction codes generated alongside their 

corresponding instruction address in “ASM.txt” and the segmented instruction codes 

in “PROM.txt”: 
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Figure 3.12: Instruction Address and Instruction Code on ASM.txt. 

 

 

 
Figure 3.13: Segmented Instruction Code on PROM.txt. 

 

 

As instruction code generation for test cases may consume a lot of simulation 

time, test case simulations can become tedious if instruction code generation needs to 

be executed each time. Therefore, the text files containing the instruction codes 

generated are cloned onto the test repository. An additional feature whereby the system 

checks through the test repository for existing test cases is implemented. The 

verification environment checks through the test repository for pre-existing test cases 

on repeated test case simulation. If pre-existing test case is detected, the test case will 

be cloned, and instruction code generation will be bypassed, saving a lot of simulation 

time. If a pre-existing test case is not found, instruction code generation will then be 

executed, and the files generated will be cloned to the test repository. This added 

feature can also be bypassed, forcing the verification environment to execute the 

instruction code generation function and update the test repository through the 

command line argument “+FORCE_GEN”. 
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3.3.3  Directed Test Assembly Language Translation 

 

A feature to translate manually written test cases from assembly language to machine 

language is introduced to the verification environment to incorporate directed 

verification into the environment. When the command line argument 

“+DIRECTED_TEST” is provided, instruction code written in assembly language on 

a text file named “TEST.txt” will be translated into machine language instruction 

codes. The following figure shows a sample program written in assembly language: 

   

 
Figure 3.14: Assembly Language Instruction Codes in TEST.txt. 

 

 

The following code segment showcases how the file is accessed for the 

instruction operation and compares it with a list of instructions defined. If a correct 

instruction operation is matched, the corresponding values for opcode, funct3, funct7 

fields are assigned, and the instruction type is defined for encoding and operand 

processing purposes. 

 

 
Figure 3.15: Translation of Assembly Code Instruction Operation. 
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Following the identification of the instruction operation, the first operand is 

subsequently obtained and processed for its information before the processed 

information is placed into the correct field based on the instruction type currently being 

executed. The following code segment shows how the first, second, and third operands 

are accessed, processed, and placed into the correct instruction fields: 

 

 
Figure 3.16: Translation of Assembly Code First Operand. 

 

 

 
Figure 3.17: Translation of Assembly Code Second Operand. 
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Figure 3.18: Translation of Assembly Code Third Operand. 

 

 

After performing translation for all the operands, the information obtained is 

concatenated into a valid instruction and stored externally onto “ASM.txt” and 

“PROM.txt”. The translation process is repeated for all the instructions contained in 

the test file. The following figure shows the concatenation of the instructions: 

 

 
Figure 3.19: Concatenation of Translated Information into Instruction Code. 
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3.3.4  Instruction Memory Setup 

 

Upon completing generation of instructions, cloning of test case, or translation of 

assembly language, a transaction signal is sent to the UVM driver component 

signifying the instruction codes are ready to be loaded onto the instruction memory. 

The driver component then loads the instruction code from PROM.txt onto the 

instruction memory of the models through the top testbench module. The following 

code segment shows how instruction codes are loaded onto a dynamic memory 

structure from the driver component: 

 

 
Figure 3.20: Loading of Instruction Code from PROM.txt initiated by UVM Driver 

component. 

 

 

Based on standard memory technology, each memory register stores a byte of 

data. For a 32-bit RISC-V processor, each instruction is 32 bits (4 bytes) long and is 

stored in 4 memory registers. The following figure shows the instruction codes stored 

on the memory structure in the instruction memory unit: 

 

 
Figure 3.21: Instructions Codes stored on Instruction Memory. 

 

 

After loading the instruction codes onto the models, the test run is initiated by 

the test component by releasing the reset signal. 
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3.3.5  Step Simulation 

 

The simulation runs in steps, allowing the UVM monitor to capture the outputs of the 

models at every clock cycle and send the transactional data received to the scoreboard 

and coverage component for functionality checking and coverage checking 

respectively. The synchronous functioning of the pipeline models allows outputs to be 

compared against each other on every cycle. The following code segment shows the 

transaction of model outputs to the interface for design verification: 

 

 
Figure 3.22: Reference Model to Interface Data Transaction. 
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The UVM monitor component then captures the information sent to the 

interface. The UVM monitor component converts the signals captured to transactional 

data and exports them to the scoreboard and coverage components. The following code 

segment shows the UVM monitor component capturing the signals from the models 

and exporting them to other components via an analysis port:  

  

 
Figure 3.23: Monitor Data Transaction Relaying. 
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3.3.6  Scoreboard Checking 

 

The UVM scoreboard component performs the primary functionality correctness 

checking for the models in the verification environment. Signals obtained from the 

reference model and design under test are compared for discrepancies. The reference 

model undergoes partial self-checking testing before the model result comparison. 

Specific outputs such as the source register address, ALU output, and destination 

register address and data are checked. Self-checking ensures the functional correctness 

of the reference model, which provides more confidence in the comparison results 

produced. The following code segment shows the self-checking mechanism 

implemented: 

 

 
Figure 3.24: Register Read Address Self-Checking. 

 

 

 
Figure 3.25: Instruction Execution Output Self-Checking. 
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Figure 3.26: Register Write Address and Data Self-Checking. 

 

 

Aside from checking on specific outputs of the reference model, self-checking 

also checks for assertions of stall and flush control signals. The stall assertion checking 

is performed on detecting load-use cases, whereas flush assertion checking is 

performed on detecting branch condition fulfilment or jump instruction. The following 

code segments showcase the self-checking mechanism for stall and flush control signal 

assertions: 

 

 
Figure 3.27: Stalling on Load-use Cases Self-Checking. 
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Figure 3.28: Flushing on Branch or Jump Instructions Self-Checking. 

 

 

After self-checking, the instruction received is decoded to assembly language 

for user reference and instruction validity checking. The decoded instructions are also 

stored externally on a file for log documentation purposes. The following code 

segment shows part of the instruction code decoding process: 

 

 
Figure 3.29: Decoding of Instruction Code being executed. 
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The decoded instruction will also be displayed to the user on the transcript, as 

shown in the figure below: 

 

 
Figure 3.30: Display of Decoded Instruction Code on ModelSim Transcript. 

 

 

After performing a validity check on the instruction codes received, the 

information on each pipeline register is stored externally onto temporary text files, 

which will be accessed for test log documentation later. The information from the 

reference model and design under test are then compared. The following figure shows 

the storing and comparing of pipeline register values: 

 

 
Figure 3.31: Comparison of Data between Reference Model and Design Under Test. 

 

 

If any discrepancy is identified, the scoreboard asserts a mismatch flag and 

halts the test execution. The scoreboard will then perform the test log documentation 

process to capture information regarding the mismatch. If no discrepancies are found 

between the models, the scoreboard reiterates the checking of information received for 

every clock cycle until the end of the test execution. 
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3.3.7  Coverage Collection 

 

The UVM coverage component has been integrated as part of the verification 

environment, allowing functional coverage analysis to be performed on the various 

test case executed. By obtaining the transaction data from the monitor component, the 

coverage component can perform coverage collection on the instructions being 

executed. A coverage plan is first written to specify the conditions to be captured for 

the coverage checking. The following code segment shows the conditions for 

functional coverage analysis: 

 

 
Figure 3.32: Functional Coverage Cover Points. 
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Coverage collection provides insight towards design functionalities that are yet 

to be tested in test cases, allowing directed verification to be performed to verify these 

untested functionalities. Crossed coverage points can further increase the complexity 

and thoroughness of the functional coverage analysis. A well-planned coverage plan 

can provide accurate insight into the verification progress. When the coverage 

argument, “-coverage” is inputted as a command line argument, the detailed coverage 

information can be displayed as shown in the following figure: 

 

 
Figure 3.33: Functional Coverage Statistics for a Test Case Simulation. 

 

 

The functional coverage statistics shown provide insights on the specific types 

of instruction that have been executed as well as the stall and flush conditions 

encountered during the execution of the instruction. The crossed conditions also 

provide information on the conditions of specific instructions, such as load-use case 

stalling and conditional branch flushing. 
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3.3.8  Mismatch Documentation 

 

When a mismatch is encountered, the test execution is halted, and information 

regarding the mismatch is provided on the transcript interface as shown below: 

 

 
Figure 3.34: Mismatch Message generated on ModelSim Transcript. 

 

 

The information displayed provides insight into the pipeline register that 

provided mismatching values as well as the mismatching parameter and values. Next, 

the scoreboard component has been implemented with a feature to perform test log 

documentation, which can be used for debugging purposes. The test log documentation 

includes instructions executed and the internal states of the pipeline registers.  

 

The logging process begins by clearing several cycles of null information 

stored on different pipeline registers. These null information stored on the pipeline 

registers are due to the pipeline filling process whereby for a 5-stage pipeline, 4 clock 

cycles are required for all the pipeline registers to be filled with instructions. Clearing 

the null information allows the pipeline registers to be aligned in instruction execution 

which eases the logging process. The following figure shows the pipeline filling 

process and the null information on the pipeline stages: 

 

 
Figure 3.35: Pipeline Filling and Null Information on Pipeline Stages. 
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The following code segment shows the removal of invalid information from 

the temporary text file used to store pipeline register data:  

 

 
Figure 3.36: Removing invalid data from Pipeline Register Data Record. 

 

 

           After removing the invalid pipeline filling data, the pointers pointing towards 

the data on each pipeline register data record are aligned and accessed, formatted, and 

outputted into the test log documentation. The following code segment shows the 

formatting and logging of test results: 

 

 
Figure 3.37: Formatting and Logging of Information. 
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The following figure shows an example of test log output for a mismatch case: 

 

 
Figure 3.38: Test Log Documentation on Mismatch Instruction. 

 

 

 The information documented in the test log can provide context on 

mismatching cases, allowing a thorough analysis to be performed. The test log 

documenting feature can also be configured such that test log documentation is also 

performed for passing test cases. This is achieved through the command line argument 

“+TESTLOG”. 

 

File handling of the test log documents generated is performed after test 

execution. The test log documents are relocated to relevant test case folders in the test 

result directory. The temporary text files created for the test log documenting process 

are also removed to ensure the system is clutter-free. 
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3.3.9  Macro Check 

 

Another additional feature implemented is macro status consistency checking. This 

feature ensures that the macro status, such as the number of stall occurrences and flush 

occurrences during a regression test, is consistent with the previously stored macro 

status data. If the macro status of the new design is inconsistent with previous macro 

status data, the debugging performed has introduced other bugs that have altered the 

functioning of the system and need to be further analysed. 

 

This feature can be bypassed by using the “+SKIP_MACRO_CHECK” 

command line argument. For cases where the new macro status data is correct and the 

recorded status data is to be updated, the command line argument 

“+MACRO_OVERWRITE” can be inputted to configure the verification environment 

to update the previously stored macro status data. The following figure shows the 

macro status data record of a sample test case: 

 

 
Figure 3.39: Macro Status Data Record. 

 

 

The macro status of a test case will also be recorded on the test log document 

at the end of the test, as shown in the following figure: 

 

 
Figure 3.40: Macro Status at end of Test Log Document.  
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Chapter 4 

 

 

 

RESULTS AND DISCUSSIONS 

 

 

 

4.1  Self-Checking Bug Detection 

 

Several tests have been performed to verify the bug detection capabilities of the 

verification methodology implemented. Bugs were intentionally introduced to the 

reference model to test the implemented self-checking mechanism. Due to the 

complexity of the design, the self-checking mechanism is only implemented for a 

limited number of characteristics of the RISC-V pipelined processor design listed 

below: 

 

• Pipeline Stalling 

• Pipeline Flushing 

• Implemented Instruction Functionality Correctness 

 

A self-checking mechanism is crucial for ensuring the functional correctness of the 

reference model. This mechanism is even more significant when the reference model 

is used for output comparing against a design. Ensuring the functional correctness of 

the reference model can increase the overall confidence in the results of the verification 

performed. 
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For the first testing performed, part of the reference model ALU source code 

is altered as shown in the figure below: 

 

 
Figure 4.1: Modification to Reference Unit ALU Source Code. 

 

 

 
Figure 4.2: Reference Model Instruction Functionality Bug Detection ModelSim 

Transcript Message. 

 

 

From the UVM message displayed on the transcript interface, the bug introduced has 

been detected. The expected outcome of the instruction addi x3, x0, 0x07d of 0000007d 

differs from the modified model outcome of 00000000. The discrepancy encountered 

allows the system to identify this error as a logical bug on the reference model.  

 

 For the subsequent testing, the hazard detection unit is modified such that the 

flush signal is never asserted as shown in the modified code below: 

 

 
Figure 4.3: Modification to Reference Unit Hazard Detection Unit Flush Assertion 

Source Code. 

 

 

 
Figure 4.4: Reference Model Flush Nonassertion Bug Detection ModelSim 

Transcript Message. 
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As observed from the figure shown, the self-checking mechanism detects the 

nonassertion of the flush signal. When the instruction jal x31, 0x000a8 is executed, the 

control unit is to assert flush control signal to flush out nulled information on the 

pipeline registers. However, it fails to do so due to the modification to the source code 

introduced. The nonassertion of the flush signal on the reference model is then 

identified as a logical bug on the reference model. 

 

 Similarly, the stall control signal of the hazard detection unit is modified to 

check for nonassertion of stall control signal on load-use case detection. The following 

figure shows the modified code: 

 

 
Figure 4.5: Modification to Reference Unit Hazard Detection Unit Stall Assertion 

Source Code. 

 

 

 
Figure 4.6: Reference Model Stall Nonassertion Bug Detection ModelSim Transcript 

Message. 

 

 

From the figure shown, the instruction sequence of lw x4, 0x101(x1) followed by addi 

x14, x4, 0x000 which depicted a load-use case of the register x4. The self-checking 

mechanism detects the nonassertion of the stall control signal and identifies the logical 

bug introduced on the reference model.  
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4.2  Design Bug Detection 

 

The design verification is performed by comparing various internal states of the design 

under test against the internal states of the reference model. For the testing of the bug 

detection capabilities of the design verification methodology implemented, bugs are 

intentionally introduced to the design under test. 

 

 In the first testing, a bug is introduced to the program counter source code. The 

increment of 4 is altered to an increment of 2 and tested as shown in the following 

code segment: 

 

 
Figure 4.7: Modification to Design Under Test Program Counter Source Code. 

 

 

 
Figure 4.8: Program Counter Mismatch Detection ModelSim Transcript Message. 

 

 

When the instruction addi x3, x0, 0x07d is fetched, the program counter increments by 

4. Due to the alteration to the source code, the program counter of the design under 

test only increments by 2. When the second instruction, add x2, x3, x0 is fetched, the 

instruction address information stored on the IF/ID pipeline register mismatches. The 

verification testbench identifies the discrepancy and provides relevant information to 

the user for debug. 

 

In the subsequent testing, the updating of the program counter with effective 

target address generated from immediate generation unit is altered as shown below: 
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Figure 4.9: Modification to Design Under Test Program Counter Target Address 

Branching Source Code. 

 

 

 
Figure 4.10: Program Counter Branch Target Address Mismatch Detection 

ModelSim Transcript Message.  

 

 

When an unconditional branch instruction (jal x31, 0x000a8) is executed, instruction 

is to be fetched from the target address. Due to the modification performed on the 

program counter source code, the design under test does not update the program 

counter with a new program counter value. The verification testbench identifies the 

discrepancy and provides relevant information to the user. 

 

 For a similar case, the updating of program counter with effective target 

address read from register by the instruction jump and link register (jalr) is modified 

as shown in the code segment below: 

 

 
Figure 4.11: Modification to Design Under Test Program Counter Jump Register 

Target Address Source Code. 
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Figure 4.12: Program Counter Jump Register Target Address Mismatch Detection 

ModelSim Transcript Message. 

 

 

When jump and link register instruction is executed, the program counter is to be 

updated with the target address read from a register. From the alteration performed to 

the program counter, the design under test provides an incorrect target address. The 

verification testbench identifies the discrepancy, and relevant information are provided 

to the user for debugging to be performed. 

 

For the memory technology utilized, each memory register holds a byte (8-bit) 

of information. For a 32-bit instruction code to be read from the instruction memory, 

aligned read access need to be performed to 4 instruction memory registers. The 

following test ignores the memory technology implemented and performs a singular 

read access to a memory location for instruction code fetches as shown in the code 

segment below: 

 

 
Figure 4.13: Modification to Design Under Test Instruction Memory Source Code. 

 

 

 
Figure 4.14: Instruction Code Mismatch Detection ModelSim Transcript Message. 
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As a result of the modification, only a byte of instruction code information is fetched. 

The verification testbench identifies the discrepancy in the instruction code fetched 

and provides the user relevant information for debugging to be performed. 

  

The following test alters the read register address information read from the 

instruction code: 

 

 
Figure 4.15: Modification to Design Under Test Register File Source Code. 

 

 

 
Figure 4.16: System Register Read Register Address Mismatch Detection ModelSim 

Transcript Message. 

 

 

The testbench identifies the discrepancy in the register address accessed by design 

under test and provides relevant information for debugging. 

 

 When the immediate generation unit source code is altered such that the 

immediate value generated is inconsistent with the instruction set architecture 

specification, the following results are obtained: 

 

 
Figure 4.17: Modification to Design Under Test Immediate Generation Unit Source 

Code. 
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Figure 4.18: Immediate Value Mismatch Detection ModelSim Transcript Message. 

 

 

The verification testbench identifies the incorrect immediate value generated 

(00000193) by design under test. 

 

For the following testing, the control unit is altered such that an incorrect 

control signal is provided for load instructions as shown in the code segment below: 

 

 
Figure 4.19: Modification to Design Under Test Control Unit Load Instruction 

Control Signal Source Code. 

 

 

 
Figure 4.20: Control Signal Mismatch Detection ModelSim Transcript Message. 

 

 

When a load instruction (lw x4, 0x101(x1)) is executed, the testbench detects the 

discrepancy in the control signal of the instruction. The ALU operation is also altered 

due to the alteration of the control signal (ALUSrc), resulting in a mismatched output 

as a side effect.  
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In the following alteration, the shift right arithmetic operation coded in the 

ALU is altered to have a similar effect as shift right logical operation: 

 

 
Figure 4.21: Modification to Design Under Test ALU Source Code. 

 

 

 
Figure 4.22: ALU Output Mismatch Detection ModelSim Transcript Message. 

 

 

When a shift right arithmetic instruction is executed, the design under test ALU 

produces an incorrect outcome. The testbench detects the discrepancy and provides 

information to the user for debugging to be performed.  

 

When the data forwarding functionality is altered as shown in the code segment 

below, the following results are obtained: 

 

 
Figure 4.23: Modification to Design Under Test Forwarding Unit Source Code. 
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Figure 4.24: Forwarded Operand Mismatch ModelSim Transcript Message. 

 

 

In the instruction sequence above, the data dependency on the register x3 warrants data 

forwarding. Data forwarding ensures the updated information is utilized as an operand 

for the subsequent instruction operation. Due to the alteration performed, the data 

forwarding on design under test is not executed, resulting in an incorrect operand value. 

The discrepancy is detected by the verification testbench and relevant information is 

provided to the user for debugging. 

 

The next testing modifies the hazard detection unit, ensuring the nonassertion 

of flush control signal.  

 

 
Figure 4.25: Modification to Design Under Test Control Unit Flush Control Source 

Code. 

 

 

 
Figure 4.26: Flush Nonassertion Mismatch ModelSim Transcript Message.  

 

 

When flush control signal is asserted, the pipeline registers are to flush the invalidated 

instructions by discarding the information of the instructions. From the results obtained, 
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due to the nonassertion of the flush signal by design under test hazard detection unit, 

the design under test IF/ID pipeline register still contains the invalidated instruction 

information. The verification testbench detects the discrepancy, and relevant 

information is provided to the user for debugging. 

 

Similarly, testing for the stall nonassertion detection can be performed by 

ensuring the nonassertion of the stall control signal on the design under test hazard 

detection unit as shown in the code segment below:   

 

 
Figure 4.27: Modification to Design Under Test Control Unit Stall Control Source 

Code. 

 

 

 
Figure 4.28: Stall Nonassertion Mismatch ModelSim Transcript Message. 

 

 

From the results obtained, the instruction sequence of lw x4, 0x101(x1) to addi x14, x4, 

0x000 showcases a load-use case with a data dependency on the register x4. As a result 

of a load-use case, stall control signal needs to be asserted to allow the pipeline flow 

to be partially halted. Due to the nonassertion of the stall control signal, the pipeline 

flow of the design under test is not halted is observed in the mismatching program 

counter. The testbench detects the bug introduced by the stall nonassertion and 

provides relevant information for debugging. 
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 For the data memory, similar memory technology has been utilized. Each data 

memory register holds a byte (8-bit) of information. Aligned read access needs to be 

performed for proper data memory access. In the following testing, the memory 

technology implemented is ignored, and read access is performed to only one location 

as shown in the code segment below: 

 

 
Figure 4.29: Modification to Design Under Test Data Memory Load Data Source 

Code. 

 

 

 
Figure 4.30: Load Data Mismatch ModelSim Transcript Message. 

 

 

From the result obtained, when a load word instruction is executed, 4 memory 

locations need to be accessed for the word (32-bit) information. As a result of disregard 

towards the memory technology implemented, the design under test reads only a byte 

of information. The discrepancy is detected by the testbench and shown to the user for 

debugging to be performed. 
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Lastly, the following alteration made to the data store functionality of the data 

memory unit disregards the amount of data to be stored: 

 

 
Figure 4.31: Modification to Design Under Test Data Memory Store Data Source 

Code. 

 

 

 
Figure 4.32: Store Data Mismatch ModelSim Transcript Message. 

 

 

The instruction store halfword is to store 16 bits of information onto the memory. Due 

to the modification performed, the design under test stores a word instead. The 

testbench detects the discrepancy, and relevant information is provided to the user for 

debugging. 

 

The verification testbench has been programmed to monitor most internal 

states of the design from the results provided. When a discrepancy is detected from the 

model outcome comparison simulation, the verification testbench provides 

information on the mismatching values, providing an automated logical error detection 

to the verification. This methodology effectively saves an immeasurable amount of 

time and provides the user with a more straightforward debugging process with the 

information provided. The challenges of this form of verification methodology would 

be the strict requirements of adherence to the specifications and the interfacing work 

required for proper synchronized operation of both reference model and design under 

test.  



99 

 

4.3  Directed Verification 

 

For directed verification, a specific verification scheme has been employed to perform 

testing on specific criteria listed below:  

 

• Functionalities of all implemented instructions 

• Data Forwarding 

• Pipeline Stalling 

• Pipeline Flushing 

• Misaligned Data Memory Access 

 

The following table shows the instructions of the directed test and their expected 

outcome: 

 

Table 4.1: Directed Verification Test Program. 

Instruction 
Address 

Instruction Code 
(Assembly Language) Comment 

   

0x00000000 addi x3, x0, 125 x3 = 125 (7D16) 
0x00000004 add x2, x3, x0 Forward data from ALU Output 

x2 = 125 (7D16) 
0x00000008 bne x2, x3, END Forward data from ALU Output 

Forward data from MEM/WB.Reg 
If x2 ≠ x3, jump to END 

0x0000000C addi x4, x0, 3971 x4 = -125(FFFF FF8316) <sign-extended> 
0x00000010 sub x5, x0, x2 x5 = -125(FFFF FF8316) 
0x00000014 bne x4, x5, END Forward data from ALU Output 

Forward data from MEM/WB.Reg 
If x4 ≠ x5, jump to END 

0x00000018 addi x6, x0, 1 x6 = 1 
0x0000001C srli x7, x3, 6 x7 = 1 
0x00000020 bne x6, x7, END Forward data from ALU Output 

Forward data from MEM/WB.Reg 
If x6 ≠ x7, jump to END 

0x00000024 srl x8, x6, x6 x8 = 0 
0x00000028 bne x8, x0, END Forward data from ALU Output 

If x8 ≠ 0, jump to END 
0x0000002C slli x9, x7, 1 x9 = 2 
0x00000030 sll x10, x7, x6 x10 = 2 
0x00000034 bne x9, x10, END Forward data from ALU Output 

Forward data from MEM/WB.Reg 
If x9 ≠ x10, jump to END 

0x00000038 slt x1, x6, x9 x1 = 1 
0x0000003C beq x1, x0, END Forward data from ALU Output 
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If x1 = x0, jump to END 
0x00000040 slt x1, x4, x3 x1 = 1 
0x00000044 beq x1, x0, END Forward data from ALU Output 

If x1 = x0, jump to END 
0x00000048 sltu x1, x4, x3 x1 = 0 
0x0000004C bne x1, x0, END Forward data from ALU Output 

If x1 ≠ x0, jump to END 
0x00000050 xor x2, x2, x3 x2 = 0 
0x00000054 bne x2, x0, END Forward data from ALU Output 

If x2 ≠ x0, jump to END 
0x00000058 sra x11, x4, x3 x11 = -1 (FFFF FFFF16) 
0x0000005C srai x12, x5, 8 x12 = -1 (FFFF FFFF16) 
0x00000060 bne x11, x12, END Forward data from ALU Output 

Forward data from MEM/WB.Reg 
If x11 ≠ x12, jump to END 

0x00000064 ori x13, x0, 3 x13 = 3 
0x00000068 or x14, x9, x6 x14 = 3 
0x0000006C bne x13, x14, END Forward data from ALU Output 

Forward data from MEM/WB.Reg 
If x13 ≠ x14, jump to END 

0x00000070 and x15, x13, x11 x15 = 3 
0x00000074 andi x16, x14, 15 x16 = 3 
0x00000078 bne x15, x16, END Forward data from ALU Output 

Forward data from MEM/WB.Reg 
If x15 ≠ x16, jump to END 

0x0000007C slti x17, x15, 4 x17 = 1 
0x00000080 sltiu x18, x5, 4095 x18 = 1 
0x00000084 bne x17, x18, END Forward data from ALU Output 

Forward data from MEM/WB.Reg 
If x17 ≠ x18, jump to END 

0x00000088 xori x1, x0, 1 x1 = 1 
0x0000008C beq x1, x0, END Forward data from ALU Output 

If x1 = x0, jump to END 
0x00000090 jal x31, STORE_ROUT x31 = 0000009416 

Jump to STORE_ROUT 
0x00000094 lui x30, 69905 x30 = 1111100016 

0x00000098 srli x2, x30, 28 x2 = 1 
0x0000009C blt x1, x2, END Forward data from ALU Output 

If x1 < x2, jump to END 
0x000000A0 bge x0, x1, END If x0 > x1, jump to END 
0x000000A4 bltu x1, x2, END If x1 < x2, jump to END 
0x000000A8 bgeu x0, x1, END If x0 > x1, jump to END 

STALL_CHECK: 
0x000000AC lw x4, 257(x1) x4 = FF96 FFFF16 
0x000000B0 addi x14, x4, 0 Stall 

x14 = FF96 FFFF16 
0x000000B4 lh x5, 256(x1) x5 = FFFF FFFF16 
0x000000B8 addi x15, x5, 0 Stall 

x15 = FFFF FFFF16 
0x000000BC lhu x6, 256(x1) x6 = 0000 FFFF16 

0x000000C0 addi x16, x6, 0 Stall 
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x16 = 0000 FFFF16 

0x000000C4 lb x7, 255(x1) x7 = FFFF FF9616 

0x000000C8 addi x17, x7, 0 Stall 
x17 = FFFF FF9616 

0x000000CC lbu x8, 255(x1) x8 = 0000 009616 

0x000000D0 addi x18, x8, 0 Stall 
x18 = 0000 009616 

0x000000D4 beq x20, x0, SKIP1 If x20 = x0, jump to SKIP1 
0x000000D8 lui x28, 912095 x28 = DEAD F00016 

0x000000DC lui x29, 912095 x29 = DEAD F00016 
0x000000E0 lui x30, 912095 X30 = DEAD F00016 

SKIP1 
0x000000E4 bne x1, x0, SKIP2 If x1 ≠ x0, jump to SKIP2 
0x000000E8 lui x28, 912095 x28 = DEAD F00016 
0x000000EC lui x29, 912095 x29 = DEAD F00016 
0x000000F0 lui x30, 912095 X30 = DEAD F00016 

SKIP2 
0x000000F4 bge x1, x14, SKIP3 If x1 > x14, jump to SKIP3 
0x000000F8 lui x28, 912095 x28 = DEAD F00016 
0x000000FC lui x29, 912095 x29 = DEAD F00016 
0x00000100 lui x30, 912095 X30 = DEAD F00016 

SKIP3 
0x00000104 blt x11, x1, SKIP4 If x11 < x1, jump to SKIP4 
0x00000108 lui x28, 912095 x28 = DEAD F00016 
0x0000010C lui x29, 912095 x29 = DEAD F00016 
0x00000110 lui x30, 912095 X30 = DEAD F00016 

SKIP4 
0x00000114 bgeu x5, x4, SKIP5 If x5 > x4, jump to SKIP5 
0x00000118 lui x28, 912095 x28 = DEAD F00016 
0x0000011C lui x29, 912095 x29 = DEAD F00016 
0x00000120 lui x30, 912095 X30 = DEAD F00016 

SKIP5 
0x00000124 bltu x17, x5, SKIP6 If x17 < x5, jump to SKIP6 
0x00000128 lui x28, 912095 x28 = DEAD F00016 
0x0000012C lui x29, 912095 x29 = DEAD F00016 
0x00000130 lui x30, 912095 X30 = DEAD F00016 

SKIP6 
0x00000134 jal x31, END x31 = 000000D816 

Jump to END 

STORE_ROUT: 
0x00000138 addi x30, x0, 3990 x30 = 3990(FFFF FF9616) 
0x0000013C addi x1, x0, 1 x1 = 1 
0x00000140 addi x2, x1, 4 x2 = 5 
0x00000144 addi x3, x2, 4 x3 = 9 
0x00000148 sw x30, 255(x1) Memory[0000 010016] = FF FF FF 9616 
0x0000014C sh x30, 255(x2) Memory[0000 010416] = FF 9616 
0x00000150 sb x30, 255(x3) Memory[0000 010816] = 9616 
0x00000154 lw x4, 257(x1) x4 = FF96 FFFF16 
0x00000158 lh x5, 256(x1) x5 = FFFF FFFF16 
0x0000015C lhu x6, 256(x1) x6 = 0000 FFFF16 
0x00000160 lb x7, 255(x1) x7 = FFFF FF9616 
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0x00000164 lbu x8, 255(x1) x8 = 0000 009616 
0x00000168 jalr x0, 0(x31) Return to 0000 009416 

END: 
0x0000016C nop  No Operation 
0x00000170 nop No Operation 
0x00000174 nop No Operation 
0x00000178 nop No Operation 
0x0000017C end End of Test 

 
Test Program Instruction Highlight Indication 

Pass Signature Value Instructions 
Fail Signature Value Instructions 
Branch/Jump Executed 
Return Address 

 

 

For verification of the test program results, specific signature values can be 

checked from the general-purpose registers and data memory. The simulated results 

shown in the figure below tallies with the expected outcome:  

 

 
Figure 4.33: General-Purpose Register Signature Values. 

 

 

 
Figure 4.34 Memory Signature Values. 

 

 

For a detailed approach towards test verification, the primitive methodology 

of waveform debugging is performed as shown in the following figures:  
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Figure 4.35: Directed Verification Waveform Simulation Results Part 1.  

Both register x2 and x3 are data forwarded from EX/MEM 

pipeline register and MEM/WB pipeline register for the 

third instruction (bne x2, x3, END), providing the updated 

data to the ALU unit. 

When the second instruction (add x2, x3, x0) is stored on the ID/EX pipeline register, the 

correct forwarding mechanism is executed, forwarding the ALU output from EX/MEM 

pipeline register to the ALU unit. The forwarding mechanism is triggered by the data 

dependence of the register x3 on the first instruction (addi x3, x0, 125). 
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Figure 4.36: Directed Verification Waveform Simulation Results Part 2. 

The verification of the functionalities of the 

instructions can be performed by observing the 

ALU output and the control signals (EX_ctl_op) on 

the EX/MEM pipeline register. 

Zero-width glitches can be observed on the flush control signal. These zero-width glitch 

signals are caused by static zero hazards. However, as flush signals are only effective if the 

assertions are held HIGH for the full clock cycle (pipeline registers are only updated on clock 

edges), these zero-width glitches will not cause issue to the functioning of the pipeline. 
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Figure 4.37: Directed Verification Waveform Simulation Results Part 3.  

When the jump instruction (jal x31, STORE_ROUT) is executed, flush signal is asserted. The assertion of flush 

signal clears the instruction code stored on the IF/ID and ID/EX pipeline registers. The register x31 is also updated 

with the return address when the instruction progresses towards writeback stage (WB). The instruction address 

of the jump instruction stored on the MEM/WB pipeline register is added by 4 before updating the register x31. 
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Figure 4.38: Directed Verification Waveform Simulation Results Part 4. 

For store instructions, the data stored onto the data memory can be observed on 

the MEM/WB pipeline register. The store instructions can be checked on the 

EX/MEM pipeline register (one cycle earlier). 

For load instructions, the data read from the data memory can be observed on 

the MEM/WB pipeline register. Similarly, the load instructions can be checked 

on the EX/MEM pipeline register (one cycle earlier). 
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Figure 4.39: Directed Verification Waveform Simulation Results Part 5. 

Stall control signal is set to HIGH when load-use case is detected. The destination 

register x4 of the load instruction (lw x4, 257(x1)) at 0x000000AC is to be used by the 

following instruction (addi x14, x4, 0) at 0x000000B0 which resulted in a load-use case. 

The load-use case is resolved 

when the correct data (from data 

memory) is forwarded. 
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Figure 4.40: Directed Verification Waveform Simulation Results Part 6. 
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Figure 4.41: Directed Verification Waveform Simulation Results Part 7.

Test successfully ends when unknown 

instructions (32’bx) are fetched from the 

instruction memory. 
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Waveform debugging provides a much thorough analysis and debugging 

process. In cases where no logical bugs are detected on the outcome, such detailed 

analysis may be unnecessary. Test log provides a more accessible analysis towards 

specific internal states of the design, allowing test results analysis and verification to 

be performed without performing waveform debugging.  

 

 From the directed verification and test results analysis performed, the RISC-V 

pipeline processor is functioning in accordance to the specifications and therefore is 

accepted.  

 

 

 

4.4  Constrained-Random Verification 

 

The following table shows the test cases with specified instruction types utilized for 

constrained-random verification of the RISC-V processor design: 

 
Table 4.2: Constrained-Random Verification Test Case Specifications. 

Test Seeds R-type I-type I-type 
Load S-type SB-

type U-type UJ-type 
     

3301 to 3320  /      
3401 to 3420 / /      
3501 to 3520  / / /    
3601 to 3620 / / / /    
3701 to 3720 / / / / / /  
3801 to 3820 / /   / /  
3901 to 3920       / 
2506 to 3006 
0107 to 3107 
0108 to 3108 
0109 to 3009 
0110 to 3110 
0111 to 3011 
0112 to 3112 
0101 to 3101 
0102 to 2802 
0103 to 3103 
0104 to 3004 
0105 to 1005 

/ / / / / / / 
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The test cases with specific instruction types are generated through the 

following instructions: 

 

 
 

Test cases are generated and stored onto the test repository by listing the test seed 

values on the <seed file> text file and specifying the instruction type to be generated 

for the test seeds on the field <instruction type>. 

 

The generated test seeds are then compiled and listed on “SEED.txt”, and the 

following command is executed: 

 

 
 

Inclusion of the argument “-coverage” allows functional coverage and code coverage 

analysis to be performed on the simulation executed. Inclusion of the specification 

“+BATCH_TEST” allows all test seeds generated and listed in “SEED.txt” to be 

executed in a batch test. The inclusion of all test seeds allows a comprehensive 

coverage analysis on the constrained-random verification performed. The simulation 

is then executed by selecting “Simulate > Run > Run All”. Upon completion of the 

simulation, the following message is generated: 

 

 
Figure 4.42: Simulation Completion Message on ModelSim Transcript. 

 

 

vsim -gui -onfinish stop work.testbench +TESTLOG +MEMLOG +FORCE_GEN 

+INSTR_TYPE=<instruction type> +BATCH_SEED=<seed file> 

vsim -gui -onfinish stop work.testbench -coverage +TESTLOG +MEMLOG +BATCH_TEST 
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The following functional coverage analysis provides insight on the functionalities that 

have been tested using the constrained-random verification: 

 

 
Figure 4.43: Constrained-Random Verification Functional Coverage Report. 
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The following coverage report provides code coverage analysis which shows source 

codes on the model designed that has yet to be tested: 
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Figure 4.44: Coverage Report for RISC-V Constrained-Random Verification. 
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A total of 461 test seeds have been tested in constrained-random verification. All the 

specified cover points from the functional coverage report have been covered and 

tested.  

 

 From the code coverage analysis, some branches are not taken in several blocks 

of the reference model designed: ALU control unit block, memory unit block, and the 

top module. Upon analysis, these unexercised branches are the default statement for 

case statements. As the case statements for the reference model design are all assigned 

a specific value, it is expected for the default statement to be untaken. Aside from that, 

there is a miss from the focused expression condition coverage from the hazard unit 

block. Upon inspection, this condition miss is due to the condition of ensuring the write 

register is not register x0 as shown in the following figure: 

 

 
Figure 4.45: Focused Expression Condition Coverage Miss Analysis. 

 

 

As writes to register x0 has been disabled in the test generator, this condition is not 

checked. However, as RISC-V instruction set architecture specifies writes to register 

x0 are inhibited, the coverage miss can be dismissed as it serves as a precautionary 

condition. With the justifications provided, it can be stated that the reference model 

designed has been adequately tested. 

 

Even though constrained-random verification contributes greater efficiency 

towards achieving full functional coverage, the vastly randomized instruction flow 

may miss out on corner cases that require specific instruction sequences. Developing 

a better instruction sequence generation algorithm will be needed to test such corner 

cases with specific instruction sequences. Alternatively, these corner cases can be 

manually written and tested.  
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Chapter 5 

 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1  Conclusion 

 

Functional verification of a pipelined RISC-V processor has been successfully 

performed using Universal Verification Methodology (UVM). UVM is a testbench 

architecture that emphasizes a standardized and reusable approach towards a 

verification environment. The verification subject of this project is a RISC-V processor 

with a 5-stage pipeline implementation, with data forwarding, pipeline stalling, and 

pipeline flushing implemented. 

 

The reference model, design under test, and testbench environment have been 

modelled using SystemVerilog and are simulated using ModelSim. Directed 

verification and constrained-random verification are the two main forms of 

verification performed. Both directed and constrained-random verification have been 

integrated into the UVM verification environment translation and specification tasks 

in the UVM sequence item class. Through the UVM configuration database, the user 

can select the intended verification form through the command line argument 

“+DIRECTED_TEST”. Directed verification provided a much more well-planned test 

case scenario. In contrast, constrained-random verification proves to be a much more 

efficient approach towards achieving full functional coverage. The UVM verification 

environment has also introduced regression testing capability through programmed 

capabilities to store test cases and perform multiple test case testing in one simulation 

via command-line argument “+BATCH_TEST”. These introduced capabilities 
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assisted with the verification process through shorter simulation time, consistent test 

case reproduction, and cumulative coverage collection for multiple test cases. 

 

For the functional verification of the reference model, a self-checking 

mechanism has been introduced in the UVM scoreboard component. The self-

checking mechanism performs functional verification for major design functionalities, 

including pipeline stalling, pipeline flushing, and implemented instruction 

functionality. Intentional bugs have also been introduced in the design under test and 

reference model to test out the bug detection capability of the verification environment. 

The simulation results for self-checking mechanism testing and bug detection 

capability testing have been compiled and explained.  For directed verification, a 

sample program has been written in assembly language. The written program is 

translated to machine language and simulated. The simulation results are compiled and 

analysed for any logical errors. For constrained-random verification, various test seeds 

with varying specifications have been generated and tested. The compiled results can 

be found in Chapter 4. 

 

From the results compiled, code coverage is at 98.38%, whereas functional 

coverage is at 100%. The unexercised code is due to default cases for several case 

statements, whereby all expected case statements have been appropriately assigned. 

The project is said to have been completed with sufficient functional verification 

performed as indicated by the full functional coverage and high code coverage. 

 

 

 

5.2  Recommendations 

 

For future enhancement of the project, several recommendations can be made. The 

utilized simulation verification performs lock-step comparison between the reference 

model and design under test. It is suggested that a reference model from Imperas 

can be used for the lock-step comparison to further enhance the confidence in the 

verification performed due to the maturity of the Imperas RISC-V reference model. 

Usage of a high confidence reference model would remove the requirement of a self-

checking mechanism, allowing more effort to be placed on other verification 
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components. The utilization of a reference model would also offer a learning 

opportunity for verification intellectual property (VIP) interfacing and usage. 

 

 Aside from the utilization of a higher confidence reference model, another 

recommendation that can be made is the fragmentation of the verification process. 

The verification methodology focuses on chip level verification whereby verification 

is performed on the RISC-V processor as a whole. Fragmenting the verification 

process to several levels such as unit level verification, block level verification, and 

chip level verification can ease the overall verification process, especially when the 

verification subject is a complex system. Verification at lower levels can place more 

emphasis on functionality correctness of the unit whereas verification at higher level 

can place more emphasis on overall functionality correctness and interconnection of 

the lower level components.  

 

 Another future enhancement of the project would be to complexify the 

functional coverage criteria. In this project, the functional coverage criteria include 

pipeline stalling, pipeline flushing, and the instructions executed. The lack of complex 

functional coverage cover point or cross cover point makes it easy to achieve full 

functional coverage. A well-planned functional coverage would allow more complex 

test case scenarios to be included in the test plan, leading to a better verification. A 

complexified functional coverage criteria would also push forward the necessity for a 

complexified test generator algorithm. The test generator mainly used for constrained-

random verification provides randomized test cases with valid random instructions. A 

recommendation that can be made is to include a better algorithm for instruction 

generation that results in a sensible instruction flow. 

 

 Lastly, formal property verification can also be included for specific 

properties of the RISC-V microprocessor architecture, such as pipeline stalling and 

pipeline flushing. Compared to the unconventional approach taken (self-checking 

mechanism) for assertion checks of pipeline stalls and pipeline flushes, standardized 

SystemVerilog assertions provide a much more comprehensible approach. The 

inclusion of formal property verification would also provide learning and practical 

opportunity for SystemVerilog assertions (SVA), a widely used verification 

methodology in the industry. 
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APPENDIX B: Source Code of Reference Model – Program Counter  
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APPENDIX C: Source Code of Reference Model – Instruction Memory  
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APPENDIX D: Source Code of Reference Model – IF/ID Pipeline Register 
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APPENDIX E: Source Code of Reference Model – Register File 
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APPENDIX F: Source Code of Reference Model – Control Unit 
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APPENDIX G: Source Code of Reference Model – Immediate Generate Unit 
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APPENDIX H: Source Code of Reference Model – ID/EX Pipeline Register 
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APPENDIX I: Source Code of Reference Model – ALU Control Unit 
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APPENDIX J: Source Code of Reference Model – ALU 
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APPENDIX K: Source Code of Reference Model – Immediate Address Unit 
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APPENDIX L: Source Code of Reference Model – EX/MEM Pipeline Register 
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APPENDIX M: Source Code of Reference Model – Data Memory Unit 
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APPENDIX N: Source Code of Reference Model – MEM/WB Pipeline Register 
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APPENDIX O: Source Code of Reference Model – Forwarding Unit 
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APPENDIX P: Source Code of Reference Model – Hazard Detection Unit 
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APPENDIX Q: Source Code of Parameter List 
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APPENDIX R: Source Code of Verification Environment – UVM Testbench 
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APPENDIX S: Source Code of Verification Environment – UVM Test 
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APPENDIX T: Source Code of Verification Environment – Interface 
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APPENDIX U: Source Code of Verification Environment – UVM Environment 
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APPENDIX V: Source Code of Verification Environment – UVM Agent 
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APPENDIX W: Source Code of Verification Environment – UVM Driver 

 

 

 

 
  

 

 



152 

 

APPENDIX X: Source Code of Verification Environment – UVM Sequencer 
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APPENDIX Y: Source Code of Verification Environment – UVM Sequence Item 
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APPENDIX Z: Source Code of Verification Environment – UVM Monitor 
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APPENDIX AA: Source Code of Verification Environment – UVM Coverage 
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APPENDIX BB: Source Code of Verification Environment – UVM Scoreboard 
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APPENDIX CC: Instruction Set Manual 

 

 

 

ADD Addition 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0000000 rs2 rs1 funct3 

000 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: add rd, rs1, rs2 

 

Description: Performs addition on the contents stored on source 

register rs1 and rs2 and stores the result onto destination 

register rd. 

 

 

 

 

 

SUB Subtraction 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0100000 rs2 rs1 funct3 

000 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: sub rd, rs1, rs2 

 

Description: Performs subtraction on the contents stored on source 

register rs1 and rs2 and stores the result onto destination 

register rd. 
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SLL Shift Left Logical 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0000000 rs2 rs1 funct3 

001 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: sll rd, rs1, rs2 

 

Description: Performs logical left shift on the register content stored 

on source register rs1 by a shift amount specified by the 

lower 5 bits of register rs2 and stores the result onto 

destination register rd. The shifted bits are replaced with 

0s. 

 

 

 

SLT Set Less Than 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0000000 rs2 rs1 funct3 

010 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: slt rd, rs1, rs2 

 

Description: Performs signed comparison between contents of source 

registers rs1 and rs2 and sets destination register rd to 1 

if rs1 is lesser than rs2, or 0 otherwise. 
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SLTU Set Less Than Unsigned 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0000000 rs2 rs1 funct3 

011 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: sltu rd, rs1, rs2 

 

Description: Performs unsigned comparison between contents of 

source registers rs1 and rs2 and sets destination register 

rd to 1 if rs1 is lesser than rs2, or 0 otherwise. 

 

 

 

 

 

XOR Bitwise Logical Exclusive OR 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0000000 rs2 rs1 funct3 

100 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: xor rd, rs1, rs2 

 

Description: Performs bitwise logical exclusive OR on the contents 

of source register rs1 and rs2 and writes the result to the 

destination register rd. 
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SRL Shift Right Logical 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0000000 rs2 rs1 funct3 

101 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: srl rd, rs1, rs2 

 

Description: Performs logical right shift on the register content stored 

on source register rs1 by a shift amount specified by the 

lower 5 bits of register rs2 and stores the result onto 

destination register rd. The shifted bits are replaced with 

0s. 

 

 

 

SRA Shift Right Arithmetic 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0100000 rs2 rs1 funct3 

101 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: sra rd, rs1, rs2 

 

Description: Performs arithmetic right shift on the register content 

stored on source register rs1 by a shift amount specified 

by the lower 5 bits of register rs2 and stores the result 

onto destination register rd. The shifted bits are replaced 

with the sign bit. 
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OR Bitwise Logical OR 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0000000 rs2 rs1 funct3 

110 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: or rd, rs1, rs2 

 

Description: Performs bitwise logical OR on the contents of source 

register rs1 and rs2 and writes the result to the 

destination register rd. 

 

 

 

 

 

AND Bitwise Logical AND 
  
31 25 24 20 19 15 14 12 11 7 6 0 

funct7 
0000000 rs2 rs1 funct3 

111 rd opcode 
0110011 

7 5 5 3 5 7 
 

Assembly Code Format: and rd, rs1, rs2 

 

Description: Performs bitwise logical AND on the contents of source 

register rs1 and rs2 and writes the result to the 

destination register rd. 
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LB Load Byte 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
000 rd opcode 

0000011 
12 5 3 5 7 

 

Assembly Code Format: lb rd, offset(rs1) 

 

Description: Loads an 8-bit value from memory into destination 

register rd. The 8-bit value loaded is sign-extended to 

32-bits before storing into rd.  

 

 

 

 

 

LH Load Halfword 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
001 rd opcode 

0000011 
12 5 3 5 7 

 

Assembly Code Format: lh rd, offset(rs1) 

 

Description: Loads a 16-bit value from memory into destination 

register rd. The 16-bit value loaded is sign-extended to 

32-bits before storing into rd.  
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LW Load Word 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
010 rd opcode 

0000011 
12 5 3 5 7 

 

Assembly Code Format: lw rd, offset(rs1) 

 

Description: Loads a 32-bit value from memory into destination 

register rd.  

 

 

 

 

 

 

LBU Load Byte Unsigned 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
100 rd opcode 

0000011 
12 5 3 5 7 

 

Assembly Code Format: lbu rd, offset(rs1) 

 

Description: Loads an 8-bit value from memory into destination 

register rd. The 8-bit value loaded is zero-extended to 

32-bits before storing into rd.  
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LHU Load Halfword Unsigned 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
101 rd opcode 

0000011 
12 5 3 5 7 

 

Assembly Code Format: lhu rd, offset(rs1) 

 

Description: Loads a 16-bit value from memory into destination 

register rd. The 16-bit value loaded is zero-extended to 

32-bits before storing into rd.  

 

 

 

 

 

ADDI Add Immediate 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
000 rd opcode 

0010011 
12 5 3 5 7 

 

Assembly Code Format: addi rd, rs1, immediate 

 

Description: Performs addition on the content stored on source 

register rs1 and a sign-extended 12-bit immediate and 

stores the result onto destination register rd. 
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SLLI  
  
31 26 25 20 19 15 14 12 11 7 6 0 

funct6 
000000 shamt rs1 funct3 

001 rd opcode 
0110011 

6 6 5 3 5 7 
 

Assembly Code Format: slli rd, rs1, shamt 

 

Description: Performs logical left shift on the register content stored 

on source register rs1 by a shift amount specified by 

shamt and stores the result onto destination register rd. 

The shifted bits are replaced with 0s. 

 

 

 

 

SLTI Set Less Than Immediate  
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
010 rd opcode 

0010011 
12 5 3 5 7 

 

Assembly Code Format: slti rd, rs1, immediate 

 

Description: Performs signed comparison between contents of source 

registers rs1 and a sign-extended 12-bit immediate and 

sets destination register rd to 1 if rs1 is lesser than the 

sign-extended immediate value, or 0 otherwise. 
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SLTIU Set Less Than Immediate Unsigned 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
011 rd opcode 

0010011 
12 5 3 5 7 

 

Assembly Code Format: sltiu rd, rs1, immediate 

 

Description: Performs unsigned comparison between contents of 

source registers rs1 and a sign-extended 12-bit 

immediate and sets destination register rd to 1 if rs1 is 

lesser than the sign-extended immediate value, or 0 

otherwise. 

 

 

 

XORI Bitwise Logical Exclusive OR Immediate 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
100 rd opcode 

0010011 
12 5 3 5 7 

 

Assembly Code Format: xori rd, rs1, immediate 

 

Description: Performs bitwise logical exclusive or on the content of 

source register rs1 and a sign-extended 12-bit 

immediate and writes the result to the destination 

register rd. 
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SRLI Shift Right Logical Immediate 
  
31 26 25 20 19 15 14 12 11 7 6 0 

funct6 
000000 shamt rs1 funct3 

101 rd opcode 
0110011 

6 6 5 3 5 7 
 

Assembly Code Format: srli rd, rs1, shamt 

 

Description: Performs logical right shift on the register content stored 

on source register rs1 by a shift amount specified by 

shamt and stores the result onto destination register rd. 

The shifted bits are replaced with 0s. 

 

 

 

 

SRAI Shift Right Arithmetic Immediate 
  
31 26 25 20 19 15 14 12 11 7 6 0 

funct6 
010000 shamt rs1 funct3 

101 rd opcode 
0110011 

6 6 5 3 5 7 
 

Assembly Code Format: srai rd, rs1, shamt 

 

Description: Performs arithmetic right shift on the register content 

stored on source register rs1 by a shift amount specified 

by shamt and stores the result onto destination register 

rd. The shifted bits are replaced with sign bit. 
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ORI Bitwise Logical OR Immediate 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
110 rd opcode 

0010011 
12 5 3 5 7 

 

Assembly Code Format: ori rd, rs1, immediate 

 

Description: Performs bitwise logical or on the content of source 

register rs1 and a sign-extended 12-bit immediate and 

writes the result to the destination register rd. 

 

 

 

 

 

ANDI Bitwise Logical AND Immediate 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
111 rd opcode 

0010011 
12 5 3 5 7 

 

Assembly Code Format: andi rd, rs1, immediate 

 

Description: Performs bitwise logical and on the content of source 

register rs1 and a sign-extended 12-bit immediate and 

writes the result to the destination register rd. 
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JALR Jump and Link Register 
  
31 20 19 15 14 12 11 7 6 0 

immediate rs1 funct3 
000 rd opcode 

1100111 
12 5 3 5 7 

 

Assembly Code Format: jalr rd, offset(rs1) 

 

Description: Performs indirect jump to a target address. The target 

address is obtained by summing the offset to the content 

of source register rs1 and setting the two least 

significant bits of the result to zero. The address of the 

subsequent instruction (program counter + 4) is stored 

onto destination register rd.  

 

 

SB Store Byte 
  
31 25 24 20 19 15 14 12 11 7 6 0 

immediate 
[11:5] rs2 rs1 funct3 

000 
immediate 

[4:0] 
opcode 

0110011 
7 5 5 3 5 7 

 

Assembly Code Format: sb rs2, offset(rs1) 

 

Description: Stores 8-bit value from the low bits of the source register 

rs2 onto target memory address. Target memory address 

is obtained by summing the offset to the content of 

source register rs1.  
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SH Store Halfword 
  
31 25 24 20 19 15 14 12 11 7 6 0 

immediate 
[11:5] rs2 rs1 funct3 

001 
immediate 

[4:0] 
opcode 

0110011 
7 5 5 3 5 7 

 

Assembly Code Format: sh rs2, offset(rs1) 

 

Description: Stores 16-bit value from the low bits of the source 

register rs2 onto target memory address. Target memory 

address is obtained by summing the offset to the content 

of source register rs1.  

 

 

 

 

SW Store Word 
  
31 25 24 20 19 15 14 12 11 7 6 0 

immediate 
[11:5] rs2 rs1 funct3 

010 
immediate 

[4:0] 
opcode 

0110011 
7 5 5 3 5 7 

 

Assembly Code Format: sw rs2, offset(rs1) 

 

Description: Stores 32-bit value from the source register rs2 onto 

target memory address. Target memory address is 

obtained by summing the offset to the content of source 

register rs1.  
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BEQ Branch if Equal 
  

31 30 25 24 20 19 15 14 12 11 8 7 6 0 
immediate 

[12] 
immediate 

[10:5] rs2 rs1 funct3 
000 

immediate 
[4:1] 

immediate 
[11] 

opcode 
1100011 

1 6 5 5 3 4 1 7 
 

Assembly Code Format: beq rs1, rs2, immediate 

 

Description: Compares the contents of source register rs1 and rs2. If 

the contents of source registers are equal, branch is 

executed to a target address formed by adding the offset 

to the program counter.  

 

 

 

 

BNE Branch if Not Equal 
  

31 30 25 24 20 19 15 14 12 11 8 7 6 0 
immediate 

[12] 
immediate 

[10:5] rs2 rs1 funct3 
001 

immediate 
[4:1] 

immediate 
[11] 

opcode 
1100011 

1 6 5 5 3 4 1 7 
 

Assembly Code Format: bne rs1, rs2, immediate 

 

Description: Compares the contents of source register rs1 and rs2. If 

the contents of source registers are not equal, branch is 

executed to a target address formed by adding the offset 

to the program counter.  
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BLT Branch if Less Than 
  

31 30 25 24 20 19 15 14 12 11 8 7 6 0 
immediate 

[12] 
immediate 

[10:5] rs2 rs1 funct3 
100 

immediate 
[4:1] 

immediate 
[11] 

opcode 
1100011 

1 6 5 5 3 4 1 7 
 

Assembly Code Format: blt rs1, rs2, immediate 

 

Description: Compares the contents of source register rs1 and rs2. If 

the content rs1 is lesser than rs2, branch is executed to 

a target address formed by adding the offset to the 

program counter.  

 

 

 

 

BGE Branch if Greater or Equal 
  

31 30 25 24 20 19 15 14 12 11 8 7 6 0 
immediate 

[12] 
immediate 

[10:5] rs2 rs1 funct3 
101 

immediate 
[4:1] 

immediate 
[11] 

opcode 
1100011 

1 6 5 5 3 4 1 7 
 

Assembly Code Format: bge rs1, rs2, immediate 

 

Description: Compares the contents of source register rs1 and rs2. If 

the content rs1 is greater than or equal to rs2, branch is 

executed to a target address formed by adding the offset 

to the program counter.  
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BLTU Branch if Less Than Unsigned 
  

31 30 25 24 20 19 15 14 12 11 8 7 6 0 
immediate 

[12] 
immediate 

[10:5] rs2 rs1 funct3 
110 

immediate 
[4:1] 

immediate 
[11] 

opcode 
1100011 

1 6 5 5 3 4 1 7 
 

 

Assembly Code Format: bltu rs1, rs2, immediate 

 

Description: Compares the unsigned contents of source register rs1 

and rs2. If the content rs1 is lesser than rs2, branch is 

executed to a target address formed by adding the offset 

to the program counter.  

 

 

 

BGEU Branch if Greater or Equal Unsigned 
  

31 30 25 24 20 19 15 14 12 11 8 7 6 0 
immediate 

[12] 
immediate 

[10:5] rs2 rs1 funct3 
111 

immediate 
[4:1] 

immediate 
[11] 

opcode 
1100011 

1 6 5 5 3 4 1 7 
 

Assembly Code Format: bgeu rs1, rs2, immediate 

 

Description: Compares the unsigned contents of source register rs1 

and rs2. If the content rs1 is greater than or equal to rs2, 

branch is executed to a target address formed by adding 

the offset to the program counter.  
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LUI Load Upper Immediate 
  
31 12 11 7 6 0 

immediate rd opcode 
0110111 

20 5 7 
 

Assembly Code Format: lui rd, immediate 

 

Description: Places the 20-bit immediate in the high bits of 

destination register rd and fill the lower 12-bit with 0s.  

 

 

 

 

 

 

JAL Jump and Link 
  

31 30 21 20 19  12 11 7 6 0 
immediate 

[20] 
immediate 

[10:1] 
immediate 

[11] 
immediate  

[19:12] rd opcode 
1101111 

1 10 1 8 5 7 
 

Assembly Code Format: jal rd, immediate 

 

Description: Performs indirect jump to a target address obtained by 

summing the shifted offset to the program counter. The 

address of the subsequent instruction (program counter 

+ 4) is stored onto destination register rd. 
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