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VERIFICATION OF RISC-V DESIGN WITH UNIVERSAL VERIFICATION
METHODLOGY (UVM)

ABSTRACT

Throughout the design life cycle of a processor, verification plays a crucial part in
affirming the functionalities of the features implemented based on the computer
architecture used. Functional verification increases the level of confidence in
conformance of the processor design to its specification. In the case of a processor with
advanced microarchitectural features implemented, a simulation-based approach is
taken for its functional verification. More specifically, Universal Verification
Methodology (UVM) is utilized for the verification methodology of the RISC-V
processor implementation in this report. UVM provides a set of guidelines for the
verification testbenches to be generated. With a well-defined testbench structure,
UVM allows for a standardized approach towards verification works and verifications
of systems to be performed consistently and uniformly, greatly improving verification
quality and reusability of testbenches. For the verification approach, constrained-
random verification and direct verification approaches will be taken to verify the
functionality of the RISC-V processor. In the verification methodology, results
validation has been utilized whereby the output data of the simulation model is
compared with comparable output data from an existing system. For verification
purpose, a reference model is developed and will be utilized for the results validation
methodology mentioned. On verification simulations, discrepancies between the
output data from the simulation models and the reference model are identified as
design bugs in the system and debugs will be performed to fix the design bugs in the
system. Through numerous test runs on the RISC-V processor implementation, the
bugs on the RTL design of the processor designed are reduced to a minimum and the

processor can function as specified by the computer architecture.
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Chapter 1

INTRODUCTION

1.1 Background

Integrated circuits (ICs) are microchips with miniaturized electronic components such
as transistors, resistors, and diodes fabricated into a single unit (Saint, 2020). These
microchips can perform simple functions such as amplifying voltage to complex
functions such as operating as a microprocessor for a complex electrical system. In
today’s life, nearly all electronic device uses ICs for its high reliability and efficiency
along with its small size. The compact design of an IC allowed our modern electronic

gadgets to be much smaller and capable of performing in one-millionth of a second.

In this era of rapid advancement whereby ICs continue to shrink in size and at
the same time improving in processing power and speed, Moore’s law, a prediction
named after the cofounder of Intel, Gordon E. Moore is now truer than ever. According
to Moore’s Law, the number of transistors be fitted onto a microchip increases by twice
of its amount every two years whereas the cost of computers is cut by half. With this
rapid rate of growth in a microchip’s speed and capability, the complexity and
difficulty of IC design becomes even more prevalent than before. Back in 2013, the
executive vice president and general manager of Intel’s Technology Manufacturing
Group, William Holt states that as the technology becomes smaller and smaller, the
effort taken to design them becomes increasingly difficult and more effort needs to be
taken to optimize the technology (Shah, 2013). The effort required may include

introduction of new tools and innovations to compensate for this uprising challenge.



1.1.1  IC Design Flow

IC design is a very complex process that involves multiple stages. The following

flowchart shows the typical design flow for an integrated circuit:

Chip Specification

Architectural Design

Functional Design

Circuit Design

h

Physical Design

k.

Fabrication

¥
Packaging and Testing

Figure 1.1: Integrated Circuit Design Flow.

In a typical design flow for an integrated circuit, the design flow begins with chip
specification, whereby the features, microarchitecture, functionalities, and
specifications of the chip are defined. These system specifications are often provided
by the customers and are known as the high-level representation of the system. These
specifications help the design team understand the specific requirements for the chip

design (Vij, 2013).

The architectural design further defines the IC's required functionality and
partitions them into various functional blocks. The relationship between each

functional block for hardware allocation and scheduling is defined. Interface and



signals between each functional block are also defined, and a time budget is assigned

to each functional block (University of Texas at Dallas, 2011).

Functional design codes the functional blocks specified in the architectural
specification into register transfer level (RTL) descriptions, including the specification
of the interconnections between each block and the exact behaviour of the respective
functional blocks. The design team works alongside the verification team and performs
behavioural simulations to verify the functional and logical behaviour of the circuit.
Through the verification performed, various test vectors are generated and utilized to

verify the RTL's functional behavior (Chauhan, 2020).

In circuit design, the high-level functional descriptions of circuit elements are
further defined and decomposed into low-level circuit elements through the process
known as logic synthesis. RTL code elements are converted into pre-existing building
blocks such as memory units and multiplexing units with the help of synthesis tools.
Upon successful logic synthesis, a gate-level netlist that contains information on the
gates and the connections between each gate is produced (Synopsys, n.d). The gate-
level netlist can also be known as the gate-level representation of the architectural
specification of the system, providing insight into the physical implementation of the

system.

Physical design converts the gate-level netlist into a manufacturable physical
layout through several processes of optimization, which include floorplanning,
partitioning, placement, clock tree synthesis, and routing. Floorplanning places
relevant structures at particular locations with consideration of various constraints,
requirements, and restrictions specified (Semiconductor Engineering, n.d.). Through
effective and efficient partitioning, the complex design is divided into small blocks
through a divide and conquer strategy, resulting in a system with better performance
as well as lowering the production cost (Chen and Cheng, 2000). Placement determines
the specific locations of the circuit modules in the netlist, optimizing the performance
as well as timing delays introduced by interconnecting wires (Lavagno, Scheffer and
Martin, eds., 2018). Clock tree synthesis involves the insertion of buffers to ensure an

even distribution of clock signals to the sequential elements in the design to minimize



the clock skew and latency and ensure the proper timing closure is attained (Monteiro
and Van Leuken, eds., 2010.). Lastly, based on logical connections between each cell,
routing is performed on the design to create physical connections through metal
interconnects and through the use of various routing algorithms, ensuring the best

timing performance and adhering to the design rule.

Upon completion of the physical design, the physical layout of the system is
obtained and physical verification is performed to validate the design functional
behaviour. When the design layout is verified, the chip is then ready for fabrication.
The layout data is converted into layers of masks which are then through the processes
of deposition, diffusion, and removal, eventually transforming a silicon wafer into a
prototype and tested. When the prototype passes the verifications performed, the
design flow enters the last stage, where packaging and testing are performed. Wafers
are mass-fabricated and converted into individual chips, packaged, and tested before

delivering the chips to the customers (Vij, 2013).

1.1.2  Verification and Validation in IC Design Flow

In integrated circuit design, verification is crucial to a large-scale integrated circuit
design life cycle. Verification aims to perform design functional correctness checking,
detecting and debugging functional bugs in the system, eliminating human errors
introduced in the design through various functional simulation tests (Ackland and
Weste, 1981). Pre-silicon verification performs a functional check and identifies bugs
before tape-out. In contrast, post-silicon validation captures bugs missed by pre-silicon
verification through functional validation of the silicon manufactured system (Adir et
al., 2011). In complex designs, a significant challenge is posed to design validation.
The most challenging validation problem is the affirmation of the correctness of the
ever-increasing amount of microarchitectural features implemented in the RTL
description (Shen and Abraham, 1999). In the functional verification of a design,
coverage is responsible for measuring the verification progress, assisting design

engineers in identifying and understanding the progress towards design completion



(Pizialim, 2006). For a general-purpose processor design, coverage of the functional
verification performed should include all functionalities implemented through
multiple stages of simulation, verification, and evaluation before tape-out (Gupta and
Harakchand, 2014). As processor design and verification progress through the design
flow, the cost of identifying and fixing bugs increases significantly, thereby making it
advisable for earlier detection and fixing of the design bugs (Gupta and Harakchand,

2014).

1.2 Problem Statements

In designing the RTL code for a processor, human errors are often introduced to the
system. Functional verifications are crucial in identifying and eliminating these design
bugs in the system and ensuring the system conforms to the design specifications
specified in the computer architecture utilized. However, due to the complexity of a
processor with millions of test cases to be considered, functional verifications with
complete coverage of the design functionality are difficult to be executed and often
spans for a long duration throughout the design flow due to the necessity of designing
the testbench and test environment from scratch. To ease the process of functional
verification, a reusable approach needs to be taken in the functional verification

Pprocess.

For a standardized and reusable approach towards verification methodology,
the guidelines and the complete testbench structure provided by Universal Verification
Methodology (UVM) are to be utilized for the functional verification. By integrating
UVM alongside functional verification of a RISC-V processor, a UVM testbench
capable of performing test set generation, test driving, test monitoring, and test
reporting can be constructed. Test set generation refers to the generation of random
sets of instruction defined in the base set of the RISC instruction set. Test driving refers
to the proper driving of the random sets of instructions generated to the design under
test. Test monitoring refers to monitoring the output values from the design under test

for validation purposes. Test reporting is to report the success or failure of a test run



and provide sufficient information for debug procedures. In UVM, the standardized
approach supports reusability by allowing UVM-standardized Intellectual Properties
to be obtained from other sources and used in the user’s environment. By designing
components of functional verification in modular components such as sequence, the
functional verification components, otherwise known as Verification Intellectual
Property (VIP), can be reused for the verification on various levels and even across

different projects.

1.3 Aims and Objectives

The objectives of the thesis are shown as following:

1) To utilize Universal Verification Methodology (UVM) for the functional

verification of a system.

i1) To perform thorough verification of a RISC-V processor with pipeline

implementation.

14 Report Overview

The following chapter will discuss the overall literature review regarding RISC-V
computer architecture, SystemVerilog as functional verification language, and the
Universal Verification Methodology. In Chapter 3, the methodology of this project
which includes the process of development of the UVM functional verification
environment and the functional verification of a RISC-V processor with pipeline
implementation will be explained. Chapter 4 will showcase the various results obtained
from the project and explain the results obtained. Lastly, Chapter 5 will conclude the

project and provide insight into future improvements.



Chapter 2

LITERATURE REVIEW

2.1 RISC-V Computer Architecture

A computer architecture, also known as instruction set architecture (ISA), is the
attributes of a computer system visible to a programmer and the system’s
characteristics that directly affect the logical execution of a program. The ISA of a
computer system specifies the instruction format, instruction opcode, registers,
instruction operations, data memory, and the effect of the instructions executed on the

registers and memory alongside the control mechanism for the instruction execution.

Reduced Instruction Set Computer (RISC) is an instruction set architecture
renowned for its performance and capability. It is capable of handling a wide range of
applications, ranging from powering micro-power embedded devices up to high-
performance cloud server microprocessors. Contrasting against most instruction set
architecture, RISC is an open-source ISA, free to be used by anyone, thus allowing its
use for the project. RISC provides a complete set of base ISA with minimal capabilities
such as arithmetic, loads and stores, branch, whereby additional extensions are
available for more advanced capabilities (Ledin, 2020). The minimal yet complete set
of capabilities set a proper scope for the project, thus making the RISC-V base ISA a

perfect choice.



2.1.1 RISC-V Base Instruction Set Architecture

The base RISC-V ISA utilizes a 32-bit system and features 32-bits instructions that
perform arithmetic, data transfer, logical, data-shifting, conditional branching,
and unconditional branching operations. The following table shows the base

instructions and their corresponding assembly code instruction example:

Table 2.1: RISC-V Base Instructions (Patterson and Hennessy, 2017).

Arithmetic add x5, x6, x7 x5 =x6 +x7
Subtract sub x5, x6, X7 X5 =x6 —x7
Add immediate addi x5, x6, 20 X5 =x6+20
Data Transfer Load word Iw x5, 40(x6) x5 = Memory [x6 + 40]
Store word sw x5, 40(x6) Memory [x6 +40] = x5
Load halfword 1h x5, 40(x6) x5 = Memory [x6 + 40]
Load halfword, unsigned lhu x5, 40(x6) x5 = Memory [x6 + 40]
Store halfword sh x5, 40(x6) Memory [x6 + 40] = x5
Load byte Ib x5, 40(x6) x5 = Memory [x6 + 40]
Load byte, unsigned Ibu x5, 40(x6) x5 = Memory [x6 + 40]
Store byte sb x5, 40(x6) Memory [x6 + 40] = x5
Load upper immediate lui, x5, 0x12345 x5 = 0x12345000
Logical And and x5, x6, x7 X5 =x6 & X7
Inclusive or or x5, x6, x7 x5 =x6 | x7
Exclusive or xor X5, x6, X7 X5 =x6 " x7
And immediate andi x5, x6, 20 x5 =x6 & 20
Inclusive or immediate ori x5, x6, 20 x5=x6120
Exclusive or immediate xori X5, x6, 20 X5 =x6"20
Set if less than slt x5, x6, x7 If (x6 < x7), x5 = 1 otherwise x5=0
Set if less than, unsigned sltu x5, x6, x7 If (x6 < x7), x5 = 1 otherwise x5 =0
Set if less than immediate slti x5, x6, x7 If (x6 < x7), x5 = 1 otherwise x5=0
Set if less than immediate, unsigned | sltiu x5, x6, x7 If (x6 < x7), x5 = 1 otherwise x5=0
Shift Shift left logical sll x5, x6, x7 X5 =x6 <<x7
Shift right logical stl x5, x6, x7 x5 =x6 >>x7
Shift right arithmetic sra x5, x6, x7 X5 = x6 >>>x7
Shift left logical immediate slli x5, x6, 3 X5=x6<<3
Shift right logical immediate srli x5, x6, 3 x5=x6>>3
Shift right arithmetic immediate srai x5, x6, 3 X5=x6>>>3
Conditional Branch Branch if equal beq x5, x6, 100 if (x5 ==x6) go to PC + 100
Branch if not equal bne x5, x6, 100 if (x5 !=x6) go to PC + 100
Branch if greater or equal bge x5, x6, 100 if (x5 >=x6) go to PC + 100
Branch if greater or equal, unsigned | bgeu x5, x6, 100 if (x5 >=x6) go to PC + 100
Branch if less than blt x5, x6, 100 if (x5 <x6) go to PC + 100
Branch if less than, unsigned bltu x5, x6, 100 if (x5 <x6) go to PC + 100
Unconditional Branch Jump and link jalx1, 100 x1 =PC + 4; go to PC +100
Jump and link register jalr x1, 100(x5) x1=PC + 4; go to x5 +100




These instructions can also be differentiated into several types based on the encoding
formats used by the instructions, such as R-type (arithmetic and logical), I-type
(immediate), S-type (store), SB-type (conditional branch), U-type (load upper
immediate), and UJ-type (jump and link). The following table shows the type

categorization for the instructions listed in the previous table:

Table 2.2: RISC-V Base Instruction Encoding Formats (Waterman and Asanovic,

2017).
R-type add 0110011 000 0000000
sub 0110011 000 0100000
sll 0110011 001 0000000
slt 0110011 010 0000000
sltu 0110011 011 0000000
xor 0110011 100 0000000
stl 0110011 101 0000000
sra 0110011 101 0100000
or 0110011 110 0000000
and 0110011 111 0000000
I-type b 0000011 000 n.a.
Ih 0000011 001 n.a.
Iw 0000011 010 n.a.
Ibu 0000011 100 na.
lhu 0000011 101 n.a.
addi 0010011 000 na.
slli 0010011 001 000000
slti 0010011 010 n.a.
sltiu 0010011 011 n.a.
xori 0010011 100 n.a.
srli 0010011 101 000000
srai 0010011 101 010000
ori 0010011 110 n.a.
andi 0010011 111 n.a.
jalr 1100111 000 n.a.
S-type sb 0100011 000 n.a.
sh 0100011 001 n.a.
swW 0100011 010 n.a.
SB-type beq 1100011 000 na.
bne 1100011 001 n.a.
blt 1100011 100 n.a.
bge 1100011 101 na.
bltu 1100011 110 n.a.
bgeu 1100011 111 n.a.
U-type lui 0110111 n.a. n.a.
UJ-type jal 1101111 n.a. n.a.
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The instruction encoding format utilized is different for different types of
instructions, whereby specific fields within the 32-bit instruction code may signify
different information. The information specified within an instruction code may
include the destination register address, the source register address, an immediate
value or an offset value, and the opcode, funct3, and funct7 to specify the operation to
be carried out. The following table shows the different encoding formats based on the

instruction type for the RISC-V base instruction set:

Table 2.3: RISC-V Instruction Field Specifications of Different Instruction Types
(Patterson and Hennessy, 2017).

Type el Comments
yp 7 bits 5bits 5 bits 3 bits 5 bits 7 bits

R-type funct7 | rs2 sl funct3 rd opcode Arithmetic Instruction Format
I-type immediate[11:0] sl funct3 rd opcode Loads/Immediate Arithmetic
S-type immediate[11:5] rs2 sl funct3 immediate[4:0] opcode Stores

SB-type immediate[12,10:5] rs2 sl funct3 immediate[4:1,11] opcode Conditional Branch Format
UJ-type immediate[20,10:1,11,19:12] rd opcode Unconditional Jump Format
U-type immediate[31:12] rd opcode Upper Immediate Format

The base RISC-V instruction set architecture also features 32 general-purpose
registers in the system that are 32-bits wide and can be used without any restrictions,
with the exception of the register x0 being physically grounded, returning zero
whenever it is read. Each general-purpose register among the 32 registers has an
alternate name that corresponds to their usage in a standard RISC-V application binary
interface (ABI). Due to the interchangeability of the functionalities of the general-
purpose registers, the ABI is crucial for dictating the roles of the registers (Ledin,
2020). The following table provides detailed information for the 32 general-purpose

registers:
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Table 2.4: Alternate Names and Functionality of Base RISC-V General Purpose

Registers.
x0 Zero -
x1 ra Function return address
x2 sp Stack pointer
x3 gp Global data pointer
x4 tp Thread-local data pointer
x5 t0
X6 tl Temporary storage
x7 2
fp Frame pointer for function-local stack data
x8 "
— 5 Saved registers
x10 a0
x11 al
x12 a2
E 3 Arguments passed to functions. Additional
1 ) arguments are passed onto stack. Function return
values are stored in a0 and al.
x15 as
x16 a6
x17 a7
x18 s2
x19 s3
x20 s4
x21 s5
x22 s6
3 5 Saved registers
x24 s8
x25 s9
x26 s10
x27 sl
x28 t3
x29 t4
30 = Temporary storage
x31 t6
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2.1.2 RISC-V Computer Organization

Computer organization refers to the operational units and linkages that allow the
architectural standards to be realized. Organizational characteristics refer to the
hardware elements of a computer system such as the control signals, the interfaces
between computer and peripherals, the memory technology employed. The
architectural design of a computer system defines the operations to be performed by a
computer and the fundamental principles applied in the creation and design of the
datapath and its control system. In contrast, organizational design determines the
implementation of various functions, whether through hardware or software

implementation.

The two main logic elements utilized in computer systems are combinational
elements and state elements. Combinational elements operate on data values and
provide output data asynchronously. In contrast, state elements have internal storage,
and data is only written into the storage when a proper clock signal is applied. State
elements can also be described as sequential elements in which the output (next state)
of the element depends on external inputs and the current state of the state element. An
example of a combinational element within the RISC-V datapath would be the ALU
unit, whereas a state element would be the general-purpose register used for storing
useful information in the register file. For a standard clocking methodology, edge-
triggered clocking is commonly used whereby data are only written when a positive or
negative edge of a clock signal arrives at the sequential element. On every clock cycle,
information from state elements is inputted to combinational elements, and the
processed information is sent to a subsequent state element for storing. Signals need
to arrive at subsequent state elements before the next clock cycle. Failing to do so will

result in a loss of information.

The detailed explanation for the RISC-V computer organization will be divided
into sections, each describing a specific functional block, otherwise known as a
datapath element. These datapath elements work together to process an instruction,

producing a desired outcome based on the instruction code supplied.
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2.1.2.1 Program Counter

PC

Figure 2.1: Program Counter Unit (Patterson and Hennessy, 2017).

The program counter is a simple 32-bit register that holds the instruction address,
pointing towards the instruction to be executed by the microprocessor. The instruction
address is sent to the instruction memory to fetch the corresponding instruction code
from the program memory. On normal operations, the instruction address is
incremented by 4 on each clock cycle. If a jump instruction is executed and the branch
condition is fulfilled (zero flag is set), the program counter will be updated with a new
effective target address specified by the sign-extended immediate value within the
instruction. For a jump and link register instruction (JALR), the new effective target
address is obtained through the sum of an offset and the content of a register both
specified by the instruction. On the other hand, the effective target address of other
jump or branch instructions are obtained from the immediate generate unit. The
multiplexing of the new address to be updated onto the program counter is performed
based on the Branch as well as the JumpReg control signals. The following table

shows the new instruction address to be updated on the next cycle:

Table 2.5: Multiplexing of Instruction Address to be updated.

Control Signal New Instruction Address

Branch and Zero Effective target address is the sign-extended and left-

shifted by 1 bit immediate value specified within

instruction code

JumpReg Effective target address is the sum of the register
(JALR instructions) content (rsl) and the sign-extended offset
(Imstruction [31:20]) specified by the instruction

Otherwise Instruction address is incremented by 4
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2.1.2.2 Instruction Memory

Instruction
addraess

Instruction —

Instruction
Memory

Figure 2.2: Instruction Memory Unit (Patterson and Hennessy, 2017).

The instruction memory block is a read-only memory block that contains all of the
program instruction codes. The instruction address obtained from the program counter
is used to fetch a 32-bit instruction code. The 32-bit instruction code contains useful
information such as the opcode, source and destination register address, function code,
immediate value or offset depending on the instruction type. The fetched instruction
code is sent to several functional blocks in the datapath for further action. For a
standard memory technology, each address points towards an 8-bit register, storing a
byte (8 bits) of data. Thus, a 32-bit instruction code would require access to 4 registers

in the memory to fetch the complete instruction code.
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2.1.2.3 Register File
(5 |Read
*" | register 1 Read A
Register ) 5 Read data 1
numbers . register 2
5 |\write Registers ¢ Data
| regist
" egister Read
[ lwiite data 2
Data < —= -
JL Data
RegWrite

Figure 2.3: Register File Unit (Patterson and Hennessy, 2017).

The register file for a base RISC-V ISA contains 32 general-purpose registers that are
each 32 bits wide. These general-purpose registers can be read or written and are
accessed based on the register address specified in the instruction code. On register
read operation, one or two data from the registers are read and sent to the ALU for
further operations. The write operations of the registers are performed on clock edges
whereby processed data from the ALU is rewritten onto the destination register or
information from other sources are written onto the register. The multiplexing of the
information to be written onto the register is controlled by explicit control signals such

as RegWrite and LinkReg, which will be discussed in the control unit section.
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2.1.2.4 Control Unit

I MemWrite

RegWrite

JumpReg
LinkReg

Contro

Figure 2.4: Control Unit (Patterson and Hennessy, 2017).

Control unit serves as the main decoding and control centre for the computer system.
The fetched instruction code is decoded based on its opcode, and various control
signals are subsequently adjusted to ensure proper functioning of the hardware. The
control unit also outputs a 2-bit ALUOp control signal to the ALU control unit which
will be further decoded to specify the instruction to be executed for the ALU. The

following table shows the control signal values based on the instruction type decoded:

Table 2.6: Control Signal Values based on Instruction Type.

0 0 0 0 i 0 0 0

R-type

Load 0 0 1 1 1 1 0 0
-ope 0 0 1 0 1 0 0 0
U-type

JALR 1 1 1 0 1 0 0 0
S-type 0 0 1 0 0 0 1 0
SB-type 0 0 0 0 0 0 0 1
Ul-type 0 1 0 0 1 0 0 0




17

The following table shows the various control signals utilized for controlling

the hardware within the datapath and their corresponding description:

Table 2.7: Control Signals from the Control Unit (Patterson and Hennessy, 2017).

RegWrite Allows data on the Write Data input to be written onto the register

specified by Write Register when asserted.

ALUSrc Determines the source of second ALU operand. If asserted, the second
ALU operand comes from the second register file output (Read Data 2).
Otherwise, the second ALU operand is the sign-extended immediate

specified in the instruction code.

Branch Determines the instruction address to be updated for the next cycle. If
asserted, and the condition is fulfilled (signified by assertion of the zero
flag), the program counter is updated with the computed branch target
address. Otherwise, the program counter is updated with the instruction

address incremented by 4.

MemRead Allows data memory contents designated by the memory address input to

be read and placed onto the Read Data output when asserted.

MemWrite Allows data memory contents designated by the memory address input to

be replaced by the value placed on the Write Data input when asserted.

MemtoReg Determines the source of the Write Data input to the register file. If
asserted, the value fed to the register Write Data input is the data loaded
from the data memory. Otherwise, the ALU output is written onto the

register.

JumpReg Determines the instruction address to be updated for the next cycle. If
asserted, the program counter is updated with the target address formed
by summing a register content and an offset specified in the instruction.
Otherwise, the program counter is updated with the result determined

from the branch control signal.

LinkReg Allows return address (current instruction address + 4) to be utilized as
input data for the Write Data input to the register when asserted. If de-
asserted, the results from MemtoReg control signal is used as data for

Write Data input.
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2.1.2.5 ALU Control Unit

ALUOp

Figure 2.5: ALU Control Unit (Patterson and Hennessy, 2017).

ALU control unit is a functional unit that specifies the operation to be carried out by
the arithmetic logic unit (ALU). From the ALUOp control signal received from the
control unit as well as the funct3 and funct7 information specified in the instruction
code, ALU control unit outputs a corresponding ALU control signal to the ALU. The

following table shows the ALU control signal for several instructions:

Table 2.8: ALU Control Signal based on Instruction.

Instruction ALl Operation funct7 uns ALU Action ALU.Control
Op t3 Signal
Iw 00 - - add

load word 0010
sW 00 | store word - - | add 0010
add 10 | add 0000000 | 000 | add 0010
addi 10 | add immediate 0000000 | 000 | add 0010
sra 10 | shift right arithmetic | 0100000 | 101 | shift right arithmetic 0110
blt 01 | branch if less than - 100 | compare and set (<) 1101
beq 01 | branch if not equal - 001 | compare and set (=) 1000
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2.1.2.6 Arithmetic Logic Unit

Figure 2.6: Arithmetic Logic Unit (Patterson and Hennessy, 2017).

The Arithmetic Logic Unit (ALU) performs arithmetic or logical operation on the data
inputs. Depending on the instruction code decoded, different operations are performed
by the ALU on the input data. Depending on the instruction type, the input data may
originate from the register file or immediate generate unit. The multiplexing of the
input data is controlled by ALUSrc control signal. The control unit first decodes the
instruction code into a 2-bit ALUQOp control signal followed by further specification
by the ALU control unit into a 4-bit ALU control signal. The 4-bit ALU control signal
specifies the specific operation on the input data. The processed 32-bit data is outputted
to the register file for update, or it may be sent to the data memory to be used as
memory address. Aside from the 32-bit data, an additional flag known as zero is also
asserted if the processed output is zero. This zero flag is utilized for conditional branch
instructions to signify condition fulfilment. The zero flag is asserted when the

condition specified in the branch instruction is fulfilled.
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2.1.2.7 Data Memory Unit
MemWWrite
—| Address Read —
data
Data
Write memory
data
MemRead

Figure 2.7: Data Memory Unit (Patterson and Hennessy, 2017).

Data memory is also known as the system's random-access memory (RAM). Based on
the standard memory technology, the memory block comes with 8-bit registers that
can be used as temporary data storage. The register within the memory block is
accessed by first providing a memory address. Then, based on the control signals, the
register content in the memory block can be updated (MemWrite) or read and used to
update the system registers (MemRead). The data memory can only perform read or

write operations one at a time and never both simultaneously.
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2.1.2.8 Immediate Generation Unit
32 Imm | B4
: | Gen [ °

Figure 2.8: Immediate Generation Unit (Patterson and Hennessy, 2017).

The immediate generation unit constructs the immediate value or address from the
instruction code based on the instruction's opcode. Depending on the instruction, the
immediate value may be shifted left by 1 bit (Jump and Branch instructions), or sign-
extended to 32 bits. The immediate value is sent to the arithmetic logic unit as data
input for instructions that utilizes immediate values such as addi (add immediate). The

following table shows the immediate value generated for different types of instructions:

Table 2.9: Immediate Value Generated corresponding to Instruction Type.

Instruction Type Immediate Value

Load {20{Instruction [31]}, Instruction [31:20]}

Store {20{Instruction [31]}, Instruction [31:25], Instruction [11:8]}
I-type {20{Instruction [31]}, Instruction [31:20]}

J-type {19{Instruction [31]}, Instruction [31:20], 0}

SB-type {19{Instruction [31]}, Instruction [31], Instruction [7], Instruction [30:25],

Instruction [11:8],0}

Ul-type {Instruction [31], Instruction [19:12], Instruction [20], Instruction [30:21]}
U-type {Instruction [31:12], 12{0}}
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By interconnecting the functional units, the full datapath for the processor can be

visualized as shown in the figure below:
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Figure 2.9: Simple Datapath of the Base RISC-V Processor (Patterson and Hennessy,

2017).

The functional units shown in the datapath interact through the interconnections and

carries out the instruction fetched from the instruction memory. The datapath flow may

differ depending on the instruction executed. Some instructions, however, may exhibit

similar datapath flow with only minor differences such as the operation performed by

the ALU. The datapath flow of various types of instruction for a single-cycle processor

implementation will be discussed in the following section.
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2.1.3.1 R-Type Instruction Datapath Flow

R-type instructions comprise of arithmetic and logical operations that utilize registers
as operands. Upon performing the specified operation, the result from the ALU is to
be written into the register specified by the instruction. The following shows an

example datapath flow for an add instruction:

add x3, X6, x7

1. The program counter provides the instruction address which is utilized to
access and fetch the corresponding instruction (add) from the instruction

memory. The program counter is incremented by 4.

2. The two registers (x6 and x7) specified in the instruction are accessed and their
corresponding data are read and sent to ALU for processing. The control unit
decodes the instruction opcode, funct7 and funct3 fields and generates the

required control signal (RegWrite) to control the hardware in the datapath.

3. The ALU performs the operation (add) specified by the ALU control unit on
the data read from the registers (x6 and x7).

4. The ALU output is written onto the destination register specified (x3).
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2.1.3.2 I-Type Instruction Datapath Flow

I-type instructions comprise of load and immediate arithmetic and logical operations.
Instead of a second register as an operand, these instructions have an immediate value
or offset as the second operand. After performing the specified operation, the
destination register is to be updated with a new data from ALU or data memory unit
depending on the type of instruction. If the instruction is a load instruction, the data
loaded from the data memory is used as register write data. Otherwise, the register
write data for immediate arithmetic and logical instruction would be the ALU output

data. The following shows an example datapath flow for a load instruction:

lw, x10, 100(x5)

1. The program counter provides the instruction address which is utilized to
access and fetch the corresponding instruction (load word) from the instruction

memory. The program counter is incremented by 4.

2. The register specified (x5) is accessed and the data read is sent to the ALU for
further processing. The immediate value offset (100) specified by the
instruction is generated by the immediate generation unit and sent to the ALU
as the second operand. The control unit decodes the instruction opcode and
funct3 fields and generates the required control signal (MemRead, ALUSre,
MemtoReg) to control the hardware in the datapath.

3. The ALU performs the operation (add) specified by the ALU control unit on
the operands (x5 and 100). The resulting ALU output is utilized as the memory

address for accessing the data memory unit.

4. The data stored on the data memory register specified by the memory address

is read.

5. The data loaded from the data memory is written onto the destination register

specified (x10).
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2.1.3.3 S-Type Instruction Datapath Flow

S-type instruction consists of mainly store operations. Store operations stores the
content of a general-purpose register onto the data memory unit, which requires
MemWrite control signal to be set. The following example shows the datapath flow of

a store instruction:

sb x5, 040(x6)

1. The program counter provides the instruction address which is utilized to
access and fetch the corresponding instruction (store byte) from the instruction

memory. The program counter is incremented by 4.

2. The two registers (x5 and x6) specified in the instruction are accessed. The
content of the first source register (x6) is to be added to the immediate offset
(40) specified by the instruction and generated by the immediate generation
unit whereas the content of the second source register (x5) is to be stored onto
the data memory. The control unit decodes the instruction opcode and funct3
fields and generates the required control signal (MemWrite, ALUSrc¢) to

control the hardware in the datapath.

3. The ALU performs the operation (add) specified by the ALU control unit on
the operands (x6 and 40). The resulting ALU output is utilized as the memory

address for accessing the data memory unit.

4. The contents in the second source register (x5) are stored onto the data memory

register specified by the memory address computed.
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2.1.34 SB-Type Instruction Datapath Flow

Conditional branch operations are categorized as SB-type instructions. Depending on
the conditions specified by the instruction, the contents of the registers accessed are
compared. If the condition is fulfilled, a branch occurs and the program counter is
updated with the PC-relative effective target address specified by the instruction. The

following shows an example datapath flow of a conditional branch instruction:

beq x20, x22, 100

1. The program counter provides the instruction address which is utilized to
access and fetch the corresponding instruction (branch if equal) from the

instruction memory.

2. The two registers (x20 and x22) specified in the instruction are accessed and
their corresponding data are read and sent to ALU for processing. The
immediate generation unit generates the effective target address by summing
the immediate offset (100) specified by the instruction with the current
program counter address. The control unit decodes the instruction opcode and
funct3 fields and generates the required control signal (Branch) to control the

hardware in the datapath.

3. The ALU performs the operation (compare) specified by the ALU control unit
on the operands (x20 and x22). If the condition is true (x20 == x22), the result
is set to zero and the zero flag is set. Otherwise the result is set to one and the

zero flag is not set.

4. If the branch condition is fulfilled, the effective target address (PC + 100) is
updated into the program counter. Otherwise, the program counter is updated

with the instruction address incremented by 4.
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2.1.3.5 U-Type Instruction Datapath Flow

U-type instructions are special data transfer instructions that provides a 20-bit
immediate value as an operand. The two instructions in this type are load upper
immediate (lui) and add upper immediate to program counter (auipc) instructions. The

following shows the datapath of a load upper immediate instruction:

lui X7, 0x12345

1. The program counter provides the instruction address which is utilized to
access and fetch the corresponding instruction (load upper immediate) from

the instruction memory. The program counter is incremented by 4.

2. The immediate generation unit forms the data from the immediate value
specified (12345000nex). The control unit decodes the instruction opcode and
funct3 fields and generates the required control signal (ALUSre¢, RegWrite)

to control the hardware in the datapath.

3. The ALU loads the immediate value (12345000nex) as its output.

4. The ALU output (12345000nx) is used as the register write data and the data

is written into the destination register specified (x7).
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2.1.3.6 UJ-Type Instruction Datapath Flow

Unconditional branch instructions are categorized as UJ-type instructions. In the latest
base version of RISC-V ISA, the UJ-type instruction comprises of only jump and link
instruction (jal). The following shows an example datapath flow for a jump and link

instruction:

jal  x20, 100

1. The program counter provides the instruction address which is utilized to
access and fetch the corresponding instruction (jump and link) from the

instruction memory.

2. The immediate generation unit generates the effective target address by
summing the immediate offset (100) specified by the instruction with the
current program counter address. The control unit decodes the instruction
opcode and funct3 fields and generates the required control signal (LinkReg,
RegWrite) to control the hardware in the datapath.

3. The ALU output is set to zero and the zero flag is raised.

4. Instruction address of the instruction following the jump instruction (PC + 4)
is utilized as the register write data and written into the register specified by
the instruction (x20). The program counter is updated with the PC-relative

effective target address computed by the immediate generation unit (PC + 100).
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For a single-cycle processor system, the datapath can only process one instruction at a

time. The performance is then limited by load type instructions with the longest signal

path, accessing up to five functional units (program counter, instruction memory,

register file, ALU, data memory). The limitation imposed on the clock rate and the

inefficiency regarding the usage of the functional units can be resolved through

pipeline implementation which will be discussed in this section.

2.14.1 Pipeline Implementation

Pipelining aims to improve the efficiency and throughput of the processor data flow

by overlapping instruction executions. Instruction execution in a computer system can

be categorized into the following five stages:

Instruction fetch / IF:

Instruction decode / 1D:

Execution or address calculation / EX:

Data memory access / MEM:

Writeback / WB:

Fetch instruction from memory.

Read registers and decode the instruction.

Generate the corresponding control
signal to control the hardware. Also
generate the immediate value or offset if

necessary.
Execute the operation or calculate the
target address based on the control signal

provided.

Access an operand in data memory for

read or write operation if necessary.

Write result into register if necessary.
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By separating the single-clock cycle datapath flow into five pipeline stages, the

performance of the processor is improved by approximately four times. The following

figure shows the concept of separating the datapath flow into several stages:
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Figure 2.10: Separation of Single-Cycle Datapath for Pipeline Implementation

(Patterson and Hennessy, 2017).

Pipelining segregates the different stages of instruction execution and utilize

each of the stages to execute different instructions. This allows the processor to process

multiple instructions at different stages at a given time, significantly increasing its

throughput.

execution of different instructions at a given clock cycle:
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The following graphical pipeline diagram showcases the instruction

Figure 2.11: Multiple Instructions executed with Pipeline Implementation (Patterson

and Hennessy, 2017).
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To retain the information of an instruction and pass it down the pipeline stages,
several registers known as pipeline registers will be required to be placed between
stages. By placing the pipeline registers between the pipeline stages, the information
processed on a pipeline stage will be stored onto the pipeline register on the next cycle
and utilized for processing on the subsequent pipeline stage. This effectively advances
the execution of an instruction from one pipeline stage to another on each clock cycle.
The naming convention for these pipeline registers are based on the pipeline stages
separated by the pipeline registers. For an example, the pipeline register separating the
instruction fetch (IF) and instruction decode (ID) stages is named as IF/ID pipeline

register. The following figure shows the pipelined datapath with the pipeline registers:
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Figure 2.12: Pipelined Datapath (Patterson and Hennessy, 2017).
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As the control signals decoded from an instruction by the control unit on the
instruction decode (ID) stage transcends multiple pipeline stages, the control signals
decoded for a given instruction will have to be passed down the pipeline register to
ensure the hardware control signals for a given instruction is passed down alongside
the execution of the instruction. The following pipelined datapath shows the addition
of control elements to the pipeline system and the passing of the control signals down

the pipeline stages:
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Figure 2.13: Pipelined Datapath with Control Elements integrated (Patterson and
Hennessy, 2017).
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The following section provides a thorough explanation of the operations at

each pipeline stages:

Instruction Fetch / IF:

Instruction Decode / ID:

Execution / EX:

Memory Access / MEM:

Write back / WB:

The program counter provides the instruction address
which is utilized to access and fetch the corresponding
instruction code from the instruction memory.
Instruction address and instruction code are stored onto

the IF/ID pipeline register.

The instruction code obtained from the IF/ID pipeline
register is used to access registers (register file),
generate immediate value (immediate generation unit),
as well as generating control signals (control unit). The
outputs from the functional units are stored onto the

ID/EX pipeline register.

The operands to be processed, alongside the control
signal specifying the operation to be executed are
obtained from the ID/EX pipeline register and sent to
the ALU. The processed output is then stored onto the
EX/MEM pipeline register.

The register content to be stored for store operations and
the memory address for data memory access are
obtained from EX/MEM pipeline register. Data loaded
from the data memory and the ALU output from
EX/MEM npipeline register is written onto MEM/WB

pipeline register.

The data to be written into the register file is obtained
from the MEM/WB pipeline register and written into the
register destination specified by the instruction stored on

the MEM/WB pipeline register.
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Implementing pipeline in RISC-V architecture is relatively straightforward
than x86 computer architecture due to the fixed 32-bit length of the instructions. The
few variants of instruction formats with the same fields for defining information, such
as destination register address and source register addresses, also made it easy for
pipeline implementation. Aside from that, the simplicity of the base instructions in
which memory operands are only utilized in loads or stores allowed the use of the
execution stage to calculate the memory address and immediately access the memory

address in the following memory access stage.

Along with improving performance and efficiency, pipeline implementation
can also bring complicated situations whereby the pipeline flow needs to be halted due
to hardware limitations. These events are known as pipeline hazards, and there is a
total of three different types of hazards: structural hazards, data hazards, and control
hazards. The following section provides information for each hazard that needs to be

considered for the pipeline implementation.

2.14.2 Structural Hazards

Structural hazards occur when there is multiple access to the same hardware by
different instructions in the pipeline at a given time. Due to hardware limitations,
hardware in the datapath can only be accessed by one instruction at a time, thus
necessitating the halting of the datapath for multiple hardware accesses. This form of
hazard can be seen in cases where Von-Neumann Architecture is employed, whereby
the same memory unit is utilized for storing program instructions and data. When the
memory unit is accessed for fetching instructions, memory access for memory write
or memory read would be halted. However, this hazard can be resolved if Harvard
Architecture is employed whereby separate memory units are utilized for storing
program instructions and data. The instruction fetch and data memory access can then

be performed simultaneously as each operation accesses different hardware.
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2.14.3 Data Hazards

Data hazard occurs when there is data dependency between different instructions
processed at different pipeline stages at a given time. With pipeline implementation,
the datapath processes multiple instructions at a given time. In situations where there
is a data dependency between the instructions in the pipeline datapath, the processed
data needs to be forwarded to the corresponding pipeline stage to ensure the correct

data is processed. Consider the following instruction segment:

and x11, X3, x16
add x12, x5, x11

From the instruction segment shown, the result of the and operation which is
to be updated to the register x// is to be immediately be used as an operand of the
subsequent add instruction. To ensure the correct information is utilized for the add
instruction, the pipeline will have to be halted for three clock cycles to ensure
completion of execution of the and instruction up to the writeback stage. Alternatively,
forwarding of the data from a later pipeline stage to the pipeline stage requiring the

data can resolve the hazard through additional hardware.

In situations where the processed data arrives at a later time, pipeline stalling
becomes necessary. These situations often arise from load instructions followed by
instructions with data dependency on the data to be loaded from data memory, known

as load-use cases. Consider the following example instruction segment:

Iw x11, 02a(x5)
add x12, x5, x11

The updated data for the register x// only arrives at MEM stage upon memory
read by the /oad word instruction, which necessitates pipeline stalling for at least one
cycle. Through the combination of pipeline stalling and data forwarding mechanisms,

the pipeline stall can be minimized to only one cycle.
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2.14.4 Control Hazards

When branch or jump instructions are introduced to the pipeline, the instructions
following the branch or jump instructions may originate from a new address or remain
the fetched instructions. In cases where branch or jump is executed, the fetched
instructions are invalidated and need to be removed from the pipeline. This form of
hazard is known as control hazards, also known as branch hazards. Consider the

following instruction segment:

add x4, X6, x6
beq xI, x0, 40

Iw X3, 400(x0)
SW x3, 400(x0)
Branch Address: or x7, X8, x9

The decision of whether the instruction (/w) following the conditional branch
instruction (beq) or the instruction from the new target address (or) is to be executed
can only be known upon the condition checking by ALU on the execution pipeline
stage (EX). If the branch condition is fulfilled, the subsequent instruction (/w) in the
instruction decode (ID) stage and the following instruction (sw) in the instruction fetch
(IF) stage would need to be removed. One method of overcoming this hazard is to stall
whenever a conditional branch instruction is fetched from the instruction memory.
This, however, would cause a significant reduction in the processor’s performance,
especially when there is a large number of conditional branch instructions in the

program.

Alternatively, branch prediction can be utilized. By predicting conditional
branches are untaken by default, pipeline flow will be at full speed if the prediction is
correct. Only if the prediction is incorrect whereby the branches are taken, the pipeline
flushes the incorrect information from the pipeline and fetches instructions from the
new address. The following figures show the utilization of branch prediction as a

solution to control hazard:
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Figure 2.14: Pipeline flows at full speed when Branch Prediction is correct (Patterson

and Hennessy, 2017).
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Figure 2.15: Pipeline flushes only when Branch Prediction is incorrect (Patterson and

Hennessy, 2017).

The branch prediction algorithm for can be coded in a sophisticated manner to
further enhance the processor’s overall performance. This would however, require an

advanced implementation for the branch prediction.
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2.14.5 Data Forwarding

Data forwarding refers to the passing of processed data from a later pipeline stages to
the pipeline stage requiring the updated data. Through hardware implementation, data
forwarding serves as the primary solution for data hazards. Considering the following

instruction segment with data hazard:

and x11, x3, x16
add x12, x5, x11

When the add instruction enters the instruction decode (ID) stage, the
information required for the execution (EX) stage would require the processed
information from x// register which is still in the execution (EX) stage. As the and
instruction only updates the register x// on writeback (WB) stage, the add instruction
will utilize the outdated data for x/ /. Data forwarding forwards the output result of the
and instruction from the EX/MEM pipeline register to the ALU for the execution (EX)
stage of add instruction. The following figure provides graphical representation of the

data forwarding process:

Program
I _ 200 400 600 800 1000
order Time T T T T T
(in instructions) .
and x11, x3, x16 IF o 1D ——MEM WB;
T — 1
add x12, x5, x11 IF —/~ ID EX MEM WB |

Figure 2.16: Graphical Representation of Forwarding (Patterson and Hennessy,

2017).

Through data forwarding, the data required can be forwarded, bypassing the
memory access (MEM) and writeback (WB) pipeline stages. This allows the pipeline
data flow to be correct and instructions to be executed using the updated information.

The hardware implementation for the data forwarding unit can be done by checking
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the source register addresses from the ID/EX pipeline register and the destination
register address from both EX/MEM and MEM/WB pipeline registers. If the source
register address at the ID/EX pipeline register matches the destination register of
previous instructions, forwarding of data from either EX/MEM or MEM/WB pipeline
registers can then be performed, sending the updated information from the respective
pipeline to the ALU as input operands. Such implementation would also require

additional multiplexing to be performed at the ALU input, as shown in the following

figure:
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Figure 2.17: Implementation of Data Forwarding on the Pipelined Datapath
(Patterson and Hennessy, 2017).

Table 2.10: Forwarding Control Signal and their Description.

Forwarding o

00 Data from first source register is sent to ALU.

ForwardA 01 Data from MEM/WB pipeline register is forwarded to ALU.

10 Data from EX/MEM pipeline register is forwarded to ALU.

00 Data from ALUSrc multiplexing is sent to ALU.

ForwardB 01 Data from MEM/WB pipeline register is forwarded to ALU.

10 Data from EX/MEM pipeline register is forwarded to ALU.
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2.1.4.6 Pipeline Stalling

Pipeline stalls are a crucial mechanism in pipelining due to the unpreventable
circumstances whereby stalling is necessitated to ensure the correct data or instruction
is processed. Upon stalling, writes to program counter and I[F/ID, ID/EX and EX/MEM
pipeline registers are halted whereas MEM/WB pipeline register continue executing

the instructions they contain. Consider the following load-use case:

Iw x11, 020(x5)
add x12, x5, x11

As the updated information of x// register can only be obtained when the load
word instruction reaches memory access (MEM) stage, the pipeline needs to be stalled
for one cycle to accommodate for the address calculation (execution stage). The

following figure shows the graphical representation of the stalling mechanism of the

pipeline:
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bubble/ ( bubble/ ( bubble/ bubble/ ( bubble/

add x12, x5, x11 IF oD MEM —EB

Figure 2.18: Graphical Representation of Stalling and Forwarding (Patterson and
Hennessy, 2017).

Upon stalling, bubbles are inserted into the pipeline datapath, which represents
no operation (nops) in terms of instruction execution. For RISC-V ISA, pipeline

stalling halts the writing of new data onto program counter, IF/ID and ID/EX pipeline
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registers whereby the pipeline registers retain the old instruction until the stall signal
is removed. The EX/MEM pipeline register is inserted with bubble by setting the
instruction code and control signal to be written to zero. The hardware implementation
of pipeline stall mechanism is done through a hazard detection unit. The hazard
detection unit detects for load use cases by checking the MemRead control signal on
the EX/MEM pipeline register and comparing the destination register address on the
EX/MEM pipeline register against the source register addresses stored on ID/EX
pipeline register. If data is to be read from the data memory unit onto the destination
register (MemRead) and the destination register address matches the source register
addresses, the hazard detection unit asserts the stall control signal. The information
stored on the program counter, IF/ID, ID/EX and EX/MEM pipeline registers will be
retained whereas MEM/WB pipeline register continue with the instruction execution.
When the load instruction proceeds to the memory access (MEM) stage and stores the
data loaded onto MEM/WB pipeline register, the updated information can then be
forwarded to the execution stage for the subsequent instruction and the stall signal can
then be removed. The following figure shows the datapath with the hazard detection

unit implemented:
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Figure 2.19: Implementation of Data Forwarding and Data Stalling on the Pipelined
Datapath (Patterson and Hennessy, 2017).
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2.1.4.7 Pipeline Flushing

Aside from data forwarding and data stalling, another key mechanism known as
pipeline flushing is required for the proper functioning of branching in a pipelined
datapath. Pipeline flushing resolves control hazards by flushing the invalidated
instructions out of the pipeline registers when a branch condition is fulfilled,

preventing the system from executing the invalidated instructions fetched.

Flushing of the information on the pipeline can be performed by loading zero
values onto the pipeline registers. By loading zero values as instruction code and
control signals, hardware components in other stages of the pipeline will perform no
action. As the branch comparison result is only known at the execution stage (EX), the
pipeline registers prior to the execution stage containing the invalidated instructions
will be flushed. The pipeline flush mechanism can be implemented alongside the
hazard detection unit whereby control signals from ID/EX pipeline register (Branch,

RegLink) and the zero flag from ALU will trigger the flushing mechanism.
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To provide a thorough understanding on the flushing mechanism, consider the

following instruction segment:

Clock Cycle 1:

Clock Cycle 2:

Clock Cycle 3:

Clock Cycle 4:

Clock Cycle 5:

beq xI, x1, 40
add x4, X0, x6
Iw x3, 400(x0)

The branch instruction is fetched from the instruction memory

and stored onto the IF/ID pipeline register on the next cycle.

The information of the branch instruction is decoded and passed
to the ID/EX pipeline register on the next cycle. The add
instruction is fetched and stored onto IF/ID pipeline register on

the next cycle.

The information of branch instruction from ID/EX pipeline
register are processed. As the branch condition is fulfilled, ALU
sets the zero flag to HIGH. The hazard detection unit receives
HIGH value for both Branch and Zero, thus asserting flush
control signal. The information of add instruction is processed
and passed onto ID/EX pipeline register on the next cycle
whereas /w instruction is fetched and stored onto IF/ID pipeline

register on the next cycle.

The assertion of flush control signal loads the contents within
IF/ID, ID/EX and EX/MEM pipeline registers with zero values
to ensure no operation, removing the invalidated instructions.
The program counter is updated with the new target effective

address on the next cycle.

Instruction from the new target address is fetched and stored

onto IF/ID pipeline register.
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From the description provided, the pipeline flush mechanism can resolve
control hazards at the cost of two clock cycles, which can take a heavy toll on the
processor performance if there are many conditional branch instructions in the
program. Alternatively, the conditional branch comparison execution can be advanced
to the instruction decode pipeline stage to further reduce the branch flush delay by one
clock cycle. However, advancing the branch comparison would require data
forwarding and pipeline stalling to be reworked and more complicated control.
Nevertheless, reducing one clock cycle for branch execution would significantly
improve the overall processor performance. The following figure shows the datapath

implemented with the branch comparison forwarded to the instruction decode stage:
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Figure 2.20: Pipelined Datapath with Branch Comparison forwarded to Instruction

Decode Stage (Patterson and Hennessy, 2017).
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2.1.5 Summarized Review for RISC-V Computer Architecture

From the detailed description for the RISC-V computer architecture provided by the
textbook “Computer Organization and Design RISC-V Edition” published by
Patterson and Hennessy, a well-established fundamental understanding of the datapath
flow of RISC-V computer architecture with pipeline implementation is achieved.
Despite not providing the full description for all the workings of a RISC-V system,
such as examples for all the instructions within the RISC-V base instruction set and
the complete RTL coding for the RISC-V processor, the textbook “Computer
Organization and Design: RISC-V Edition” has done well in conveying information
on the datapath flow of a RISC-V pipeline implementation with the detailed

description for several examples.

Although the project's primary focus is the verification portion, a well-
established understanding of the computer architecture is just as crucial as verifying
the system. With a well-established understanding of how the system works, a
thorough verification can be performed with the test engineer understanding the
architecture flow and greatly aiding the debugging process. Aside from verifying the
design under test with the fundamental knowledge on the datapath flow, the knowledge
on the RISC-V computer architecture is also helpful for implementing a reference
model to be compared with the design under test. A reference model is a model that
produces the expected outcome in a simulation whereby the results from a design under
verification will be compared to. Despite the nature of the reference model to be
deemed as the model that provides the expected outputs, in the industry, the reference
model may have bugs within the model. Therefore, a verification engineer must have
a well-established understanding of the computer architecture such that such cases

whereby the reference model is at fault can be detected and fixed.

The detailed information obtained from the textbook has encouraged and
provided sufficient information to build a reference model from scratch. As such, the
information listed in this report is the main reference document for the architecture of

the RISC-V reference model alongside the RISC-V instruction set architecture manual.
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2.2 Functional Verification

Functional defects are often introduced to the system design during RTL code design.
These functional defects can be caused by logical errors in the coding,
miscommunication between the design team, complexity of the design, and more.
Verification is a much-needed process in the design flow as it ensures these functional
defects are captured and maintains the integrity of the design functionality with the
design specifications. Capturing these functional defects at an earlier stage can help
prevent the manufacture and deployment of functionally defective designs, losing
many resources, money, and time (Kaeslin, 2014). Therefore, design verification is a
much-emphasized process in product development whereby design verification often
consumes as much as 80% of the total product development time (Wang, Chang and

Cheng, K.T.T., 2009).

2.2.1 SystemVerilog as Functional Verification Language

Verilog is an industrial standard Hardware Description Language (HDL) used mainly
to describe circuits and systems. In electronic design, Verilog is utilized for simple
verification of digital circuits at RTL abstraction level, timing analysis, test analysis,
and logic synthesis (Doulos, n.d.). Despite the capability to perform verification,
Verilog has very limited features, which is insufficient to meet the verification
requirement for today’s standards. In today’s design complexity, a tool better than

Verilog needs to be utilized to verify systems with a complex design.

SystemVerilog, an extension of Verilog that supports object-oriented
programming, allows for advanced functional verification constructs, further opening
up possibilities for incorporating advanced functional verification methodologies such
as universal verification methodology (UVM) and more. With the added capability to
perform constrained random stimuli generation and incorporate object-oriented
programming (OOP) in test environment construction, SystemVerilog is a much-

developed functional verification language compared to Verilog (Chip Verify, n.d.).
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2.2.2 Functional Verification Requirements

The basis of functional verification is to verify the features implemented in a design
and capture all functional defects. With the increasing complexity of modern-day
system designs, incorporating additional criteria towards the longevity of functional

verification is much needed.

Reusability of the verification methodology is one of the highly-focused
aspects of functional verification. Manual design of verification testbench for complex
designs often consumes a lot of time. Incorporating reusability in verification testbench
with object-oriented programming through reusable verification components can
allow the verification environment to be designed much shorter and robustly.
Verification components designed for reusability allow verification intellectual
properties (VIP) to be reused across components, multiple chips, and in different

organizations.

Automation is another critical aspect of design verification that can
significantly enhance verification effectiveness. Automation of test case execution
allows verification to be performed without manually driving the inputs to the design
under test. Automation of result analysis through the implementation of self-checking
testbench helps identify discrepancies between results obtained and the expected
outcome, removing the requirement of manual inspection on the results obtained and
significantly improving the efficiency of the verification process. Automation of
functional coverage analysis helps track and measure the progress of functional
verification by providing insights on the design features that have and have yet been

tested.

Standardized coding guidelines for verification component and environment
development is another crucial aspect for design verification. A standardized approach
towards verification environment design ensures a consistent working design and aids
with the debugging process of the verification environment (Singhal, 2015). The

guidelines provided also allow codes to be written and maintained easily.
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2.2.3 Functional Verification Technologies

Simulation-based and formal verification are the two main functional verification
technologies used in the industry. Simulation-based verifications generate and drive
stimuli to a design under test and a reference model. The outputs from both models are
then obtained and compared. Discrepancies between the results obtained are
categorized as functional defects within the design. On the other hand, formal
verification does not require input vectors but instead is an output-driven form of
verification. Formal verification first defines the output behaviour for the design and

identifies the possible inputs and state conditions for failures.

The main difference between the two types of verification stated is the
requirement of input vectors for the verification process. As aforementioned,
simulation-based verification is input-driven, whereas formal verification is output-
driven. In simulation-based verification, inputs are driven to the design under test one
at a time, whereby a scoreboard checks for the correctness of the design behaviour.
Formal verification utilizes constraints to identify the legal input behaviours. Through
sufficient runtime, input patterns corresponding to the constraints set can be identified
and verified by the scoreboard for behavioural correctness of the design (Oski
Technology, 2020). Abstractly speaking, simulation-based verification checks for one
output point at a time, whereas formal verification checks groups of points at a time.
By performing verification in groups of points at a time, the set properties of the groups
of points tested must be further verified against the design specifications, thus making

formal verification less intuitive and harder to use (Lam, 2005.).

Due to the lack of intuitiveness, formal verification is applicable for designs of
moderate complexity. As the project is concerned with verifying a processor system
with a large number of blocks integrated, functional verification becomes unsuitable
to be utilized. Therefore, the project will use simulation-based verification whereby
input stimuli are generated and driven to the design. The results obtained from the

design are subsequently compared with a reference model.
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224 Functional Verification Approaches

For simulation-based verification, a total of five different verification approaches can
be taken. Multiple approaches are often required for a complex design to achieve

sufficient functional coverage.

Directed verification manually generates test stimulus and test cases and drives
them to design under test for verification. As manual test stimulus generation is
involved, this form of verification allows specific functionality of the design to be
tested. It is, however, unsuitable and inefficient to be used as the sole approach taken
for designs with many functionalities to be tested (Singhal, 2015). On the other
hand, constrained random verification generates user-defined constrained-random
stimuli through automation. This form of verification provides broad functional
coverage for complex designs and is often used with directed verifications to further

provide coverage for corner cases (Singhal, 2015).

Coverage-driven verification identifies holes in the verification progress. It
provides insight on features of the design that has yet to be sufficiently verified,
tracking the functional coverage progress of the verification process. Coverage is an
essential metric in design verification, whereby most functional verifications are
guided by the metrics provided by coverage-driven verification (Singhal,
2015). Assertion-based verification is a useful form of verification approach for
pinpointing the sources of error and significantly reducing debugging time. Assertions
are executable specifications that control the execution of passive code segments,
providing controllability and observability to the design. However, the implementation
of assertion-based verification poses challenges in increased coding and debugging

complexity and customization limitation (Tech Design Forum, n.d.).

Emulation-based verification verifies the gate-level model or RTL
representation of the design mapped onto an FPGA through emulation. Proper
emulation of the system allows for a high-performance system for verification.
However, the long time required for setup and compilation can pose challenges

towards the time-to-market aspect of the design flow (Singhal, 2016).
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2.2.5 Summarized Review for Functional Verification

From the literature review performed for the requirements, technologies, and
approaches of functional verification, a general idea for the verification of a RISC-V

pipelined processor implementation is established.

The verification environment is coded using SystemVerilog to utilize object-
oriented programming to incorporate reusability in design verification. Other
capabilities such as the randomization capability in SystemVerilog will also play a
considerable role in constrained-random stimuli generation for functional verification.
From the discussion of requirements for functional verification, the basis of the
functional verification is to verify and validate the features implemented by design
under test. When constructing the verification environment, additional criteria such as
reusability in the verification components, automation in the process execution, and
standardization of coding guidelines will also be considered. From the verification
technologies discussed, simulation-based verification has been deemed to be
preferable for the RISC-V processor design with many functionalities to be tested.
Among the functional verification approaches discussed, a combination of verification
approaches that include constrained-random, directed, and coverage-driven
verification will be utilized. Using a variety of verification approaches, a broader

functional coverage can be achieved.
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2.3 Universal Verification Methodology

Universal Verification Methodology (UVM) is a standardized methodology for
verification that emphasizes reusability. UVM provides a standardized approach
towards designing verification environment that promotes reusability and
compatibility. UVM is widely used in the industry. It dramatically helps companies
develop a modular, reusable and scalable testbench structure, encouraging the growth
of a verification intellectual property (VIP) marketplace (Francesconi, Rodriguez and
Julian, 2014). Through the standardized approach provided by the UVM, a layer of
abstraction is integrated into the verification environment, whereby each verification
component has a specific role. The layer of abstraction, in turn, helps the verification
testbench to be more efficiently coded and maintainable. The following section
provides a detailed analysis of the verification components within the UVM

verification environment and insight into the verification flow.
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2.3.1 UVM Testbench Architecture

UVM provides class libraries that allow for generic utilities such as configuration
databases, transaction library modelling, and component hierarchy. The generic
utilities provided to the user allow for creating a dynamic testbench structure. The
building blocks allow for the rapid development of well-constructed, reusable
verification components and test environments. In a typical UVM verification
environment, the verification environment can be built using readily available UVM
classes. The UVM classes components have a well-established standard
communication infrastructure, allowing the verification components to send data
packets between each other and work synchronously (Chip Verify, n.d.). The

following figure showcases an example of a testbench architecture:

UVM Testbench |

Test |
Environment

Agent

@h Sequencer Monitor Scoreboard

| Interface |

1§ |

| Design Under Test (DUT) |

Figure 2.21 UVM Testbench Architecture.
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2.3.2 UVM Component Class

UVM components are verification components that construct the complete
hierarchical verification environment for UVM. These verification components are
used for processing UVM objects, passing transactional data from one component to
another. The hierarchical environment of the components also allows each component
to be configured for specific features and different test scenarios. The various

components of the UVM component class will be described in this section.

2.3.2.1 UVM Testbench

In UVM, a typical testbench is the root node, otherwise known as the top-level module.
which serves as a static container that holds and instantiates all the verification
components, interfaces, and the design under test. It is responsible for invoking the test

to be performed on the design.

2.3.2.2 UVM Test

The test component is the top-level verification component in the component hierarchy.
It instantiates and configures the environment component, the next level down in the
component hierarchy. It is also responsible for initiating stimuli generation by starting
virtual sequences. A test case is the specification of a verification test whereby the
stimuli and conditions for the test run are set to test out specific design features under
the specified condition. Through the configuration made to the environment, the test
component can configure the environment component to generate different test cases,

therefore exhibiting the aspect of reusability in the verification environment.
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2.3.2.3 UVM Environment

The environment component is a hierarchical component that groups and instantiates
interrelated verification components such as the agent, scoreboard, and other
components. It has several configuration parameters set by the test component,

allowing the environment to be configured for different test scenarios.

2.3.24 UVM Agent

The agent component is another hierarchical component that encapsulates the
verification components dealing with a specific design under test interface. These
components include a sequencer, a driver, and a monitor. The verification components
encapsulated are instantiated and interconnected through transaction-level modelling
interfaces. Like the environment component, the agent component also has
configuration options to enable or disable features or even set the agent component as

an active driving component or a passive monitoring component.

2.3.2.5 UVM Sequencer

The sequencer is a verification component that generates sequence items as data
transactions and sends them to the driver component for further execution. Upon
receiving the request for sequence items made by the driver component, the sequencer

initializes sequence item generation and sends them upon finishing the item generation.
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2.3.2.6 UVM Driver

The driver is an active component within the verification environment that actively
drives the sequence items obtained from the sequencer to the design under test via the
interface. The driver pulls sequence items downstream on a test run by sending a
request to the sequencer component to generate sequence items. The sequence items
generated and received by the driver component are further mapped to signal level

formats compatible with the interface to be driven to the design under test.

2.3.2.7 UVM Monitor

Monitor captures information from the design under test from the interface and
converts the captured signals to transaction level sequence items. These transactions
containing the captured information are then sent to other components such as the
scoreboard for functionality checking. It can also perform internal processing such as

coverage collection on the data received.

2.3.2.8 UVM Scoreboard

The scoreboard component is the verification component within the testbench that
performs the functionality checking. From the data transactions received from the
monitor component via an analysis port, the actual values from the design under test
and the expected values are compared. One methodology often used for generating
expected values to be compared is through the use of a reference model. The input
stimuli to be driven to the design under test are also sent to the reference model. The
obtained result for the given stimuli by both reference model and design under test can

then be checked for functionality correctness.
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2.3.3 UVM Transaction Base Class

UVM transaction class contains objects that represent data within the verification

environment.

2.3.3.1 UVM Sequence Items

Sequence items are the information or data transactions passed between verification
components. They may also include the stimuli to be driven to or monitored from the
design under test. On an abstract level, sequence items can be viewed as the

communication data between the components in the UVM environment.

2.3.3.2 UVM Sequence

Sequences are a set of sequence items often initiated by the sequencer component to
be driven to the driver component. The set of sequence items are assembled to form a

stimuli for the verification process.
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Figure 3.1: Design Verification Flow.
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A project flow has been created to provide a systematic approach towards the design
verification project. A well-planned project flow can give complete coverage and

encapsulate the tasks needed to be done.

For design verification, the first stage is to capture the design specification.
Reference documents such as the textbook “Computer Organization and Design RISC-
V Edition” and RISC-V's instruction set architecture manual are studied to understand
the design's functioning properly. Documents and articles on UVM and design
verification are also read to generate ideas on how the design verification should be

done.

The project flow then separates into two parallel paths upon document study
and research. One of the paths involves verification environment development and the
other consists of reference model development. On the verification environment
development path, the testbench architecture planning stage is performed to define
the verification testbench architecture. As the project utilizes UVM for verification, a
UVM testbench architecture is used for the design verification. The UVM components
that constructs the UVM testbench architecture planned are then coded to construct
the functional verification environment. On the other hand, reference
model development is to develop a reference model based on the reference documents
studied. The reference model provides the expected data for functionality checking of
the design under test. Therefore, extensive verification needs to be performed to ensure

its functionality correctness.

When both reference model and verification environment are constructed and
verified, the project flow proceeds to the simulation and verification stage which
comprises of the main design verification work. Simulation-based verification is
performed to check the functionality correctness of the design under test. Bugs
encountered during simulations are debugged, and the simulation runs are reiterated.

The cycle of simulation and debugging are repeated until the design is bug-free.

Following the simulation-based verification stage, verification analysis is
performed to determine the sufficiency and thoroughness of the design verification.

Through a well-planned functional coverage plan, the functional coverage analysis
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helps identify the design functionalities verified and help provide insight on the overall
design verification progress. When the functional verification of the design is
sufficiently performed, verification closure can be performed to file the necessary

documentation for future reference purposes.

3.1.1 Design Specification

Design verification requires extensive knowledge and understanding of the
functionalities of the design to be verified. This project's subject to be verified is a
RISC-V base instruction set architecture pipelined processor. As such, RISC-V base
instruction set architecture and pipeline implementation need to be thoroughly studied
and understood. The design principles in the reference documents utilized for the
processor design studied must be aligned with the design principles used by the design
team to ensure a mutual understanding of the architecture of the design. Discussion
also needs to be held with the design team to determine the design functionalities to
be implemented, providing information on design functionalities that require

verification.

3.1.2 Testbench Architecture Planning

A well-planned testbench architecture can help create a reusable testbench architecture
that caters to various functional verification scenarios and approaches. Providing
configurability to the testbench components allows the aforementioned functional
verification approaches such as constrained-random verification and directed
verification to be implemented using the same testbench. As a reference model is to
be utilized for the functionality checking, the UVM testbench architecture shown
in Figure 2.21 has been modified and is shown on the following page. The revised
implementation allows synchronized operation between the reference model and the

design under test. The synchronized operation allows the UVM monitor component to
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capture the synchronized output and send it to the UVM scoreboard component for

further analysis.

UVM Testbench |

Test |
Environment

Agent

I Sequencer m Scoreboard

e

| Interface |

| Design Under Test (DUT) | | Reference Model (REF) |
|

Figure 3.2: Revised Verification Testbench Architecture.

3.1.3 Functional Verification Environment

The UVM components that construct the functional environment and the testbench
architecture are developed. The verification components developed are derived from
the UVM standardized class library and further defined based on design verification
requirements. ModelSim has been selected as the platform for the code designing,
simulation, and verification process due to its capability to handle system simulations

and produce waveforms for detailed debugging.

3.14 Reference Model Development

Simulation-based verification for a complex system usually deploys a reference model.

A reference model has been developed based on the reference documents on RISC-V
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base instruction set architecture studied. The reference model design is done based on
the functionalities implemented by the design team to allow for synchronized
operation between the reference model and the design under test. The functionality
correctness of the reference model developed is verified using the verification
testbench developed. The verifications provide insight into improvement opportunities
on the functional verification environment and possible features to be added. The
reference model development is completed when all agreed design functionalities are

implemented and verified.

3.1.5 Simulation and Verification

The simulation-based verification is executed when the design prototype, reference
model, and functional verification environment are constructed. Bugs identified in the
verification models or discrepancies identified in the models are debugged.
Communication is established with the design team to discuss the bugs identified. The
debugged design provided by the design team is sent for regression test to ensure the
debug fix does not introduce new bugs to the system. The process of simulation and

debugging is repeated until the design is bug-free.

3.1.6 Verification Analysis

A functional coverage plan written for the design verification is utilized for functional
coverage analysis. Functional coverage analysis provides a coverage metric that offers
insight into design verification progress. Additional test cases are generated for the
verification process if insufficient testing is performed. Directed verification is also
utilized to verify corner cases. If additional features are added to the verification
environment or the design, the reference model and testbench development, simulation,
and verification stages are repeated. When sufficient verification is performed on the

design, the design verification proceeds to the verification closure stage.
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3.1.7 Verification Closure

The final stage of the design verification flow involves the documentation of the design
verification, such as the functionalities tested and reports on the overall verification

coverage to determine the robustness of the verification performed.

3.2 Project Timeline

Gantt charts have been created to schedule the tasks to be carried out for the project.
The task scheduling allows the project to progress without unwanted delays and to
complete on time. The following Gantt charts show the planning for the first phase and

second phase of the project:

Week

Final Year Project Phase 1

1‘2‘3‘4 5‘6‘7‘8‘9‘10‘11‘12‘13‘14

Background Research

Verification Environment Development

Reference Model Development

Simulation and Verification

Documentation

Presentation

Figure 3.3: Gantt Chart for Phase 1 of Final Year Project.

Week
Final Year Project Phase 2
1‘2‘3‘4 5 6‘7‘8‘9‘10‘11‘12‘13‘14

Instruction Implementation .-

Interface Design Under Test

Verification and Debugging

Directed Verification Testcase Writing

Verification Documentation

Report Writing

Figure 3.4: Gantt Chart for Phase 2 of Final Year Project.
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This section provides a detailed explanation on the simulation-based verification flow.

Start
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Figure 3.5: Verification Simulation Flow.
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3.3.1 Verification Specification

The verification environment alongside the reference model and the design under test
is first compiled and checked for syntax errors. Through the use of command line
arguments, specifications can be provided to configure the testbench components and
the nature of the test case, allowing the verification environment to be reused for
various test scenarios. The following table provides information on the specifications

that can be inputted to modify the verification test:

Table 3.1: Test Arguments for Verification Specification.

+TESTLOG
+SEED=<val>

Configures the verification environment to generate test log

Specifies the test seed to be tested. The verification environment clones
pre-existing test case or creates the test case using instruction code
generation and stores the created test case onto repository. If

unspecified, a default seed number of “0000” is used.

+INSTR=<val> Specifies the amount of instructions to be generated for a given test

case. If unspecified, a default amount of 500 instructions is generated.

+FORCE_GEN Configures verification environment to generate new instruction set for

specified test seeds, renewing pre-existing test case in the repository.

+INSTR_TYPE=<val> Specifies the instruction types (R-type, SB-type) to be generated. If

unspecified, all instruction types will be generated by default.

+BATCH_TEST Configures the verification environment to execute multiple test cases

specified in a seed file.

+CONT Configures the verification environment to run all the test cases
provided in a batch test. Instead of ending the simulation upon
encountering mismatch, the mismatch and the test case failed are

recorded onto a file named “FAILED.txt” for further debug.

+BATCH_SEED=<val> Specifies the seed file containing the test cases for multiple test case

run. If unspecified, a default file named “SEED.txt” is accessed.

+DIRECTED_ TEST Configures the wverification environment to perform directed
verification. The test instructions written in a file named “TEST.txt”
are translated to machine language and driven to the test models for

simulation,

+SKIP. MACRO_CHECK

Bypasses macro checking of stall and flush conditions.

+MACRO_OVERWRITE

Configures the verification environment to renew the historical values

of stall and flush conditions executed for a test case.
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3.3.2 Instruction Code Generation

Upon starting the simulation, the testbench first instantiates all the verification
components and models. The models are first applied with a reset signal, halting them
until the verification environment finishes setting up the test case. While the reset
signal is asserted, the driver component sends requests for sequence generation,
requesting for generation of sequence items which are the instruction codes to be sent
to the models. Upon completion of instruction code generation, the instruction code
transactions are stored externally onto files named "ASM.txt" and "PROM.txt". A data
transaction signalling the completion of instruction generation will also be sent to the

driver to inform the completion of instruction generation.

The methodology utilized ensures that the full program instructions are
generated before the models start operating. In contrast to the traditional transaction-
to-transaction simulation, the availability of the entire program allows the pipelined
processor to execute jump or branch instructions without issue. In the case of jump or
branch instructions, the instruction code at the target address specified by the jump or
branch instruction needs to be available to the instruction memory on the next clock
cycle. In traditional transaction to transaction simulation, instruction codes are
generated and driven to the models upon prompt, which may result in a bad test case
when the models attempt to access an instruction code at an instruction address that is

yet to be generated by the testbench.

The instruction code generation function represents the constrained-random
verification for the design verification. The instruction codes are randomized but are
constrained such that they remain as valid instruction codes that the processor models
can process. Among the specifications that can be provided to the system, the
“+INSTR_TYPE=" argument specifies the instruction type to be generated. When
specific instruction types are provided, the corresponding opcode for the instruction
type is added to a pool from which the instruction generator will randomly select an
opcode. If no instruction type is specified, all instruction types will be added to the
pool, allowing the generator to generate any valid instruction type. The following code

segment shows how the randomization of specified instruction type is performed:



for(int pointer = 0; pointer < instr_type.len(); pointer ++) begin
case (instr_type [pointer])
"R" : begin
possible opcode [randomizer] = “E_OPCOLDE;
randomizer ++;
end
I begin
possible_opcode[randomizer] = “I_OFCODE;
randomizer ++;
=nd
L kegin
possible opcode [randomizer] = ~LOAD OPCODE;
randomizer ++;
end
J kegin
possible_opcode [randomizer] = “JALR OFCODE;
randomizer ++;
=nd
4] kegin
case (instr type[pointer + 1])
g : bkegin
possible_opcode [randomizer] J_OPCOLDE;
randomizer ++;
pointer ++;
end
default : begin
possible opcode [randomizer] U_OFCODE
randomizer ++;
=nd
endcase
end
"3 : begin
case(instr_tvpe[pointer + 1])
"B" : begin
possible opcode [randomizer] 5B OPCODE
randomizer ++;
pointer ++;
end
default : begin
possible_opcode [randomizer] 5 OPCODE
randomizer ++;
end
endcase
end
T : continue;
default : “uvm_fatal ("ERRCR","SEQ_ITEM ERROR: invalid INSTR_TYPE specified”
endcase
end
opcode = possible_opcode[furandom range ( (randomizer-1),0)]1:

Figure 3.6: Randomization of specified Instruction Type.
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For instruction fields requiring fewer constraints, the instruction field is

specified as a randomized variable, allowing a randomized value within the specified

range to be assigned to the instruction field. The following figure shows the declaration

of randomized instruction fields and randomizer variables:

rand bit ["FUNCTI3 WIDTH-1:0] funct3 =
rand bit ["FUOHNCT IDTH-1:0] funct? =
rand kit [ TH-1:0] «rsl =
rand bit [ TH-1:0] rs2 =
rand kit ["R IDTH-1:0] xd =

={7,0);
(127,0);
(31,0);:
(31,0);
(31,1);:

Figure 3.7: Declaration of Randomized Instruction Fields.
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For the specification of funct3 and funct7 fields for the opcode generated from
the valid pool, specific values are assigned through randcase, a randomized case
statement that randomly selects one of its statements based on the probability assigned.
The following shows how the funct3 and funct7 fields are selected based on the opcode

generated and the randcase statement:

case (opoode)
R_OFCODE : begin
randcase
l: funct3 = "RDD FUNCT3;
1: funct3d = “5LL_FUNCT3;
1: funct3 = “3LT_FUNCT3;
1l: funct3 = “SLIU_FUNCTI3;
1l: funct3 = "XOF_FUNCTI3;
1: funct3d = "5E_FUNCT3:
1: funct3 = "OB_FUNCT3;
1l: funct3 = "RND FUNCTI3;
endcase
end
LORD_OFCODE begin
randcase
l: functd = "LB FUNCI3;
1: funct3 = "LH FUNCT3;
1l: functd = "LW_FUNCT3;
l: funct3 = "LBU_FUNCTI3;
1l: funct3 = "LHU _FUNCTI3;
endcase
end

Figure 3.8: Assigning valid funct3 field using randcase.

case {opcode)
R_OFPCODE : begin

case (functd)

ADD_FUNCT3,

SE_FUNCI3: begin
randcass
1: funct? = “DEFRULT FUNCT7;
1: funct? = "RLT_FUNCTT;
endcase

end
default: funct? = "DEFAULT_ FUNCT7T:
endcase
end
I_OFCODE : begin

case (functl)

SLL FUNCT3: funct? = "DEFAULT FUNCT7:

S5R_FUNCT3: begin
randcase
l: funct7 = "DEFRULT_FUNCIT7:
l: funct? = "ALT FUNCT7:
endcase

end
endcase
end
endcase

Figure 3.9: Assigning valid funct7 field using randcase.
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Lastly, the instruction code is constructed using the instruction fields generated
by concatenating the appropriate fields in the correct order based on the instruction
type. An additional constraint is imposed for branch instructions to ensure a
constrained branch range for better test case quality. The following code segment

shows how the instruction code is formed from the instruction fields generated:

// Branch Address Constraint
c poode)
| E: begin
{instr code[31l],instr code[l9:12],instr_code[20],instr_code[30:21]} =
(8,4) * "IN
rd = (31,0);:
instr code[ll:0] = {rd, opcode};
end
5B_OPCODE: begin
[instr code[31l],instr code[7],instr code[30:25],instr code[ll:8]} =
{&,4) * "INST_ADDE_SUM:
instr_code[24:12] = {rs2,rsl, funct3};
instr code[6:0] = opcode;
end
JALE. OFCODE: begin
immediate_value = {current_instr number + I, current_instr number + 4) * “INST_ADDE SUM;
rsl = 0;
instr code = [immediate walue[ll:0],rsl,funct3,rd,opcodel;
end
default: instr code = [funct7,rs2,rsl,funct3,rd,opcode};
endcase

Figure 3.10: Concatenation of Instruction Fields into Instruction Codes.

The constructed instruction codes are then stored into ASM.txt and PROM.txt,

as shown in the code segment below:

f/ Output instruction code and address
Zh = ("L "at™)

(fh, h", instr_addr, instr_code);
{fh);
f/ Output instructicn e in bytes
fh = ("EROM .
(fh, 1", instr_code[3l:24], instr_code[23:16], instr_code[l5:8], instr_code[7:0]);
{fh);

Figure 3.11: Storing of Instruction Code and Address onto ASM.txt and PROM.txt.

This instruction generation process is reiterated until the specified number of
generated instruction codes is achieved. The number of instruction codes to be
generated can be specified in the command line through the argument “+INSTR=".
The following figures show the instruction codes generated alongside their

corresponding instruction address in “ASM.txt” and the segmented instruction codes
in “PROM.txt™:
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B800BBRE8 ef28c1173
00000004 82267067
BeeeBRe8 419fdbb3
8008BBECc eaB7bB8]
60808010 d5615483
8008814 4b95ecB
80008018 8a9fecl3
B8eeBBR1c 674a84073
680608020 4c5cB683

Figure 3.12: Instruction Address and Instruction Code on ASM.txt.

64 Bc e2 93
B2 19 7@ 63
93 89 fe 13
B2 45 8 63
c5 ca 87 83
df df 4a 83

Figure 3.13: Segmented Instruction Code on PROM.txt.

As instruction code generation for test cases may consume a lot of simulation
time, test case simulations can become tedious if instruction code generation needs to
be executed each time. Therefore, the text files containing the instruction codes
generated are cloned onto the test repository. An additional feature whereby the system
checks through the test repository for existing test cases is implemented. The
verification environment checks through the test repository for pre-existing test cases
on repeated test case simulation. If pre-existing test case is detected, the test case will
be cloned, and instruction code generation will be bypassed, saving a lot of simulation
time. If a pre-existing test case is not found, instruction code generation will then be
executed, and the files generated will be cloned to the test repository. This added
feature can also be bypassed, forcing the verification environment to execute the
instruction code generation function and update the test repository through the

command line argument “+FORCE_GEN”.
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3.33 Directed Test Assembly Language Translation

A feature to translate manually written test cases from assembly language to machine
language is introduced to the verification environment to incorporate directed
the When the
“+DIRECTED_TEST” is provided, instruction code written in assembly language on

verification into environment. command line argument

a text file named “TEST.txt” will be translated into machine language instruction

codes. The following figure shows a sample program written in assembly language:

addi x3, x1, 3000
add w2, x1, *3
and w1, w2, 3
lui wd, 1

Figure 3.14: Assembly Language Instruction Codes in TEST.txt.

The following code segment showcases how the file is accessed for the
instruction operation and compares it with a list of instructions defined. If a correct
instruction operation is matched, the corresponding values for opcode, funct3, funct?
fields are assigned, and the instruction type is defined for encoding and operand

processing purposes.

instr_addr = 0;

while (! {fh))
shift_type
store_type
load_type =
dv_instr_type
assembly code "
code = {fth,"%s5",assembly code);
case (assembly_code)

begin

a;

"add":
opcode
funct3

"aub":
opcode
funct3

m"g11™s

Figure 3.15: Translation of Assembly Code Instruction Operation.
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Following the identification of the instruction operation, the first operand is
subsequently obtained and processed for its information before the processed
information is placed into the correct field based on the instruction type currently being
executed. The following code segment shows how the first, second, and third operands

are accessed, processed, and placed into the correct instruction fields:

code = £1f3 T (fh, "%3",cperand) ;
min_range -1;
for{int i = 0; i1 < operand.len{); i++) bkegin
case (operand[i])
"E" continue;
" continue;
"o max_range = i1 - 1;
default:begin
if (min_range < 0)
min_range = 1i;
end
endcase
end
operand = operand.substr(min_range,max_ range);
if{dv_inatr type == "3")
rs2 = operand.atoi();
glse if(dv_instr type == "B")
ral = operand.atoi():
else
rd = operand.atoi();

Figure 3.16: Translation of Assembly Code First Operand.

code = $fscanf(fh,"%s",operand);
if(dv_instr_type !'= "J" && dv_instr_type != "U") bkegin
min range = -1;
for{int i = 0; i < operand.len(); i++) begin
case (operand[i])
"H": continue;
"o continue;
B kagin

max_range = i - 1;
hold = operand.substr(min_ range,max range);
immediate_walue [11:0] = hold.atoi();
min ranges = -1;
end
"y,
- max range = i1 - 1;

default:kegin

if (min_range < 0}
min_range = i;

end
endcase
end
operand = operand.substr(min_range,max range);
if{dv_instr type == "B")
r32 = operand.atoi();
glse
rsl = operand.atoi();
end
1s=

immediate walue [20:1] = operand.atoi();

Figure 3.17: Translation of Assembly Code Second Operand.
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if{leoad type == 0 && store_type == 0 && dv_instr type != "J" && dv_instr type != "U") kegin
code = Sfscani(fh,"%s",operand);
min_range = -1;
max_range = operand.len{) - 1;
for{int i = 0; i < operand.len{); i++) Legin
case (operand[i])
—
" continue;

default:begin
if(min_range < 0)
min_range = i;
end
endcase
end
operand = operand.substr(min_range,max_range);
case (dv_instr_type)
"R": r32 = operand.atcif);
"Im: regin
if(shift_type == 1)
immediate wvalue [4:0] = operand.atoi():
else
immediate walue [11:0] = operand.atoi():
end
"B": immediate_walue [13:1] = operand.atoi():

Figure 3.18: Translation of Assembly Code Third Operand.

After performing translation for all the operands, the information obtained is
concatenated into a valid instruction and stored externally onto “ASM.txt” and
“PROM.txt”. The translation process is repeated for all the instructions contained in

the test file. The following figure shows the concatenation of the instructions:

case (dv_instr type)
"R": instr_code
instr_code
instr_code

{funct7,ra2, ral, funct3, rd, cpcode] ;
{immediate_wvalue[11:0],rsl, funct3,rd, opcodel;
{immediate_wvalue[11:5],rs2, rsl, functs,
immediate_value[4:0],opcode}r

"B": instr_code = {immediate walue[l2],immediate walue[l0:5],
r32,rsl, funct3, immediate wvalue[4:1],immediate_walue[ll],opcode};
TJ": instr_code = {immediate_wvalue[20],immediate value[l0:1],immediate_walue[ll]
immediate valus[19:12],rd,opcode};
B Vi instr_code = {immediate_walue[1%:0],rd,opcodel;

M.txt"™, "a+"):
$%h %8h", instr_addr, instr code);

sfclose (f o
instr_addr = instr_addr + 4;

Figure 3.19: Concatenation of Translated Information into Instruction Code.
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334 Instruction Memory Setup

Upon completing generation of instructions, cloning of test case, or translation of
assembly language, a transaction signal is sent to the UVM driver component
signifying the instruction codes are ready to be loaded onto the instruction memory.
The driver component then loads the instruction code from PROM.txt onto the
instruction memory of the models through the top testbench module. The following
code segment shows how instruction codes are loaded onto a dynamic memory

structure from the driver component:

f/ Load test program onto processor instruction memory
wirtual task load program(seq item transaction);
@{interface_instance.ck);
if {transaction.instr_gen completion) kegin
ading Program intc ROM™);
", testkench.riscv.rom) »
.Lxt™,testbench.riscv_ref.rom);

#1007
"Program Successfully Loaded™):

transaction.instr _gen completion = 07

endtask

Figure 3.20: Loading of Instruction Code from PROM.txt initiated by UVM Driver

component.

Based on standard memory technology, each memory register stores a byte of
data. For a 32-bit RISC-V processor, each instruction is 32 bits (4 bytes) long and is
stored in 4 memory registers. The following figure shows the instruction codes stored

on the memory structure in the instruction memory unit:

00000000 bk 80 31 93
00000004 o0 30 31 33
00000008 00 31 TO L3
0000000 OO0 00 12 37
00000010 j40 12 00 L3
00000014 00 c2 52 93

Figure 3.21: Instructions Codes stored on Instruction Memory.

After loading the instruction codes onto the models, the test run is initiated by

the test component by releasing the reset signal.
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The simulation runs in steps, allowing the UVM monitor to capture the outputs of the
models at every clock cycle and send the transactional data received to the scoreboard
and coverage component for functionality checking and coverage checking
respectively. The synchronous functioning of the pipeline models allows outputs to be

compared against each other on every cycle. The following code segment shows the

Step Simulation

transaction of model outputs to the interface for design verification:

if

Driwve signals to the testbh

end:

if({!stall) bkegin

ench for further werification

always @({posedge interface_instance.clk) bkegin: interface_block
interface_instance.
interface instance.
interface_instance.

ref_stall <= stall;
ref flush <= flush;
ref jump link <= idex ctl_op[ JUMF_LINK];

interface_instance.ref pc <= ifid instr addr:
interface instance.ref_instr <= ifid instr code:

end
interface_instance

interface instance.

case (fwrd mux 1)

.ref_reqg_read addr_ 1 <= idex_reqg addr_1;

ref _reg read addr 2 <= idex reg_addr 2:

LE: interface_instance.ref reg_read data 1 <= exmem alu output;
: kegin
it (memwb ctl op[ MEM TO BREG])

interface_instance.ref reg_read data 1 <= memwb_mem data;

interface_ instance.ref reg read data 1 <= memwb_alu data:

interface_instance.ref reg_read data 1 <= idex reg_data_1;

interface instance.ref reg read data 2 <= exmem alu output;

: egin
it (memwb ctl _op[ MEM TO BEG])
interface_ instance.ref reg read data 2 <= memwb _mem data:
glse
interface_instance.ref reg_read data 2 <= memwb_alu data;
end
10 _FWED: interface_ instance.ref reg read data 2 <= idex reg data 2:

EﬂﬂCnSE

interface_instance.
.ref_alu output <= exmem alu output:
interface_instance.
interface_instance.
.ref_reg write_ addr <= memwk write_addr:

interface instance

interface instance

interface_ instance.
interface_instance.
interface_instance.
interface instance.
interface instance.
interface_instance.

ref_imm val <= idex imm wval;

ref_alu zero <= EXMEm ZEro;
ref_ctl op <= exmem ctl_op;

ref mem addr <= memwbk mem addr;

ref_mem write_data <= memwb_mem write data.
ref_mem write <= memwb ctl cp[
ref mem read <= memwb_ctl op[ '}
ref reg write <= memwb ctl cp[ BE
ref_reg_write_data <= memwb_write data.

/7 Delayed alignment instruction executions for coverage checking

interface_instance.
interface_instance.
interface instance.
interface block

ref_ID instr <= idex_instr_code;
ref EX instr <= exmem instr_code;
ref EX pc <= exmem instr addr;

Figure 3.22: Reference Model to Interface Data Transaction.
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The UVM monitor component then captures the information sent to the
interface. The UVM monitor component converts the signals captured to transactional
data and exports them to the scoreboard and coverage components. The following code

segment shows the UVM monitor component capturing the signals from the models

and exporting them to other components via an analysis port:

super.run_phase (phase);

forever begin

@ {interface_instance.ch);
if

wirtual task run_phase (uvm _phase phase);

// BEF Transacticons

analysis_port.write (transaction):

{interface_instance.monitor_start) begin
seq_item transaction =
/f DUT Transactions

seq_item::type_id::create("transaction");

transaction.dut_instr = interface_instance.dut_instr;
transaction.dut_pc = interface_instance.dut_pc;
transaction.dut_reg read_addr 1 = interface_instance.dut_reg read addr 1;
transaction.dut_reg read_addr 2 = interface_instance.dut_reg read addr_ 2;
transaction.dut reg read_data 1 = interface_instance.dut_reg read data_l;
transaction.dut_reg read _data 2 = interface_instance.dut_reg_read data_2;
transaction.dut_imm wal = interface_instance.dut_imm wval;
transaction.dut_alu_ output = interface_instance.dut_alu output;
transaction.dut_alu_ zero = interface_instance.dut_alu zero;
transaction.dut_ctl_op = interface_instance.dut_ctl_op;
transaction.dut reg write_addr = interface_instance.dut_reg write_ addr;
transaction.dut reg write_data = interface_instance.dut_reg write data;
transaction.dut _mem write_data = interface_instance.dut_mem write data;
transaction.dut _mem addr = interface_instance.dut_mem addr;

transaction.instr_addr = interface_instance.instr_addr;
transaction.ref_ instr = interface_instance.ref_instr;
transaction.ref_ pc = interface_instance.ref_pc;
transaction.ref reg read addr 1 = interface instance.ref reg read addr 1;
transaction.ref reg read addr 2 = interface instance.ref reg read addr 2;
transaction.ref reg read data 1 = interface instance.ref reg read data 1;
transaction.ref reg read data 2 = interface instance.ref reg read data 27
transaction.ref imm wal = interface_instance.ref imm wval;
transaction.ref alu output = interface_instance.ref alu output;
transaction.ref alu zero = interface_instance.ref alu zero;
transaction.ref ctl op = interface_instance.ref ctl op;
transaction.ref reg write_addr = interface instance.ref reg write addr;
transaction.ref reg write_data = interface instance.ref reg write data;
transaction.ref reg write = interface_instance.ref reg write;
transaction.ref mem write_data = interface instance.ref mem write data;
transaction.ref mem addr = interface_instance.ref mem addr;
transaction.ref mem read = interface_instance.ref mem read;
transaction.ref mem write = interface_instance.ref mem write;
transaction.ref stall = interface_instance.ref stall;
transaction.ref flush = interface_instance.ref Iflush;
transaction.ref jump link = interface_instance.ref jump link;
transaction.ref ID instr = interface_instance.ref ID instr;
transaction.ref EX instr = interface_instance.ref EX instr;
transaction.ref EX pc = interface_instance.ref EX pc;
transaction.end of test = interface_instance.end of_test;

// Write to analysis port (sco rage checker)

Figure 3.23: Monitor Data Transaction Relaying.




3.3.6 Scoreboard Checking

The UVM scoreboard component performs the primary functionality correctness

checking for the models in the verification environment. Signals obtained from the

reference model and design under test are compared for discrepancies. The reference

model undergoes partial self-checking testing before the model result comparison.

Specific outputs such as the source register address, ALU output, and destination

register address and data are checked. Self-checking ensures the functional correctness

of the reference model, which provides more confidence in the comparison results

produced. The following code segment shows the self-checking mechanism

implemented:

if (transaction.ref ID ) instr[ R3L

d Model: x%24",

CE_LO], transaction.ref reg read addr 1)
ADDR_LO] != transaction.ref reg read addr 2) begin
32d Model: x3ad"

DR_LO] != tramsaction.ref req read addr_l) begin

CR_LO], transaction.ref reg read addr 2)

Check EX Stage Execution Correctness
Cqs={transactlcn ref EX instr[ OPCODE_HI: OFCODE_LO])
R kegin
ase (transaction.ref EX instr[ FUNCT3_HI: FUNCT3_LO])
ADD FUNCT3: begin
case (transaction.ref EX instr[ FUNCT7_HI: FUNCT7_LO])
DEFAULT_FUNCI7: begin
behaviour result = data 1 + data_27

if {transactlcn ref_alu cutput '= behavlcur _result)

%5h Model: %8h",

behaviour result, transaction.ref alu output))

end

ALT_FUNCIT: begin

behaviour result = data 1 - data_2;

if {transactlcn ref_alu output != behav1cur _result)

£ "REF MODEL ERRCR™ f
SUB Result: ou %5h Model: %8h",
behaviour_result, transaction.ref alu_output))
end

endcase
end
SLL_FUNCT3: begin
behaviour_result = data 1 << data 2[4:0];
if {transactlcn I lu output != behav1cur _result)

ec Model: %3h",
behaviour_result, transaction.ref alu _output) )
end

Figure 3.25: Instruction Execution Output Self-Checking.
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// EEMEM Stage to MEMWB Stage Pipeline
reg_write_check = reg write check buffer;
// Check instruction type at EX Stage

case (transaction.ref EX instr[ OPCODE_HI: OPCODE_LOJ)

reg_write_check_buffer = 1;

end
default: reg write_check buffer = 0;
endcase
// EXMEM Stage to MEMWE Stage Pipeline

write_address_check = write_address_buffer;
write_data check = write_data_buffer;
write_address buffer = transaction.ref EX instr[ RD ADDR HI: RD RDDR LO]r
f# For JAL and JALR
if (transaction.ref EX instr]
transaction.ref EX instr[ O .
write_data_buffer = transaction.ref EX pc + "INST_

1 TORC

J_OPCODE | |

RO

0]
0] 0

zlse

write_data buffer = transaction.ref_alu_ output;

if (reg_write_check) begin
ff/Check Rddress

if(write_address_check != transaction.ref reg write_addr)
uvm fatal ("REF MODEL ERRCR", 3 tf
{"Incorrect write register address: Behaviour: x%2d Model: =x%24",

write_address check, transaction.ref reg write addr))
/fCheck Data

if(write_data check != transaction.ref_. rite_data)
fatal ("REF MODEL ERROR", % £
{"Incorrect write register data: iour: %&8h Model: $5h",

write_data_check, transaction.rei_reg_write_data))
end

Figure 3.26: Register Write Address and Data Self-Checking.

Aside from checking on specific outputs of the reference model, self-checking
also checks for assertions of stall and flush control signals. The stall assertion checking
is performed on detecting load-use cases, whereas flush assertion checking is
performed on detecting branch condition fulfilment or jump instruction. The following
code segments showcase the self-checking mechanism for stall and flush control signal

assertions:

/¢ Check for Load-use case and Stall assertion

if{load flag z=

{transaction.ref ID instr[ RS2

transaction.ref_ID instr['R

transaction.ref EX instr[ RD
load use_flag = 1;

ransaction.ref EX instr[ 'RD
ransaction.ref EX instr[ RD

else
load use flag = 0;
/¢ ID Stage Load Detection
if(transaction.ref ID instr[ COFCO
load_flag = 1:

HI: OPCODE_LO] == "LOAD OFCODE)

zlse
load flag = 07
/¢ Check for 5tall Combinational Cutput upon EX Stage Load ID Stage Use
if{load use flag) begin
if(!transaction.ref_stall)
uvm_fatal ("REF MODEL ERRCR", "Load-use Case Not Stalled™
else
load_use_flag = 07

Figure 3.27: Stalling on Load-use Cases Self-Checking.



// Check for Branch or Jump Execution

‘lush assertion = flush buffer;

flush buffer = transaction.ref_flush;

case (transaction.ref EX inatr[ OFPCODE _HI: OFCODE_LO])
5B COPCOLE: branch check flag = 1;

o LEL

JALR OPCODE: jump check flag = 1;
endcase
if {({branch_check_flag && transaction.ref alu zero) || jump check_flag) begin

if({!flush assertion)
uvm_fatal ("EEF MODEL ERROR", "Branch or Jump not Executed™)
end
branch_check flag =
jump_check_flag = 07

Figure 3.28: Flushing on Branch or Jump Instructions Self-Checking.
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After self-checking, the instruction received is decoded to assembly language

for user reference and instruction validity checking. The decoded instructions are also

stored externally on a file for log documentation purposes. The following code

segment

shows part of the instruction code decoding process:

fl = £

spen ("INSTR.txt", ™a+");

case {opcode)
R_OFCODE: begin

case (functi)

ADD FUNCT3: begin
case (funct7)
DEFAULT_FUNCTI7: begin

uvm_info("SCBD", fsfcrmati(™add x%ad, x%ad, x%ad",
rd, rsl, rs2), UVM_MEDIUM)
sfdisplay(fl, ™add x%2d, x%ad, ®%24", rd, rsl, rs2):
end
ALT FUNCI7: begin
uvm_info ("SCBD", ;sformatf ("sub x%2d, ®%2d, xEad"
rd, rsl, ra2), UVM _MEDIUM)
sfdisplay(fl, "sub x%2d, x%ad, x®%2d", rd, rsl, rs2);
end
default: “uvm fatal ("ERROR",s3formati
{"Unknown funct? field Failing Field: £7b Failing Instruction:
funct7, transaction.ref instr))
endcase
end
SLL FUNCT3: begin
uvm_info("5CBD", s5formati("sll x%2d, x%2d, ®%2d",
rd, rsl, rs2), UVM_MEDIUM)
sfdisplav({£fl, ™s3ll x%ad, x%2d, x%2d", rd, rsl, rs2);
=nd
SLT_FUNCT3: begin
uvm_info("5CBD", $sformati("slt x%2d, x%2d, x32d",
rd, rsl, rs2), UVM MEDIUM)
sfdisplay(fl, ™slt x%2d, ®%2d, x¥%2d4", rd, rsl, rs2):
end
SLIU_FUNCI3: begin
uvm_info ("5CBD", $3formati{"sltu x%2d, x%ad, x%ad"
rd, rsl, rs2), UVM_MEDIUM)
sfdisplav({fl, ™sltu x%ad, x%2d, x%2d", rd, rsl, rs2);
=nd
EOR_FUNCT3: begin
uvm_info("5CBD", $sformati("xor x%2d, x%2d, x32d"
rd, rsl, rs2), UVM MEDIUM)
sfdisplay(fl, ™xor x%2d, ®%2d, x¥%2d4", rd, rsl, rs2):
and

Figure 3.29: Decoding of Instruction Code being executed.
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The decoded instruction will also be displayed to the user on the transcript, as

shown in the figure below:

[SCBD] addi X 3, x 1, 0xbha
[SCBD] add X 2, x 1, x 3
[SCBD] and x1, X 2, X 3
[SCBD] lui x 4, 0x00001
[SCBD] =suk x1, x 4, x1l
[SCBD] =rli x5, x 4, 12

Figure 3.30: Display of Decoded Instruction Code on ModelSim Transcript.

After performing a validity check on the instruction codes received, the
information on each pipeline register is stored externally onto temporary text files,
which will be accessed for test log documentation later. The information from the
reference model and design under test are then compared. The following figure shows

the storing and comparing of pipeline register values:

if({transaction.ref _pc != transaction.dut pc) begin

mismatch = 1;

uvm_info (" ICH", "Mismatch Encountered at IF/ID Pipeline Register™,UVM LOW);
TCH™, " d ing Program Counter”,UVM LOW);
TCH™, 5 C: %8h", transaction.ref pc),UVM _LOW) :
TCH", : %Eh", transaction.dut_pc),UVM _LOW);
end
if(transaction.ref_instr != transaction.dut_instr) begin
mismatch = 17
er”, UVM_LOW) »
transaction.ref_instr) ,UVM LOW);
transaction.dut_instr) , UVM LOW);
end

Figure 3.31: Comparison of Data between Reference Model and Design Under Test.

If any discrepancy is identified, the scoreboard asserts a mismatch flag and
halts the test execution. The scoreboard will then perform the test log documentation
process to capture information regarding the mismatch. If no discrepancies are found
between the models, the scoreboard reiterates the checking of information received for

every clock cycle until the end of the test execution.



3.3.7

The UVM coverage component has been integrated as part of the verification
environment, allowing functional coverage analysis to be performed on the various
test case executed. By obtaining the transaction data from the monitor component, the
coverage component can perform coverage collection on the instructions being
executed. A coverage plan is first written to specify the conditions to be captured for

the coverage checking. The following code segment shows the conditions for

functional coverage analysis:

Coverage Collection

covergroup functional_ cower;
option.per_instance = 1;
option.get_inst_coverage = 1;
stall: transaction.ref stall {
flush: transacticn.ref flush {
uncond jump: transaction.ref ID instr[ CPCODE_HI: OPCODE LO] {
jal =
jalr =
cond_Jumps: {transaction.ref ID instr[ FU
transaction.ref ID_instr[ OPCODE_HI:
bins beq_ = { 2
bins bne_ = {
bins blt_ = {
kins bge_ = {
bins bltu = {"B
bins bgeu_ = {
}
loads: coverpoint {transaction.ref EX instr[
transaction.ref EX instr[ 0
Lins 1b_ = { VR ;
kins 1h = {
kins 1w = {
bins 1bu = {
kins lhu = {
}
instructions_A: coverpoint {transaction.ref EX instr[ FUNCT3_HI: FUNCT3_LO],
transaction.ref EX instr[ 0FCO HI: "OPCODE_LO]} {
bins sb_ = { 1
bins sh_ = :
bins aW_ =
bins addi =
bins 3111 =
bins xori =
bins ori_ =
bins andi =
bins slti_ =
Lbins sltiu_ =
}
instructions B: coverpoint {transaction.ref EX instr|
transaction.ref EX instr|
transaction.ref EX instr['0
bins srli_ = { I
bins srai_ = {
bins add = {"A
kins sub = {
bins 311 = {
bins XOr_ = {
bins srl_ = {
bins sra_ = {
kins or = {
bins and =
bins slt_ =
bins sltu =
}
instruction C: coverpoint {transaction.ref EX instr[ OPCODE_HI: CPCCDE LOT}
bins lui = {*U_OPCODE};
}
load_use_stalls: cross loads, stall;
cond_Jump flushes: cross flush, cond_jumps;

Figure 3.32: Functional Coverage Cover Points.
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Coverage collection provides insight towards design functionalities that are yet
to be tested in test cases, allowing directed verification to be performed to verify these
untested functionalities. Crossed coverage points can further increase the complexity
and thoroughness of the functional coverage analysis. A well-planned coverage plan
can provide accurate insight into the verification progress. When the coverage
argument, “-coverage” is inputted as a command line argument, the detailed coverage

information can be displayed as shown in the following figure:

:,—“ [Test_sv_unitfcoverage 100.00%

=+l TYPE functional_cover coverage 100.00% 100 100.00... N {
_TJ—‘ CVP functional_cover::stall coverage 100.00% 100 100.00... N {
+ gl CVP functional_cover::flush coverage 100.00% 100 100.00... KD (
_TJ—‘ CVP functional_cover: :uncond_jump coverage 100.00% 100 100.00... N {
_TJ—‘ CVP functional_cover::cond_jumps coverage 100.00% 100 100.00... N {
j+J—j CVP functional_cover::loads coverage 100.00% 100 100.00... NG
_TJ—‘ CVP functional_cover::instructions_A coverage 100.00% 100 100.00... N {
=+ .4l CVP functional_cover::instructions_B coverage 100.00% 100 100.00... N {
B] binsrii_ 434 1 100.00... I
-B] bin srai_ 459 1 100.00... I
B] bin add_ 477 1 100.00... I
-B] bin sub 515 1 100.00... I
B] binsl_ 936 1 100.00... D
B] bin xor_ 985 1 100.00... I
-B] binsrl_ 4885 1 100.00... I
B] bin sra_ 479 1 100.00... I
-B] binor_ 934 1 100.00... I
-B] binand_ 923 1 100.00... I
-E] binslt_ 971 1 100.00... I
LB] bin situ_ 925 1 100.00... I

= CVP functional_cover::instruction_C coverage 100.00% 100 100.00... N {
Tr [E] bin lui 7704 1 100.00... I
=+ 4l CROSS functional_cover::load_use_stalls coverage 100.00% 100 100.00... N {
-B] bin <b_no_stal> 877 1 100.00... I
-B] bin <h_no_stal> 351 1 100.00... I
HE] bin <iw_no_stall> 1838 1 100.00... I
-B] bin <bu_no_stall> 1736 1 100.00... I
HE] bin <thu_no_stall= 1782 1 100.00... IR
B] bin <b_stalled> 51 1 100.00... I
B] bin <h_stalled> 54 1 100.00... IR
B] bin <k _stalled> 114 1 100.00... I
EB] bin <bu_stalled> 116 1 100.00... I
LB] bin <hu_stalled> %6 1 100.00... IR
=+ 4l CROSS functional_cover::cond_jump_flushes coverage 100.00% 100 100.00... N {
I-E] bin <no_flush,beq_x> 684 1 100.00... I
E] bin <flushed,beq_> 275 1 100.00... IR
[E] bin <no_flush,bne_> 260 1 100.00... IR
I-B] bin <flushed,bne_x 713 1 100.00... N
E] bin <no_flush,bit_> 615 1 100.00... IR
-B] bin <flushed,blt_> 310 1 100.00... I
[E] bin <no_flush,bge_> 335 1 100.00... IR
+B] bin <flushed,bge_x 602 1 100.00... I "
HE] bin <no_flush,bltu_x 605 1 100.00... IR
-B] bin <flushed,bltu_> 323 1 100.00... I
B bin <no_flush,bgeu_x> 1014 1 100.00... I
LE] bin <flushed,bgeu_> 1783 1 100.00... N

Figure 3.33: Functional Coverage Statistics for a Test Case Simulation.

The functional coverage statistics shown provide insights on the specific types
of instruction that have been executed as well as the stall and flush conditions
encountered during the execution of the instruction. The crossed conditions also
provide information on the conditions of specific instructions, such as load-use case

stalling and conditional branch flushing.



3.3.8

Mismatch Documentation
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When a mismatch is encountered, the test execution is halted, and information

regarding the mismatch is provided on the transcript interface as shown below:

[MISMLTCH]
[MISMLTCH]
[MISMETCH]
[MISMETCH]
[MISMETCH]
[MISMLTCH]
[MISMETCH]
[MISMETCH]
[MISMATCH]

Mismatch Encountered at EX/MEM Pipeline Register
Mismatching ALU Jutput

REF ALU Cut: 0000000000000000

DUT ALU Cut: 0000000000000cal

Mismatch Encountered at EX/MEM Pipeline Begister
Mismatching ALU Zerc

REF ALU Zero: 1

OOT ALUO Zero: 0

Mismatch encountered, Logging Test Informaticn

Figure 3.34: Mismatch Message generated on ModelSim Transcript.

The information displayed provides insight into the pipeline register that
provided mismatching values as well as the mismatching parameter and values. Next,
the scoreboard component has been implemented with a feature to perform test log
documentation, which can be used for debugging purposes. The test log documentation

includes instructions executed and the internal states of the pipeline registers.

The logging process begins by clearing several cycles of null information
stored on different pipeline registers. These null information stored on the pipeline
registers are due to the pipeline filling process whereby for a 5-stage pipeline, 4 clock
cycles are required for all the pipeline registers to be filled with instructions. Clearing
the null information allows the pipeline registers to be aligned in instruction execution
which eases the logging process. The following figure shows the pipeline filling

process and the null information on the pipeline stages:

Instruction
Fetch

Instruction
Decode

Execution Writeback

Clock Cycle 1 IRl G| NULL NULL NULL NULL
LT e A BV Tnstruction 2 | Instruction 1 NULL NULL NULL
SN e BRI Instruction 3 | Instruction 2 | Instruction 1 NULL NULL
SN e B Tnstruction 4 | Instruction 3 | Instruction 2 | Instruction I NULL
LT e Tnstruction 5 | Instruction 4 | Instruction 3 | Instruction2 | Instruction 1

Figure 3.35: Pipeline Filling and Null Information on Pipeline Stages.



&3

The following code segment shows the removal of invalid information from

the temporary text file used to store pipeline register data:

fh ifid = I r
fh_idex = ("IDEX.txt", "r
fh_exmem = n("EXMEM. txt",

fh memwlb = "MEMWB.txt", "r"
fh_instr = NSTR.txt™, " :
fh_stall = "PIPELINE.txt", "r"};
fh_flush = "FLUSH.txt™,"r")
fh_jump = = {"JUME.txt", "c");

fh log = $fopen("LOG.txt", "wW"):

f/ Dump NULL informaticon

f/ Clear 1 cycle for ID/EX and macro status

for{int 1 = 0; i < 1; i++) kegin
for{int k = 0; k < 107 k++)

code = Sfscani(fh_idex,"%$s",dump);
code = £ fh_stall,"%s",dump);
code = fh_flush,"%s",dump) ;
code = 5Z fh_jump, "%s",dump) ;
=nd
ff Clear 2 cycles for EX/MEM
for{int 1 = 0; 1 < 2; i++) kegin
for{int k = 0; k < &; k++)
code = Sfscanf(fh_exmem,"$s",dump);
end
// Clear 3 cycles for MEM/WB
for{int i = 0; i « 3; i++) kegin
for{int k = 0; k < 11; k++)
code = Sfscanf(fh_memwb,"%s",dump);
end

Figure 3.36: Removing invalid data from Pipeline Register Data Record.

After removing the invalid pipeline filling data, the pointers pointing towards
the data on each pipeline register data record are aligned and accessed, formatted, and
outputted into the test log documentation. The following code segment shows the

formatting and logging of test results:

T {fh_exmem, "%3",file_transact_l); //Control Signal
{fh_exmem, "%s3",file_transact_2);

L

(fh_exmem, "%s",file transact_3); //ALU Output

{fh_exmem, "%3",file_transact_4);
fh exmem, "%¥3",file_transact_35); //Isro
ni{fh_exmem,"%s",file_transact_&);
v (fh_log, "---—————————————————————— AL Operation-—-—-—————————————————————— ——— "V
sfdisplay(fh_log, "Contrel Signal : REF: %E8b\n DUT: %8b™,
file transact 1, file_ transact 2);
zfdisplav(fh_log, "ALU Output : REF: %Zh\n DUT: %8h",
file transact 1, file transact_2);
sfdisplay {fh_log, "ALU Zerc Signal : REF: %1b\n DUT: %1b",
file_transact_l1, file_ transact 2);
if({({file_transact_l !'= file transact_ 2) || (file transact 3 != file transact_4) ||

(file_transact 5 != file_ transact &)) begin
mismatch_found = 1;
break;

Figure 3.37: Formatting and Logging of Information.
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The following figure shows an example of test log output for a mismatch case:

=========================]nstruction b=========================
Instruction Address: REF: 68886864c
DUT: £0ABARAc

Instruction Code : REF: cc938da3
DUT: cc938da3
Instruction Decode : sb x 9, cdb(x 7)

------------------------- Register Access--------ommmmmmmommo o

Register Read : REF: x 7:00000800
x 9:00000000
Register Read : DUT: x 7:000000808
¥ 9:00000000
Immediate Value : REF: B808acdb
DUT: poeeacdb
------------------------- ALU Operation----------commmmmmo e
Control Signal : REF: 1eee1le
DUT: 1eeele
ALU Control Signal : REF: 2818
DUT: ©ele
ALU Output : REF: 0eoooeoo

DUT: eeeedcdb

Figure 3.38: Test Log Documentation on Mismatch Instruction.

The information documented in the test log can provide context on
mismatching cases, allowing a thorough analysis to be performed. The test log
documenting feature can also be configured such that test log documentation is also

performed for passing test cases. This is achieved through the command line argument

“+TESTLOG”.

File handling of the test log documents generated is performed after test
execution. The test log documents are relocated to relevant test case folders in the test
result directory. The temporary text files created for the test log documenting process

are also removed to ensure the system is clutter-free.
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3.3.9 Macro Check

Another additional feature implemented is macro status consistency checking. This
feature ensures that the macro status, such as the number of stall occurrences and flush
occurrences during a regression test, is consistent with the previously stored macro
status data. If the macro status of the new design is inconsistent with previous macro
status data, the debugging performed has introduced other bugs that have altered the

functioning of the system and need to be further analysed.

This feature can be bypassed by using the “+SKIP MACRO CHECK”
command line argument. For cases where the new macro status data is correct and the
recorded status data is to be updated, the command line argument
“+MACRO_OVERWRITE” can be inputted to configure the verification environment
to update the previously stored macro status data. The following figure shows the

macro status data record of a sample test case:

stall: 4
Flush: 55
Last Updated on Thu 12/23/2821 81:83

Figure 3.39: Macro Status Data Record.

The macro status of a test case will also be recorded on the test log document

at the end of the test, as shown in the following figure:

Test Completion Time: Mon 12/27/2821 12:26
Total 5stall Encountered: 1
Total Flush Encountered: 78

Figure 3.40: Macro Status at end of Test Log Document.
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Chapter 4

RESULTS AND DISCUSSIONS

4.1 Self-Checking Bug Detection

Several tests have been performed to verify the bug detection capabilities of the
verification methodology implemented. Bugs were intentionally introduced to the
reference model to test the implemented self-checking mechanism. Due to the
complexity of the design, the self-checking mechanism is only implemented for a
limited number of characteristics of the RISC-V pipelined processor design listed

below:

e Pipeline Stalling
e Pipeline Flushing

e Implemented Instruction Functionality Correctness

A self-checking mechanism is crucial for ensuring the functional correctness of the
reference model. This mechanism is even more significant when the reference model
is used for output comparing against a design. Ensuring the functional correctness of
the reference model can increase the overall confidence in the results of the verification

performed.
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For the first testing performed, part of the reference model ALU source code

is altered as shown in the figure below:

always @(*) begin: main_alu block
case(alu_ctl)

ID_CTIL : alu_output
ffTOR_CTL : alu_output

S TADD CTL : alu cutput

data_l & data_2;

data_1 data_2;

.

data 1 + data 2;

Figure 4.1: Modification to Reference Unit ALU Source Code.

[SCBD] addi x 3, x 0, 0x07d
[SCBD] add x 2, X 3, x 0
[REF MODEL ERRCR] Incorrect ADDI Result: Behawvicur: 00000074 Model: 00000000

Figure 4.2: Reference Model Instruction Functionality Bug Detection ModelSim

Transcript Message.

From the UVM message displayed on the transcript interface, the bug introduced has
been detected. The expected outcome of the instruction addi x3, x0, 0x07d of 0000007d
differs from the modified model outcome of 00000000. The discrepancy encountered

allows the system to identify this error as a logical bug on the reference model.

For the subsequent testing, the hazard detection unit is modified such that the

flush signal is never asserted as shown in the modified code below:

ffif{{zero && branch) jump)

flush = 1;

flush = 0;

Figure 4.3: Modification to Reference Unit Hazard Detection Unit Flush Assertion

Source Code.

[SCBD] jal x31, 0x000&as
[SCBD] lui x30, 0x11111
[REF MODEL ERRCE] Branch or Jump not Executed

Figure 4.4: Reference Model Flush Nonassertion Bug Detection ModelSim

Transcript Message.
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As observed from the figure shown, the self-checking mechanism detects the
nonassertion of the flush signal. When the instruction jal x31, 0x000aS8 is executed, the
control unit is to assert flush control signal to flush out nulled information on the
pipeline registers. However, it fails to do so due to the modification to the source code
introduced. The nonassertion of the flush signal on the reference model is then

identified as a logical bug on the reference model.

Similarly, the stall control signal of the hazard detection unit is modified to
check for nonassertion of stall control signal on load-use case detection. The following

figure shows the modified code:

if(mem read s& (idex reg addr 1 == exmem rd || idex reg addr 2 == exmem rd) && exmem rd != 0) begin
if ((idex_reg_addr_l == exmem rd && fwrd mux 1 !'= “FWRD_MEM) ||
(idex_reg addr 2 == exmem rd s& fwrd mux 2 '= “FWRD_MEM) )
stall = 0; S/ modified

stall = 07

Figure 4.5: Modification to Reference Unit Hazard Detection Unit Stall Assertion

Source Code.

[SCED] 1w x 4, 0101 (x 1)
[SCED] addi xl4, x 4, 0x000
[EEF MCODEL ERRCR] Load-use Case Not Stalled

Figure 4.6: Reference Model Stall Nonassertion Bug Detection ModelSim Transcript

Message.

From the figure shown, the instruction sequence of /w x4, Ox101(x1) followed by addi
x14, x4, 0x000 which depicted a load-use case of the register x4. The self-checking
mechanism detects the nonassertion of the stall control signal and identifies the logical

bug introduced on the reference model.



89

4.2 Design Bug Detection

The design verification is performed by comparing various internal states of the design
under test against the internal states of the reference model. For the testing of the bug
detection capabilities of the design verification methodology implemented, bugs are

intentionally introduced to the design under test.

In the first testing, a bug is introduced to the program counter source code. The
increment of 4 is altered to an increment of 2 and tested as shown in the following

code segment:

ffinatr_addr <= instr addr + “INST_ADDE_ S5TUM;
instr addr <= instr addr + 2;

Figure 4.7: Modification to Design Under Test Program Counter Source Code.

[SCBD] addi X 3, x 0, 0x07d

[5CBD] |add X 2, X 3, x 0f———

[MISMATCH] Mismatch Encountered at|IFfI] Pipeline Register|
[MISMATCH] Mismatching Program Counter

[MISMRTCH] REF PC: 00000004

[HISHATEH]|3UT BC: DGDDDDDE|

Figure 4.8: Program Counter Mismatch Detection ModelSim Transcript Message.

When the instruction addi x3, x0, 0x07d is fetched, the program counter increments by
4. Due to the alteration to the source code, the program counter of the design under
test only increments by 2. When the second instruction, add x2, x3, x0 is fetched, the
instruction address information stored on the IF/ID pipeline register mismatches. The
verification testbench identifies the discrepancy and provides relevant information to

the user for debug.

In the subsequent testing, the updating of the program counter with effective

target address generated from immediate generation unit is altered as shown below:
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if (jump_reg)

instr_addr <= {alu output[ DATA WIDTH-1:2],2'k0OC};
ffelse
Ff inatr addr <= imm addr;

Figure 4.9: Modification to Design Under Test Program Counter Target Address

Branching Source Code.

[SCBD] |jal x31, 0x000a8 |
[SCED] lui ®30, 0xl1111
[SCBD] nop

[SCBD] |addi ®30, x 0, Oxfag—

[MISMATCH] Mismatch Encountered at|IFfI3 Pipeline Registed
[MISMATCH] Mismatching Program Counter

[MISMATCH] REF PC: 00000138

[MISMATCH]|DUT BC: 00000033]

Figure 4.10: Program Counter Branch Target Address Mismatch Detection
ModelSim Transcript Message.

When an unconditional branch instruction (ja/ x31, 0x000a8) is executed, instruction
is to be fetched from the target address. Due to the modification performed on the
program counter source code, the design under test does not update the program
counter with a new program counter value. The verification testbench identifies the

discrepancy and provides relevant information to the user.

For a similar case, the updating of program counter with effective target
address read from register by the instruction jump and link register (jalr) is modified

as shown in the code segment below:

if (flush) bkegin: flush_pc
SA1E(Jjump_req)
S instr addr <= {alu output[ DATA WIDTH-1:2],2'b00};

P

ffels

10

instr_addr <= imm_addr;

Figure 4.11: Modification to Design Under Test Program Counter Jump Register
Target Address Source Code.



[5CBD]|jalr x 0, 0x000(x31)|
[SCBD] nop

[SCBD] nop

[5CBD]| 1ui ®¥30, 0x11111}——

[MISMATCH] Mismatch Encountersd atl

IF/ID Pipeline Register|

[MISMATCH] Mismatching Procgram Coun
[MISMATCH] REF PBC: 00000094
[MISMATCH]|DUT BC: 000001&2]

ter
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Figure 4.12: Program Counter Jump Register Target Address Mismatch Detection

ModelSim Transcript

When jump and link register instruction is executed, the program counter is to be

Message.

updated with the target address read from a register. From the alteration performed to

the program counter, the design under test provides an incorrect target address. The

verification testbench identifies the discrepancy, and relevant information are provided

to the user for debugging to be performed.

For the memory technology utilized, each memory register holds a byte (8-bit)

of information. For a 32-bit instruction code to be read from the instruction memory,

aligned read access need to be performed to 4 instruction memory registers. The

following test ignores the memory technology implemented and performs a singular

read access to a memory location for instruction code fetches as shown in the code

segment below:

always @(%)

end: instruction fetch

pegin: inatruction fetch
//instr_code = {rom[instr_addr],

L rom[instr addr + 1],
e rom[inatr addr + 2],
'r rom[instr_addr + 3]}:
instr code = rom[instr_addr];

Figure 4.13: Modification to Design Under Test Instruction Memory Source Code.

[SCED] | addi x 3, x0, 0x07d]

[MISMATCH] Mismatch Encountered at

IF/ID Pipeline Regiater |

[MISMATCH] Mismatching Imnatructicn

Code

[MISMATCH] BEF Tnstr Code: 074001593
[MISMATCH] |DUT Imatr Code: 00000007

Figure 4.14: Instruction Code Mismatch Detection ModelSim Transcript Message.
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As a result of the modification, only a byte of instruction code information is fetched.
The verification testbench identifies the discrepancy in the instruction code fetched

and provides the user relevant information for debugging to be performed.

The following test alters the read register address information read from the

instruction code:

f/ assign reg _read addr 1 = reset ? 0 : instr_code[ R51_ADDE HI: R51 ADDR_LO]:
a35ign reg read addr 1 = reset * 0 : instr code[20:16];
assign reg_read addr 2 = reset ? 0 : instr code[ R32_ADDE HI: R52_LDDR_LO];

Figure 4.15: Modification to Design Under Test Register File Source Code.

[5cBD]| addi x3, =x0, 0x07df——

[SCBD] add X 2, X 3, X0
[MISMATCH] Mismatch Encountered atlIJfEX Pipeline Registerl
[MISMATCH] Mismatching Register 01 Address

[MISMATCH] BEF Begdl addr: O
[HISHATEH]I?UT Begll Addr: lEI

Figure 4.16: System Register Read Register Address Mismatch Detection ModelSim

Transcript Message.

The testbench identifies the discrepancy in the register address accessed by design

under test and provides relevant information for debugging.

When the immediate generation unit source code is altered such that the
immediate value generated is inconsistent with the instruction set architecture

specification, the following results are obtained:

I _OPCODE : imm wval

A {{20{instr_code[31l]}},instr code[11:0]}; //modified
/f "I _OPCODE : imm wval

{{20{instr code[31]}],instr code[31:20]}; //original

Figure 4.17: Modification to Design Under Test Immediate Generation Unit Source

Code.
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[SCBD]| addi x3, x0, nxn?:1|—‘

[SCBD] add X 2, X 3, x 0

[MISMATCH] Mismatch Encountersd atlI?KEX Pipeline Registerl
[MISMATCH] Mismatching Immediate Value

[MISMATCH] BEF Imm Wal: 00000074

[HISHATEH]'?UT Imm Val: ﬂDDDUlQSl

Figure 4.18: Immediate Value Mismatch Detection ModelSim Transcript Message.

The verification testbench identifies the incorrect immediate value generated

(00000193) by design under test.

For the following testing, the control unit is altered such that an incorrect

control signal is provided for load instructions as shown in the code segment below:

LOAD OPCODE: begin
ffetl_op = "LOAD CTL SGNL;
ctl_op = "NOF_CTIL_SGHNL;
alu op = "IMM ADDR CRLC RLU OF;
end

Figure 4.19: Modification to Design Under Test Control Unit Load Instruction

Control Signal Source Code.

[SCBD] fw x4, 0xl0l{x 11—
[SCEBD] 1h X 5, Qxl00{x 1)

[SCED] lhu X &, 0x100{x 1)
[MISMATCH] Mismatch Enccuntered at EX/MEM| Pipeline Register
[MISMATCH] Mismatching ALT Jutput
[MISMATCH] BEF ALU Cut: 00000102
[MISMATCH] DUT ALU Cut: 00000002
[MISMATCH] Mismatch Encountered atlEXIHEH Pipeline Registerl
[MISMATCH] Mismatching CIL OF

[MISMATCH] BEF CTL QOP: 00111100

[MISMRTCH]) DUT CTL OFP: Q0000000

Figure 4.20: Control Signal Mismatch Detection ModelSim Transcript Message.

When a load instruction (/w x4, Ox101(x1)) is executed, the testbench detects the
discrepancy in the control signal of the instruction. The ALU operation is also altered
due to the alteration of the control signal (4L USrc), resulting in a mismatched output

as a side effect.
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In the following alteration, the shift right arithmetic operation coded in the

ALU is altered to have a similar effect as shift right logical operation:

SRA CTL » alu_output = data_ 1 >> data_2[4:0]7 S/modified
/¢ "S5RA CTL : alu ocutput = $signed{data 1) >>> data 2[4:0]; /forigimnal

Figure 4.21: Modification to Design Under Test ALU Source Code.

[SCBD] [sra x11, x 4, X 3 F—

[SCBD] =srai x12, X 5, ]
[SCBD] bne xl11, x12, 0xl0c
[MISMATCH] Mismatch Encountered atlEXfHEH Pipeline Registeﬂ
[MISMATCH] Mismatching ALT Jutput

[MISMATCH] BREF ALU Cut: fE££f£££F

[HISHATEH]|3UT RLT Out: DDDDDDDTl

Figure 4.22: ALU Output Mismatch Detection ModelSim Transcript Message.

When a shift right arithmetic instruction is executed, the design under test ALU
produces an incorrect outcome. The testbench detects the discrepancy and provides

information to the user for debugging to be performed.

When the data forwarding functionality is altered as shown in the code segment

below, the following results are obtained:

if {exmem opcode != CRD OPCOLDE && eXmem reg wWrite && exmem rd != 0) begin: exmem fwrd
f/if({reg_l == exmem rd)
Iy fwrd_mux 1 = “FWRD_ALU;
f/else if (reg_l == memwb rd && memwb reg write) //CHECEME
I fwrd mux 1 = “FWRD MEM;
f/else
'rl fwrd mux 1 = "HO _FWRD;
ffif(reg_2 == exmem rd)
I fwrd mux 2 = “FWRD _ALU;
f/else if (reg_2 == memwb _rd &&: memwWb req Write)
ff fwrd mux 2 = “FWRD MEM;
f/elae
fwrd_mux 2 = "NO_FWED:

end: exmem fwrd

Figure 4.23: Modification to Design Under Test Forwarding Unit Source Code.
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[SCBD] addi X SL x 0, 0x07d

[SCBD] |add x2, Jz3| = -JI—‘

[SCBD] kne X 2, x 3, Oxled

[MISMATCH] Mismatch Encountersed atlefEK Pipeline Registed
[MISMATCH] Mismatching Register 01 Data

[MISMATCH] | + 0gogogy
[HISHATCH]I?UT Begll Data: DDDDGDDDI

Figure 4.24: Forwarded Operand Mismatch ModelSim Transcript Message.

In the instruction sequence above, the data dependency on the register x3 warrants data
forwarding. Data forwarding ensures the updated information is utilized as an operand
for the subsequent instruction operation. Due to the alteration performed, the data
forwarding on design under test is not executed, resulting in an incorrect operand value.
The discrepancy is detected by the verification testbench and relevant information is

provided to the user for debugging.

The next testing modifies the hazard detection unit, ensuring the nonassertion

of flush control signal.

if{{zerc && branch) || jump)
S/Elush = 1;
flush = 0;

gelae
flush = 0;

Figure 4.25: Modification to Design Under Test Control Unit Flush Control Source

Code.
[SCED] jal x31, 0=x000a3
[SCBD] lui ®30, 0x11111

[SEB?]lncpH ]
[MISMATCH] Mismatch Encountersd atlIFij Pipeline Registerl
[MISMATCH] Mismatching Instructicn Code

[MISMATCH] i :  0000000i
[HISH&T:H]I?UT Inatr Code: DleSllSI

Figure 4.26: Flush Nonassertion Mismatch ModelSim Transcript Message.

When flush control signal is asserted, the pipeline registers are to flush the invalidated

instructions by discarding the information of the instructions. From the results obtained,
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due to the nonassertion of the flush signal by design under test hazard detection unit,
the design under test IF/ID pipeline register still contains the invalidated instruction
information. The verification testbench detects the discrepancy, and relevant

information is provided to the user for debugging.

Similarly, testing for the stall nonassertion detection can be performed by
ensuring the nonassertion of the stall control signal on the design under test hazard

detection unit as shown in the code segment below:

if (mem read && (idex reg addr 1 == exmem rd || idex reg addr 2 ==
if ((idex reg addr 1 == exmem rd && fwrd mux_1 != "FWR
(idex _req addr 2 == exmem rd && fwrd mux 2 '=
f/fatall = 1;
stall = 0;

exmem rd) s& exmem rd != 0) begin

end
=

stall = 0;

Figure 4.27: Modification to Design Under Test Control Unit Stall Control Source
Code.

[SCED] 1w x 4, 0x101{x 1)

[SE‘B]] i 00l

[SEB?]Iaddi xl4, x 4, DKGDDP“““T

[MISMATCH] Mismatch Encountersd at|IF£I3 FPipeline Registeﬂ

[MISMATCH] Mismatching Program Counter
[MISMATCH] ,BEF _PC: 00000010
MIsMaTcH] [ouT BC: oo0000b4 |

Figure 4.28: Stall Nonassertion Mismatch ModelSim Transcript Message.

From the results obtained, the instruction sequence of /w x4, Ox101(x1) to addi x14, x4,
0x000 showcases a load-use case with a data dependency on the register x4. As a result
of a load-use case, stall control signal needs to be asserted to allow the pipeline flow
to be partially halted. Due to the nonassertion of the stall control signal, the pipeline
flow of the design under test is not halted is observed in the mismatching program
counter. The testbench detects the bug introduced by the stall nonassertion and

provides relevant information for debugging.
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For the data memory, similar memory technology has been utilized. Each data
memory register holds a byte (8-bit) of information. Aligned read access needs to be
performed for proper data memory access. In the following testing, the memory
technology implemented is ignored, and read access is performed to only one location

as shown in the code segment below:

assign read data = ram[address];
ff a3sign read data = {({ram[address+3] === &'bx ? &8'b0 : ram[address+3]),
Iy {ram[address+2] === 8'bx ? 8'k0 : ram[address+2]),
fF {ram[address+l] === 8'bx ? 2'k0 : ram[addreas+l]),
rr {ram[address] === §'bx ? 8'k0 : ram[address])}:

Figure 4.29: Modification to Design Under Test Data Memory Load Data Source
Code.

[SCBD] |1w x4, 0xlol{x LHF—
[SCED] 1h x 5, Oxl00(x 1)
[SCED] lhu x 6, 0xl00{x 1)
[SCED] 1b x 7, OOEE(x 1)

[MISMATCH] Mismatch Encountered at|MEM/WE Fipeline Registe
[MISMATCH] Mismatching Begister Write Data

[MISMATCH] Wy Tatams FEQEFSFE
[MISMATCH] |DUT Reg Wr.Data: I:Il:ll:ll:lljl:lffl

Figure 4.30: Load Data Mismatch ModelSim Transcript Message.

From the result obtained, when a load word instruction is executed, 4 memory
locations need to be accessed for the word (32-bit) information. As a result of disregard
towards the memory technology implemented, the design under test reads only a byte
of information. The discrepancy is detected by the testbench and shown to the user for

debugging to be performed.
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Lastly, the following alteration made to the data store functionality of the data

memory unit disregards the amount of data to be stored:

assign stored_data = mem write ? reg data : 07
/ assign stored _data = mem write ? (funct3i == "5B FUNCT3 ? {24'b0,reg_data[7:0]} :
I (funct3 == “5H_FUNCT3 ? {l&é'b0,reg_data[l5:0]} : reg_data)) : O;

Figure 4.31: Modification to Design Under Test Data Memory Store Data Source
Code.

[SCBD] |sh x30, O0x0ff(x 2)|—
[SCBD] sb ®3l,  UXOLL(X 3]
[SCBD] 1w x4, 0xl0l{x 1}
[SCED] 1h ¥ 5, 0xl00{x 1}

[MISMATCH] Mismatch Enccuntered at|FJ*"_‘t{.-fiu'E!~ Pipeline Begister
[MISMATCH] Mismatching Memory Write Data

[MISMATCH] BEF Mem Wr.Data: 0000££09&
[MISMATCH] [DUT Mem Wr.Data: ffffffaé|

Figure 4.32: Store Data Mismatch ModelSim Transcript Message.

The instruction store halfword is to store 16 bits of information onto the memory. Due
to the modification performed, the design under test stores a word instead. The
testbench detects the discrepancy, and relevant information is provided to the user for

debugging.

The verification testbench has been programmed to monitor most internal
states of the design from the results provided. When a discrepancy is detected from the
model outcome comparison simulation, the verification testbench provides
information on the mismatching values, providing an automated logical error detection
to the verification. This methodology effectively saves an immeasurable amount of
time and provides the user with a more straightforward debugging process with the
information provided. The challenges of this form of verification methodology would
be the strict requirements of adherence to the specifications and the interfacing work
required for proper synchronized operation of both reference model and design under

test.
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4.3 Directed Verification

For directed verification, a specific verification scheme has been employed to perform

testing on specific criteria listed below:

e Functionalities of all implemented instructions
e Data Forwarding

e Pipeline Stalling

e Pipeline Flushing

e Misaligned Data Memory Access

The following table shows the instructions of the directed test and their expected

outcome:

Table 4.1: Directed Verification Test Program.

Address (Assembly Language)
0x00000000 addi X3, x0, 125 x3 =125 (7Di¢)
0x00000004 add X2, x3, x0 Forward data from ALU Output
X2 = 125 (7D16)
0x00000008 bne X2, X3, END Forward data from ALU Output
Forward data from MEM/WB.Reg
If x2 #x3, jump to END
0x0000000C addi x4, x0, 3971 x4 = -125(FFFF FF83¢) <sign-extended>
0x00000010 sub x5, x0, x2 x5 = -125(FFFF FF836)
0x00000014 bne x4, x5, END Forward data from ALU Output
Forward data from MEM/WB.Reg
If x4 # x5, jump to END
0x00000018 addi X6, x0, 1 x6 =1
0x0000001C srli x7, x3, 6 x7=1
0x00000020 bne X6, x7, END Forward data from ALU Output
Forward data from MEM/WB.Reg
If x6 # x7, jump to END
0x00000024 srl x8, x6, x6 x8=0
0x00000028 bne X8, x0, END Forward data from ALU Output
If x8 # 0, jump to END
0x0000002C slli x9, x7, 1 x9=2
0x00000030 sll x10, x7, X6 x10=2
0x00000034 bne X9, x10, END Forward data from ALU Output
Forward data from MEM/WB.Reg
If x9 #x10, jump to END
0x00000038 slt x1, X6, x9 xl=1
0x0000003C beq x1, x0, END Forward data from ALU Output
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If x1 =x0, jump to END

0x00000040 slt x1, x4, x3 x1=1

0x00000044 beq x1, x0, END Forward data from ALU Output
If x1 =x0, jump to END

0x00000048 sltu x1, x4, x3 x1=0

0x0000004C bne x1, x0, END Forward data from ALU Output
If x1 # x0, jump to END

0x00000050 xor X2, X2, x3 x2=0

0x00000054 bne X2, x0, END Forward data from ALU Output
If x2 # x0, jump to END

0x00000058 sra x11, x4, x3 x11 =-1 (FFFF FFFFc)

0x0000005C srai x12, x5, 8 x12 = -1 (FFFF FFFF¢)

0x00000060 bne x11, x12, END Forward data from ALU Output
Forward data from MEM/WB.Reg
Ifx11 #x12, jump to END

0x00000064 ori x13, x0, 3 x13=3

0x00000068 or x14, x9, x6 x14=3

0x0000006C bne x13, x14, END Forward data from ALU Output
Forward data from MEM/WB.Reg
If x13 #x14, jump to END

0x00000070 and x15, x13, x11 x15=3

0x00000074 andi x16, x14, 15 x16=3

0x00000078 bne x15, x16, END Forward data from ALU Output
Forward data from MEM/WB.Reg
If x15 #x16, jump to END

0x0000007C slti x17, x15, 4 x17=1

0x00000080 sltiu x18, x5, 4095 x18=1

0x00000084 bne x17, x18, END Forward data from ALU Output
Forward data from MEM/WB.Reg
Ifx17 #x18, jump to END

0x00000088 xori x1, x0, 1 xl=1

0x0000008C beq x1, x0, END Forward data from ALU Output
If x1 =x0, jump to END

0x00000090 jal x31, STORE _ROUT | x31 =00000094¢
Jump to STORE _ROUT

0x00000094 lui x30, 69905 x30=1111100016

0x00000098 srli x2, x30, 28 x2=1

0x0000009C blt x1, x2, END Forward data from ALU Output
If x1 <x2, jump to END

0x000000A0 bge x0, x1, END If x0 > x1, jump to END

0x000000A4 bltu x1, x2, END If x1 <x2, jump to END

0x000000A8 bgeu  x0, x1, END Ifx0 > x1, jump to END

STALL_CHECK:

0x000000AC Iw x4, 257(x1) x4 = FF96 FFFF 6

0x000000B0 addi x14, x4, 0 Stall
x14 = FF96 FFFF s

0x000000B4 Ih x5, 256(x1) x5 = FFFF FFFF 6

0x000000B8 addi x15, x5, 0 Stall
x15 = FFFF FFFF s

0x000000BC lhu X0, 256(x1) x6 = 0000 FFFF s

0x000000C0 addi x16, X6, 0 Stall
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x16 = 0000 FFFFs

SKIP1

0x000000C4 Ib x7, 255(x1) x7 = FFFF FF96,¢
0x000000C8 addi x17, x7, 0 Stall

x17 = FFFF FF96,¢
0x000000CC Ibu x8, 255(x1) x8 = 0000 009616
0x000000D0 addi x18, x8, 0 Stall

x18 = 0000 00966
0x000000D4 beq x20, x0, SKIP1 | Ifx20 = x0, jump to SKIP1
0x000000D8 lui x28, 912095 x28 = DEAD F000;6
0x000000DC lui x29, 912095 x29 = DEAD F000;6
0x000000E0 lui x30, 912095 X30 =DEAD F00016

SKIP2

0x000000E4 bne x1, x0, SKIP2 | Ifx1 # x0, jump to SKIP2
0x000000E8 lui x28, 912095 x28 = DEAD F00016
0x000000EC lui x29, 912095 x29 = DEAD F000;6
0x000000F0 lui x30, 912095 X30 =DEAD F00016

SKIP3

0x000000F4 bge x1, x14, SKIP3 | Ifx1 >x14, jump to SKIP3
0x000000F8 lui x28, 912095 x28 = DEAD F00016
0x000000FC lui x29, 912095 x29 = DEAD F000;6
0x00000100 lui x30, 912095 X30 =DEAD F00016

SKIP4

0x00000104 blt x11, x1, SKIP4 | Ifx11 <xl1, jump to SKIP4
0x00000108 lui x28, 912095 x28 = DEAD F00016
0x0000010C lui x29, 912095 x29 = DEAD F00016
0x00000110 lui x30, 912095 X30 =DEAD F00016

SKIP5

0x00000114 bgeu x5, x4, SKIP5 | If x5 > x4, jump to SKIP5
0x00000118 lui x28, 912095 x28 = DEAD F00016
0x0000011C lui x29, 912095 x29 = DEAD F00016
0x00000120 lui x30, 912095 X30 =DEAD F0001¢

0x00000134

0x00000124 bltu x17, x5, SKIP6 | Ifx17 <xS5, jump to SKIP6
0x00000128 lui x28, 912095 x28 = DEAD F0001¢
0x0000012C lui x29, 912095 x29 = DEAD F0001¢
0x00000130 lui x30, 912095 X30=DEAD F000¢

x31 =000000D86

Jump to END
STORE_ROUT:

0x00000138  |addi  x30, x0, 3990 | x30 =3990(FFFF FF961s)
0x0000013C | addi  x1,  x0, 1 x1=1

0x00000140 | addi x2,  xl, 4 X2=5

0x00000144  |addi x3, x2, 4 x3=9

0x00000148 | sw  x30,  255(x1) Memory[0000 0100,6] = FF FF FF 96,6
0x0000014C | sh x30,  255(x2) Memory[0000 0104;6] = FF 96,6
0x00000150 | sb x30,  255(x3) Memory[0000 010816] = 9616
0x00000154 | Iw x4,  257(x]) x4 = FF96 FFFF 1,

0x00000158 | Ih x5,  256(x1) x5 = FFFF FFFFy,

0x0000015C | lhu  x6,  256(x1) x6 = 0000 FFFF ¢

0x00000160 | Ib x7,  255(x1) x7 = FFFF FF9615
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0x00000164 Ibu x8, 255(x1) x8 = 0000 009616
0x00000168 jalr x0, 0(x31) Return to 0000 00946
END:
0x0000016C nop No Operation
0x00000170 nop No Operation
0x00000174 nop No Operation
0x00000178 nop No Operation
0x0000017C end End of Test

Test Program Instruction Highlight Indication

Pass Signature Value Instructions

Fail Signature Value Instructions

Branch/Jump Executed

Return Address

For verification of the test program results, specific signature values can be

checked from the general-purpose registers and data memory. The simulated results

shown in the figure below tallies with the expected outcome:

Figure 4.33: General-Purpose Register Signature Values.

4 ffa6effff
5 EEffffff
& Q000££EE
7 Efffffag
g 00000058
14 ffSeffff
15 fEEfffff
lé OO00E££EE
17 fEEFffas
13 00000058

00oaaLao g6
00000104 96
0ooooLas 98

FF

FF

XX

FE FF

XX XX
XX XX

Figure 4.34 Memory Signature Values.

For a detailed approach towards test verification, the primitive methodology

of waveform debugging is performed as shown in the following figures:



When the second instruction (add x2, x3, x0) is stored on the ID/EX pipeline register, the
correct forwarding mechanism is executed, forwarding the ALU output from EX/MEM
pipeline register to the ALU unit. The forwarding mechanism is triggered by the data
dependence of the register x3 on the first instruction (addi x3, x0, 125).

4 IF/ID.Register
P-4 ftestbench/riscy_reffifid_instr_addr
P-4 ftesthenchfriscy_reffifid_instr_code
4 IDfEX.Register
B4 jtesthench/fiscy_refidex_instr_addr
B4 ftesthenchfriscy_reffidex_instr_code
B4 ftestbenchjriscy_reffidex_reg_addr_1
B4 ftestbenchjriscy_reffidex_reg_data_1
B4 Jtestbenchjriscy_reffidex_reg_addr_2
B4 Jtestbenchjriscy_reffidex_reg_data_2
B4 Jtestbenchjriscy_reffidex_imm_val
B fresthench/fiscy_reffidex_ct_op
B4 jtestbenchriscv_reffidex_alu_op
#  EX/MEM.Register
B4 ftestbench/riscy_reffexmem_instr_addr
B4 ftestbenchriscy_reffexmem_instr_code
P-4 ftestbench/riscy_reffexmem_alu_output
4 ftestbench/riscy._reffexmem_zero
4 ftesthenchriscy_refjexmem_imm_val
P-4 Jtestbench/riscy_reffexmem_mem_data
P-4 ftestbenchriscy_reffexmem_ct_op
4 MEM/WB.Register
P-4 ftestbench/riscy_refjmemnb_ct_op
B4 ftestbench/fiscy_refimemnb_alu_data
B4 ftesthench/riscy_reffmemnb_mem_data
P-4 ftesthenchjriscy_reffmemnb _write_addr
B4 ftesthenchriscy_refimemnb_write_data
B4 Jtestbench/riscy_reffmemnb_mem_addr
B4 Jtesthenchjriscy_reffmemnb_mem_uwrit..
B4 Jtestbench/riscy_refimemnb_instr_addr
4 Control Signal

Both register x2 and x3 are data forwarded from EX/MEM
pipeline register and MEM/WB pipeline register for the
third instruction (bre x2, x3, END), providing the updated
data to the ALU unit.

T —— B — (1 S S R S R R R

B4 ftestbench/riscy_refffiurd_mux_2
4 festbench/fiscy._reffstal
4 ftestbench/riscy_reffush

Figure 4.35: Directed Verification Waveform Simulation Results Part 1.
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The werification of the functionalities of the
instructions can be performed by observing the
ALU output and the control signals (EX ct/_op) on
the EX/MEM pipeline register.

Zero-width glitches can be observed on the flush control signal. These zero-width glitch
signals are caused by static zero hazards. However, as flush signals are only effective if the
assertions are held HIGH for the full clock cycle (pipeline registers are only updated on clock

edges), these zero-width glitches will not cause issue to the functioning of the pipeline.

4 IFJID.Register
P-4 ftesthenchiriscv_reffifid_instr_addr
B4 ftestbenchriscy_reffifid_instr_code
4 IDJEX.Register
P-4 ftesthenchiriscy_reffidex_instr_addr
B34 ftestbenchiriscy_reffidex_instr_code

B4 ftestbench/riscv_reffexmem_instr_addr
-4 ftestbench/riscy._reffexmem_instr_code
-4 ftestbench/riscy,_reffexmem_alu_output
J’A Jtestbench/riscy_reffexmem_zero

4 jtestbench/fiscy._refjexmem_imm_val
-4 ftestbench/riscy,_refjexmem_mem_data
B4 ftestbenchjriscv_reffexmem_ct_op
4 MEM/WB.Register
-4 ftestbench/riscy_refjmemub_cti_op
B4 ftesthenchiriscv_reffmemmb_alu_data
-4 ftestbench/riscy_reffmemub_mem_data
-4 ftestbench/riscy_refjmemub_rite_addr
B34 ftestbench/riscy_ref/memmb_rite_data
-4 ftestbench/riscy._refjmemnb_mem_addr
-4 ftestbench/riscy_reffmemwb_mem_writ...
B4 ftesthench/riscv_reffmemmb_instr_addr
“ Control Signal

17d 00

(c
B4 Jtestbenchjriscv_refffurd_mue_t 1 Yo [ 7 T yo fz Yol Y7 [ jo [ Y2 fo [ fi | Yo [ 01
o | 111 11}

B4 ftesthenchiriscv_refffnrd_mux_2 2 jo
4 jtestbenchjriscy _refjstal
4 testbenchjriscy._refjflush

i S I

Figure 4.36: Directed Verification Waveform Simulation Results Part 2.
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When the jump instruction (jal x31, STORE ROUT) is executed, flush signal is asserted. The assertion of flush
signal clears the instruction code stored on the IF/ID and ID/EX pipeline registers. The register x3/ is also updated
with the return address when the instruction progresses towards writeback stage (WB). The instruction address

of the jump instruction stored on the MEM/WB pipeline register is added by 4 before updating the register x31.

# IF{ID.Register
-4 ftestbench/riscv_reffifid_instr_addr
B Iestoenchiriscy refffid_nsr_code

s e e
ftestbench/riscy_refidex_req_addr_2
ftestbench/riscy_refidex_req_data_2
Jtestbench/iscy_refidex_imm_val
ftestbench/riscy_refidex_ctl_op

Jtestbenchjfriscv_refjexmem_alu_output
ftestbench/riscv_reffexmem_zero
Jtestbench/riscy_ref/exmem_imm_val
Jtestbench/riscv_reffexmem_mem_data

N E)DDED:):) —_ Joo
[testbench/riscy_reffmemwb_mem_addr | 10000003 ) LAIN[x 8w 4TV S S NS E—
Jtestbench/riscy_refimemub_mem_writ...

Jtestbench/riscy_refimemub_instr_addr

#  Control Signal

-4 jtestbenchjriscy_refffurd_mux_1

P-4 ftestbenchriscy_refffiard_mux_2

4 Jtestbenchjriscy_refjstal
4 festbenchjriscy_reffflush

Figure 4.37: Directed Verification Waveform Simulation Results Part 3.



For store instructions, the data stored onto the data memory can be observed on
the MEM/WB pipeline register. The store instructions can be checked on the
EX/MEM pipeline register (one cycle earlier).

For load instructions, the data read from the data memory can be observed on
the MEM/WB pipeline register. Similarly, the load instructions can be checked
on the EX/MEM pipeline register (one cycle earlier).

4 IF/ID.Register
P-4 jtesthenchjriscy_refffid_instr_addr
B4 Jtestbenchjriscy_reffifid_instr_code
#  IDfEX.Register
B4 Jtestbenchjriscy_reffidex_instr_addr
P-4 jtestbenchjriscy_reffidex_instr_code
B4 Jtestbenchjriscy_refiidex_reg_addr_1
P-4 jtestbenchjriscy_reffidex_reg_data_1
B4 Jtestbenchjriscy_refiidex_reg_addr_2
B+ jtestbenchjriscy_reffidex_reg_data_2
B4 Jtestbenchjriscy_reffidex_imm_val
B+ jtestbenchjriscy_reffidex_ctl_op
-4 Jestbenchjriscy_reffidex_alu_op
#  EX/MEM.Register
-4 ftestbenchjriscy_refjexmem_instr_addr
B4 jtestbenchjriscy_refexmem_instr_code
-4 Jtestbenchjriscy_refjexmem_alu_output
J;‘ Jtestbench/riscv_reffexmem_zero

-4 testbenchjriscy_reffexmem_imm_val
B+ jtestbenchjriscy_reffexmem_mem_data
P-4 jtestbenchjriscy_reflexmem_ct_op
4 MEM/WB.Register
P-4 jtestbenchjriscy_refimemab_ct_op
B4 Jtestbenchjriscy_refjmemwb_alu_data
P-4 jtesthenchjriscy_refimemub_mem_data
B4 Jtestbenchjriscy_refjmemub_write_addr
P-4 jtestbenchjriscy_refimemub_arite_data
B4 Jtestbenchjriscy_reffmemub_mem_addr
P-4 jtestbenchjriscy_refimemub_mem_writ...
B4 Jtestbenchjriscy_refjmemb_instr_addr
“#  Control Signal
-4 Jtestbenchjriscy_refffard_mux_1
B+ jtestbenchjriscy_refffrd_mux_2

4 ftestbench/riscv_refjstal

4 ftestbench/riscy_ref/flush

3

00 00000098 10
11111f37 |_|1|: 113 :l

Figure 4.38: Directed Verification Waveform Simulation Results Part 4.
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Stall control signal is set to HIGH when load-use case is detected. The destination
register x4 of the load instruction (/w x4, 257(x1)) at 0x000000AC is to be used by the
following instruction (addi x14, x4, 0) at 0x000000B0 which resulted in a load-use case.

The load-use case is resolved

when the correct data (from data

memory) is forwarded.

4 IFfID.Register
P-4 jtesthenchjriscy_refffid_instr_addr
B4 Jtestbenchjriscy_reffifid_instr_code
4 IDJEXRegister
P-4 jtesthenchjriscy_reffidex_instr_addr

g_
P-4 jtesthenchjriscy_reffidex_alu_op
4 EX/MEM.Register
-4 Jtestbenchriscy_refjexmem_instr_addr
B+ jtestbenchjriscy_reffexmem_instr_code
P-4 jtesthenchjriscy_reflexmem_alu_output

4 testbench/riscy_refjexmem_zero

4 ftestbench/riscy_reffexmem_mm_val
-4 Jtestbenchfriscy_ref/exmem_mem_data
P-4 jtestbenchjriscy_reflexmem_ct_op
4 MEM/WB.Register
B4 Jtestbenchjriscy_refjmemab_cti_op
-4 Jtesthenchjriscy_ref/memwb_alu_data
P-4 jtesthenchjriscy_refimemub_mem_dzta
P-4 jtesthenchjriscy_refimemub_write_addr
-4 Jtestbenchjriscy_refjmemub_write_data
B4 jtestbenchjriscy_refimemab_mem_addr
P-4 jtesthenchjriscy_refimemuib_mem_writ.
P-4 jtestbenchjriscy_refimemub_instr_addr |
#  Control Signal
B+ jtestbenchjriscy_refffrd_mux_1
P-4 jtestbenchjriscy_refffrd_mux_2

4 jtestbenchriscy_refstal ] L T

4 Jtestbench/riscv_refffiush

000000b4 ) 000000bS
o T T ¥o [ T o

St ) M

Figure 4.39: Directed Verification Waveform Simulation Results Part 5.
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4 IF/ID.Register
B4 Jtestbenchriscy_refifid_instr_addr
B4 ftesthenchfriscy_reffifid_instr_code
4 IDJEX.Register
B4 ftesthenchfriscy_reflidex_instr_addr
P-4 ftestbenchriscy_refidex_instr_code
P-4 ftestbenchriscy_reffidex_reg_addr_1
B4 jtestbenchriscy_refiidex_req_data_1
B4 ftestbenchriscy_refidex_reg_addr_2
B4 ftestbenchriscv_refidex_reg_data_2
P-4 ftesthenchriscy_reffidex_imm_val
P-4 ftesthenchriscy_reflidex_c_op
B4 Jtestbenchjfiscy_reffidex_alu_op
4 EX/MEM Register
B4 ftestbenchriscy_reflexmem_instr_addr
B4 ftesthenchriscy_reflexmem_nstr_code
P-4 ftesthenchriscy_reflexmem_alu_output
4. ftesthench/riscy_reflexmem_zero
4 ftestbenchjriscy_reffexmem_imm_val
P-4 ftesthenchriscy_reflexmem_mem_data
B4 Jtestbenchriscy_reflexmem_ctl_op
#  MEMJWB.Reqgister
P-4 ftestbenchriscy_refimemnb_ct_op
B4 Jtestbenchjfiscy_refjmemwb_alu_data
B4 ftesthenchriscy_refimemib_mem_data
B4 ftesthenchjriscy_refimemwb_write_addr
B4 ftesthenchriscy_refimemnb_write_data
P-4 ftestbenchriscy_refimemwb_mem_addr

P-4 ftestbench)riscy_refimemnb_mem_writ..

B4 Jtestbench/fiscy_refjmemwb_instr_addr
“ Control Signal
B4 ftestbenchriscy_reffinrd_mux_1
P-4 ftestbenchriscy_reffinrd_mux_2

4 ftestbench/riscy_reffstal

4 ftestbench/riscy_reffflush

I:)EC)EC)EC)EC) 01
Gl 0 [ s  pl Yo [ f5 [0 Jo 5[ 03 | Yo [ N

Figure 4.40: Directed Verification Waveform Simulation Results Part 6.
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Test successfully ends when unknown

instructions (32°bx) are fetched from the

instruction memory.

#  IF{ID.Register
f1-4 Jtestbenchriscy_reffifid_instr_addr
B4 ftestbenchjriscy_reffifid_instr_code

ftestbench/riscy_ref/fidex_instr_addr 0 1 0011c 3 0o 00000130
ftesthenchjriscy_reffidex_instr_code f
ftesthench/riscv_reffidex_reg_addr_1

ftesthenchriscv_refjidex_reg_data_1

ftestbenchriscv_reffidex_reg_addr_2

Jtestbench/riscy_reffidex_reg_data_2

Jtesthenchjriscy_reffidex_imm_val

ftestbench/riscv_reffidex_ct_op

ftesthenchfriscv_refjidex_alu_op

ftestbench/riscy_reffexmem_instr_addr
ftesthench/friscv_refjexmem_instr_code
ftestbenchyriscv_refjexmem_alu_output
ftestbenchfriscy_refjexmem_zero
ftestbenchfriscv_refjexmem_imm_val
ftestbench/riscy_reffexmem_mem_data
ftesthenchjfriscv_refjexmem_ctl_op

Jtestbench/riscy_reffmemwb_ct_op

Jtestbench/riscy_reffmemwb_alu_data

Jtestbench/riscy_refjmemwb_mem_data

Jtestbench/riscv_refjmemwb_write_addr

ftestbench/riscv_refjmemwb_write_data

Jtestbench/riscy_reffmemwb_mem_addr

Jtestbench/riscy_reffmemwb_mem_writ...

ftesthenchjriscy_refjmemwb_instr_addr £ c 28 38 00000170

B4 ftestbenchriscy_refffard_mux_1
-4 ftestbenchriscy_refffard_mux_2
4 ftestbenchfiscv_refjstal
4 ftestbench/riscy_ref/flush

Figure 4.41: Directed Verification Waveform Simulation Results Part 7.
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Waveform debugging provides a much thorough analysis and debugging
process. In cases where no logical bugs are detected on the outcome, such detailed
analysis may be unnecessary. Test log provides a more accessible analysis towards
specific internal states of the design, allowing test results analysis and verification to

be performed without performing waveform debugging.

From the directed verification and test results analysis performed, the RISC-V
pipeline processor is functioning in accordance to the specifications and therefore is

accepted.

4.4 Constrained-Random Verification

The following table shows the test cases with specified instruction types utilized for

constrained-random verification of the RISC-V processor design:

Table 4.2: Constrained-Random Verification Test Case Specifications.

I-type SB-

3301 to 3320
3401 to 3420 /
3501 to 3520
3601 to 3620 /
3701 to 3720 /
3801 to 3820 /
3901 to 3920 /
2506 to 3006
0107 to 3107
0108 to 3108
0109 to 3009
0110 to 3110
0111 to 3011
0112 to 3112
0101 to 3101
0102 to 2802
0103 to 3103
0104 to 3004
0105 to 1005

~ o~~~ -
~
~
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The test cases with specific instruction types are generated through the

following instructions:

vsim

+INSTR_TYPE=<instruction type> +BATCH_SEED=<seed file>

-gui -onfinish stop work.testbench +TESTLOG +MEMLOG +FORCE GEN

Test cases are generated and stored onto the test repository by listing the test seed

values on the <seed file> text file and specifying the instruction type to be generated

for the test seeds on the field <instruction type>.

The generated test seeds are then compiled and listed on “SEED.xt”, and the

following command is executed:

vsim

-gui -onfinish stop work.testbench -coverage +TESTLOG +MEMLOG +BATCH_TEST

Inclusion of the argument “-coverage” allows functional coverage and code coverage

analysis to be performed on the simulation executed. Inclusion of the specification

“+BATCH TEST” allows all test seeds generated and listed in “SEED.txt” to be

executed in a batch test. The inclusion of all test seeds allows a comprehensive

coverage analysis on the constrained-random verification performed. The simulation

is then executed by selecting “Simulate > Run > Run All”. Upon completion of the

simulation, the following message is generated:

¥%¥ Beport counts by severity
UVM_INFO : 925

UV WAENING : 0
UV _ERROR : a
v FATAL : a

¥%¥ Beport counts by id
[LOGGING] 481
[BRASS] 481

[ENTST] 1

[UVM;/ COME,/NAMECHECEK] 1

[UWM/RELNOTES] 1

¥% Note: &finish : D:fFinalYearProject/Coding/uvm/uvm_include/base/uvmn_root.avh (378)

Time: 3394850 ns Iteraticon: €8 Instance: /testbench

Figure 4.42: Simulation Completion Message on ModelSim Transcript.
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The following functional coverage analysis provides insight on the functionalities that

have been tested using the constrained-random verification:

3—“ TYPE functional_cover Coverage 100.00% 100 100.00... N ‘f
=+ &l VP functional_cover::stall coverage 100.00%: 100 100.00... N {
[B] bin no_stall 127137 1 100.00... D

[B] bin stalled 663 1 100.00... D

=+ CVP functional_cover::flush coverage 100.00% 100 100.00... NN {
[B] bin no_flush 112434 1 100.00... D

|E] bin flushed 15366 1 100.00... I

=+ CVP functional_cover::uncond_jump Coverage 100.00% 100 100.00... N (
[B] bin jal 6333 1 100.00... D

[E] bin jalr 5342 1 100.00... I
=+ @l VP functional_cover::cond_jumps Coverage 100.00% 100 100.00... N ‘f
[E] bin beq_ 1253 1 100.00... I
I-B] bin bne_ 1208 1 100.00... D
HB] bin bit_ 1162 1 100.00... D
I-IB] binbge_ 1236 1 100.00... I
HB] bin bltu_ 1224 1 100.00... D
L[B] bin bgeu_ 1218 1 100.00... I
=+l VP functional_cover::loads coverage 100.00% 100 100.00... NN (
HIB] binlb_ 2410 1 100.00... D
-] binlh_ 2317 1 100.00... I
HIB] bin w_ 2514 1 100.00... D
—E] binlbu_ 2429 1 100.00... ENE
LIB] bin hu_ 2437 1 100.00... D
=+l VP functional_cover:instructions_A coverage 100.00% 100 100.00... N {
-] binsb_ 3966 1 100.00... N
HB] bin sh_ 4145 1 100.00... D
B] bin sw_ 4019 1 100.00... (N
B] bin addi_ 3637 1 100.00... D
HB] bin sli_ 3443 1 100.00... D
I-B] bin xori_ 3547 1 100.00... N
HB] bin ori_ 3544 1 100.00... D
-B] bin andi_ 3600 1 100.00... (N
-B] bin siti_ 3465 1 100.00... D
LIB] bin sitiu_ 3507 1 100.00... D
=+ &l VP functional_cover::instructions_B coverage 100.00%: 100 100.00... N {
HIB] bin srii_ 1859 1 100.00... D
HIB] bin srai_ 1740 1 100.00... D
HB] bin add_ 932 1 100.00... D
-B] bin sub 396 1 100.00... D
—E] binsl_ 1306 1 100.00... D
HB] bin xor_ 1878 1 100.00... D
HB] bin srl_ 933 1 100.00... D
-B] bin sra_ 983 1 100.00... D
-IB] binor_ 1823 1 100.00... D
—[E] bin and_ 1306 1 100.00... D
HB] bin slt_ 1945 1 100.00... D
LIB] bin sltu_ 1884 1 100.00... D

= CVP functional_cover::instruction_C coverage 100.00%: 100 100.00... NN {
[B] bin lui 7337 1 100.00... I
=+ CRrOSS functional_cover::load_use_stalls  coverage 100.00% 100 100.00... N
B bin <lb_no_stall> 2271 1 100.00... D

- B] bin <lh_no_stal> 2202 1 100.00... N
B bin <lw_no_stall 2374 1 100.00... N
E] bin <lbu_no_stall > 2739 1 100.00... N -
B bin <lhu_no_stall» 2358 1 100.00... D
-B] bin <lb_stalled > 139 1 100.00... N
B bin <lh_stalled > 115 1 100.00... D
-B] bin <lv_stalled> 140 1 100.00... N
—B] bin <lbu_stalled: 140 1 100,00... I
LB] bin <lhu_stalled> 129 1 100.00... N
=} @l CROSS functional_cover::cond_jump_flus... coverage 100,00% 100 100.00... [N (
E] bin <no_flush,beq_> 326 1 100.00... I -
B bin <flushed,beq_x 427 1 100,00... I
B bin <no_flush,bne_> 364 1 100.00... N
B bin <flushed,bne_x 44 1 100,00... I
I-EB] bin <no_flush,blt_> 732 1 100.00... N
(-B] bin <flushed blt_> 330 1 100,00... N
B bin <no_flush,bge_> 397 1 100.00... N
B bin <flushed,bge_> 339 1 100,00... N
-EB] bin <no_flush,bltu_x 330 1 100.00... N
B bin <fiushed,bltu_> 394 1 100.00... N
B bin <no_flush,bgeu_x 411 1 100.00... I
LB bin <flushed,bgeu_x 307 1 100,00... N

Figure 4.43: Constrained-Random Verification Functional Coverage Report.
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The following coverage report provides code coverage analysis which shows source

codes on the model designed that has yet to be tested:

Coverage Report Summary Data by file

=== File: D:/FinalYearFroject/Coding/uvm/ref_model/ref_alu.sv

Enabled Cowerage Letiwve Hits Misses § Covered
Stmts 20 20 [u} 100.00
Branches 39 39 o} 100.00
FEC Condition Terms g 2 [u} 100.00
FEC Expression Terms 1 1 [u] 100.00

=== File: D:/FinalYearProject/Coding/uvm/ref model/ref alu ctl.sv

Enabled Coverage Lctive Hits Misses ¥ Cowvered
Stmts 32 32 0 100.00
Branches 43 36 7 83.72

=== File: D:/FinalYearFroject/Coding/uvm/ref model/ref_ctl_unit.swv

Enakled Cowerage Letiwve Hits Misses § Cowvered
Stmts 1s 18 [u} 100.00
Branches 9 9 o} 100.00

=== File: D:/FinalYearProject/Coding/uvm/ref model/ref d mem.sv

Enabled Coverage Lctive Hits Misses ¥ Cowvered
Stmts 12 12 0 100.00
Branches 32 31 1 96.87
FEC Condition Terms 10 10 0 100.00

=== File: D:/FinalYearProject/Coding/uvm/ref model/ref exmem pipeline reg.sv

Enabled Coverage Lctive Hits Misses ¥ Cowvered
Stmts 17 17 0 100.00
Branches 10 10 a 100.00
FEC Condition Terms 2 2 0 100.00

=== File: D:/FinalYearProject/Coding/uvm/ref model/ref fwrd unit.sv

Enabled Cowverage Leotive Hits Misses % Covered
Stmts 15 15 0 100.00
Branches 15 15 o} 100.00
FEC Condition Terms 13 13 0 100.00

=== File: D:/FinalYearProject/Coding/uvm/ref model/ref hzrd unit.sv

Enabled Cowverage Leotive Hits Misses % Covered
Stmts 7 7 0 100.00
Branches - g o} 100.00
FEC Condition Terms 11 10 1 90.90

=== File: D:/Final¥earProject/Coding/uvm/ref model/ref i_mem.sv

Enabled Cowerage Acotive Hits Misses § Coversd

Stmts 2 2 0 100.00




File: D:/FinalYearFroject/Coding/uvm/ref model,/ref idex pipeline req.sv

Enabled Coverage Active Hits Misses % Covered
Stmts 28 g 1} 100.00
Branches 5 5 a 1o00.00
FEC Condition Terms 2 2 o} 100.00

File: D:/FinalYearFroject/Coding/uvm/ref_model/ref_ ifid pipeline regq.sv

Enabled Coverage Active Hits Misses § Cowversd
Stmts 7 7 0 100.00
Branches 4 4 1} 100.00
FEC Condition Terms 2 2 0 100.00

File: D:/Final¥earPFroject/Coding/uvm/ref model/ref imm addr.sv

Enabled Coverage Active Hits Misses % Cowvered

Stmts 2 2 u] 100.00

File: D:/Final¥earProject,/Coding/uvm/ref model/ref imm gen.av

Enabled Coverage Active Hits Misses % Cowvered
Stmts 10 10 o} 100.00
Branches - g o} 100.00

File: D:/FinalYearFroject/Coding/uvm/ref model,/ref memwb pipeline regq.sv

Enabkled Coverage Active Hits Misses % Covered
Stmts 16 1é& 0 100.00
Branches 4 [ a 1o00.00

File: D:/Final¥earProject,/Coding/uvm/ref model/ref model.sv

Enabled Coverage Lctive Hits Misses % Cowvered
Stmts 30 30 o} 100.00
Branches 14 12 2 85.71

File: D:/FinalYearFroject/Coding/uvm/ref_model/ref_pc.sv

Enabled Coverage Active Hits Misses % Covered
Stmts 5 3 1} 100.00
Branches 7 7 a 1o00.00

File: D:/FinalYearProject/Coding/uvm/ref_model/ref reg file.sv

Enabled Cowverage Active Hits Misses % Covered
Stmts ] 9 1] 100.00
Branches 20 20 a 100.00
FEC Condition Terms 4 4 1] 100.00

TOTAL COVERGROUF COVERRAGE: 100.00% COVERGROUP TYPES: 1

Total Coverage By File (code coverage only, filtered view): 98.33%

Figure 4.44: Coverage Report for RISC-V Constrained-Random Verification.
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A total of 461 test seeds have been tested in constrained-random verification. All the
specified cover points from the functional coverage report have been covered and

tested.

From the code coverage analysis, some branches are not taken in several blocks
of the reference model designed: ALU control unit block, memory unit block, and the
top module. Upon analysis, these unexercised branches are the default statement for
case statements. As the case statements for the reference model design are all assigned
a specific value, it is expected for the default statement to be untaken. Aside from that,
there is a miss from the focused expression condition coverage from the hazard unit
block. Upon inspection, this condition miss is due to the condition of ensuring the write

register is not register x( as shown in the following figure:

Condition Coverage for:
{(mem_read s& ((idex reg_addr_l == exmem rd) || (idex reg_addr_2 == exmem rd))) && (exmem rd !'= 0})
FEC Coverage: 3 out of 4 input terms covered = 75.00%

Input Terminal Covered Reason Hint

mem_read 4

{idex _reg addr 1 == exmem rd) Y

{idex reg_addr 2 == exmem rd) ¥

{exmem rd != 0) i '_0' mot hit Hit '_0O"

Figure 4.45: Focused Expression Condition Coverage Miss Analysis.

As writes to register x(0 has been disabled in the test generator, this condition is not
checked. However, as RISC-V instruction set architecture specifies writes to register
x0 are inhibited, the coverage miss can be dismissed as it serves as a precautionary
condition. With the justifications provided, it can be stated that the reference model

designed has been adequately tested.

Even though constrained-random verification contributes greater efficiency
towards achieving full functional coverage, the vastly randomized instruction flow
may miss out on corner cases that require specific instruction sequences. Developing
a better instruction sequence generation algorithm will be needed to test such corner
cases with specific instruction sequences. Alternatively, these corner cases can be

manually written and tested.
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Chapter 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Functional verification of a pipelined RISC-V processor has been successfully
performed using Universal Verification Methodology (UVM). UVM is a testbench
architecture that emphasizes a standardized and reusable approach towards a
verification environment. The verification subject of this project is a RISC-V processor
with a 5-stage pipeline implementation, with data forwarding, pipeline stalling, and

pipeline flushing implemented.

The reference model, design under test, and testbench environment have been
modelled using SystemVerilog and are simulated using ModelSim. Directed
verification and constrained-random verification are the two main forms of
verification performed. Both directed and constrained-random verification have been
integrated into the UVM verification environment translation and specification tasks
in the UVM sequence item class. Through the UVM configuration database, the user
can select the intended verification form through the command line argument
“+DIRECTED_ TEST”. Directed verification provided a much more well-planned test
case scenario. In contrast, constrained-random verification proves to be a much more
efficient approach towards achieving full functional coverage. The UVM verification
environment has also introduced regression testing capability through programmed
capabilities to store test cases and perform multiple test case testing in one simulation

via command-line argument “+BATCH TEST”. These introduced capabilities
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assisted with the verification process through shorter simulation time, consistent test

case reproduction, and cumulative coverage collection for multiple test cases.

For the functional verification of the reference model, a self-checking
mechanism has been introduced in the UVM scoreboard component. The self-
checking mechanism performs functional verification for major design functionalities,
including pipeline stalling, pipeline flushing, and implemented instruction
functionality. Intentional bugs have also been introduced in the design under test and
reference model to test out the bug detection capability of the verification environment.
The simulation results for self-checking mechanism testing and bug detection
capability testing have been compiled and explained. For directed verification, a
sample program has been written in assembly language. The written program is
translated to machine language and simulated. The simulation results are compiled and
analysed for any logical errors. For constrained-random verification, various test seeds
with varying specifications have been generated and tested. The compiled results can

be found in Chapter 4.

From the results compiled, code coverage is at 98.38%, whereas functional
coverage is at 100%. The unexercised code is due to default cases for several case
statements, whereby all expected case statements have been appropriately assigned.
The project is said to have been completed with sufficient functional verification

performed as indicated by the full functional coverage and high code coverage.

5.2 Recommendations

For future enhancement of the project, several recommendations can be made. The
utilized simulation verification performs lock-step comparison between the reference
model and design under test. It is suggested that a reference model from Imperas
can be used for the lock-step comparison to further enhance the confidence in the
verification performed due to the maturity of the Imperas RISC-V reference model.
Usage of a high confidence reference model would remove the requirement of a self-

checking mechanism, allowing more effort to be placed on other verification



118

components. The utilization of a reference model would also offer a learning

opportunity for verification intellectual property (VIP) interfacing and usage.

Aside from the utilization of a higher confidence reference model, another
recommendation that can be made is the fragmentation of the verification process.
The verification methodology focuses on chip level verification whereby verification
is performed on the RISC-V processor as a whole. Fragmenting the verification
process to several levels such as unit level verification, block level verification, and
chip level verification can ease the overall verification process, especially when the
verification subject is a complex system. Verification at lower levels can place more
emphasis on functionality correctness of the unit whereas verification at higher level
can place more emphasis on overall functionality correctness and interconnection of

the lower level components.

Another future enhancement of the project would be to complexify the
functional coverage criteria. In this project, the functional coverage criteria include
pipeline stalling, pipeline flushing, and the instructions executed. The lack of complex
functional coverage cover point or cross cover point makes it easy to achieve full
functional coverage. A well-planned functional coverage would allow more complex
test case scenarios to be included in the test plan, leading to a better verification. A
complexified functional coverage criteria would also push forward the necessity for a
complexified test generator algorithm. The test generator mainly used for constrained-
random verification provides randomized test cases with valid random instructions. A
recommendation that can be made is to include a better algorithm for instruction

generation that results in a sensible instruction flow.

Lastly, formal property verification can also be included for specific
properties of the RISC-V microprocessor architecture, such as pipeline stalling and
pipeline flushing. Compared to the unconventional approach taken (self-checking
mechanism) for assertion checks of pipeline stalls and pipeline flushes, standardized
SystemVerilog assertions provide a much more comprehensible approach. The
inclusion of formal property verification would also provide learning and practical
opportunity for SystemVerilog assertions (SVA), a widely used verification

methodology in the industry.
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include "parameter_list.sv"

ifndef ref model

define ref model
{(virtual_interface interface_instance);

module ref model

logic
logic

[
[
[
[
[
[
[
[
[
[
[
[

INST_;

CTL_SGNL W 1:0]
ALU_OP_WIDIH-1:0]
U_CTL WIDTH-1:0]

DR_WIDTH-1:0]
IDTH-1:0]

TOTH-1:0]
1:0]

INST_

L REG_WIDTH-1:0]

instr_addr;
instr_code;
reg_read_addr_1;
reg_data_1;
reg_read addr_2;
reg_data_2;

imm val;

imm addr;
ctl_op;

alu op;

alu_ctl;
alu_output;
alu_zero;
loaded_data;
stored_datar
fwrd mux_1;

fwrd mux_2;
stall;

flush;

ifid instr_addr;
ifid instr_code;
idex instr_addr;
idex instr_code;
idex reg addr 1:
idex reg data_l;
idex reg_addr_2;
idex reg data_2;
idex imm wal;
idex ctl _opr
idex_alu opr
exmem instr_addr;
exmem instr_code;
exXmem alu output;
EXMEM_ZErO;
exmem imm val;
exmem mem data;
exmem ctl_op:
memwh_ctl_op:
memwh_alu data;
memwh_mem data;
memwb_write_addr;
memwb_write_data;
memwh mem addr;
memwWh mem write data;
memwb instr_addr;

rom [0z {{2** MEM ROWS) - 1}];

REF_EC {.clock{interface_instance.clk),
.reset (interface instance.reset),
.3tall {stall},
.£lush (£lush),
.imm addr (imm addr),
.alu output (alu_cutput),
.Jurp_reg{idex_ctl_op[ JUMF REG]),
.instr_addr(instr_addr));
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ref_i_mem

ref ifid pipeline reg

ref_reg file

ref_imm gen

ref imm addr unit

ref_ctl_unit

ref idex pipeline reg

ref_alu_ctl

ref_alu

ref_exmem pipeline reg

REF_I_MEM

REF_IF

REF_REG

REF_IMM GEN

REF_IMM ADDR

REF_CTL

REF_ID

REF_ALU_CTL

REF_ALU

REF_EX

(.reset(interface_ instance.reset),
.rom{rom) ,
.instr_addr(instr_addr),
.instr_code (instr_code)):

{.clock{interface instance.clk),
.reset{interface_instance.reset),
.83tall{stall),

.flush{flush),
.instr_addr(instr_addr),
.instr_code (instr_code),

.1fid addr(ifid instr addr),

.ifid instr(ifid instr_code));

{.clock{interface instance.clk),
.reset (interface_instance.reset),
.instr_code (ifid_instr_code),
.reg_write (memwb ctl op| RITE]),
.reg_write_addr (memwb_write_addr),
.reg_write_data(memwb_write_data),
.reg_read addr 1 (reg_read addr 1),
.reg_data_l({reg_data_l),

.reg_read addr 2(reg_read addr 2},
.reg_data_2(reg_data_2));

.instr_code (ifid_instr_code),
.imm_wval (imm val)):

{.instr_addr(idex_instr addr),
.imm wal (idex imm wal),
.imm_addr(imm addr));

.instr_code (ifid_instr_code),
.ctl_oplctl_op),
.alu op{alu_op));

{.clock{interface instance.clk),
.reset{interface_instance.reset),
.8tall{stall),

.flush{flush),

.instr_code (ifid_instr_code),
.instr_addr(ifid_instr_addr),
.reg_addr 1(reg_read addr 1),
.reg_data_l(reg_data_1),
.reg_addr_2(reg_read addr_2),
.reg_data_2(reg_data_2),

-imm val (imm val),
.ctl_op{ctl_op),

.alu_op{alu op),

.idex instr code (idex instr code),
.idex instr addr(idex instr addr),
.idex imm wal (idex imm wal),

.idex ctl op{idex ctl_op),

.idex alu op(idex alu op),

.idex reg addr 1(idex reg addr_ 1),
.idex reg data_l(idex reg data_l),
.idex reg addr 2(idex reg addr 2),
.idex_reg_data 2 (idex_reg_data 2));

{.alu_op(idex alu op),
.instr code(idex instr_code),
.alu_ctl{alu ctl)):

Jmem_to_reg(memwk ctl opl |
.reg_data_l{idex reg data_l),
.reg_data 2 (idex reg data 2),
Limm wval (idex imm wval),
.alu_ctl{alu ctl),
.alu_src(idex _ctl_op[ ALU
LIwrd max 1 (fwrd muax 1),
Iwrd mux 2 (fwrd mux 2),
.exmem_alu data(exmem alu_output),
memwWh_alu data (memwbh_alu data),
.memwWh_mem data (memwb_mem data),
.alu_cutput {(alu cutput),
.alu_zerc{alu_zero));

{.clock(interface_instance.clk),
.reset (interface instance.reset),
.alu_zero(alu_zero),
.8tall({stall),

.flush {flush),
.mem_to_reg(memwk ctl op[ M
Limm val (idex imm wval),
LIwrd mux 2 (fwrd mux 2),
JmemWh mem data (memwh mem data),
-memwb_alu data (memwb_alu_data),
.idex mem data({idex_reg data 2),
.alu_cutput {(alu_coutput),

.instr code(idex instr code),
.instr_addr(idex instr_addr),

M TO REG]),
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.ctl_op({idex ctl op),

.exmem instr code (exmem instr_code),
.exmem _instr addr(exmem instr_addr),
.exmem mem data(exmem mem data),
.e¥mem alu output (exmem alu output),
.EXIEM ZEro (SXmem zero),
.exmem imm val (exmem imm val),

.exmem ctl op(exmem ctl op)):

ref_d mem REF D MEM {.clock(interface_instance.clk),
.reset (interface instance.resst),
.mem_write (exmem ctl_op[ MEM WRITE]),
.mem_read(exmem ctl op[ MEM RERD]),
.instr_code (exmem instr_code),
.address (exmem alu output [ MEM
.reg_data(exmem mem data),
.loaded_data{loaded data),
.stored_data(stored _data)):

DTH-1:0]),

R_W

ref_memwb pipeline reg REF WB (.clock(interface_instance.clk),
.reget (interface_instance.reset),
.alu_output (exmem alu output),
.ctl_op({exmem ctl _op),
.loaded_data(loaded_data),
.atored_data({stored_data)
.rd{exmem instr code[ RD ADDR HI: RD
.instr_addr (exmem instr_ addr),
.memwb_ctl_op(memwb_ctl_op),
.memwWb_write addr (memwb write addr),
memWh_write data(memwh write data),
.memwh_mem data (memwbh_mem data),
memwk alu data (memwh_alu data),
.memwb_mem addr (memwb_mem addr),
.memwh_mem write data(memwb mem write_data),
.memwhk_instr addr(memwh instr addr));

ref_fwrd unit REF_FWRD {.reset (interface_instance.reset),
.EXMEM reg write (exmem ctl_op[ REG_WRITE]),
.memwb_reg write (memwb_ctl op[ REG _WRITE]),
.3tall {stall),
.exmem rd(exmem instr_code[ RD _ADDE HI: ED ADDR ILCO]),
-memwb_rd (memwh_write addr),
.exmem opcode (exmem instr_code [ OP
.reg_l({idex reg_addr 1),
.reg_2(idex reg addr 2),
CEwrd mux 1 {fwrd mux 1),
LEwrd_mux_ 2 (fwrd mux 2));

E_HI: OPCODE_LO]),

ref_hzrd_unit REF_HZRD (.reset (interface_instance.reset),
.mem_read (exmem ctl_op[ MEM RERD]),
.zero(alu zero),
.branch(idex ctl op[ BRANCH]),
.jump (idex ctl_op[ JUMF_LINK]},
.exmem rd({exmem instr code[ RD ADDR HI: ED ADDR LO]),
.idex reg_addr 1l (idex reg_addr 1),
.idex reg addr 2(idex reg_addr 2),
Iwrd mux 1 {fwrd mux 1),
Lfwrd mux 2 (fwrd mux 2),
.3tall {stall),
.flush(flush));

/ rive signals to the testbench further fication
always @(posedge interface_instance.clk) begin: interface_block
interface instance.ref stall <= stall:
interface instance.ref flush <= flush;
interface_instance.ref jump link <= idex ctl op[ JUMF_LINK];
if{!stall) Legin
interface instance.ref pc <= ifid instr_addr;
interface_instance.ref_instr <= ifid instr code;
end
interface instance.ref reg read addr 1 <= idex reg_addr 1;
interface instance.ref reg read addr 2 <= idex reg addr 2;
case (fwrd_mux_1)
interface_instance.ref reg read data 1 <= exmem alu output;
1 kegin
if (memwlk ctl op[ MEM TO REG])
interface_ instance.ref req read data_l <= memwb_mem data;

slse
interface_instance.ref_reg read data 1 <= memwk alu data;
end
"HO_FWED: interface_instance.ref reg read data 1 <= idex reg data 1;
endcase
case (fwed_mux_2)

interface_instance.ref reg read data 2 <= exmem alu output;
kegin

{memwlky ctl op[ MEM TO REG])
interface_ instance.ref_reg read data_2 <= memwb_mem datar

else
interface_instance.ref reqg read data 2 <= memwb_alu data;
end
"NO_FWRD: interface_instance.ref reg read data 2 <= idex reg data 2;
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end:

endmodule

endcase

case (fwrd mux_2)
" FWRD
*FWRD

interface_instance.ref_reg_read data_2 <= exmem alu output;
kegin

f(memwh_ctl_op[” 0 _REG])

interface instance.ref reqg read data 2 <= memwb mem data;

else
interface_instance.rsf_reg read data_2 <= memwb_alu datar

end
“NO_FWl
endcase
interface instance.ref imm val <= idex imm wval;
interface_instance.ref_alu ocutput <= exmem alu cutput:
interface_instance.ref alu zero <= eXmem zZero;
interface_instance.ref ctl_op <= exmem ctl_op;
interface instance.ref reqg write_addr <= memwb write_addr;
interface_instance.ref_mem addr <= memwb_mem addr:
interface_instance.ref _mem write data <= memwb _mem write data:
interface_instance.ref _mem write <= memwb_ctl_op[ ¥
interface_instance.ref mem read <= memwb ctl op[ MEM |
interface instance.ref reg write <= memwb_ctl_op[ REG
interface_instance.ref_reg write_data <= memwb_write_datar

interface instance.ref reg read data 2 <= idex reg data 2;

// Delayed alignment instruction executions for co
interface instance.ref ID instr <= idex instr code;
interface instance.ref EX instr <= exmem instr code;
interface_instance.ref EX pc <= exmem instr addr;

checking

interface_block
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include "parameter list.sv"

ifndef ref pc

define ref pc

module ref pc  (input
input

input

input

input

input

input

QUtput

always @ (posedge clock) begin:

wWire logic
wWire logic
Wire logic
wire logic
wWire logic
Wire logic
vire logic
logic

if ({reset)

else 1f('stall) Lkegin:

inastr_addr <=

DE_WIDTH-1:0]
[*DATA WIDTH-1:0]

["INST_ADDR_WIDTH-1:0]

always_block

RESET_VALUE;
update_pc

if(flush) begin: flush pc
if {jurp_req)

else

end: flush pc
glse

instr addr <= instr addr +

end: update pc
end: always_bklock

endmodule
endif

instr_addr <= {alu output[ DATA WIDTH-1:2],2'b00};

instr addr <= imm addr;

clock,
reset,
stall,
flush,

imm addr,
alu output,
jump_reg,
instr_addr):

INST ADDR SUM;
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APPENDIX C: Source Code of Reference Model — Instruction Memory

include "parameter_list.sv"

ifndef ref_i mem
define ref i mem
moduls ref_ i mem {input wire logic reset,
ref logic [*LCATR RE rom [0z ({2¥% MEM ROWS) - 1)],
input wire logic [INST . WIDIH-1:0] instr_addr,
output logic [*INST_CODE WIDTH-1:0] instr code);
{/f Setup program in instruction memory during reset
/f/ Fetch instruction from instruction memory based on provided instruction address
always @(%) pegin: instruction fetch

instr_code = {rom[instr_addr],
rom[instr_addr + 1]
rom[instr_addr + 2],
rom[instr_addr + 3]};
end: instruction fetch
endmodule
endif
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include "parameter_list.sv"
ifndef ref ifid pipeline_ reg
define ref ifid pipeline_reg

module ref ifid pipeline_reg {input wire logic clack,
input wire logic reset,
input wire logic stall,
input wire logic flush,
input wire logic ["INST_ADDR_WILDTH-1:0] instr_addr,

input wire logic ["INST_ _WIDTH-1:0] instr_code,
output logic ["INST_| _WIDTH-1:0] ifid addr,
output logic [*INST_C _WIDTH-1:0] ifid instr);

¥

P

// For IF/ID pipeline register, store instruction code and address
always [@(possdgs clock) begin: always_block
if {reset) begin: system reset
ifid_instr <= "RE3ET
ifid_addr <= "RESET_
end: system reset
else if(flush && !stall) begin: pipeline_ flush
ifid_instr <= "NOP_INST_COLE;
ifid addr <= instr_addr;
end: pipeline_flush
glse if(!stall) begin: normal_operation
ifid_imstr <= instr_code;
ifid_addr <= instr_addr;
end: normal_operation
end: always_block
endmodule
endif

On positive clock edge, update the pipeline registers if pipeline is not stalled or flushed
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APPENDIX E: Source Code of Reference Model — Register File

include "parameter_list.av"™
ifndef ref reg file

define ref reg file
module ref reg file {input wire
input wire
input wire
input wire
input wire
input wire

output logic
output logic
output logic
output logic

[O:{2xx REG_

R_HI: RSL
R_HI: RS2

(reg_write ? {reg_read_addr:l == reg_write_addr 2

register([reg_read_addr 1])

(reg_write ? (reg_read addr 2 ==

register[reg_read_addr 2])

logic [ "DATA WIDTH-1:0] register
assign reg read addr 1 = reset ? O instr_code[ R51_
a33ign reg_read addr 2 = reset ? 0O instr_code[ R3Z_|
assign reqg data 1 = (reset 2 0
reg_write_data
assign reg data 2 = (reset 2 0
reg_write_data
always @({possdgs clock) begin: always_block
if {reset) kegin
for {int 1 = 07 1 < 327 i++)
register[i] <= 32 H
end
else begin
if(reg_write s& reg_write_addr != 0)
register[reg_write_addr] <= reg_write_datar
end
end: always_block

endmoduls
endif

reg_write,
reg_write addr,
reg_write_data,
reg_read_addr_1,
reg_data_l,
reg_read_addr_2,
reg_data_2

clock,
reset,
_ WIDTH-1:0] instr_
WIDTH-1:0]
H5-1:0]

code,

Vi

:C].'

register([reg_read_addr 11))
reg_write_ addr ?
register[reg_read_addr 21))
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APPENDIX F: Source Code of Reference Model — Control Unit

"include "parameter list.sv"

“ifndef ref ctl_unit
‘define ref ctl unit

modules ref _ctl unit {input wire logic ["INST_CODE_WIDTH-1:0] 4inatr_code,
cutput logic ["CTL_SGHL WIDTH-1:0] ctl_op,
gutput logic ["ALT OF WIDTH-1:0] alu _op);
logic [ "OPCODE_WIDTH:=0] opcode ;

assign opcode = instr code[ OFCODE_HI: OFPCODE LO]:

S/ hasign control signal and ALU OF based on instruction type
f/ Ensuring proper hardware functicning based on instructicon
always @(*) begin: main_control_signal_klock
case (opcode)
"R_OFCCLE : begin
ctl op = "B_CTL SGHL:
alu op = "RARITH_LOGIC ALU OF;
end
"LOAD QPCODE: begin
ctl_op = "LORD CTL SGNL:
alu op = "IMM ADDR CALC ALU OF;
end
"U_COBCOLE,
"I_OFCCLDE : begin
ctl op = "I_CTL SGHL:
alu op = "RARITH_LOGIC ALU OF;
end
"5 _OPCCLDE : begin
ctl_op = "5 CTL S5GNL:
alu op = "IMM ADDR CALC ALU OF;
end
"5B_OPCODE : begin
ctl op = “53B_CTL_SGNL;
alu op = "COND _BREAMCH ALU OF;
end
“J_OPBCODE : begin
ctl op = “J_CTL_SGHL;
alu op = "JAL ALU OF;
end
“JALR_OFCODE: begin
ctl op = "JALRE CTL SGHNL;
alu op = "IMM ADDER CALC ALT OF;
end
default : begin
ctl op = "HOP_CTL SGHL:
alu op = “JAL ALU CF;
end

LS

endcase
end: main_control_signal block
endmodule
“endif
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APPENDIX G: Source Code of Reference Model — Immediate Generate Unit

logic
assig

end:
endmoduls

_imm gen

71:af_1mm_gen
{input wire
output logic

[

n opcode = instr_code[ OP

case (opcode)

imm val
imm wval
imm val
imm val
imm wval
imm val
imm val
imm wal

default
endcass
immediate_value_always_block

ding immediate value
: immediate_value_always |

instr_code,
imm val) ;

based on type of instruction
block

{{20{instr_code[31]}},instr_code[31:
{{20{instr_code[31]}},instr_code[3
{{20{instr_code[31]}},instr_code[3
{{20{instr_code[31]}},instr_code[31:25],instr_code[11:7]};

{{19{instr_code[31]}},instr_code[31],instr_code[7],instr_code[30:25],instr code[11:3],1"'
{instr_code[31:12],12" H
{[11{1n3tr code[31]1}},instr_code[31], 1n31:1: - code[19:12],instr_code[20],instr_code|
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APPENDIX H: Source Code of Reference Model — ID/EX Pipeline Register

include "parameter_list.sv"
ifndef ref idex pipeline_reg
define ref idex pipeline reg

module ref idex pipeline req {input wire logic clock,
input wire logic reset,
input wire logic stall,
input wire logic flush,
input wire logic [ instr_code,
input wire logic [ instr_addr,
input wire logic [ reg_addr_1,
input wire logic [ reg_data_l1,
input wire logic [ reg_addr_2,
input wire logic [ reg_data_2,
input wire logic [ imm wal,
input wire logic [ ctl_op,
input wire logic [ alu_op,
cutput logic [ idex instr code,
output logic [ idex instr addr,
cgutput logic [ idex imm wval,
output logic [C idex ctl_op,
cgutput logic ["& 1:0] idex alu op,
output logic [*El AIDTH-1:0] idex reg_addr 1,
cgutput logic [*L -1:0] idex reg data l,
output logic [*El AIDTH-1:0] idex reg_addr 2,
output logic ["DATAR WIDTH-1:0] idex reg data 2 ):

/{ On positive clock edge, update the pipeline registers if pipeline is not stalled or flushed
// For ID/EE pipeline register, pass register read info, immediate walue, control signal and ALU OF

always @(possdge clock) begin: always_bleck
if(reset) begin: system reset
idex instr code <=
idex instr addr <=
idex imm val <=
idex req data 1
idex reg data_2
idex req addr 1
idex reg_addr_2
idex ctl_op <=
idex alu_op <=
end: system reset
else begin
if (flush && !stall) hegin: pipelines_flush
idex_instr code <= "NOF_INST_CCODE;
idex_instr addr <= instr_addr;
idex etl_op <= "NOP CTL SGNL;:

idex_alu _op <= "RESET_V

idex imm val <= "RESET

idex_reqg data 1 <= "RESET’

idex reg_data 2 <= "RESET_VALUE:
idex reg_addr 1 <= “RESET_VALUE;
idex reg_addr 2 <= "RESET_VALUE;

end: pipeline_flush
2lse if(!stall) begin: normal operation

end:

end
end: always_block
endmodule
endif

idex instr code
idex instr addr
idex imm wal <=
idex reg data_l
idex reg data_2
idex reg addr_1l
idex reg addr_2

idex ctl op <= ctl

<= instr code;
<= instr_addr;
imm wal;

<= reg_data_l;
<= reg_data_2;

<= reg_addr_1;
<= reg_addr_2;
_op:

idex alu op <= alu op;

normal_operation
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APPENDIX I: Source Code of Reference Model — ALU Control Unit

‘include "parameter list.sv"
“ifndef ref alu ctl
‘define ref alu ctl

module ref alu ctl {input wirse logic [*ALU_OF WIDTH-1:0] alu op,
input wire logic [*INST_CODE_WIDTH-1:0] instr_code,
output logic ["ALU_CTL_WIDTH-1:0] alu ctl);

logic [ OBCO! WIDTH:
logic [ FUNCT3

logic [ FUNC
assign opcode =

assign funct3 = instr code[ FUNCT3
assign funct7 = instr_ code[ FUNCI7

OPCODE_LO] »
FUNCT3_LO] »
: "FUNCT7_LO]:

// Rssign ALU control signal correspond to the instruciton operation
always @(*) begin: main_alu ctl_block
case(alu_op)
“IMM ADDR_CALC ALU OF: alu ctl = “ADD_CTL;
“COND_BERNCH_ALU OF: begin: sb alu ctl_block
case (funct3)

"BEQ_FUNCT3 : alu ctl = "COMP EQ CTL:
“BNE_FUNCT3 : alu_ctl = "COMP_NEQ_CTL;
“BLT_FUNCT3 : alu_ctl = "COMP_LESS CTL:
“BGE_FUNCT3 : alu ctl = "COMP_GEQ_CTL;
"BLTU_FUNCT3 : alu_ctl = "COMP_LES5S UNSIGNED_CTL:
“BGEU_FUNCT3 : alu_ctl = ~COMP_GEQ_UNSIGNED CTL;
endcase

end: sb alu ctl_block
"ARITH LOGIC RALU OF: begin: arith logic_alu ctl_bklock
case (opcode)
"I_OPCODE: begin: i type_alu ctl block
case (funct3)

“ADD_FUNCT3 : alu_ctl = "R
“SLL_FUNCT3 : alu ctl = °

*SLT_FUNCT3 : alu_ctl = ’_GEQ_CTL;
*SLTU_FUNCT3 : alu_ctl = “COMP_GEQ_UNSIGNED CTL;
“XOR_FUNCT3 : alu_ctl = "HOR_CTL;

*SR_FUNCT3 : begin

case (funct7)
"DEFRULT_FUNCIT7 : alu ctl =

LLT_FUNCIT : alu ctl = °
endcase
end
“OR_FUNCT3 : alu_ctl = "OR_CTL;
“AND FUNCT3 : alu ctl = "RND_CTL;

endcase
end: i _type_alu ctl_block
“E_OFCODE: begin: r type_alu ctl block
case (funct3)
"ADD FUNCT3 : begin
case (funct7)
"DEFAULT_FUNCTI7 : alu ctl = "ADD CTL;

"ALT_FUNCT?7 : alu ctl = "5UB_CTIL;
endcase
end
*SLL_FUNCT3 : alu ctl = "SLL CIL;

& : alu_ctl = "COMP_GEQ_CTL:
*SLIU_FUNCT3 : alu ctl = “COMP _GEQ_UNSIGNED CTL;
“XOR_FUNCT3 : alu ctl = "HOR_CTL;

*5R_FUNCT3 : begin
case (funct?)
"DEFAULT_FUNCTI7 : alu ctl =
"ALT FUNCT7 : alu ctl = °
endcase
end
“OF_FUNCT3 : alu_ctl = "OR_CTL;
"RND FUNCT3 : alu ctl = "RND CTL;

endcase
end: r_type_alu ctl block
“U_OPCODE: alu_ctl = "LOAD UPPER_CTL;
endcase
end: arith logic alu ctl block
“JAL ALU OF: alu ctl = “SET_ZERO CTL:
endcase
end: main_alu ctl_block
endmodule
“endif
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include "parameter_list.sv"

ifndef ref_alu
d ref_alu

module ref alu (input mem to_req,
input reg_data_l1,
input reg_data_2,
input imm wal,
input alu ctl,
input alu src,
input fwrd mux_ 1,
input fwrd mux_2,
input exmem_alu data,
input memWl_alu data,
input memWh_mem data,

output reg
output reg

alu output,
alu_zero);

data_1;
data_2;

assign data l

= (fwrd mux 1

LT ? exmem alu data

{fwrd mux_1 MEM ? (mem to_reg ? memwb_mem data :memwb_alu data)
assign data 2 = (alu_src ? imm val (fwrd mux_ 2 == "FWRD_ALU ? exmem alu data
({fwrd mux_2 == "FWED MEM ? (mem to_reg ? memwb_mem data memwb_alu data)

// Perform specific operation based on alu ctl signal provided
always @(*) begin: main_alu block
case (alu_ctl)

) TL alu ocutput = data_l & data 27
alu ocutput = data_l1 | data 27
alu ocutput = data_l + data 27
alu output = data_l1 - data 27
alu_ocutput = data_l << data_2[4:0];

alu_output
alu_output
alu_output
alu_output
alu_output
alu_output
alu_output
alu_output
alu_output
alu_output
alu_output

»»> data_2[4:0]7

c3 {data_ 1) >>> data 2[4:0];
data_1 ~ data_2;

!({data_ 1 == data_2);
(data_l == data_2);
{{data_ 1 >= data_2) ? 0
{{data 1 < data_2) 2 O
{data_l1)
{data_l) <

data_l

=

SET_ZERO_CTL
endcase

alu_zeroc <= (alu output
end: main_ alu block
endmodule
endif

reg_data 1));

reg_data_2))) s

1
1
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APPENDIX K: Source Code of Reference Model — Immediate Address Unit

include "parameter list.sv"

imm addr unit

ine ref_imm addr_unit

madule ref imm addr unit {(input wire

logic [TINST
input wire logic [ DATA
gutput logic [INST_.

instr addr,
imm wval,
imm addr);

f/ Calculate the correct
always @(%)
imm addr = instr_addr + imm val;

immediate address for branches

endmodule
endif
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APPENDIX L: Source Code of Reference Model — EX/MEM Pipeline Register

ifndef ref_exmem pipeline_reg
define ref_exmem pipeline_ reg

gutput logic
output logic
gutput logic

_ WIDTH-1:0] exmem instr_code,
. WIDTH-1:0] exmem instr addr,
1:0] exmem mem data,

module ref exmem pipeline reg (input wire logic clock,

input wire logic reset,
input wire logic alu_ zero,
input wire logic stall,
input wire logic flush,
input wire logic mEm_to_reqg,
input wire logic [ D imm val,
input wirs logic [ fwrd mux 2,
input wire logic [ meEmWh mem data,
input wirs logic [ memwlk alu data,
input wire logic [ idex_mem data,
input wirs logic [ alu_output,
input wire logic [ instr_code,
input wirs logic [ instr_addr,
input wire logic [0 ctl_op,

[

[

[
output logic [ DATA WIDTH-1:0] eXmEm alu output,
gutput logic eXmem Zero,
output logic [ DATA WIDTH-1:0] exmem imm val,

gutput logic

CTL SGNL WIDTH-1:0] exmem ctl op);

S/ On positive clock edge, update the pipeline registers if pipeline is not stalled or flushed
S/ For EX/MEM pipeline register, pass instruction and control signal info, store ALU cutput
always @(posedge clock) begin: always_block
if (reset) begin: SysStem reset
exmem_instr_code <=
exmem_instr_addr <=
exmem_alu output <= W
exmem zerc <= "RESET_VALUE;
exmem imm wval <= "RESET
exmem_ctl_op <= "RE3ET_V
exmem mem data <= "RESET_VIZ
end: system reset
zlse begin
if(stall) begin: pipeline stall
exmem instr code <= "NOF_INST_CODE;
exmem ctl_op <= "NOP_CTL_ 3GNL;
end: pipeline stall
else begin: normal operation
exmem_instr_code <= instr code:
exmem_ctl_op <= ctl_op;
end: normal operation
exmem_instr_addr <= instr_addr;
exmem alu output <= alu output;
eXmem_zero <= alu_zero;
exmem_imm val <= imm val;
exmem mem data <= (fwrd mux 2 == FWED ? idex mem data
{fwrd mux 2 == “FWRD_ALU ? exmem alu cutput
{mem_to_reqg ? memwb _mem data : memwb alu data)));

end
end: always_block
endmodules
endif
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include "parameter_list.sv"

ifndef | mem
e ref_d mem
module ref_d_mem {input wire cleck,
input wire reset,
input wire mem wWrite,
input wire mem_read,
input wire [ 1:0] instr_code,
input wire [ DTH-1:0] address,
input wire [ H-1:0] reg_data,
output logic [ H-1:0] loaded_data,
output logic ["DR H-1:0] stored _data);
int
logic ram [0z {(2** MEM BOWS) - 1)1;
logic read_datar
logic functi;
assign funct3 = instr code[ FUNCT3_HI: FUNCI3_LO];
assign read_data = {(ram[address+3] 8'bx ? 2'b0 : ram[address+3]),
(ram[address+2] 2 8'h0 : ram[address+2]),
{ram[address+l] ? 8'b0 : ram[address+l]),
{ram[address] ? §'h0 : ram[address])};
assign loaded data = mem read ? (funct3 == "LE_FUNCT3 2 {[24[read_data[7]}},read data[7:0]}
{funct3 == "LH FUNCT3 ? {[l6[read data[l5]}},read data[l5:0]}
{funct3 == _FUNCT3 ? read_data :
{funct3 == "LBU_FUNCI3 2 [24'b0,read data[7:0]} : {16'b0,read data[l5:011))))
assign stored data = mem write ? (functd == "5B_FUNCT3 ? [24'b0,reg_data[7:0]] :
{funct3 == H_FUNCT3 2 {16'k0,reg_data[l5:0]} : reg_data)) : 07
ite corresponding register data to the data memory
always @(possdge clock) begin: memory_control_block
if(reset)
ram <= '[default: RESET_VALUE}:
if(mem write) begin
case (funct3)
SB_FUNCT3: ram[address] <= reg data[7:0];
SH_FUNCT3: begin
ram[address+l] <= reg data[l5:2];
ram[address] <= reg_data[7:0];
end
SW_FUNCT3: begin
ram[address+3] <= reg_datal[31:24];
ram[address+2] <= reg_data[23:16];
ram[address+l] <= reg_data[l5:8];
ram[address] <= reg data[7:0]:
end
endcase
end
end: memory control_block
endmodule

endif

'H
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APPENDIX N: Source Code of Reference Model - MEM/WB Pipeline Register

include "parameter_ list.sv"
ifndef ref memwb pipeline req
define ref memwb_pipeline reg

module ref _memwk pipeline_reg (input wire logic
input wire logic
input wire logic
input wire logic
input wire logic
input wire logic
input wire logic
input wire logic
gutput logic
osutput logic
output logic
gutput logic
output logic
osutput logic
cutput logic
gutput logic

always @(posedge clock) begin: always block

if{reset) bkegin: system reset
memwk_ctl_op <= "RESET_VALUE;
memwb_write addr <= "RESET_VA
memwWb_mem data <= "RESET
memwh_alu_data <= "RESET
memwb_mem addr <= “RESET
memwh_mem write_data <=
memwWb_instr_addr <= "RESET_

end: system reset

£lse begin: normal_operation
memWb_ctl_op <= ctl_ops
memwh_write_addr <= rd;

memwb_write_data <= (ctl_op[ JUMF_LINK]

DATZ WIDTH-1:0]
NI WIDTH-1:0]
WIDTHE-1:0]

DATZ WIDTH-1:0]

REG
IN5T_ADDR_WIDTH-1:0]
L WIDTH-1:0]
B_WIDTH-1:0]

E_WIDTH-1:0]
INST_ADDR_WIDTH-1:0]

? instr_addr +

{ctl op[ MEM TC REG] ? loaded data

memwh_mem data <= loaded datar
memwh_alu data <= alu_output;
memwb_mem addr <= alu output;

memwWb_mem write_data <= stored data;

memwh_instr_addr <= instr_addrc;
end: normal_ operation
end: always_block
endmodule
endif

clock,

reset,

alu_output,
ctl_op,
loaded_data,
stored_data,

rd,

instr_addr,
memwh_ctl_op,
memWb_write_addr,
memWh_write_data,
memwh_mem_data,
memwb_alu data,
memWb_mem addr,
memwhk_mem write_data,
memwh_instr_addr);

INST_ADDR 5UM :
alu_cutput)):
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APPENDIX O: Source Code of Reference Model — Forwarding Unit

include "parameter list.sv"
ifndef ref fwrd unit
define ref_fwrd_unit

module ref fwrd unit {input wire logic reset,
input wirse logic eXmem reg_write,
input wire logic mEmWh reg_write,
input wire logic stall,
input wirse logic [ exmem rd,
input wire logic [ meEmWh rd,
input wirse logic [ exmem opcode,
input wire logic [ reg_l,
input wire logic [ reg 2,
gutput logic [ :0] fwrd_mux 1,
output logic [ :0] fwrd mux 2);

/{ Provides data forwarding maltiplex control signal based on write register address

ff from EX/MEM and MEM/WB pipeline register and OPCODE to check for

always@(¥) begin: always_block

if(reset) begin: system_rese
fwrd mux 1 = "RESET
fwrd mux 2 =

end: system reset
if (exmem opcode != "LOAD OPCODE s& exmem reg write && exmem rd != 0) begin: exmem fwrd
if(reg_l == exmem rzd)
fwrd mux 1 = “FWRD ALU;
else if (reg_l == memwb_rd && memwb req write) //CHECEME
fwrd_mux_1 = ~FWRD_MEM;
glse
fwrd_mux_1 = "NO _FWED;
if (reg_2 == exmem rd)
fwrd_mux_2 = "FWRD ALU;
glse 1f (reg_2 == memwb_rd s:& memwk reg write)
fwrd mux 2 = “FWRD MEM;
else
fwrd_mux_2 = "NO_FWED;
end: exmem fwrd
else if(memwb reg write && memwb_rd != 0) begin: memwh fwrd
if({reg_l == memwb rd)
fwrd mux_1 = “FWRD MEM;
glse
fwrd mux 1 = "NO_FWRD;
if(reg_2 == memwb rd)
fwrd_mux_2 = ~FWRD_MEM;
glse
fwrd_mux_2 = "NO_FWED;

end: memwb_fwrd
else begin: default case
fwrd max_1 = "HO_FWED;
fwrd mux 2 = "HO_FWRED;
end: default_case
end: always_block
endmodule
endif

LOAD type instruction
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APPENDIX P: Source Code of Reference Model — Hazard Detection Unit

include "parameter list.sv"
ifndef ref hzrd unit

define ref hzrd unit
module  ref hzrd unit (input wire
input wire
input wire
input wire
input wire
input wire
input wire
input wire
input wire
input wire
output logic
cutput logic
Assign cor onding walue flush and stall co
and branch condition fulfillment
always @(*) begin: hazard detecticin_always_bklock
if {reset) begin: system reset
stall = "RESET
flush = "RESET_VA
end: system reset
if (({zero &s branch) || jump)
flush = 1;
else
flush = 07
if (mem read s& (idex reg_addr 1 == exmem rd
if ({{idex reg_addr 1 == exmem rd &
{idex reg_addr 2 == exmem rd &
stall = 17
end
else
stall = 07
end: hazard detectiocin always_block
endmodule

endif

reset,

mem read,

Zero,

branch,

Jurp,

exmem rd,

idex reg_addr_ 1,
idex reg_addr_2,
fwrd mux_1,

fwrd mux_2,
stall,

flush);

ntrol signal based on

|| idex reg addr 2 == exmem rd) && exmem rd != 0) begin
fwrd mux_1 !'= "FWl My o1
fwrd mux 2 '= “FWRD_MEM))
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// General Processor Specifications
define

S/ Immediate Constant Values

define
define
define
define

INST_ADDR_WIDTH
INST_CODE_WIDTH

DATA WIDTH
MEM_ROWS

MEM_ADDR_WIDTH
DATA REG_WIDTH
INST_ADDR_SUM

RE3SET VALUE

NOP_INST_CODE

I_IMM WIDTH

SB_IMM WIDTH

J_IMM_WIDTH
U_IMM WIDTH

32
32
32
la
la
4

]

32 "h000000a0o

12
12
20
20

// Begister Rccess Constant Values

define
define
define

S/ FUNCT7 Constant Values
FUNCT7_WIDTH

define
define
define
define
define

S/ FUNCTI3 Constant Values
FUNCT3_WIDTH

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

efine

REG_ADDR_WIDTH

RS1_ADDR_HI
RS1_ADDR_LO
RS2_ADDR_HI
RS2_ADDR_LO
RD ADDR HI
RD_ADDR_LO

FUNCT7_HI
FUNCT7_LO

DEFAULT FUNCTT

ALT FUNCT?

FUNCT3_HI
FUNCT3_LO
LE_FUNCT3
LH_FUNCT3
LW_FUNCT3
LEU FUNCT3
LHU_FUNCT3
SB_FUNCT3
SH_FUNCT3
SW_FUNCT3
BEQ_FUNCT3
BNE_FUNCT3
ELT_FUNCT3
BGE_FUNCT3
BLTU_FUNCT3
BGEU_FUNCT3
ADD_FUNCT3
SLL_FUNCT3
SLT_FUNCT3
SLTU_FUNCT3

3

13
13
24
20
11
)

7
31
25
T'B0000000
T'R0100000

3

14

12
3000
3'pb001
3'k0O10
3'kb100
3'kl0l
3'h000
3'pb0O01
3'k010
3000
3'k001
3'kl00
3'k101
3'kbl10
3'blll
3000
3'pb0O01
3'h0O10
3'b0O11
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"define
"define
"define
"define
"define

¥OR_FUNCT3
SE_FUNCT3
OR_FUNCT3
AND_FUNCT3
JALR_FUNCT3

S/ OPCODE Constant Values

‘define
"define
"define
"define
"define
"define
‘define
‘define
"define
"define
"define
"define

OPCODE_WIDTH
OPCODE_HI
OPCODE_LO
R_OPCODE
LOAD_(OPCODE
5_OPCODE
U_OPCODE
I_OPCODE
SB_OPCODE
J_OPCODE
JALR_OPCODE
NOP_QOPCODE

3'k:100
3'kl01
3'b1l10
3'kbl11
3'k000

[ PR |

-1

"bO110011
"bO0O0OOOLL
"LOLlOOOLL
'L0O110111
'LO01001L
'L1100011
'L1101111
'b1100111
"LO00o000o0

[, QR T T (R R |

-1

S/ Control Signal Constant Values

efine
-def
"define
"define
defin
"define
"define
"define
"define
"define
‘define

CTL_SGNL WIDTH
NOP_CTL SGNL
B _CTL SGHNL
LOAD CTL SGNL
I_CTL SGNL

5 _CTL_SGNL
SB_CTL_SGHL
J_CTL SGNL
JALR CTL SGNL

"BO0000000
"RO0001000
"bO0111100
"bO0101000
"bO0100010
"LO0oooool
"LOL1001000
'L11101000

O 00 00 o0 00 00 00 CO o

S/ Specific Control Signal Index

"define
"define
"define
‘define
‘define
"define
"define
"define

ERANCH
MEM WRITE
MEM READ
EEG_WRITE
MEM TO REG
ALU SRC
JUMP_LINK
JUMP_REG

S/ ALU OF Constant Values

"define
efine
-def
"define
"define
"define

ALU OP WIDTH

IMM ADDR CALC ALU OP
COND_BRANCH_ALU_OP
ARITH_LOGIC_ALU OP
JAL_ALU_OP

S/ ALU CTL OF Constant Values

"define
"define
‘define
"define
"define
"define
‘define
"define
"define
"define
‘define
"define

ALU CTL WIDTH
IND CTL
OR_CTL

ADD CTL
SUB_CTL
SLL_CTL

SEL CTL

SEA CTL
HOR_CTL
COMP_EQ CTL
COMP_NEQ_CTL
COMP_GEQ_UNSIGNED CTL

]

o B I 3 ISP L oS ]

2

2'k00
2'k01
2'k10
2'bl1

4

4'B0000
4'p0001
40010
4'p0O011
4'b0O100
4'R0O101
4'p0OL10
4'p0O111
4'kR1000
4'kR1001
4'R1010
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"define
"define
"define
"define
"define

S/ Forwarding Constant Values

"define
"define
"define
"define

S/ Coverage Coverpoint Constant

"define
"define
"define
"define
"define
"define
"define
"define
“define
"define
"define
‘define
‘define
“define
‘define
‘define
"define
"define
"define
"define
"define
"define
"define
"define
"define
"define
"define
"define
"define
"define
"define
‘define
‘define

COMP_LESS_UNSIGNED_CTL

COMP_GEQ_CTL
COMP_LESS_CTL
LOAD UPPER_CTL
SET_ZERO CTL

FWRD_MUX_WIDTH
NO_FWRD
FWRD_ALT
FWRD_MEM

BEQ_CVR
ENE_CVR
BLT_CVR
BGE_CVR
BLTU_CVR
BGEU_CVR
LB _CVR
LH_CVR

LW_CVR
LEU_CVR
LHU CVR
SB_CVR
SH_CVR
SW_CVR
ADDI_CVR
SLLI_CVR
HORI_CVR
ORI_CVR
ANDI_CVR
SLTI_CVR
SLTIU_CVR
SRLI_CVR
SRAT_CVR
ADD_CVR
SUB_CVR
SLL_CVR
HOR_CVR
SEL_CVR
SEA_CVR
OR_CVR
AND CVR
SLT_CVR
SLTU_CVR

4'p1011
4'kR1100
4'p1101
4'kb1110
4'b1111

2

2'b00
2'bl0
2'b01

Values

10'B0001100011
10'k0011100011
10'k1001100011
10'k1011100011
10'k1101100011
10'k1111100011
10"k000000001LL
10"k0010000011
10"R0100000011
10"k1000000011
10"Rk1010000011
10"RL0O000L0001L
10"BL0010100011
10"kL0100100011
1020000010011
10"R0010010011
10"R21000010011
10'R1100010011
10'R1110010011
10'BR0100010011
10'k0110010011
17'k000000010L0010011
17'k01000001010010011
17'B00000000000L10011
17'k01000000000L10011
17'k000000000L0L10011
1700000001 000L10011
17'kL000000010L0110011
17'k01000001010110011
1700000001 100110011
17'R0O0000001L110110011
17"kL0O0000000100L10011
17'L0O0000000110110011




APPENDIX R:

144

Source Code of Verification Environment — UVM Testbench

"test.
uvm pkg::¥;

£ testbench

define testbench
testbench;

module

clk;
#10

logic
always

virtual_interface

dut_model
ref_model

initial kegin

uvm_config db# (virtual virtual_interface)::set(null, "uvm test_top”,”
run_test("test™);

end

initial

clk <=

endmodule

endif

clk =

~clky

if instance(clk);
riscv(.interface_instance(if_instance));
riscv_ref(.interface instance (if_ instance));

Jif

_instance);
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uvm_pkg.sv"
uvm_macros.svh®

define test
class test sxtends uvm_test:

VIO t_utils(test)

function new(string name = "test”
=r.new(name, parent);:

uvm_component parent = null;

endfunction

env env_inst;
s=q seq_inst;
virtual virtual_interface interface_instance;

virtusl function void build_phase (uvm_phase phase);
// Declare variables to store arguments from command line onto configuration
int test_seed;
int instr_ame;
string seed file;
string instr_type;

super.build phase (phase);
env_inst= env::type_id::create("env_inst”,this);

if('uvm config db#(virtual virtual interface)::get(this,”","virtual_interface”,interface_instance))
wvm_fatal ("TESI™, "Unable to access virtual interface on ve cation environment")
uvm_config db# (virtual virtual interface)::set(this,"env_inst.agent_inst.*","virtual interface",interface instance);

seq_inst = seq::type_id::create("seq inst”):

ramsters or use defzult values set

cgin

vm_test_top

5", seed_file))

uvm_config_db# {string) ::set(null, "uvm_test_to
1}

guments as configuration p
CH_TEST"))
#(bit)

// Pass test

batch_test”, 1);

uvm_config_db

"seed_file”,seed _file);

uvm_test_top”, "run_all",1);

"SEED=3s", test_seed))
uvm_config_db (int) ::set (null, "uvm_test_top
I gs ("INSTR_TYPE=s",instr_type))
uvm_config db# (string)::set(null, "uvm test_top”, "instr_type
e gs ("DIRECTED TEST"))
uvm_config db#(bit)::set(null, "uvm test_top”,"d:
s ("FORCE_GEN"))
uvm_config db#(bit)::set(null, "uvm test_top”
s ("INSTR=%d",instr_amt))
uvm_config dbd (int) ::set (aull, "uvm test_top"
g “RO_OVERWRITE™) )
uvm_config db# (bit)::set(null

"test_sesd”,test_seed);

",instr_type);

cted test”,l);

orce_gen”,l):

instr_amount”,instr_amt):

uvm_test_top”, "macro_over

rite”,1);

b

uvm_confiq pass_macro”,1):

uvm_config_db# (bit) ::set(null, "uvm_test_top”, "testlog”, 1)

uvm_config_db# (bit) ::set(null, "uvm_test_top”, "memlog”, 1) ;

endfunction

virtual task run_phase (uvm phase phase);
// Config and Database Parameter Variables
bit batch_test;
bit batch_test_in_progress;
bit run_all;
string seed_file:
int £h;
int batch_test_max;
int current_test_index;

lues
:get({null, "uvm_test_top

//Retrieve Parameter V:

if(luvm _config db#(bit)
batch_test = 0;

if(!uvm config_db# (bit)::get(null, "uvm test_top”
run_all = 07

if (luvm config_db# (string)::get(null, "uvm test_top”, "see
seed_file = EED.txt";

"batch_test”,batch_test))

run_all”,run all))

file",seed file))

if [batch_test)

batch_test_max = read seed(seed file);
else

batch_test_max = 1;

// Clear FAILED.txt file continuous batch test
if (batch_test && run_all) begin
FAILED.txt", "W

m);

// Initialize resource parameters
current_test_index = 0
uvm_resource_db# (int) ::set ("uvm_test_top
uvm_resource_db# (bit)::set("uvm_test_top batch_test_in T 55", batch_test):
uvm_resource_db# (int) ::set ("uvm_test_top”, "batch_test_max”,batch_test_max)
if (luvm_resource_db# (bit) ::read_by_name ("uvm_test_top”, "batch_test_in [
batch_test_in progress = 07
gin
phase.raise objection (this):
apply_reset();
({batch_test)

,"curzent_test_index",0);

235", batch_test_in_progress))

egin: display batch test_progress

‘uvm;resourcejhi(inc: iiwrite_by name ("uvm TEST_T t_test_index",current_test_index)) begin
uvm_fatal ("ERROR™, "Fail to update UVM Resource Database™);

end
cnd: display_batch_test_progress

("Initiating Test Run");

("Batch Test Progress: 3d\/3d", current_test_index + 1 ,batch_test_max):
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endclass
endif

seq_inst.start [env_inst.agent_inst.segr_inst);
sTart_test();
while (interface_instance.test_in _progress)

#

20;

if{!interface_instance.mismatch_detected) b
#30
interface_instance.end of_test <= 1;
#2

end: mismatch_post_processing

phase.drop_objection (this);

end test();

if (batch_test)
current_test_index ++;

if{!uvm _rescurce_db# (bit)::read by name ("uvm_Test_T
batch test_in progress = 0;

end while (batch_test_in progress):

gin: mismatch_post_processing

endtask

7 et (active high) and initialize clock to LOW
virtual task apply reset():

interface_instance.reset <= 1;
interface_instance.end of_test <=

endtask

/¢ Release reset to initiate verification subject opera
virtual task start_test();
interface_instance.
interface_instance.test_in progress <= 1;
interface_instance.mismatch detected <= 0;
#40;
interface_instance.monitor_start <= 1;

endtask

// Simple chanism £
virtual task end test{);
interface_instance.reset <= 1;
interface_instance.monitor_start <= 07
interface_instance.end of test <=

cleaning up signals

endtask

function int read seed(string seed file);

int fh;
int code;
int batch_test_max;

string buffer;
string dump;

heckin patch test max range");
gin: read_seed file
batch_test_max = 07
while(! (fh)) begin: read_seed line
code =
if (buffer skip_comment

code dumg, £h) ;

continue;
end: skip_comment
case {buffer[0])

"Invalid se
endcase
end: read seed_line
end: read seed file
else
tf{"Invalid seed

%3",seed_file))

ay ("Total Seeds Detected:
return batch test_max;
endfunction

"batch_test_in progress”,batch_test_in_progress))

file: %s", buffer))

¥d", batch_test_max):
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"include "parameter list.sv"
"ifndef wvirtual interface
‘define wvirtual interface

interface virtual interface (input

wire

logic clk);

S/ Interface Communication Signals

logic
logic
logic
logic
logic
logic
logic

["INST_ADDR WILDTH-1:0]
["INST_CCDE WIDTH-1:0]

reset;

monitor _start;
test_in progress;
end _of test;
mismatch_detected;
instr_addr;
instr_code;

/4 Signals from Design Under Test

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

// Signals from Reference Model

logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic
logic

["INST_CCDE WIDTH-1:0]
"INST_ADDR WIDTH-1:0]
"BEG_ADDE_WILDTH-1:0]
"BEG_ADDE_WILDTH-1:0]
"BEG_ADDE_WILDTH-1:0]
"DATA WIDTH-1:0]
"DATA WIDTH-1:0]
"DATA WIDTH-1:0]
"CTL_SGHNL WIDTH-1:0]

e e e T e B e B B |

"DATA WIDTH-1:0]
"DATA WIDTH-1:0]
"DATA WIDTH-1:0]
"MEM ADDE_WILDTH-1:0]

— o e

["INST_CCDE WIDTH-1:0]
"INST_ADDR WIDTH-1:0]
"BEG_ADDE_WILDTH-1:0]
"BEEG_ADDE_WIDTH-1:0]
"BEG_ADDE_WILDTH-1:0]
"DATA WIDTH-1:0]
"DATA WIDTH-1:0]
"DATA WIDTH-1:0]
"CTL_S3GHNL WIDTH-1:0]

e i e B e T B e T e B ]

"DATA WIDTH-1:0]
"DATA WIDTH-1:0]
"DATA WIDTH-1:0]
"MEM ADDE_WILDTH-1:0]

— oo o

["INST_CCDE WIDTH-1:0]
["INST_CCDE WIDTH-1:0]
["INST_ADDR WIDTH-1:0]

dut_instr;

dut_pc;
dut_reg read addr 1;
dut_reg read addr 2;
dut_reg write addr;
dut_reg read data_l:
dut_reg read data 2;
dut_reg write data;
dut_ctl _op;
dut_alu_zero;
dut_alu outputc;
dut_imm wal;

dut_mem write data;
dut_mem addr;

ref_instr;

ref _pc;

ref _reqg read addr 1;
ref _reqg read addr 2;
ref_reqg write_addr;
ref_reqg read data 1;
ref_reqg read data 2;
ref_reqg write_data;
ref _ctl _op:

ref_alu zero;
ref_alu output;
ref_imm wval;

ref_mem write_data;
ref _mem addr;

ref _mem write;
ref_mem read;

ref _reg write;
ref_stall;

ref _flush;

ref jump link;

ref ID instr;

ref EX instr;
ref EX por

/4 Define interface signal input/output direction
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clocking cb @(possdges clk):
default input #lstep;

input dut_instr;

input dut_pc;

input dut_reg_read addr_1:
input dut_reg_read addr_2;
input dut_reg write_ addr;
input dut_reg read data 1;
input dut_reg read data 2;
input dut_reg write_data;
input dut_ctl_op;

input dut_alu_zero;

input dut_alu_output;
input dut_imm wval;

input dut_mem write data;
input dut_mem addr;

input ref_instr;

input ref pc;

input ref reg read addr_1:

input ref_reg_read addr_2;

input ref _reg write_addr;

input ref _reg read data 1;

input ref _reg read data 2;

input ref _reg write data;r

input ref ctl op;

input ref_alu zero;

input ref_alu_output;

input ref_imm wval;

input ref_mem write data;

input ref _mem addr;

input ref_mem wWrite;

input ref mem read;

input ref reg write;

input ref stall:

input ref_flush;

input ref jump link;

input ref ID instr;

input ref EX instr;

input ref EX por
endclocking

endinterface

endif
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APPENDIX U: Source Code of Verification Environment — UVM Environment

include "uvm_pkg.av”
include "uvm_macros.svh™
include "agent.asv"
"include rd.sv"”
include .av"
import vy

ifndef enw
‘define env
class EnV extends uvm env;
‘uvm_component_utils {enwv)

function new(string name="env", UvVn_component parent=null):
Super.new (name, parent) ;
endfunction

agent agent_inst;
scoreboard scoreboard inat;
coverage coverage inst;

virtual function void build phase(uvm _phase phase):
super.build phase (phase)
agent_inst = agent::type_id::create("agent_inst™, this):
scoreboard inst = scoreboard::type_id::create("sco oard_inst”,this):
coverage_inst = coverage::type_id::create("coverage_inst”,this):
endfunction

virtual function wvoid connect_phase (uvm_phase phase):
super.connect_phase (phase);
agent_inst.monitor_inst.analysis_port.connect (scoreboard_inst.m analysis imp);
agent_inst.monitor_inst.analysis_port.connect (coverage inst.analysis export);
endfunction
endclass
endif
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include "uvm pkg.sv”
include "uvm macros.svhe
include "driver.sv"
“include "monitor.sv”
import uvm pkg:a¥;

ifndef agent
“define agent

class agent extends uvm agent;
‘uvim_component_utils (agent)

function new(string name="agent”™, uvm component parent=null);
super.new(name, parent);
endfunction

driver driver inst:
monitor monitor inst;
uvm_sequencer #(3eq_item) seqr_inst;
virtual function woid build phase (uvm phase phase):
super.build phase (phase);
seqr_inst = uvm_sequencers (seq_item) ::type_ id::create("seqgr_inst”,this);
driver inst = driver::type_id::create("driver_ inst”,this):
monitor_inst = monitor::type_id::create("monitor_inst”,this);

endfunction

virtual function woid connect_phase (uvm_phase phase);
super.connect_phase (phase) ;
driver inst.seq item port.connect (seqr_inst.seq item export);
endfunction
endclass
“endif




151

APPENDIX W: Source Code of Verification Environment — UVM Driver

include "uvm_pkg.sv"

include "UVI_Macros.svh"
"seq_item.av"
uvm pkg::¥;

ifndef driver

driver
class driver extends uvm_driver #(seq_item);
uvm_component_utils{driver)

function new({string name="driver", uvm component parent=null};
supsr.new(name, parent);
endfunction

wvirtual virtual interface interface_instance;

wirtual function void build_phase (uvm_phase phase);
super.build phase (phase);
if {!uvm config db# (virtual virtual interface)::get(this,""
vm_fatal ("DEV™,

"wirtual int ace",interface_instance))
"Unable to access virtual interface on verification environment™)

endfunction

wirtual task run_phase{uvm phase phase);
super.run_phase (phase) ;

ever begin

/ Database parameter variables

batch_test:

current_test_index;

batch_test_max;

seq_item transaction;

seq_item port.get_next_item{transaction);
load program{transaction);

seq_item port.item done():

/f Obtain parameters from database for checking
'uvm_config_db# (bit) ::get(null, "uvm test_top
batch_test = 0;

"batch_test",batch_test))

if{!uvm_resource_db# (int)::read_by name ("uvm_test_top”,"current_test_index”,current_test_index))
current_test_index = 07
if {'uvm_resocurce_db4 (int) ::read_by name ("uvm_test_top”,"batch_test_max",batch_test_max))

batch_test_max = 07

f/ If batch test index reaches the maximum number of seeds found, end batch test
if{(batch_test_max - 1) == current_test_index && batch test) begin
'uvm_resource db# (bit) ::write by name ("uvm_test_top”, "batch test_in pr

vm_fatal ("ERROR™,"Fail to update UVM Rescurce Database™);

s",0)) begin

endtask

/f Load Test program ONte Processor instruction memory
wvirtual task leoad program({seq_item transaction);
@(interface_instance.ch):
if {transaction.instr_gen completion) begin
5d ay {"Loading Program into ROM™);
"EROM. txt", testbench.riscv.rom) ;
"FROM.txt", testbench.riscv_ref.rom);

sd rogram Successfully Loaded™);
transaction.instr_gen completion = 07

endtask
endclass
endif
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APPENDIX X: Source Code of Verification Environment — UVM Sequencer

include "uvm pkg.sv"
uvm_macros.svh"”
seq_item.sv"
include "parameter list.sv"™

uvm_pkg
ef seq
define seq
class seq extends uvm_sequence;

uvm_cbject_utils{seq)

// Declare parameter variables

bit force_gen;

bit batch_test;

bit directed test;

int test_seed:

int instr_amt;

int current_test index;
string geed_file;

bit skip_gen:

string argument_pass;

function new(string name="ssg"):
super.new(name) ;

endfunction

virtual task body ()
int £h;

// Obtain config and resource parameter values

if{'uvm_config_db# (bit) ::get(null, "uvm_test_top"
force_gen = 0;

if{!'uvm_config_db# (bit) ::get(null, "uvm_test_top", "batch_test™,batch_test))
batch_test = 07

if{!uvm _config_db¢ (bit) ::get (null, "uvm_test_top”, "directed_test”,directed_test))
directed_test = 0;

if{!'uvm_config_db# (int) ::get (null, "uvm_test_top", "test_seed", test_seed))
test_sesd = 07

if{!uvm_config db# (int
instr_amt = 30

if{!'uvm_config_db# (string)::get (null, "uvm test_top”, "seed file",seed file))
seed file = "SEED.txt";

if{!uvm_resource_db#(int)::read by name ("uvm_test_top”, "current_test_index”,current_test_index))
current_test_index =

"force_gen”, force_gen))

z:get(null, "uvm_test_top”,"instr_amount”,instr_amt))

// Passing of Test Seed and Creation of Seed Directory
if{directed test) // Directed
directory creation("d
in

ected_test™);
else

if (batch_test) // Batch Seed
read sesd():
else // 3ingul eed

self().srandom(test_seed);
Seed:
5 rmat {argument_pass, "%¥s5", test_seed);
directory_creation{argument_pass);
end
clear_log();

if (directed_test) gin // Check r directed test case test file

("TEST.txt","c");

{"Translating test instructions from direct test file™):

fatal {"ERRCOR", "Unakle to access TEST.txt™);

end
else begin
if (! force_gen)
retrieve_repository (argument_pass);
gin

;{"Forcing test case ger

skip_gen = 0;

eration™);

end
end
instruction_code_generate(); Generate the instruciton code
endtask
ff Simple nction for creating directory

function vold directory creation(string destination);
string file_creation;

file creation = ["mkdir
5 (file_creation):

/test_results/",destination,”

endfunction

// Simple function for clearing log files
function void clear_log():
int Ih;

LS

fh =

%s

teat sesd);
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th):
L ("PROM. tRL", "W

| ("INSTR.CXT", "W"):
| ("IFID.TXT", "W"):
| ("IDEX.TXT", "W"):
| ("EXMEM. CXT", "W"):
"MEMWB.TXT", "W"):
"PIPELINE.txt", "w"):

"FLUSH.txt™

"JUMP.txt", "w

endfunction

f/ Simple function for reading test seed on batch test seed file
function void read_seed():

int fh;

int code;

string dump;

1{seed file,"r");

if{fh '= 0) begin
for(int i = 07 i < current test_index + 1;) begin
code = ({fh,"%3",test_seed);
if (test_seed
code H
continue;
end
else it+;
end
g (fh):
end
else
uvm_fatal ("ERROR", "Unable to access seed file™);
endfunction

// Simple function for cloning test from repository
function void retrieve_repository(string destination);

int fh;

string file pointer;

string £ile_path_1;

string file_handling 1;

string £ile_path_2;

string file handling_2;

file pointer = ",destination, txt"};

file path 1 = | roject\\Coding uvmi\test_repoh\",destination, "\\ASM.txL"};
file handling 1 ; ", file_path 1};

file path 2 = {"D:\\FinalY¥earProject\\Coding\\uvm\\test_repo)\",destination, "™\ \FROM.txzt"};
file handling 2 = ["co ", file_path_2};

5 /{"Checking r
pen(file_pointer, "c");
if{fh) begin

e-existing test case...”);

file_handling 1};
1(file_handling_2):

s v{"Test case cloned from repositor
skip_gen = 1;

end
else begin

play{"No existing test case found, generating new test case™);
skip_gen = 0
end
$ sz {fh)
endfunction;

/f Simple function for storing test to repositry

function void store_repository(string destination);
int th
string file_pointer;
string £file_path;
string £ile_handling 1;
string f£ile handling 2;
string file creation;

file_pointer = . /",destination, "/ASM.txt"};
fh = § n(file_pointer, "c");
if('fh) begin // Create directory in repositry
file creation = {"mkdir \"./test_repoc/",destination,"/\""};

=m(file_creation);

] ={fh);

file path {"D:\\Final¥earProject\\Coding\\uvm\\test_repo\\",destination, "\\"};
file handling 1 = ["co AsM.txt ",file_path}:

file_handling 2 = {"copy PROM.txt ",file_path};

file_handling 1);

n{file_handling 2);

"Testcase cloned and stored into repository™);:

endfunction

/f Generate instruction code
task instruction code_generate():
for (int 1 = 0, logic [ INST_ . WIDTH-1:0] stored instr_addr = 0, bit completion = 0; !completion; i++) begin
seq_item transaction = seq_item::type_id::create("transaction”);
start_item(transaction):
if (directed_test) begin // Translate and store to repository
transaction.translation();
store repository("directed_test™);
completion = 1;




154

transaction.instr_gen_completion = 1;

j{"Completed translation of direct

=d test"):

end

glse begin erate randomized instruction

if(!skip gen) begin

transaction.instr addr = stored_instr addr;
transaction.max_range = instr_amt;
transaction.current_instr number = i;
transaction.specification();
stored instr_addr = transaction.instr_addr + °“IN3T ADLCR 3T

end
if ({ i == (instr_amt - 1)) || skip_gen) begin // If specified amount of instruction ¢
uvm_config_db# (int) ::set(null, "uvm_test_top”, "Lest_s ", Test_seed) ;
if(!skip_gen) begin
3 v ({"RISC-V Instruction Test Set ration Completed™);
("Tetal of %04 Instructicn Co instr_amt);
5 (argument_pass, "%s", test_seed):
store_repository(argument pass);
v("Testcase cloned and stored into
end
completion = 1;
transaction.instr_gen completion = 1;
end

end
finish item(transaction);

endtask
endclass
endif
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APPENDIX Y: Source Code of Verification Environment — UVM Sequence Item

=fine seq_item
class seq_item extends uvm_sequence_item;
sct_utils{seq_item)

function new(string name = "seqg_item"):
super.new(name) ;
endfunction

int code;

int instr_count:

int max_range;

int current_instr_number;

logic  instr gen_completion;
logic  end of test;

logic mismatch log_completer
logic  mem_check:

logic  [TINST,
logic [TINST

-1:0] instr_code;
. WIDTH-1:0] instr_addr;

// Transactions receiveed from DUT

dut_instr;

dut_pc;

dut_reg read addr 1;
dut_reg read addr 27
dut_reg_write_addr;
dut_reqg_read_data 1;
dut_reqg_read_data 2;
dut_reg write data;
dut_ctl_op:
dut_alu_op;
dut_alu_zero;
dut_alu_output;
dut_imm wval;
dut_mem_read_data:
dut_mem_write_data;
dut_mem_addr;

/{ Transactions received from REF
- ref_instr;

ref_pc;

ref_reg_read_addr_1;

ref_reg read addr 2;

ref_reg write addr;

ref_reg_read data_l:

ref_reg_read_data 2;

ref_reg_write_data;

ref_ctl_op;

ref_alu op;

ref_alu_zero:

ref_alu_output;

ref_imm val;

ref _mem read data;

ref_mem write datar

ref_mem addr;

ref_mem write;

ref_mem_read;

ref reg write;

ref_stall:

ref_flush;

ref_jump_link;

ref ID_instr;

ref EX instr;

ref EX pe:

// Possible instructions
[ | -1:0] opcode;
bit [21:0] immediate_walue:
rand bit [ funct3
rand bit [ funct?
rand bit [ rsl
rand bit [ rs2
rand bit [ rd

// Miscellaneous variables

bit [7:01 [ possible_opeode;
int randomizer;
int £h:

a valid instruction code
virtual function void specification();

// Databases parameter variables
string instr_type:

// Obtain parameters m database
'uvm config db# (string)::get(null, "uvm test_top”, "instr_
instr_type = "R I L U UJ 5 5B J°:

yinstr_type))

r(int pointer = 0; pointer < instr_type.len{); pointer ++) begin
case (instr_type [pointer])

"R" : begin
possible_opcode [randomizer] = "R_O
randomizer ++;

wgn
possible_opcode [randomizer] = "I
randomizer ++;

wpm

possible_opcode [randomizer] =
randomizer ++;
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possible_opcode [randomizer] = “JALR_O
randomizer ++;
end
" i begin
case (instr_type [pointer + 1]}
" :

possible_opcode [randomizer] =
randomizer ++;
pointer ++;

possible_opcode [randomizer] =
randomizer ++;

case (instr_type [pointer + 1])
i .

possible_opcode [randomizer] =
randomizer ++;
pOinter ++;

gin
possible_opcode [randomizer] =
randomizer ++;

endcass

end
ontinue;
uvm_fatal ("ERROR","SEQ ITEM ERROR: invalid INSIR TYPE specified”)

endcase

end

opcode = possible_opcode [ (randomizer-1),0)]:

case {opcode)

R_OPCODE

- "SLT_FUNCT3;
= “SLTU_FUNCT3:
KOR_FUNCT3;

end
: begin
randcase
funct3 = "LB_FUNCT3;
1: funct3 = "LH_FUNCT3;

1: funct3 = "LW_FUNCIZ:
1: funct3 = “LBU_FUNCT3;
1: funct3 = "LHU FUNCT3;
endcase

end
: begin

ndcase

i functd =
funct3 =
funct3 =
funct3 =
funct3 =
funct3 =
: funct3 =
funct3 =
ndcase

w

I e e e ]

end
: begin
randcase
1: funct3 = “3B_FUNCT3:
1: funct3 =
1: funct3 =
endcase

end
: begin

andcase

i functd =
funct3 = "BNE_FU
funct3 = "BLI_FUNCI3:
funct3 = “BEE_FUNCT3
funct3 =
funct3 =
ndcase

e

end
funct3 = "JRLR FUNCI3:

case (opcode)

R_! JE : begin
cass (funct3)
) FUNCT3,

SR_FUNCT3: begin
randcase
1: funct? = "DEFRULT FUNCIT;
1: funct7 = "ALT_FUNCT7;
endcass

end
default: funct? = 'DEFAULT_FUNCT
endcase
end
I : begin

case (functl)

SLL_FUNCT3: funct7 = "DEFAULT_FUNCT7;

SR_FUNCTI3: begin
randcase
1: funct? = "DEFAULT FUNCT
1: funct? = "ALT_FUNCT7;
endcase

end
endcase
end

endcase

/# Branch Address Constraint
case {opoode)

[instr_code[31],instr_code[1S
=(8,4) * "INST_]
{3L,0)7

= [zd, opcode};

2],instr_code[20],instr_code[30:21]} =
SUM;

instr_code[ll:
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gin

[instr_code[31],instr_code[7],instr_code[30:25], instr_code[11:8]} =
tu __rang=(8,4) * “INST_RDDR_S

instr_code[24:12] = {rs2,rsl,funct3};

instr_code[£:0] = opcode;

JRLR
immediate_walus = © angs (current_instr_number + &, current_instr_number + 4) * "INST_J
rsl = 0;
instr_code = {immediate_value[l1:0],rsl, funct3, rd, opcode};
end
default: instr_code = {funct7,rs2,rsl, funct3, rd, opcode};

endcase

// Output instruction code and address
LEXET, Ta+");
2h $%h", instr_addr, instr_code);

$2h $2h 32h 32h", instr_code[31:24], instr_code[23:16], instr_code[l5:8], instr code[7:0]):
endfunction

// Translation of assembly code to machine language
virtual function void translation();

//Directed test variables

int £_out;

int shift_type;
int store_type;
int load_type:

int min_range;

int max_range;
string dv_instr_type;
string dump;

string hold:

string assembly_code;
string operand:

assembly code

code = 5° (fh, "$s", assembly code);
case (asserbly_code)
"add": begin
opcode =
funct3
funct? =
dv_instr_type =
"sub":
opcode
funct3
funct? =
dv_instr_{
end
"sl1l": begin
opcode = "R_OEC
funct3 = "S5LL FUNCT3;
funct? = 'DE
dv_instr_type =
end
"slt"™: begin
opcode = “B_OPC
funct3 = "SLT_FUNCT3;
funct? = LT_FUNC
dv_instr_type = "R";
end

"sltu": begin
opcode = “R_OEC
funct3 = °"SLTU_FUNCT3;
funct7 =
dv_instr_type =

end
"srl™: begin
opcode
funct3
funct?
dv_instr_type =
end

"sra"™: begin

opeods =
funct3 =
funct? = 5
dv_instr_type
end
"xor begin
opcode
funct3 XOR_FUNCT3:
funct? = "DEFRULT_FUNCI7:
dv_instr_type = "R";
end
"and": begin
opcode = “R_OPCODE;
funct3 = "AND_FUNCT3;
funct? = D a T:
dv_instr_type = "R";
end
"or": begin

opcode =
funct3
funct? =

maddim

opcode = °
funct3 =
dv_instr_type =

end
"slti™: begin

opcode =
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end
"sltiu": begin

end
"ori™: begin

end
"andi™: begin

.a11i"

"srli™:

end
"lb": begin

end
"lh": begin

end
begin

end
"lbu": begin

end
"lhu": begin

end
begin

"sh"

R

end

begin

"blt":

end

begin

"bltu":

end

: begin

funct3 = °SLT_FUNCT
dv_instr_type = "I

opcode = "I_OFCODE;
funct3 = "SLIU_FUNCT3;
dv_instr_type = "I";

opcode = “I_OPCODE;
funct3 = "HOR_FUNCT3;
dv_instr_type = "I";

opcode =
funct3 = "OR_
dv_instr_type = "I";

opcode = "I
funct3 = "RND _FUNCT3;
dv_instr_type = "I

opcode = °
funct3 = ‘SLL_
dv_instr_type = H
shift_type = 1;

immediate_valus[11:3]

opcode =
funct3 =

shift_type = 1;
immediate_value[11:5]

opcode =
funct3 =
dw_instr_type
shift_type =
immediate_value[11:5]

opcode = “LORD OBC
funct3 = "LB_FUNCT3
dw_instr_type = "I
load type = 1;

opcode =
funct3 =
dv_instr_type = "I";
load_type = 1:

opcode =
funct3 = °
dv_instr
load_type

opcode = 0
funct3 = “LBU_FUNCT
dv_instr_type =
load _type = 1;

opcode = °LOAD_OFCODE;
funct3 = "LHU_FUNCT3
dv_instr_type = "I
load_type = 1:

opeode = '5_OPCODE:
funct3 = 5B FUNCT3;
dv_instr_type i
store_type = 17

opcode = *5_OPCODE;
funct3 = “SH_FUNCT3;
dv_instr_type
store_type = 1;

opcode =
funct3 = “SW_
dv_instr_type
store_type = 1;

opcode = “SB_OPCODE;
funct3 =

opcode
functd = “ENE_FUNCT
dv_instr_type

5B_OPCODI

opcode = “53_OPCODE;
functd = “ELT_FONCT
dv_instr_type = "B";

opeode
funce3d =

opcode = “SB_OPCODE;
funct3 = “BLTU_FUNCT3;
dv_instr_type =

opcode = “SBE_OP

"DEFRULT_FUNCTT

DEFAULT_FUNCT7;

ALT_FUNCT




159

funct3 = "BGEU_FUNCT3;

dv_instr_type = "B

opcode =

opcode = “JALR_ :
funct3 = "JALR_FUNCT3;
dv_instr_type = "I";
load type = 17 //Similar asserbly format
=nd
"lui": begin
opcode = "U_O LCE;
dv_instr_type = "U";
end
begin
durp, £h) :
end
: begin
"at"):
, instr_addr, instr_code);
pen ("PROM.TXE™, "a+™) ;
f_out, "%2h $2h 32h 32h", instr_code[31:24], instr_code[23:16], instr_code[15:8], instr_code[7
5 _out):
instr_addr = instr_addr + ~INST B_SUM4;
continue;
end
" break;

fault:begin

$5", assembly_code);

nced"”)
end
endcase
code = 3 (fh, "%s",operand) ;
min_range
for(int i i < operand.len(); i++) begin
case (operand[i])
"x": continue;
R continue;
T max_rangs = 1 - 1:
default:begin
if {min_range < 0)
min_range = i;
end
endcass
end
operand = operand.substr(min_range,max_range);
if(dv_instr_type == "3")
rsZ = operand.atoi();
else 1f(dv_instr_type B")
rsl = operand.atoi();
else
rd operand.atoi();
code = $£ £h, "%3",operand) ;
if{dv_instr_type != "J" g& dv_instr_type != "U") begin
min_rangs -1;
for{int i i < operand.len{); i++) begin
case (operand[i])
continue;
continue;
pegin
max_range = i - 1;
hold = cperand.substr(min_range,max_range);
immediate_value [11:0] = hold.atoi();
min_range = -1;
end
nyw
"L max_range = i - 1;
default:begin
if (min_range < 0)
min_range = i;
end
endcases
end
operand = operand.substr(min_range,max_range):
if(dv_instr_type == "B"
rs2 = operand.atoi():
else
r3l = operand.atoi();
end
else

immediate_walue [20:1] = operand.atoi():
if({load_type 0 s& store_type == 0 g dv_instr_type != "J" g& dv_instr_type != "U") begin

code £{fh, "s",operand) ;
min_range = -1;

max_range = operand.len{) - 1;

for{int i 0; 1 < operand.len({); i++) begin

case (operand[i])

: continue;
ault:begin

if (min_range < 0}
min_range = i;

endcass
end
operand = operand.substr(min_range,max range);
case(dv_instr_type)
"R": rs2 = operand.atol();
b begin

if (shift_type == 1)
immediate_value [4:

= operand.atei();
else

immediate value [11 = operand.atoi();
end
"R immediate_walue [13:1] = operand.atoi():
endcase
end
case (dv_instr_type)
"R instr_code = {funct7,rs2,rsl,funct3,rd,opcode};
"I instr_code {immediate_value[11:0],rsl,funct3,rd,opcode};
"S instr code = {immediate value[ll:5],rs2,rsl, funct3,
immediate_value[4:0],opcode};
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TR instr code = {immediate value[12],immediate value[l0:5],

rs2,rsl, funct3, immediate_value[4:1],immediate_value[11],opcode};
{immediate wvalus[20], immediate_walus[l0:1], immediate_walue[ll],
12],xd,opcode}:

1],rd,opcode};

: instr_code =
immediate value[
Ut instr code = {immediate_value[

endcase
f_out

(£_out,
(£ _out):
instr_addr = instr_addr + 4;
end
endfunction

endclass
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| MACros . Sv
g_item.sv"

= monitor
monitor extends uvm_monitor;
uvm_component_utils (monitor)

kit run_all:

function new({string name="monitor", uvm component parent=null);
super.new (name, parent);
endfunction

uvm_analysis_port #(seq_item) analysis_port;
virtual virtual interface interface_instance;
wvirtual function wvoid build_phase (uvm_phase phase);
super.build phase (phase);
if{!uvm_config db#(virtual virtual_ interface)::get{this,"","virtual interface",interface_instance})
uvm tal(" "Unable to access virtual interface on verification environment™)

. this);
"uvm_test_top

analysis_port = new ("analysis_p
if{!uvm_config_db#(bit)::get (null,
run_all =

"run_all",run_all})

endfunction

virtual task run_phase (uvm _phase phase);

super.run phase (phase);

forever begin

@{interface_instance.ch):

{interface_instance.monitor_start) begin

seq item transaction = 3eq item ype_id::create ("transaction™);
// DUT Transactions
transaction.dut_instr = interface_instance.dut_instr;
transaction.dut_pc interface_instance.dut_pc;
transaction.dut_reg read_addr_l = interface_instance.dut_reg_read_addr 1;
transaction.dut_reg read_addr 2 = interface_instance.dut_reg_read_ addr 2;
transaction.dut_reg read_data_l = interface_instance.dut_reg_read_data 1;
transaction.dut_reg_read data_2 = interface_instance.dut_reg_read_data_2;
transaction.dut_imm val = interface_instance.dut_imm wval;
transaction.dut_alu output = interface_instance.dut_alu cutput;
transaction.dut_alu_ zero interface_instance.dut_alu_zero;
transaction.dut_ctl_op = interface_instance.dut_ctl_op;
transaction.dut_reg write_addr = interface_instance.dut_reg write_addr;
transaction.dut_reg write_data interface_instance.dut_reg_write_dat
transaction.dut_mem write_data interface_instance.dut_mem write_data;
transaction.dut_mem addr interface_instance.dut_mem addr;
// BEF Transactions
transaction.instr_addr = interface_instance.instr_ addr;
transaction.ref_instr interface_ instance.ref instr;
transaction.ref_pc interface_instance.ref_pc;
transaction.ref_reg read_addr_l interface_instance.ref_reg_read_addr_l;
transaction.ref_reg read_addr_2 = interface_instance.ref_reg read_addr 2;
transaction.ref_reg read_data_l = interface_instance.ref reg read data 1;
transaction.ref_reqg read_data_2 = interface_instance.ref_reg_read_data 2;
transaction.ref_imm val = interface_instance.ref_imm val:
transaction.ref_alu output = interface_instance.ref_alu ocutput;
transaction.ref_alu zero interface_instance.ref_alu zero;
transaction.ref_ctl_op = interface_instance.ref_ctl_op;
transaction.ref_reg_write_addr = interface_instance.ref_reg write_addr;
transaction.ref_reg write_data interface_instance.ref_reg_write_data;
transaction.ref_reg write interface_instance.rsf_reg_write;
transaction.ref mem write_data interface instance.ref mem write_data;
transaction.ref_mem addr interface_instance.ref_mem addr;
transaction.ref_mem read = interface_instance.ref_mem read;
transaction.ref mem write interface instance.ref mem write;
transaction.ref stall interface instance.ref stall;
transaction.ref_flush interface_instance.ref_flush;
transaction.ref_jump_link = interface_instance.ref jump_link:
transaction.ref ID instr interface instance.ref ID instr;
transaction.ref EX instr interface_instance.ref EX instr;
transaction.ref_EX pc interface_instance.ref EX pc;
transaction.end of_test interface_instance.end of_test:

// Write to analysis port (scor
analysis_port.write (transaction):

if{interface_ instance.ref instr 32'bx)
interface_instance.test_in progress = 0;

if {interface_instance.end_of_test) begin
uvm_info("PAS5", "Test passed without

rors"”, UVM_LOW)

5
0
=)

553 PRS3S3 FRL33

m
w
w
]
=
w
w

end

/f Check test log col ion on continucus batch test run

if (transaction.mismatch_log_complete && run_all) begin
interface_instance.test_in progress =
interface_instance.mismatch_detected = 17
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{"Bypassing Failed Test™);
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include ™uvm pkg.sv"
uvm_macros.svh"
seq_item.sv"
parameter list.sv"
uvm pkg::¥;
ifndef cowerage

def coverage
class coverage

vm_component_utils(coverage)

seq_item

covergroup
option.per instance = 1;
option.get_inst coverage = 1;

extends uvm subscriber #(seq_item);

transaction;

functional cover;

stall: coverpoint transaction.ref stall {
option.weight = 0;
kins no_stall= {0}:
kins stalled = {1}:
}
flush: coverpoint transaction.ref flush {
option.weight = 0;
kins no_flush= {0}:
bins flushed = {1}z
1
uncond jump: coverpoint transaction.ref ID instr[ "0 {
kins jal = [*J OP
kins jalr = {*JALE_OF
1
cond jumps: coverpoint {transaction.ref ID instr[ FUNCT3_HI:
transaction.ref ID instr["0O . HI:
bins beq_ = {"BEQ H
bins bne_ = { "BHE :
bins blt_ = {*BLT
kins bge_ = {"BGE
bins bltu_ = { "BLIU
kins bgeu_ { "BGEU
1
loads: coverpoint {transaction.ref EX instr[ FUNC
transaction.ref EX instr[ 0O
bins 1b_ = {
bins 1h_ = {
bins 1w_ = {
bins Ibu_ = {
bins lhu = {

}
instructions_A: coverpoint

bins
bins
bins
bins
bins
bins
bins
bins
bins
bins

}
instructions_B: coverpoint

bins
bins
bins
bins
bins
bins
bins
bins
bins
bins
bins
bins
1
instruction C: coverpoint
bins
1
load use_stalls: cross
cond jump flushes: cross
endgroup

{transaction.ref EX instr[ FUNCT3_HI:
transaction.ref EX instr[ OF E
sb_ =

sh_

aw_ =
addi_ =
s1li_ =
xori_ =

R}z

ori_ =
andi_ =
slti_ =
sltiu =

{transaction.ref EX instr|
transaction.ref EX instr[
transaction.ref EX instr[
srli_ =
srai_
add_ =
sub =
311_
XOT_ =
srl_ =
sra_ =

FUNCT7_LO],

FUE

3 101,
DE_LO]} {

or_ =
and =
slt_ =
sltu_ =

{transaction.ref EX instr[ O
lui = {*U_OBCODE}:

loads, stall;
flush, cond jumps;

function new(string name="coverage", UVIL COmponent parent=null);
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Super.new(nams, parent);
functional cover = new;
endfunction

virtual function void write(seq item t);
transaction = t;
functional_ cover.sample();
if(transaction.end of_ test)
5di v 1

endfunction
endclass

m

", functional cover.get_inst coverage());
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APPENDIX BB: Source Code of Verification Environment — UVM Scoreboard

include "uvm_pkg.sv"”
"UVT_macros.svh”
"seq_item.sv"

ine scoreboard

class scoreboard extends uvm scoreboard;
uvm_component_utils(scoreboard)
// Static wvariables r self checking mechanism
logic [ data_l_buffer;
ogic [ data_2 buffer;
logic [ data_17
logic [ data_2;
logic load_flag:
logic load_use_flag:
logic stall_assertion;
logic stall_buffer;
logic write_data_buffer;
logic write_data_check;
logic % write address_buffer;
logic H-1:0] write_address_check;
logic reg_write_check buffer;
logic reg_write_check;
logic branch_check_flag;
ogic Jump_check_flag;
logic flush buffer;
logic flush_asssrtion;

// Btatic variables

macro mechanism

int stall_count;
int flush_count;
int stall check;
int flush_check;

ication Status Flags

mismatch;
mismatch_ found;
end of_ test;

// Database Parameter Variables

bit testlog:
memlog;
directed_test;
run_all;
bypass_macro;
mAcro_overwrite;
force_gen;
test_seed;

function new(string name="scorebkoard”, uvm_component parent=null);
Super.new(name, parent);
endfunction

seq item transaction;
uvm_analysis_imp #(3eq_item, acoreboard) m analysis_imp:;

wirtual function void build_phase (uvm_phase phase);
super.build phase (phase);
m_analysis_imp = new("m analysis_imp",this);
endfunction

- functionality check
wirtual function void write(seg_item transactiocn);
int fh;

mismatch =

// Obtain config parameters from database
if (!uvm _config_db#(bit)::get(null, "uvm_test_to
testlog = 07
'uvm_config_db#({bit)::get(null, "uvm_test_top”, "memlog”,memlog) )
memlog = 0
if(luvm config_db#(bit)::get (mull, "uvm_test_top","directed_test”,directed_test))
directed test = 0
if(luvm _config_db#({bit)::get (null, "uvm_test_top","run_all",run all))
run_all = 0;
luvm_config_db#{bit)
bypass_macro =
if(!luvm config db#{bit)::get(null, "uvm test to
macro_overwrite = 0;
if(luvm config db#(bit)::get(null, "uvm test_ top"
force_gen = 07
if ('uvm _config_db#({int)::get (null, "uvm_test_top"

testlog”,testlog))

get {null, "uvm_test_to

bypass_macro”,bypass_macro) )

"MAcCIo_Over

rite”,macro overwrite))

rce_gen”,force_gen))

"test_seed”, test_seed))

test_seed = 0
self_check{transaction); /{ Self check mechanism
decode (transaction) ; // Decode and store in
mismatch_check (transaction); // Check for mismatch
if (mismatch || (testlog s& transaction.end_of_test)) begin
test_logging (transaction): /f Produce Test Log
if{!mismatch s& !bypass macro)
macro_check(); /f Perform Macro Check

Move file to directory
if(directed_test) begin

move_file( M. txt
move_file ("LOG.TXC

test_results/directed_test™);
test_results/directed _teat™);
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end
else begin

move_file("ASM.txt",{"test_resulta/", test_seedl);

move_file ("LOG.txt",{"test_results test_seed});
end
clear_current_directory():
clear_static_variable():
if (mismatch) begin

y("Test Failed"):
LAIL FRAIL FRAIL FLIL FAIL J

transaction.mismatch log_complete = 1;
if(!run_all)

“uvm_fatal ("MISMATCH", "Successful Logging of Ir
else begin

rmation™)

"FAILED.txt™, "a+");
"$3 - Begister Mismatch", test seed);

end
end
else

“uvm_info ("LOGGING", "Successful Logging of

rmation”, UVM_LOW)
mismatch = 0;
end
endfunction

/f 5imple function for obtaining current system time
function string get_time();

int file pointer;

int code;

string date_s_l;

string date_s_2;

string time s;

("date /t >> sys_time");

("time /T >> Sys_time"):
file_pointer = & n{"sys_time","r");
code = {file_pointer, "%s %s %s", date_s_l, date_s_2, time_s);

get_time = [date_s_1, " ", date s 2, " ", time_s}:
(file_pointer);
{"del sys_time");

endfunction

// Self checking for reference model correctness
/f In self checking, several characteristics of the reference model will be checked
/f 1. Correct Register Read
// 2. Correct Instruction Operation ALU Output
ff 3. Successful Detection of Load-Use Case and Stalling
/f 4. Correct Info (Specific Instruction Type) and Register Write
/f 5. Successful Detection and Execution of Branch/Jump
function void self check(seq item transaction);
logic ["DATA WIDTH-1:0] behaviour result;

if (transaction.ref ID instr[ RS51_RDDR
‘uvm_fatal ("REF MODEL ERRO!
({"Inc ect lst register read: Behavio x%2d Model: x%24",
transaction.ref ID instr[ RS1_ADDR _HI: RS51_ADDR_LO], transaction.ref_reg read addr_1l))

HI: R51_ADDR LO] != transaction.ref reg read addr 1) begin

end

if (transaction.ref ID_instr['R32_ADDR_HI
1 fatal ("REF MODEL ERROI
("Incorrect 2nd register read: Behaviow
transaction.ref_ID instr[ R32_ADDE HI:

R32_ZDDR_LO] != transaction.ref_reg_read_addr_2) begin

x%2d Model: x$24",
R32_ADCR_LO], transaction.ref reg_read_addr_2))
end

/¢ Pass ID Stage Operands to EX Stage for Execution
data_1 = data_l buffer;

data_2 = data_2_ buffer;

data_l_buffer = transaction.ref reg_read_data_l:

case(transaction.ref_ ID_instr[ OFCODE_HI: OPCODE_LO])

"R_OPCODE,

" 5B_OPCODE : data_2 buffer = transaction.ref_reg_read data_2;
default : data_2 buffer = transaction.ref_imm val;

endcase

// Check EX Stage Execution Correctness
case (transaction.ref EX_instr[ OFCODE_HI: O
"R_OPCODE: begin
case (transaction.ref EX instr[ FUNCT3_HI: FUNCT3_LO])
"ADD_FUNCT3: begin

CODE_LO])

_HI: FUNCT7_LO])

"DEFRULT_FUNCT
behaviour_result = data_l + data_2;
if (transaction.ref_alu output != behaviour_result)
“uvm_fatal ("REF MODEL ERROR", a
{"Inco ct ADD Result: Behavioul %%h Model: %8h",
behaviour_result, transaction.ref_alu cutput))

end

"ALT_FUNCTI7: begin
behaviour_result = data_l - data_2;
if (transaction.ref alu output != behaviour result)
“uvm_fatal ("REF MODEL ERROR", o

{"Incorrect SUB Result: Behaviou %%h Model: %8h",
behaviour_result, transaction.ref_alu_output))
end
endcase
end

“SLL_FUNCT3: begin
behaviour_result = data 1 << data_2[4:0];
if({transaction.ref_alu output != behaviour_ result)
‘uvm_fatal ("REF MODEL ERROR"™, £
("Incorrect SLL Result: Behaviour: $8h Model: $8h",
behaviour_result, transaction.ref alu_ocutput))

end

“SLT_FUNCT3: begin
behaviour_result = ({ {data_l) >=
if {transaction.ref alu output
‘uvm_fatal ("REF MODEL ERRCR",: rmatf
("Incorrect SLT Result: Behaviour: $8h Model: %8h",

(data_2)) 2 0 : 1);
behaviour_result)

behaviour_result, transaction.ref alu_ocutput))
end

“SLIU_FUNCT3: begin
behaviour_result = ((data_l »>= data_2) 2 0 : 1);




167

if (transaction.ref_alu output '= behaviour result)

uvm_fatal ("REF MODEL ERROR' £
{"Incorrect SLTU Result: Behaviour: %G&h Model: %8h",
behaviour_result, transaction.ref alu output))
end

XOR_FUNCT3: begin
behaviour_result = data_l * data_2;
if(transaction.ref_alu output != behavicur_result)
uvm fatal ("REF MODEL ERROR", £
{"Incorrect XOR Result: Behaviou %5h Model: %8h",
behaviour_result, transaction.ref_alu output))
end
SR_FUNCT3: begin
case (transaction.ref EX instr[ FUNCTI7_HI: FUNCIT_LO])
DEFAULT FUNCT begin
behaviour_result = data_l >> data_2[4:0];
if(transaction.ref_alu cutput != behavicur result)
vm_fatal ("REF MODEL ERROR™ I
{"Incorrect SRL Result: Behavio %5h Model: %2h",
behaviour_result, transaction.ref_alu output))
end
ALT_FUNCT7: begin
behaviour_result = $3ig i(data_ 1) »>>> data_2[4:0];
if(transaction.ref alu ocutput != behavicur result)
vm_fatal ("REF MODEL ERRCR", tf
("Incorrect SRA Result: Behaviour: %Eh Model: $8h",
behaviour result, transaction.ref alu cutput))
end

endcase

end
OF_FUNCTI3: begin
behaviour_result = data_l | data_2;
if (transaction.ref alu output != behaviour_result)
vm fatal {"REF MODEL ERRCR", o £
{"Inco ct OR Result: Behavicur: %%h Model: %8h",
behaviour_result, transaction.ref_alu output))
end
AND FUNCT3: begin
behaviour_result = data_l & data_27
if(transaction.ref_alu output != behavicur_result)
uvm fatal ("REF MODEL ERROR", £

{"Incorrect AND Result: Behaviou %5h Model: %8h",
behaviour_result, transaction.ref_alu output))
end
endcase
end

bkegin

cur_result = data_l + data_2;

if(transaction.ref alu ocutput behaviour result)
1 fatal {"REF MODEL ERRCR", f

{"Incorrect Load/Store Address Calculated: Behaviour: %8h Model: %&h",

behaviour result, transacticn.ref alu output))
end
CODE: begin

behavicur result = data 2;
if (transaction.ref_alu cutput
tal ("REF MODEL ERROR",:

behaviour result)

{"Incorrect Load r Immediate Result: Behaviour: %Sh Model: %8h",
behavicur_result, transacticn.ref_alu cutput))
end
I begin

case (transaction.ref EX instr[ FUNCT3_HI: FUNCT3_LO])
) FUNCT3: begin
behaviour result = data_l + data_2:;
if (transaction.ref_alu output behaviour_result)
uvm_fatal ("REF MODEL ERROR", $ f
("Incorrect ADDI Result: Behaviouw %sh Model: %8h",
behaviour result, transaction.ref_alu_output))
end
SLL_FUNCT3: begin
behaviour_result = data_l << data_2[4:0];
if (transaction.ref_alu output behaviour_result)
uvm_fatal ("REF MODEL ERROR", f
{"Incorrect SLLI Result: Behaviour: %gh Model: %8h",
behaviour result, transaction.ref_alu_output))
end
SLT_FUNCT3: begin
behaviour result = ((: i{data_l) >=
if(transaction.ref_alu output
vm_fatal ("REF MODEL ERROR",
{"Inc ect 5LTI Result: Behaviou i3h Model: %2h",
behaviour result, transaction.ref_alu_output))
end
SLTU_FUNCI3: begin
behaviour_result = ((data_l >= data 2) 2 0 : 1)
if(transacticon.ref_alu output behaviocur result)
vm_fatal ("REF MODEL ERROR"
{"Incorrect SLTIU Result: Behawviour: %8h Model: $8h",
behaviour result, transaction.ref alu output))
end
XOR_FUNCT3: begin
behaviour result = data_l ~ data_2:
if {transaction.ref alu output behaviocur result)
uvm_fatal ("REF MODEL ERROR", $ f
("Incorrect XORI Result: Behawviour: %gh Model: %8h",
behaviour result, transaction.ref_alu_output))
e=nd
SR_FUNCT3: begin
case (transaction.ref EX instr[ FUNCIT_HI: FUNCIT7_LO])

» {data_2)) 2 0 : 1);
behaviour_result)

DEFAULT_FUNCI7: begin
behaviour_result = data_l >> data 2[4:0];
if (transaction.ref_alu output != behaviour_ result)

vm_fatal ("REF MODEL ERROR",$
{("Incorrect SRLI Result: Behaviour: %8h Model: $8h",
behaviour result, transaction.ref alu output))
end
ALT_FUNCI7: begin
behaviour_result =

d{data_l) >»» data_2[4:0];
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if (transaction.ref alu output != behaviour result)
uvm_fatal ("REF MODEL ERRCR", f
{"Incorrect SRLI Result: Behaviour: %8h Model: $8h",
behaviour_result, transaction.ref_alu output))
end

endcase
end
OR_FUNCTI3: begin
behaviour_result = data_l | data_2;
if(transaction.ref_alu output != behaviocur result)
uvm_fatal {"REF MODEL ERROR"

{"Incorrect ORI Result: Behawviour: %8h Model: $8h",
behaviour_result, transaction.ref_alu cutput))
end

AND FUNCT3: begin
behaviour_result = data 1 & data 2r
if(transaction.ref_alu ocutput != behaviour result)
vm_fatal ("REF MODEL ERRCR",
{"Incorrect ANDI Result: Behaviour: %th Model: %2h",
behaviour_result, transaction.ref alu output))
end

endcase

end

: begin

case (transaction.ref EX instr[ FUNCTI3_HI: FUNCI3_LO])

BEQ FUNCT3: begin
behaviour_result = !(data 1
if (transaction.ref_alu output

vm_fatal ("REF MODEL ERRCR"

{"Incorrect BEQ Result: Behavio %3h Model: %2h",
behaviour_result, transaction.ref_alu output))

w
w
|

data_2):
behaviour_result)

end
BNE_FUNCTI3: begin
behaviour_result = (data_l == data_2);
if (transaction.ref alu output '= behaviocur_ result)
uvm_fatal ("REF MODEL ERRCR", £
{"Incorrect BNE Result: Behawviour: $8h Model: $8h",
behaviour_result, transaction.ref_alu ocutput))
end

BLT_FUNCT3: begin
behaviour result = {(3 (data_1) < d{data_2)) 2 0 : 1)
if(transaction.ref_alu ocutput != behaviour result)

uvm_fatal {"REF MODEL ERROR", 5% tf
({"Incorrect BLT Result: Behavicur: %8h Model: %&h",
behaviour result, transaction.ref alu output))
end

BGE_FUNCT3: begin
behaviour_result = ({3 {data_l1) >= 3 (data_2)) 2 0 : 1);
if (transaction.ref_alu output != behaviour result)
vm_fatal ("REF MODEL ERRCR" £
{"Incorrect BGE Result: Behaviour: %£8h Model: %2h",
behaviour_result, transaction.ref_alu_output))
end
BLTU_FUNCT3: begin
behaviour result = ((data 1 < data 2) 2?2 0 : 1);
if(transaction.ref_alu output != behaviour_result)
v fatal ("REF MODEL ERROR",
{"Inc ct BLTU Result: Behavio Model: %Eh",
behaviour_result, transaction.ref alu output))
end
BGEU_FUNCT3: begin
behaviour_result = {{data_l >= data_2) 2 0 : 1);
if(transaction.ref_alu output behaviour result)

v fatal ("REF MODEL ERROR™
{"Inc ct BGEU Result: Behavio %Eh Model: %Eh",
behaviour_result, transaction.ref_alu output))
end
endcase
end
endcass
// Check for Load-use case and 5tall assertion

if(load flag &&
(transaction.ref_ID_instr[ RS
transaction.ref_ID instr[ RSl
transaction.ref EX instr['RD
load_use_flag = 1;
else
load_use_flag = 07
// ID Stage Load Detection
if (transaction.ref ID_instr[ COPCODE HI: OPCODE_LO] == “LOAD OPCCDE)
load flag = 17
else
load flag = 07
// Check for Stall Combinational Output upon EX Stage Load ID Stage Use
if(load_use_flag) begin
if (!transaction.ref_ stall)

vm_fatal ("REF MODEL ERRCR", "Load-use Case Not Stalled")

else

load_use_flag = 0;

end

/f EEMEM Stage to MEMWB Stage Pipeline
reg write check = reg write check buffer;
/f Check instruction type at EX Stage
case (transaction.ref EX instr[ O
R_OFCODE,

. HI:

- LoT)

reg_write_check buffer = 1;
end
default: reg_write_check buffer = 0;
endcase

/f EEMEM Stage to MEMWB Stage Pipeline

write address_check = write address buffer;
write_data_check = write_data_buffer;

write_address buffer = transaction.ref EX _instr[ 'RD
// For JAL and JALR

if {transaction.ref EX_instr[ O

E_10] == “J 1

ADDR_LO] ||
DR_LO]) ss
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transaction.ref EX instr[ OPCODE_HI: OPCODE_LO] == “JALR OPCODE)
write data buffer = transaction.ref EX pc + "INST_ADDR STM;
elss
write_data buffer = transaction.ref alu output;

if (reg_write_check) begin

//Check Rddress

if (write_address_check != transaction.ref reg write_addr)
‘uvm_fatal ("REF MODEL ERRCR",
("Incorrect write register ad ss5: Behaviour: x%2d Model: x%24",
write_address_check, transaction.ref_reg_write_addr))

//Check Data

if (write_data check != transaction.ref_reg_write_data)
‘uvm_fatal ("REF MODEL ERROI £
("Incorrect write register data: Behaviour: %&h Model: $2h",
write_data_check, transaction.ref_reg_write_data))

end

// Check for Branch or Jump Execution
flush _assertion = flush buffer;

£lush buffer = transaction.ref_flush;
casc (transaction.ref EX instr([ OPCODE_E
“CODE: branch check flag = 1;

)DE,

CODE: jump check flag = 1;

ODE_LO1)

endcase
if{{branch check flag && transaction.ref alu zero) || jump check flag) begin
1f(!flush assertion)
‘uvm_fatal ("REF MODEL ERROR™,"Branch or Jump not Executed")
=nd

branch check flag = 0;
jump_check_flag =
endfunction

// Decode and validate instruction on pipeline
// Store instruction information for logging
function void decode(seq_item transaction):;

int £1;

logic [ OPCODE_WIDTH-1:0] opecode s
logic a1 rsl;

logic ADDR_WILTH-1:0] raz2;

logic JIDTH-1:0] rd;

logic IDTH-1:0] funct3;
logic IDTH-1:0] funct7;
logic imm;

logic [ branch;
logic [*d_ DTH-1:0] jal_offset;
logic ["U_IMM WIDTH-1:0] lui_constant;
opcode =

rsl = transaction.ref instr[ E51_RA H

rs2 = transaction.ref_instr[ RS2_ADIR |

rd = transaction.ref_instr["RD_ADDR_HI: RD

funct3 = transaction.ref_instr[ FUl

funct?7 = transaction.ref_instr[ FUNCT

imm = transaction.ref instr[3l:20];

branch = ({transaction.ref instr[3l],transaction.ref_ instr[7], transaction.ref_instr[30:25],
transaction.ref instr[11:8], 1'k0O});

jal_offset = ([transaction.ref_instr[3l],transaction.ref instr[l19:12], transaction.ref_imstr[20],

transaction.ref_instr[30:21], 1'b0}):
lui_constant = transaction.ref_instr[31:12];

£l = pen{"INSTR.txt™, "a+");
case (opcode)
*R_OPCODE: begin
case (funct3)
"ADD FUNCT3: begin
cage (functT)
"DEFAULT_FUNCT7: begin
*uvm_info ("SCBD™, f("add xtad, x%2d, xtad",
rd, rsl, rs2), UVM_MEDIUM)
yv(£fl, ™add x%2d, x%2d, x%2d", rd, rsl, rs2);
end
"ALT_FUNCTI7: begin
“uvm_info ("SCBD" T ("subk xtad, x%2d, xtad",
rd, rsl, rs2), UVM MEDIUM)
/(£1, "sub x%a2d, x%2d, x®%2d", rd, rsl, rs2);

énd
default: “uvm fatal ("ERROR", f

("Unknown funct7 field Failing Field: %7k Failing Instruction: %8h",
funct7, transaction.ref instr))
endcase
end
"5LL_FUNCT3: begin

ki f{"sll x%2d, x%ad, x32d”,

rd, rsl, rs2), UVM MEDIUM)

$ (f1, "sll x%2d, x%2d, x%24", rd, rsl, rs2):
"5LT_FUNCT3: begin

“uvm_info ("SCBD", § tf{"slt x%2d,  x%2d, xs24",

rd, rsl, rs2), UVM MEDIUM)

$ 3 v(fl, "slt x%2d, x%2d, x324", rd, rsl, rs2):

end

“5LTU_FUNCTI3: begin

“uvm_info ("SCBD", 5 tf{"sltu x%2d, x%2d, x%2d",

rd, rsl, rs2), UVM MEDIUM)
(f1, "sltu x%2d, x32d, ®%¥24", rd, rsl, rs2):

end
"KCOR_FUNCT3: begin
‘uvm_info ("SCBD™, 53

x%2d,  x%2d,  xs24",
rsl

rs2), VM _MEDIUM)
(f1, "=xor x%2d, x%2d, x%¥24", rd, rsl, rs2):

=nd
*5R_FUNCI3: begin
case (funct?)
"DEFAULT_FUNCIT7: begin
“uvm_info ("SCED",
rd, rsl, rs2), UVM MEDIUM)
v(£f1l, "srl x%2d, x%2d, x®%2d", rd, rsl, rs2);

x%2d, x32d, x%2d",

end
"ALT FUNCT7: begin
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“uvm_info("SCBD",
xd, rsl, rs2), UVM MEDIUM)

end
default: “uvm fatal ("ERROR", $sfor f
{("Unknown funct7? field Failing Field: %7b
funct?7, transaction.ref instr))

endcase
end

"OR_FUNCI3: begin

‘uvm_info("SCBD", 5= f{"or x%2d, x%2d, x%

rd, rsl, rs2), UVM MEDIUM)

5 g v{fl, "or x%2d, x%2d, x%2d", rd, rsl,
"AND FUNCT3: begin

B nfo("5CBD", {"and x%2d, x%2d, x%

rd, rsl, rs2), UVM_MEDIUM)
v x%2d,  x%2d, =xs2d", rd, rsl,

default:
("Unknown funct3 field Failing Field: %3b
funct3, transaction.ref_instr))
endcase
end

"LOAD_OPCODE: begin
case (funct3)
"LB_FUNCI3: begin

x%2d, x%2d, x$2d",

v(fl, "sra x%a2d, x%2d, ®%2d4", rd, rsl, rs2);

Failing Instruction: %8h",

24",

rs2);

24",

rs2);

Failing Instruction: %8h",

“uvm_infe{"SCBD",5s £({"1b ¥%2d,  Oxt3h{x%2d)",
rd, imm, rsl), UVM_MEDIUM)
5 play{fl, "lb x%2d,  Ox33n(x32d)", rd, imm, rsl):
end
"LH_FUNCI3: begin
uvm_info{"SCBD",5s £{"lh x%2d,  Ox%3h{xtad)",
rd, imm, rsl), UVM_MEDIUM)
5 vi{fl, "lh x%2d,  Ox33n(x32d)", rd, imm, rsl):
"LW_FUNCI3: begin
“uvm_info{"SCBD", 55 £{"1w x%2d,  Ox%3h(x%2d)",
rd, imm, rsl), TVM MEDIUM)
$fdi (£1, "lw x%ad, 0x%3h{x%2d)", rd, imm, rsl):
"LBU_FUNCTI3: begin
“uvm_info ("SCBD", 55 £{"1lbu x:2d,  Ox33h(x%2d)",
rd, imm, rsl), TVM MEDIUM)
i v(fl, "lbu x%2d, 0x33h(x%2d)", rd, imm, ral);
end
"LHU_FUNCTI3: begin
£("1lha ¥$2d,  0x33h(xs2d)",

“uvm_info ("SCBD",
rd, imm, rsl), UVM MEDIUM)
v(fl, "lhu xi2d,

default: ‘uvm tal ("ERROR", 5 f
{"Unknown funct3 field Failing Field: %3b

funct3, transaction.ref_instr))

endcase

case (funct3)

"ADD_FUNCT3: begin
“uvm_info ("SCBD", atf ("addi x%2d,  x%2d,
rd, rsl, imm), TVM MEDIUM)

v(fl, "addi x%2d, x%2d,

0x%3h", rd, &

end

*5LL_FUNCTI3: begin
“uvm_info ("SCBD" 5111 x%2d, x%2d,

imm({4:0]), UVM MEDIUM)

(f1, ™slli x%2d, xs2d, ¥d", rd, rsal,

*5SLT_FUNCTI3: begin
“uvm_info ("SCBD", ("slti x%2d, x%2d,
rd, rsl, imm), TVM MEDIUM)

is v(fl, "alci x%2d, xs2d,

end

*5LIU_FUNCT3: begin
“uvm_info ("SCBD f("sltiu x%2d, x%2d,

rsl, imm), TVM_MEDIUM)

(f1, ™altiu x32d, x%2d, 0x%3h", rd,
end
"KOR_FUNCT3: begin
“uvm_info ("SCBD", s3formatf ("xori x%2d, x%2d,
imm), TUVM MEDIUM)
(f1, "=ori x%2d, xs2d, 0x%3h", rd,

"5R_FUNCI3: begin
case (functT)
“DEFAULT_FUNCT7: begin
“uvm_info("SCBD",
rd, rsl, imm[4:0]), UVM MEDIUM)
1 f1, "srli x%2d, x%ad, 3d",
end
"ALT_FUNCT7: begin
“uvm_info ("SCBD",
rd, rsl, imm[4:
(f1, "srai

T f("srai x%2d,
1), UVM_MEDIUM)
x%2d, x%2d, ",

end
default: “uvm fatal ("ERROR",5sI

("Unknown funct7 field Failing Field: %7b
funct7, transaction.ref_instr))

endcase
end
“OR_FUNCT3: begin
“uvm_info ("SCBD", S tf{"ori
rd, rsl, imm), UVM MEDIUM)
v(fl, "ori x%2d,

®%2d,  x32d,

x32d,  Ox33n", =d,

"AND_FUNCT3: begin
“uvm_info("SCBD", f{"andi x%2d, x%2d,

rd, r3l, imm), UVM MEDIUM)
, "andi x%2d, x%2d,

0x%3h", rd,

default: "uvm fatal {("ERROR", s

0x33h(xi2d)", ed, imm, rsl):

Failing Instruction: %8h",

0x33h",

a1, imm);

24",

imm[4:0]):

0x33h",

0x%3h", rd, rsl, imm):

0x33h",

rsl, imm);

0x33h",

rsl, imm);

x%2d, %d",

rd, rsl, imm[4:0]):

=32d,  d",

rd, rsl, imm[4:0]);

Failing Instruction:

0x33R",

rsl, imm);

0x%3h",

rsl, imm);

$3h",
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{"Unknown funct3 field Failing Field: %3b Failing Instruction: $8h",
funct3, transaction.ref_instr))
endcase
end
'S_OPCODE: begin
case (funct3)
"5B_FUNCT3: begin
‘uvm_info("SCBD™, § f{"sb x%2d, 0x%3h(x%2d)",
r32, {[funct?, rd}, rsl), UVM MEDIUM)
y(fl, "sb x%2d, 0x%3h(x%2d)", rs2, {funct?,rd}, rsl);

“SH_FUNCI3: begin
“uvm_info ("5CBD™, § ti("sh xs2d, 0x%3h(x32d) ",
rs2, {funct7,rd}, rsl), UVM MEDIUM)
v(fl, "sh x32d, 0x%¥3h(x%24)", rs2, {funct7,rd}, rsal):

“SW_FUNCI3: begin
“uvm_info("SCBD", § £ ("aw x82d,  0x33h(xs2d)",
rs2, {funct7,rd}, rsl), UVM MEDIUM)
vi(fl, "sw x82d,  Ox%3h(x32d)", rs2, {funct?,rd}, rsl):

default: &3 f
{"Unknown funct3 field Failing Field: %3b Failing Instruction: $8h",
funct3, transaction.ref_instr))
endcase
end

*5B_OPCODE: begin
cage (funct3)
"BEQ FUNCT3: begin
“uvm_info ("5CBD™, $ f({"beq x%2d, x%2d, 0x%3n",
rsl, rs2, branch), UVM MEDIUM)
(fl, "beg x%2d, x%2d, 0x%3h", rsl, rs2, branch);

"BNE_FUNCT3: begin
“uvm_info ("SCBD", 5 tf ("bne x%2d,  x%2d, Ox%3h",
rsl, rs2, branch), UVM MEDIUM)

s vi{fl, "bne ¥32d, x%2d, 0x33h", rsl, rs2, branch):
end
"BLT_FUNCT3: begin
“uvm_info{"SCBD", & atf("blt x%2d,  x%2d,  0x%3h",
rsl, rsi2, branch), UVM MEDIUM)
v(fl, "blc x%ad, x32d, 0x%3h", rsl, rs2, branch):
end
"BGE_FUNCT3: begin
“uvm_info("SCED" £ I ("bge x%2d, x%2d, 0x%3h",
rsl, rs2, branch), UVM MEDIUM)
$L lay{fl, "bge x%2d, x%2d, 0x%3h™, rsl, rs2, branch);
end
"BLTU_FUNCT3: begin

o{"SCBD" x%2d, x%2d, 0x%3h",

. "bltu x%2d, x%2d, 0x%3h", rsl, rs2, branch);

“BGEU_FUNCT3: begin
“uvm_info{"SCBD", 3

( x%2d, x%2d, 0x%3h",
rsl, rsi2, branch), UVM MEDIUM)

$ I (f1, "bgesu x%ad, x%2d, 0x%3h", rsl, rs2, branch):
end
default: “uvm_fatal ("ERROR'
("Unknown functt3 field Failing Field: %3k Failing Instructicn: %Sh",
funct3, transaction.ref_instr))
endcase
end

"U_OPCODE: begin
“uvm_info("SCBD", "lui x%2d, 0x%5h",
rd, lui_constant), UVM_MEDIUM)
v(fl, "lui x%2d, 0x%5h", rd, lui_constant);

end
*J_OFCODE: begin
“uvm_info ("SCBD",
rd, jal_offset), UVM MEDIUM)

{"jal x$2d,  0x35h",

(f1, "jal x%ad, 0x%5n", rd, jal_offset);
end
"JALR_OFCODE: begin
“uvm_info("SCBD",
rd, imm, rsl), UVM MEDIUM)
A{£1, "jalr x%2d, 0x%3h(x%2d)", rd, imm, rsl);

"jalr x32d, 0x%3h(x32d) ",

"NOF_OFCODE: begin
“uvm_info{"SCED",
"nop

nop"), UVM_MEDIUM)

endcase
7 (1)

endfunction

// Compare Reference Model Results and DUT Model Results
/{ Store corresponding information for logging
function void mismatch check{seq_item transaction);
int fh;
th = "PIFELINE.txt", "a+");
"$1b", transaction.ref_stall);

("FLUSH.TXT", "a+") ;
{fh, "%lb", transaction.ref_flush);

"JUMP. txt", "a+") ;
v{fh, "%lb", transaction.ref_jump link):

en("IFID.txt", "at"):
"%Zh %Zh", transaction.ref_pc, transaction.dut_pc);
"%Zh %Zh", transaction.ref_instr, transaction.dut_instr);

mismatch = 17

ismatch Encountered at IF/ID Pipeline Register”,UVM LOW):
smatching Program Counter™, UVM_LOW):
TmaTFI{"REF PC: %8R". transantinn.ref nel VM TOWY @
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“uvm_info ("MISMATCH™,

tI("DUT BC: %Zh", transaction.dut_pc),UVM_LOW);

end
if (transaction.ref_instr != transaction.dut_instr) begin
mismatch = 1;
"uvm_info ("MISMATCH", "Mismatch Encountered at IF/ID Pipeline Register”,UvM LOW) ;
“uvm_info ("MISMATC smatching Instruction Code”™,UVM _LOW);
‘uvm_info ("MISMATCH REF Instr Code: %¥3h", transaction.ref instr),UVM LOW);
‘uvm_info ("MISMATCH" "DUT Instr Code: $3h", transaction.dut_instr),UVM_LOW);
end

"at™):

transaction.ref reg read addr_l, transaction.ref reg read data_l);
"%d $5h", transaction.ref reg read addr_2, transaction.ref reg_read data_2):
"%d %Zh", transaction.dut_reg read addr_l, transaction.dut_reg_read data_l):
"%d %Zh", transaction.dut_reg_read addr_ 2, transaction.dut_reg_read data_2);
"%Zh %¥Zh", transaction.ref imm val, transaction.dut_imm val);

if(transaction.ref_reg_read addr_l != transaction.dut_reg_read_addr_ 1) begin
mismatch =
"uvm_info ("MISMATCH"
‘uvm_info ("MISMATCH"
"uvm_info ("MISMATCH™
“uvm_info ("MISMATC

Mismatch Encountersed at ID/EX Pipeline Register”,UVM LOW);
Mismatching Register 01 Address”,UVM LOW):

%d", transaction.ref_reg_read_addr_l),UVM_LOW):
"DUT RegQl Rddr: %d", transaction.dut_reg_read addr_ 1) ,UvM LOW);

end
if (transaction.ref_reg read addr 2 != transaction.dut_reg_read_addr_2) begin
mismatch
"uvm_info ("MISMATCH™, "Mismatch Encountered at ID/EX Pipeline Register”,UvM LOW) ;
“uvm_info ("MISMATCH", "Mismatching Register 02 Address™,UvM LOW);
‘uvm_info ("MISMATC : %d", transaction.ref reg read addr 2),UVM LOW):
‘uvm_info ("MISMATCH 2 Rddr: %d", transaction.dut_reg_read_addr_2),UVM_LOW):
end
if (transaction.ref_reg read data_l !'= transaction.dut_reg_read data_ 1) begin
mismatch = 1;
“uvm_info ("MISMATCH", "Mismatch Encountered at ID/EX Pipeline Register™,UVM LOW);
“uvm_info ("MISMATCH™, smatching Register 01 Data”,UVM_LOW):
“uvm_info {"MISMATCH", BEF Reg0l Data: %2h", transaction.ref reg read data 1),UVM LOW,
“uvm_info {"MISMATCH", DUT Reg0l Data: %2h", transaction.dut reg read data 1),UVM LOW,
end

if (transaction.ref reg read data 2
mismatch = 1;

“uvm_info("MISMAT

“uvm_info ("MISMAT

= transaction.dut reg read data 2) bLegin

ismatch Encountered at ID/EX Pipeline Register”,UVM LOW);

smatching Register 02 Data”,UVM_LOW);

o "BEF Regl2 Data: %2%h", transaction.ref_reg_read data_2),UvM LOW)
"DUT Regl2 Data: %2%h", transaction.dut_reg_read data_2),UvM LOW)

“uvm_info ("MISMAT

end
if (transaction.ref_imm val != transaction.dut_imm wal) begin
mismatch = L;
“uvm_info("MISMAICH", "Mismatch Encountered at ID/EX Pipeline Regiater™,UVM LOW);
“uvm_info("MISMAICH", "Mismatching Immediate Value™,UVM_LOW) :
“uvm_info("MISMAICH", BEF Imm W %¥5h", transaction.ref imm wval),UVM_LOW)
“uvm_info ("MISMATCH", £{"DUT Irm Val: %2h", transaction.dut_imm wval),UVM_LOW) ;
end

"EXMEM.txt", "a+™);

"%8b %3b", transaction.ref ctl op, transaction.dut ctl_op);

"%8h %3h", transaction.ref alu output, transaction.dut_alu cutput);
, "tlb %lb", transaction.ref alu zerc, transaction.dut_alu zeroc);

if (transaction.ref alu output !
mismatch = 1;

“uvm_info ("MISMAT

“uvm_info ("MISMAT

transaction.dut alu output) begin

", "Mismatch Encountered at EX/MEM Pipeline Register”,UVM_LOW);
smatching ALU Cutput”,UVM_LOW) ;

L("BEF ALU Cut: %#Zh", transacticn.ref_alu output),UvVM_LOW|
"DUT ALU Cut: ¥5h™, transaction.dut_alu output),UVM LOW

i
“uvm_info{"MISMATCH", i

end
if (transaction.ref_alu zerc != transaction.dut_alu_zero) begin
mismatch
“uvm_info("MISMAICH", "Mismatch Encountered at EX/MEM Pipeline Register”,UVM_LOW):
“uvm_info("MISMAICH", "Mismatching ALU Zero",UVM LOW)
“uvm_info("MISMAICH", REF ALU Zero: %lb", transaction.ref alu zero),UVM LOW);
“uvm_info ("MISMATCH", DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM _LOW):
end
if (transaction.ref_ctl_op != transaction.dut_ctl_op) begin
mismatch = 1;
“uvm_info {"MISMATCE d at EX/MEM Pipeline Register”,UVM_LOW):
“uvm_info ("MISMATCH", "Mismatching CTIL OP",UVM LOW);
“uvm_info ("MISMATCH™, f("BEF CTL OF: %3b", transaction.ref ctl op),UVM_LOW):
“uvm_info ("MISMATCH™, "DUT CTL OF: %3b", transaction.dut_ctl_op),UVM_LOW) ;
end

"MEMWB.txt", "a+");

v{fh, "%lb %lb %1b", transaction.ref reg_write, transaction.ref_mem write, transaction.ref_mem read);
{fh, "%Sh %Zh", transaction.ref_mem addr, transaction.ref mem write_data);

v{fh, "%Eh %Zh", transaction.dut_mem addr, transaction.dut_mem write_data);

{fh, "%d %Zh", transaction.ref_reg write_addr, transaction.ref_reg_write_data);

vi{fh, "%d %#Zh", transaction.dut_reg write_addr, transaction.dut_reg_wrice_data);

if{transaction.ref mem addr != transaction.dut mem addr) begin
mismatch = 1;
‘uvm_info {"MISMAT
‘uvm_info ("MISMAT
‘uvm_info ("MISMAT
‘uvm_info ("MISMAT

ismatch Encountered at MEM/WE Pipeline Register”,UVM _LOW);
{ismatching Memory Address™,UVM _LOW);

"BEF Mem Addr: %3h", transaction.ref_mem addr),UvM_LOW
"DUT Mem Addr: %3h", transaction.dut_mem addr),UVM_LOW

1
1

end
if{transaction.ref mem write_data != transaction.dut mem write data) bkegin
mismatch = 1;
“uvm_info ("MISMAT! smatch Encountered at MEM/WB Pipeline Register”,UVM_LOW);
‘uvm_info("MISMAICH", "Mismatching Memory Write Data”,UvM LOW);
‘uvm_info ("MISMAT BEF Mem .Data: 38h", transaction.ref mem write_data),UVM _LOW);
‘uvm_info ("MISMATCH", ("DUT Mem Wr.Data: $8h", transaction.dut mem write_data),UVM_LOW);
end
if{transaction.ref_reg write_addr != transaction.dut_reg write_addr) bkegin

mismatch = 1;

‘uvm_info("MISMAICH", "Mismatch Encountered at MEM/WB Pipeline Register”,UVM_LOW);

‘uvm_info ("MISMAT smatching Register Write Rddress™,UVM_LOW) :

‘uvm_info ("MISMATC ("REF Reg Wr.Rddr: 3d", transaction.ref_reg_write_addr),UvM_LOW
“uvm info ("MISMAT "DUT Reqg Wr.Ad: %d", transaction.dut reg write addr),UVM LOW

H

)
)
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end
if({transaction.ref_reg write_data != transaction.dut_reg write_data) begin
mismatch = 1;
vm_info ("MISMATI Mismatch Encountered at MEM/WB Pipeline Register™,UVM LOW) ;
. :
| . transaction.ref_ reg write data),UVM LOW)
uvm_info {"MISMATCH", "DUT Reg Wr.Data: %2h", transaction.dut reg write data), UVM LOW)
end
endfunction

// BRead information stored and perform test log formatting
// Produces the final test log for pipeline flow inspection
function void test logging{seq item transaction);

int code;

int £h_ifid;

int fh_idex;

int fh_exmem;

int fh_memwl;

int fh_instr;

int fh_stall;

int fh_flush;

int £h_jump;

int fh_log:

int instr_count;
string dump;

string instruction;
string stall;

string flush;

string Jurp:

string store;

string load;

string reqg write;
string file transact_l;
string file_transact 2;
string file_transact_3;
string file_transact_4;
string file_transact S;
string file_transact 6&;
string file_transact_T7;
string file_transact_8;
string file_transact_9;
string file_transact_10;

mismatch found =
stall_count = 0;
flush_count
instr_count = 1;

fh ifid =
fh idex = 5
fh_exmem
fh memwb =
fh instr
th stall = 3
fh_flush
fh_jump
fh log =

J/f Dump NULL information
// Clear 1 cycle for ID/EX and macro status

for{int i = i< 1y itH) begin
for(int k = 0; k < 10; k++)
code fs I{fh_idex, "%s3",dump);
code = {fh_stall, "$3",dump) ;
code = {fh_flush, "$5", dump) ;
code = {fh_jump, "%s", dump) ;
=nd
/f Clear 2 cycles for EX/MEM
for{int i = i< 2r i++) begin
for{int k = 07 k < &; k++)
code = I{fh_exmem, "$3",dump);
end
/f Clear 3 cvcles for MEM/WB
for{int i = 0; i < 3; it+) begin
for{int k = 0; k < 11; k++)
code = {fh_memwb, "$s", dump) ;
end

f// Start Logging

while(!s I{fh_ifid)) begin
code = (fh_ifid, "%s",file_transact_l); //Instruction hddress
code {fh_ifid, "3%3",file_transact_2);
code {fh_ifid, "%s",file_transact_3): /fInstruction Code
code {fh_ifid, "%s",file_transact_4);
code
if(file_transact_3 === "

{fh_log,

x") begin

nd of Testlog

{instruction, fh_instr); //Instruction Code (Assembly Language)

. gRT_time());

{fh_log, "Test Completion Time: £3"
{fh log, "Total Stall Encountered:
v{fh log, "Total Flush Encountered:
end
" Instruction %4 "
» "Instruction Address: REF: %Sh\n DUT: %5h",
file_transact_ 1, file_tramsact_2);
{fh_log, "Instruction Code : REF: %Eh\n DOT: %Sh",
file_transact_ 3, file_transact_4);
v{fh_log, "Instructicn Deccde : %¥s™, instruction);
if(({file tramsact 1 != file transact 2} || (file tramsact_3 != file tramsact 4)) begin
mismatch found = 1;
break;
end
code = f{fh_stall, "%s",stall); //5tall
if{stall begin

/f Clear bubble information at each pipeline register

for{int k=10; k<1 k++)

code = ;I I{fh idex,"%s",dump);
for{int k= 0; k k++)

code = $ I{fh exmem, "%¥s",dump);

for{int k = 0; k < 11; k++)

/{fh_log, ™¥¥¥*skkwwkkssxvkIngtruction Pipeline Stalling Occurred***Axssddiddd\n\n\n"™);

"

stall count);
flush count);

instr_count);
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code = 3 I({fh_memwh, "%s",dump) ;
// Clear macro of stalled cycle

code = I{fh_flush, "%s",dump);
code = (fh_jump, "%s", dump) ;
stall_count ++;
continue;
end
code = (fh_flush, "%s", flush); //Flush
code = (fh_jump, "$3", jump) ; // Jumg
if {flush 1) gin
i == "0") begin //Conditional Branch Formatting
code fh_idex, ",file_transact_l); //Reg Rddr 1
code = 3 ile transact 2); //Reg Data 1
code file_transact_3); //Reg Rddr 2
code = = file_transact_4); //Reg Data 2
code ", file_transact_5);
code = 3 ",file_transact_€);
code ", file_transact_T7):
code = " file_transact_£);
code //Imm Value
Branch Compare "y
L. "Register Read : REF: x%24:%5h",
file_transact_ 1, file_transact 2):
5 v{fh_log, " x%2d:%2h",
file_transact_3, file_transact_4);
5 v{fh_log, "Register Read : DUT: x%2d4:%5h",
file_transact_5, file_transact_g€);
5 v{fh_log, " ¥%82d:%3n",
file_transact_7, file_tramsact_Z);
1f(({file_transact_l != file_transact_5) || (file_transact_2 != file_transact_#&) ||
(file transact 3 != file transact 7) || (file transact 4 != file transact 8)) begin
mismatch_found = 1;
break;
end
end
e¢lse begin //Unconditional Branch Formatting
for{int k = 0; k < 7; k++) //Remove Control Signal and Memory Access
{fh_memwk, "%s", dump) ;
code fh_memwb, "%3",file_transact_l): //Wr.Reg Rddr
code fh memwb, "%s",file transact 2); //Wr.Reg Data
code fh_memwb, "%s",file_transact_3);
code fh_memwb, "3s3",file_transact_4);
" R
v L. "Register Write : REF:
file_transact_ 1, file_transact 2):
= v{fh_log, " DUT: x%2d:%3h",
file_transact_3, file_transact_4);
if((file_transact 1 !'= file transact 3) || (file_transact 2 != file transact_4)) begin
mismatch_found = 1;
break;
end
(fh_log, m"r*¥riaakaaaaarIngtruction Pipeline Flushing Qccurrped*d*ddwviiny V. H
//Remove 2 cycles of flushed information
r{int k=0; k < k++) begin
for(int j J o< 4r j+)
code 83", dump) ;
for(int j =
code {fh_idex, "%3", durp) ;
for{int j = 3 < 11l 3++)
code = {fh_memwk, "%s", dump) ;
code = 3 r3 {durp, fh_inscr)
code fh stall, "% dump) »
code {fh_flush, "$3", dump) ;
code fh_jump, "%s",dump) ;
end
//Remove an additional cycle on EX/MEM
rf{int k=10; k<3 k++) begin
for{int j = 0; j < €; j++)
code = {fh_exmem, "$s", dump) ;
end
//Remove unused information for Conditicnal / Unconditional Branch
if(jump == "0") begin
for{int j 0; 3 < 11; J++)
{fh_memb, "$5", durp) ;
end
else begin
for({int j J++)
code = {fh_idex, "%s",dump) ;
end
flush_count ++;
instr_count ++;
continue;
end
code "%s",file_transact_l); //Reg Rddr 1
code ,"¥s",file_transact 2); //Reg Data 1
code "%s",file_transact_3); //Reg Rddr 2
code = "%s",file_transact_4); //Reg Rddr 2
code "%s",file_transact_35);
code "%s",file_transact_§);
code ,"%3",file_transact_T7);
code "$3",file_transact_8);
code "3s",file_transact_9); //Imm Value
code = ,"%3",file_transact_l0};
£ Register Acces
REF: x%2d:%8h",
file_transact_l, file transact_2);
/(fh_log, " x%2d:%Eh",
file_transact_3, file transact_4);
/(fh_log, "Register Read : DUT: =x%2d:%8h",
file_transact_5, file transact_€);
'(fh_log, " x%2d: 280",
file_transact_7, file transact_38);
;(fh_log, "Immediate Value : REF: %8h\n DUT: %8h",
file transact_l, file transact_2);
if({{file_transact_l != file tramsact _5) || (file transact 2 != file transact €} ||
{file_transact_3 file_tramsact_7) || (file_transact_4 != file_transact_85) ||

{file_transact_9 != file_tramnsact_l0)) begin
mismatch found = 17
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break;
end
code = {fh exmem, "3$s",file transact_l); //Control Signal
code = {fh_exmem, "%$s",file_transact_2);
code {fh exmem, "%¥s",file transact_3); //ALU Output
code {fh_exmem, "%¥s",file_transact_4);
code {fh_exmem, "%¥s",file_transact_5); //Zsro
code {fh_exmem, "¥s",file_transact_€);

s{fh_log, ™ ALU Operatior B H

s(fh_log, "Control Signal : REF: %8b\n DUT: %8k,

file_transact_l, file_transact_2);

s(fh_log, "ALU OQutput : REF: %8h\n DUT: %5h",
file_transact_l, file_transact_2);

s(fh_log, "ALU Zerc Signal : REF: %lb\n DUT: %1lb"™,
file_transact_l, file_transact_2);

1f((file_transact_l file_transact_2) || (file_transact_3 != file_transact_4) ||
(£ile_transact_5 file_transact_g)) begin
mismatch_found = 1;

break;
end
code = "%3", reg_write): /fRegirite
code = "%s",store); MemWrite
code = "%5", load) ; f MemRead

code
code
code =

"$s",file_transact_l); Mem Rddress
,"8s",file transact_2); //Mem Wr.Data
"%s",file_transact_3);

code = {fh_memwb, "$s",file_transact_4);
code = {fh_memwb, "$s",file_transact_5);
code = {fh_memwb, "$s",file_transact_&);
code = {fh_memwb, "$s",file_transact_T);
{fh memwb, "%¥s",file transact_Z);
Writeback Lcces ":
REF: %4h:%Zh",
file_tramsact_l, file_transact_2);
(fh_log, " DUT: %4h:%2h",
file_transact_3, file_transact_4);
1f((file_transact_l != file_transact_3) || (file_tramsact_2 != file_transact_4)) begin
mismatch_found = 1;
break;
end
end
if(load " || reg_write "L begin
(fh_log, "Register Write : REF: x%2d:%8h",
file_transact_5, file_transact_§);
(fh_log, " DUT: x%2d:%8h",
file_transact_7, file_transact_8);
if((file_transact_5 != file transact_7) || (file_transact_& != file_transact_8)) begin
mismatch_found = 1;
break;
end
"l" g& load != "1" && reg_write != "1")

7{th_leg, "\n");
£R Log, "AFAEMAKANAANAKAKAAKANANANERD OF INSCITUCTLONN* A AN KA KA KRN XA KA KRR NN\
instr_count ++;

endfunction

// Simple nction for moving file to correct directory
function void move_file(string file, string destination);
string full command;

full command = ["move ./", file, " ./", destination};
$ 1{full_command) ;

PROM.txt™) ;
TNSTR. txt™);
TFID.txt™);
IDEX.txt");

endfunction

// Check macro status with history value or update macroc history
function void macro_check();

int th;

int code;

string £file directory;

string file address;

stall_check
flush_check =

/{"Begin Macro Checking™):
if (!directed_test)

file_directory = test_sesd};

file_directory =
file_address = [file_directory,
pen(file_address, "r");
if{fh && !force_gen && !macro_overwrite) begin

code = {£h, "Stall: %d", stall check);

code = {fh, "Flush: %4", flush check);

rected test"};
ACRO.tEL™};




176

endclass
dif

=(fh) s
if{stall_check

end
else begin

=nd

end
end
else begin

{fi

endfunction

I

Clear static variable for continuous batch test

stall count && flush check
{"Macro Check Passed");

== flush count) begin

=
w

| ("LOG.txE",

{fh, "Macro Check

{"Macro Check Failed");

{

{"fMACRO

{

1("LOG.txt"

if{run_all) begin

le_address, "w");

tall: %d", stall_count):;

"Flush: %d", flush_count);

"Last Updated on 33", get_time(}));

at");
facro Check

function void clear static_wariable():

data_l_buffer =
data_2_buffer = 07
data_l =
data_2 =
load_flag = 0;
load use flag = 0;
stall_assertion =
stall buffer = 0;
write_data_buffer = 0;
write_data check = 07
write_address buffer =
write_address_check =
reg_write_check buffer
reg_write_check =
branch_check_flag
Jjurp_check flag
flush buffer =
flush_assertion =

endfunction

[
0;

=0

{fh, "Macro Check
o ("MACRO MISMATCH","Macro Check Failed”™,UVM LOW)

"%3 - Macro Mismatch", test_seed):

UPD

Failed™);

Updated™):
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APPENDIX CC: Instruction Set Manual

ADD Addition
31 25 24 20 19 15 14 2 11 7 6 0
funct? _ s funct3 cd opcode
0000000 000 0110011
7 5 5 3 5 7

Assembly Code Format: add rd, rsl, rs2

Description: Performs addition on the contents stored on source
register s/ and rs2 and stores the result onto destination
register rd.

SUB Subtraction
31 25 24 20 19 15 14 2 11 7 6 0
funct? _ s funct3 d opcode
0100000 000 0110011
7 5 5 3 5 7

Assembly Code Format: sub  rd, rsl, rs2
Description: Performs subtraction on the contents stored on source

register s/ and rs2 and stores the result onto destination

register rd.
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SLL Shift Left Logical
31 25 24 20 19 15 14 2 11 76 0
funct? _ s funct3 cd opcode
0000000 001 0110011
7 5 5 3 5 7

Assembly Code Format: sll rd, rsl, rs2

Description: Performs logical left shift on the register content stored
on source register 7s/ by a shift amount specified by the
lower 5 bits of register rs2 and stores the result onto
destination register rd. The shifted bits are replaced with
Os.

SLT Set Less Than
31 25 24 20 19 15 14 2 11 76 0
funct? _ s funct3 d opcode
0000000 010 0110011
7 5 5 3 5 7

Assembly Code Format: slt rd, rsl, rs2
Description: Performs signed comparison between contents of source

registers rs/ and rs2 and sets destination register 7d to 1

if rs1 is lesser than rs2, or O otherwise.
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SLTU Set Less Than Unsigned
31 25 24 20 19 15 14 2 11 7 6 0
funct? _ s funct3 cd opcode
0000000 011 0110011
7 5 5 3 5 7

Assembly Code Format: sltu  rd, rsl, rs2

Description: Performs unsigned comparison between contents of
source registers s/ and rs2 and sets destination register
rdto 1 if rsi is lesser than rs2, or 0 otherwise.

XOR Bitwise Logical Exclusive OR
31 25 24 20 19 15 14 2 11 7 6 0
funct? _ s funct3 d opcode
0000000 100 0110011
7 5 5 3 5 7

Assembly Code Format: Xor rsl,  r1s2
Description: Performs bitwise logical exclusive OR on the contents

of source register 7s/ and rs2 and writes the result to the

destination register rd.
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SRL Shift Right Logical
31 25 24 20 19 15 14 2 11 76 0
funct? _ s funct3 cd opcode
0000000 101 0110011
7 5 5 3 5 7

Assembly Code Format: srl rd, rsl, rs2

Description: Performs logical right shift on the register content stored
on source register 7s/ by a shift amount specified by the
lower 5 bits of register rs2 and stores the result onto
destination register rd. The shifted bits are replaced with
Os.

SRA Shift Right Arithmetic
31 25 24 20 19 15 14 2 11 76 0
funct? _ s funct3 d opcode
0100000 101 0110011
7 5 5 3 5 7

Assembly Code Format: sra rd, rsl, rs2
Description: Performs arithmetic right shift on the register content

stored on source register rs/ by a shift amount specified
by the lower 5 bits of register rs2 and stores the result
onto destination register rd. The shifted bits are replaced

with the sign bit.
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OR Bitwise Logical OR
31 25 24 20 19 15 14 2 11 7 6 0
funct? _ s funct3 cd opcode
0000000 110 0110011
7 5 5 3 5 7

Assembly Code Format: or rd, rsl, rs2

Description: Performs bitwise logical OR on the contents of source
register s/ and rs2 and writes the result to the
destination register rd.

AND Bitwise Logical AND
31 25 24 20 19 15 14 2 11 7 6 0
funct? _ s funct3 d opcode
0000000 111 0110011
7 5 5 3 5 7

Assembly Code Format: and rd, rsl, rs2
Description: Performs bitwise logical AND on the contents of source

register s/ and rs2 and writes the result to the

destination register rd.
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LB Load Byte
31 20 19 15 14 2 11 7 6 0
. . funct3 opcode
immediate rsl 000 rd 000001 1
12 5 3 5 7

Assembly Code Format: b rd, offset(rs1)

Description: Loads an 8-bit value from memory into destination
register 7d. The 8-bit value loaded is sign-extended to
32-bits before storing into rd.

LH Load Halfword
31 20 19 15 14 2 11 7 6 0
. . funct3 opcode
immediate rsl 001 rd 0000011
12 5 3 5 7
Assembly Code Format: lh rd, offset(rs1)
Description: Loads a 16-bit value from memory into destination

register rd. The 16-bit value loaded is sign-extended to

32-bits before storing into rd.
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LW Load Word
31 20 19 15 14 2 11 76 0
. . funct3 opcode
immediate rsl 010 rd 000001 1
12 5 3 5 7
Assembly Code Format: Iw rd, offset(rs1)
Description: Loads a 32-bit value from memory into destination
register rd.
LBU Load Byte Unsigned
31 20 19 15 14 2 11 76 0
. . funct3 opcode
immediate rsl 100 rd 0000011
12 5 3 5 7
Assembly Code Format: Ibu rd, offset(rs1)
Description: Loads an 8-bit value from memory into destination

register rd. The 8-bit value loaded is zero-extended to

32-bits before storing into rd.
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LHU Load Halfword Unsigned
31 20 19 15 14 2 11 7 6 0
. . funct3 opcode
immediate rsl 101 rd 000001 1
12 5 3 5 7

Assembly Code Format: lhu  rd, offset(rs1)

Description: Loads a 16-bit value from memory into destination
register rd. The 16-bit value loaded is zero-extended to
32-bits before storing into rd.

ADDI Add Immediate
31 20 19 15 14 2 11 7 6 0
. . funct3 opcode
immediate rsl 000 rd 0010011
12 5 3 5 7
Assembly Code Format: addi rd, rsl, immediate
Description: Performs addition on the content stored on source

register s/ and a sign-extended 12-bit immediate and

stores the result onto destination register rd.
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SLLI
31 26 25 20 19 15 14 2 11 7 6 0
funct6 funct3 opcode
000000 |  Shamt sl 001 d 0110011
6 6 5 3 5 7
Assembly Code Format: slli rd, rsl, shamt
Description: Performs logical left shift on the register content stored
on source register »s/ by a shift amount specified by
shamt and stores the result onto destination register rd.
The shifted bits are replaced with Os.
SLTI Set Less Than Immediate
31 20 19 15 14 2 11 7 6 0
. . funct3 opcode
immediate rsl 010 rd 0010011
12 5 3 5 7
Assembly Code Format: slti rd, rsl, immediate
Description: Performs signed comparison between contents of source

registers s/ and a sign-extended 12-bit immediate and
sets destination register rd to 1 if rs/ is lesser than the

sign-extended immediate value, or 0 otherwise.
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SLTIU Set Less Than Immediate Unsigned
31 20 19 15 14 2 11 76 0
. . funct3 opcode
immediate rsl 011 rd 0010011
12 5 3 5 7
Assembly Code Format: sltiu  rd, rsl, immediate
Description: Performs unsigned comparison between contents of
source registers rs/ and a sign-extended 12-bit
immediate and sets destination register rd to 1 if rs/ is
lesser than the sign-extended immediate value, or 0
otherwise.
XORI Bitwise Logical Exclusive OR Immediate
31 20 19 15 14 2 11 76 0
. . funct3 opcode
immediate rsl 100 rd 0010011
12 5 3 5 7
Assembly Code Format: xori rd, rsl, immediate
Description: Performs bitwise logical exclusive or on the content of

source

register rs/ and a

sign-extended

12-bit

immediate and writes the result to the destination

register rd.
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SRLI Shift Right Logical Immediate
31 26 25 20 19 15 14 2 11 7 6 0
funct6 funct3 opcode
000000 |  Shamt sl 101 d 0110011
6 6 5 3 5 7

Assembly Code Format: srli rd, rsl, shamt

Description: Performs logical right shift on the register content stored
on source register »s/ by a shift amount specified by
shamt and stores the result onto destination register rd.
The shifted bits are replaced with Os.

SRAI Shift Right Arithmetic Immediate
31 26 25 20 19 15 14 2 11 7 6 0
funct6 funct3 opcode
010000 shamt sl 101 d 0110011
6 6 5 3 5 7

Assembly Code Format: srai  rd, rsl,  shamt
Description: Performs arithmetic right shift on the register content

stored on source register rs/ by a shift amount specified
by shamt and stores the result onto destination register

rd. The shifted bits are replaced with sign bit.
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ORI Bitwise Logical OR Immediate
31 20 19 15 14 2 11 7 6 0
. . funct3 opcode
immediate rsl 110 rd 0010011
12 5 3 5 7
Assembly Code Format: ori rd, rsl, immediate
Description: Performs bitwise logical or on the content of source
register s/ and a sign-extended 12-bit immediate and
writes the result to the destination register rd.
ANDI Bitwise Logical AND Immediate
31 20 19 15 14 2 11 7 6 0
. . funct3 opcode
immediate rsl 111 rd 0010011
12 5 3 5 7
Assembly Code Format: andi rd, rsl, immediate
Description: Performs bitwise logical and on the content of source

register s/ and a sign-extended 12-bit immediate and

writes the result to the destination register rd.
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JALR Jump and Link Register
31 20 19 15 14 2 11 7 6 0
. . funct3 opcode
immediate rsl 000 rd 1100111
12 5 3 5 7

Assembly Code Format: jalr  rd, offset(rs1)

Description: Performs indirect jump to a target address. The target
address is obtained by summing the offset to the content
of source register rs/ and setting the two least
significant bits of the result to zero. The address of the
subsequent instruction (program counter + 4) is stored
onto destination register rd.

SB Store Byte
31 25 24 20 19 15 14 2 11 7 6 0
immediate _ s funct3 immediate opcode
[11:5] 000 [4:0] 0110011
7 5 5 3 5 7
Assembly Code Format: sb rs2,  offset(rsl)
Description: Stores 8-bit value from the low bits of the source register

rs2 onto target memory address. Target memory address
is obtained by summing the offset to the content of

source register rs/.
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SH Store Halfword
31 25 24 20 19 15 14 2 11 7 6 0
immediate _ s funct3 immediate opcode
[11:5] 001 [4:0] 0110011
7 5 5 3 5 7

Assembly Code Format: sh rs2,  offset(rsl)

Description: Stores 16-bit value from the low bits of the source
register 752 onto target memory address. Target memory
address is obtained by summing the offset to the content
of source register rs/.

SW Store Word
31 25 24 20 19 15 14 2 11 7 6 0
immediate _ s funct3 immediate opcode
[11:5] 010 [4:0] 0110011
7 5 5 3 5 7
Assembly Code Format: SW rs2,  offset(rsl)
Description: Stores 32-bit value from the source register rs2 onto

target memory address. Target memory address is
obtained by summing the offset to the content of source

register rs1.
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BEQ Branch if Equal
31 30 25 24 20 19 15 14 12 11 8 7 6 0
immediate | immediate <2 s funct3 | immediate | immediate | opcode
[12] [10:5] 000 [4:1] [11] 1100011
1 6 5 5 3 4 1 7
Assembly Code Format: beq rsl, rs2, immediate
Description: Compares the contents of source register s/ and rs2. If
the contents of source registers are equal, branch is
executed to a target address formed by adding the offset
to the program counter.
BNE Branch if Not Equal
31 30 25 24 20 19 15 14 12 11 8 7 6 0
immediate | immediate <2 s funct3 | immediate | immediate | opcode
[12] [10:5] 001 [4:1] (1] 1100011
1 6 5 5 3 4 1 7
Assembly Code Format: bne rsl, rs2, immediate
Description: Compares the contents of source register s/ and rs2. If

the contents of source registers are not equal, branch is
executed to a target address formed by adding the offset

to the program counter.
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BLT Branch if Less Than
31 30 25 24 20 19 15 14 12 11 8 7 6 0
immediate | immediate ) s funct3 | immediate | immediate | opcode
[12] [10:5] S ¥ 100 [4:1] [11] 1100011
1 6 5 5 3 4 1 7
Assembly Code Format: blt rsl, rs2, immediate
Description: Compares the contents of source register s/ and rs2. If
the content rs/ is lesser than rs2, branch is executed to
a target address formed by adding the offset to the
program counter.
BGE Branch if Greater or Equal
31 30 25 24 20 19 15 14 12 11 8 7 6 0
immediate | immediate <2 s funct3 | immediate | immediate | opcode
[12] [10:5] 101 [4:1] [11] 1100011
1 6 5 5 3 4 1 7
Assembly Code Format: bge rsl, rs2, immediate
Description: Compares the contents of source register s/ and rs2. If

the content s/ is greater than or equal to rs2, branch is
executed to a target address formed by adding the offset

to the program counter.
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BLTU Branch if Less Than Unsigned
31 30 25 24 20 19 15 14 12 11 8 7 6 0
immediate | immediate ) s funct3 | immediate | immediate | opcode
[12] [10:5] S ¥ 110 [4:1] [11] 1100011
1 6 5 5 3 4 1 7
Assembly Code Format: bltu rsl, rs2, immediate
Description: Compares the unsigned contents of source register rs/
and rs2. If the content rs/ is lesser than »s2, branch is
executed to a target address formed by adding the offset
to the program counter.
BGEU Branch if Greater or Equal Unsigned
31 30 25 24 20 19 15 14 12 11 8 7 6 0
immediate | immediate <2 s funct3 | immediate | immediate | opcode
[12] [10:5] 111 [4:1] (1] 1100011
1 6 5 5 3 4 1 7
Assembly Code Format: bgeu rsl, rs2, immediate
Description: Compares the unsigned contents of source register rs/

and rs2. If the content s/ is greater than or equal to rs2,
branch is executed to a target address formed by adding

the offset to the program counter.



194

LUI Load Upper Immediate
31 2 11 76 0
. . opcode
immediate rd 0110111
20 5 7
Assembly Code Format: lui rd, immediate
Description: Places the 20-bit immediate in the high bits of

destination register rd and fill the lower 12-bit with Os.

JAL Jump and Link
31 30 21 20 19 12 11 76 0
immediate immediate immediate immediate d opcode
[20] [10:1] [11] [19:12] 1101111
1 10 1 8 5 7
Assembly Code Format: jal rd, immediate
Description: Performs indirect jump to a target address obtained by

summing the shifted offset to the program counter. The
address of the subsequent instruction (program counter

+ 4) is stored onto destination register rd.
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