VERIFICATION OF RISC-V DESIGN WITH UNIVERSAL VERIFICATION METHODOLOGY (UVM)

LIEW YOU HONG

A project report submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology Universiti Tunku Abdul Rahman

May 2022

DECLARATION

I hereby declare that this project report is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree or award at UTAR or other institutions.

Signature	:	lien
Name	:	Liew You Hong
ID No.	:	17AGB04120
Date	:	2022-05-09

APPROVAL FOR SUBMISSION

I certify that this project report entitled "VERIFICATION OF RISC-V DESIGN WITH UNIVERSAL VERIFICATION METHODOLOGY" was prepared by LIEW YOU HONG has met the required standard for submission in partial fulfilment of the requirements for the award of Bachelor of Engineering (Hons) Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor: Ir. Dr. Loh Siu Hong

Date : 2022/05/09

The copyright of this report belongs to the author under the terms of the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2022, Liew You Hong. All right reserved.

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of this project. I would like to express my gratitude to my research supervisor, Ir. Dr. Loh Siu Hong for his invaluable advice, guidance and his enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving parents and friends who have supported me and given me encouragement. I would also like to express my appreciation for the various challenges posed throughout the project that pushed me to greater heights. Lastly, I would like to express my gratitude to this project that served as a bridge, connecting me to the reality that is our society and industry, helping me realize the natures of human beings and my shortcomings.

Thank you.

Liew You Hong

VERIFICATION OF RISC-V DESIGN WITH UNIVERSAL VERIFICATION METHODLOGY (UVM)

ABSTRACT

Throughout the design life cycle of a processor, verification plays a crucial part in affirming the functionalities of the features implemented based on the computer architecture used. Functional verification increases the level of confidence in conformance of the processor design to its specification. In the case of a processor with advanced microarchitectural features implemented, a simulation-based approach is taken for its functional verification. More specifically, Universal Verification Methodology (UVM) is utilized for the verification methodology of the RISC-V processor implementation in this report. UVM provides a set of guidelines for the verification testbenches to be generated. With a well-defined testbench structure, UVM allows for a standardized approach towards verification works and verifications of systems to be performed consistently and uniformly, greatly improving verification quality and reusability of testbenches. For the verification approach, constrainedrandom verification and direct verification approaches will be taken to verify the functionality of the RISC-V processor. In the verification methodology, results validation has been utilized whereby the output data of the simulation model is compared with comparable output data from an existing system. For verification purpose, a reference model is developed and will be utilized for the results validation methodology mentioned. On verification simulations, discrepancies between the output data from the simulation models and the reference model are identified as design bugs in the system and debugs will be performed to fix the design bugs in the system. Through numerous test runs on the RISC-V processor implementation, the bugs on the RTL design of the processor designed are reduced to a minimum and the processor can function as specified by the computer architecture.

TABLE OF CONTENTS

DECLARATION	ii
APPROVAL FOR SUBMISSION	iii
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF SYMBOLS / ABBREVIATIONS	xix
LIST OF APPENDICES	XX

CHAPTER

11 D 1 1	1
1.1 Background	1
1.1.1 IC Design Flow	2
1.1.2 Verification and	Validation in IC Design Flow 4
1.2 Problem Statements	5
1.3 Aims and Objectives	6
1.4 Report Overview	6
2 LITERATURE REVIEW	7
2.1 RISC-V Computer Archi	tecture 7
2.1.1 RISC-V Base In	struction Set Architecture 8
2.1.2 RISC-V Compu	ter Organization 12
2.1.3 Datapath Flow	22

	2.1.4	Processor Pipe	elining			2	29
	2.1.5	Summarized	Review	for	RISC-V	Comput	er
	Archite	ecture				Δ	15
2.2	Functi	onal Verificatio	n			2	16
	2.2.1	SystemVerilo	og as Funct	tional	Verificatio	n Languag	ge
						Ζ	16
	2.2.2	Functional V	erification	Requi	rements	2	17
	2.2.3	Functional V	erification	Techr	ologies	Z	18
	2.2.4	Functional V	erification	Appro	aches	Ζ	19
	2.2.5	Summarized	Review for	r Func	tional Veri	fication 5	50
2.3	Unive	rsal Verification	Methodol	ogy		5	51
	2.3.1	UVM Testber	nch Archit	ecture		5	52
	2.3.2	UVM Compo	onent Class	5		5	53
	2.3.3	UVM Transa	ction Base	Class		5	56
MET	HODOL	OGY				5	57
3.1	Verifi	cation Flow				5	57
	3.1.1	Design Speci	fication			5	59
	3.1.2	Testbench Ar	chitecture	Plann	ing	5	59
	3.1.3	Functional V	erification	Envir	onment	e	50
	3.1.4	Reference Me	odel Devel	opmer	nt	e	50
	3.1.5	Simulation ar	nd Verifica	tion		e	51
	3.1.6	Verification A	Analysis			e	51
	3.1.7	Verification (Closure			e	52

3

3.2

3.3

Project Timeline

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

Verification Simulation Flow

Verification Specification

Instruction Memory Setup

Step Simulation

Scoreboard Checking

Coverage Collection

Instruction Code Generation

Directed Test Assembly Language Translation

viii

62

63

64

65

70

73

74

76

80

3.3.8	Mismatch Documentation	82
3.3.9	Macro Check	85

ix

119

4	RESUL	TS AND DISCUSSIONS	86
	4.1	Self-Checking Bug Detection	86
	4.2	Design Bug Detection	89
	4.3	Directed Verification	99
	4.4	Constrained-Random Verification	110
5	CONCI	LUSION AND RECOMMENDATIONS	116
	5.1	Conclusion	116
	5.2	Recommendations	117

APPENDICES	122

REFERENCES

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	RISC-V Base Instructions	8
2.2	RISC-V Base Instruction Encoding Formats	9
2.3	RISC-V Instruction Field Specifications of Different Instruction Types	10
2.4	Alternate Names and Functionality of Base RISC- V General Purpose Registers	11
2.5	Multiplexing of Instruction Address to be updated	13
2.6	Control Signal Values based on Instruction Type	16
2.7	Control Signals from the Control Unit	17
2.8	ALU Control Signal based on Instruction	18
2.9	Immediate Value Generated corresponding to Instruction Type	21
2.10	Forwarding Control Signal and their Description	39
3.1	Test Arguments for Verification Specification	64
4.1	Directed Verification Test Program	99
4.2	Constrained-Random Verification Test Case Specifications	110

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Integrated Circuit Design Flow	2
2.1	Program Counter Unit	13
2.2	Instruction Memory Unit	14
2.3	Register File Unit	15
2.4	Control Unit	16
2.5	ALU Control Unit	18
2.6	Arithemtic Logic Unit	19
2.7	Data Memory Unit	20
2.8	Immediate Generation Unit	21
2.9	Simple Datapath of the Base RISC-V Processor	22
2.10	Separation of Single-Cycle Datapath for Pipeline Implementation	30
2.11	Multiple Instructions executed with Pipeline Implementation	30
2.12	Pipelined Datapath	31

2.13	Pipelined Datapath with Control Elements integrated	32
2.14	Pipeline flows at full speed when Branch Prediction is correct	37
2.15	Pipeline flushes only when Branch Prediction is incorrect	37
2.16	Graphical Representation of Forwarding	38
2.17	Implementation of Data Forwarding on the Pipelined Datapath	39
2.18	Graphicaal Representation of Stalling and Forwarding	40
2.19	Implementation of Data Forwarding and Data Stalling on the Pipelined Datapath	41
2.20	Pipelined Datapath with Branch Comaprison forwarded to Instruction Decode Stage	44
2.21	UVM Testbench Architecture	52
3.1	Design Verification Flow	57
3.2	Revised Vereification Testbench Architecture	60
3.3	Gantt Chart for Phase 1 of Final Year Project	62
3.4	Gantt Chart for Phase 2 of Final Year Project	62
3.5	Verification Simulation Flow	63
3.6	Randomization of specified Instruction Type	66
3.7	Declaration of Randomized Instruction Fields	66

xii

3.8	Assigning valid funct3 field using randcase	67
3.9	Assigning valid funct7 field using randcase	67
3.10	Concatenation of Instruction Fields Generated into Instruction Codes	68
3.11	Storing of Instruction Code and Address onto ASM.txt and PROM.txt	68
3.12	Instruction Address and Instruction Code on ASM.txt	69
3.13	Segmented Instruction Code on PROM.txt	69
3.14	Assembly Language Instruction Codes in TEST.txt	70
3.15	Translation of Assembly Code Instruction Operation	70
3.16	Translation of Assembly Code First Operand	71
3.17	Translation of Assembly Code Second Operand	71
3.18	Translation of Assembly Code Third Operand	72
3.19	Concatenation of Translated Information to form valid Instruciton Codes	72
3.20	Loading of Instruction Code from PROM.txt initiated by UVM Driver component	73
3.21	Instruction Codes stored on Instruction Memory	73
3.22	Reference Model to Interface Data Transaction	74
3.23	Monitor Data Transaction Relaying	75
3.24	Register Read Address Self-Checking	76

3.25	Instruction Execution Output Self-Checking	76
3.26	Register Write Address and Data Self-Checking	77
3.27	Stalling on Load-use Cases Self-Checking	77
3.28	Flushing on Branch or Jump Instructions Self- Checking	78
3.29	Decoding of Instruction being executed	78
3.30	Display of Decoded Instruction Code on ModelSim Transcript	79
3.31	Comparison of Data between Reference Model and Design Under Test	79
3.32	Functional Coverage Cover Points	80
3.33	Functional Coverage Statistics for a Test Case Simulation	81
3.34	Mismatch Message generated on ModelSim Transcript	82
3.35	Pipeline Filling and Null Information on Pipeline Stages	82
3.36	Removing invalid data from Pipeline Register Data Record	83
3.37	Formatting and Logging of Information	83
3.38	Test Log Documentation on Mismatch Instruction	84
3.39	Macro Status Data Record	85
3.40	Macro Status at end of Test Log Document	85

4.1	Modification to Reference Unit ALU Source Code	87
4.2	Reference Model Instruction Functionality Bug Detection ModelSim Transcript Message	87
4.3	Modification to Reference Unit Hazard Detection Unit Flush Assertion Source Code	87
4.4	Reference Model Flush Nonassertion Bug Detection ModelSim Transcript Message	87
4.5	Modification to Reference Unit Hazard Detection Unit Stall Assertion Source Code	88
4.6	Reference Model Stall Nonassertion Bug Detection ModelSim Transcript Message	88
4.7	Modification to Design Under Test Program Counter Source Code	89
4.8	Program Counter Mismatch Detection ModelSim Transcript Message	89
4.9	Modification to Design Under Test Program Counter Target Address Branching Source Code	90
4.10	Program Counter Branch Target Address Mismatch Detection ModelSim Transcript Message	90
4.11	Modification to Design Under Test Program Counter Jump Register Target Address Source Code	90
4.12	Program Counter Jump Register Target Address Mismatch Detection ModelSim Transcript Message	

XV

91

4.13	Modification to Design Under Test Instruction Memory Source Code	91
4.14	Instruction Code Mismatch Detection ModelSim Transcript Message	91
4.15	Modification to Design Under Test Register File Source Code	92
4.16	System Register Read Register Address Mismatch Detection ModelSim Transcript Message	92
4.17	Modification to Design Under Test Immediate Generation Unit Source Code	92
4.18	Immediate Value Mismatch Detection ModelSim Transcript Message	93
4.19	Modification to Design Under Test Control Unit Load Instruction Control Signal Source Code	93
4.20	Control Signal Mismatch Detection ModelSim Transcript Message	93
4.21	Modification to Design Under Test ALU Source Code	94
4.22	ALU Output Mismatch Detection ModelSim Transcript Message	94
4.23	Modification to Design Under Test Forwarding Unit Source Code	94
4.24	Forwarded Operand Mismatch ModelSim Transcript Message	95
4.25	Modification to Design Under Test Control Unit Flush Control Source Code	95

4.26	Flush Nonassertion Mismatch ModelSim Transcript Message	95
4.27	Modification to Design Under Test Control Unit Stall Control Source Code	96
4.28	Stall Nonassertion Mismatch ModelSim Transcript Message	96
4.29	Modification to Design Under Test Data Memory Load Data Source Code	97
4.30	Load Data Mismatch ModelSim Transcript Message	97
4.31	Modification to Design Under Test Data Memory Store Data Source Code	98
4.32	Store Data Mismatch ModelSim Transcript Message	98
4.33	General-Purpose Register Signature Values	102
4.34	Memory Signature Values	102
4.35	Directed Verification Waveform Simulation Results Part 1	103
4.36	Directed Verification Waveform Simulation Results Part 2	104
4.37	Directed Verification Waveform Simulation Results Part 3	105
4.38	Directed Verification Waveform Simulation Results Part 4	106

xvii

4.39	Directed	Verification	Waveform	Simulation	
	Results Part	t 5			107
4.40	Directed	Verification	Waveform	Simulation	
	Results Part	t 6			108
4.41	Directed	Verification	Waveform	Simulation	
	Results Part	t 7			109
4.42	Simulation	Completion	Message on	ModelSim	
	Transcript				111
4.43	Constrained	l-Random	Verification	Functional	
	Coverage R	eport			112
4.44	Coverage R	eport for RIS	C-V Constrain	ed-Random	
	Verification	1			113
4.45	Focused E	xpression Co	ondition Cove	erage Miss	
	Analysis				115

LIST OF SYMBOLS / ABBREVIATIONS

ALU arithmetic logic unit ΕX Execution stage IC integrated circuit ID Instruction decode IF Instruction fetch IP intellectual property ISA instruction set architecture MEM Data memory access PROM Program Read-Only Memory RISC reduced instruction set computer RTL register transfer level **SVA** SystemVerilog assertion UVM universal verification methodology VIP verification intellectual property WB Write back

application binary interface

ABI

LIST OF APPENDICES

A	PP	EN	DIX
---	----	----	-----

TITLE

PAGE

А	Source Code of Reference Model – Top Module	122
В	Source Code of Reference Model – Program Counter	126
С	Source Code of Reference Model – Instruction Memory	127
D	Source Code of Reference Model – IF/ID Pipeline Register	128
Е	Source Code of Reference Model – Register File	129
F	Source Code of Reference Model – Control Unit	130
G	Source Code of Reference Model – Immediate Generate Unit	131
Н	Source Code of Reference Model – ID/EX Pipeline Register	132
Ι	Source Code of Reference Model – ALU Control Unit	133
J	Source Code of Reference Model – ALU	134
К	Source Code of Reference Model – Immediate Address Unit	135
L	Source Code of Reference Model – EX/MEM Pipeline Register	136
М	Source Code of Reference Model – Data Memory Unit	137
Ν	Source Code of Reference Model – MEM/WB Pipeline Register	138

0	Source Code of Reference Model – Forwarding Unit	139
Р	Source Code of Reference Model – Hazard Detection Unit	140
Q	Source Code of Parameter List	141
Р	Source Code of Verification Environment – UVM Testbench	144
S	Source Code of Verification Environment – UVM Test	145
Т	Source Code of Verification Environment – Interface	147
U	Source Code of Verification Environment – UVM Environment	149
V	Source Code of Verification Environment – UVM Agent	150
W	Source Code of Verification Environment – UVM Driver	151
Х	Source Code of Verification Environment – UVM Sequencer	152
Y	Source Code of Verification Environment – UVM Sequence Item	155
Ζ	Source Code of Verification Environment – UVM Monitor	161
AA	Source Code of Verification Environment – UVM Coverage	163
BB	Source Code of Verification Environment – UVM Scoreboard	165
CC	Instruction Set Manual	177

Chapter 1

INTRODUCTION

1.1 Background

Integrated circuits (ICs) are microchips with miniaturized electronic components such as transistors, resistors, and diodes fabricated into a single unit (Saint, 2020). These microchips can perform simple functions such as amplifying voltage to complex functions such as operating as a microprocessor for a complex electrical system. In today's life, nearly all electronic device uses ICs for its high reliability and efficiency along with its small size. The compact design of an IC allowed our modern electronic gadgets to be much smaller and capable of performing in one-millionth of a second.

In this era of rapid advancement whereby ICs continue to shrink in size and at the same time improving in processing power and speed, Moore's law, a prediction named after the cofounder of Intel, Gordon E. Moore is now truer than ever. According to Moore's Law, the number of transistors be fitted onto a microchip increases by twice of its amount every two years whereas the cost of computers is cut by half. With this rapid rate of growth in a microchip's speed and capability, the complexity and difficulty of IC design becomes even more prevalent than before. Back in 2013, the executive vice president and general manager of Intel's Technology Manufacturing Group, William Holt states that as the technology becomes smaller and smaller, the effort taken to design them becomes increasingly difficult and more effort needs to be taken to optimize the technology (Shah, 2013). The effort required may include introduction of new tools and innovations to compensate for this uprising challenge.

1.1.1 IC Design Flow

IC design is a very complex process that involves multiple stages. The following flowchart shows the typical design flow for an integrated circuit:

Figure 1.1: Integrated Circuit Design Flow.

In a typical design flow for an integrated circuit, the design flow begins with **chip specification**, whereby the features, microarchitecture, functionalities, and specifications of the chip are defined. These system specifications are often provided by the customers and are known as the high-level representation of the system. These specifications help the design team understand the specific requirements for the chip design (Vij, 2013).

The **architectural design** further defines the IC's required functionality and partitions them into various functional blocks. The relationship between each functional block for hardware allocation and scheduling is defined. Interface and signals between each functional block are also defined, and a time budget is assigned to each functional block (University of Texas at Dallas, 2011).

Functional design codes the functional blocks specified in the architectural specification into register transfer level (RTL) descriptions, including the specification of the interconnections between each block and the exact behaviour of the respective functional blocks. The design team works alongside the verification team and performs behavioural simulations to verify the functional and logical behaviour of the circuit. Through the verification performed, various test vectors are generated and utilized to verify the RTL's functional behavior (Chauhan, 2020).

In **circuit design**, the high-level functional descriptions of circuit elements are further defined and decomposed into low-level circuit elements through the process known as logic synthesis. RTL code elements are converted into pre-existing building blocks such as memory units and multiplexing units with the help of synthesis tools. Upon successful logic synthesis, a gate-level netlist that contains information on the gates and the connections between each gate is produced (Synopsys, n.d). The gatelevel netlist can also be known as the gate-level representation of the architectural specification of the system, providing insight into the physical implementation of the system.

Physical design converts the gate-level netlist into a manufacturable physical layout through several processes of optimization, which include floorplanning, partitioning, placement, clock tree synthesis, and routing. Floorplanning places relevant structures at particular locations with consideration of various constraints, requirements, and restrictions specified (Semiconductor Engineering, n.d.). Through effective and efficient partitioning, the complex design is divided into small blocks through a divide and conquer strategy, resulting in a system with better performance as well as lowering the production cost (Chen and Cheng, 2000). Placement determines the specific locations of the circuit modules in the netlist, optimizing the performance as well as timing delays introduced by interconnecting wires (Lavagno, Scheffer and Martin, eds., 2018). Clock tree synthesis involves the insertion of buffers to ensure an even distribution of clock signals to the sequential elements in the design to minimize

the clock skew and latency and ensure the proper timing closure is attained (Monteiro and Van Leuken, eds., 2010.). Lastly, based on logical connections between each cell, routing is performed on the design to create physical connections through metal interconnects and through the use of various routing algorithms, ensuring the best timing performance and adhering to the design rule.

Upon completion of the physical design, the physical layout of the system is obtained and physical verification is performed to validate the design functional behaviour. When the design layout is verified, the chip is then ready for **fabrication**. The layout data is converted into layers of masks which are then through the processes of deposition, diffusion, and removal, eventually transforming a silicon wafer into a prototype and tested. When the prototype passes the verifications performed, the design flow enters the last stage, where packaging and testing are performed. Wafers are mass-fabricated and converted into individual chips, packaged, and tested before delivering the chips to the customers (Vij, 2013).

1.1.2 Verification and Validation in IC Design Flow

In integrated circuit design, verification is crucial to a large-scale integrated circuit design life cycle. Verification aims to perform design functional correctness checking, detecting and debugging functional bugs in the system, eliminating human errors introduced in the design through various functional simulation tests (Ackland and Weste, 1981). Pre-silicon verification performs a functional check and identifies bugs before tape-out. In contrast, post-silicon validation captures bugs missed by pre-silicon verification through functional validation of the silicon manufactured system (Adir *et al.*, 2011). In complex designs, a significant challenge is posed to design validation. The most challenging validation problem is the affirmation of the correctness of the ever-increasing amount of microarchitectural features implemented in the RTL description (Shen and Abraham, 1999). In the functional verification of a design, coverage is responsible for measuring the verification progress, assisting design engineers in identifying and understanding the progress towards design completion

(Pizialim, 2006). For a general-purpose processor design, coverage of the functional verification performed should include all functionalities implemented through multiple stages of simulation, verification, and evaluation before tape-out (Gupta and Harakchand, 2014). As processor design and verification progress through the design flow, the cost of identifying and fixing bugs increases significantly, thereby making it advisable for earlier detection and fixing of the design bugs (Gupta and Harakchand, 2014).

1.2 Problem Statements

In designing the RTL code for a processor, human errors are often introduced to the system. Functional verifications are crucial in identifying and eliminating these design bugs in the system and ensuring the system conforms to the design specifications specified in the computer architecture utilized. However, due to the complexity of a processor with millions of test cases to be considered, functional verifications with complete coverage of the design functionality are difficult to be executed and often spans for a long duration throughout the design flow due to the necessity of designing the testbench and test environment from scratch. To ease the process of functional verification process.

For a standardized and reusable approach towards verification methodology, the guidelines and the complete testbench structure provided by Universal Verification Methodology (UVM) are to be utilized for the functional verification. By integrating UVM alongside functional verification of a RISC-V processor, a UVM testbench capable of performing test set generation, test driving, test monitoring, and test reporting can be constructed. Test set generation refers to the generation of random sets of instruction defined in the base set of the RISC instruction set. Test driving refers to the proper driving of the random sets of instructions generated to the design under test. Test monitoring refers to monitoring the output values from the design under test for validation purposes. Test reporting is to report the success or failure of a test run and provide sufficient information for debug procedures. In UVM, the standardized approach supports reusability by allowing UVM-standardized Intellectual Properties to be obtained from other sources and used in the user's environment. By designing components of functional verification in modular components such as sequence, the functional verification components, otherwise known as Verification Intellectual Property (VIP), can be reused for the verification on various levels and even across different projects.

1.3 Aims and Objectives

The objectives of the thesis are shown as following:

- i) To utilize Universal Verification Methodology (UVM) for the functional verification of a system.
- ii) To perform thorough verification of a RISC-V processor with pipeline implementation.

1.4 Report Overview

The following chapter will discuss the overall literature review regarding RISC-V computer architecture, SystemVerilog as functional verification language, and the Universal Verification Methodology. In Chapter 3, the methodology of this project which includes the process of development of the UVM functional verification environment and the functional verification of a RISC-V processor with pipeline implementation will be explained. Chapter 4 will showcase the various results obtained from the project and explain the results obtained. Lastly, Chapter 5 will conclude the project and provide insight into future improvements.

Chapter 2

LITERATURE REVIEW

2.1 **RISC-V** Computer Architecture

A computer architecture, also known as instruction set architecture (ISA), is the attributes of a computer system visible to a programmer and the system's characteristics that directly affect the logical execution of a program. The ISA of a computer system specifies the instruction format, instruction opcode, registers, instruction operations, data memory, and the effect of the instructions executed on the registers and memory alongside the control mechanism for the instruction execution.

Reduced Instruction Set Computer (RISC) is an instruction set architecture renowned for its performance and capability. It is capable of handling a wide range of applications, ranging from powering micro-power embedded devices up to highperformance cloud server microprocessors. Contrasting against most instruction set architecture, RISC is an open-source ISA, free to be used by anyone, thus allowing its use for the project. RISC provides a complete set of base ISA with minimal capabilities such as arithmetic, loads and stores, branch, whereby additional extensions are available for more advanced capabilities (Ledin, 2020). The minimal yet complete set of capabilities set a proper scope for the project, thus making the RISC-V base ISA a perfect choice.

2.1.1 RISC-V Base Instruction Set Architecture

The base RISC-V ISA utilizes a 32-bit system and features 32-bits instructions that perform **arithmetic**, **data transfer**, **logical**, **data-shifting**, **conditional branching**, and **unconditional branching** operations. The following table shows the base instructions and their corresponding assembly code instruction example:

Category	Instruction	Example	Meaning
Arithmetic	Add	add x5, x6, x7	x5 = x6 + x7
	Subtract	sub x5, x6, x7	x5 = x6 - x7
	Add immediate	addi x5, x6, 20	x5 = x6 + 20
Data Transfer	Load word	lw x5, 40(x6)	x5 = Memory [x6 + 40]
	Store word	sw x5, 40(x6)	Memory $[x6 + 40] = x5$
	Load halfword	lh x5, 40(x6)	x5 = Memory [x6 + 40]
	Load halfword, unsigned	lhu x5, 40(x6)	x5 = Memory [x6 + 40]
	Store halfword	sh x5, 40(x6)	Memory $[x6 + 40] = x5$
	Load byte	lb x5, 40(x6)	x5 = Memory [x6 + 40]
	Load byte, unsigned	lbu x5, 40(x6)	x5 = Memory [x6 + 40]
	Store byte	sb x5, 40(x6)	Memory $[x6 + 40] = x5$
	Load upper immediate	lui, x5, 0x12345	x5 = 0x12345000
Logical	And	and x5, x6, x7	x5 = x6 & x7
	Inclusive or	or x5, x6, x7	$\mathbf{x5} = \mathbf{x6} \mid \mathbf{x7}$
	Exclusive or	xor x5, x6, x7	$x5 = x6 \land x7$
	And immediate	andi x5, x6, 20	x5 = x6 & 20
	Inclusive or immediate	ori x5, x6, 20	$x5 = x6 \mid 20$
	Exclusive or immediate	xori x5, x6, 20	$\mathbf{x5} = \mathbf{x6} \land 20$
	Set if less than	slt x5, x6, x7	If $(x_{6} < x_{7})$, $x_{5} = 1$ otherwise $x_{5} = 0$
	Set if less than, unsigned	sltu x5, x6, x7	If $(x_{6} < x_{7})$, $x_{5} = 1$ otherwise $x_{5} = 0$
	Set if less than immediate	slti x5, x6, x7	If $(x_6 < x_7)$, $x_5 = 1$ otherwise $x_5 = 0$
	Set if less than immediate, unsigned	sltiu x5, x6, x7	If $(x_{6} < x_{7})$, $x_{5} = 1$ otherwise $x_{5} = 0$
Shift	Shift left logical	sll x5, x6, x7	x5 = x6 << x7
	Shift right logical	srl x5, x6, x7	x5 = x6 >> x7
	Shift right arithmetic	sra x5, x6, x7	x5 = x6 >>> x7
	Shift left logical immediate	slli x5, x6, 3	x5 = x6 << 3
	Shift right logical immediate	srli x5, x6, 3	x5 = x6 >> 3
	Shift right arithmetic immediate	srai x5, x6, 3	x5 = x6 >>> 3
Conditional Branch	Branch if equal	beq x5, x6, 100	if $(x5 = x6)$ go to PC + 100
	Branch if not equal	bne x5, x6, 100	if (x5 != x6) go to PC + 100
	Branch if greater or equal	bge x5, x6, 100	if $(x5 \ge x6)$ go to PC + 100
	Branch if greater or equal, unsigned	bgeu x5, x6, 100	if $(x5 \ge x6)$ go to PC + 100
	Branch if less than	blt x5, x6, 100	if $(x5 < x6)$ go to PC + 100
	Branch if less than, unsigned	bltu x5, x6, 100	if $(x5 < x6)$ go to PC + 100
Unconditional Branch	Jump and link	jal x1, 100	$x_1 = PC + 4$; go to PC +100
	Jump and link register	jalr x1, 100(x5)	x1 = PC + 4; go to $x5 + 100$

Table 2.1: RISC-V Base Instructions (Patterson and Hennessy, 2017).

These instructions can also be differentiated into several types based on the encoding formats used by the instructions, such as R-type (arithmetic and logical), I-type (immediate), S-type (store), SB-type (conditional branch), U-type (load upper immediate), and UJ-type (jump and link). The following table shows the type categorization for the instructions listed in the previous table:

Table 2.2: RISC-V Base Instruction Encoding Formats (Waterman and Asanovic,

2017).

Туре	Instruction	Opcode	Funct3	Funct6/7
R-type	add	0110011	000	0000000
	sub	0110011	000	0100000
	sll	0110011	001	0000000
	slt	0110011	010	0000000
	sltu	0110011	011	0000000
	xor	0110011	100	0000000
	srl	0110011	101	0000000
	sra	0110011	101	0100000
	or	0110011	110	0000000
	and	0110011	111	0000000
I-type	lb	0000011	000	n.a.
	lh	0000011	001	n.a.
	lw	0000011	010	n.a.
	lbu	0000011	100	n.a.
	lhu	0000011	101	n.a.
	addi	0010011	000	n.a.
	slli	0010011	001	000000
	slti	0010011	010	n.a.
	sltiu	0010011	011	n.a.
	xori	0010011	100	n.a.
	srli	0010011	101	000000
	srai	0010011	101	010000
	ori	0010011	110	n.a.
	andi	0010011	111	n.a.
	jalr	1100111	000	n.a.
S-type	sb	0100011	000	n.a.
	sh	0100011	001	n.a.
	SW	0100011	010	n.a.
SB-type	beq	1100011	000	n.a.
	bne	1100011	001	n.a.
	blt	1100011	100	n.a.
	bge	1100011	101	n.a.
	bltu	1100011	110	n.a.
	bgeu	1100011	111	n.a.
U-type	lui	0110111	n.a.	n.a.
UJ-type	jal	1101111	n.a.	n.a.

The instruction encoding format utilized is different for different types of instructions, whereby specific fields within the 32-bit instruction code may signify different information. The information specified within an instruction code may include the destination register address, the source register address, an immediate value or an offset value, and the opcode, funct3, and funct7 to specify the operation to be carried out. The following table shows the different encoding formats based on the instruction type for the RISC-V base instruction set:

Table 2.3: RISC-V Instruction Field Specifications of Different Instruction Types (Patterson and Hennessy, 2017).

Truno	Field						Commonto
гуре	7 bits	5 bits	5 bits	3 bits	5 bits	7 bits	Comments
R-type	funct7	rs2	rs1	funct3	rd	opcode	Arithmetic Instruction Format
I-type	immediate[11	:0]	rs1	funct3	rd	opcode	Loads/Immediate Arithmetic
S-type	immediate[11:5]	rs2	rs1	funct3	immediate[4:0]	opcode	Stores
SB-type	immediate[12,10:5]	rs2	rs1	funct3	immediate[4:1,11]	opcode	Conditional Branch Format
UJ-type	immediate[20,10:1,11,19:12]			rd	opcode	Unconditional Jump Format	
U-type	immediate[31:12]			rd	opcode	Upper Immediate Format	

The base RISC-V instruction set architecture also features 32 general-purpose registers in the system that are 32-bits wide and can be used without any restrictions, with the exception of the register x0 being physically grounded, returning zero whenever it is read. Each general-purpose register among the 32 registers has an alternate name that corresponds to their usage in a standard RISC-V application binary interface (ABI). Due to the interchangeability of the functionalities of the general-purpose registers, the ABI is crucial for dictating the roles of the registers (Ledin, 2020). The following table provides detailed information for the 32 general-purpose registers:

Register	Alternate Name	Alternate Functionality			
x0	zero	-			
x1	ra	Function return address			
x2	sp	Stack pointer			
x3	gp	Global data pointer			
x4	tp	Thread-local data pointer			
x5	t0				
x6	t1	Temporary storage			
x7	t2				
x8	fp	Frame pointer for function-local stack data			
AU	s0	Saved registers			
x9	s1	Suveriegisters			
x10	a0				
x11	al				
x12	a2	Arguments passed to functions Additional			
x13	a3	arguments are passed onto stack Function return			
x14	a4	values are stored in a0 and a1			
x15	a5				
x16	a6				
x17	a7				
x18	s2				
x19	s3				
x20	s4				
x21	s5				
x22	s6	Saved registers			
x23	s7	Suveriegisters			
x24	s8				
x25	s9				
x26	s10				
x27	s11				
x28	t3				
x29	t4	Temporary storage			
x30	t5	romporury storage			
x31	t6				

Table 2.4: Alternate Names and Functionality of Base RISC-V General Purpose

Registers.

2.1.2 **RISC-V** Computer Organization

Computer organization refers to the operational units and linkages that allow the architectural standards to be realized. Organizational characteristics refer to the hardware elements of a computer system such as the control signals, the interfaces between computer and peripherals, the memory technology employed. The architectural design of a computer system defines the operations to be performed by a computer and the fundamental principles applied in the creation and design of the datapath and its control system. In contrast, organizational design determines the implementation of various functions, whether through hardware or software implementation.

The two main logic elements utilized in computer systems are combinational elements and state elements. Combinational elements operate on data values and provide output data asynchronously. In contrast, state elements have internal storage, and data is only written into the storage when a proper clock signal is applied. State elements can also be described as sequential elements in which the output (next state) of the element depends on external inputs and the current state of the state element. An example of a combinational element within the RISC-V datapath would be the ALU unit, whereas a state element would be the general-purpose register used for storing useful information in the register file. For a standard clocking methodology, edge-triggered clocking is commonly used whereby data are only written when a positive or negative edge of a clock signal arrives at the sequential element. On every clock cycle, information from state elements is inputted to combinational elements, and the processed information is sent to a subsequent state element for storing. Signals need to arrive at subsequent state elements before the next clock cycle. Failing to do so will result in a loss of information.

The detailed explanation for the RISC-V computer organization will be divided into sections, each describing a specific functional block, otherwise known as a datapath element. These datapath elements work together to process an instruction, producing a desired outcome based on the instruction code supplied.

Figure 2.1: Program Counter Unit (Patterson and Hennessy, 2017).

The program counter is a simple 32-bit register that holds the instruction address, pointing towards the instruction to be executed by the microprocessor. The instruction address is sent to the instruction memory to fetch the corresponding instruction code from the program memory. On normal operations, the instruction address is incremented by 4 on each clock cycle. If a jump instruction is executed and the branch condition is fulfilled (**zero** flag is set), the program counter will be updated with a new effective target address specified by the sign-extended immediate value within the instruction. For a jump and link register instruction (JALR), the new effective target address is obtained through the sum of an offset and the content of a register both specified by the instruction. On the other hand, the effective target address of other jump or branch instructions are obtained from the immediate generate unit. The multiplexing of the new address to be updated onto the program counter is performed based on the **Branch** as well as the **JumpReg** control signals. The following table shows the new instruction address to be updated on the next cycle:

Control Signal	New Instruction Address			
Branch and Zero	Effective target address is the sign-extended and left-			
	shifted by 1 bit immediate value specified within			
	instruction code			
JumpReg	Effective target address is the sum of the register			
(JALR instructions)	content (rs1) and the sign-extended offset			
	(Instruction [31:20]) specified by the instruction			
Otherwise	Instruction address is incremented by 4			

Table 2.5: Multiplexing of Instruction Address to be updated.

2.1.2.2 Instruction Memory

Figure 2.2: Instruction Memory Unit (Patterson and Hennessy, 2017).

The instruction memory block is a read-only memory block that contains all of the program instruction codes. The instruction address obtained from the program counter is used to fetch a 32-bit instruction code. The 32-bit instruction code contains useful information such as the opcode, source and destination register address, function code, immediate value or offset depending on the instruction type. The fetched instruction code is sent to several functional blocks in the datapath for further action. For a standard memory technology, each address points towards an 8-bit register, storing a byte (8 bits) of data. Thus, a 32-bit instruction code would require access to 4 registers in the memory to fetch the complete instruction code.

Figure 2.3: Register File Unit (Patterson and Hennessy, 2017).

The register file for a base RISC-V ISA contains 32 general-purpose registers that are each 32 bits wide. These general-purpose registers can be read or written and are accessed based on the register address specified in the instruction code. On register read operation, one or two data from the registers are read and sent to the ALU for further operations. The write operations of the registers are performed on clock edges whereby processed data from the ALU is rewritten onto the destination register or information from other sources are written onto the register. The multiplexing of the information to be written onto the register is controlled by explicit control signals such as **RegWrite** and **LinkReg**, which will be discussed in the control unit section.
2.1.2.4 Control Unit

Figure 2.4: Control Unit (Patterson and Hennessy, 2017).

Control unit serves as the main decoding and control centre for the computer system. The fetched instruction code is decoded based on its opcode, and various control signals are subsequently adjusted to ensure proper functioning of the hardware. The control unit also outputs a 2-bit ALUOp control signal to the ALU control unit which will be further decoded to specify the instruction to be executed for the ALU. The following table shows the control signal values based on the instruction type decoded:

Instruction	JumpReg	LinkReg	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	Branch
R-type	0	0	0	0	1	0	0	0
Load	0	0	1	1	1	1	0	0
I-type	0	0	1	0	1	0	0	0
U-type		Ū	1	Ŭ	1	Ū	Ū	Ū
JALR	1	1	1	0	1	0	0	0
S-type	0	0	1	0	0	0	1	0
SB-type	0	0	0	0	0	0	0	1
UJ-type	0	1	0	0	1	0	0	0

Table 2.6: Control Signal Values based on Instruction Type.

The following table shows the various control signals utilized for controlling the hardware within the datapath and their corresponding description:

Control Signal	Description
RegWrite	Allows data on the Write Data input to be written onto the register
	specified by Write Register when asserted.
ALUSrc	Determines the source of second ALU operand. If asserted, the second
	ALU operand comes from the second register file output (Read Data 2).
	Otherwise, the second ALU operand is the sign-extended immediate
	specified in the instruction code.
Branch	Determines the instruction address to be updated for the next cycle. If
	asserted, and the condition is fulfilled (signified by assertion of the zero
	flag), the program counter is updated with the computed branch target
	address. Otherwise, the program counter is updated with the instruction
	address incremented by 4.
MemRead	Allows data memory contents designated by the memory address input to
	be read and placed onto the Read Data output when asserted.
MemWrite	Allows data memory contents designated by the memory address input to
	be replaced by the value placed on the Write Data input when asserted.
MemtoReg	Determines the source of the Write Data input to the register file. If
	asserted, the value fed to the register Write Data input is the data loaded
	from the data memory. Otherwise, the ALU output is written onto the
	register.
JumpReg	Determines the instruction address to be updated for the next cycle. If
	asserted, the program counter is updated with the target address formed
	by summing a register content and an offset specified in the instruction.
	Otherwise, the program counter is updated with the result determined
	from the branch control signal.
LinkReg	Allows return address (current instruction address + 4) to be utilized as
	input data for the Write Data input to the register when asserted. If de-
	asserted, the results from MemtoReg control signal is used as data for
	Write Data input.

Table 2.7: Control Signals from the Control Unit (Patterson and Hennessy, 2017).

2.1.2.5 ALU Control Unit

Figure 2.5: ALU Control Unit (Patterson and Hennessy, 2017).

ALU control unit is a functional unit that specifies the operation to be carried out by the arithmetic logic unit (ALU). From the **ALUOp** control signal received from the control unit as well as the funct3 and funct7 information specified in the instruction code, ALU control unit outputs a corresponding ALU control signal to the ALU. The following table shows the ALU control signal for several instructions:

Instruction	ALU Op	Operation	funct7	func t3	ALU Action	ALU Control Signal
lw	00	load word	-	-	add	0010
SW	00	store word	-	-	add	0010
add	10	add	0000000	000	add	0010
addi	10	add immediate	0000000	000	add	0010
sra	10	shift right arithmetic	0100000	101	shift right arithmetic	0110
blt	01	branch if less than	-	100	compare and set (<)	1101
beq	01	branch if not equal	-	001	compare and set (=)	1000

Table 2.8: ALU Control Signal based on Instruction.

Figure 2.6: Arithmetic Logic Unit (Patterson and Hennessy, 2017).

The Arithmetic Logic Unit (ALU) performs arithmetic or logical operation on the data inputs. Depending on the instruction code decoded, different operations are performed by the ALU on the input data. Depending on the instruction type, the input data may originate from the register file or immediate generate unit. The multiplexing of the input data is controlled by **ALUSrc** control signal. The control unit first decodes the instruction code into a 2-bit **ALUOp** control signal followed by further specification by the ALU control unit into a 4-bit **ALU control** signal. The 4-bit ALU control signal specifies the specific operation on the input data. The processed 32-bit data is outputted to the register file for update, or it may be sent to the data memory to be used as memory address. Aside from the 32-bit data, an additional flag known as **zero** is also asserted if the processed output is zero. This zero flag is utilized for conditional branch instructions to signify condition fulfilment. The zero flag is asserted when the condition specified in the branch instruction is fulfilled.

2.1.2.7 Data Memory Unit

Figure 2.7: Data Memory Unit (Patterson and Hennessy, 2017).

Data memory is also known as the system's random-access memory (RAM). Based on the standard memory technology, the memory block comes with 8-bit registers that can be used as temporary data storage. The register within the memory block is accessed by first providing a memory address. Then, based on the control signals, the register content in the memory block can be updated (**MemWrite**) or read and used to update the system registers (**MemRead**). The data memory can only perform read or write operations one at a time and never both simultaneously.

Figure 2.8: Immediate Generation Unit (Patterson and Hennessy, 2017).

The immediate generation unit constructs the immediate value or address from the instruction code based on the instruction's opcode. Depending on the instruction, the immediate value may be shifted left by 1 bit (Jump and Branch instructions), or sign-extended to 32 bits. The immediate value is sent to the arithmetic logic unit as data input for instructions that utilizes immediate values such as addi (add immediate). The following table shows the immediate value generated for different types of instructions:

Instruction Type	Immediate Value
Load	{20{Instruction [31]}, Instruction [31:20]}
Store	{20{Instruction [31]}, Instruction [31:25], Instruction [11:8]}
I-type	{20 {Instruction [31]}, Instruction [31:20]}
J-type	{19{Instruction [31]}, Instruction [31:20], 0}
SB-type	{19{Instruction [31]}, Instruction [31], Instruction [7], Instruction [30:25],
	Instruction [11:8] ,0}
UJ-type	{Instruction [31], Instruction [19:12], Instruction [20], Instruction [30:21]}
U-type	{Instruction [31:12], 12{0}}

Table 2.9: Immediate Value Generated corresponding to Instruction Type.

2.1.3 Datapath Flow

By interconnecting the functional units, the full datapath for the processor can be visualized as shown in the figure below:

Figure 2.9: Simple Datapath of the Base RISC-V Processor (Patterson and Hennessy, 2017).

The functional units shown in the datapath interact through the interconnections and carries out the instruction fetched from the instruction memory. The datapath flow may differ depending on the instruction executed. Some instructions, however, may exhibit similar datapath flow with only minor differences such as the operation performed by the ALU. The datapath flow of various types of instruction for a single-cycle processor implementation will be discussed in the following section.

R-type instructions comprise of arithmetic and logical operations that utilize registers as operands. Upon performing the specified operation, the result from the ALU is to be written into the register specified by the instruction. The following shows an example datapath flow for an *add* instruction:

- The program counter provides the instruction address which is utilized to access and fetch the corresponding instruction (add) from the instruction memory. The program counter is incremented by 4.
- The two registers (x6 and x7) specified in the instruction are accessed and their corresponding data are read and sent to ALU for processing. The control unit decodes the instruction opcode, funct7 and funct3 fields and generates the required control signal (RegWrite) to control the hardware in the datapath.
- The ALU performs the operation (add) specified by the ALU control unit on the data read from the registers (x6 and x7).
- 4. The ALU output is written onto the destination register specified (x3).

2.1.3.2 I-Type Instruction Datapath Flow

I-type instructions comprise of load and immediate arithmetic and logical operations. Instead of a second register as an operand, these instructions have an immediate value or offset as the second operand. After performing the specified operation, the destination register is to be updated with a new data from ALU or data memory unit depending on the type of instruction. If the instruction is a load instruction, the data loaded from the data memory is used as register write data. Otherwise, the register write data for immediate arithmetic and logical instruction would be the ALU output data. The following shows an example datapath flow for a *load* instruction:

- The program counter provides the instruction address which is utilized to access and fetch the corresponding instruction (load word) from the instruction memory. The program counter is incremented by 4.
- 2. The register specified (x5) is accessed and the data read is sent to the ALU for further processing. The immediate value offset (100) specified by the instruction is generated by the immediate generation unit and sent to the ALU as the second operand. The control unit decodes the instruction opcode and funct3 fields and generates the required control signal (MemRead, ALUSrc, MemtoReg) to control the hardware in the datapath.
- The ALU performs the operation (add) specified by the ALU control unit on the operands (x5 and 100). The resulting ALU output is utilized as the memory address for accessing the data memory unit.
- 4. The data stored on the data memory register specified by the memory address is read.
- 5. The data loaded from the data memory is written onto the destination register specified (x10).

S-type instruction consists of mainly store operations. Store operations stores the content of a general-purpose register onto the data memory unit, which requires MemWrite control signal to be set. The following example shows the datapath flow of a store instruction:

sb
$$x5$$
, $040(x6)$

- The program counter provides the instruction address which is utilized to access and fetch the corresponding instruction (store byte) from the instruction memory. The program counter is incremented by 4.
- 2. The two registers (x5 and x6) specified in the instruction are accessed. The content of the first source register (x6) is to be added to the immediate offset (40) specified by the instruction and generated by the immediate generation unit whereas the content of the second source register (x5) is to be stored onto the data memory. The control unit decodes the instruction opcode and funct3 fields and generates the required control signal (MemWrite, ALUSrc) to control the hardware in the datapath.
- The ALU performs the operation (add) specified by the ALU control unit on the operands (x6 and 40). The resulting ALU output is utilized as the memory address for accessing the data memory unit.
- The contents in the second source register (x5) are stored onto the data memory register specified by the memory address computed.

2.1.3.4 SB-Type Instruction Datapath Flow

Conditional branch operations are categorized as SB-type instructions. Depending on the conditions specified by the instruction, the contents of the registers accessed are compared. If the condition is fulfilled, a branch occurs and the program counter is updated with the PC-relative effective target address specified by the instruction. The following shows an example datapath flow of a conditional branch instruction:

- 1. The program counter provides the instruction address which is utilized to access and fetch the corresponding instruction (**branch if equal**) from the instruction memory.
- 2. The two registers (x20 and x22) specified in the instruction are accessed and their corresponding data are read and sent to ALU for processing. The immediate generation unit generates the effective target address by summing the immediate offset (100) specified by the instruction with the current program counter address. The control unit decodes the instruction opcode and funct3 fields and generates the required control signal (Branch) to control the hardware in the datapath.
- 3. The ALU performs the operation (compare) specified by the ALU control unit on the operands (x20 and x22). If the condition is true (x20 == x22), the result is set to zero and the zero flag is set. Otherwise the result is set to one and the zero flag is not set.
- If the branch condition is fulfilled, the effective target address (PC + 100) is updated into the program counter. Otherwise, the program counter is updated with the instruction address incremented by 4.

U-type instructions are special data transfer instructions that provides a 20-bit immediate value as an operand. The two instructions in this type are load upper immediate (lui) and add upper immediate to program counter (auipc) instructions. The following shows the datapath of a load upper immediate instruction:

- The program counter provides the instruction address which is utilized to access and fetch the corresponding instruction (load upper immediate) from the instruction memory. The program counter is incremented by 4.
- The immediate generation unit forms the data from the immediate value specified (12345000_{hex}). The control unit decodes the instruction opcode and funct3 fields and generates the required control signal (ALUSrc, RegWrite) to control the hardware in the datapath.
- 3. The ALU loads the immediate value (12345000_{hex}) as its output.
- The ALU output (12345000hex) is used as the register write data and the data is written into the destination register specified (x7).

Unconditional branch instructions are categorized as UJ-type instructions. In the latest base version of RISC-V ISA, the UJ-type instruction comprises of only jump and link instruction (jal). The following shows an example datapath flow for a jump and link instruction:

- 1. The program counter provides the instruction address which is utilized to access and fetch the corresponding instruction (jump and link) from the instruction memory.
- The immediate generation unit generates the effective target address by summing the immediate offset (100) specified by the instruction with the current program counter address. The control unit decodes the instruction opcode and funct3 fields and generates the required control signal (LinkReg, RegWrite) to control the hardware in the datapath.
- 3. The ALU output is set to zero and the zero flag is raised.
- 4. Instruction address of the instruction following the jump instruction (PC + 4) is utilized as the register write data and written into the register specified by the instruction (**x20**). The program counter is updated with the PC-relative effective target address computed by the immediate generation unit (PC + 100).

2.1.4 Processor Pipelining

For a single-cycle processor system, the datapath can only process one instruction at a time. The performance is then limited by load type instructions with the longest signal path, accessing up to five functional units (program counter, instruction memory, register file, ALU, data memory). The limitation imposed on the clock rate and the inefficiency regarding the usage of the functional units can be resolved through pipeline implementation which will be discussed in this section.

2.1.4.1 Pipeline Implementation

Pipelining aims to improve the efficiency and throughput of the processor data flow by overlapping instruction executions. Instruction execution in a computer system can be categorized into the following five stages:

Instruction fetch / IF:	Fetch instruction from memory.
Instruction decode / ID:	Read registers and decode the instruction. Generate the corresponding control signal to control the hardware. Also generate the immediate value or offset if necessary.
Execution or address calculation / EX:	Execute the operation or calculate the target address based on the control signal provided.
Data memory access / MEM:	Access an operand in data memory for read or write operation if necessary.
Writeback / WB:	Write result into register if necessary.

By separating the single-clock cycle datapath flow into five pipeline stages, the performance of the processor is improved by approximately four times. The following figure shows the concept of separating the datapath flow into several stages:

Figure 2.10: Separation of Single-Cycle Datapath for Pipeline Implementation (Patterson and Hennessy, 2017).

Pipelining segregates the different stages of instruction execution and utilize each of the stages to execute different instructions. This allows the processor to process multiple instructions at different stages at a given time, significantly increasing its throughput. The following graphical pipeline diagram showcases the instruction execution of different instructions at a given clock cycle:

Figure 2.11: Multiple Instructions executed with Pipeline Implementation (Patterson and Hennessy, 2017).

To retain the information of an instruction and pass it down the pipeline stages, several registers known as pipeline registers will be required to be placed between stages. By placing the pipeline registers between the pipeline stages, the information processed on a pipeline stage will be stored onto the pipeline register on the next cycle and utilized for processing on the subsequent pipeline stage. This effectively advances the execution of an instruction from one pipeline stage to another on each clock cycle. The naming convention for these pipeline registers are based on the pipeline stages separated by the pipeline registers. For an example, the pipeline register separating the instruction fetch (IF) and instruction decode (ID) stages is named as IF/ID pipeline registers:

Figure 2.12: Pipelined Datapath (Patterson and Hennessy, 2017).

As the control signals decoded from an instruction by the control unit on the instruction decode (ID) stage transcends multiple pipeline stages, the control signals decoded for a given instruction will have to be passed down the pipeline register to ensure the hardware control signals for a given instruction is passed down alongside the execution of the instruction. The following pipelined datapath shows the addition of control elements to the pipeline system and the passing of the control signals down the pipeline stages:

Figure 2.13: Pipelined Datapath with Control Elements integrated (Patterson and Hennessy, 2017).

The following section provides a thorough explanation of the operations at each pipeline stages:

- Instruction Fetch / IF: The program counter provides the instruction address which is utilized to access and fetch the corresponding instruction code from the instruction memory. Instruction address and instruction code are stored onto the IF/ID pipeline register.
- Instruction Decode / ID: The instruction code obtained from the IF/ID pipeline register is used to access registers (register file), generate immediate value (immediate generation unit), as well as generating control signals (control unit). The outputs from the functional units are stored onto the ID/EX pipeline register.

Execution / EX: The operands to be processed, alongside the control signal specifying the operation to be executed are obtained from the ID/EX pipeline register and sent to the ALU. The processed output is then stored onto the EX/MEM pipeline register.

- Memory Access / MEM: The register content to be stored for store operations and the memory address for data memory access are obtained from EX/MEM pipeline register. Data loaded from the data memory and the ALU output from EX/MEM pipeline register is written onto MEM/WB pipeline register.
- Write back / WB: The data to be written into the register file is obtained from the MEM/WB pipeline register and written into the register destination specified by the instruction stored on the MEM/WB pipeline register.

Implementing pipeline in RISC-V architecture is relatively straightforward than x86 computer architecture due to the fixed 32-bit length of the instructions. The few variants of instruction formats with the same fields for defining information, such as destination register address and source register addresses, also made it easy for pipeline implementation. Aside from that, the simplicity of the base instructions in which memory operands are only utilized in loads or stores allowed the use of the execution stage to calculate the memory address and immediately access the memory address in the following memory access stage.

Along with improving performance and efficiency, pipeline implementation can also bring complicated situations whereby the pipeline flow needs to be halted due to hardware limitations. These events are known as pipeline hazards, and there is a total of three different types of hazards: structural **hazards**, **data hazards**, and **control hazards**. The following section provides information for each hazard that needs to be considered for the pipeline implementation.

2.1.4.2 Structural Hazards

Structural hazards occur when there is multiple access to the same hardware by different instructions in the pipeline at a given time. Due to hardware limitations, hardware in the datapath can only be accessed by one instruction at a time, thus necessitating the halting of the datapath for multiple hardware accesses. This form of hazard can be seen in cases where Von-Neumann Architecture is employed, whereby the same memory unit is utilized for storing program instructions and data. When the memory unit is accessed for fetching instructions, memory access for memory write or memory read would be halted. However, this hazard can be resolved if Harvard Architecture is employed whereby separate memory units are utilized for storing program instructions and data. The instruction fetch and data memory access can then be performed simultaneously as each operation accesses different hardware.

2.1.4.3 Data Hazards

Data hazard occurs when there is data dependency between different instructions processed at different pipeline stages at a given time. With pipeline implementation, the datapath processes multiple instructions at a given time. In situations where there is a data dependency between the instructions in the pipeline datapath, the processed data needs to be forwarded to the corresponding pipeline stage to ensure the correct data is processed. Consider the following instruction segment:

and	x11,	x3,	x16
add	x12,	x5,	x11

From the instruction segment shown, the result of the *and* operation which is to be updated to the register x11 is to be immediately be used as an operand of the subsequent *add* instruction. To ensure the correct information is utilized for the *add* instruction, the pipeline will have to be halted for three clock cycles to ensure completion of execution of the *and* instruction up to the writeback stage. Alternatively, forwarding of the data from a later pipeline stage to the pipeline stage requiring the data can resolve the hazard through additional hardware.

In situations where the processed data arrives at a later time, pipeline stalling becomes necessary. These situations often arise from load instructions followed by instructions with data dependency on the data to be loaded from data memory, known as load-use cases. Consider the following example instruction segment:

> lw x11, 02a(x5) add x12, x5, x11

The updated data for the register x11 only arrives at MEM stage upon memory read by the *load word* instruction, which necessitates pipeline stalling for at least one cycle. Through the combination of pipeline stalling and data forwarding mechanisms, the pipeline stall can be minimized to only one cycle.

2.1.4.4 Control Hazards

When branch or jump instructions are introduced to the pipeline, the instructions following the branch or jump instructions may originate from a new address or remain the fetched instructions. In cases where branch or jump is executed, the fetched instructions are invalidated and need to be removed from the pipeline. This form of hazard is known as control hazards, also known as branch hazards. Consider the following instruction segment:

	add	x4,	x6,	x6
	beq	x1,	x0,	40
	lw	x3,	400)(x0)
	SW	x3,	400)(x0)
Branch Address:	or	x7,	x8,	x9

The decision of whether the instruction (lw) following the conditional branch instruction (beq) or the instruction from the new target address (or) is to be executed can only be known upon the condition checking by ALU on the execution pipeline stage (EX). If the branch condition is fulfilled, the subsequent instruction (lw) in the instruction decode (ID) stage and the following instruction (sw) in the instruction fetch (IF) stage would need to be removed. One method of overcoming this hazard is to stall whenever a conditional branch instruction is fetched from the instruction memory. This, however, would cause a significant reduction in the processor's performance, especially when there is a large number of conditional branch instructions in the program.

Alternatively, branch prediction can be utilized. By predicting conditional branches are untaken by default, pipeline flow will be at full speed if the prediction is correct. Only if the prediction is incorrect whereby the branches are taken, the pipeline flushes the incorrect information from the pipeline and fetches instructions from the new address. The following figures show the utilization of branch prediction as a solution to control hazard:

Figure 2.14: Pipeline flows at full speed when Branch Prediction is correct (Patterson and Hennessy, 2017).

Figure 2.15: Pipeline flushes only when Branch Prediction is incorrect (Patterson and Hennessy, 2017).

The branch prediction algorithm for can be coded in a sophisticated manner to further enhance the processor's overall performance. This would however, require an advanced implementation for the branch prediction.

2.1.4.5 Data Forwarding

Data forwarding refers to the passing of processed data from a later pipeline stages to the pipeline stage requiring the updated data. Through hardware implementation, data forwarding serves as the primary solution for data hazards. Considering the following instruction segment with data hazard:

and	x11,	x3,	x16
add	x12,	x5,	x11

When the *add* instruction enters the instruction decode (ID) stage, the information required for the execution (EX) stage would require the processed information from x11 register which is still in the execution (EX) stage. As the *and* instruction only updates the register x11 on writeback (WB) stage, the *add* instruction will utilize the outdated data for x11. Data forwarding forwards the output result of the *and* instruction from the EX/MEM pipeline register to the ALU for the execution (EX) stage of *add* instruction. The following figure provides graphical representation of the data forwarding process:

Figure 2.16: Graphical Representation of Forwarding (Patterson and Hennessy, 2017).

Through data forwarding, the data required can be forwarded, bypassing the memory access (MEM) and writeback (WB) pipeline stages. This allows the pipeline data flow to be correct and instructions to be executed using the updated information. The hardware implementation for the data forwarding unit can be done by checking

the source register addresses from the ID/EX pipeline register and the destination register address from both EX/MEM and MEM/WB pipeline registers. If the source register address at the ID/EX pipeline register matches the destination register of previous instructions, forwarding of data from either EX/MEM or MEM/WB pipeline registers can then be performed, sending the updated information from the respective pipeline to the ALU as input operands. Such implementation would also require additional multiplexing to be performed at the ALU input, as shown in the following figure:

Figure 2.17: Implementation of Data Forwarding on the Pipelined Datapath (Patterson and Hennessy, 2017).

Forwarding Control Signal	Value	Description
	00	Data from first source register is sent to ALU.
ForwardA	01	Data from MEM/WB pipeline register is forwarded to ALU.
	10	Data from EX/MEM pipeline register is forwarded to ALU.
	00	Data from ALUSrc multiplexing is sent to ALU.
ForwardB	01	Data from MEM/WB pipeline register is forwarded to ALU.
	10	Data from EX/MEM pipeline register is forwarded to ALU.

Table 2.10: Forwarding Control Signal and their Description.

2.1.4.6 Pipeline Stalling

Pipeline stalls are a crucial mechanism in pipelining due to the unpreventable circumstances whereby stalling is necessitated to ensure the correct data or instruction is processed. Upon stalling, writes to program counter and IF/ID, ID/EX and EX/MEM pipeline registers are halted whereas MEM/WB pipeline register continue executing the instructions they contain. Consider the following load-use case:

As the updated information of x11 register can only be obtained when the *load* word instruction reaches memory access (MEM) stage, the pipeline needs to be stalled for one cycle to accommodate for the address calculation (execution stage). The following figure shows the graphical representation of the stalling mechanism of the pipeline:

Figure 2.18: Graphical Representation of Stalling and Forwarding (Patterson and Hennessy, 2017).

Upon stalling, bubbles are inserted into the pipeline datapath, which represents no operation (nops) in terms of instruction execution. For RISC-V ISA, pipeline stalling halts the writing of new data onto program counter, IF/ID and ID/EX pipeline registers whereby the pipeline registers retain the old instruction until the stall signal is removed. The EX/MEM pipeline register is inserted with bubble by setting the instruction code and control signal to be written to zero. The hardware implementation of pipeline stall mechanism is done through a hazard detection unit. The hazard detection unit detects for load use cases by checking the MemRead control signal on the EX/MEM pipeline register and comparing the destination register address on the EX/MEM pipeline register against the source register addresses stored on ID/EX pipeline register. If data is to be read from the data memory unit onto the destination register (MemRead) and the destination register address matches the source register addresses, the hazard detection unit asserts the stall control signal. The information stored on the program counter, IF/ID, ID/EX and EX/MEM pipeline registers will be retained whereas MEM/WB pipeline register continue with the instruction execution. When the load instruction proceeds to the memory access (MEM) stage and stores the data loaded onto MEM/WB pipeline register, the updated information can then be forwarded to the execution stage for the subsequent instruction and the stall signal can then be removed. The following figure shows the datapath with the hazard detection unit implemented:

Figure 2.19: Implementation of Data Forwarding and Data Stalling on the Pipelined Datapath (Patterson and Hennessy, 2017).

2.1.4.7 Pipeline Flushing

Aside from data forwarding and data stalling, another key mechanism known as pipeline flushing is required for the proper functioning of branching in a pipelined datapath. Pipeline flushing resolves control hazards by flushing the invalidated instructions out of the pipeline registers when a branch condition is fulfilled, preventing the system from executing the invalidated instructions fetched.

Flushing of the information on the pipeline can be performed by loading zero values onto the pipeline registers. By loading zero values as instruction code and control signals, hardware components in other stages of the pipeline will perform no action. As the branch comparison result is only known at the execution stage (EX), the pipeline registers prior to the execution stage containing the invalidated instructions will be flushed. The pipeline flush mechanism can be implemented alongside the hazard detection unit whereby control signals from ID/EX pipeline register (**Branch**, **RegLink**) and the zero flag from ALU will trigger the flushing mechanism.

To provide a thorough understanding on the flushing mechanism, consider the following instruction segment:

lw	x3,	400)(x0)
add	x4,	x6,	x6
beq	x1,	x1,	40

- Clock Cycle 1: The branch instruction is fetched from the instruction memory and stored onto the IF/ID pipeline register on the next cycle.
- Clock Cycle 2: The information of the branch instruction is decoded and passed to the ID/EX pipeline register on the next cycle. The *add* instruction is fetched and stored onto IF/ID pipeline register on the next cycle.
- Clock Cycle 3: The information of branch instruction from ID/EX pipeline register are processed. As the branch condition is fulfilled, ALU sets the zero flag to HIGH. The hazard detection unit receives HIGH value for both **Branch** and **Zero**, thus asserting flush control signal. The information of *add* instruction is processed and passed onto ID/EX pipeline register on the next cycle whereas *lw* instruction is fetched and stored onto IF/ID pipeline register on the next cycle.
- Clock Cycle 4: The assertion of flush control signal loads the contents within IF/ID, ID/EX and EX/MEM pipeline registers with zero values to ensure no operation, removing the invalidated instructions. The program counter is updated with the new target effective address on the next cycle.
- Clock Cycle 5: Instruction from the new target address is fetched and stored onto IF/ID pipeline register.

From the description provided, the pipeline flush mechanism can resolve control hazards at the cost of two clock cycles, which can take a heavy toll on the processor performance if there are many conditional branch instructions in the program. Alternatively, the conditional branch comparison execution can be advanced to the instruction decode pipeline stage to further reduce the branch flush delay by one clock cycle. However, advancing the branch comparison would require data forwarding and pipeline stalling to be reworked and more complicated control. Nevertheless, reducing one clock cycle for branch execution would significantly improve the overall processor performance. The following figure shows the datapath implemented with the branch comparison forwarded to the instruction decode stage:

Figure 2.20: Pipelined Datapath with Branch Comparison forwarded to Instruction Decode Stage (Patterson and Hennessy, 2017).

2.1.5 Summarized Review for RISC-V Computer Architecture

From the detailed description for the RISC-V computer architecture provided by the textbook "Computer Organization and Design RISC-V Edition" published by Patterson and Hennessy, a well-established fundamental understanding of the datapath flow of RISC-V computer architecture with pipeline implementation is achieved. Despite not providing the full description for all the workings of a RISC-V system, such as examples for all the instructions within the RISC-V base instruction set and the complete RTL coding for the RISC-V processor, the textbook "Computer Organization and Design: RISC-V Edition" has done well in conveying information on the datapath flow of a RISC-V pipeline implementation with the detailed description for several examples.

Although the project's primary focus is the verification portion, a wellestablished understanding of the computer architecture is just as crucial as verifying the system. With a well-established understanding of how the system works, a thorough verification can be performed with the test engineer understanding the architecture flow and greatly aiding the debugging process. Aside from verifying the design under test with the fundamental knowledge on the datapath flow, the knowledge on the RISC-V computer architecture is also helpful for implementing a reference model to be compared with the design under test. A reference model is a model that produces the expected outcome in a simulation whereby the results from a design under verification will be compared to. Despite the nature of the reference model to be deemed as the model that provides the expected outputs, in the industry, the reference a well-established understanding of the computer architecture such that such cases whereby the reference model is at fault can be detected and fixed.

The detailed information obtained from the textbook has encouraged and provided sufficient information to build a reference model from scratch. As such, the information listed in this report is the main reference document for the architecture of the RISC-V reference model alongside the RISC-V instruction set architecture manual.

2.2 Functional Verification

Functional defects are often introduced to the system design during RTL code design. These functional defects can be caused by logical errors in the coding, miscommunication between the design team, complexity of the design, and more. Verification is a much-needed process in the design flow as it ensures these functional defects are captured and maintains the integrity of the design functionality with the design specifications. Capturing these functional defects at an earlier stage can help prevent the manufacture and deployment of functionally defective designs, losing many resources, money, and time (Kaeslin, 2014). Therefore, design verification is a much-emphasized process in product development whereby design verification often consumes as much as 80% of the total product development time (Wang, Chang and Cheng, K.T.T., 2009).

2.2.1 SystemVerilog as Functional Verification Language

Verilog is an industrial standard Hardware Description Language (HDL) used mainly to describe circuits and systems. In electronic design, Verilog is utilized for simple verification of digital circuits at RTL abstraction level, timing analysis, test analysis, and logic synthesis (Doulos, n.d.). Despite the capability to perform verification, Verilog has very limited features, which is insufficient to meet the verification requirement for today's standards. In today's design complexity, a tool better than Verilog needs to be utilized to verify systems with a complex design.

SystemVerilog, an extension of Verilog that supports object-oriented programming, allows for advanced functional verification constructs, further opening up possibilities for incorporating advanced functional verification methodologies such as universal verification methodology (UVM) and more. With the added capability to perform constrained random stimuli generation and incorporate object-oriented programming (OOP) in test environment construction, SystemVerilog is a much-developed functional verification language compared to Verilog (Chip Verify, n.d.).

2.2.2 Functional Verification Requirements

The basis of functional verification is to verify the features implemented in a design and capture all functional defects. With the increasing complexity of modern-day system designs, incorporating additional criteria towards the longevity of functional verification is much needed.

Reusability of the verification methodology is one of the highly-focused aspects of functional verification. Manual design of verification testbench for complex designs often consumes a lot of time. Incorporating reusability in verification testbench with object-oriented programming through reusable verification components can allow the verification environment to be designed much shorter and robustly. Verification components designed for reusability allow verification intellectual properties (VIP) to be reused across components, multiple chips, and in different organizations.

Automation is another critical aspect of design verification that can significantly enhance verification effectiveness. Automation of test case execution allows verification to be performed without manually driving the inputs to the design under test. Automation of result analysis through the implementation of self-checking testbench helps identify discrepancies between results obtained and the expected outcome, removing the requirement of manual inspection on the results obtained and significantly improving the efficiency of the verification process. Automation of functional coverage analysis helps track and measure the progress of functional verification by providing insights on the design features that have and have yet been tested.

Standardized coding guidelines for verification component and environment development is another crucial aspect for design verification. A standardized approach towards verification environment design ensures a consistent working design and aids with the debugging process of the verification environment (Singhal, 2015). The guidelines provided also allow codes to be written and maintained easily.

2.2.3 Functional Verification Technologies

Simulation-based and formal verification are the two main functional verification technologies used in the industry. Simulation-based verifications generate and drive stimuli to a design under test and a reference model. The outputs from both models are then obtained and compared. Discrepancies between the results obtained are categorized as functional defects within the design. On the other hand, formal verification does not require input vectors but instead is an output-driven form of verification. Formal verification first defines the output behaviour for the design and identifies the possible inputs and state conditions for failures.

The main difference between the two types of verification stated is the requirement of input vectors for the verification process. As aforementioned, simulation-based verification is **input-driven**, whereas formal verification is **output-driven**. In simulation-based verification, inputs are driven to the design under test one at a time, whereby a scoreboard checks for the correctness of the design behaviour. Formal verification utilizes constraints to identify the legal input behaviours. Through sufficient runtime, input patterns corresponding to the constraints set can be identified and verified by the scoreboard for behavioural correctness of the design (Oski Technology, 2020). Abstractly speaking, simulation-based verification checks for one output point at a time, whereas formal verification checks groups of points at a time. By performing verification in groups of points at a time, the set properties of the groups of points tested must be further verified against the design specifications, thus making formal verification less intuitive and harder to use (Lam, 2005.).

Due to the lack of intuitiveness, formal verification is applicable for designs of moderate complexity. As the project is concerned with verifying a processor system with a large number of blocks integrated, functional verification becomes unsuitable to be utilized. Therefore, the project will use **simulation-based verification** whereby input stimuli are generated and driven to the design. The results obtained from the design are subsequently compared with a reference model.

2.2.4 Functional Verification Approaches

For simulation-based verification, a total of five different verification approaches can be taken. Multiple approaches are often required for a complex design to achieve sufficient functional coverage.

Directed verification manually generates test stimulus and test cases and drives them to design under test for verification. As manual test stimulus generation is involved, this form of verification allows specific functionality of the design to be tested. It is, however, unsuitable and inefficient to be used as the sole approach taken for designs with many functionalities to be tested (Singhal, 2015). On the other hand, **constrained random verification** generates user-defined constrained-random stimuli through automation. This form of verification provides broad functional coverage for complex designs and is often used with directed verifications to further provide coverage for corner cases (Singhal, 2015).

Coverage-driven verification identifies holes in the verification progress. It provides insight on features of the design that has yet to be sufficiently verified, tracking the functional coverage progress of the verification process. Coverage is an essential metric in design verification, whereby most functional verifications are guided by the metrics provided by coverage-driven verification (Singhal, 2015). Assertion-based verification is a useful form of verification approach for pinpointing the sources of error and significantly reducing debugging time. Assertions are executable specifications that control the execution of passive code segments, providing controllability and observability to the design. However, the implementation of assertion-based verification poses challenges in increased coding and debugging complexity and customization limitation (Tech Design Forum, n.d.).

Emulation-based verification verifies the gate-level model or RTL representation of the design mapped onto an FPGA through emulation. Proper emulation of the system allows for a high-performance system for verification. However, the long time required for setup and compilation can pose challenges towards the time-to-market aspect of the design flow (Singhal, 2016).

2.2.5 Summarized Review for Functional Verification

From the literature review performed for the requirements, technologies, and approaches of functional verification, a general idea for the verification of a RISC-V pipelined processor implementation is established.

The verification environment is coded using SystemVerilog to utilize objectoriented programming to incorporate reusability in design verification. Other capabilities such as the randomization capability in SystemVerilog will also play a considerable role in constrained-random stimuli generation for functional verification. From the discussion of requirements for functional verification, the basis of the functional verification is to verify and validate the features implemented by design under test. When constructing the verification environment, additional criteria such as reusability in the verification components, automation in the process execution, and standardization of coding guidelines will also be considered. From the verification technologies discussed, simulation-based verification has been deemed to be preferable for the RISC-V processor design with many functionalities to be tested. Among the functional verification approaches discussed, a combination of verification approaches that include constrained-random, directed, and coverage-driven verification will be utilized. Using a variety of verification approaches, a broader functional coverage can be achieved.

2.3 Universal Verification Methodology

Universal Verification Methodology (UVM) is a standardized methodology for verification that emphasizes reusability. UVM provides a standardized approach towards designing verification environment that promotes reusability and compatibility. UVM is widely used in the industry. It dramatically helps companies develop a modular, reusable and scalable testbench structure, encouraging the growth of a verification intellectual property (VIP) marketplace (Francesconi, Rodriguez and Julian, 2014). Through the standardized approach provided by the UVM, a layer of abstraction is integrated into the verification environment, whereby each verification component has a specific role. The layer of abstraction, in turn, helps the verification testbench to be more efficiently coded and maintainable. The following section provides a detailed analysis of the verification components within the UVM verification environment and insight into the verification flow.
2.3.1 UVM Testbench Architecture

UVM provides class libraries that allow for generic utilities such as configuration databases, transaction library modelling, and component hierarchy. The generic utilities provided to the user allow for creating a dynamic testbench structure. The building blocks allow for the rapid development of well-constructed, reusable verification components and test environments. In a typical UVM verification environment, the verification environment can be built using readily available UVM classes. The UVM classes components have a well-established standard communication infrastructure, allowing the verification components to send data packets between each other and work synchronously (Chip Verify, n.d.). The following figure showcases an example of a testbench architecture:

Figure 2.21 UVM Testbench Architecture.

2.3.2 UVM Component Class

UVM components are verification components that construct the complete hierarchical verification environment for UVM. These verification components are used for processing UVM objects, passing transactional data from one component to another. The hierarchical environment of the components also allows each component to be configured for specific features and different test scenarios. The various components of the UVM component class will be described in this section.

2.3.2.1 UVM Testbench

In UVM, a typical testbench is the root node, otherwise known as the top-level module. which serves as a static container that holds and instantiates all the verification components, interfaces, and the design under test. It is responsible for invoking the test to be performed on the design.

2.3.2.2 UVM Test

The test component is the top-level verification component in the component hierarchy. It instantiates and configures the environment component, the next level down in the component hierarchy. It is also responsible for initiating stimuli generation by starting virtual sequences. A test case is the specification of a verification test whereby the stimuli and conditions for the test run are set to test out specific design features under the specified condition. Through the configuration made to the environment, the test component can configure the environment component to generate different test cases, therefore exhibiting the aspect of reusability in the verification environment.

2.3.2.3 UVM Environment

The environment component is a hierarchical component that groups and instantiates interrelated verification components such as the agent, scoreboard, and other components. It has several configuration parameters set by the test component, allowing the environment to be configured for different test scenarios.

2.3.2.4 UVM Agent

The agent component is another hierarchical component that encapsulates the verification components dealing with a specific design under test interface. These components include a sequencer, a driver, and a monitor. The verification components encapsulated are instantiated and interconnected through transaction-level modelling interfaces. Like the environment component, the agent component also has configuration options to enable or disable features or even set the agent component as an active driving component or a passive monitoring component.

2.3.2.5 UVM Sequencer

The sequencer is a verification component that generates sequence items as data transactions and sends them to the driver component for further execution. Upon receiving the request for sequence items made by the driver component, the sequencer initializes sequence item generation and sends them upon finishing the item generation.

2.3.2.6 UVM Driver

The driver is an active component within the verification environment that actively drives the sequence items obtained from the sequencer to the design under test via the interface. The driver pulls sequence items downstream on a test run by sending a request to the sequencer component to generate sequence items. The sequence items generated and received by the driver component are further mapped to signal level formats compatible with the interface to be driven to the design under test.

2.3.2.7 UVM Monitor

Monitor captures information from the design under test from the interface and converts the captured signals to transaction level sequence items. These transactions containing the captured information are then sent to other components such as the scoreboard for functionality checking. It can also perform internal processing such as coverage collection on the data received.

2.3.2.8 UVM Scoreboard

The scoreboard component is the verification component within the testbench that performs the functionality checking. From the data transactions received from the monitor component via an analysis port, the actual values from the design under test and the expected values are compared. One methodology often used for generating expected values to be compared is through the use of a reference model. The input stimuli to be driven to the design under test are also sent to the reference model. The obtained result for the given stimuli by both reference model and design under test can then be checked for functionality correctness. UVM transaction class contains objects that represent data within the verification environment.

2.3.3.1 UVM Sequence Items

Sequence items are the information or data transactions passed between verification components. They may also include the stimuli to be driven to or monitored from the design under test. On an abstract level, sequence items can be viewed as the communication data between the components in the UVM environment.

2.3.3.2 UVM Sequence

Sequences are a set of sequence items often initiated by the sequencer component to be driven to the driver component. The set of sequence items are assembled to form a stimuli for the verification process.

Chapter 3

METHODOLOGY

3.1 Verification Flow

Figure 3.1: Design Verification Flow.

A project flow has been created to provide a systematic approach towards the design verification project. A well-planned project flow can give complete coverage and encapsulate the tasks needed to be done.

For design verification, the first stage is to **capture the design specification**. Reference documents such as the textbook "Computer Organization and Design RISC-V Edition" and RISC-V's instruction set architecture manual are studied to understand the design's functioning properly. Documents and articles on UVM and design verification are also read to generate ideas on how the design verification should be done.

The project flow then separates into two parallel paths upon document study and research. One of the paths involves verification environment development and the other consists of reference model development. On the verification environment development path, the testbench architecture planning stage is performed to define the verification testbench architecture. As the project utilizes UVM for verification, a UVM testbench architecture is used for the design verification. The UVM components that constructs the UVM testbench architecture planned are then coded to construct the functional verification environment. On the other hand, reference model development is to develop a reference model based on the reference documents studied. The reference model provides the expected data for functionality checking of the design under test. Therefore, extensive verification needs to be performed to ensure its functionality correctness.

When both reference model and verification environment are constructed and verified, the project flow proceeds to the **simulation and verification** stage which comprises of the main design verification work. Simulation-based verification is performed to check the functionality correctness of the design under test. Bugs encountered during simulations are debugged, and the simulation runs are reiterated. The cycle of simulation and debugging are repeated until the design is bug-free.

Following the simulation-based verification stage, **verification analysis** is performed to determine the sufficiency and thoroughness of the design verification. Through a well-planned functional coverage plan, the functional coverage analysis helps identify the design functionalities verified and help provide insight on the overall design verification progress. When the functional verification of the design is sufficiently performed, **verification closure** can be performed to file the necessary documentation for future reference purposes.

3.1.1 Design Specification

Design verification requires extensive knowledge and understanding of the functionalities of the design to be verified. This project's subject to be verified is a RISC-V base instruction set architecture pipelined processor. As such, RISC-V base instruction set architecture and pipeline implementation need to be thoroughly studied and understood. The design principles in the reference documents utilized for the processor design studied must be aligned with the design principles used by the design team to ensure a mutual understanding of the architecture of the design. Discussion also needs to be held with the design team to determine the design functionalities to be implemented, providing information on design functionalities that require verification.

3.1.2 Testbench Architecture Planning

A well-planned testbench architecture can help create a reusable testbench architecture that caters to various functional verification scenarios and approaches. Providing configurability to the testbench components allows the aforementioned functional verification approaches such as constrained-random verification and directed verification to be implemented using the same testbench. As a reference model is to be utilized for the functionality checking, the UVM testbench architecture shown in **Figure 2.21** has been modified and is shown on the following page. The revised implementation allows synchronized operation between the reference model and the design under test. The synchronized operation allows the UVM monitor component to capture the synchronized output and send it to the UVM scoreboard component for further analysis.

Figure 3.2: Revised Verification Testbench Architecture.

3.1.3 Functional Verification Environment

The UVM components that construct the functional environment and the testbench architecture are developed. The verification components developed are derived from the UVM standardized class library and further defined based on design verification requirements. ModelSim has been selected as the platform for the code designing, simulation, and verification process due to its capability to handle system simulations and produce waveforms for detailed debugging.

3.1.4 Reference Model Development

Simulation-based verification for a complex system usually deploys a reference model. A reference model has been developed based on the reference documents on RISC-V base instruction set architecture studied. The reference model design is done based on the functionalities implemented by the design team to allow for synchronized operation between the reference model and the design under test. The functionality correctness of the reference model developed is verified using the verification testbench developed. The verifications provide insight into improvement opportunities on the functional verification environment and possible features to be added. The reference model development is completed when all agreed design functionalities are implemented and verified.

3.1.5 Simulation and Verification

The simulation-based verification is executed when the design prototype, reference model, and functional verification environment are constructed. Bugs identified in the verification models or discrepancies identified in the models are debugged. Communication is established with the design team to discuss the bugs identified. The debugged design provided by the design team is sent for regression test to ensure the debug fix does not introduce new bugs to the system. The process of simulation and debugging is repeated until the design is bug-free.

3.1.6 Verification Analysis

A functional coverage plan written for the design verification is utilized for functional coverage analysis. Functional coverage analysis provides a coverage metric that offers insight into design verification progress. Additional test cases are generated for the verification process if insufficient testing is performed. Directed verification is also utilized to verify corner cases. If additional features are added to the verification environment or the design, the reference model and testbench development, simulation, and verification stages are repeated. When sufficient verification is performed on the design, the design verification proceeds to the verification closure stage.

3.1.7 Verification Closure

The final stage of the design verification flow involves the documentation of the design verification, such as the functionalities tested and reports on the overall verification coverage to determine the robustness of the verification performed.

3.2 Project Timeline

Gantt charts have been created to schedule the tasks to be carried out for the project. The task scheduling allows the project to progress without unwanted delays and to complete on time. The following Gantt charts show the planning for the first phase and second phase of the project:

Final Year Project Phase 1		Week												
		2	3	4	5	6	7	8	9	10	11	12	13	14
Background Research														
Verification Environment Development							·							
Reference Model Development														
Simulation and Verification														
Documentation														
Presentation														

Figure 3.3: Gantt Chart for Phase 1 of Final Year Project.

Final Veer Dusiest Dhase 2		Week												
rmai real riojett rnase 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction Implementation														
Interface Design Under Test														
Verification and Debugging														
Directed Verification Testcase Writing														
Verification Documentation														
Report Writing														

Figure 3.4: Gantt Chart for Phase 2 of Final Year Project.

3.3 Verification Simulation Flow

This section provides a detailed explanation on the simulation-based verification flow.

Figure 3.5: Verification Simulation Flow.

3.3.1 Verification Specification

The verification environment alongside the reference model and the design under test is first compiled and checked for syntax errors. Through the use of command line arguments, specifications can be provided to configure the testbench components and the nature of the test case, allowing the verification environment to be reused for various test scenarios. The following table provides information on the specifications that can be inputted to modify the verification test:

Test Arguments	Description
+TESTLOG	Configures the verification environment to generate test log
+SEED= <val></val>	Specifies the test seed to be tested. The verification environment clones
	pre-existing test case or creates the test case using instruction code
	generation and stores the created test case onto repository. If
	unspecified, a default seed number of "0000" is used.
+INSTR= <val></val>	Specifies the amount of instructions to be generated for a given test
	case. If unspecified, a default amount of 500 instructions is generated.
+FORCE_GEN	Configures verification environment to generate new instruction set for
	specified test seeds, renewing pre-existing test case in the repository.
+INSTR_TYPE= <val></val>	Specifies the instruction types (R-type, SB-type) to be generated. If
	unspecified, all instruction types will be generated by default.
+BATCH_TEST	Configures the verification environment to execute multiple test cases
	specified in a seed file.
+CONT	Configures the verification environment to run all the test cases
	provided in a batch test. Instead of ending the simulation upon
	encountering mismatch, the mismatch and the test case failed are
	recorded onto a file named "FAILED.txt" for further debug.
+BATCH_SEED= <val></val>	Specifies the seed file containing the test cases for multiple test case
	run. If unspecified, a default file named "SEED.txt" is accessed.
+DIRECTED_TEST	Configures the verification environment to perform directed
	verification. The test instructions written in a file named "TEST.txt"
	are translated to machine language and driven to the test models for
	simulation,
+SKIP_MACRO_CHECK	Bypasses macro checking of stall and flush conditions.
+MACRO_OVERWRITE	Configures the verification environment to renew the historical values
	of stall and flush conditions executed for a test case.

Table 3.1: Test Arguments for Verification Specification.

3.3.2 Instruction Code Generation

Upon starting the simulation, the testbench first instantiates all the verification components and models. The models are first applied with a reset signal, halting them until the verification environment finishes setting up the test case. While the reset signal is asserted, the driver component sends requests for sequence generation, requesting for generation of sequence items which are the instruction codes to be sent to the models. Upon completion of instruction code generation, the instruction code transactions are stored externally onto files named "ASM.txt" and "PROM.txt". A data transaction signalling the completion of instruction generation will also be sent to the driver to inform the completion of instruction generation.

The methodology utilized ensures that the full program instructions are generated before the models start operating. In contrast to the traditional transactionto-transaction simulation, the availability of the entire program allows the pipelined processor to execute jump or branch instructions without issue. In the case of jump or branch instructions, the instruction code at the target address specified by the jump or branch instruction needs to be available to the instruction memory on the next clock cycle. In traditional transaction to transaction simulation, instruction codes are generated and driven to the models upon prompt, which may result in a bad test case when the models attempt to access an instruction code at an instruction address that is yet to be generated by the testbench.

The instruction code generation function represents the constrained-random verification for the design verification. The instruction codes are randomized but are constrained such that they remain as valid instruction codes that the processor models can process. Among the specifications that can be provided to the system, the "+INSTR_TYPE=" argument specifies the instruction type to be generated. When specific instruction types are provided, the corresponding opcode for the instruction type is added to a pool from which the instruction generator will randomly select an opcode. If no instruction type is specified, all instruction types will be added to the pool, allowing the generator to generate any valid instruction type. The following code segment shows how the randomization of specified instruction type is performed:

Figure 3.6: Randomization of specified Instruction Type.

For instruction fields requiring fewer constraints, the instruction field is specified as a randomized variable, allowing a randomized value within the specified range to be assigned to the instruction field. The following figure shows the declaration of randomized instruction fields and randomizer variables:

rand bit [`FUNCT3_WIDTH-1:0]	funct3	<pre>= \$urandom_range(7,0);</pre>
rand bit [`FUNCT7_WIDTH-1:0]	funct7	<pre>= \$urandom_range(127,0);</pre>
<pre>rand bit [`REG_ADDR_WIDTH-1:0]</pre>	rsl	<pre>= \$urandom_range(31,0);</pre>
<pre>rand bit [`REG_ADDR_WIDTH-1:0]</pre>	rs2	<pre>= \$urandom_range(31,0);</pre>
<pre>rand bit [`REG_ADDR_WIDTH-1:0]</pre>	rd	<pre>= \$urandom_range(31,1);</pre>

Figure 3.7: Declaration of Randomized Instruction Fields.

For the specification of funct3 and funct7 fields for the opcode generated from the valid pool, specific values are assigned through **randcase**, a randomized case statement that randomly selects one of its statements based on the probability assigned. The following shows how the funct3 and funct7 fields are selected based on the opcode generated and the randcase statement:

case(opcode)	
`R_OPCODE	: begin
	randcase
	1: funct3 = `ADD_FUNCT3;
	1: funct3 = `SLL FUNCT3;
	1: funct3 = `SLT_FUNCT3;
	1: funct3 = `SLTU FUNCT3;
	1: funct3 = `XOR FUNCT3;
	1: funct3 = `SR FUNCT3;
	1: funct3 = `OR FUNCT3;
	1: funct3 = `AND_FUNCT3;
	endcase
	end
LOAD OPCODE	: begin
_	randcase
	1: funct3 = `LB FUNCT3;
	1: funct3 = `LH FUNCT3;
	1: funct3 = `LW FUNCT3;
	1: funct3 = `LBU FUNCT3;
	1: funct3 = `LHU FUNCT3;
	endcase

Figure 3.8: Assigning valid funct3 field using randcase.

case(opcode)		
"R OPCODE	: begin	
-	case (funct3)	
	Case (rances)	
	ADD_FUNCI3,	
	`SR_FUNCT3: 1	begin
		randcase
		1: funct7 = `DEFAULT FUNCT7:
		1: funct7 = `ALT FUNCT7:
		n function - Ant_fonction,
		endcase
	end	
	default:	<pre>funct7 = `DEFAULT_FUNCT7;</pre>
	endcase	
	end	
T OPCODE	• begin	
I_OFCODE	. Degin	
	case (Iunct3)	
	`SLL_FUNCT3:	<pre>funct7 = `DEFAULT_FUNCT7;</pre>
	SR_FUNCT3:	begin
		randcase
		1: funct7 = `DEFAULT FUNCT7:
		1. funct7 = CALT FUNCT7.
		I: Iunco/ = Abi_rowci/;
		endcase
	end	
	endcase	
	end	
endcase		
endoase		

Figure 3.9: Assigning valid funct7 field using randcase.

Lastly, the instruction code is constructed using the instruction fields generated by concatenating the appropriate fields in the correct order based on the instruction type. An additional constraint is imposed for branch instructions to ensure a constrained branch range for better test case quality. The following code segment shows how the instruction code is formed from the instruction fields generated:

// Branch Add	ress Constraint
case (opcode)	
J OPCODE:	begin
_	<pre>[instr_code[31],instr_code[19:12],instr_code[20],instr_code[30:21]) = surandom_range(8,4) * INST_ADDR_SUM; rd = Surandom_range(31.0);</pre>
	<pre>instr code[11:0] = {rd, opcode}:</pre>
	end
'SB OPCODE:	begin
_	<pre>{instr_code[31],instr_code[7],instr_code[30:25],instr_code[11:8]} = \$urandom range(8,4) * INST ADDR SUM;</pre>
	instr_code[24:12] = {rs2,rs1,funct3};
	<pre>instr_code[6:0] = opcode;</pre>
	end
`JALR_OPCODE:	begin
	<pre>immediate_value = \$urandom_range(current_instr_number + 8, current_instr_number + 4) * `INST_ADDR_SUM; rsl = 0;</pre>
	<pre>instr_code = {immediate_value[11:0],rsl,funct3,rd,opcode};</pre>
	end
default: endcase	<pre>instr_code = {funct7,rs2,rs1,funct3,rd,opcode};</pre>

Figure 3.10: Concatenation of Instruction Fields into Instruction Codes.

The constructed instruction codes are then stored into ASM.txt and PROM.txt, as shown in the code segment below:

```
// Output instruction code and address
fh = $fopen("ASM.txt", "a+");
$fdisplay(fh, "%8h %8h", instr_addr, instr_code);
$fclose(fh);
// Output instruction code in bytes
fh = $fopen("PROM.txt", "a+");
$fdisplay(fh, "%2h %2h %2h", instr_code[31:24], instr_code[23:16], instr_code[15:8], instr_code[7:0]);
$fclose(fh);
```

Figure 3.11: Storing of Instruction Code and Address onto ASM.txt and PROM.txt.

This instruction generation process is reiterated until the specified number of generated instruction codes is achieved. The number of instruction codes to be generated can be specified in the command line through the argument "+INSTR=". The following figures show the instruction codes generated alongside their corresponding instruction address in "ASM.txt" and the segmented instruction codes in "PROM.txt":

00000000	ef28c113
00000004	02267067
00000008	419fdbb3
0000000c	ea07b083
00000010	d5615483
00000014	4b95ec03
00000018	8a9fec13
0000001c	674a8403
00000020	4c5c0683

Figure 3.12: Instruction Address and Instruction Code on ASM.txt.

64	8c	e2	93
02	19	70	63
93	89	fe	13
02	45	f0	63
c5	са	07	03
df	df	4a	83

Figure 3.13: Segmented Instruction Code on PROM.txt.

As instruction code generation for test cases may consume a lot of simulation time, test case simulations can become tedious if instruction code generation needs to be executed each time. Therefore, the text files containing the instruction codes generated are cloned onto the test repository. An additional feature whereby the system checks through the test repository for existing test cases is implemented. The verification environment checks through the test repository for pre-existing test cases on repeated test case simulation. If pre-existing test case is detected, the test case will be cloned, and instruction code generation will be bypassed, saving a lot of simulation time. If a pre-existing test case is not found, instruction code generation will then be executed, and the files generated will be cloned to the test repository. This added feature can also be bypassed, forcing the verification environment to execute the instruction code generation function and update the test repository through the command line argument "+FORCE_GEN".

A feature to translate manually written test cases from assembly language to machine language is introduced to the verification environment to incorporate directed verification into the environment. When the command line argument "+DIRECTED_TEST" is provided, instruction code written in assembly language on a text file named "TEST.txt" will be translated into machine language instruction codes. The following figure shows a sample program written in assembly language:

addi	x3,	x1,	3000
add	x2,	x1,	x3
and	x1,	x2,	x3
lui	x4,	1	

Figure 3.14: Assembly Language Instruction Codes in TEST.txt.

The following code segment showcases how the file is accessed for the instruction operation and compares it with a list of instructions defined. If a correct instruction operation is matched, the corresponding values for opcode, funct3, funct7 fields are assigned, and the instruction type is defined for encoding and operand processing purposes.

```
fh = $fopen("TEST.txt", "r");
if(fh == 0)
         'uvm fatal("ERROR", "Unable to access TEST.txt");
instr_addr = 0;
while(!$feof(fh))
                         begin
        shift_type = 0;
        store_type = 0;
        load_type = 0;
        dv_instr_type = "";
        assembly_code = "";
        code = $fscanf(fh,"%s",assembly_code);
        case(assembly_code)
         "add": begin
                          opcode = `R_OPCODE;
                          funct3 = `ADD_FUNCT3;
funct7 = `DEFAULT_FUNCT7;
                          dv instr type = "R";
                 end
         "sub": begin
                          opcode = `R_OPCODE;
                          funct3 = `ADD_FUNCT3;
funct7 = `ALT_FUNCT7;
                          dv_instr_type = "R";
                 end
         "sll": begin
                          opcode = `R OPCODE;
                          funct3 = `SLL_FUNCT3;
                          funct7 = `DEFAULT FUNCT7;
                          dv instr type = "R";
                 end
```

Figure 3.15: Translation of Assembly Code Instruction Operation.

Following the identification of the instruction operation, the first operand is subsequently obtained and processed for its information before the processed information is placed into the correct field based on the instruction type currently being executed. The following code segment shows how the first, second, and third operands are accessed, processed, and placed into the correct instruction fields:

```
code = $fscanf(fh,"%s",operand);
min_range = -1;
for(int i = 0; i < operand.len(); i++) begin</pre>
        case(operand[i])
        "x":
                continue;
        n n.
                continue:
        ", ":
              max_range = i - 1;
        default:begin
                        if(min range < 0)
                                min_range = i;
                end
        endcase
end
operand = operand.substr(min_range,max_range);
if(dv_instr_type == "S")
       rs2 = operand.atoi();
else if (dv_instr_type == "B")
       rsl = operand.atoi();
else
        rd = operand.atoi();
```

Figure 3.16: Translation of Assembly Code First Operand.

Figure 3.17: Translation of Assembly Code Second Operand.

Figure 3.18: Translation of Assembly Code Third Operand.

After performing translation for all the operands, the information obtained is concatenated into a valid instruction and stored externally onto "ASM.txt" and "PROM.txt". The translation process is repeated for all the instructions contained in the test file. The following figure shows the concatenation of the instructions:

<pre>case(dv_instr_type)</pre>
<pre>"R": instr_code = {funct7, rs2, rs1, funct3, rd, opcode};</pre>
<pre>"I": instr_code = {immediate_value[11:0],rs1,funct3,rd,opcode};</pre>
"S": instr_code = {immediate_value[11:5],rs2,rs1,funct3,
<pre>immediate_value[4:0],opcode};</pre>
<pre>"B": instr_code = {immediate_value[12],immediate_value[10:5],</pre>
rs2,rs1,funct3,immediate_value[4:1],immediate_value[11],opcode};
"J": instr_code = {immediate_value[20],immediate_value[10:1],immediate_value[11],
<pre>immediate_value[19:12],rd,opcode};</pre>
"U": instr_code = {immediate_value[19:0],rd,opcode};
endcase
<pre>f_out = \$fopen("ASM.txt", "a+");</pre>
<pre>\$fdisplay(f_out, "%8h %8h", instr_addr, instr_code);</pre>
<pre>\$fclose(f_out);</pre>
<pre>f_out = \$fopen("PROM.txt","a+");</pre>
<pre>\$fdisplay(f_out, "%2h %2h %2h %2h", instr_code[31:24], instr_code[23:16], instr_code[15:8], instr_code[7:0]);</pre>
<pre>\$fclose(f_out);</pre>
instr addr = instr addr + 4:

Figure 3.19: Concatenation of Translated Information into Instruction Code.

3.3.4 Instruction Memory Setup

Upon completing generation of instructions, cloning of test case, or translation of assembly language, a transaction signal is sent to the UVM driver component signifying the instruction codes are ready to be loaded onto the instruction memory. The driver component then loads the instruction code from PROM.txt onto the instruction memory of the models through the top testbench module. The following code segment shows how instruction codes are loaded onto a dynamic memory structure from the driver component:

Figure 3.20: Loading of Instruction Code from PROM.txt initiated by UVM Driver component.

Based on standard memory technology, each memory register stores a byte of data. For a 32-bit RISC-V processor, each instruction is 32 bits (4 bytes) long and is stored in 4 memory registers. The following figure shows the instruction codes stored on the memory structure in the instruction memory unit:

00000000	bb	80	81	93
00000004	00	30	81	33
80000008	00	31	70	b3
000000c	00	00	12	37
00000010	40	12	00	b3
00000014	00	c2	52	93

Figure 3.21: Instructions Codes stored on Instruction Memory.

After loading the instruction codes onto the models, the test run is initiated by the test component by releasing the reset signal.

3.3.5 Step Simulation

The simulation runs in steps, allowing the UVM monitor to capture the outputs of the models at every clock cycle and send the transactional data received to the scoreboard and coverage component for functionality checking and coverage checking respectively. The synchronous functioning of the pipeline models allows outputs to be compared against each other on every cycle. The following code segment shows the transaction of model outputs to the interface for design verification:

Figure 3.22: Reference Model to Interface Data Transaction.

The UVM monitor component then captures the information sent to the interface. The UVM monitor component converts the signals captured to transactional data and exports them to the scoreboard and coverage components. The following code segment shows the UVM monitor component capturing the signals from the models and exporting them to other components via an analysis port:

virtual task run phase (uvm phase phase) .	
super run phase (phase) :	
forever begin	
A (interface instance ch):	
e(interface_instance.cb);	ogin
II (Interface_Instance.monitor_start) b	egin
// DUT Transactions	
// Dol iransactions	- intenface instance dut instal
transaction.dut_mstr	<pre>= interface_instance.dut_instr; = interface_instance.dut_no.</pre>
transaction.dut_pc	= interface_instance.dut_pc;
transaction.dut_reg_read_addr_1	= interface_instance.dut_reg_read_addr_1;
transaction.dut_reg_read_addr_2	= interface_instance.dut_reg_read_addr_2;
transaction.dut_reg_read_data_1	= interface_instance.dut_reg_read_data_1;
transaction.dut_reg_read_data_2	= interface_instance.dut_reg_read_data_2;
transaction.dut_imm_vai	= interface_instance.dut_imm_val;
transaction.dut_alu_output	= interface_instance.dut_alu_output;
transaction.dut_aiu_zero	= interface_instance.dut_alu_zero;
transaction.dut_cti_op	= interface_instance.dut_ctl_op;
transaction.dut_reg_write_addr	<pre>= interface_instance.dut_reg_write_addr; interface_instance.dut_reg_write_addr;</pre>
transaction.dut_reg_write_data	= interface_instance.dut_reg_write_data;
transaction.dut_mem_write_data	= interface_instance.dut_mem_write_data;
transaction.dut_mem_addr	<pre>= interface_instance.dut_mem_addr;</pre>
// REF Transactions	
transaction.instr_addr	= interface_instance.instr_addr;
transaction.ref_instr	= interface_instance.ref_instr;
transaction.ref_pc	= interface_instance.ref_pc;
transaction.ref_reg_read_addr_1	<pre>= interface_instance.ref_reg_read_addr_l;</pre>
transaction.rei_reg_read_addr_2	= interface_instance.ref_reg_read_addr_2;
transaction.ref_reg_read_data_1	<pre>= interface_instance.ref_reg_read_data_1;</pre>
transaction.ref_reg_read_data_2	= interface_instance.ref_reg_read_data_2;
transaction.ref_imm_val	<pre>= interface_instance.ref_imm_val;</pre>
transaction.ref_alu_output	= interface_instance.ref_alu_output;
transaction.ref_alu_zero	= interface_instance.ref_alu_zero;
transaction.rei_ctl_op	= interface_instance.ref_ctl_op;
transaction.ref_reg_write_addr	<pre>= interface_instance.ref_reg_write_addr;</pre>
transaction.ref_reg_write_data	<pre>= interface_instance.ref_reg_write_data;</pre>
transaction.ref_reg_write	<pre>= interface_instance.ref_reg_write;</pre>
transaction.ref_mem_write_data	<pre>= interface_instance.ref_mem_write_data;</pre>
transaction.ref_mem_addr	<pre>= interface_instance.ref_mem_addr;</pre>
transaction.ref_mem_read	= interface_instance.ref_mem_read;
transaction.ref_mem_write	<pre>= interface_instance.ref_mem_write;</pre>
transaction.ref_stall	<pre>= interface_instance.ref_stall;</pre>
transaction.ref_flush	<pre>= interface_instance.ref_flush;</pre>
transaction.ref_jump_link	<pre>= interface_instance.ref_jump_link;</pre>
transaction.ref_ID_instr	<pre>= interface_instance.ref_ID_instr;</pre>
transaction.ref_EX_instr	<pre>= interface_instance.ref_EX_instr;</pre>
transaction.ref_EX_pc	<pre>= interface_instance.ref_EX_pc;</pre>
transaction.end_of_test	<pre>= interface_instance.end_of_test;</pre>
<pre>// Write to analysis port (score)</pre>	epoard and coverage checker)
analysis_port.write(transaction);

Figure 3.23: Monitor Data Transaction Relaying.

3.3.6 Scoreboard Checking

The UVM scoreboard component performs the primary functionality correctness checking for the models in the verification environment. Signals obtained from the reference model and design under test are compared for discrepancies. The reference model undergoes partial self-checking testing before the model result comparison. Specific outputs such as the source register address, ALU output, and destination register address and data are checked. Self-checking ensures the functional correctness of the reference model, which provides more confidence in the comparison results produced. The following code segment shows the self-checking mechanism implemented:

Figure 3.24: Register Read Address Self-Checking.

Figure 3.25: Instruction Execution Output Self-Checking.

Figure 3.26: Register Write Address and Data Self-Checking.

Aside from checking on specific outputs of the reference model, self-checking also checks for assertions of stall and flush control signals. The stall assertion checking is performed on detecting load-use cases, whereas flush assertion checking is performed on detecting branch condition fulfilment or jump instruction. The following code segments showcase the self-checking mechanism for stall and flush control signal assertions:

```
// Check for Load-use case and Stall assertion
if(load flag ss
   (transaction.ref_ID_instr[`RS2_ADDR_HI:`RS2_ADDR_LO] == transaction.ref_EX_instr[`RD_ADDR_HI:`RD_ADDR_LO] ||
transaction.ref_ID_instr[`RS1_ADDR_HI:`RS1_ADDR_LO] == transaction.ref_EX_instr[`RD_ADDR_HI:`RD_ADDR_LO]) $6
   transaction.ref_EX_instr[`RD_ADDR_HI:`RD_ADDR_LO] != 0)
         load_use_flag = 1;
else
         load_use_flag = 0;
// ID Stage Load Detection
if(transaction.ref_ID_instr[`OPCODE_HI:`OPCODE_LO] == `LOAD_OPCODE)
         load flag = 1;
else
         load_flag = 0;
// Check for Stall Combinational Output upon EX Stage Load ID Stage Use
if(load_use_flag) begin
         if(!transaction.ref stall)
                    uvm fatal ("REF MODEL ERROR", "Load-use Case Not Stalled")
         else
                  load use flag = 0;
end
```

Figure 3.27: Stalling on Load-use Cases Self-Checking.

Figure 3.28: Flushing on Branch or Jump Instructions Self-Checking.

After self-checking, the instruction received is decoded to assembly language for user reference and instruction validity checking. The decoded instructions are also stored externally on a file for log documentation purposes. The following code segment shows part of the instruction code decoding process:

Figure 3.29: Decoding of Instruction Code being executed.

The decoded instruction will also be displayed to the user on the transcript, as shown in the figure below:

[SCBD]	addi	х	3,	x 1,	8ddx0
[SCBD]	add	х	2,	x 1,	x 3
[SCBD]	and	х	1,	x 2,	x 3
[SCBD]	lui	х	4,	0x000	01
[SCBD]	sub	х	1,	x 4,	x 1
[SCBD]	srli	х	5,	x4,	12

Figure 3.30: Display of Decoded Instruction Code on ModelSim Transcript.

After performing a validity check on the instruction codes received, the information on each pipeline register is stored externally onto temporary text files, which will be accessed for test log documentation later. The information from the reference model and design under test are then compared. The following figure shows the storing and comparing of pipeline register values:

Figure 3.31: Comparison of Data between Reference Model and Design Under Test.

If any discrepancy is identified, the scoreboard asserts a mismatch flag and halts the test execution. The scoreboard will then perform the test log documentation process to capture information regarding the mismatch. If no discrepancies are found between the models, the scoreboard reiterates the checking of information received for every clock cycle until the end of the test execution.

3.3.7 Coverage Collection

The UVM coverage component has been integrated as part of the verification environment, allowing functional coverage analysis to be performed on the various test case executed. By obtaining the transaction data from the monitor component, the coverage component can perform coverage collection on the instructions being executed. A coverage plan is first written to specify the conditions to be captured for the coverage checking. The following code segment shows the conditions for functional coverage analysis:

covergi	roup	function	onal cov	er;		
-	option.per inst	ance = 1;	-			
	option.get inst	coverage = 1;				
	stall:	coverpoint	transa	ction.ref	stall {	
	flush:	coverpoint	transa	ction.ref	flush {	
	uncond jump:	coverpoint	transa	ction.ref	ID instr[`OPCODE HI:`OPCODE LO] {	
		bins	jal		{`J OPCODE};	
		bins	jalr	=	{ JALR OPCODE };	
		}	-			
	cond jumps:	coverpoint	{trans	action.ref	ID instr[`FUNCT3 HI:`FUNCT3 LO],	
	_		trans	action.ref	ID_instr[`OPCODE_HI:`OPCODE_LO]}	{
		bins	beq_	=	{ BEQ_CVR };	
		bins	bne_	=	{ BNE_CVR };	
		bins	blt_	=	{`BLT_CVR};	
		bins	bge_	=	{ `BGE_CVR } ;	
		bins	bltu_	=	{`BLTU_CVR};	
		bins	bgeu_	=	{`BGEU_CVR};	
		}				
	loads:	coverpoint	{trans	action.ref	_EX_instr[`FUNCT3_HI:`FUNCT3_L0],	
			trans	action.ref	EX_instr[`OPCODE_HI:`OPCODE_LO]}	{
		bins	lb_	=	{`LB_CVR};	
		bins	lh_	=	{`LH_CVR};	
		bins	lw_	=	{`LW_CVR};	
		bins	lbu_	=	{`LBU_CVR};	
		bins	lhu_	=	{`LHU_CVR};	
		}				
	instructions_A	coverpoint	{trans	action.ref	_EX_instr[`FUNCT3_HI:`FUNCT3_L0],	
			trans	action.ref	EX_instr[`OPCODE_HI:`OPCODE_LO]}	{
		bins	sb_	=	{`SB_CVR};	
		bins	sh_	=	{`SH_CVR};	
		bins	sw_	=	{`SW_CVR};	
		bins	addi_	=	{ ADDI_CVR};	
		bins	sili_	=	{ SLLI_CVR};	
		bins	xori_	=	{ XOR1_CVR};	
		bins	ori_	=	{ ORI_CVR};	
		bins	andi_	=	{ ANDI_CVR};	
		bins	SICI_	=	{ SLII_CVR};	
		DINS	sitiu_	. =	{ SLIIO_CVR};	
	instructions P.	}	(+	action not	EV instriktungta ut. FUNGTA IOL	
	Instructions_B:	coverpoint	{ Urans	action ref	_EA_INSTE[FONCI/_HI: FONCI/_LO],	
			trane	action ref	EX_instr[POWERS_HI: POWERS_LO];	
		hine	erli	-	(Spit CVD).	1
		bine	erai	2	(SDAT CVR).	
		bins	add	-	(SRAI_CVR).	
		bins	sub	-	(SUB CVR).	
		bing	e11	-	(SLL CVR).	
		hine	vor_		(YOP CVR).	
		bins	srl	-	I'SBL CVR1.	
		bins	sra	-	(SRA_CVR).	
		bins	or_	_	COR CVR1.	
		bins	and	_	(AND CVR1:	
		bins	slt	-	ISLT CVR1:	
		bins	sltu	=	(SLTU CVR):	
		1			·	
	instruction C:	coverpoint	{trans	action.ref	EX instr[OPCODE HI: OPCODE LO1]	1
		bins	lui	=	{`U OPCODE};	L.
		}			· · _ · · · · · · · · · · · · · · ·	
	load use stalls	cross	loads.	stall;		
	cond jump flush	es: cross	flush,	cond jump	3;	

Figure 3.32: Functional Coverage Cover Points.

Coverage collection provides insight towards design functionalities that are yet to be tested in test cases, allowing directed verification to be performed to verify these untested functionalities. Crossed coverage points can further increase the complexity and thoroughness of the functional coverage analysis. A well-planned coverage plan can provide accurate insight into the verification progress. When the coverage argument, "-coverage" is inputted as a command line argument, the detailed coverage information can be displayed as shown in the following figure:

/Test_sv_unit/coverage		100.00%			
- TYPE functional_cover	coverage	100.00%	100	100.00	<
EP _ CVP functional_cover::stall	coverage	100.00%	100	100.00	<
🔄 🧾 CVP functional_cover::flush	coverage	100.00%	100	100.00	✓ .
EP CVP functional_cover::uncond_jump	coverage	100.00%	100	100.00	✓ .
EP CVP functional_cover::cond_jumps	coverage	100.00%	100	100.00	✓ .
EP CVP functional_cover::loads	coverage	100.00%	100	100.00	✓ :
EP CVP functional_cover::instructions_A	coverage	100.00%	100	100.00	✓ -
CVP functional_cover::instructions_B	coverage	100.00%	100	100.00	1
B bin srli_		484	1	100.00	✓ -
B bin srai_		459	1	100.00	✓
B bin add_		477	1	100.00	✓
B) bin sub		515	1	100.00	1
B bin sl_		936	1	100.00	1
-B] bin xor_		966	1	100.00	1
B) bin srl_		466	1	100.00	1
B) bin sra_		479	1	100.00	1
B bin or_		984	1	100.00	1
B bin and		923	1	100.00	1
-B) bin slt_		971	1	100.00	1
B) bin sltu		925	1	100.00	1
CVP functional cover::instruction C	coverage	100.00%	100	100.00	1
T T B bin lui	-	7704	1	100.00	1
CROSS functional cover::load use stalls	coverage	100.00%	100	100.00	1
B bin <b .no="" stall="">	-	877	1	100.00	1
B) bin <h .no="" stall=""></h>		861	1	100.00	1
B bin <lw ,no="" stall=""></lw>		1838	1	100.00	1
−Bi bin <lbu .no="" stall=""></lbu>		1736	1	100.00	1
B) bin <hu .no="" stall=""></hu>		1762	1	100.00	1
B bin stalled>		51	1	100.00	1
B bin <h ,stalled=""></h>		54	1	100.00	1
B) bin		114	1	100.00	1
B) bin stalled>		116	1	100.00	1
B) bin <lbu .stalled=""></lbu>		96	1	100.00	 1
CROSS functional cover::cond jump flushes	coverage	100.00%	100	100.00	<u>></u>
$\begin{bmatrix} -B \end{bmatrix}$ bin <no flush.beg=""></no>		684	1	100.00	2
$-\mathbf{B}$ bin <flushed.beg></flushed.beg>		275	1	100.00	 1
B) bin <no flush.bne=""></no>		260	1	100.00	2
B) bin <fushed.bne></fushed.bne>		718	1	100.00	1
B) bin <no flush.blt=""></no>		615	1	100.00	1
B bin <flushed.blt></flushed.blt>		310	i	100.00	1
B bin <no flush.bae=""></no>		335	1	100.00	1
B bin <fushed.bae></fushed.bae>		602	1	100.00.	1
B) bin <no flush.bltu=""></no>		605	1	100.00.	1
B) bin <fushed.bltu></fushed.bltu>		323	1	100.00.	1
B) bin <no baeu="" flush=""></no>		1014	1	100.00	1
B) bin <fushed basu=""></fushed>		1783	1	100.00	×

Figure 3.33: Functional Coverage Statistics for a Test Case Simulation.

The functional coverage statistics shown provide insights on the specific types of instruction that have been executed as well as the stall and flush conditions encountered during the execution of the instruction. The crossed conditions also provide information on the conditions of specific instructions, such as load-use case stalling and conditional branch flushing.

3.3.8 Mismatch Documentation

When a mismatch is encountered, the test execution is halted, and information regarding the mismatch is provided on the transcript interface as shown below:

[MISMATCH]	Mismatch Encountered at EX/MEM Pipeline Register
[MISMATCH]	Mismatching ALU Output
[MISMATCH]	REF ALU Out: 000000000000000
[MISMATCH]	DUT ALU Out: 000000000000ca0
[MISMATCH]	Mismatch Encountered at EX/MEM Pipeline Register
[MISMATCH]	Mismatching ALU Zero
[MISMATCH]	REF ALU Zero: 1
[MISMATCH]	DUT ALU Zero: 0
[MISMATCH]	Mismatch encountered, Logging Test Information

Figure 3.34: Mismatch Message generated on ModelSim Transcript.

The information displayed provides insight into the pipeline register that provided mismatching values as well as the mismatching parameter and values. Next, the scoreboard component has been implemented with a feature to perform test log documentation, which can be used for debugging purposes. The test log documentation includes instructions executed and the internal states of the pipeline registers.

The logging process begins by clearing several cycles of null information stored on different pipeline registers. These null information stored on the pipeline registers are due to the pipeline filling process whereby for a 5-stage pipeline, 4 clock cycles are required for all the pipeline registers to be filled with instructions. Clearing the null information allows the pipeline registers to be aligned in instruction execution which eases the logging process. The following figure shows the pipeline filling process and the null information on the pipeline stages:

	Instruction Fetch	Instruction Decode	Execution	Memory Access	Writeback
Clock Cycle 1	Instruction 1	NULL	NULL	NULL	NULL
Clock Cycle 2	Instruction 2	Instruction 1	NULL	NULL	NULL
Clock Cycle 3	Instruction 3	Instruction 2	Instruction 1	NULL	NULL
Clock Cycle 4	Instruction 4	Instruction 3	Instruction 2	Instruction 1	NULL
Clock Cycle 5	Instruction 5	Instruction 4	Instruction 3	Instruction 2	Instruction 1

Figure 3.35: Pipeline Filling and Null Information on Pipeline Stages.

The following code segment shows the removal of invalid information from the temporary text file used to store pipeline register data:

Figure 3.36: Removing invalid data from Pipeline Register Data Record.

After removing the invalid pipeline filling data, the pointers pointing towards the data on each pipeline register data record are aligned and accessed, formatted, and outputted into the test log documentation. The following code segment shows the formatting and logging of test results:

```
code = $fscanf(fh_exmem,"%s",file_transact_l); //Control Signal
code = $fscanf(fh_exmem,"%s",file_transact_2);
code = $fscanf(fh_exmem,"%s",file_transact_3);
                                              //ALU Output
code = $fscanf(fh_exmem,"%s",file_transact_4);
code = $fscanf(fh_exmem,"%s",file_transact_5);
                                               //Zero
code = $fscanf(fh_exmem,"%s",file_transact_6);
$fdisplay(fh_log,
                                          -ALU Operation-----
                  "___
                      "Control Signal
                                          : REF: %8b\n
                                                                           DUT: %8b",
$fdisplay(fh_log,
               file_transact_1, file_transact_2);
                  "ALU Output : REF: %8h\n
                                                                           DUT: %8h",
$fdisplay(fh_log,
               file_transact_1, file_transact_2);
$fdisplay(fh_log,
                     "ALU Zero Signal : REF: %lb\n
                                                                           DUT: %1b",
               file_transact_1, file_transact_2);
if((file_transact_1 != file_transact_2) || (file_transact_3 != file_transact_4) ||
   (file_transact_5 != file_transact_6)) begin
       mismatch found = 1;
       break:
```

Figure 3.37: Formatting and Logging of Information.

The following figure shows an example of test log output for a mismatch case:

```
-----Instruction
                               6-----
Instruction Address: REF: 000004c
               DUT: 0000004c
Instruction Code : REF: cc938da3
              DUT: cc938da3
Instruction Decode : sb
                    x 9, cdb(x 7)
 -----Register Access-----
Register Read : REF: x 7:0000000
x 9:0000000
                   x 9:00000000
Register Read : DUT: x 7:00000000
                x 9:00000000
Immediate Value : REF: 00000cdb
              DUT:
                       00000cdb
 -----ALU Operation-----
Control Signal : REF: 100010
                DUT: 100010
ALU Control Signal : REF: 0010
               DUT: 0010
DUT: 0010
ALU Output : REF: 0000000
DUT: 00000cdb
               DUT: 00000cdb
```

Figure 3.38: Test Log Documentation on Mismatch Instruction.

The information documented in the test log can provide context on mismatching cases, allowing a thorough analysis to be performed. The test log documenting feature can also be configured such that test log documentation is also performed for passing test cases. This is achieved through the command line argument "+TESTLOG".

File handling of the test log documents generated is performed after test execution. The test log documents are relocated to relevant test case folders in the test result directory. The temporary text files created for the test log documenting process are also removed to ensure the system is clutter-free.

3.3.9 Macro Check

Another additional feature implemented is macro status consistency checking. This feature ensures that the macro status, such as the number of stall occurrences and flush occurrences during a regression test, is consistent with the previously stored macro status data. If the macro status of the new design is inconsistent with previous macro status data, the debugging performed has introduced other bugs that have altered the functioning of the system and need to be further analysed.

This feature can be bypassed by using the "+SKIP_MACRO_CHECK" command line argument. For cases where the new macro status data is correct and the recorded status data is to be updated, the command line argument "+MACRO_OVERWRITE" can be inputted to configure the verification environment to update the previously stored macro status data. The following figure shows the macro status data record of a sample test case:

Stall	l:		4		
Flush	1:		55		
Last	Updated	on	Thu	12/23/2021	01:03

Figure 3.39: Macro Status Data Record.

The macro status of a test case will also be recorded on the test log document at the end of the test, as shown in the following figure:

=====End of	Testlog=======
Test Completion Time:	Mon 12/27/2021 12:26
Total Stall Encountered:	1
Total Flush Encountered:	70

Figure 3.40: Macro Status at end of Test Log Document.

Chapter 4

RESULTS AND DISCUSSIONS

4.1 Self-Checking Bug Detection

Several tests have been performed to verify the bug detection capabilities of the verification methodology implemented. Bugs were intentionally introduced to the reference model to test the implemented self-checking mechanism. Due to the complexity of the design, the self-checking mechanism is only implemented for a limited number of characteristics of the RISC-V pipelined processor design listed below:

- Pipeline Stalling
- Pipeline Flushing
- Implemented Instruction Functionality Correctness

A self-checking mechanism is crucial for ensuring the functional correctness of the reference model. This mechanism is even more significant when the reference model is used for output comparing against a design. Ensuring the functional correctness of the reference model can increase the overall confidence in the results of the verification performed.

For the first testing performed, part of the reference model ALU source code is altered as shown in the figure below:

```
always @(*) begin: main_alu_block
case(alu_ctl)
   `AND_CTL : alu_output = data_1 & data_2;
   //`OR_CTL : alu_output = data_1 | data_2;
   //`ADD_CTL : alu_output = data_1 + data_2;
```

Figure 4.1: Modification to Reference Unit ALU Source Code.

[SCBD]] addi	x 3	, x	0,	0x07d				
[SCBD]	add	x 2	, x	з,	x 0				
[REF	MODEL	ERROR]	Inco	rrect	ADDI Result:	Behaviour:	0000007d	Model:	00000000

Figure 4.2: Reference Model Instruction Functionality Bug Detection ModelSim Transcript Message.

From the UVM message displayed on the transcript interface, the bug introduced has been detected. The expected outcome of the instruction *addi x3, x0, 0x07d* of *0000007d* differs from the modified model outcome of *00000000*. The discrepancy encountered allows the system to identify this error as a logical bug on the reference model.

For the subsequent testing, the hazard detection unit is modified such that the flush signal is never asserted as shown in the modified code below:

```
//if((zero && branch) || jump)
// flush = 1;
//else
// flush = 0;
```

Figure 4.3: Modification to Reference Unit Hazard Detection Unit Flush Assertion Source Code.

[SCBD] ja	al x31	, 0x00	0a8			
[SCBD] lu	ui x30	, 0x11	.111			
[REF MOI	DEL ERROR]	Branch	or	Jump	not	Executed

Figure 4.4: Reference Model Flush Nonassertion Bug Detection ModelSim

Transcript Message.
As observed from the figure shown, the self-checking mechanism detects the nonassertion of the flush signal. When the instruction *jal x31, 0x000a8* is executed, the control unit is to assert flush control signal to flush out nulled information on the pipeline registers. However, it fails to do so due to the modification to the source code introduced. The nonassertion of the flush signal on the reference model is then identified as a logical bug on the reference model.

Similarly, the stall control signal of the hazard detection unit is modified to check for nonassertion of stall control signal on load-use case detection. The following figure shows the modified code:

Figure 4.5: Modification to Reference Unit Hazard Detection Unit Stall Assertion Source Code.

[SCBD]	lw	x4,	0x101	(x 1)		
[SCBD]	addi	x14,	x4,	0x0	00	
[REF	MODEL	ERROR]	Load-use	Case	Not	Stalled

Figure 4.6: Reference Model Stall Nonassertion Bug Detection ModelSim Transcript Message.

From the figure shown, the instruction sequence of lw x4, 0x101(x1) followed by *addi* x14, x4, 0x000 which depicted a load-use case of the register x4. The self-checking mechanism detects the nonassertion of the stall control signal and identifies the logical bug introduced on the reference model.

The design verification is performed by comparing various internal states of the design under test against the internal states of the reference model. For the testing of the bug detection capabilities of the design verification methodology implemented, bugs are intentionally introduced to the design under test.

In the first testing, a bug is introduced to the program counter source code. The increment of 4 is altered to an increment of 2 and tested as shown in the following code segment:

```
//instr_addr <= instr_addr + `INST_ADDR_SUM;
instr_addr <= instr_addr + 2;</pre>
```

Figure 4.7: Modification to Design Under Test Program Counter Source Code.

[SCBD]	addi	. :	х 3	3,	x	0,	02	t07	d			
[SCBD]	add		x 2	·,	х	3,	х	0	_			
[MISMAT	CH]	Mism	ato	h l	Enco	ount	ered	i at	t	IF/ID	Pipeline	Register
[MISMAT	CH]	Mism	ato	:hi	ng E	Prog:	ram	Cot	un	ter		
[MISMAT	CH]	REF	PC:	0	0000	004						
[MISMAT	CH]	DUT	PC:	0	0000	002]					

Figure 4.8: Program Counter Mismatch Detection ModelSim Transcript Message.

When the instruction *addi* x3, x0, 0x07d is fetched, the program counter increments by 4. Due to the alteration to the source code, the program counter of the design under test only increments by 2. When the second instruction, *add* x2, x3, x0 is fetched, the instruction address information stored on the IF/ID pipeline register mismatches. The verification testbench identifies the discrepancy and provides relevant information to the user for debug.

In the subsequent testing, the updating of the program counter with effective target address generated from immediate generation unit is altered as shown below:

```
if(jump_reg)
    instr_addr <= {alu_output[`DATA_WIDTH-1:2],2'b00};
//else
// instr_addr <= imm_addr;</pre>
```

Figure 4.9: Modification to Design Under Test Program Counter Target Address Branching Source Code.

[SCBD]	jal	x31,	0x000a	a8			
[SCBD]	lui	x30,	0x1111	11			
[SCBD]	nop						
[SCBD]	addi	x30,	x 0,	0xf96			
[MISMA]	CH] M	lismatch	Encounte	ered at	IF/ID	Pipeline	Register
[MISMA]	CCH] M	lismatch:	ing Progi	ram Cour	nter		
[MISMA]	CH] F	REF PC: (00000138				
[MISMA]	[CH] [OUT PC: (00000098				

Figure 4.10: Program Counter Branch Target Address Mismatch Detection ModelSim Transcript Message.

When an unconditional branch instruction (*jal x31, 0x000a8*) is executed, instruction is to be fetched from the target address. Due to the modification performed on the program counter source code, the design under test does not update the program counter with a new program counter value. The verification testbench identifies the discrepancy and provides relevant information to the user.

For a similar case, the updating of program counter with effective target address read from register by the instruction *jump and link register (jalr)* is modified as shown in the code segment below:

Figure 4.11: Modification to Design Under Test Program Counter Jump Register Target Address Source Code.

[SCBD]	jalı	с x0,	0x000 (x31)		
[SCBD]	nop			_		
[SCBD]	nop					
[SCBD]	lui	x30,	0x11111			
[MISMA]	[CH]	Mismatch	Encountered	at IF/ID	Pipeline	Register
[MISMA]	[HJ]	Mismatch	ing Program	Counter		
[MISMA]	ICH]	REF PC:	00000094			
[MISMA]	[HOI	DUT PC:	00000168			

Figure 4.12: Program Counter Jump Register Target Address Mismatch Detection ModelSim Transcript Message.

When *jump and link register* instruction is executed, the program counter is to be updated with the target address read from a register. From the alteration performed to the program counter, the design under test provides an incorrect target address. The verification testbench identifies the discrepancy, and relevant information are provided to the user for debugging to be performed.

For the memory technology utilized, each memory register holds a byte (8-bit) of information. For a 32-bit instruction code to be read from the instruction memory, aligned read access need to be performed to 4 instruction memory registers. The following test ignores the memory technology implemented and performs a singular read access to a memory location for instruction code fetches as shown in the code segment below:

```
always @(*) begin: instruction_fetch
    //instr_code = {rom[instr_addr],
    // rom[instr_addr + 1],
    // rom[instr_addr + 2],
    // rom[instr_addr + 3]};
    instr_code = rom[instr_addr];
end: instruction_fetch
```

Figure 4.13: Modification to Design Under Test Instruction Memory Source Code.

[SCBD] add:	i x 3,	x 0,	0x07d			
[MISMATCH]	Mismatch	Encount	ered at	IF/ID	Pipeline	Register
[MISMATCH]	Mismatchi	ing Inst	ruction	Code		
[MISMATCH]	REF Instr	Code:	07d0019	3		
[MISMATCH]	DUT Instr	Code:	0000000	7		

Figure 4.14: Instruction Code Mismatch Detection ModelSim Transcript Message.

As a result of the modification, only a byte of instruction code information is fetched. The verification testbench identifies the discrepancy in the instruction code fetched and provides the user relevant information for debugging to be performed.

The following test alters the read register address information read from the instruction code:

I	11	assign	<pre>reg_read_addr_1 = reset ? 0 : :</pre>	instr_code[`RS1_ADDR_HI:`RS1_ADDR_LO];
I		assign	<pre>reg_read_addr_1 = reset ? 0 : :</pre>	instr_code[20:16];
I		assign	<pre>reg_read_addr_2 = reset ? 0 : :</pre>	<pre>instr_code[`RS2_ADDR_HI:`RS2_ADDR_LO];</pre>

Figure 4.15: Modification to Design Under Test Register File Source Code.

[SCBD]	addi		х	з,	х	0,	0)x(7d					
[SCBD]	add		х	2,	Х	з,	2	: 0						
[MISMA]	[HJ]	Mism	nat	ch	Enco	oun	tere	d	at	ID/EX	Pip	eline	Regist	cer
[MISMA]	[HO]	Mism	at	chi	ing I	Reg	iste	r	01	Addres	33			
[MISMA]	ICH]	REF	Re	q01	Add	ir:	0							
[MISMA]	[CH]	DUT	Re	g01	L Ado	ir:	16							

Figure 4.16: System Register Read Register Address Mismatch Detection ModelSim Transcript Message.

The testbench identifies the discrepancy in the register address accessed by design under test and provides relevant information for debugging.

When the immediate generation unit source code is altered such that the immediate value generated is inconsistent with the instruction set architecture specification, the following results are obtained:

`I_OPCODE	: imm_val =	{{20{instr_code[31]}},instr_code[11:0]};	//modified
// `I_OPCODE	: imm_val =	{{20{instr_code[31]}},instr_code[31:20]};	//original

Figure 4.17: Modification to Design Under Test Immediate Generation Unit Source Code.

[SCBD] ad	di x	3, 2	t 0,	0x07d		_	
[SCBD] ad	d x	2, 2	:3,	x 0			
[MISMATCH] Mismat	tch End	ount	ered at	ID/EX	Pipeline	Register
[MISMATCH] Mismat	tching	Imme	diate Va	alue		
[MISMATCH] REF In	nn Val:	000	0007d			
[MISMATCH] DUT II	nm Val:	000	00193			

Figure 4.18: Immediate Value Mismatch Detection ModelSim Transcript Message.

The verification testbench identifies the incorrect immediate value generated (00000193) by design under test.

For the following testing, the control unit is altered such that an incorrect control signal is provided for load instructions as shown in the code segment below:

Figure 4.19: Modification to Design Under Test Control Unit Load Instruction Control Signal Source Code.

[SCBD] lw	x 4, 0x101(x 1)
[SCBD] lh	x 5, 0x100(x 1)
[SCBD] lhu	x 6, 0x100(x 1)
[MISMATCH]	Mismatch Encountered at EX/MEM Pipeline Register
[MISMATCH]	Mismatching ALU Output
[MISMATCH]	REF ALU Out: 00000102
[MISMATCH]	DUT ALU Out: 00000002
[MISMATCH]	Mismatch Encountered at EX/MEM Pipeline Register
[MISMATCH]	Mismatching CTL OP
[MISMATCH]	REF CTL OP: 00111100
[MISMATCH]	DUT CTL OP: 00000000

Figure 4.20: Control Signal Mismatch Detection ModelSim Transcript Message.

When a load instruction (lw x4, 0x101(x1)) is executed, the testbench detects the discrepancy in the control signal of the instruction. The ALU operation is also altered due to the alteration of the control signal (ALUSrc), resulting in a mismatched output as a side effect.

In the following alteration, the *shift right arithmetic* operation coded in the ALU is altered to have a similar effect as *shift right logical* operation:

`SRA_CTL	: alu_output = data_1 >> data_2[4:0];	//modified
// `SRA_CTL	: alu_output = \$signed(data_1) >>> data_2[4:0];	//original

Figure 4.21: Modification to Design Under Test ALU Source Code.

[SCBD]	sra	x11,	X	4,	x 3	-			
[SCBD]	srai	. x12,	X	5,	8				
[SCBD]	bne	x11,	x	12,	0x1	0c			
[MISMAT	[HO]	Mismatch	n Enc	oun	tered	at	EX/MEM	Pipeline	Register
[MISMAT	[HD]	Mismatch	ning i	ALU	Outpu	t			
[MISMAT	CH]	REF ALU	Out:	ff	ffffff				
[MISMAT	[CH]	DUT ALU	Out:	00	000007				

Figure 4.22: ALU Output Mismatch Detection ModelSim Transcript Message.

When a *shift right arithmetic* instruction is executed, the design under test ALU produces an incorrect outcome. The testbench detects the discrepancy and provides information to the user for debugging to be performed.

When the data forwarding functionality is altered as shown in the code segment below, the following results are obtained:

```
if (exmem_opcode != `LOAD_OPCODE && exmem_reg_write && exmem_rd != 0) begin: exmem_fwrd
    // if (reg_l == exmem_rd)
    // fwrd_mux_l = `FWRD_ALU;
    //else if (reg_l == memwb_rd && memwb_reg_write) //CHECKME
    // fwrd_mux_l = `FWRD_MEM;
    //else
    // fwrd_mux_l = `NO_FWRD;
    //if (reg_2 == exmem_rd)
    // fwrd_mux_2 = `FWRD_ALU;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `FWRD_MEM;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `NO_FWRD;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    // fwrd_mux_2 = `NO_FWRD;
    //else if (reg_2 == memwb_rd && memwb_reg_write)
    //else if (reg_2 == memwb_rd && memwb_rg_write)
    //else if (reg_2 == m
```

Figure 4.23: Modification to Design Under Test Forwarding Unit Source Code.

[SCBD]	addi	x	з,	x	0,	0x0)7d			
[SCBD]	add	х	2,	х	3	, x ()			
[SCBD]	bne	х	2,	х	з,	, 0x1	64			
[MISMA]	[HJ]	Misma	tch	Enco	our	ntered	at	ID/EX	Pipeline	Register
[MISMA]	[HJ]	Misma	tch:	ing l	Reg	gister	01	Data		
[MISMA]	[HJ]	REF R	ea0	L Dat	ta:	: 00000	070	i		
[MISMA]	[HOI	DUT Re	eg0)	L Dat	ta:	: 00000	000	0		

Figure 4.24: Forwarded Operand Mismatch ModelSim Transcript Message.

In the instruction sequence above, the data dependency on the register x3 warrants data forwarding. Data forwarding ensures the updated information is utilized as an operand for the subsequent instruction operation. Due to the alteration performed, the data forwarding on design under test is not executed, resulting in an incorrect operand value. The discrepancy is detected by the verification testbench and relevant information is provided to the user for debugging.

The next testing modifies the hazard detection unit, ensuring the nonassertion of flush control signal.

Figure 4.25: Modification to Design Under Test Control Unit Flush Control Source Code.

[SCBD] jal	x31,	0x000a8				
[SCBD] lui	x30,	0x11111				
[SCBD] nop						
[MISMATCH]	Mismatch	Encounter	ed at	IF/ID	Pipeline	Register
[MISMATCH]	Mismatchi	ng Instru	ction	Code		
[MISMATCH]	REF Insti	Code: 00	000000	<u> </u>		
[MISMATCH]	DUT Insti	Code: 01	cf5113			

Figure 4.26: Flush Nonassertion Mismatch ModelSim Transcript Message.

When flush control signal is asserted, the pipeline registers are to flush the invalidated instructions by discarding the information of the instructions. From the results obtained,

due to the nonassertion of the flush signal by design under test hazard detection unit, the design under test IF/ID pipeline register still contains the invalidated instruction information. The verification testbench detects the discrepancy, and relevant information is provided to the user for debugging.

Similarly, testing for the stall nonassertion detection can be performed by ensuring the nonassertion of the stall control signal on the design under test hazard detection unit as shown in the code segment below:

Figure 4.27: Modification to Design Under Test Control Unit Stall Control Source Code.

[SCBD]	lw	x 4,	0x101	(x 1)			
[SCBD]	addi	x14,	x 4,	0x000			
[SCBD]	addi	i x14,	x4,	0x000			
[MISMA]	[HO]	Mismatch	Encounte	ered at	IF/ID	Pipeline	Register
[MISMA]	[HO]	Mismatch:	ing Prog	ram Cour	nter		
[MISMA]	[HO]	REF PC:	ооооооъо				
[MISMA]	[HO]	DUT PC:	000000b4				

Figure 4.28: Stall Nonassertion Mismatch ModelSim Transcript Message.

From the results obtained, the instruction sequence of lw x4, 0x101(x1) to addi x14, x4, 0x000 showcases a load-use case with a data dependency on the register x4. As a result of a load-use case, stall control signal needs to be asserted to allow the pipeline flow to be partially halted. Due to the nonassertion of the stall control signal, the pipeline flow of the design under test is not halted is observed in the mismatching program counter. The testbench detects the bug introduced by the stall nonassertion and provides relevant information for debugging.

For the data memory, similar memory technology has been utilized. Each data memory register holds a byte (8-bit) of information. Aligned read access needs to be performed for proper data memory access. In the following testing, the memory technology implemented is ignored, and read access is performed to only one location as shown in the code segment below:

```
assign read_data = ram[address];
// assign read_data = {(ram[address+3] === 8'bx ? 8'b0 : ram[address+3]),
// (ram[address+2] === 8'bx ? 8'b0 : ram[address+2]),
// (ram[address+1] === 8'bx ? 8'b0 : ram[address+1]),
// (ram[address] === 8'bx ? 8'b0 : ram[address]);;
```

Figure 4.29: Modification to Design Under Test Data Memory Load Data Source Code.

[SCBD]	lw	х	4,	0x101	(x 1)				
[SCBD]	lh	Х	5,	0x100	(x 1)				
[SCBD]	lhu	х	6,	0x100	(x 1)				
[SCBD]	lb	х	7,	0x0ff	(x 1)				
[MISMA]	[HJ]	Mismat	tch	Encounte	ered a	at M	EM/WE	3 Pipeline	Register
[MISMA]	[HJ]	Mismat	tch	ing Regia	ster V	Vrite	e Dat	a	
[MISMA]	[HJ]	REF Re	eg l	Wr.Data:	ff961	fff			
[MISMA]	[HO]	DUT Re	eg I	Wr.Data:	00000	00ff			

Figure 4.30: Load Data Mismatch ModelSim Transcript Message.

From the result obtained, when a load word instruction is executed, 4 memory locations need to be accessed for the word (32-bit) information. As a result of disregard towards the memory technology implemented, the design under test reads only a byte of information. The discrepancy is detected by the testbench and shown to the user for debugging to be performed.

Lastly, the following alteration made to the data store functionality of the data memory unit disregards the amount of data to be stored:

```
assign stored_data = mem_write ? reg_data : 0;
// assign stored_data = mem_write ? (funct3 == `SB_FUNCT3 ? {24'b0,reg_data[7:0]} :
// (funct3 == `SH_FUNCT3 ? {16'b0,reg_data[15:0]} : reg_data)) : 0;
```

Figure 4.31: Modification to Design Under Test Data Memory Store Data Source Code.

SCBD1 sh x30. 21 $0 \times 0 ff(x)$ SCBD1 sb x30, $0 \times 0 \text{ ff}(x)$ 31 x 4, 0x101(x 1) SCBD1 1w x 5, 0x100(x 1) ISCBD1 1h [MISMATCH] Mismatch Encountered at MEM/WB Pipeline Register [MISMATCH] Mismatching Memory Write Data REF Mem Wr.Data: 0000ff96 [MISMATCH] MISMATCH] DUT Mem Wr.Data: ffffff96

Figure 4.32: Store Data Mismatch ModelSim Transcript Message.

The instruction store halfword is to store 16 bits of information onto the memory. Due to the modification performed, the design under test stores a word instead. The testbench detects the discrepancy, and relevant information is provided to the user for debugging.

The verification testbench has been programmed to monitor most internal states of the design from the results provided. When a discrepancy is detected from the model outcome comparison simulation, the verification testbench provides information on the mismatching values, providing an automated logical error detection to the verification. This methodology effectively saves an immeasurable amount of time and provides the user with a more straightforward debugging process with the information provided. The challenges of this form of verification methodology would be the strict requirements of adherence to the specifications and the interfacing work required for proper synchronized operation of both reference model and design under test.

4.3 Directed Verification

For directed verification, a specific verification scheme has been employed to perform testing on specific criteria listed below:

- Functionalities of all implemented instructions
- Data Forwarding
- Pipeline Stalling
- Pipeline Flushing
- Misaligned Data Memory Access

The following table shows the instructions of the directed test and their expected outcome:

Instruction		Instruct	ion Co	ode	Comment
Address	(A	ssembly	Lang	uage)	
0x00000000	addi	x3,	x0,	125	$x3 = 125 (7D_{16})$
0x00000004	add	x2,	x3,	x0	Forward data from ALU Output
					$x2 = 125 (7D_{16})$
0x0000008	bne	x2,	x3,	END	Forward data from ALU Output
					Forward data from MEM/WB.Reg
					If $x2 \neq x3$, jump to END
0x000000C	addi	x4,	x0,	3971	x4 = -125(FFFF FF83 ₁₆) <sign-extended></sign-extended>
0x00000010	sub	x5,	x0,	x2	$x5 = -125(FFFF FF83_{16})$
0x00000014	bne	x4,	x5,	END	Forward data from ALU Output
					Forward data from MEM/WB.Reg
					If $x4 \neq x5$, jump to END
0x0000018	addi	x6,	x0,	1	x6 = 1
0x0000001C	srli	x7,	x3,	6	x7 = 1
0x00000020	bne	x6,	x7,	END	Forward data from ALU Output
					Forward data from MEM/WB.Reg
					If $x6 \neq x7$, jump to END
0x00000024	srl	x8,	x6,	x6	x8 = 0
0x0000028	bne	x8,	x0,	END	Forward data from ALU Output
					If $x8 \neq 0$, jump to END
0x0000002C	slli	x9,	x7,	1	x9 = 2
0x0000030	sll	x10,	x7,	x6	x10 = 2
0x00000034	bne	x9,	x10,	END	Forward data from ALU Output
					Forward data from MEM/WB.Reg
					If $x9 \neq x10$, jump to END
0x0000038	slt	x1,	x6,	x9	x1 = 1
0x000003C	beq	x1,	x0,	END	Forward data from ALU Output

Table 4.1: Directed Verification Test Program.

					If $x1 = x0$, jump to END
0x00000040	slt	x1,	x4,	x3	x1 = 1
0x00000044	beq	x1,	x0,	END	Forward data from ALU Output
					If $x1 = x0$, jump to END
0x00000048	sltu	x1,	x4,	x3	x1 = 0
0x0000004C	bne	x1,	x0,	END	Forward data from ALU Output
					If $x1 \neq x0$, jump to END
0x00000050	xor	x2,	x2,	x3	$x^2 = 0$
0x00000054	bne	x2,	x0,	END	Forward data from ALU Output
		,			If $x_2 \neq x_0$, jump to END
0x00000058	sra	x11,	x4,	x3	x11 = -1 (FFFF FFFF ₁₆)
0x0000005C	srai	x12,	x5.	8	x12 = -1 (FFFF FFFF ₁₆)
0x0000060	bne	x11.	x12.	END	Forward data from ALU Output
		;	,		Forward data from MEM/WB.Reg
					If $x_{11} \neq x_{12}$, jump to END
0x0000064	ori	x13.	x0.	3	$x_{13} = 3$
0x0000068	or	x14.	x9.	x6	x14 = 3
0x0000006C	bne	x13.	x14.	END	Forward data from ALU Output
01100000000	0.110	,	,	21.12	Forward data from MEM/WB.Reg
					If $x_{13} \neq x_{14}$, jump to END
0x00000070	and	x15.	x13.	x11	$x_{15} = 3$
0x00000074	andi	x16	x14	15	$x_{16} = 3$
0x00000078	bne	x15	x16	END	Forward data from ALU Output
0100000070	one	,	,	LIND	Forward data from MEM/WB Reg
					If $x_{15} \neq x_{16}$ jump to END
0x0000007C	slti	x17	x15	4	$\mathbf{x}_{17} = 1$
0x00000080	sltin	x18	x5	4095	$x_{18} = 1$
0x00000084	bne	x17	x18	END	Forward data from ALU Output
010000001	one	<i>,</i>	,	LIND	Forward data from MEM/WB.Reg
					If $x_{17} \neq x_{18}$, jump to END
0x00000088	xori	x1.	x0.	1	$\mathbf{x}_1 = 1$
0x0000008C	bea	x1.	x0.	END	Forward data from ALU Output
01100000000		,	,	21.12	If $x_1 = x_0$, jump to END
0x00000090	ial	x31.	STORE	ROUT	$x_{31} = 00000094_{16}$
011000000000	J		STOLL	_110 0 1	Jump to STORE ROUT
0x00000094	lui	x30.	69905		$x_{30} = 11111000_{16}$
0x00000098	srli	x2	x30	28	$\mathbf{x}^2 = 1$
0x000009C	blt	x1	x2	END	Forward data from ALU Output
0000000000	011	,	<i></i> ,	LIND	If $x_1 < x_2$ jump to END
0x000000A0	bge	x0	x1	END	If $x_0 > x_1$ jump to END
0x000000A4	bltu	x1	x2	END	If $x_1 < x_2$ jump to END
0x00000048	bgeu	x0	x1	FND	If $x_1 > x_2$, jump to END
0/00000010	ogeu	ло,	STAL		K:
0x000000AC	1w	x4	257(x1)		$\mathbf{x4} = FF96 FFF_{16}$
0x000000B0	addi	x14	x4	0	Stall
0.0000000000000000000000000000000000000	uuui	,	<i>.</i> ,	0	$x_{14} = FF96 FFFF_{16}$
0x000000B4	lh	x5	256(x1)		$x5 = FFFF FFFF_{12}$
0x000000B1	addi	x15	x5	0	Stall
	aaai	<i></i> ,	<i></i> ,		
					$x_{13} = FFFF FFFF_{16}$
0x000000BC	lhu	x6.	256(x1)		$x_{15} = FFFF FFFF_{16}$ $x_{6} = 0000 FFFF_{16}$
0x000000BC 0x000000C0	lhu addi	x6, x16.	256(x1) x6,	0	$x15 = FFFF FFFF_{16}$ $x6 = 0000 FFFF_{16}$ Stall

					$x16 = 0000 FFFF_{16}$
0x000000C4	lb	x7,	255(x1)		$x7 = FFFF FF96_{16}$
0x000000C8	addi	x17,	x7,	0	Stall
					$x17 = FFFF FF96_{16}$
0x000000CC	lbu	x8,	255(x1)	1	$x8 = 0000 \ 0096_{16}$
0x000000D0	addi	x18,	x8,	0	Stall
					$x18 = 0000 \ 0096_{16}$
0x000000D4	beq	x20,	x0,	SKIP1	If $x20 = x0$, jump to SKIP1
0x00000D8	lui	x28,	912095		$x28 = DEAD F000_{16}$
0x000000DC	lui	x29,	912095		$x29 = DEAD F000_{16}$
0x000000E0	lui	x30,	912095		$X30 = DEAD F000_{16}$
	1		S	SKIP1	
0x000000E4	bne	x1,	x0,	SKIP2	If $x1 \neq x0$, jump to SKIP2
0x00000E8	lui	x28,	912095		$x28 = DEAD F000_{16}$
0x00000EC	lui	x29,	912095		$x29 = DEAD F000_{16}$
0x000000F0	lui	x30.	912095		$X30 = DEAD F000_{16}$
		,		SKIP2	
0x000000F4	bge	x1.	x14.	SKIP3	If $x_1 > x_14$, jump to SKIP3
0x000000F8	lui	x28.	912095		$x28 = DEAD F000_{16}$
0x000000FC	lui	x29	912095		x29 = DEAD F00016
0x00000100	lui	x30	912095		$X_{30} = DEAD F000_{16}$
0.00000100	141	хэө,	912095	SKIP3	
0x00000104	blt	v 11	v 1	SKIP4	If $x_{11} < x_{1}$ jump to SKIP4
0x00000104	hui	x11,	012005	SIXII 4	$x_{28} = DEAD E000$
0x00000100	141	x20,	012005		$\mathbf{x}_{20}^{20} = \mathbf{D}\mathbf{E}\mathbf{A}\mathbf{D}\mathbf{E}000_{16}$
0x0000010C	101	x29,	012095		X_{2}^{2} = DEAD 1000_{16}^{16}
	i iui	x 117	71/17)		A M = D M A D M M M A
0.00000110			912095	SKIP4	
0x00000114	baeu	x5	v4	SKIP4 SKIP5	If $x5 > x4$ jump to SKIP5
0x00000114	bgeu	x5,	x4,	SKIP4 SKIP5	If $x5 > x4$, jump to SKIP5
0x00000114 0x00000118 0x0000011C	bgeu lui	x5, x28, x29	x4, 912095	SKIP4 SKIP5	If $x5 > x4$, jump to SKIP5 x28 = DEAD F000 ₁₆ x29 = DEAD F000 ₁₆
0x00000114 0x00000114 0x00000118 0x0000011C	bgeu lui lui	x5, x28, x29,	x4, 912095 912095	SKIP4 SKIP5	If $x5 > x4$, jump to SKIP5 x28 = DEAD F000 ₁₆ x29 = DEAD F000 ₁₆ X20 = DEAD F000 ₁₆
0x00000114 0x00000114 0x00000118 0x0000011C 0x00000120	bgeu lui lui lui	x5, x28, x29, x30,	x4, 912095 912095 912095	SKIP4 SKIP5	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $X30 = DEAD F000_{16}$
0x00000114 0x00000114 0x00000118 0x0000011C 0x00000120	bgeu lui lui lui	x5, x28, x29, x30,	x4, 912095 912095 912095	SKIP4 SKIP5 SKIP5	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$
0x00000114 0x00000114 0x00000118 0x0000011C 0x00000120 0x00000124	bgeu lui lui lui bltu	x5, x28, x29, x30, x17,	x4, 912095 912095 912095 912095 \$ x5,	SKIP4 SKIP5 SKIP5 SKIP5 SKIP6	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $X30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 x28 = DEAD F000
0x00000114 0x00000114 0x00000118 0x0000011C 0x00000120 0x00000124 0x00000128	bgeu lui lui lui bltu lui	x5, x28, x29, x30, x17, x28,	x4, 912095 912095 912095 912095 x5, 912095 912095	SKIP4 SKIP5 SKIP5 SKIP6	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ X30 = DEAD F000_{16} If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$
0x00000114 0x00000114 0x00000118 0x00000120 0x00000124 0x00000128 0x0000012C	bgeu lui lui bltu lui lui	x5, x28, x29, x30, x17, x28, x29, 20	x4, 912095 912095 912095 912095 x5, 912095 912095	SKIP4 SKIP5 SKIP5 SKIP6	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$
0x00000110 0x00000114 0x00000118 0x00000120 0x00000124 0x00000128 0x0000012C 0x00000130	bgeu lui lui lui bltu lui lui lui	x5, x28, x29, x30, x17, x28, x29, x30,	x4, 912095 912095 912095 912095 x5, 912095 912095 912095	SKIP4 SKIP5 SKIP5 SKIP6	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $X30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$
0x00000114 0x00000114 0x00000118 0x00000120 0x00000124 0x00000124 0x00000122 0x0000012C 0x00000130	bgeu lui lui lui bltu lui lui lui	x5, x28, x29, x30, x17, x28, x29, x30,	x4, 912095 912095 912095 912095 x5, 912095 912095 912095	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $X30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$
0x00000114 0x00000114 0x00000118 0x00000120 0x00000124 0x00000128 0x00000122 0x00000130	bgeu lui lui lui bltu lui lui lui jal	x5, x28, x29, x30, x17, x28, x29, x30, x31,	x4, 912095 912095 912095 912095 x5, 912095 912095 912095 \$ END	SKIP5 SKIP5 SKIP6 SKIP6	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ $x = x5 = DEAD F000$
0x00000113 0x00000114 0x00000118 0x00000120 0x00000124 0x00000128 0x00000128 0x0000012C 0x00000130	bgeu lui lui lui bltu lui lui lui jal	x5, x28, x29, x30, x17, x28, x29, x30, x31,	x4, 912095 912095 912095 912095 x5, 912095 912095 912095 912095	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ X30 = DEAD F000_{16} If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ x29 = DEAD F000_{16} x30 = DEAD F000_{16} x30 = DEAD F000_{16} x31 = 000000D8_{16} Jump to END
0x00000114 0x00000114 0x00000118 0x00000120 0x00000124 0x00000124 0x00000122 0x00000130 0x00000134	bgeu lui lui lui bltu lui lui jal	x5, x28, x29, x30, x17, x28, x29, x30, x31,	x4, 912095 912095 912095 912095 x5, 912095 912095 912095 912095 912095 912095	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END
0x00000114 0x00000114 0x00000118 0x00000120 0x00000124 0x00000128 0x00000128 0x00000130 0x00000134	bgeu lui lui lui bltu lui lui jal addi	x5, x28, x29, x30, x17, x28, x29, x30, x31, x30,	x4, 912095 912095 912095 912095 912095 912095 912095 912095 SEND	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 RE_ROU7 3990	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END r : $x30 = 3990(FFFF FF96_{16})$
0x00000114 0x00000114 0x00000118 0x00000120 0x00000124 0x00000128 0x00000128 0x00000130 0x00000134 0x00000138 0x0000013C	bgeu lui lui lui bltu lui lui lui jal addi addi	x5, x28, x29, x30, x17, x28, x29, x30, x31, x31, x30, x1, 2	x4, 912095 912095 912095 912095 912095 912095 912095 912095 STOF x0, x0, x0,	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 RE_ROU 3990 1	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END F: $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$
0x00000114 0x00000114 0x00000118 0x0000011C 0x00000120 0x00000124 0x00000128 0x0000012C 0x00000130 0x00000134 0x00000138 0x0000013C 0x00000140	bgeu lui lui lui bltu lui lui lui jal jal addi addi	x5, x28, x29, x30, x17, x28, x29, x30, x31, x30, x11, x2, 2	x4, 912095 912095 912095 912095 x5, 912095 912095 912095 912095 912095 STOF x0, x0, x0, x1,	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 RE_ROU ⁷ 3990 1 4	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END F: $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$ $x2 = 5$
0x00000114 0x00000114 0x00000118 0x0000011C 0x00000120 0x00000124 0x00000128 0x00000128 0x00000130 0x00000134 0x00000138 0x0000013C 0x00000140 0x00000144	bgeu lui lui lui bltu lui lui lui jal jal addi addi addi	x5, x28, x29, x30, x17, x28, x29, x30, x31, x31, x30, x1, x2, x3,	x4, 912095 912095 912095 912095 912095 912095 912095 912095 912095 SEND STOF x0, x0, x0, x1, x2,	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 RE_ROU 3990 1 4 4	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END r: $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$ $x2 = 5$ $x3 = 9$
0x00000114 0x00000114 0x00000118 0x00000120 0x00000124 0x00000128 0x00000128 0x0000012C 0x00000130 0x00000134 0x00000132 0x00000134 0x00000134 0x00000134 0x00000140 0x00000144 0x00000148	bgeu lui lui lui bltu lui lui lui jal jal addi addi addi addi sw	x5, x28, x29, x30, x17, x28, x29, x30, x31, x31, x30, x1, x2, x3, x30, x30,	x4, 912095 912095 912095 912095 912095 912095 912095 912095 SEND END STOF x0, x0, x1, x2, 255(x1)	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 RE_ROU 3990 1 4 4	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END r: $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$ $x2 = 5$ $x3 = 9$ Memory[0000 0100_{16}] = FF FF FF 96_{16}
0x00000114 0x00000114 0x00000118 0x00000120 0x00000120 0x00000120 0x00000124 0x00000128 0x00000128 0x00000130 0x00000134 0x00000134 0x00000135 0x00000140 0x00000144 0x00000142 0x00000142	bgeu lui lui lui bltu lui lui lui lui lui lui alui sw addi addi addi addi addi sw sh	x5, x28, x29, x30, x17, x28, x29, x30, x30, x31, x31, x30, x1, x2, x3, x30, x30, x30, x30,	x4, 912095 912095 912095 912095 912095 912095 912095 912095 912095 STOF x0, x0, x1, x2, 255(x1) 255(x2)	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 SKIP6 RE_ROU7 3990 1 4 4	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END 1 : $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$ $x2 = 5$ $x3 = 9$ Memory[0000 0100_{16}] = FF FF FF 96_{16}
0x00000114 0x00000114 0x00000118 0x0000011C 0x00000120 0x00000124 0x00000128 0x00000128 0x0000012C 0x00000130 0x00000134 0x00000135 0x00000140 0x00000144 0x000001450	bgeu lui lui lui bltu lui lui lui jal jal addi addi addi addi sw sh sb	x5, x28, x29, x30, x17, x28, x29, x30, x30, x31, x30, x1, x2, x3, x30, x30, x30, x30, x30, x30,	x4, 912095 912095 912095 912095 912095 912095 912095 912095 912095 SEND STOF x0, x0, x0, x1, x2, 255(x1) 255(x2) 255(x3)	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 SKIP6 RE_ROU 3990 1 4 4 4	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END r: $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$ $x2 = 5$ $x3 = 9$ Memory[0000 0100_{16}] = FF FF FF 96_{16} Memory[0000 0108_{16}] = 96_{16}
0x00000114 0x00000114 0x00000118 0x00000120 0x00000120 0x00000124 0x00000128 0x00000128 0x00000128 0x00000130 0x00000130 0x00000134 0x00000132 0x00000134 0x00000140 0x00000144 0x00000142 0x00000143 0x00000144 0x00000150 0x00000154	bgeu lui lui lui bltu lui lui lui lui jal addi addi addi addi addi sw sh sb lw	x5, x28, x29, x30, x17, x28, x29, x30, x30, x31, x31, x30, x1, x2, x3, x30, x30, x30, x30, x30, x30, x30,	x4, 912095 912095 912095 912095 912095 912095 912095 912095 912095 S END STOF x0, x0, x1, x2, 255(x1) 255(x2) 255(x3) 257(x1)	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 RE_ROU 3990 1 4 4 4	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END r: $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$ $x2 = 5$ $x3 = 9$ Memory[0000 0100_{16}] = FF FF FF 96_{16} Memory[0000 0104_{16}] = 96_{16} $x4 = FF96 FFFF_{16}$
0x00000114 0x00000114 0x00000118 0x00000110 0x00000120 0x00000120 0x00000124 0x00000128 0x00000128 0x00000120 0x00000128 0x00000128 0x00000130 0x00000134 0x00000134 0x00000138 0x00000140 0x00000144 0x00000144 0x00000150 0x00000154 0x00000158	bgeu lui lui lui bltu lui lui lui lui lui lui alui sw addi addi addi addi addi sw sh sb lw lh	x5, x28, x29, x30, x17, x28, x29, x30, x30, x30, x30, x30, x30, x30, x30	x4, 912095 912095 912095 912095 912095 912095 912095 912095 912095 912095 912095 S END STOF x0, x0, x1, x2, 255(x1) 255(x2) 255(x3) 255(x1) 255(x1)	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 RE_ROU 3990 1 4 4	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x28 = DEAD F000_{16}$ $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END F: $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$ $x2 = 5$ $x3 = 9$ Memory[0000 0100_{16}] = FF FF FF 96_{16} Memory[0000 0104_{16}] = FF 96_{16} Memory[0000 0108_{16}] = 96_{16} $x4 = FF96 FFFF_{16}$ $x5 = FFFF FFFF_{16}$
0x00000114 0x00000114 0x00000118 0x0000011C 0x00000120 0x00000120 0x00000120 0x00000120 0x00000120 0x00000120 0x00000120 0x00000120 0x00000120 0x00000130 0x00000130 0x00000130 0x00000131 0x00000132 0x00000133 0x00000134 0x00000140 0x00000144 0x000001450 0x00000150 0x00000154 0x00000158 0x0000015C	bgeu lui lui lui bltu lui lui lui lui lui lui lui bltu sw sb sb lw lh lhu	x5, x28, x29, x30, x17, x28, x29, x30, x30, x31, x31, x31, x30, x31, x30, x30, x30, x30, x30, x30, x30, x30	x4, 912095 912095 912095 912095 912095 912095 912095 912095 912095 912095 STOF x0, x0, x1, x2, 255(x2) 255(x2) 255(x2) 255(x3) 255(x1) 256(x1) 256(x1)	SKIP4 SKIP5 SKIP5 SKIP6 SKIP6 SKIP6 SKIP6 RE_ROU' 3990 1 4 4	If $x5 > x4$, jump to SKIP5 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ If $x17 < x5$, jump to SKIP6 $x28 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x29 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x30 = DEAD F000_{16}$ $x31 = 000000D8_{16}$ Jump to END F: $x30 = 3990(FFFF FF96_{16})$ $x1 = 1$ $x2 = 5$ $x3 = 9$ Memory[0000 0100_{16}] = FF FF FF 96_{16} Memory[0000 0104_{16}] = FF 96_{16} Memory[0000 0108_{16}] = 96_{16} $x4 = FF96 FFFF_{16}$ $x5 = FFFF FFFF_{16}$ $x5 = FFFF FFFF_{16}$ $x6 = 0000 FFFF_{16}$

0x00000164	lbu	x8,	255(x1)	$x8 = 0000 \ 0096_{16}$			
0x00000168	jalr	x0,	0(x31)	Return to 0000 0094 ₁₆			
END:							
0x0000016C	nop			No Operation			
0x00000170	nop			No Operation			
0x00000174	nop			No Operation			
0x00000178	nop			No Operation			
0x0000017C	end			End of Test			

T 4	D	T	TT' - L l' - L 4	T
LOCT	Program	Instruction	HIGNIIGHT	Indication
I COL	I I VEI am	insu ucuon	11121111211t	inuication
	_			

Pass Signature Value Instructions
Fail Signature Value Instructions
Branch/Jump Executed
Return Address

For verification of the test program results, specific signature values can be checked from the general-purpose registers and data memory. The simulated results shown in the figure below tallies with the expected outcome:

_			
	4	ff96ffff	
	5	fffffff	
	6	0000ffff	
	7	ffffff96	
	8	00000096	
	14	ff96ffff	
	15	fffffff	
	16	0000ffff	
	17	ffffff96	
	18	00000096	
L			

Figure 4.33: General-Purpose Register Signature Values.

00000100	96 ff ff ff
00000104	96 ff xx xx
00000108	96 xx xx xx

Figure 4.34 Memory Signature Values.

For a detailed approach towards test verification, the primitive methodology of waveform debugging is performed as shown in the following figures:

When the second instruction (add x2, x3, x0) is stored on the ID/EX pipeline register, the correct forwarding mechanism is executed, forwarding the ALU output from EX/MEM pipeline register to the ALU unit. The forwarding mechanism is triggered by the data dependence of the register x3 on the first instruction (addi x3, x0, 125).

Both register x^2 and x^3 are data forwarded from EX/MEM pipeline register and MEM/WB pipeline register for the third instruction (bne x2, x3, END), providing the updated data to the ALU unit.

🔶 IF/ID.Register	(IF/ID.Register)													
+	00000000	(00000004	00000008	000000c	00000010	00000014	(00000018	(0)000)1c	00000020	00000024	00000028	(0000002c	0000030	00000034
+ /testbench/riscv_ref/ifid_instr_code	00000000 (07d0	0193 00018133	163 1263	f8300213	402002b3	14521c63	00100313	(0)61d 393	14731663	00635433	14041263	00139493	00639533	12a49c63
-🔶 ID/EX.Register	(ID/EX.Register)													
+	00000000		00000004	00000008	(0000000c	00000010	100000014	<u>) 0 000 018 000 018 000 000 000 000 000 0</u>	0000001c	00000020	00000024	00000028	(0000002c	00000030
+ /testbench/riscv_ref/idex_instr_code	00000000	(07d00193	ľ 000 8133	16311263	(f8300213	402002b3	14521c63	(0)100313	0061d393	14731663	00635433	14041263	00139493	00639533
+	00		(03	02	00		,0 1	(0)	03	06		(08	(07	
+ /testbench/riscv_ref/idex_reg_data_1	00000000								0000007d	00000000	00000001	0000000	00000001	
	00	<u>) 1d</u>	(00	03		<u>/02</u>	<u>205</u>	<u>X01</u>	06	(07	06	(00	(01	06
+	00000000				(0000007d		0000000				00000001	(00000000		00000001
/testbench/riscv_ref/idex_imm_val	00000000	<u> (0000007d</u>	(00000000	00000164	(ffffff83	00000000	00000158	00000 001	00000006	(0000014c	(00000000)	00000144	00000001	00000000
/testbench/riscv_ref/idex_ctl_op	00	28	(08	01	28	(08	(01	28		(01	(08	<u>(01</u>	28	08
/testbench/riscv_ref/idex_alu_op	0) 3	2		1	2		(1	(2		1	2	<u>(1</u>	<u>(</u> 2	
EX/MEM.Register	(EX/MEM.Register)													
+	00000000		07d00193	00018133	16311263	<u>(f8300213</u>	(402002b3	14521 :63	00100313	<u>) 0061d393</u>	14731663	00635433	14041263	00139493
	00000000			00000004	00000008	<u>) 0000000c</u>	00000010	00000)14	00000018	<u>) 0000001c</u>	00000020	00000024	00000028	0000002c
/testbench/riscv_ref/exmem_aiu_output	00000000		(0000007d		00000001) ffffff83		<u>(00000</u>)01				<u>(00000000 (</u>	<u>(00000001) (000001) (000001) (000001) (000001) (000001) (000001) (000001) (000001) (000001) (000001) (000001) (000001) (00000</u>	00000002
/testbench/riscv_ref/exmem_imm_val														
/testbench/riscv_ref/exmem_mem_data	00000000		<u>(0000007d</u>	00000000	00000164	(ffffff83	(00000000	<u>(00000 158</u>	00000001	0000006	(0000014c	0000000	00000144	00000001
/// // // // // // // // // // // // //	00000000				<u>) 0000007d</u>			<u>(ffffff</u> 8 3	00000000	00000001			00000000	
MEM/WB.Register	00		(28	08	(01	28	(08	(01	28		(01	(08	(01	28
+	(MEM/WB.Register)													
+	00			28	08	(01	28	(08	01	28		<u>(01</u>	(<mark>08</mark>	01
+	00000000			0000007d		00000001	(ffffff83		00000001				00000000	00000001
+	00000000													
+	00			03	102	101		105	18	<u>) 06</u>	(07	<u>(0c</u>	<u>(08</u>	04
+	00000000			0000007d		0000001	(ffffff83		00000001				<u>) 00000000</u>	00000001
+	00000000													
+	00000000				0000004	0000008	<u>(000000c</u>	00000010	00000014	<u>) 00000018</u>	<u>(0000001c)</u>	00000020	00000024	00000028
-🔶 Control Signal	(Control Signal)													
+	0		<u>)</u> 2	7	0		(1	<u>(o</u>		1	<u>(</u> 0	2	χo	
+ /testbench/riscv_ref/fwrd_mux_2	0			1	U I		λZ	χõ	2		<u>(0</u>			
└── /testbench/riscv_ref/flush														

Figure 4.35: Directed Verification Waveform Simulation Results Part 1.

The verification of the functionalities of the instructions can be performed by observing the ALU output and the control signals (EX ctl op) on the EX/MEM pipeline register.

Zero-width glitches can be observed on the flush control signal. These zero-width glitch signals are caused by static zero hazards. However, as flush signals are only effective if the assertions are held HIGH for the full clock cycle (pipeline registers are only updated on clock edges), these zero-width glitches will not cause issue to the functioning of the pipeline.

🔶 IF/ID.Register	(IF/ID.Register)													
+	0000033 (0000	003c (000000	40 100000044	00000048	(0000004c	00000050	00000054	00000058	(0000005c	(00000060	(0000006	4 00000068	(0000006c	00000070
+	009320b3 X 1200	8863 1003220	b3 12008463	1003230b3	12009063	100314133	10011c63	1403255b3	4082d613	10c59663	1 0030669	3 10064e733	10e69063	100b6f7b3
🔶 ID/EX.Register	(ID/EX.Register)													
+	d000003110000	0038 1000000)3¢ 100000040	100000044	100000048	10000004c	00000050	100000054	100000058	1 0000005c	1 0000006	0 100000064	100000068	1 0000006c
+	12a49c63 10093	20b3 X 120088	63 1003220b3	12008463	1003230b3	12009063	00314133	10011c63	403255b3	14082d613	10c5966	3 100306693	10064e733	10e69063
+	09 X 06	101	104	101	104	101	02		104	ΪO5	Хоb	100	109	10d
+	0000000 1 0000	0001 1000000	000 X ffffff83	100000001	۲. ffffff83	100000001	0000007d		ffffff83		1 0000000	0	100000002	1 00000000
🛓 - 🧇 /testbench/riscv_ref/idex_reg_addr_2	0a 1.09	X 00	103	100	X03	100	03	100	103	Ĭ 08	ί Oc	103	106	l 0e
🛓 - 🧇 /testbench/riscv_ref/idex_reg_data_2	0000000 1 0000	0002 1000000	000 1 0000007d	1 00000000	1 0000007d	1 00000000	0000007d	1 00000000	1 0000007d	1 00000000) 0000007d	1 0000000 1	1 00000000
🛓	00000133 10000	0000 100000	130 100000000	00000128	100000000	100000120	00000000	100000118	1 00000000	100000408	1 00000 10	c 10000003	1 00000000	1 00000 100
+	01 108	¥01	108	101	108	101	08	101	108	ľ 28	101	ľ 28	108	101
🛓	1 12	<u>Й</u>	12	1	12	Ϊ1	2	Х1	2		11	12		11
I EX/MEM.Register	(FX/MEM.Registe	r)												-
+	00639533 J 12a4	9c63 1009320	b3 12008863	003220b3	12008463	1003230b3	12009063	00314133	10011c63	1 403255b3	1 4082d61	3 J 10c59663	100306693	0064e733
+	00000030 1 0000	0034 1000000	138 10000003c	00000040	00000044	1 00000048	0000004	1 00000050	00000054	100000058	1 0000005	c 100000060	100000064	1 00000068
+	00000002 10000	0001	,		<u>,</u>	1 00000000	00000001	1 00000000	00000001	Y mmmm		1 0000000 1	1 00000003	
/testbench/riscv_ref/exmem_zero									-	<u></u>		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
/testbench/riscv_ref/exmem_imm_val	00000000 1 0000	0138 1000000	000 100000130	00000000	00000128	1 00000000	00000120	1 00000000	00000118	1,00000000	1 0000040	8 10000010c	10000003	100000000
+	00000001 10000	0002	1 00000000	0000007d	00000000	1 0000007d	00000000	1 0000007d	00000000	1 0000007d	1 0000000		1 0000007d	1 00000001
+	08 101	108	101	108	101	108	01	108	101	108	128	101	1 28	108
- MEM/WB.Register	(MEM/WB.Regist	er)								<u>,</u>				
	28 108	⊥ <u>101</u>	108	101	108	Y01	08	101	108	101	108	1 28	101	28
/testbench/riscv_ref/memwb_alu_data	0000002	1 00000	101	101	<u>, 00</u>	101	0000000	10000001	10000000	10000001	Y FFFFFFFF	<u>, 20</u>	100000001	10000003
/testbench/riscv_ref/memwb_mem_data	0000000	,000000						,0000001	10000000	10000001	Λ		,0000001	10000000
/testbench/riscv_ref/memwb_write_addr	00000000 10a	Ý 18	Y01	10	Y 01	Y 08	701	1 00	02	Ý 18	1 Ob	Ϋ́ος.		104
/testbench/riscv_ref/memwb_write_data	0000002	1000000	<u></u>	110	<u>, 01</u>	700	00000000	10000001	102	10000001	Yerrere	<u>, oc</u>	100000001	10000003
/testbench/riscv_ref/memwb_mem_addr	00000002	7,000000					,0000000	70000001	10000000	10000001	<u></u>		70000001	10000003
/testbench/riscv_ref/memwb_mem_writ	00000000	0020 1000000	24 10000029	000002c	100000040	100000044	00000049	10000004-	00000050	100000054	10000005	9 Y 000000Ed	100000060	00000064
+-~ /testbench/riscv_ref/memwb_instr_addr	(Central Signal)		,0000038	00000050	10000040	100000044	,0000048	<u>,000000-4C</u>	100000000	100000034	10000005	8 7.000003C	,00000060	10000004
	(Contronsignal)	12	- Yo	12	10	12		Y a	10		Y a	Yo		1
+		12	10	12		12		_ <u>, 2</u>	10			10		
testbench/riscv_ref/fwrd_mux_2	4 10										12	70		12
/testbench/riscv_ref/flush														

Figure 4.36: Directed Verification Waveform Simulation Results Part 2.

When the jump instruction (*jal x31, STORE_ROUT*) is executed, flush signal is asserted. The assertion of flush signal clears the instruction code stored on the IF/ID and ID/EX pipeline registers. The register x31 is also updated with the return address when the instruction progresses towards writeback stage (WB). The instruction address of the jump instruction stored on the MEM/WB pipeline register is added by 4 before updating the register x31.

	(IF/ID.Register)	-v	V			v								
	00000074 00000078	<u>}0000007¢</u>	100000080	100000084	1 00000088	<u>10000008c</u>	100000090	100000094	100000098	00000 138	<u>) 0000013c</u>	100000140	100000144	00000148
Image: testbench/riscv_ref/ind_instr_code	00f77813 (0f079a63	<u>(0047a893</u>	<u>) fff2b913</u>	0f289463	100104093	<u> 10e008063</u>	<u>(0a800fef</u>	<u> 1111 lf37</u>	<u>(00000000</u>	<u>f9600 13</u>	<u> 100100093 (00100093</u>	<u> 00408113</u>	<u> (00410193</u>	0fe0afa3
ID/EX.Register	(ID/EX.Register)													
/testbench/riscv_ref/idex_instr_addr	00000070 00000074	00000078	<u>, 0000007c</u>	00000080	00000084	<u>(00000088</u>	<u>(0000008c</u>	<u>(0000)090 (</u>	00000094	00000 098	00000138	<u>0000013c (000013c (000000000)</u>	00000140	00000144
	00b6f7b3 (00f77813	<u>) 0f079a63</u>	0047a893	fff2b913	(0f289463	00104093	(0e008063	<u>(0a80)fef</u>	00000000		(f9600f13	00100093	00408113	00410193
	0d (0e	<u>(</u> 0f		05	(11	(00	(01	<u>) 00</u>					(01	02
Image: provide the state of	0000003	00000000	0000003	(ffffff83	(00000000								00000001	00000000
ig	Qb (Of	10	(04	1f	(12	(01	(00	(08	00		(16	(01	(04	
+	ffffffff (00000000		(ffffff83	00000000								100000001	(ffffff83	
+	00000000 1 0000000f	1000000f4	100000004	I mmm	1000000e8	100000001	1000000e0	1000000a8	1 00000000		í ffffff96	1 00000001	100000004	
+	08 ¥ 28	101	128		101	1 28	101	ľ 48	100		28			
🛓-🧇 /testbench/riscv_ref/idex_alu_op	2	11	12		11	12	11	13	10	Y3	12			
I EX/MEM.Register	(FX/MFM.Register)	<u></u>			<u>^-</u>									
+	10e69063 100b6f7b3	100f77813	0f079a63	0047a893	fff2b913	10f289463	100104093	10e008063	0a800fef	100000000		19600f13	100100093	00408113
+		100000074	100000078	0000007c	100000080	100000084	100000088	10000008c	100000000	1000000004	100000008	100000138	10000013c	00000140
+	00000001 100000000	70000074	100000001	100000070	7.00000000	10000004	100000000	70000/000	00000000	700000094	700000050	Y #####06	1000000130	00000140
/testbench/riscv_ref/exmem_zero	000000170000003		10000001						,0000000				10000001	,0000003
+		Vaaaaaaa	00000054	00000004	V concern	100000-0	10000001	¥ 0000 00-0	000000-0	1 00000 000		CHEFFOR	10000001	00000004
+		1000000t	10000014	10000004	<u>/ 11111111</u>	1000000e8	10000001	<u>, 0000 /0e0</u>	, 000000a8	100000000		Ymmae	10000001	0000004
+		10000003	V = 1	1111183	10000000	10000001	10000000	V = 1				V	10000001	, 1111183
🔶 MEM/WB.Register	01 108	, 28	,01	28		101	, 28	<u>,01</u>	48			, 28		
+	(MEM/WB.Register)													
+	08 (01	108) 28	01	<u>] 28</u>		<u>101</u>	<u>] 28</u>	[01	148	100		28	
+	<u>d0000003 (0000d001</u>	<u>10000003</u>		00000001						<u>x oopoc ooo</u>			<u>) ffffff96</u>	0000001
+	0000000													
+	0e <u>(</u> 00	(Of	<u>) 10</u>	14	<u>(11</u>	12	(08	<u>(01</u>	00	1f	00		<u>(1e</u>	01
+	0000003 0000001	0000003		00000001						0000000			<u>(ffffff96</u>	0000001
+	0000000													
+	00000068 (0000006c	00000070	00000074	00000078	<u>) 0000007c</u>	00000080	(00000084	00000088	10000008c	00000090	00000094	(00000098	00000138	0000013c
Control Signal	(Control Signal)													
+	0	1	<u>(</u> 0		1	<u>(</u> 0	2	<u>(</u> 0					2	
+	0 2		(0		2	χo								
/testbench/riscv_ref/stall														
/testbench/riscv_ref/flush														

Figure 4.37: Directed Verification Waveform Simulation Results Part 3.

For store instructions, the data stored onto the data memory can be observed on the MEM/WB pipeline register. The store instructions can be checked on the EX/MEM pipeline register (one cycle earlier). For load instructions, the data read from the data memory can be observed on the MEM/WB pipeline register. Similarly, the load instructions can be checked on the EX/MEM pipeline register (one cycle earlier).

🔶 IF/ID.Register	(IF/ID.Reg	gister)													
+	(0000014c	00000150	(00000 154	00000158	0000015c	00000160	(00000)	164 000001	8 (0000016	00000170	(0000009	i (00000	098 (000000	9c (000000a0	(000000a4
+	Ofe11fa	0fe18fa3	(1010a 203	10009283	1000d303	(0ff08383	0ff0c4	000f80	0000000)	(11111f3)	01cf5	113 0c20c86	53 (0c105663	0c20e463
🔶 ID/EX.Register	(ID/EX.F.ed	gister)													
+	00000143	(0000014c	(00000 150	00000154	00000158	(0000015c	(00000)	160 000001	4 <u>) 0000016</u>	3 0000016c	(0000017	00000	094 (000000	98 (0000009c	(000000a0
+	(Ofe0afa)	(Ofe11fa3	(0fe18 a3	1010a203	10009283	(1000d303	(off083	33 (0ff0c40	(000f806)	2 00000000		111111	f37 (01cf51)	13 (0c20c863	0c105663
+	(01	(02	<u>)</u> 03	201) 1f	00		102	(1e	(01	100
+	(00000001	(00000005	(00000 009	00000001					1 0000009	4 00000000		1 00000	005 (ffffff96	(00000001	00000000
+	(1e			(01	00		(1f		100			(11	(1c	(02	01
+	(ffffff96			00000001	00000000		(00000	94	1 0000000	o 🗌		1 00000	001 (000000	00 (00000005	00000001
#	(000000f			00000101	00000100		(00000)ff	1 0000000	o 🗌		(11111	000 (000000	1c (000000d0	000000cc
/testbench/riscv_ref/idex_ctl_op	(22			(3c					le8	00		28		(01	
Itestbench/riscv_ref/idex_alu_op	0										χ3	2		1	
EX/MEM.Register	(EX/MENI.R	Register)													
ref/exmem_instr_addr	00410193	0fe0afa3	0fe11fa3	0fe18fa3	1010a203	10009283	(1000d	303 <u>)</u> 0ff0838	3 (0ff0c403	000f8067	(0000000)	(11111f	37 (01cf5113	0c20c863
<pre>/testbench/riscv_ref/exmem_instr_code</pre>	00000144	00000148	0000014	00000150	00000154	00000158	(00000	15c (000001	60 (0000016	4 00000168	0000016	00000	170 000000	94 (00000098	(0000009c
/testbench/riscv_ref/exmem_alu_output	(00000009	00000100	<u> 100000104 (0000104 (0000104 (0000104 (0000104 (0000104 (0000104 (0000104 (0000104 (0000104 (0000104 (0000104</u>	<u>100000108</u>	00000102	100000101		<u>)</u> 00000 1	00	00000094	000000)	(111110	00 00000001	
/testbench/riscv_ref/exmem_zero															
testbench/riscv_ref/exmem_mm_data	00000004	(000000ff			00000101	(00000100		000000	ff	00000000			(111110	00 (0000001c	(000000d0
testbench/riscv_ref/exmem_ctl_op	ffffff83	(ffffff96			00000001	(00000000)		000000	94	00000000			(000000	01 (00000000	00000001
MEMANB Degister	28	22			3c					e8	(00		(28		01
+	(MEM/WB.	Register)													
+	28		22			(3c					(e8	(00		(28	
+	00000005	0000009	00000100	00000104	00000108	1 00000 102	Y 00000	101	ľ 0000010	b	7 <u>000000</u>	↓ <u>(</u> 00000	000	(11111000	00000001
+	00000000					ff96ffff	<u>) mmn</u>	<u>(0000ffl) (0000</u>	f <u>(fffff</u> 96	00000096	000000)			
+	(02	(03	(1f			04	(05	06	(07	08	00			<u>(1e</u>	02
+	00000005	00000009	00000100	00000104	00000108	00000102	<u>) 00000 (</u>	101	0000010	0	<u>(0000009</u> 4	1 00000	000	(11111000	00000001
+	00000000		ffffff96	(0000ff96	00000096	00000000									
+	00000140	00000144	00000148	<u>(0000014c</u>	00000150	<u> (</u> 00000154	(00000)	158 000001	5c <u>(0000016</u>	00000164	00000168	3 (00000	16c (000001	70 (00000094	00000098
International Control Signal	(Control Si	ignal)													
+	0												(2	χo	
+	0													2	0
/testbench/riscv_ref/stall															
/testbench/riscv_ref/flush															

Figure 4.38: Directed Verification Waveform Simulation Results Part 4.

Stall control signal is set to HIGH when load-use case is detected. The destination register x4 of the load instruction (lw x4, 257(x1)) at 0x000000AC is to be used by the following instruction (addi x14, x4, 0) at 0x000000B0 which resulted in a load-use case.

The load-use case is resolved when the correct data (from data memory) is forwarded.

IF/ID.Register (IF/ID.Register) (000d0 40913 000cc c403
1 / testbench/riscv_ref/ifd_instr_addr 0000000a8 0000000a 0000000b4 000000b6 000000bc 0000000c4 000000c4 0000000c4 0000000c4 0000000c4 0000000c4 0000000c4 0000000c4 0000000c4 0000000c4 000000c4 0000000c4 000000c4 0000000c4 000000c4 <td>000d0 40913 000cc c403</td>	000d0 40913 000cc c403
Image: state of the state	40913 000cc c403
ID/EX.Register (ID/EX.Register) ID/EX.Register) ID/EX.Register) ID/EX.Register (ID/EX.Register) ID/EX.Register) ID/EX.Register) ID/EX.Register) ID/EX.Register (ID/EX.Register) ID/EX.Register) ID/EX.Register) ID/EX.Register) ID/EX.Register) ID/EX.Register (ID/EX.Register) ID/EX.Register)	000cc c403
1-* /testbench/riscv_ref/idex_instr_addr 00000004 0000000ac 0000000b0 000000b4 000000bc 000000cc 00000cc <td< td=""><td>000cc c403</td></td<>	000cc c403
1-* /testbench/riscv_ref/idex_instr_ode (0c20e463 X0c107263 1010a203 00020713 X10009283 X00028793 X1000d303 00030813 X0ff08383 X00038893 00ff0c- 1-* /testbench/riscv_ref/idex_reg_addr_1 (0c20e463 X0c107263 1010a203 00020713 X10009283 X00028793 X1000d303 00030813 X0ff08383 X00038893 00ff0c- 1-* /testbench/riscv_ref/idex_reg_addr_2 (0c20e463 X0c107263 1010a203 00020713 X1000928793 X100028793 X1000d303 00030813 X0ff08383 X00038893 00ff0c- 1-* /testbench/riscv_ref/idex_reg_addr_2 (0c20e463 X0c107263 1010a203 00020713 X1000928793 X100028793 X1000030813 X000030813 X0ff08383 X00038893 00ff0c- 1-* /testbench/riscv_ref/idex_reg_addr_2 (0c20e463 X0c107263 1010a203 0002001 X000000 0000000 00000000 00000000 X000000	c403
1-* /testbend/fiscv_ref/idex_reg_addr_1 (01 00 01 04 (01 (05 (01 (07 01 1-* /testbend/fiscv_ref/idex_reg_addr_2 (0000001 00000000 00000001 (ff96ffff (0000001 (0000001 (0000001 (0000001 (ff96ffff (0000001 (ff96ffff (0000001 (ff96ffff (0000001 (ff96ffff (0000001 (ff96ffff (0000001 (ff96ffff (ff96ffff (ff96ffff (ff96fffff (ff96ffffffff (ff96ffffffffffffffffff	
Image: style styl	
A state of the state of	00001
	00094
- /testbench/riscv_ref/idex_imm_val (000000c8_)000000c4_)00000000 (00000000 (00000000 (00000000 (000000	000ff
P-↑ /testbench/riscv_ref/idex_ctl_op 01 3c (28 (3c	
B ∕ /testbench/riscv_ref/idex_alu_op 1 0 12 1	
EX/MEM.Register (EX/MEM.Register)	
- / /testbench/riscv_ref/exmem_instr_addr (0c105663)0c20e463 0c107263 1010a203 [00000000 {00020713 }10009283]00000000 }00028793 1000d303]00000000 [0003813]0ff08383]00000000 [00038	38893
restend/inscv_rer/exmem_alu_output 00000001 00000001 (fffffff 00000101 / ff fffff 000000101 / ff fffff 000000101 / ff ffffff	
+ / restendy/rscv_rer/exmem_mem_data	
1 - 7 /restency/risc/ rer/exmem_cd_op	
/ / restaurio/incv_se/incomp_and ata 00000001 0000001 00000001 00000000 000000	f96
// / ////////////////////////////	00000
/ / // // // / / // // // // // // // /	f96
restlerch/issy refinemuk mem witt 00000000	
A desthered viscy refinement instruction (0000000-200000000000000000000000000000	000c8
Control Signal (Control Signal)	
1 / / /estbench/riscv ref/fwrd mux 1 0	
- / /testbench/riscv ref/fwrd mux 2 0	
/ /testbench/risco_ref/flush	

Figure 4.39: Directed Verification Waveform Simulation Results Part 5.

Image: http://www.image: http://wwww.image: http://www.image: http://www.image: http://www.image:	<u>)00000114</u> 00000118
A province in the standard stan	0042f863 deadfe37
D/EX.Register (ID/EX.Register)	
4/ /testbench/riscy_ref/dex_instr_addr (0000000d0 1000000d4 1000000d4 1000000dc 1000000e4 1000000e4 1000000e4 10000000f4 1000000104 100000104	3 10000010c 100000114
100000000 100000000 100000000 100000000) 10042f863
14 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100 101 100	105
1/20000000 1/00000000 1/00000000 1/00000000) <u>fuuuu</u>
1/2 / testbendy/riscv_ref/dex_reg_addr_2 00 01 000	204
r - / /testbendh/riscv_ref/dex_reg_data_2 00000000 000000000000000000000000000) (ff96ffff
P / Jestbendy/riscv_ref/dex_imm_val (00000000 1 20000000 1 20000000 20000000 20000000 20000000 2000000	00000010
Production Control Contro Control <thcontrol< th=""> <</thcontrol<>	01
C //testbench/riscv_ref/dex_alu_op (2 11 10 13 11 10 13 11 10 13 11 10 13 11 10 13 11 10 13 11 10 13 11 10 13 11 10 13 11 10 13 11 10 10 10 10 10 10 10 10 10 10 10 10	13 II
EX/MEM.Register (EX/MEM.Register)	
restlend/riscy_ref/exmem_instr_addr (0ff0c403_100000000_100040913_100000000 100000000_10000863_100000000 10005686	1 00000000
Respend/uscv_ret/exmem_instr_code (0000000cc1000000d0 000000d4_10000000d8_1000000de_10000000e4_10000000e6_10000000e6_10000000f6_1000000f6_10000000f6_1000000f6_1000000f6_000000f6_000000f6_000000f6_000000f6_000000f6_000000f6_000000f6_00000000	4 1 00000 108 1 00000 10c
Vestbendy/nscv_ref/exmem_alu_output (00000100 100000096 100000000	
respendynsv_refyexmem_zero	
respendingsv refrexmem_imm_val	00000000
resubency/nsv/ref/sumem_mem_pata	1 00000000
A Method Market Tel/exmem_cu_op (32 00 28 101 00 101 100 01 100 01 100 01	100
templying Register (MEM/WB.Register)	
resultant figure (1997)	101 100
resultant figures	
A hostbendhiscy chimemb wite addr 00000000 (0000000 0000000	
10 10 100 100 100 100 100 100 100 100 1	10 00
***/ /testbench/riscv_ref/memwb_mem_addr	
r 4//testbench/riscv_ref/memwb_mem_writ00000000	
	100000104 100000108
Control Signal Control Signal	
+-// /testbench/riscy_ref/fiwrd_mux_1 0) 1 10	
k → /testbendy/riscy_ref/fiwrd_mux_2 0	
/testbench/riscv_ref/stall	
/testbench/riscv_ref/flush	

Figure 4.40: Directed Verification Waveform Simulation Results Part 6.

										instru	ction me	emory.
										L		
IF/ID.Register	(TE/TD Reg	ister)									_	
	(10000011c	100000124	00000128	10000012c	00000134	100000138	1 00000 13c	·) 0000016d	00000170	00000174	100000178	0000017c
<pre>/testbench/riscv_ref/ifid_instr_code</pre>	00000000) 0058e863	deadfe37	1 00000000	03800fef	1 f9600f13	1 00000000)	,000001/0		,	
D/EX.Register	(ID/FX.Reg	ister)										
/testbench/riscv_ref/idex_instr_addr	(00000118	10000011c	100000124	00000128	10000012c	100000134	100000138	3 10000013d	1 00000 16c	100000170	100000174	100000178
/testbench/riscv_ref/idex_instr_code	00000000		(0058e863	1 00000000		103800fef	1 00000000)				
/testbench/riscv_ref/idex_reg_addr_1	00		111	100								
/testbench/riscv_ref/idex_reg_data_1	00000000		(ffffff96	1 00000000								
/testbench/riscv_ref/idex_reg_addr_2	(00		(05	00		(18	(00					
/testbench/riscv_ref/idex_reg_data_2	00000000		(ffffffff	00000000								
/testbench/riscv_ref/idex_imm_val	00000000		00000010	00000000		00000038	(00000000)				
/testbench/riscv_ref/idex_ctl_op	(00		(01	100		(48	100					
/testbench/riscv_ref/idex_alu_op	0	(3	1	<u>(</u> 0	3		χο	(3			<u>ک ک</u>	
(/MEM.Register	(EX/MEM.R	egister)										
/testbench/riscv_ref/exmem_instr_addr	0042f863	00000000		0058e863	00000000		(03800fef	(00000000				
 /testbench/riscv_ret/exmem_instr_code /testbench/riscv_ret/exmem_instr_code 	(00000114	00000118	0000011c	00000124	00000128	(0000012c	00000134	1 00000138	(0000013c	0000016c	00000170	00000174
/testbench/riscv_ret/exmem_aiu_output	00000000											
/testbench/riscv_ref/exmem_zero												
/testbench/riscv_ref/exmem_mem_data	00000010	00000000		00000010	00000000		00000038	3 (00000000				
/testbench/riscy_ref/exmem_ctl_op	(ff96ffff	00000000		<u>) ffffffff</u>	00000000							
MWB Register	(01	(00		01	(00		(48	(00				
/testhench/riscv_ref/memwh_ctl_on	(MEM/WB.	Register)										
/testbench/riscv_ref/memwb_alu_data	00	<u>(01</u>	(00		01	<u>) 00</u>		(48	<u>(</u> 00			
/testbench/riscv_ref/memwb_mem_data	00000000											
/testbench/riscv_ref/memwb_write_addr	00000000											
/testbench/riscv_ref/memwb_write_data	00	(10	(00		10	<u>) 00 </u>		(1f	<u>(00 </u>			
/testbench/riscv_ref/memwb_mem_addr	00000000											
/testbench/riscv_ref/memwb_mem_writ	00000000											
/testbench/riscv_ref/memwb_instr_addr	(0000010c	00000114	00000118	0000011c	00000124	00000128	00000120	: (00000134	00000138	0000013c	(0000016c	00000170
ontrol Signal	(Control Sig	gnal)										
/testbench/riscv_ref/fwrd_mux_1	0											
/testbench/riscv_ref/fwrd_mux_2	0											
/testbench/riscv_ref/stall												
/testbench/riscv_ref/flush											عصالهم	

Figure 4.41: Directed Verification Waveform Simulation Results Part 7.

Test successfully ends when unknown instructions (32'bx) are fetched from the

Waveform debugging provides a much thorough analysis and debugging process. In cases where no logical bugs are detected on the outcome, such detailed analysis may be unnecessary. Test log provides a more accessible analysis towards specific internal states of the design, allowing test results analysis and verification to be performed without performing waveform debugging.

From the directed verification and test results analysis performed, the RISC-V pipeline processor is functioning in accordance to the specifications and therefore is accepted.

4.4 Constrained-Random Verification

The following table shows the test cases with specified instruction types utilized for constrained-random verification of the RISC-V processor design:

Test Seeds	R-type	I-type	I-type Load	S-type	SB- type	U-type	UJ-type
3301 to 3320		/					
3401 to 3420	/	/					
3501 to 3520		/	/	/			
3601 to 3620	/	/	/	/			
3701 to 3720	/	/	/	/	/	/	
3801 to 3820	/	/			/	/	
3901 to 3920							/
2506 to 3006							
0107 to 3107							
0108 to 3108							
0109 to 3009							
0110 to 3110							
0111 to 3011	/	/	/	/	/	/	/
0112 to 3112							
0101 to 3101							
0102 to 2802							
0103 to 3103							
0104 to 3004							
0105 to 1005							

Table 4.2: Constrained-Random Verification Test Case Specifications.

The test cases with specific instruction types are generated through the following instructions:

vsim -gui -onfinish stop work.testbench +TESTLOG +MEMLOG +FORCE_GEN +INSTR_TYPE=<*instruction type>*+BATCH_SEED=<*seed file>*

Test cases are generated and stored onto the test repository by listing the test seed values on the *<seed file>* text file and specifying the instruction type to be generated for the test seeds on the field *<instruction type>*.

The generated test seeds are then compiled and listed on "*SEED.txt*", and the following command is executed:

```
vsim -gui -onfinish stop work.testbench -coverage +TESTLOG +MEMLOG +BATCH_TEST
```

Inclusion of the argument "-*coverage*" allows functional coverage and code coverage analysis to be performed on the simulation executed. Inclusion of the specification "+ $BATCH_TEST$ " allows all test seeds generated and listed in "SEED.txt" to be executed in a batch test. The inclusion of all test seeds allows a comprehensive coverage analysis on the constrained-random verification performed. The simulation is then executed by selecting "Simulate > Run > Run All". Upon completion of the simulation, the following message is generated:

```
** Report counts by severity
UVM INFO : 925
UVM WARNING :
                 0
UVM_ERROR : 0
UVM_FATAL : 0
 * Report counts by id
[LOGGING]
            461
[PASS]
         461
[RNTST]
[UVM/COMP/NAMECHECK]
                          1
[UVM/RELNOTES]
                    : D:/FinalYearProject/Coding/uvm/uvm include/base/uvm root.svh(578)
   Note: $finish
   Time: 3394850 ns Iteration: 68 Instance: /testbench
```

Figure 4.42: Simulation Completion Message on ModelSim Transcript.

The following functional coverage analysis provides insight on the functionalities that have been tested using the constrained-random verification:

🔄 💻 TYPE functional_cover	coverage	100.00%	100	100.00	l√
🔄 🗾 CVP functional_cover::stall	coverage	100.00%	100	100.00	V
B) bin no stall		127137	1	100.00	i 🖉
R) bin stalled		663	1	100.00	
		100.008/	100	100.00	×
	coverage	100.00%	100	100.00	×
B bin no_flush		112434	1	100.00	I √
B bin flushed		15366	1	100.00	l√
🔄 🧾 CVP functional_cover::uncond_jump	coverage	100.00%	100	100.00	V
B) bin jal		6333	1	100.00	i 🖌 👘
B) hin jak		5342	1	100.00	
	coverage	100.00%	100	100.00	× .
	coverage	100.00 %	100	100.00	×.
B DIN Deq_		1253	1	100.00	V
B bin bne_		1208	1	100.00	₩
-B] bin blt_		1162	1	100.00	l√
-B bin bge_		1236	1	100.00	I√
-B) bin bltu_		1224	1	100.00	V
B) bin baeu		1218	1	100.00	i 🖌 👘
	coverage	100.00%	100	100.00	i z
	conciego	2410	1	100.00	
		2110		100.00	×.
		2517	1	100.00	×
B bin lw_		2514	1	100.00	V
B] bin bu_		2429	1	100.00	I√
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		2487	1	100.00	l√
🔄 🗾 CVP functional_cover::instructions_A	coverage	100.00%	100	100.00	l√
B) bin sb	-	3966	1	100.00	Г. П
B bin sh		4145	1	100.00	
B) bin sw		4010		100.00	× .
		2013	-	100.00	×
		3637	1	100.00	× .
B bin sli		3443	1	100.00	V
-B bin xori_		3547	1	100.00	I√
B bin ori_		3544	1	100.00	√
-B) bin andi_		3600	1	100.00	i 🖌 👘
B) bin slti		3465	1	100.00	<i>.</i>
B) bin stiu		3507	1	100.00	
		100.009/	100	100.00	
	coverage	100.00%	100	100.00	×.
B bin srii_		1859	1	100.00	V
-B bin srai_		1740	1	100.00	l√
B bin add_		992	1	100.00	l√
-B] bin sub		896	1	100.00	√
-B) bin sl		1806	1	100.00	i 🖌 👘
B) bin xor		1878	1	100.00	<i>.</i>
B) bin srl		033	1	100.00	
		002	-	100.00	
		505	-	100.00	×.
B DIN Or_		1823	1	100.00	×
B bin and		1806	1	100.00	√
B bin slt_		1945	1	100.00	l√
B) bin sltu_		1884	1	100.00	√
- CVP functional_cover::instruction_C	coverage	100.00%	100	100.00	V
B) bin lui	-	7337	1	100.00	і ́ и
	coverage	100.00%	100	100.00	i 🧭 👘
□ □ B) bin < b .no stall>	-	2271	1	100.00	i 🖌 👘
B) bin <h .no="" stall=""></h>		2202	1	100.00.	
		2202	-	100.00	1
		2077	-	100.00	
		2209	1	100.00	 ×.
B DIN <inu_no_stall></inu_no_stall>		2358	1	100.00	V
B bin <lb_,stalled></lb_,stalled>		139	1	100.00	\mathbf{V}
B bin <lb_stalled></lb_stalled>		115	1	100.00	I√
B) bin <lw_stalled></lw_stalled>		140	1	100.00	
B bin <lbu_stalled></lbu_stalled>		140	1	100.00	i 🖌 👘
B bin <lbu .stalled=""></lbu>		129	1	100.00	<i>.</i>
- CROSS functional cover::cond jump flus	coverage	100.00%	100	100.00	
	. Loverage	974	1	100.00	× .
		020	1	100.00	×
Din <nushed,beq_></nushed,beq_>		427	1	100.00	V
B Din <no_flush,bne_></no_flush,bne_>		364	1	100.00	V
B bin <flushed,bne_></flushed,bne_>		844	1	100.00	√
B bin <no_flush,blt_></no_flush,blt_>		782	1	100.00	l√
B) bin <flushed,blt_></flushed,blt_>		380	1	100.00	l√
\overline{B} bin <no bge="" flush,=""></no>		397	1	100.00	V.
B bin <flushed.boe></flushed.boe>		839	1	100,00.	1
B) bin <no. bltu="" fuch=""></no.>		830	1	100.00	
		050	-	100.00	Υ.
		20.4			
		394	1	100.00	V
bin <no_flush,bgeu_></no_flush,bgeu_>		394 411	1	100.00	V.

Figure 4.43: Constrained-Random Verification Functional Coverage Report.

The following coverage report provides code coverage analysis which shows source codes on the model designed that has yet to be tested:

	by file			
==== File: D:/FinalYearProjec	t/Coding/uvm/	ref_model	/ref_alu.sv	
Enabled Coverage	Active	Hits	Misses % Covered	
Stmts	20	20	0 100.00	
Branches	39	39	0 100.00	
FEC Condition Terms	8	8	0 100.00	
FEC Expression Terms	1	1	0 100.00	
==== File: D:/FinalYearProjec	t/Coding/uvm/	ref_model	/ref_alu_ctl.sv	
Enabled Coverage	Active	Hits	Misses % Covered	
Stmts	32	32	0 100.00	
Branches	43	36	7 83.72	
==== File: D:/FinalYearProjec	t/Coding/uvm/	ref_model	/ref_ctl_unit.sv	
Enabled Coverage	Active	Hits	Misses % Covered	
Branches	9	10	0 100.00	
==== File: D:/FinalYearProjec	t/Coding/uvm/	ref_model	/ref_d_mem.sv	
Enabled Coverage	Active	Hits	Misses % Covered	
Stmts	12	12	0 100.00	
Branches	32	31	1 96.87	
FEC CONdicion Terms	10	10	0 100.00	
==== File: D:/FinalYearProjec	t/Coding/uvm/	ref_model	/ref_exmem_pipeline_reg.sv	==
Enabled Coverage	Active		Misses % Covered	
		HIUS		
Stmts		11US 17	0 100.00	
Stmts Branches	17 10	17 10	0 100.00 0 100.00	
Stmts Branches FEC Condition Terms	17 10 2	17 10 2	0 100.00 0 100.00 0 100.00	
Stmts Branches FEC Condition Terms	17 10 2	17 17 10 2	0 100.00 0 100.00 0 100.00	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec	17 10 2 t/Coding/uvm/	nits 17 10 2 ref_model	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	17 10 2 t/Coding/uvm/ Active	HILS 17 10 2 ref_model Hits 	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	17 10 2 t/Coding/uvm/ Active 15	HIUS 17 10 2 ref_model HIUS 15	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	17 10 2 t/Coding/uvm/ Active 15 15	HILS 17 10 2 ref_model HILS 15 15 15	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	17 10 2 t/Coding/uvm/ Active 15 15 13	Hits 17 10 2 ref_model Hits 15 13	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	17 10 2 t/Coding/uvm/ Active 15 15 13	HILS 17 10 2 ref_model Hits 15 13 ref_model	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ===== Enabled Coverage 	17 10 2 t/Coding/uvm/ Active 15 15 13 t/Coding/uvm/	HILS 17 10 2 ref_model HILS 15 15 13 ref_model 	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 /ref_hzrd_unit.sv	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	17 10 2 t/Coding/uvm/ Active 15 15 13 t/Coding/uvm/ Active 	Hits Hits 15 15 13 Hits Hits Hits 	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 0 100.00 /ref_hzrd_unit.sv Misses % Covered 	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	17 10 2 t/Coding/uvm/ Active 15 15 13 t/Coding/uvm/ Active 7	Hits Hits Hits 15 15 13 ref_model Hits 7	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 0 100.00 /ref_hzrd_unit.sv Misses % Covered 	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	 17 10 2 t/Coding/uvm/ Active 15 15 13 t/Coding/uvm/ Active 7 8 11	Hits Hits Hits 15 15 13 ref_model Hits 7 8 10 15 13 	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 /ref_hzrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00 0 100.00	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ===== Enabled Coverage 	17 10 2 t/Coding/uvm/ Active 15 15 13 t/Coding/uvm/ Active 7 8 11	Hits Hits Hits Hits Ref_model Hits 	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 /ref_hzrd_unit.sv Misses % Covered 0 100.00 0 100.00 1 90.90	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ==== Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ==== Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec	17 10 2 t/Coding/uvm/ Active 15 15 13 t/Coding/uvm/ Active 7 8 11 : :t/Coding/uvm/	Hits 17 10 2 ref_model Hits 15 15 13 ref_model Hits 7 8 10 17 8 10 17 17 	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 /ref_hzrd_unit.sv Misses % Covered 0 100.00 1 90.90 L/ref_i_mem.sv	
Stmts Branches FEC Condition Terms === File: D:/FinalYearProjec Enabled Coverage 	17 10 2 t/Coding/uvm/ Active 15 15 13 t/Coding/uvm/ Active 7 8 11 st/Coding/uvm/ Active	Hits 17 10 2 ref_model Hits 15 15 13 ref_model Hits 7 8 10 /ref_model	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 0 100.00 /ref_hzrd_unit.sv Misses % Covered 0 100.00 0 100.00 1 90.90 L/ref_i_mem.sv Misses % Covered	
Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ===== Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ===== Stmts Branches FEC Condition Terms ==== File: D:/FinalYearProjec ====================================	17 10 2 t/Coding/uvm/ Active 15 13 t/Coding/uvm/ Active 7 8 11 t/Coding/uvm/ Active 2	Hits 17 10 2 ref_model Hits 15 15 13 ref_model Hits 7 8 10 /ref_model Hits 7 8 10 10 15 15 13 7 8 10 	0 100.00 0 100.00 0 100.00 /ref_fwrd_unit.sv Misses % Covered 0 100.00 0 100.00 0 100.00 /ref_hzrd_unit.sv Misses % Covered 0 100.00 1 90.90 L/ref_i_mem.sv Misses % Covered 0 100.00	

File: D:/FipelVeerDreie/	t (Coding (uum)	(nof model	/mof idem	nineline	
=== file: D:/finallearProjec	coaing/uvm/	rei_model	./rel_idex	_pipeline_	reg.sv
Fnabled Coverage	Active	Hits	Misses	Covered	
Stmts	28	28	0	100.00	
Branches	5	5	0	100.00	
FEC Condition Terms	2	2	0	100.00	
=== File: D:/FinalYearProject	ct/Coding/uvm/	ref_model	/ref_ifid	_pipeline_	reg.sv
Enabled Coverage	Active	Hits	Misses	% Covered	
				100.00	
Stmts	1	1	0	100.00	
FEC Condition Terms	2	2	0	100.00	
The condition feins	2	2		100.00	
=== File: D:/FinalYearProject	ct/Coding/uvm/	ref model	/ref imm	addr.sv	
		_			
Enabled Coverage	Active	Hits	Misses	<pre>% Covered</pre>	
Stmts	2	2	0	100.00	
=== File: D:/FinalYearProjec	ct/Coding/uvm/	ref_model	/ref_imm_	gen.sv	
Enabled Coverage	Active	Hits	Misses	% Covered	
		10		100.00	
Branches	10	10	0	100.00	
Branches	•	0	0	100.00	
	so, coarig, avin,			" prperrue	_109.01
Enabled Coverage	Active	Hits	Misses	% Covered	
Enabled Coverage	Active	Hits	Misses	% Covered	
Enabled Coverage Stmts	Active 16	Hits 16	Misses 0	<pre>% Covered 100.00</pre>	
Enabled Coverage Stmts Branches	Active 16 6	 Hits 16 6	Misses 0 0	<pre>% Covered 100.00 100.00</pre>	
Enabled Coverage Stmts Branches	Active 16 6	Hits 16 6	Misses 0 0	<pre>% Covered 100.00 100.00</pre>	
Enabled Coverage Stmts Branches	Active 16 6	Hits 16 6	Misses 0 0	<pre>% Covered</pre>	
Enabled Coverage Stmts Branches File: D:/FinalYearProject	Active 16 6 ct/Coding/uvm/	 Hits 16 6 /ref_model	Misses 0 0	<pre>% Covered 100.00 100.00 </pre>	
Enabled Coverage Stmts Branches === File: D:/FinalYearProject Enabled Coverage	Active 16 6 ct/Coding/uvm/ Active	Hits 16 6 (ref_model Hits 	Misses 0 0 /ref_mode	<pre>% Covered 100.00 100.00 1.sv % Covered</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30	Hits 16 6 (ref_model Hits 30	Misses 0 0 /ref_mode Misses 0	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14	Hits 16 6 (ref_model Hits 30 12	Misses 0 0 ./ref_mode Misses 0 2	<pre>% Covered 100.00 100.00 21.sv % Covered * Covered 100.00 85.71</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14	Hits 16 6 (ref_model Hits 30 12	Misses 0 0 ./ref_mode Misses 0 2	<pre>% Covered 100.00 100.00 *1.sv % Covered 100.00 85.71</pre>	
Enabled Coverage Stmts Branches === File: D:/FinalYearProjec Enabled Coverage Stmts Branches === Stmts	Active 16 6 ct/Coding/uvm/ Active 30 14	Hits 16 6 (ref_model Hits 30 12	Misses 0 0 0 ./ref_mode Misses 0 2	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71</pre>	
Enabled Coverage Stmts Branches === File: D:/FinalYearProject Enabled Coverage Stmts Branches === File: D:/FinalYearProject	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/	Hits 16 6 (ref_model Hits 30 12 (ref_model	Misses 0 0 0 /ref_mode Misses 0 2 /ref_pc.s	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 wv</pre>	
Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Stmts Branches	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/	Hits 16 6 (ref_model Hits 30 12 (ref_model	Misses 0 0 0 /ref_mode Misses 0 2 ./ref_pc.s	<pre>% Covered 100.00 100.00 %1.sv % Covered 100.00 %5.71</pre>	
Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Stmts Branches	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits	Misses 0 0 ./ref_mode Misses 0 2 ./ref_pc.s Misses	<pre>% Covered 100.00 100.00 % % Covered 100.00 % \$5.71 % % Covered</pre>	
Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Enabled Coverage Enabled Coverage Enabled Coverage	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits Hits	Misses 0 0 /ref_mode Misses 0 2 ./ref_pc.s	<pre>% Covered 100.00 100.00 % % Covered 100.00 % % Covered % Covered % Covered</pre>	
Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Enabled Coverage Enabled Coverage Enabled Coverage Enabled Coverage Stmts	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 30 14	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits 5 	Misses 0 0 /ref_mode Misses 2 ./ref_pc.s Misses 0 0	<pre>% Covered 100.00 100.00 % % Covered 100.00 % \$ Covered 100.00 % % Covered 100.00 % % Covered</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7	Hits 16 6 (ref_model Hits 30 12 (ref_model Kits 5 7	Misses 0 0 /ref_mode Misses 0 2 /ref_pc.s 0 kisses 0 0 0 0	<pre>% Covered 100.00 100.00 %1.sv % Covered 100.00 % Covered % Covered 100.00 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits 5 7	Misses 0 0 0 /ref_mode Misses 0 2 /ref_pc.s	<pre>% Covered 100.00 100.00 % Covered 100.00 85.71 % Covered 100.00 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits 5 7	Misses 0 0 0 /ref_mode Misses 0 2 /ref_pc.s 0 2 /ref_pc.s	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 w % Covered 100.00 100.00 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7	Hits 16 6 (ref_model Hits 12 (ref_model Hits 5 7 (ref_model	Misses 0 _/ref_mode 0 0 2 /ref_pc.s 0 0 2 0	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 % % Covered 100.00 100.00 100.00 file.sv</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/	Hits 16 6 (ref_model Hits 12 (ref_model Hits 5 7 (ref_model Hits	Misses 0 _/ref_mode 0 0 2 /ref_pc.s 0 0 0 /ref_reg_ 0 0 0	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 % Covered 100.00 100.00 100.00 file.sv % Covered</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/	Hits 16 6 (ref_model Hits 5 7 (ref_model Hits 5 7	Misses 0 0 /ref_mode Misses 2 /ref_pc.s Misses 0 0 /ref_reg_ Misses	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 % Covered 100.00 100.00 file.sv % Covered</pre>	
Enabled Coverage Stmts Branches === File: D:/FinalYearProject Enabled Coverage Stmts Branches === File: D:/FinalYearProject Enabled Coverage Stmts Branches === File: D:/FinalYearProject === File: D:/FinalYearProject Enabled Coverage Stmts Branches	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active	Hits 16 6 (ref_model Hits 12 (ref_model Hits 5 7 (ref_model Hits 9	Misses 0 0 /ref_mode Misses 0 2 /ref_pc.s Misses 0 0 0 /ref_reg_ Misses 0	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 % Covered 100.00 100.00 file.sv % Covered 100.00</pre>	
Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Stmts Branches Enabled Coverage File: D:/FinalYearProject Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 9 20	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits 5 7 (ref_model Hits 9 20	Misses 0 0 /ref_mode Misses 0 2 /ref_pc.s Misses 0 0 0 /ref_reg_ Misses 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>% Covered 100.00 100.00 %1.sv % Covered 100.00 %5.71 % Covered 100.00 100.00 file.sv % Covered 100.00 file.sv % Covered 100.00 100.00</pre>	
Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage Stmts Branches Enabled Coverage Enabled Coverage En	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 9 20 4	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits 5 7 (ref_model Hits 9 20 4	Misses 0 0 0 /ref_mode Misses 0 2 /ref_pc.s 0 0 0 0 ./ref_reg_ Misses 0 0 0 0 0 0 0 0 0	<pre>% Covered 100.00 100.00 %1.sv % Covered 100.00 %5.71 % Covered 100.00 100.00 file.sv % Covered 100.00 100.00 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 9 20 4	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits 5 7 (ref_model Hits 9 20 4	Misses 0 0 /ref_mode Misses 0 2 /ref_pc.s ./ref_c.s 0 0 0 /ref_reg_ Misses 0 0 0 0	<pre>% Covered 100.00 100.00 %1.sv % Covered 100.00 %5.71 % % Covered 100.00 100.00 file.sv % Covered 100.00 100.00 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 5 7 20 4 9 20 4	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits 5 7 (ref_model Hits 9 20 4	Misses 0 0 /ref_mode Misses 0 2 /ref_pc.s Misses 0 0 0 /ref_reg_ Misses 0 0 0 0	<pre>% Covered 100.00 100.00 %1.sv % Covered 100.00 %5.71 % % Covered 100.00 100.00 file.sv % Covered 100.00 100.00 100.00 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 9 20 4 100.00% COVEF	Hits 16 6 (ref_model Hits 30 12 (ref_model Hits 5 7 (ref_model Hits 9 20 4 NGROUP TYFE	Misses 0 0 /ref_mode Misses 2 Misses 0 0 0 /ref_pc.s Misses 0 0 0 0 2 ES: 1	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 w % Covered 100.00 100.00 file.sv % Covered 100.00 100.00 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 9 20 4 100.00% COVER	Hits 16 6 (ref_model Hits 12 (ref_model Hits 5 7 (ref_model Hits 9 20 4 RGROUP TYPE	Misses 	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 % Covered 100.00 100.00 file.sv % Covered 100.00 100.00 100.00</pre>	
Enabled Coverage 	Active 16 6 ct/Coding/uvm/ Active 30 14 ct/Coding/uvm/ Active 5 7 ct/Coding/uvm/ Active 9 20 4 100.00% COVER coverage onl	Hits 16 6 (ref_model Hits 12 (ref_model Hits 5 7 (ref_model Hits 9 20 4 KGROUP TYP Y, filter	Misses 	<pre>% Covered 100.00 100.00 21.sv % Covered 100.00 85.71 % % Covered 100.00 100.00 file.sv % Covered 100.00 100.00 100.00 98.38%</pre>	

Figure 4.44: Coverage Report for RISC-V Constrained-Random Verification.

A total of 461 test seeds have been tested in constrained-random verification. All the specified cover points from the functional coverage report have been covered and tested.

From the code coverage analysis, some branches are not taken in several blocks of the reference model designed: ALU control unit block, memory unit block, and the top module. Upon analysis, these unexercised branches are the default statement for case statements. As the case statements for the reference model design are all assigned a specific value, it is expected for the default statement to be untaken. Aside from that, there is a miss from the focused expression condition coverage from the hazard unit block. Upon inspection, this condition miss is due to the condition of ensuring the write register is not register x0 as shown in the following figure:

Condition Coverage for:				
<pre>((mem_read ss ((idex_reg_addr_1 == e: FEC Coverage: 3 out of 4 input term:</pre>	xmem_rd) s covered	(idex_reg_add = 75.00%	<pre>dr_2 == exmem_rd))) && (exmem_rd != 0)</pre>)
Input Terminal	Covered	Reason	Hint	
mem_read	Y			
<pre>(idex_reg_addr_1 == exmem_rd)</pre>	Y			
<pre>(idex_reg_addr_2 == exmem_rd)</pre>	Y			
(exmem_rd != 0)	N	'_0' not hit	Hit '_0'	

Figure 4.45: Focused Expression Condition Coverage Miss Analysis.

As writes to register x0 has been disabled in the test generator, this condition is not checked. However, as RISC-V instruction set architecture specifies writes to register x0 are inhibited, the coverage miss can be dismissed as it serves as a precautionary condition. With the justifications provided, it can be stated that the reference model designed has been adequately tested.

Even though constrained-random verification contributes greater efficiency towards achieving full functional coverage, the vastly randomized instruction flow may miss out on corner cases that require specific instruction sequences. Developing a better instruction sequence generation algorithm will be needed to test such corner cases with specific instruction sequences. Alternatively, these corner cases can be manually written and tested.

Chapter 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Functional verification of a **pipelined RISC-V processor** has been successfully performed using **Universal Verification Methodology** (UVM). UVM is a testbench architecture that emphasizes a standardized and reusable approach towards a verification environment. The verification subject of this project is a RISC-V processor with a 5-stage pipeline implementation, with **data forwarding**, **pipeline stalling**, and **pipeline flushing** implemented.

The reference model, design under test, and testbench environment have been modelled using **SystemVerilog** and are simulated using **ModelSim**. **Directed verification** and **constrained-random** verification are the two main forms of verification performed. Both directed and constrained-random verification have been integrated into the UVM verification environment **translation** and **specification** tasks in the UVM sequence item class. Through the UVM configuration database, the user can select the intended verification form through the command line argument "+DIRECTED_TEST". Directed verification provided a much more well-planned test case scenario. In contrast, constrained-random verification proves to be a much more efficient approach towards achieving full functional coverage. The UVM verification environment has also introduced regression testing capability through programmed capabilities to store test cases and perform multiple test case testing in one simulation via command-line argument "+BATCH_TEST". These introduced capabilities

assisted with the verification process through **shorter simulation time**, **consistent test case reproduction**, and **cumulative coverage collection** for multiple test cases.

For the functional verification of the reference model, a **self-checking mechanism** has been introduced in the UVM scoreboard component. The selfchecking mechanism performs functional verification for major design functionalities, including pipeline stalling, pipeline flushing, and implemented instruction functionality. Intentional bugs have also been introduced in the design under test and reference model to test out the bug detection capability of the verification environment. The simulation results for self-checking mechanism testing and bug detection capability testing have been compiled and explained. For directed verification, a sample program has been written in assembly language. The written program is translated to machine language and simulated. The simulation results are compiled and analysed for any logical errors. For constrained-random verification, various test seeds with varying specifications have been generated and tested. The compiled results can be found in **Chapter 4**.

From the results compiled, **code coverage** is at **98.38%**, whereas **functional coverage** is at **100%**. The unexercised code is due to default cases for several case statements, whereby all expected case statements have been appropriately assigned. The project is said to have been completed with sufficient functional verification performed as indicated by the full functional coverage and high code coverage.

5.2 Recommendations

For future enhancement of the project, several recommendations can be made. The utilized simulation verification performs lock-step comparison between the reference model and design under test. It is suggested that a **reference model from Imperas can be used for the lock-step comparison** to further **enhance the confidence in the verification performed** due to the maturity of the Imperas RISC-V reference model. Usage of a high confidence reference model would remove the requirement of a self-checking mechanism, allowing more effort to be placed on other verification

components. The utilization of a reference model would also offer a learning opportunity for verification intellectual property (VIP) interfacing and usage.

Aside from the utilization of a higher confidence reference model, another recommendation that can be made is the **fragmentation of the verification process**. The verification methodology focuses on **chip level verification** whereby verification is performed on the RISC-V processor as a whole. Fragmenting the verification process to several levels such as **unit level verification**, **block level verification**, and **chip level verification** can ease the overall verification process, especially when the verification subject is a complex system. Verification at lower levels can place more emphasis on functionality correctness of the unit whereas verification at higher level can place more emphasis on overall functionality correctness and interconnection of the lower level components.

Another future enhancement of the project would be to **complexify the functional coverage criteria**. In this project, the functional coverage criteria include pipeline stalling, pipeline flushing, and the instructions executed. The lack of complex functional coverage cover point or cross cover point makes it easy to achieve full functional coverage. A well-planned functional coverage would **allow more complex test case scenarios** to be included in the test plan, leading to a better verification. A complexified functional coverage criteria would also push forward the necessity for a complexified test generator algorithm. The test generator mainly used for constrainedrandom verification provides randomized test cases with valid random instructions. A recommendation that can be made is to include a **better algorithm for instruction generation** that results in a **sensible instruction flow**.

Lastly, **formal property verification** can also be included for specific properties of the RISC-V microprocessor architecture, such as pipeline stalling and pipeline flushing. Compared to the unconventional approach taken (self-checking mechanism) for assertion checks of pipeline stalls and pipeline flushes, standardized SystemVerilog assertions provide a much more comprehensible approach. The inclusion of formal property verification would also provide learning and practical opportunity for SystemVerilog assertions (SVA), a widely used verification methodology in the industry.

REFERENCES

- Ackland, B. and Weste, N. (1981). Functional verification in an interactive symbolic IC design environment.
- Adir, A., Copty, S., Landa, S., Nahir, A., Shurek, G., Ziv, A., Meissner, C. and Schumann, J. (2011). A unified methodology for pre-silicon verification and postsilicon validation. Design, Automation & Test in Europe, pp. 1-6.
- Andrew, W., Krste, A., and SiFive Inc., 2017. The RISC-V Instruction Set Manual Volume I: User Level ISA.
- Chauhan, K., 2020. ASIC Design Flow in VLSI Engineering Services A Quick Guide. [online] Available at: https://www.einfochips.com/blog/asic-design-flow-in-vlsiengineering-services-a-quick-guide/ [Accessed 26 July 2021].
- Chen, S.J. and Cheng, C.K. (2000). *Tutorial on VLSI partitioning*. VLSI design, 11(3), pp.175-218.
- Chip Verify, n.d. *SystemVerilog Tutorial*. [online] Available at: https://www.chipverify.com/systemverilog/systemverilog-tutorial [Accessed 30 July 2021].
- Doulos, n.d. *What is Verilog?* [online] Available at: https://www.doulos.com/httpswwwdouloscomknowhow/verilog/what-is-verilog/ [Accessed 30 July 2021].
- Francesconi, J., Rodriguez, J.A. and Julian, P.M. (2014). UVM based testbench architecture for unit verification. Argentine Conference on Micro-Nanoelectronics, Technology and Applications (EAMTA), pp. 89-94.
- Kaeslin, H. (2014). *Top-down digital VLSI design: from architectures to gate-level circuits and FPGAs*. Morgan Kaufmann. pp. 301–357.
- Lam, W.K. (2005). *Hardware design verification: simulation and formal methodbased approaches*. Prentice Hall Professional Technical Reference.
- Lavagno, L., Scheffer, L. and Martin, G. eds. (2018). EDA for IC implementation, circuit design, and process technology. CRC press. pp. 635 685.

Law, A. M., 2008. How to Build Valid and Credible Simulation Models. [online] Available at: https://www.informs-sim.org/wsc08papers/007.pdf [Accessed 14 July 2021].

Ledin, J. (2020). Modern Computer Architecture and Organization. Packt Publishing.

- Monteiro, J. and Van Leuken, R. eds. (2010). Integrated Circuit and System Design: Power and Timing Modeling, Optimization and Simulation: 19th International Workshop, PATMOS 2009, Delft, The Netherlands, September 9-11, 2009, Revised Selected Papers (Vol. 5953). Springer Science & Business Media. pp. 511 – 529.
- Nuwen, P., 2020. What is RISC-V? 10 Things You Should Know About RISC-V in 2020. [online] Available at: https://www.seeedstudio.com/blog/2020/06/01/10-thingsyou-should-know-about-risc-v-in-2020-m/ [Accessed 14 July 2021].
- Oski Technology, 2020. Formal vs. Simulation Testbenches: Architecting for End-to-End Verification. [online] Available at: https://www.oskitechnology.com/formalvs-simulation-testbenches-architecting-for-end-to-end-verification/ [Accessed 24 December 2021].
- Patterson, D. and Hennessy, J. eds. (2017). Computer Organization and Design. RISC-V Edition. Morgan Kaufmann, Burlington. pp. 234 – 307.
- Saint, C., 2020. *Integrated Circuit*. [online] Available at: https://www.britannica.com/technology/integrated-circuit [Accessed 26 July 2021].
- Semiconductor Engineering, n.d. Physical Design. [online] Available at: https://semiengineering.com/knowledge_centers/eda-design/definitions/physicaldesign/ [Accessed 26 July 2021].
- Shah, A., 2013. Keeping up with Moore's Law is getting harder. [online] Available at: https://www.computerworld.com/article/2497175/keeping-up-with-moore-s-lawis-getting-harder.html [Accessed 28th July 2021].
- Shen, J. and Abraham, J.A. (1999). *Verification of processor microarchitectures*. Proceedings 17th IEEE VLSI Test Symposium (Cat. No. PR00146), pp. 189-194.
- Singhal, M., 2015. Introduction about Advanced Functional Verification. [online] Available at: https://www.learnuvmverification.com/index.php/2015/07/04/187/ [Accessed 30 July 2021].
- Synopsys, n.d. *What is IC Design?* [online] Available at: https://www.synopsys.com/glossary/what-is-ic-design.html [Accessed 26 July 2021].

- Tech Design Forum, n.d. *Assertion-based verification*. [online] Available at: https://www.techdesignforums.com/practice/guides/guide-to-assertion-based-verification/ [Accessed 30 July 2021].
- The University of Texas at Dallas, 2011. *Modern ASIC Design Architectural Design* [online] Available at: https://personal.utdallas.edu/~zhoud/EE6306/lecture%20slides/ASIC%202011%2 0Chapter%204%20Architecture%20Design.pdf [Accessed 26 July 2021].
- Tranter, J., 2021. *What is RISC-V and Why is it Important?* [online] Available at: https://www.ics.com/blog/what-risc-v-and-why-it-important [Accessed 14 July 2021].
- Vij, V. (2013). VLSI Design Theory and Practice. Laxmi Publications. pp. 8-12.
- Wang, L.T., Chang, Y.W. and Cheng, K.T.T. eds. (2009). *Electronic design automation: synthesis, verification, and test.* Morgan Kaufmann. pp. 14 17.

APPENDICES

APPENDIX A: Source Code of Reference Model – Top Module

include "parameter_list.sv"						
inder rei model						
module	arine ref model					
module	101_10000	(virouui_inocrituce in	cereace_instance,,			
	logic	['INST ADDR WIDTH-1:0]	instr addr;			
	logic	['INST CODE WIDTH-1:0]	instr code;			
	logic	[REG ADDR WIDTH-1:0]	reg read addr 1;			
	logic	[DATA WIDTH-1:0]	reg data 1;			
	logic	[REG ADDR WIDTH-1:0]	reg read addr 2;			
	logic	[`DATA WIDTH-1:0]	reg data 2;			
	logic	[`DATA WIDTH-1:0]	imm val;			
	logic	['INST ADDR WIDTH-1:0]	imm addr;			
	logic	[`CTL_SGNL_WIDTH-1:0]	ctl_op;			
	logic	[`ALU_OP_WIDTH-1:0]	alu_op;			
	logic	[`ALU_CTL_WIDTH-1:0]	alu_ctl;			
	logic	[`DATA_WIDTH-1:0]	alu_output;			
	logic		alu_zero;			
	logic	[`DATA_WIDTH-1:0]	loaded_data;			
	logic	[`DATA_WIDTH-1:0]	stored_data;			
	logic	[`FWRD_MUX_WIDTH-1:0]	fwrd_mux_1;			
	logic	[`FWRD_MUX_WIDTH-1:0]	fwrd_mux_2;			
	logic		stall;			
	logic		flush;			
	logic	[`INST_ADDR_WIDTH-1:0]	ifid_instr_addr;			
	logic	['INST_CODE_WIDTH-1:0]	ifid_instr_code;			
	logic	['INST_ADDR_WIDTH-I:0]	idex_instr_addr;			
	logic	[INSI_CODE_WIDTH-I:0]	idex_instr_code;			
	logic	[REG_ADDR_WIDIH-I:0]	idex_reg_addr_1;			
	logic	[DATA_WIDIH-1:0]	idex_reg_data_1;			
	logic	[REG_ADDR_WIDIR-1:0]	idex_reg_addr_2;			
	logic	[DATA_WIDIH-1:0]	idex_reg_data_2;			
	logic	CTI SCMI MIDTH-1.01	ider atl on			
	logic	[CIL_SOUL_WIDTH-1.0]	idex alu op:			
	logic	['INST ADDR WIDTH-1.0]	evmem instr addr:			
	logic	[INST CODE WIDTH-1:0]	exmem instr code:			
	logic	[`DATA WIDTH-1:01	exmem alu output:			
	logic	(exmem zero:			
	logic	[`DATA WIDTH-1:0]	exmem imm val;			
	logic	[DATA WIDTH-1:0]	exmem mem data;			
	logic	[CTL SGNL WIDTH-1:0]	exmem ctl op;			
	logic	[`CTL SGNL WIDTH-1:0]	memwb ctl op;			
	logic	[`DATA_WIDTH-1:0]	memwb_alu_data;			
	logic	[`DATA_WIDTH-1:0]	memwb_mem_data;			
	logic	[`REG_ADDR_WIDTH-1:0]	<pre>memwb_write_addr;</pre>			
	logic	[`DATA_WIDTH-1:0]	<pre>memwb_write_data;</pre>			
	logic	[`DATA_WIDTH-1:0]	<pre>memwb_mem_addr;</pre>			
	logic	[`DATA_WIDTH-1:0]	<pre>memwb_mem_write_dat</pre>	a;		
	logic	[`INST_ADDR_WIDTH-1:0]	<pre>memwb_instr_addr;</pre>			
	logic	[`DATA_REG_WIDTH-1:0]	rom [0:((2**`ME	4_ROWS) - 1)];		
	rer_pc		REF_PC (.C	<pre>cock(interface_instance.cik);</pre>		
			.r	<pre>cset(interiace_instance.reset), call(etall)</pre>		
			.5	und (fluch)		
			I.	m addr(imm addr)		
				un_addr(inn_addr),		
			.a i	<pre>ump reg(idex ct] on[]IIMP REG1).</pre>		
				<pre>hstr addr(instr addr)):</pre>		
				loss_adds(incor_adds///		

	DEE T NEW	
rer_1_mem	REF_1_MEM	<pre>(.reset(interface_instance.reset), .rom(rom), .instr_addr(instr_addr), </pre>
		.instr_code(instr_code));
ref_ifid_pipeline_reg	REF_IF	<pre>(.clock(interface_instance.clk), .reset(interface_instance.reset),</pre>
		.stall(stall),
		.flush(flush), .instr addr(instr addr),
		.instr_code (instr_code),
		.ifid_instr(ifid_instr_code));
ref reg file	REF REG	(.clock(interface instance.clk),
	-	<pre>.reset(interface_instance.reset),</pre>
		.instr_code(ifid_instr_code), .reg write(memwb ctl op[`REG WRITE]),
		.reg_write_addr(memwb_write_addr),
		.reg_write_data(memwb_write_data), .reg_read_addr_1(reg_read_addr_1),
		<pre>.reg_data_l (reg_data_l), reg_mand_addm_l)</pre>
		.reg_read_addr_2(reg_read_addr_2), .reg_data_2(reg_data_2));
ref_imm_gen	REF_IMM_GEN	(.instr_code(ifid_instr_code),
		.imm_val(imm_val));
ref_imm_addr_unit	REF_IMM_ADDR	(.instr_addr(idex_instr_addr), .imm_val(idex_imm_val).
		.imm_addr(imm_addr));
ref_ctl_unit	REF_CTL	(.instr_code(ifid_instr_code),
		.ctl_op(ctl_op), .alu_op(alu_op));
ref_idex_pipeline_reg	REF_ID	(.clock(interface_instance.clk),
		.reset(interface_instance.reset),
		.flush(flush),
		.instr_code (ifid_instr_code),
		.reg_addr_l(reg_read_addr_l),
		.reg_data_l(reg_data_l),
		.reg_data_2(reg_data_2),
		.imm_val(imm_val), .ctl op(ctl op).
		.alu_op(alu_op),
		.idex_instr_code(idex_instr_code), .idex instr addr(idex instr addr),
		.idex_imm_val(idex_imm_val),
		.idex_ctl_op(idex_ctl_op), .idex_alu_op(idex_alu_op),
		.idex_reg_addr_1(idex_reg_addr_1),
		.idex_reg_data_l(idex_reg_data_l), .idex_reg_addr_2(idex_reg_addr_2),
		.idex_reg_data_2(idex_reg_data_2));
ref_alu_ctl	REF_ALU_CTL	(.alu_op(idex_alu_op),
		.instr_code(idex_instr_code); .alu_ctl(alu_ctl));
ref_alu	REF_ALU	(.mem_to_reg(memwb_ctl_op[`MEM_TO_REG]),
		<pre>.reg_data_1(idex_reg_data_1), reg_data_2(idex_reg_data_2)</pre>
		.imm_val(idex_imm_val),
		.alu_ctl(alu_ctl),
		.fwrd_mux_l(fwrd_mux_l),
		.fwrd_mux_2(fwrd_mux_2),
		.memwb_alu_data(memwb_alu_data),
		.memwb_mem_data(memwb_mem_data),
		.alu_zero(alu_zero));
ref_exmem_pipeline_reg	REF_EX	<pre>(.clock(interface_instance.clk), .reset(interface_instance_reset).</pre>
		.alu_zero(alu_zero),
		.stail(stall), .flush(flush),
		.mem_to_reg(memwb_ctl_op[`MEM_TO_REG]),
		.imm_val(idex_imm_val), .fwrd_mux_2(fwrd_mux_2).
		.memwb_mem_data(memwb_mem_data),
		.memwb_alu_data(memwb_alu_data), .idex mem data(idex reg data 2).
		.alu_output(alu_output),
		.instr_code(idex_instr_code), .instr_addr(idex_instr_addr).
		<pre>.ctl_op(idex_ctl_op), .exmem_instr_code(exmem_instr_code), .exmem_instr_addr(exmem_instr_addr), .exmem_mem_data(exmem_mem_data), .exmem_alu_output(exmem_alu_output),</pre>
--	---	--
		<pre>.exmem_zero(exmem_zero), .exmem_inm_val(exmem_inm_val), .exmem_ctl_op(exmem_ctl_op));</pre>
ref_d_mem	REF_D_MEM	<pre>(.clock(interface_instance.clk), .reset(interface instance.reset), .mem_write(exmem_ctl_op[`MEM_WRITE]), .mem_read(exmem_ctl_op[`MEM_READ]), .instr_code(exmem_instr_code), .address(exmem_alu_output[`MEM_ADDR_WIDTH-1:0]), .reg_data(exmem_mem_data), .loaded_data(loaded_data), .stored_data(stored_data));</pre>
ref_memwb_pipeline_reg	REF_WB	<pre>(.clock(interface_instance.clk), .reset(interface_instance.reset), .alu_output(exmem_alu_output), .ctl_op(exmem_ctl_op), .loaded_data(loaded_data), .stored_data(stored_data), .rd(exmem_instr_code[`RD_ADDR_HI:`RD_ADDR_LO]), .instr_addr(exmem_instr_addr), .memwb_ctl_op(memwb_ctl_op), .memwb_write_data(memwb_write_addr), .memwb_write_data(memwb_write_data), .memwb_mem_data(memwb_mem_data), .memwb_mem_addr(memwb_mem_data), .memwb_mem_addr(memwb_mem_data), .memwb_mem_write_data(memwb_mem_data), .memwb_mem_write_data(memwb_mem_addr), .memwb_mem_write_data(memwb_mem_write_data), .memwb_mem_write_data(memwb_mem_write_data), .memwb_instr_addr(memwb_instr_addr));</pre>
ref_fwrd_unit	REF_FWRD	<pre>(.reset(interface_instance.reset), .exmem_reg_write(exmem_ctl_op[`REG_WRITE]), .memwb_reg_write(memwb_ctl_op[`REG_WRITE]), .stall(stall), .exmem_rd(exmem_instr_code[`RD_ADDR_HI:`RD_ADDR_LO]), .memwb_rd(memwb_write_addr), .exmem_opcode(exmem_instr_code[`OPCODE_HI:`OPCODE_LO]), .reg_1(idex_reg_addr_1), .reg_2(idex_reg_addr_2), .fwrd_mux_1(fwrd_mux_1), .fwrd_mux_2(fwrd_mux_2));</pre>
ref_hzrd_unit	REF_HZRD	<pre>(.reset(interface_instance.reset), .mem_read(exmem_ctl_op[`MEM_READ]), .zero(alu_zero), .branch(idex_ctl_op[`BRANCH]), .jump(idex_ctl_op[`JUMP_LINK]), .exmem_rd(exmem_instr_code[`RD_ADDR_HI:`RD_ADDR_LO]), .idex_reg_addr_1(idex_reg_addr_1), .idex_reg_addr_2(idex_reg_addr_2), .fwrd_mux_1(fwrd_mux_1), .fwrd_mux_2(fwrd_mux_2), .stall(stall), .flush(flush));</pre>
<pre>// Drive signals to th always @ (posedge inter inter) inter inter inter if [!st</pre>	<pre>testbench for further rface_instance.clk) begin face_instance.ref_stall face_instance.ref_flush face_instance.ref_jump_l face_instance.ref_jump_l face_instance.ref_jump_l</pre>	<pre>verification n: interface_block <= stall; <= flush; ink <= idex_ctl_op[`JUMP_LINK];</pre>
end	interface_instance.re interface_instance.re	f_pc <= ifid_instr_addr; f_instr <= ifid_instr_code;
interi interi case (i `FWRD_	Tace_instance.ref_reg_re Tace_instance.ref_reg_re Twrd_mux_1) ALU: interface_ins	ad_addr_1 <= idex_reg_addr_1; ad_addr_2 <= idex_reg_addr_2; tance.ref_reg_read_data_1 <= exmem_alu_output;
`FWRD_	MEM: begin if(memwb_ctl_op[`MEM_' interface_ins	IO_REG]) tance.ref_reg_read_data_1 <= memwb_mem_data;
	else interface_ins end	<pre>tance.ref_reg_read_data_1 <= memwb_alu_data;</pre>
`NO_FU endcas	NRD: interface_ins	<pre>tance.ref_reg_read_data_l <= idex_reg_data_l;</pre>
CdBe(1) `FWRD_ `FWRD_	ALU: interface_ins MEM: begin if(memwb_ctl_op[`MEM_`	<pre>tance.ref_reg_read_data_2 <= exmem_alu_output; IO_REG]) tance ref_reg_read_data_2 <= memuh_mem_data;</pre>
	else interface_ins	<pre>tance.ref_reg_read_data_2 <= memwb_alu_data;</pre>
`NO_FV	end IRD: interface_ins	<pre>tance.ref_reg_read_data_2 <= idex_reg_data_2;</pre>

endcase				
case(fwrd mux 2)				
"EWRD ALU: interface instance.ref reg read data 2 <= exmem alu output:				
TRUED MEM begin				
if (memula ct] on [`MEM TO REG1)				
interface instance ref reg read data 2 <= memuh mem data;				
interface instance ref reg read data 2 <= memuh alu data.				
and				
NO END.				
endesse				
interface instance ref imm val /- idev imm val.				
interface instance ref all output (= fact and output :				
interface_instance.ref_alu_saro_ <ewam_ara_saro< td=""><td></td></ewam_ara_saro<>				
interface instance ref at on /= exmem at on:	<pre>interface_instance.ref_alu_zero <= exmem_zero; interface_instance.ref_ctl_op <= exmem_ctl_op; interface_instance.ref_cruptie_addr_cmerryb_write_addr;</pre>			
interface_instance.ref_req_prite_addr_c=_memuh_uvite_addr_				
interface_inctance.ref mem_addr <= memmers/wite_addr,				
interface_instance.ref_mem_unite_data (= memb_mem_unite_data)				
internace_instance.ref_mem_write_data <= memworket_ort.WEM_WITE_data,				
interface_instance.ref_mem_write <= memwb_ctl_op(_MEM_RETE);				
interface_instance.ref_mem_read <= memwb_ctf_op[_MEM_READ];				
interlate_instance.ref_reg_write <= memwb_ctl_op[ktd_wkite];				
interface_instance.ref_reg_write_data <= memwb_write_data;				
<pre>// Delayed alignment instruction executions for coverage checking</pre>				
interface instance.ref ID instr <= idex instr code;				
interface instance.ref EX instr <= exmem instr code;				
interface instance.ref EX pc <= exmem instr addr;				
end: interface block				
endmodule				
`endif				

```
`include "parameter_list.sv"
`ifndef ref pc
         `define ref_pc
module ref_pc (input wire
                                    logic
                                                                          clock,
                                   logic
                   input wire
                                                                          reset,
                   input wire logic stall,
input wire logic flush,
input wire logic [`INST_ADDR_WIDTH-1:0] imm_addr,
                   input wire logic ['DATA_WIDTH-1:0]
input wire logic
output logic ['INST_ADDR_WIDTH-
                                                                          alu_output,
                                                                          jump_reg,
                                             [`INST_ADDR_WIDTH-1:0] instr_addr);
         always @(posedge clock) begin: always_block
                  if(reset)
                           instr_addr <= `RESET VALUE;</pre>
                  else if(!stall) begin: update_pc
                           if(flush) begin: flush pc
                                     if(jump_reg)
                                             instr_addr <= {alu_output[`DATA_WIDTH-1:2],2'b00};</pre>
                                     else
                                             instr_addr <= imm_addr;</pre>
                            end: flush_pc
                           else
                                     instr_addr <= instr_addr + `INST_ADDR_SUM;</pre>
                  end: update_pc
         end: always_block
endmodule
 `endif
```

APPENDIX C: Source Code of Reference Model - Instruction Memory

```
`include "parameter_list.sv"
`ifndef ref_i_mem
             `define ref_i_mem
                                 (input wire
                                      (input wire logic
ref logic
input wire logic
module ref_i_mem
                                                                                                                 reset,
                                                                          [`DATA_REG_WIDTH-1:0] rom [0:(
[`INST_ADDR_WIDTH-1:0] instr_addr,
[`INST_CODE_WIDTH-1:0] instr_code);
                                                                                                                             [0:((2**`MEM_ROWS) - 1)],
                                       output logic
            // Setup program in instruction memory during reset
// Fetch instruction from instruction memory based on provided instruction address
                       @(*) begin: instruction_fetch
instr_code = {rom[instr_addr],
            always @(*)
                                             rom[instr_addr + 1],
rom[instr_addr + 2],
rom[instr_addr + 3]};
            end: instruction_fetch
endmodule
 endif
```

APPENDIX D: Source Code of Reference Model - IF/ID Pipeline Register

```
`include "parameter_list.sv"
 `ifndef ref_ifid_pipeline_reg
`define ref_ifid_pipeline_reg
module ref_ifid_pipeline_reg
                                        (input wire
                                                             logic
                                                                                                       clock.
                                                             logic
                                                                                                      reset.
                                          input wire
                                          input wire
                                                             logic
                                                                                                       stall,
                                                             logic
                                          input wire
                                                                                                       flush,
                                                                      [`INST_ADDR_WIDTH-1:0] instr_addr,
[`INST_CODE_WIDTH-1:0] instr_code,
                                          input wire
                                                             logic
                                                           logic
                                          input wire
                                          output logic
                                                                        ['INST_ADDR_WIDTH-1:0]
                                                                                                     ifid_addr,
                                          output logic
                                                                       [`INST_CODE_WIDTH-1:0] ifid_instr);
          // On positive clock edge, update the pipeline registers if pipeline is not stalled or flushed // For IF/ID pipeline register, store instruction code and address
          always @(posedge clock) begin: always_block
                    if(reset) begin: system_reset
    ifid_instr <= `RESET_VALUE;
    ifid_addr <= `RESET_VALUE;</pre>
                    end: system_reset
                    else if(!stall) begin: normal_operation
    ifid_instr <= instr_oode;
    ifid_addr <= instr_addr;</pre>
                    end: normal_operation
          end: always_block
endmodule
 endif
```

```
`include "parameter_list.sv"
 ifndef ref_reg_file
           `define ref_reg_file
module ref_reg_file
                              (input wire
                                                                                           clock,
                                                  logic
                               input wire
                                                  logic
                                                                                           reset,
                                                            ['INST_CODE_WIDTH-1:0] instr_code,
                               input wire
                                                  logic
                               input wire
                                                  logic
                                                           reg_write,
[`REG_ADDR_WIDTH-1:0] reg_write_addr,
                               input wire
                                                  logic
                               input wire
                                                  logic
                                                            [`DATA_WIDTH-1:0]
                                                                                           reg_write_data,
                                                            [`REG_ADDR_WIDTH-1:0] reg_read_addr_1,
[`DATA_WIDTH-1:0] reg_data_1,
                               output logic
                               output logic
                                                            ['DATA_WIDTH-1:0] reg_cata_1,
['REG_ADDR_WIDTH-1:0] reg_read_addr_2,
['DATA_WIDTH-1:0] reg_data_2
                               output logic
                               output logic
                                                           [`DATA_WIDTH-1:0]
                                                                                                               );
                                                                      [0:(2**`REG_ADDR_WIDTH)-1];
          logic [`DATA_WIDTH-1:0]
                                                  register
          assign reg_read_addr_l = reset ? 0 : instr_code[`RS1_ADDR_HI:`RS1_ADDR_LO];
assign reg_read_addr_2 = reset ? 0 : instr_code[`RS2_ADDR_HI:`RS2_ADDR_LO];
                                    = (reset ? 0 : (reg_write ? (reg_read_addr_1 == reg_write_addr ?
          assign reg_data_1
                                    reg_write_data : register[reg_read_addr_1]) : register[reg_read_addr_1]))
= (reset ? 0 : (reg_write ? (reg_read_addr_2 == reg_write_addr ?
reg_write_data : register[reg_read_addr_2]) : register[reg_read_addr_2]))
          assign reg_data_2
          always @(posedge clock) begin: always_block
                    if(reset)
                                       begin
                             for
                                        (int i = 0; i < 32; i++)
                                       register[i] <= 32'b0;</pre>
                    end
                    else begin
                             if(reg_write ss reg_write_addr != 0)
                                        register[reg_write_addr] <= reg_write_data;</pre>
                    end
          end: always_block
endmodule
 endif
```

```
`include "parameter list.sv"
`ifndef ref_ctl_unit
        `define ref_ctl_unit
module ref ctl unit
                       (input wire logic [`INST CODE WIDTH-1:0] instr code,
                        output logic
                                             [`CTL SGNL WIDTH-1:0] ctl_op,
                                               [`ALU OP WIDTH-1:0]
                                                                      alu op);
                        output logic
              [`OPCODE_WIDTH:0]
        logic
                                       opcode;
        assign opcode = instr_code[`OPCODE_HI:`OPCODE_LO];
        // Assign control signal and ALU OP based on instruction type
        // Ensuring proper hardware functioning based on instruction
        always @(*) begin: main_control_signal_block
                case (opcode)
                'R OPCODE
                          : begin
                                ctl_op = `R_CTL_SGNL;
                                alu_op = `ARITH_LOGIC_ALU_OP;
                              end
                LOAD_OPCODE: begin
                               ctl_op = `LOAD_CTL SGNL;
                               alu op = `IMM ADDR CALC ALU OP;
                             end
                'U OPCODE,
                I OPCODE
                            : begin
                               ctl_op = `I_CTL_SGNL;
                               alu op = `ARITH LOGIC ALU OP;
                             end
                S OPCODE
                           : begin
                               ctl_op = `S_CTL_SGNL;
alu_op = `IMM_ADDR_CALC_ALU_OP;
                             end
                `SB OPCODE : begin
                               ctl_op = `SB_CTL_SGNL;
                               alu_op = `COND_BRANCH_ALU_OP;
                              end
                J OPCODE
                           : begin
                               ctl_op = `J_CTL_SGNL;
                               alu_op = `JAL_ALU_OP;
                             end
                'JALR OPCODE: begin
                                ctl_op = `JALR_CTL_SGNL;
                                alu_op = `IMM_ADDR_CALC_ALU_OP;
                             end
                default
                            : begin
                               ctl_op = `NOP_CTL SGNL;
                                alu op = 'JAL ALU OP;
                              end
               endcase
       end: main control signal block
endmodule
 endif
```

APPENDIX G: Source Code of Reference Model – Immediate Generate Unit

`include `ifndef	<pre>"parameter_list ref_imm_gen</pre>	.sv"			
module	ref_imm_gen	_gen (input wire output logic	logic [[[`INST_CODE_WIDTH-1:0] [`DATA_WIDTH-1:0]	<pre>instr_code, imm_val);</pre>
	logic [`OPCODE assign opcode =	_WIDTH:0] instr_code[`OP	opcode; CODE_HI:`C	DPCODE_LO];	
	// Generate corr always @(*) begi case(opp	cesponding immed n: immediate_va	liate value lue_always	e based on type of inst s_block	ruction
	0000 (0)0	LOAD_OPCODE: i I_OPCODE : i	.mm_val = { .mm_val = {	<pre>({20{instr_code[31]}},i ({20{instr_code[31]}},i ({20{instr_code[31]}},i</pre>	<pre>nstr_code[31:20]; nstr_code[31:20]; nstr_code[31:20];</pre>
		SALR_OPCODE : 1 SB_OPCODE : 1	.mm_val = { .mm_val = { .mm_val = {	<pre>{{20{instr_code[31]}},i {{20{instr_code[31]}},i {{19{instr_code[31]}},i</pre>	<pre>nstr_code[31:25],instr_code[11:7]); nstr_code[31:25],instr_code[11:7]); nstr_code[31],instr_code[7],instr_code[30:25],instr_code[11:8],1'b0);</pre>
		<pre>`U_OPCODE : i `J_OPCODE : i default : i</pre>	.mm_val = { .mm_val = { .mm_val = 0	<pre>(instr_code[31:12],12'b ({11{instr_code[31]}},i);</pre>	00000000000); nstr_code[31],instr_code[19:12],instr_code[20],instr_code[30:21],1'b0};
	endcase				
endmodul	end: immediate_v Le	ralue_always_blo	ock		

APPENDIX H: Source Code of Reference Model – ID/EX Pipeline Register

`include "parameter list.sv"				
`ifndef ref idev nineline reg				
Mafine and idea aireli				
define ref_idex_pipeli	ne_reg			
<pre>module ref_idex_pipeline_reg</pre>	(input wire	logic		clock,
	input wire	logic		reset,
	innut wire	logic		stall.
	input vinc	logio		fluch
	input wire	TOGIC		ilush,
	input wire	logic	['INST_CODE_WIDTH-1:0]	instr_code,
	input wire	logic	[`INST ADDR WIDTH-1:0]	instr addr,
	input wire	logic	[BEG ADDR WIDTH-1:01	reg addr 1.
	input wine	logic	L'DATA MIDTH-1.01	rog_data_1
	Input wire	TOGIC	[DATA_WIDIN-1.0]	reg_uaca_r,
	input wire	Todic	['REG_ADDR_WIDTH-1:0]	reg_addr_2,
	input wire	logic	[`DATA_WIDTH-1:0]	reg_data_2,
	input wire	logic	[`DATA WIDTH-1:01	imm val,
	innut wire	logic	CTL SGNL WIDTH-1:01	ctl on
	input wire	logio	CALL OD MIDTH 1.01	alu an
	input wire	logic	[ALO_OP_WIDIH-I:0]	alu_op,
	output logic		[`INST_CODE_WIDTH-1:0]	idex_instr_code,
	output logic		[`INST ADDR WIDTH-1:0]	idex instr addr,
	output logic		[DATA WIDTH-1:01	idex imm val.
	output logic		CTT SCNI NIDTH 1.01	ider atl on
	Sucpus 10g1C		[CIP_DOWP_WIDIU-I:0]	Idex_col_op,
	output logic		['ALU_OP_WIDTH-1:0]	idex_alu_op,
	output logic		[`REG_ADDR_WIDTH-1:0]	idex_reg_addr_1,
	output logic		[`DATA WIDTH-1:01	idex reg data 1.
	output logic		L'DEC ADD WIDTH-1.01	idev reg addr 2
	Sucput TOGIC		[KEG_MDEK_WIDIN-I:0]	iden nen dete C
	output logic		['DATA_WIDTH-1:0]	idex_reg_data_2);
<pre>if(resc) begin: system_resc: idex_instr_odd <= `RESET_VALUE; idex_instr_addr <= `RESET_VALUE; idex_reg_data_1 <= `RESET_VALUE; idex_reg_addr_1 <= `RESET_VALUE; idex_reg_addr_2 <= `RESET_VALUE; idex_reg_addr_2 <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_instr_code <= `NOP_INST_CODE; idex_instr_addr <= instr_addr; idex_col_op <= `NOP_INST_CODE; idex_alu_op <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_instr_addr <= instr_addr; idex_index_indt <= `RESET_VALUE; idex_alu_op <= `RESET_VALUE; idex_reg_data_1 <= `RESET_VALUE; idex_reg_data_2 <= `RESET_VALUE; idex_reg_addr_1 <= `RESET_VALUE; idex_reg_addr_1 << `RESET_VALUE; idex_reg_addr_2 <<</pre>				
	idex instr add	lr <= inst	tr addr;	
idex imp val <= imp val:				
	idex reg date	l <= rea	data 1:	
	idev reg data	2 <- reg	data 2:	
	idex_reg_data_	Z <= reg	_uata_2;	
	idex_reg_addr_	⊥ <= reg	_addr_1;	
	idex_reg_addr_	2 <= reg	_addr_2;	
	idex ctl op <=	ctl op:		
	idex alu on <=	aluon		
	raca_ara_op <-	ara_op,		
end: no	rmai_operation			
end				
end: always block				
endmodule `endif				

```
include "parameter_list.sv"
  ifndef ref_alu_ctl
                define ref alu ctl
                                                                    logic [`ALU_OP_WIDTH-1:0] alu_op,
logic [`INST_CODE_WIDTH-1:0] instr_code,
[`ALU_CTL_WIDTH-1:0] alu_ctl);
module ref_alu_ctl
                                        (input wire
                                           input wire
                                           output logic
                           [`OPCODE_WIDTH:0]
              logic
                                                                      opcode;
                            [`FUNCT3_WIDTH:0]
[`FUNCT7_WIDTH:0]
              logic
                                                                      funct3:
                                                                      funct7;
              logic
              assign opcode = instr_code[`OPCODE_HI:`OPCODE_LO];
assign funct3 = instr_code[`FUNCT3_HI:`FUNCT3_LO];
assign funct7 = instr_code[`FUNCT7_HI:`FUNCT7_LO];
               // Assign ALU control signal correspond to the instruciton operation
              always @(*) begin: main_alu_ctl_block
                            case (alu_op)
                             case(alu_op)
`IMM_ADDR_CALC_ALU_OP: alu_ctl = `ADD_CTL;
`COND_BRANCH_ALU_OP: begin: sb_alu_ctl_block
                                                                      gin: sb_alu_ct
case(funct3)
    'BEQ_FUNCT3
    'BLT_FUNCT3
    'BLT_FUNCT3
    'BLTU_FUNCT3
    'BLTU_FUNCT3
    'BLTU_FUNCT3
                                                                                              : alu_ctl = `COMP_EQ_CTL;
: alu_ctl = `COMP_NEQ_CTL;
: alu_ctl = `COMP_LESS_CTL;
: alu_ctl = `COMP_GEQ_CTL;
: alu_ctl = `COMP_GEQ_UNSIGNED_CTL;
: alu_ctl = `COMP_GEQ_UNSIGNED_CTL;
                                                                      endcase
                                                                 end: sb_alu_ctl_block
                             `ARITH_LOGIC_ALU_OP: begin: arith_logic_alu_ctl_block
case(opcode)
                                                                       I_OPCODE: begin: i_type_alu_ctl_block
                                                                                                  case (funct3)
                                                                                                   Case (functs)

ADD_FUNCT3

SLL_FUNCT3

SLT_FUNCT3

SLTU_FUNCT3
                                                                                                                             : alu_ctl = `ADD_CTL;
: alu_ctl = `SLL_CTL;
: alu_ctl = `COMP_GEQ_CTL;
: alu_ctl = `COMP_GEQ_UNSIGNED_CTL;
: alu_ctl = `XOR_CTL;
                                                                                                    XOR_FUNCT3
                                                                                                    SR FUNCT3
                                                                                                                             : begin
                                                                                                                                            case (funct7)
                                                                                                                                            `DEFAULT_FUNCT7 : alu_ctl = `SRL_CTL;
`ALT_FUNCT7 : alu_ctl = `SRA_CTL;
                                                                                                                                            endcase
                                                                                                                                 end
                                                                                                   OR_FUNCT3
AND_FUNCT3
                                                                                                                              : alu_ctl = `OR_CTL;
                                                                                                                              : alu_ctl = `AND_CTL;
                                                                                                   endcase
                                                                       end: i_type_alu_ctl_block
`R_OPCODE: begin: r_type_alu_ctl_block
                                                                                                  case (funct3)
                                                                                                    ADD_FUNCT3
                                                                                                                              : begin
                                                                                                                                           case(funct7)
`DEFAULT_FUNCT7 : alu_ctl = `ADD_CTL;
`ALT_FUNCT7 : alu_ctl = `SUB_CTL;
                                                                                                                                            endcase
                                                                                                                              end
: alu_ctl = `SLL_CTL;
: alu_ctl = `COMP_GEQ_CTL;
: alu_ctl = `COMP_GEQ_UNSIGNED_CTL;
: alu_ctl = `XOR_CTL;
                                                                                                    SLL_FUNCT3
SLT_FUNCT3
SLTU_FUNCT3
                                                                                                    XOR FUNCTS
                                                                                                    SR_FUNCT3
                                                                                                                                             case(funct7)
`DEFAULT_FUNCT7 : alu_ctl = `SRL_CTL;
`ALT_FUNCT7 : alu_ctl = `SRA_CTL;
                                                                                                                                             endcase
                                                                                                                                  end
                                                                                                   OR_FUNCT3
AND_FUNCT3
                                                                                                                               : alu_ctl = `OR_CTL;
                                                                                                                               : alu_ctl = `AND_CTL;
                                                                                                  endcase
                                                                                         end: r_type_alu_ctl_block
alu_ctl = `LOAD_UPPER_CTL;
                                                                      `U_OPCODE: alu_ctl =
                                                        endcase
                            end: arith_logic_alu_ctl_block
`JAL_ALU_OP: alu_ctl = `SET_ZERO_CTL;
                            endcase
              end: main_alu_ctl_block
endmodule
 endif
```

```
include "parameter list.sv"
  ifndef ref_alu
               `define ref alu
module ref alu (input
                                                                                                 mem to reg.
                             input
                                                       [`DATA_WIDTH-1:0]
                                                                                                 reg_data_1
                                                      [`DATA_WIDTH-1:0]
[`DATA_WIDTH-1:0]
                                                                                                 reg_data_2,
imm_val,
                             input
                              input
                             input
                                                      [`ALU_CTL_WIDTH-1:0]
                                                                                                 alu_ctl,
                             input
                                                                                                 alu src,
                                                   [`FWRD_MUX_WIDTH-1:0]
[`FWRD_MUX_WIDTH-1:0]
                             input
                                                                                                 fwrd_mux_1
                                                                                                 fwrd mux 2,
                             input
                                                        [ DATA_WIDTH-1:0]
                                                                                                 exmem_alu_data,
                             input
                                                       [`DATA_WIDTH-1:0]
[`DATA_WIDTH-1:0]
                             input
                                                                                                 memwb_alu_data,
                                                                                                 memwb_mem_data,
                             input
                             output reg
                                                       [`DATA_WIDTH-1:0]
                                                                                                 alu_output,
                             output reg
                                                                                                 alu zero);
            always @(*) begin: main_alu_block
                           case(alu_ctl)
                            AND_CTL
                                                                     : alu_output = data_1 & data_2;
                                                                  : alu_output = data_l & data_2;
: alu_output = data_l | data_2;
: alu_output = data_l + data_2;
: alu_output = data_l - data_2;
: alu_output = data_l << data_2[4:0];
: alu_output = data_l >> data_2[4:0];
: alu_output = $signed(data_l) >>> data_2[4:0];
                            ADD_CTL
SUB_CTL
SLL_CTL
                             SRL_CTL
                             SRA CTL
                            'SRA_CTL : alu_output = $signed(data_1) >>> data_2[4:0];
'XOR_CTL : alu_output = data_1 ^ data_2;
'COMP_EQ_CTL : alu_output = !(data_1 == data_2);
'COMP_GEQ_UNSIGNED_CTL : alu_output = ((data_1 >= data_2); 0 : 1);
'COMP_LESS_UNSIGNED_CTL : alu_output = ((data_1 <= data_2) ? 0 : 1);
'COMP_LESS_UNSIGNED_CTL : alu_output = ((data_1 < data_2) ? 0 : 1);
'COMP_LESS_CTL : alu_output = ((fsigned(data_1) >= fsigned(data_2)) ? 0 : 1);
'COMP_LESS_CTL : alu_output = ((fsigned(data_1) < fsigned(data_2)) ? 0 : 1);
'LOAD_UPPER_CTL : alu_output = data_2;
'SET_ZERO_CTL : alu_output = 0:
                            SET_ZERO_CTL
                                                                  : alu_output = 0;
                           endcase
                            alu_zero <= (alu_output == 0);</pre>
             end: main_alu_block
endmodule
  endif
```

APPENDIX K: Source Code of Reference Model - Immediate Address Unit

```
`ifndef ref_exmem_pipeline_reg
          `define ref_exmem_pipeline_reg
module ref_exmem_pipeline_reg (input wire
                                                          logic
                                                                                                 clock.
                                        input wire
                                                          logic
                                                                                                 reset.
                                        input wire
                                                          logic
                                                                                                 alu zero.
                                        input wire
                                                          logic
                                                                                                  stall.
                                        input wire
                                                          logic
                                                                                                 flush.
                                        input wire
                                                          logic
                                                                                                 mem to reg,
                                        input wire
                                                                   ['DATA WIDTH-1:0]
                                                                                                 imm val.
                                                          logic
                                                                   [`FWRD_MUX_WIDTH-1:0]
[`DATA_WIDTH-1:0]
                                                                                                fwrd mux 2,
                                        input wire
                                                          logic
                                        input wire
                                                                                                 memwb mem data,
                                                          logic
                                                        logic [`DATA_WIDTH-1:0] memwb_mem_d
logic [`DATA_WIDTH-1:0] memwb_alu_d
logic [`DATA_WIDTH-1:0] idex_mem_da
logic [`DATA_WIDTH-1:0] alu_output,
logic [`INST_CODE_WIDTH-1:0] instr_code,
logic [`INST_ADDR_WIDTH-1:0] instr_addr,
logic [`CTL_SGNL_WIDTH-1:0] ctl_op,
                                                                                                 memwb alu data,
                                        input wire
                                        input wire
                                                                                                 idex mem data,
                                        input wire
                                        input wire
                                        input wire
                                        input wire
                                                                  ['INST_CODE_WIDTH-1:0] exmem_instr_code,
['INST_ADDR_WIDTH-1:0] exmem_instr_addr,
                                        output logic
                                        output logic
                                        output logic
                                                                   [`DATA WIDTH-1:0]
                                                                                                 exmem_mem_data,
                                                                 [`DATA_WIDTH-1:0]
                                        output logic
                                                                                                 exmem_alu_output,
                                        output logic
                                                                                                 exmem zero,
                                        output logic
                                                                   [`DATA_WIDTH-1:0]
                                                                                                 exmem_imm_val,
                                                                    [`CTL_SGNL_WIDTH-1:0] exmem_ctl_op);
                                        output logic
         // On positive clock edge, update the pipeline registers if pipeline is not stalled or flushed
         // For EX/MEM pipeline register, pass instruction and control signal info, store ALU output
         always @(posedge clock) begin: always_block
                   if(reset) begin: system_reset
    exmem_instr_code <= `RESET_VALUE;</pre>
                            exmem_instr_addr <= `RESET_VALUE;
exmem_alu_output <= `RESET_VALUE;</pre>
                             exmem zero <= `RESET VALUE;
                            exmem_latero <= `RESET_VALUE;
exmem_ctl_op <= `RESET_VALUE;</pre>
                             exmem_mem_data <= `RESET_VALUE;
                   end: system_reset
                   else begin
                             if(stall) begin: pipeline_stall
                                      exmem_instr_code <= `NOP_INST_CODE;</pre>
                                      exmem_ctl_op <= `NOP_CTL_SGNL;</pre>
                             end: pipeline_stall
                             else begin: normal_operation
                                      exmem_instr_code <= instr_code;</pre>
                                      exmem_ctl_op <= ctl_op;</pre>
                             end: normal_operation
                             exmem_instr_addr <= instr_addr;</pre>
                             exmem_alu_output <= alu_output;</pre>
                            exmem_zero <= alu_zero;
exmem_imm_val <= imm_val;</pre>
                            (mem_to_reg ? memwb_mem_data : memwb_alu_data)));
                   end
         end: always block
endmodule
endif
```

APPENDIX M: Source Code of Reference Model - Data Memory Unit

```
include "parameter_list.sv"
 `ifndef ref_d_mem
`define ref_d_mem
                                               logic
logic
module ref_d_mem
                            (input wire
                                                                                     clock.
                                                                                     reset,
                             input wire
                             input wire
input wire
                                               logic
logic
                                                                                    mem_write,
mem_read,
                                                         [`INST_CODE_WIDTH-1:0] instr_code,
                             input wire
                                               logic
                                                        ['INST_CODE_WIDTH-1:0]
['MEM_ADDR_WIDTH-1:0]
['DATA_WIDTH-1:0]
['DATA_WIDTH-1:0]
['DATA_WIDTH-1:0]
                             input wire
                                               logic
                                                                                    address
                                               logic
                             input wire
                                                                                    reg data,
                             output logic
output logic
                                                                                    loaded_data,
stored_data);
                  fh;
[`DATA_REG_WIDTH-1:0] ram
         int
                                                        [0:((2**`MEM_ROWS) - 1)];
         logic
logic
                  [`DATA_WIDTH-1:0]
[`FUNCT3 WIDTH-1:0]
                                               read_data;
         logic
                                              funct3;
         assign funct3 = instr_code[`FUNCT3_HI:`FUNCT3_L0];
         assign read_data = {(ram[address+3] === 8'bx ? 8'b0 : ram[address+3]),
                                  (ram[address+2] === 8'bx ? 8'b0 : ram[address+2],
(ram[address+2] === 8'bx ? 8'b0 : ram[address+2]),
(ram[address] === 8'bx ? 8'b0 : ram[address]);
         // Write corresponding register data to the data memory
         always @(posedge clock) begin: memory_control_block
                  if(reset)
                           ram <= '{default:`RESET_VALUE};</pre>
                  if(mem_write) begin
case (funct3)
                            `SB_FUNCT3: ram[address] <= reg_data[7:0];
`SH_FUNCT3: begin
                                               ram[address+1] <= reg_data[15:8];</pre>
                                               ram[address]
                                                                <= reg_data[7:0];
                                          end
                             SW_FUNCT3: begin
                                              in
    ram[address+3] <= reg_data[31:24];
    ram[address+2] <= reg_data[23:16];
    ram[address+1] <= reg_data[15:8];
    ram[address] <= reg_data[7:0];</pre>
                                          end
                            endcase
                  end
         end: memory_control_block
endmodule
 `endif
```

APPENDIX N: Source Code of Reference Model – MEM/WB Pipeline Register

`includ	e "parameter_list.sv"					
`ifndef ref_memwb_pipeline_reg						
	<pre>`define ref_memwb_pipel</pre>	ine_reg				
module	ref_memwb_pipeline_reg	(input	wire	logic		clock,
		input	wire	logic		reset,
		input	wire	logic	[`DATA_WIDTH-1:0]	alu_output,
		input	wire	logic	[`CTL_SGNL_WIDTH-1:0]	ctl_op,
		input	wire	logic	[`DATA_WIDTH-1:0]	loaded_data,
		input	wire	logic	[`DATA_WIDTH-1:0]	stored_data,
		input	wire	logic	[`REG_ADDR_WIDTH-1:0]	rd,
		input	wire	logic	[`INST_ADDR_WIDTH-1:0]	instr_addr,
		output	logic		[`CTL_SGNL_WIDTH-1:0]	memwb_ctl_op,
		output	logic		[`REG_ADDR_WIDTH-1:0]	<pre>memwb_write_addr,</pre>
		output	logic		[`DATA_WIDTH-1:0]	memwb_write_data,
		output	logic		[`DATA_WIDTH-1:0]	memwb_mem_data,
		output	logic		[`DATA_WIDTH-1:0]	memwb_alu_data,
		output	logic		[`DATA_WIDTH-1:0]	memwb_mem_addr,
		output	logic		[`INST_ADDR_WIDTH-1:0]	<pre>memwb_mem_write_data,</pre>
		output	logic		[`INST_ADDR_WIDTH-1:0]	<pre>memwb_instr_addr);</pre>
<pre>output logic ['INST_ADDR_WIDTH-1:0] memwb_instr_addr); always @(posedge clock) begin: always_block if(reset) begin: system_reset memwb_ctl_op <= `RESET_VALUE; memwb_mem_data <= `RESET_VALUE; memwb_mem_data <= `RESET_VALUE; memwb_mem_data <= `RESET_VALUE; memwb_mem_write_data <= `RESET_VALUE; memwb_mem_write_data <= `RESET_VALUE; memwb_instr_addr <= `RESET_VALUE; memwb_instr_addr <= `RESET_VALUE; memwb_instr_addr <= `RESET_VALUE; memwb_write_data <= `RESET_VALUE; memwb_write_data <= `RESET_VALUE; memwb_instr_addr <= `RESET_VALUE; memwb_instr_addr <= `RESET_VALUE; memwb_write_data <= (ctl_op[`JUMP_LINK] ? instr_addr + `INST_ADDR_SUM :</pre>						
	end: normal_ope	ration		-		
	end: always_block					
endmodu	le					
`endif						

```
`include "parameter_list.sv"
ifndef ref_fwrd_unit
          'define ref fwrd unit
module ref_fwrd_unit
                           (input wire
                                              logic
                                                                                    reset.
                                                                                    exmem_reg_write,
                             input wire
                                              logic
                                                                                    memwb_reg_write,
                             input wire
                                              logic
                             input wire
                                                                                    stall,
                                              logic
                                                      stall,
[`REG_ADDR_WIDTH-1:0] exmem_rd,
[`REG_ADDR_WIDTH-1:0] memwb_rd,
[`OPCODE_WIDTH-1:0] memwb_rd,
[`REG_ADDR_WIDTH-1:0] reg_1,
[`REG_ADDR_WIDTH-1:0] reg_2,
[`REG_ADDR_WIDTH-1:0] reg_2,
                             input wire
                                              logic
                             input wire
                                              logic
                             input wire
                                              logic
                                                                                    exmem_opcode,
                                            logic
                             input wire
                                             logic
                             input wire
                             output logic
                                                        [`FWRD_MUX_WIDTH-1:0]
                                                                                    fwrd_mux_1,
                             output logic
                                                        [`FWRD_MUX_WIDTH-1:0]
                                                                                   fwrd_mux_2);
         // Provides data forwarding multiplex control signal based on write register address
         // from EX/MEM and MEM/WB pipeline register and OPCODE to check for LOAD type instruction
         always@(*) begin: always_block
                  if(reset) begin: system_reset
    fwrd_mux_1 = `RESET_VALUE;
    fwrd_mux_2 = `RESET_VALUE;
                  end: system reset
                  if (exmem_opcode != `LOAD_OPCODE && exmem_reg_write && exmem_rd != 0) begin: exmem_fwrd
                            if (reg_1 == exmem_rd)
                            fwrd_mux1 = `FWRD_ALU;
else if (reg1 == memwb_rd && memwb_reg_write) //CHECKME
                                     fwrd_mux_1 = `FWRD_MEM;
                            else
                                     fwrd_mux_1 = `NO_FWRD;
                            if(reg_2 == exmem_rd)
                                     fwrd_mux_2 = `FWRD_ALU;
                            else if (reg_2 == memwb_rd && memwb_reg_write)
                                     fwrd_mux_2 = `FWRD_MEM;
                            else
                                     fwrd_mux_2 = `NO_FWRD;
                  end: exmem_fwrd
                  else if(memwb_reg_write && memwb_rd != 0) begin: memwb_fwrd
                           if(reg_1 == memwb_rd)
                                     fwrd_mux_1 = `FWRD_MEM;
                            else
                                     fwrd mux 1 = `NO FWRD;
                            if(reg_2 == memwb_rd)
                                     fwrd_mux_2 = `FWRD_MEM;
                            else
                                     fwrd_mux_2 = `NO_FWRD;
                  end: memwb_fwrd
                  else begin: default_case
                           fwrd_mux_1 = `NO_FWRD;
fwrd_mux_2 = `NO_FWRD;
                  end: default_case
         end: always_block
endmodule
 endif
```

APPENDIX P: Source Code of Reference Model - Hazard Detection Unit

```
include "parameter list.sv"
  ifndef ref_hzrd_unit
              `define ref hzrd unit
module ref_hzrd_unit
                                         (input wire
                                                                    logic
                                                                                                                            reset,
                                           input wire
                                                                    logic
                                                                                                                            mem_read,
                                           input wire
                                                                    logic
                                                                                                                            zero.
                                           input wire
                                                                    logic
                                                                                                                            branch,
                                                                    logic
logic
                                                                                                                            jump,
exmem_rd,
                                           input wire
                                                                                 [`REG_ADDR_WIDTH-1:0]
[`REG_ADDR_WIDTH-1:0]
[`REG_ADDR_WIDTH-1:0]
[`FWRD_MUX_WIDTH-1:0]
[`FWRD_MUX_WIDTH-1:0]
                                           input wire
                                                                                                                            idex_reg_addr_1,
idex_reg_addr_2,
                                           input wire
input wire
                                                                    logic
logic
                                           input wire
                                                                    logic
                                                                                                                            fwrd_mux_1,
                                           input wire
output logic
                                                                                                                            fwrd mux 2
                                                                    logic
                                                                                                                            stall,
                                           output logic
                                                                                                                            flush);
              // Assign corresponding value for flush and stall control signal based on // load-use case and branch condition fulfillment always (*) begin: hazard_detectioin_always_block
                          if(reset) begin: system_reset
    stall = `RESET_VALUE;
    flush = `RESET_VALUE;
                           end: system_reset
if((zero && branch) || jump)
    flush = 1;
                           else
                           else
    flush = 0;
if (mem_read $$ (idex_reg_addr_1 == exmem_rd || idex_reg_addr_2 == exmem_rd) $$ exmem_rd != 0) begin
    if ((idex_reg_addr_1 == exmem_rd $$ fwrd_mux_1 != `FWRD_MEM) ||
        (idex_reg_addr_2 == exmem_rd $$ fwrd_mux_2 != `FWRD_MEM))
        stall = 1;
                           else
                                         stall = 0;
              end: hazard_detectioin_always_block
endmodule
 `endif
```

// General Processor Specifications			
define INST ADDR WIDTH	32		
define INST CODE WIDTH	32		
define DATA WIDTH	32		
define MEM ROWS	16		
`define MEM ADDR WIDTH	16		
`define DATA REG WIDTH	8		
`define INST ADDR SUM	4		
`define RESET VALUE	0		
`define NOP_INST_CODE	32'h0000000		
<pre>// Immediate Constant Values</pre>			
<pre>`define I_IMM_WIDTH</pre>	12		
<pre>`define SB_IMM_WIDTH</pre>	12		
`define J_IMM_WIDTH	20		
`define U_IMM_WIDTH	20		
// Demister Demos 6			
<pre>// kegister Access Constant Val</pre>	ues c		
define REG_ADDK_WIDIR	5 10		
define RSI_ADDK_HI	19		
define RS1_ADDR_LO	15		
define RS2_ADDR_HI	24		
define PD ADDR HT	11		
define PD ADDR IO	7		
deline KD_ADDK_LO	1		
// FUNCT7 Constant Values			
define FUNCT7 WIDTH	7		
define FUNCT7 HI	31		
define FUNCT7 LO	25		
define DEFAULT FUNCT7	7'b0000000		
define ALT FUNCT7	7'b0100000		
-			
// FUNCT3 Constant Values			
<pre>`define FUNCT3_WIDTH</pre>	3		
`define FUNCT3_HI	14		
<pre>`define FUNCT3_LO</pre>	12		
<pre>`define LB_FUNCT3</pre>	3'b000		
<pre>`define LH_FUNCT3</pre>	3'b001		
<pre>`define LW_FUNCT3</pre>	3'b010		
<pre>`define LBU_FUNCT3</pre>	3'b100		
<pre>`define LHU_FUNCT3</pre>	3'b101		
<pre>`define SB_FUNCT3</pre>	3'b000		
define SH_FUNCT3	3'b001		
<pre>`define SW_FUNCT3</pre>	3'b010		
define BEQ_FUNCT3	3'b000		
define BNE_FUNCT3	3'b001		
define BLT_FUNCT3	3'b100		
define BGE_FUNCT3	3,0101		
define BLTU_FUNCT3	3'D110		
define BGEU_FUNCT3	3'D111		
define ADD_FUNCT3	310000		
define SLL_FUNCT3	3,0001		
define SLT_FUNCT3	3.D010		
define SLTU_FUNCT3	310011		

```
`define XOR_FUNCT33'b100`define SR_FUNCT33'b101`define OR_FUNCT33'b110`define AND_FUNCT33'b111`define JALR_FUNCT33'b000
// OPCODE Constant Values
`define OPCODE_WIDTH 7
`define OPCODE_HI 6
`define OPCODE_LO 0
`define R_OPCODE 7'b0110011
`define LOAD_OPCODE 7'b0100011
`define S_OPCODE 7'b010011
`define I_OPCODE 7'b010011
`define J_OPCODE 7'b010011
`define J_OPCODE 7'b1100111
`define J_OPCODE 7'b1100111
`define JALR_OPCODE 7'b1100111
`define NOP_OPCODE 7'b000000
 // OPCODE Constant Values
 // Control Signal Constant Values
// Control Signal Constant Values
`define CTL_SGNL_WIDTH 8
`define NOP_CTL_SGNL 8'b0000000
`define R_CTL_SGNL 8'b0001000
`define I_CTL_SGNL 8'b0011100
`define I_CTL_SGNL 8'b0010000
`define S_CTL_SGNL 8'b000001
`define SB_CTL_SGNL 8'b0000001
`define J_CTL_SGNL 8'b010000
`define JALR_CTL_SGNL 8'b1101000
 // Specific Control Signal Index
  `define BRANCH 0

      `define BRANCH
      J

      `define MEM_WRITE
      1

      `define MEM_READ
      2

      `define REG_WRITE
      3

      `define MEM_TO_REG
      4

      `define ALU_SRC
      5

      `define JUMP_LINK
      6

      `define JUMP_REG
      7

 `define JUMP REG
// ALU OP Constant Values
  define ALU OP WIDTH
                                                                                                2
 `define IMM ADDR_CALC_ALU_OP 2'b00

    `define COND_BRANCH_ALU_OP
    2'b01

    `define ARITH_LOGIC_ALU_OP
    2'b10

 `define JAL ALU OP
                                                                                                 2'b11
// ALU CTL OP Constant Values
// ALU CTL OP Constant Values
`define ALU_CTL_WIDTH 4
`define AND_CTL 4'b0000
`define OR_CTL 4'b0001
`define ADD_CTL 4'b0010
`define SUB_CTL 4'b0011
`define SRL_CTL 4'b0100
`define SRA_CTL 4'b0100
`define XOR_CTL 4'b0110
`define COMP_EQ_CTL 4'b1000
`define COMP_NEQ_CTL 4'b1001
`define COMP_GEO_UNSIGNED_CTL 4'b1010
  `define COMP_GEQ_UNSIGNED_CTL 4'b1010
```

<pre>`define COMP_LESS_UNSIGNED_CTL</pre>	4'b1011
`define COMP_GEQ_CTL	4'b1100
<pre>`define COMP_LESS_CTL</pre>	4'b1101
`define LOAD UPPER CTL	4'b1110
<pre>`define SET_ZERO_CTL</pre>	4'b1111
<pre>// Forwarding Constant Values</pre>	
<pre>`define FWRD_MUX_WIDTH</pre>	2
`define NO_FWRD	2'b00
`define FWRD_ALU	2'b10
<pre>`define FWRD_MEM</pre>	2'b01
// Coverage Coverpoint Constant	Values
define BEO CVR	10'b0001100011
define BNE CVR	10'b0011100011
define BLT CVR	10'b1001100011
`define BGE CVR	10'b1011100011
define BLTU CVR	10'b1101100011
define BGEU CVR	10'b1111100011
define LB CVR	10'b000000011
`define LH CVR	10'b0010000011
`define LW CVR	10'b0100000011
`define LBU CVR	10'b1000000011
`define LHU CVR	10'b1010000011
`define SB CVR	10'b0000100011
`define SH_CVR	10'b0010100011
`define SW_CVR	10'b0100100011
<pre>`define ADDI_CVR</pre>	10'b000010011
<pre>`define SLLI_CVR</pre>	10'b0010010011
<pre>`define XORI_CVR</pre>	10'b1000010011
`define ORI_CVR	10'b1100010011
<pre>`define ANDI_CVR</pre>	10'b1110010011
`define SLTI_CVR	10'b0100010011
<pre>`define SLTIU_CVR</pre>	10'b0110010011
`define SRLI_CVR	17'b0000001010010011
`define SRAI_CVR	17'b01000001010010011
`define ADD_CVR	17'b0000000000110011
`define SUB_CVR	17'b0100000000110011
`define SLL_CVR	17'b0000000010110011
<pre>`define XOR_CVR</pre>	17'b0000001000110011
define SRL_CVR	17'b0000001010110011
define SRA_CVR	17'b01000001010110011
define OR_CVR	17'0000001100110011
define AND_CVR	17'00000001110110011
define SLT_CVR	17'b00000000100110011
define SLTU_CVR	17'b0000000110110011

APPENDIX R: Source Code of Verification Environment – UVM Testbench

```
'include "uvm_pkg.sv"
'include "uvm_macros.svh"
'include "test.sv"
import uvm_pkg::*;
'indif testbench
'define testbench
module testbench;
logic clk;
always #10 clk = ~clk;
virtual_interface if_instance(clk);
dut_model riscv(.interface_instance(if_instance));
ref_model riscv_ref(.interface_instance(if_instance));
initial begin
    uvm_config_db#(virtual_virtual_interface)::set(null,"uvm_test_top","virtual_interface",if_instance);
    run_test("test");
end
initial
    clk <= 0;
endmodule
'endif</pre>
```

APPENDIX S: Source Code of Verification Environment - UVM Test

```
`include "uvm_pkg.sv"
`include "uvm_macros.svh"
`include "seq.sv"
import uvm_pkg::*;
'infief test
'define test
class test extends uvm_test;
'uvm_component_utils(test)
             function new(string name = "test", uvm_component parent = null);
     super.new(name, parent);
endfunction
                                      env_inst;
seq_inst;
virtual_interface
              env
seq
virtual
                                                                            interface_instance;
              virtual function void build_phase(uvm_phase phase);
    // Declare variables to store arguments from command line onto configuration
    int test_seed;
    int instr_amt;
                           string seed_file;
string instr_type;
                           super.build_phase(phase);
env_inst= env::type_id::create("env_inst",this);
                           seg inst = seg::type id::create("seg inst");
                           // Pass test arguments as configuration parameters or use default values set
if(StestSplusargs("BAICH_TEST")) begin
    uvm_config_dbb(bic)::set(null,"uvm_test_top","batch_test",l);
    if(SvalueSplusargs("BAICH_SEED=4s",seed_file))
        uvm_config_dbb(string)::set(null,"uvm_test_top","seed_file",seed_file);
    if(StestSplusargs("CONT"))
        uvm_config_dbb(bit)::set(null,"uvm_test_top","run_all",l);
    end
                         if(Stest
                                        uvm_config_db#(bit)::set(null,"uvm_test_top","memlog",1);
             endfunction
                          task run_phase (uvm_phase phase);
// Config and Database Parameter Variables
bit batch_test;
bit stch_test_in_progress;
bit run_all;
string seed_file;
int fh;
int fh;
int batch_test_max;
int current_test_index;
             virtual task
                          //Retrieve Parameter Values
if(!uvm_config_db#(bit)::get(null,"uvm_test_top","batch_test",batch_test))
batch_test = 0;
if(!uvm_config_db#(bit)::get(null,"uvm_test_top","run_all",run_all))
run_all = 0;
if(!uvm_config_db#(string)::get(null,"uvm_test_top","seed_file",seed_file))
seed_file = "SEED.txt";
                          batch_test_max = 1;
                           end
                           // Initialize resource parameters
current_test_index = 0;
uwm_resource_db#(int)::set("uvm_test_top","current_test_index",0);
uvm_resource_db#(bit)::set("uvm_test_top","batch_test_in_progress",batch_test);
uvm_resource_db#(int)::set("uvm_test_top","batch_test_max",batch_test];
uvm_resource_db#(int)::set("uvm_test_top","batch_test_max",batch_test];
batch_test_in_progress = 0;
do heqin
                           apply_reset();
if(batch_test) begin: display_batch_test_progress
                                                     ,batch_test_max);
                                        end: display_batch_test_progress
$display("Initiating Test Run");
```



```
`include "parameter_list.sv"
ifndef virtual interface
        `define virtual interface
interface virtual_interface (input
                                      wire
                                             logic clk);
               // Interface Communication Signals
               logic
                                               reset:
               logic
                                               monitor start;
               logic
                                               test in progress;
               logic
                                               end of test;
                                               mismatch detected;
               logic
                      [`INST_ADDR_WIDTH-1:0] instr_addr;
               logic
               logic
                      [`INST CODE WIDTH-1:0] instr code;
               // Signals from Design Under Test
               logic [`INST_CODE_WIDTH-1:0] dut_instr;
                       [`INST ADDR WIDTH-1:0] dut_pc;
               logic
                      [`REG ADDR WIDTH-1:0] dut_reg_read_addr_1;
               logic
                      [`REG ADDR WIDTH-1:0] dut reg read addr 2;
               logic
                      [`REG ADDR WIDTH-1:0] dut reg write addr;
               logic
               logic [`DATA WIDTH-1:0]
                                           dut reg read data 1;
               logic [`DATA WIDTH-1:0]
                                             dut reg read data 2;
                      [`DATA_WIDTH-1:0]
               logic
                                              dut_reg_write_data;
                      [`CTL SGNL WIDTH-1:0] dut ctl op;
               logic
                                               dut_alu_zero;
               logic
                       [`DATA WIDTH-1:0]
               logic
                                               dut_alu_output;
               logic
                       [`DATA_WIDTH-1:0]
                                              dut_imm_val;
                      [`DATA_WIDTH-1:0]
               logic
                                              dut mem write data;
                      [`MEM_ADDR_WIDTH-1:0]
                                             dut_mem_addr;
               logic
               // Signals from Reference Model
               logic [`INST CODE WIDTH-1:0] ref instr;
               logic [`INST_ADDR_WIDTH-1:0] ref_pc;
               logic [`REG_ADDR_WIDTH-1:0] ref_reg_read_addr_1;
               logic [`REG_ADDR_WIDTH-1:0] ref_reg_read_addr_2;
                      [`REG_ADDK_MALL
[`DATA_WIDTH-1:0]
[`DATA_WIDTH-1:0]
               logic [`REG_ADDR_WIDTH-1:0] ref_reg_write_addr;
               logic
                                               ref_reg_read_data_1;
               logic
                                               ref_reg_read_data_2;
               logic
                       [`DATA_WIDTH-1:0]
                                               ref_reg_write_data;
               logic
                       [`CTL_SGNL_WIDTH-1:0] ref_ctl_op;
                                               ref_alu_zero;
               logic
                      [`DATA_WIDTH-1:0]
                                              ref_alu_output;
               logic
                      [`DATA WIDTH-1:0]
                                              ref imm val;
               logic
                      [`DATA WIDTH-1:0]
               logic
                                               ref mem write data;
                      [`MEM_ADDR_WIDTH-1:0]
                                             ref mem addr;
               logic
               logic
                                               ref mem write;
               logic
                                               ref_mem_read;
                                               ref_reg_write;
               logic
               logic
                                               ref_stall;
                                               ref_flush;
               logic
                      ref_jump_link;
[`INST_CODE_WIDTH-1:0] ref_ID_instr;
               logic
               logic
                      [`INST_CODE_WIDTH-1:0] ref_EX_instr;
               logic
                      [`INST_ADDR_WIDTH-1:0] ref_EX_pc;
               logic
       // Define interface signal input/output direction
```

clocking cb @(p	osedge clk);
default	input #1step;
input	dut_instr;
input	dut_pc;
input	dut_reg_read_addr_1;
input	<pre>dut_reg_read_addr_2;</pre>
input	dut_reg_write_addr;
input	dut_reg_read_data_1;
input	dut_reg_read_data_2;
input	dut_reg_write_data;
input	dut_ctl_op;
input	dut_alu_zero;
input	dut_alu_output;
input	dut_imm_val;
input	dut_mem_write_data;
input	dut_mem_addr;
input	ref_instr;
input	ref_pc;
input	ref_reg_read_addr_1;
input	ref_reg_read_addr_2;
input	ref_reg_write_addr;
input	ref_reg_read_data_1;
input	ref_reg_read_data_2;
input	ref_reg_write_data;
input	ref_ctl_op;
input	ref_alu_zero;
input	ref_alu_output;
input	ref_imm_val;
input	ref_mem_write_data;
input	ref_mem_addr;
input	ref_mem_write;
input	ref_mem_read;
input	ref_reg_write;
input	ref_stall;
input	ref_flush;
input	ref_jump_link;
input	ref_ID_instr;
input	ref_EX_instr;
input	rei_EX_pc;
endclocking	
endinteriace	
enalI	

APPENDIX U: Source Code of Verification Environment – UVM Environment

```
"uvm_pkg.sv"
`include
             "uvm_pkg.sv"
"uvm_macros.svh"
"agent.sv"
"scoreboard.sv"
`include
`include
`include
                 "coverage.sv"
`include
import
                 uvm_pkg::*;
`ifndef env
         `define env
                         extends uvm_env;
class env
         `uvm_component_utils(env)
        function new(string name="env", uvm_component parent=null);
                super.new(name,parent);
        endfunction
        agent agent_inst;
scoreboard scoreboard_inst;
coverage
        coverage
                                   coverage_inst;
        virtual function void build phase (uvm phase phase);
                 super.build_phase(phase);
                 agent_inst = agent::type_id::create("agent_inst", this);
scoreboard_inst = scoreboard::type_id::create("scoreboard_inst", this);
                 coverage_inst = coverage::type_id::create("coverage_inst",this);
        endfunction
        virtual function void connect_phase(uvm_phase phase);
                 super.connect_phase(phase);
                 agent_inst.monitor_inst.analysis_port.connect(scoreboard_inst.m_analysis_imp);
                 agent_inst.monitor_inst.analysis_port.connect(coverage_inst.analysis_export);
        endfunction
endclass
 endif
```

APPENDIX V: Source Code of Verification Environment – UVM Agent

```
"uvm_pkg.sv"
`include
              "uvm_pkg.sv"
"uvm_macros.svh"
`include
`include
                "driver.sv"
`include
                "monitor.sv"
import
                uvm_pkg::*;
`ifndef agent
        `define agent
class agent
                         extends uvm_agent;
         `uvm_component_utils(agent)`
        function new(string name="agent", uvm_component parent=null);
                super.new(name, parent);
        endfunction
        driver
                                          driver_inst;
        monitor
                                          monitor_inst;
        uvm_sequencer #(seq_item)
                                         seqr inst;
        virtual function void
                                         build_phase(uvm_phase phase);
                 super.build_phase(phase);
                seqr_inst = uvm_sequencer#(seq_item)::type_id::create("seqr_inst",this);
driver_inst = driver::type_id::create("driver_inst",this);
                monitor_inst = monitor::type_id::create("monitor_inst",this);
        endfunction
        virtual function void
                                          connect_phase(uvm_phase phase);
                 super.connect_phase(phase);
                 driver_inst.seq_item_port.connect(seqr_inst.seq_item_export);
        endfunction
endclass
 endif
```

APPENDIX W: Source Code of Verification Environment – UVM Driver

```
include
               "uvm pkg.sv"
 include
              "uvm_macros.svh'
"seq item.sv"
 include
import
`ifndef driver
              uvm_pkg::*;
        define driver
class
      driver
                     extends uvm_driver #(seq_item);
       `uvm_component_utils(driver)
       function new(string name="driver", uvm_component parent=null);
       super.new(name, parent);
endfunction
       virtual virtual_interface
                                  interface_instance;
       virtual function void
                                   build_phase(uvm_phase phase);
              endfunction
       virtual task run phase (uvm phase phase);
              super.run_phase(phase);
forever begin
                     // Database parameter variables
                     bit
                            batch_test;
                     int
                            current test index:
                     int
                            batch_test_max;
                     seq_item transaction;
seq_item_port.get_next_item(transaction);
                     load_program(transaction);
seq_item_port.item_done();
                     current_test_index = 0;
if(!uvm_resource_db#(int)::read_by_name("uvm_test_top", "batch_test_max",batch_test_max")
                             batch_test_max = 0;
                      // If batch test index reaches the maximum number of seeds found, end batch test
                     end
                     end
              end
       endtask
       saction.instr_gen_completion) begin
$display("Loading Program into ROM");
$readmemh("PROM.txt",testbench.riscv.rom);
$readmemh("PROM.txt",testbench.riscv_ref.rom);
                             #100;
                              display("Program Successfully Loaded");
                             transaction.instr_gen_completion = 0;
                     end
       endtask
endclass
endif
```

APPENDIX X: Source Code of Verification Environment - UVM Sequencer

```
include "uvm pkg.sv'
 `include "uvm_macros.svh"
`include "seq_item.sv"
`include "parameter_list.sv"
`incluce
import uvm_pass
`ifndef seq
`define seq
``
           uvm_pkg::*;
class seq extend
`uvm_object_utils(seq)
                          extends uvm_sequence;
         // Declare parameter variables
                         force_gen;
batch_test;
directed_test;
         bit
         bit
         bit
         int
                         test seed;
                  instr_amt;
current_test_index;
seed_file;
         int
         int
         string
         bit
                       skip_gen;
argument_pass;
         string
         function new(string name="seq");
                 super.new(name);
         endfunction
         virtual task body();
                 int
                                  fh:
                 // Obtain config and resource parameter values
                 batch_test = 0;
if(!uvm_config_db#(bit)::get(null, "uvm_test_top", "directed_test", directed_test))
                          directed test = 0;
                 alrected_test = 0;
if (!uvm_config_db#(int)::get(null, "uvm_test_top", "test_seed", test_seed))
        test_seed = 0;
if (!uvm_config_db#(int)::get(null, "uvm_test_top", "instr_amount", instr_amt))
        instr_amt = 500;
if (!uvm_config_db#(string)::get(null, "uvm_test_top", "seed_file", seed_file))
        seed_file = "SEED.txt";
f(!uvm_config_db#(string); f(uvm_test_top)", "seed_file", seed_file)
                 else begin
if (batch_test) // Batch Seed
                         %s", test seed);
                  end
                 clear_log();
                 fh
                                $fopen("TEST.txt","r");
                          if(fh)
                                  $display("Translating test instructions from direct test file");
                          else
                                   `uvm_fatal("ERROR","Unable to access TEST.txt");
                          $fclose(fh);
                  end
                 else begin
                          if(!force gen)
                                   retrieve_repository(argument_pass);
                          end
                 instruction_code_generate(); // Generate the instruction code
         endtask
         // Simple function for creating directory
         function void directory_creation(string destination);
                 string file_creation;
                 file_creation = {"mkdir \"./test_results/",destination,"/\""};
         $sys
endfunction
                       tem(file_creation);
         // Simple function for clearing log files
function void clear_log();
                 int
                         fh;
                 fh = $fopen("ASM.txt", "w");
```

\$fclose(fh): fh = \$fopen('
\$fclose(fh); n("PROM.txt", "w"); n("INSTR.txt", "w"); fh = Sfcin = \$iopen('INSIR.txt', 'W');
\$fclose(fh);
fh = \$fopen("IFID.txt", "W"); in = flopen('flop.txt', 'w');
fh = flopen("IDEX.txt", 'w");
fclose(fh); fh = \$fopen('
\$fclose(fh); n("EXMEM.txt", "w"); fh = \$fopen("MEMWB.txt", "w"); \$fclose(fh);
fh = \$fopen("PIPELINE.txt", "w"); fh = \$IOpen, --\$fclose(fh);
fh = \$fopen("FLUSH.txt","w"); fh = \$fopen('
\$fclose(fh); fh = \$fopen("JUMP.txt","w");
\$fclose(fh); endfunction // Simple function for reading test seed on batch test seed file function void read seed(); int fh; int code; string dump; begin continue: end i++; else end \$fclose(fh); end else `uvm_fatal("ERROR","Unable to access seed file"); endfunction // Simple function for cloning test from repository
function void retrieve_repository(string destination); int fh: int in; string file_pointer; string file_path_1; string file_path_2; string file_path_2; string file_handling_2; file_pointer = {"./test_repo/",destination,"/ASM.txt"}; rlte_pointer = {"./test_repo/",destination,"/ASM.txt"};
file_path 1 = {"D:\\FinalYearProject\Coding\uvm\\test_repo\\",destination,"\\ASM.txt"};
file_path_1 = {"copy ", file_path_1};
file_path_2 = {"Copy ", file_path_2};
display("Checking repository for pre-existing test case...");
fh = \$fopen(file_pointer,"r");
if(fb) herein end ena
else begin
\$display("No existing test case found, generating new test case"); skip_gen = 0; end \$fclose(fh); endfunction; // Simple function for storing test to repositry function void store_repository(string destination);
 int fh;
 string file_pointer; string file_path; string file_handling_l; string file_handling_2; string file_creation; \$system(file_creation); end \$fclose(fh); file_path = {"D:\\FinalYearProject\\Coding\\uvm\\test_repo\\",destination,"\\"}; file_handling_l = {"copy ASM.txt ",file_path}; file_handling_2 = {"copy PROM.txt ",file_path}; system(file_handling_1); \$ystem(file_handling_2); \$display("Testcase cloned and stored into repository"); endfunction // Generate instruction code // deletate instancial over task instruction_code generate(); for (int i = 0, logic ['INST_ADDR_WIDTH-1:0] stored_instr_addr = 0, bit completion = 0; !completion; i++) begin seq_item transaction = seq_item::type_id::create("transaction"); start_item(transaction); if(directed_test) begin // Translate and store to repository transaction.translation(); store_repository("directed_test"); completion = 1;

APPENDIX Y: Source Code of Verification Environment – UVM Sequence Item

`incl `incl `incl impor `ifnd	ude "uvm_ ude "uvm_ ude "para t uvm_ lef seg it	pkg.sv" macros.svh" meter_list.sv" pkg::*; em			
class	`define seq_item seq_item extends uvm_sequence_item; `uvm object utils(seq_item)				
	functi	on new(string name = "see super.new(name);	<pre>q_item");</pre>		
	endfun int	ction code;			
	int int int	<pre>instr_count; max_range; current instr number;</pre>			
	logic logic logic	<pre>instr_gen_completion; end_of_test; mismatch log complete;</pre>			
	logic	mem_check;	instronie:		
	logic	['INST_ADDR_WIDTH-1:0]	instr_addr;		
	logic logic	[`INST_CODE_WIDTH-1:0] [`INST_ADDR_WIDTH-1:0]	dut_instr; dut_pc;		
	logic logic logic	[`REG_ADDR_WIDTH-1:0] [`REG_ADDR_WIDTH-1:0] [`REG_ADDR_WIDTH-1:0]	dut_reg_read_addr_1; dut_reg_read_addr_2; dut reg write addr;		
	logic logic	[`DATA_WIDTH-1:0] [`DATA_WIDTH-1:0]	dut_reg_read_data_1; dut_reg_read_data_2;		
	logic logic	['CTL_SGNL_WIDTH-1:0] ['ALU_OP_WIDTH-1:0]	dut_ctl_op; dut_alu_op;		
	logic logic logic	[`DATA_WIDTH-1:0] [`DATA_WIDTH-1:0]	dut_alu_zero; dut_alu_output; dut_imm_val;		
	logic logic	[`DATA_WIDTH-1:0] [`DATA_WIDTH-1:0] [`MEM_ADDB_WIDTH-1:0]	dut_mem_read_data; dut_mem_write_data; dut_mem_addr:		
	// Tra	nsactions received from H	REF THE		
	logic logic	[`INST_ADDR_WIDTH-1:0] [`REG_ADDR_WIDTH-1:0]	ref_pc; ref_reg_read_addr_l;		
	logic logic logic	[REG_ADDR_WIDIH-1:0] [REG_ADDR_WIDTH-1:0] [DATA_WIDTH-1:0]	ref_reg_write_addr: ref_reg_write_addr: ref_reg_read_data_l;		
	logic logic logic	[`DATA_WIDTH-1:0] [`DATA_WIDTH-1:0] [`CTL_SGNL_WIDTH-1:0]	ref_reg_read_data_2; ref_reg_write_data; ref_ctl_on;		
	logic logic	[`ALU_OP_WIDTH-1:0]	ref_alu_op; ref_alu_zero;		
	logic logic	[DATA WIDTH-1:0] [DATA WIDTH-1:0] [DATA WIDTH-1:0]	ref_mm_read_data;		
	logic logic logic	['DATA_WIDTH-1:0] ['MEM_ADDR_WIDTH-1:0]	ret_mem_write_data; ref_mem_addr; ref_mem_write;		
	logic logic logic		ref_mem_read; ref_reg_write; ref_stall:		
	logic logic		ref_flush; ref_jump_link;		
	logic logic	['INST_CODE_WIDTH-1:0] ['INST_CODE_WIDTH-1:0]	ref_EX_inst; ref_EX_inst;		
	// Pos bit	sible fields for instruct [`OPCODE_WIDTH-1:0]	opcode;		
	bit rand b rand b	[21:0] it [`FUNCT3_WIDTH-1:0] it [`FUNCT7_WIDTH-1:0]	<pre>immediate_value; funct3 = \$urandom_range(7,0); funct7 = \$urandom_range(127,0);</pre>		
	rand b rand b rand b	<pre>it [`REG_ADDR_WIDTH-1:0] it [`REG_ADDR_WIDTH-1:0] it [`REG_ADDR_WIDTH-1:0]</pre>	<pre>rsl = &urandom_range(31,0); rs2 = &urandom_range(31,0); rd = &urandom_range(31,0);</pre>		
	// Mis	cellaneous variables			
	int int	[1:0] [OPCODE_WIDIN-	fill possible opcode; randomizer; fh;		
	// Spe virtua	cification for a valid in 1 function void specifics	nstruction code ation();		
		<pre>// Database parameter v string instr_type;</pre>	variables		
		<pre>// Obtain parameters f: if(!uvm_config_db#(str:</pre>	rom database ing)::get(null,"uvm_test_top","instr_type",instr_type)) R_I_L_U_UJ_S_SB_J";		
		for(int pointer = 0; po case(instr_type	<pre>ointer < instr_type.len(); pointer ++) begin e[pointer])</pre>		
		R" : Degi	<pre>" " possible_opcode[randomizer] = 'R_OPCODE; randomizer ++;</pre>		
		end "I" : begin	n possible_opcode[randomizer] = `I_OPCODE;		
		end	randomizer ++;		
		, pegii	<pre>possible_opcode[randomizer] = `LOAD_OPCODE; randomizer ++;</pre>		
		end "J" : begin	n		

end SB OPCODE: begin end JALR OPCODE: begin immediate_value = \$urandom_range(current_instr_number + 8, current_instr_number + 4) * `INST_ADDR_SUM; rsl instr_code = {immediate_value[11:0],rs1,funct3,rd,opcode}; default: endcase instr_code = {funct7, rs2, rs1, funct3, rd, opcode); // Output instruction code and address fh = \$fopen("ASM.txt", "a+"); \$fdiaplay(fh, "%5h %6h", instr_addr, instr_code); \$fclose(fh); // Output instruction code in bytes fh = \$fopen("FROM.txt", "a+"); \$fdiaplay(fh, "%2h %2h %2h", instr_code[31:24], instr_code[23:16], instr_code[15:8], instr_code[7:0]); \$ffiose(fh); endfunction // Translation of assembly code to machine language
virtual function void translation(); //Directed test variables f_out; shift_type; store_type; load_type; min_range; max_range; dv_instr_type; dumn: int int int int int string dump; hold; assembly_code; string string string string operand; fh = \$fopen("TEST.txt","r");
if(fh == 0) "add": begin opcode = `R_OPCODE; funct3 = `ADD_FUNCT3; funct7 = `DEFAULT_FUNCT7; dv_instr_type = "R"; end "sub": begin opcode = `R_OPCODE; funct3 = `ADD_FUNCT3; funct7 = `ALT_FUNCT7; dv_instr_type = "R"; end "sll": begin opcode = `R_OPCODE; funct3 = `SLL_FUNCT3; funct7 = `DEFAULT_FUNCT7; dv_instr_type = "R"; end "slt": begin opcode = `R_OPCODE; funct3 = `SLT_FUNCT3; funct7 = `DEFAULT_FUNCT7; dv_instr_type = "R"; end "sltu": begin opcode = `R_OPCODE; funct3 = `SLTU_FUNCT3; funct7 = `DEFAULT_FUNCT7; dv_instr_type = "R"; end "srl": begin opcode = `R_OPCODE; funct3 = `SR_FUNCT3; funct7 = `DEFAULT FUNCT7; dv_instr_type = "R"; end "sra": begin opcode = `R_OPCODE; funct3 = `SR_FUNCT3; funct7 = `ALT_FUNCT7; dv_instr_type = "R"; end "xor": begin opcode = `R OPCODE; funct3 = `XOR_FUNCT3; funct7 = `DEFAULT_FUNCT7; dv_instr_type = "R"; end "and": begin opcode = `R_OPCODE; funct3 = `AND_FUNCT3; funct7 = `DEFAULT_FUNCT7; dv_instr_type = "R"; end "or": begin opcode = `R_OPCODE; funct3 = `OR_FUNCT3; funct7 = `DEFAULT_FUNCT7; dv_instr_type = "R"; end "addi": begin opcode = `I_OPCODE; funct3 = `ADD_FUNCT3 dv_instr_type = "I"; "slti": begin opcode = `I_OPCODE;

		<pre>funct3 = `SLT_FUNCT3;</pre>
	and	<pre>dv_instr_type = "I";</pre>
"sl	tiu": begin	
		<pre>opcode = `I_OPCODE; funct3 = `SLTU FUNCT3;</pre>
		dv_instr_type = "I";
"xo	ri": begin	
		<pre>opcode = `I_OPCODE; funct3 = `XOR_FUNCT3;</pre>
		<pre>dv_instr_type = "I";</pre>
"or	end i": begin	
		opcode = `I_OPCODE;
		<pre>dv_instr_type = "I";</pre>
"an	end di": begin	
	ar i segun	opcode = `I_OPCODE;
		<pre>funct3 = 'AND_FUNCT3; dv instr type = "I";</pre>
"0]	end li": begin	
31	.ii . begin	<pre>opcode = `I_OPCODE;</pre>
		<pre>funct3 = `SLL_FUNCT3; dv instr type = "I";</pre>
		<pre>shift_type = 1;</pre>
	end	<pre>immediate_value[i1:5] = DEFAOLI_FONCI/;</pre>
"sr	li": begin	ancade = `I_OPCODE:
		<pre>funct3 = `SR_FUNCT3;</pre>
		av_instr_type = 1;
	end	<pre>immediate_value[11:5] = `DEFAULT_FUNCT7;</pre>
"sr	ai": begin	encode - 'I OPCOPPI
		<pre>upcode = 1_OFCODE; funct3 = `SR_FUNCT3;</pre>
		<pre>dv_instr_type = "I"; shift type = 1;</pre>
		<pre>immediate_value[11:5] = `ALT_FUNCT7;</pre>
"lb	end ": begin	
		opcode = `LOAD_OPCODE; funct2 = `LB_FINCT2;
		dv_instr_type = "I";
	end	<pre>load_type = 1;</pre>
"lh	": begin	
		<pre>opcode = LOAD_OPCODE; funct3 = `LH_FUNCT3;</pre>
		<pre>dv_instr_type = "I"; load type = 1;</pre>
	end	,
"1w	": begin	opcode = `LOAD OPCODE;
		<pre>funct3 = `LW_FUNCT3; dv instr ture = "I";</pre>
		load_type = 1;
"lb	end u": begin	
		opcode = `LOAD_OPCODE; funct2 = `LDH_EIN(T2)
		<pre>dv_instr_type = "I";</pre>
	end	<pre>load_type = 1;</pre>
"lh	u": begin	
		<pre>funct3 = `LHU_FUNCT3;</pre>
		<pre>dv_instr_type = "I"; load type = 1;</pre>
	end	
"sb	: begin	<pre>opcode = `S_OPCODE;</pre>
		<pre>funct3 = `SB_FUNCT3; dv instr tupe = "S";</pre>
		<pre>store_type = 1;</pre>
"sh	end ": begin	
		<pre>opcode = `S_OPCODE; funct3 = `SH_FINCT3.</pre>
		<pre>dv_instr_type ="S";</pre>
	end	<pre>store_type = 1;</pre>
"sw	": begin	orode - 16 OPCORF.
		<pre>funct3 = `SW_FUNCT3;</pre>
		<pre>dv_instr_type = "S"; store type = 1;</pre>
	end	-
"De	d: nediu	<pre>opcode = `SB_OPCODE;</pre>
		<pre>funct3 = `BEQ_FUNCT3; dv instr type = "B";</pre>
	end	
"nd"	e": begin	<pre>opcode = `SB_OPCODE;</pre>
		<pre>funct3 = `BNE_FUNCT3; dv instr type = "B";</pre>
	end	a.TunanTalka m /
"bl	t": begin	<pre>opcode = `SB_OPCODE;</pre>
		<pre>funct3 = 'BLT_FUNCT3; dv instr ture = "B";</pre>
	end	av_anos_olbc = n)
"bg	e": begin	<pre>opcode = `SB OPCODE;</pre>
		<pre>funct3 = `BGE_FUNCT3; dv instructions = "B";</pre>
	end	av_ruor_olbc = n '
"bl	tu": begin	<pre>opcode = `SB OPCODE;</pre>
		funct3 = `BLTU_FUNCT3;
	end	uv_inot_vype = D ;
"bg	eu": begin	opcode = `SB OPCODE;

```
funct3 = `BGEU_FUNCT3;
dv_instr_type = "B";
          end
 "jal": begin
                      - ahood
                              J OPCODE
                    dv_instr_type = "J";
end
"jalr": begin
                    opcode = `JALR_OPCODE;
funct3 = `JALR_FUNCT3;
dv_instr_type = "I";
load_type = 1; //Similar assembly format
"lui": begin
                    opcode = `U_OPCODE;
dv_instr_type = "U";
end
"\//": begin
                   code = $fgets(dump,fh);
continue;
end
"nop": begin
                   instr_code = 'NOP_INST_CODE;
f_out = @fopen('ASM.txt", "a+");
%fdisplay(f_out, "%b%%b%", instr_code);
%fclose(f_out);
f_out = @fopen("PROM.txt","a+");
%fdisplay(f_out, "%b%%b%%b%", instr_code[31:24], instr_code[23:16], instr_code[15:8], instr_code[7:0]);
%fclose(f_out);
instr_addr = instr_addr + 'INST_ADDR_SOM;
continue:
                    continue;
end
"end": break;
default:begin
                   @display("Unknown assembly operation referenced: %s", assembly_code);
`uvm_fatal("ERROR","Unknown assembly operation referenced")
end
endcase
code = $fscanf(fh,"%s",operand);
 min_range = -1;
for(int i = 0; i < operand.len(); i++) begin</pre>
         i = 0; i < operand
case(operand[i])
"x": continue;
" ": continue;
",": max report
          ",": max_range = i - 1;
default:begin
                          if(min_range < 0)
    min_range = i;</pre>
         end
endcase
begin
                                     max_range = i - 1;
hold = operand.substr(min_range,max_range);
immediate_value [11:0] = hold.atoi();
min_range = -1;
                  end
")",
";": max_range = i - 1;
default:begin
if(min_range < 0)
min_range = i;
                  end
endcase
          rsl = operand.atoi();
 end
end
endcase
         end
                           immediate_value [11:0] = operand.atoi();
                  immediate_value [13:1] = operand.atoi();
          "B":
          endcase
end
```


APPENDIX Z: Source Code of Verification Environment – UVM Monitor

```
include
                                                      "uvm_pkg.sv"
    include
                                                        "uvm macros.svh
    include
                                                      "seq item.s
                                                    uvm_pkg::*;
import
   ifndef monitor
                             define monitor
                         monitor
                                                                                extends uvm_monitor;
class
                             'uvm component utils (monitor)
                                                    run_all;
                          bit
                         function new(string name="monitor", uvm_component parent=null);
      super.new(name, parent);
                          endfunction
                           uvm_analysis_port #(seq_item)
                                                                                                                                    analysis_port;
                           virtual virtual interface
                                                                                                                                    interface_instance;
                           virtual function void
                                                                                                                                     build_phase(uvm_phase phase);
                                                      super.build phase(phase):
                                                    endfunction
                           virtual task run_phase (uvm_phase phase);
                                                     super.run_phase(phase);
forever begin
@(interface_instance.cb);
                                                                               if (interface_instance.monitor_start) begin
    seq_item transaction = seq_item::type_id::create("transaction");
    // DUT Transactions
                                                                                                          // DUT Transactions
transaction.dut_instr = interface_instance.dut_instr;
transaction.dut_pc = interface_instance.dut_pc;
transaction.dut_reg_read_addr_l = interface_instance.dut_reg_read_addr_l;
transaction.dut_reg_read_data_l = interface_instance.dut_reg_read_addr_2;
transaction.dut_reg_read_data_l = interface_instance.dut_reg_read_data_l;
transaction.dut_reg_read_data_l = interface_instance.dut_reg_read_data_2;
transaction.dut_im_val = interface_instance.dut_reg_read_data_2;
transaction.dut_alu_output = interface_instance.dut_alu_output;
transaction.dut_alu_rec = interface_instance.dut_alu_erc;
transaction.dut_loc = interface_instance.dut_alu_erc;
transaction.dut_loc = interface_instance.dut_alu_erc;
transaction.dut_loc = interface_instance.dut_loc;
                                                                                                          transaction.dut_alu_zero = interface_instance.dut_alu_zero;
transaction.dut_cl_op = interface_instance.dut_rel_op;
transaction.dut_reg_write_data = interface_instance.dut_reg_write_ddt;
transaction.dut_rem_write_data = interface_instance.dut_rem_write_data;
transaction.dut_mem_addr = interface_instance.dut_mem_write_data;
                                                                                                           transaction.dut_mem_addr
// REF Transactions
                                                                                                        transaction.dut_mem_addr = interface_instance.dut_mem_addr;
// REF Transactions
transaction.instr_addr = interface_instance.ref_ref_instr;
transaction.ref pro = interface_instance.ref_ref_red_addr_1;
transaction.ref_ref_red_addr_1 = interface_instance.ref_ref_red_addr_1;
transaction.ref_ref_red_addr_2 = interface_instance.ref_ref_red_addr_2;
transaction.ref_ref_red_adda_2 = interface_instance.ref_ref_red_addr_2;
transaction.ref_ref_red_dta_2 = interface_instance.ref_ref_red_addr_2;
transaction.ref_ref_red_dta_2 = interface_instance.ref_ref_red_addr_2;
transaction.ref_ref_red_dta_2 = interface_instance.ref_alu_output;
transaction.ref_alu_output = interface_instance.ref_alu_cero;
transaction.ref_ref_write_addr = interface_instance.ref_ref_write_ddta;
transaction.ref_ref_write_dta = interface_instance.ref_ref_write_ddta;
transaction.ref_ref_write_dta = interface_instance.ref_ref_write_dta;
transaction.ref_mem_write_dta = interface_instance.ref_mem_write_dtat;
transaction.ref_mem_read = interface_instance.ref_mem_write_dtat;
transaction.ref_fmem_terd = interface_instance.ref_mem_write;
transaction.ref_fmem_terd = interface_instance.ref_mem_terd;
transaction.ref_fmem_terd = interface_instance.ref_mem_terd;
transaction.ref_fush = interface_instance.ref_fmem_terd;
transaction.ref_fush = interface_instance.ref_fmem_terd;
transaction.ref_fush = interface_instance.ref_fush;
transaction.ref_fush = interface_instance.ref_fush;
transaction.ref_fush = interface_instance.ref_fush;
transaction.ref_fush = interface_instance.ref_fush;
transaction.ref_f_instr = interface_instance.ref_fush;
transaction.ref_K_instr = interface_instance.ref_K_instr;
transaction.ref_K_instr = interface_i
                                                                                                           // Write to analysis port (scoreboard and coverage checker)
                                                                                                            analysis_port.write(transaction);
                                                                                                          = 0:
                                                                                                           $display("P A S S
                                                                                                                                                                                                            PASS
                                                                                                                                                                                                                                                    PASS
                                                                                                                                                                                                                                                                                           PASS
                                                                                                                                                                                                                                                                                                                                       PASS
                                                                                                                                                                                                                                                                                                                                                                                PASS");
                                                                                                                                       $display("
                                                                                                           end
                                                                                                          // Check for test log completion on continuous batch test run
if(transaction.mismatch_log_complete && run_all) begin
    interface_instance.test_in progress = 0;
    interface_instance.mismatch_detected = 1;
```


APPENDIX AA: Source Code of Verification Environment - UVM Coverage

```
include "uvm pkg.sv'
 include "uvm_macros.svh
 `include "seq_item.sv"
`include "parameter_list.sv"
import
           uvm_pkg::*;
 `ifndef coverage
           define coverage
                            extends uvm_subscriber #(seq_item);
class coverage
          `uvm_component_utils(coverage)
         seq item
                                                transaction;
         covergroup
                                                functional cover;
                   option.per_instance = 1;
                   option.get_inst_coverage = 1;
                                      coverpoint
                                                          transaction.ref stall
                   stall:
                                                                                                 {
                                                option.weight = 0;
                                                                              (0):
                                                bins no_stall=
                                                bins
                                                          stalled =
                                                                              (1);
                   flush:
                                       coverpoint
                                                          transaction.ref flush
                                                                                                 -{
                                                option.weight = 0;
                                                          no_flush=
flushed =
                                                                              (0):
                                                bins
                                                bins
                                                                              {1};
                                       coverpoint
                                                          transaction.ref_ID_instr[`OPCODE_HI:`OPCODE_LO] {
                   uncond jump:
                                                          jal = {`J_OPCODE};
jalr = {`JALR_OPCODE};
                                                bins
                                                bins
                                                          {transaction.ref_ID_instr[`FUNCT3_HI:`FUNCT3_LO],
transaction.ref_ID_instr[`OPCODE_HI:`OPCODE_LO]} {
                   cond jumps:
                                       coverpoint
                                                          beq_
                                                bins
                                                                              {`BEQ_CVR};
{`BNE_CVR};
                                                                    =
                                                                   =
                                                          bne_
blt_
                                                bins
                                                                  =
=
=
                                                                             { `BLT_CVR};
{ `BLT_CVR};
{ `BGE_CVR};
{ `BLTU_CVR};
                                                 bins
                                                          bge_
bltu_
                                                bins
                                                bins
                                                bins
                                                          bgeu_
                                                                              { BGEU_CVR};
                   loads:
                                       coverpoint
                                                           {transaction.ref_EX_instr[`FUNCT3_HI:`FUNCT3_L0],
                                                            transaction.ref_EX_instr[`OPCODE_HI:`OPCODE_LO]} {
Lb_ = {`LB_CVR};
                                                          1b_
                                                bins
                                                                             {`LH_CVR};
{`LW_CVR};
                                                bins
                                                          1h_
                                                                    -
                                                                    =
                                                bins
                                                          lw_
lbu_
                                                                             {`LBU_CVR};
{`LHU_CVR};
                                                bins
                                                                    =
                                                                   -
                                                bins
                                                          lhu_
                   instructions_A: coverpoint
                                                          {transaction.ref_EX_instr[`FUNCT3_HI:`FUNCT3_L0],
transaction.ref_EX_instr[`OPCODE_HI:`OPCODE_L0]} {
                                                          sb_
                                                                              {`SB_CVR};
{`SH_CVR};
                                                 bins
                                                                   =
                                                          sh_
sw_
                                                bins
                                                                    =
                                                                              {`SW_CVR};
                                                bins
                                                                             {`ADDI_CVR};
{`SLLI_CVR};
                                                bins
                                                          addi_ =
                                                                   =
                                                          slli_
                                                bins
                                                                             { `XORI_CVR};
{ `ORI_CVR};
{ `ORI_CVR};
{ `ANDI_CVR};
{ `SLTI_CVR};
                                                bins
                                                          xori_
                                                bins
                                                          ori
                                                                   =
                                                 bins
                                                          andi_
                                                          slti_
                                                bins
                                                                              { SLTIU CVR};
                                                                   =
                                                bins
                                                          sltiu
                                                          {transaction.ref_EX_instr[`FUNCT7_HI:`FUNCT7_L0],
transaction.ref_EX_instr[`FUNCT3_HI:`FUNCT3_L0],
                   instructions_B: coverpoint
                                                            transaction.ref_EX_instr[`OPCODE_HI:`OPCODE_LO]} {
                                                bins
                                                          srli_ =
                                                                              {`SRLI_CVR};
{`SRAI_CVR};
                                                 bins
                                                          srai_
                                                                             { `ADD_CVR};
{ `SUB_CVR};
                                                bins
                                                          add_
                                                                    =
                                                                   =
                                                bins
                                                          sub
                                                                             {`SLL_CVR};
{`XOR_CVR};
{`SRL_CVR};
                                                bins
                                                          sll_
                                                          xor_
                                                                   =
                                                bins
                                                                   =
                                                 bins
                                                          srl_
                                                          sra_
                                                                              { SRA CVR };
                                                bins
                                                bins
                                                                   =
                                                                              { OR_CVR};
                                                          or
                                                          and_
                                                                              { AND_CVR};
{ SLT_CVR};
                                                bins
                                                                    =
                                                                    -
                                                bins
                                                          slt
                                                 bins
                                                          sltu_
                                                                   =
                                                                              { SLTU_CVR};
                   instruction_C: coverpoint
                                                           {transaction.ref_EX_instr[`OPCODE_HI:`OPCODE_LO]}
                                                                                                                               ÷
                                                bins
                                                          lui =
                                                                             {`U_OPCODE};
                                       3
                   load_use_stalls:
                                                          loads, stall;
                                                 cross
                   cond_jump_flushes:
                                                cross
                                                          flush, cond_jumps;
                   endgroup
         function new(string name="coverage", uvm_component parent=null);
```

```
super.new(name, parent);
functional_cover = new;
endfunction
virtual function void write(seq_item t);
transaction = t;
functional_cover.sample();
if(transaction.end_of_test)
$$$ display("Functional Coverage Progress: $0.2f $$", functional_cover.get_inst_coverage());
endfunction
endclass
`endif
```

APPENDIX BB: Source Code of Verification Environment - UVM Scoreboard

```
include
                                                                      "uvm_pkg.sv"
include "uvm_pkg.sv"
include "uvm_macros.svh"
'include "seq_item.sv"
'include "parameter_list.sv"
import uvm_pkg::*;
'ifndef sooreboard
'define scoreboard
class scoreboard extends uvm
'uvm_component utils(scoreb)
                                       scoreboard extends uvm_scoreboard;
'uvm_component_utils(scoreboard)
                                  // Static variables for self checking mechanism
                                                                                                                                                                         ecking mechanism
data_l_buffer;
data_2_buffer;
data_1;
data_2;
load_flag;
load_use_flag;
stall_assertion;
stall_buffer;
write data buffe
                                                                    [`DATA_WIDTH-1:0]
[`DATA_WIDTH-1:0]
[`DATA_WIDTH-1:0]
[`DATA_WIDTH-1:0]
                                  logic
                                  logic
logic
logic
logic
logic
logic
                                   logic
                                  logic
                                                                                                                                                                         stall_buffer;
write_data_buffer;
write_data_check;
write_dateess_check;
write_address_check;
reg_write_check_buffer;
reg_write_check_buffer;
pranch_check_flag;
jump_check_flag;
flush_bassertion;
                                                                    ['DATA_WIDTH-1:0]
['DATA_WIDTH-1:0]
['REG_ADDR_WIDTH-1:0]
['REG_ADDR_WIDTH-1:0]
                                  logic
                                  logic
                                  logic
logic
logic
logic
logic
logic
                                   logic
                                   logic
                                  logic
                                  // Static variables for macro mechanism
                                  int
int
int
int
                                                                                                                                                                           stall_count;
flush_count;
stall_check;
flush_check;
                                  // Verification Status Flags
                                   logic
                                                                                                                                                                          mismatch;
                                  logic
                                                                                                                                                                           mismatch found:
                                  logic
                                                                                                                                                                           end_of_test;
                                   // Database Parameter Variables
                                  bit
bit
                                                                                                                                                                             testlog;
                                                                                                                                                                             memlog;
directed_test;
                                  bit
                                  bit
                                                                                                                                                                             run all;
                                                                                                                                                                          http://www.secondecomments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comme
comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.comments.c
                                  bit
                                  bit
                                  bit
                                  int
                                 function new(string name="scoreboard", uvm_component parent=null);
    super.new(name, parent);
endfunction
                                                                                                                                     transaction;
                                  seq item
                                                                                                                                              #(seq_item, scoreboard) m_analysis_imp;
                                     uvm_analysis_imp
                                  virtual function void build_phase(uvm_phase phase);
    super.build_phase(phase);
    m_analysis_imp = new("m_analysis_imp",this);
                                   endfunction
                                     mismatch = 0;
                                                                      // Obtain config parameters from database
if(!uvm_config_db#(bit)::get(null,"uvm_test_top","testlog",testlog))
                                                                     In(:vum_coning_ub*(bit)::get(null, uvm_test_cop, testing, testing))
    testing = 0;
if(!uvm_config_db*(bit)::get(null, "uvm_test_top", "memlog", memlog))
    if(!uvm_config_db*(bit)::get(null, "uvm_test_top", "directed_test", directed_test))
    directed_test = 0;
if(!uvm_config_db*(bit)::get(null, "uvm_test_top", "run_all", run_all))
    run_all = 0;
if(!uvm_config_db*(bit)::get(null, "uvm_test_top", "run_al", run_all))

                                                                     run_all = 0;
if (!uvm_config_db*(bit)::get(null, "uvm_test_top", "bypass_macro", bypass_macro))
    bypass_macro = 0;
if(!uvm_config_db*(bit)::get(null, "uvm_test_top", "macro_overwrite", macro_overwrite))
    macro_overwrite = 0;
if(!uvm_config_db*(bit)::get(null, "uvm_test_top", "force_gen", force_gen))
    force_gen = 0;
if(!uvm_config_db*(int)::get(null, "uvm_test_top", "test_seed", test_seed))
    test_seed = 0;
                                                                      self_check(transaction); // Self check mechanism
decode(transaction); // Decode and store information
mismatch_check(transaction); // Check for mismatch
                                                                     if(mismatch || (testlog && transaction.end_of_test)) begin
    test_logging(transaction); // Produce Test Log
    if(!mismatch && !bypass_macro)
        macro_check(); // Perform Macro Check
    // Move file to directory
    if(directed_test) begin
        move_file("ASM.txt","test_results/directed_test");
        move_file("LOG.txt","test_results/directed_test");
    }
    }
}
```


'uvm_fatal("REF MODEL ERROR",\$sformatf ("Incorrect SLTU Result: Behaviour: %8h Model: %8h".	
behaviour_result, transaction.ref_alu_output))	
XOR_FUNCT3: begin	
<pre>behaviour_result = data_1 ^ data_2; if(transaction.ref alu output != behaviour result)</pre>	
uvm_fatal("REF_MODEL_ERROR", \$sformatf	
("Incorrect XOK Result: Benaviour: %sn Model: %sn", behaviour_result, transaction.ref_alu_output))	
end SP_FTU(CT3+ begin	
<pre>case(transaction.ref_EX_instr[`FUNCT7_HI:`FUNCT7_LO])</pre>	
<pre>`DEFAULT_FUNCT7: begin behaviour result = data 1 >> data 2[4:0];</pre>	
<pre>if(transaction.ref_alu_output != behaviour_result)</pre>	
("Incorrect SRL Result: Behaviour: %8h Model: %8h",	
<pre>behaviour_result, transaction.ref_alu_output))</pre>	
ALT_FUNCT7: begin	
<pre>if(transaction.ref_alu_output != behaviour_result)</pre>	
<pre>`uvm_fatal("REF MODEL ERROR",\$sformatf ("Incorrect SRA Result: Rehaviour: %8h Model: %8h".</pre>	
behaviour_result, transaction.ref_alu_output))	
end endcase	
end	
OR_FUNCT3: begin	
<pre>behaviour_result = data_1 data_2; if(transaction.ref alu output != behaviour result)</pre>	
uvm fatal ("REF MODEL ERROR", \$sformatf	
("Incorrect OR Result: Benaviour: %8n Model: %8n", behaviour_result, transaction.ref_alu_output))	
end	
behaviour_result = data_1 & data_2;	
<pre>if(transaction.ref_alu_output != behaviour_result) `uvm fatal("REF MODEL ERROR".\$sformatf</pre>	
("Incorrect AND Result: Behaviour: \$8h Model: \$8h",	
end	
end	
S_OPCODE,	
<pre>LOAD_OPCODE: begin behaviour result = data_1 + data_2;</pre>	
<pre>if(transaction.ref_alu_output != behaviour_result)</pre>	
("Incorrect Load/Store Address Calculated: Behaviour: %8h Model: %8	h",
<pre>behaviour_result, transaction.ref_alu_output)) end</pre>	
'U_OPCODE: begin	
if(transaction.ref_alu_output != behaviour_result)	
`uvm_fatal("REF MODEL ERROR",\$sformatf ("Incorrect Load Upper Immediate Result: Behaviour: %8h Model: %8h",	
behaviour_result, transaction.ref_alu_output))	
I_OPCODE: begin	
<pre>case(transaction.ref_EX_instr[`FUNCT3_HI:`FUNCT3_L0]) `ADD FUNCT3: begin</pre>	
<pre>behaviour_result = data_1 + data_2; if(typectics of all entruit to behaviour pecult)</pre>	
`uvm_fatal("REF MODEL ERROR", \$sformatf	
("Incorrect ADDI Result: Behaviour: %8h Model: %8h", behaviour result, transaction.ref alu output))	
end	
<pre>behaviour_result = data_1 << data_2[4:0];</pre>	
<pre>if(transaction.ref_alu_output != behaviour_result) `uvm_fatal("REF_MODEL_ERROR".Ssformatf</pre>	
("Incorrect SLLI Result: Behaviour: %8h Model: %8h",	
<pre>("Incorrect SLLI Result: Behaviour: %8h Model: %8h", behaviour_result, transaction.ref_alu_output)) end</pre>	
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h",</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end `SLI_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) if(transaction.ref_alu_output != behaviour_result)</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end `SLI_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) `uvm_fatal("REF MODEL ERROR",\$sformatf ("Incorrect SLI Result Rehaviour: %h Model: %%h",</pre>	÷
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end `SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) `uvm_fatal("REF MODEL ERROR",\$sformatf ("Incorrect SLI Result: Behaviour: %h Model: %%h", behaviour_result, transaction.ref_alu_output)) end</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h",</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end 'SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLIT Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end 'SLUU_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref_alu_output != behaviour_result)</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end 'SLI_FUNCT3: begin behaviour_result = ({\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLIT Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end 'SLIU_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLIU Beaution: %%h Model: %%h", behaviour_result = (Model: %%h Model: %%h", 'uvm_fatal("NEF MODEL ERROR", \$sformatf ("Uncorrect SLIU Beaution: %%h Model: %%h", 'uvm_fatal("NEF MODEL ERROR", %%formatf ("Uncorrect SLIU Beaution: %%h Model: %%h", 'uvm_fatal("NEF MODEL ERROR", %%formatf ("Incorrect SLIU Beaution: %%h Model: %%h", 'uvm_fatal("NEF MODEL ERROR", %%formatf ("Incorrect SLIU Beaution: %%h Model: %%h", 'uvm_fatal("NEF MODEL ERROR", %formatf ("Incorrect SLIU Beaution: %%h Model: %%h Model: %%h Model: %h Model: %h Model: %h Model: %h Model: %h Model: %h M Model: %h M M M M M M M M M M M M M M M M M M</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h",</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h",</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h",</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h",</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end 'SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLIT Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end 'SLIU_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$eformatf ("Incorrect SLITU Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref_alu_output)) end 'XOR_FUNCT3: begin behaviour_result = data_1 ^ data_2; if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$eformatf ("Incorrect XORI Result: Behaviour: %%h Model: %%h", behaviour_result, transaction.ref %h widel: %h", behaviour_result, transaction.ref %h widel: %h", behaviour_result, transaction.ref %h widel: %h widel: %h widel: %h widel: %h widel: %h widel: %</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLIT Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLIU_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLITU Result: Behaviour: %% Model: %%%", behaviour_result, transaction.ref_alu_output)) end 'XOR_FUNCT3: begin behaviour_result = data_1 ^ data_2; if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour: %% Model: %%", behaviour_result, transaction.ref_alu_output)) end 'SE FUNCT3: begin</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLTI Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLTU_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLTIU Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'XOR_FUNCT3: begin behaviour_result = data_1 ^ data_2; if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SR_FUNCT3: begin case (transaction.ref_alu_output']FUNCT7_HI:FUNCT7_L0])</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLTI Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLTU_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLTIU Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'XOR_FUNCT3: begin behaviour_result = data_1 ^ data_2; if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SR_FUNCT3: begin Case(transaction.ref_alu_output != behaviour_Lo]) 'DEFAULT_UNCT7: begin behaviour result = data 1 >> data 2[4:0];</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLTI Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLTU_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLTIU Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'XOR_FUNCT3: begin behaviour_result = data_1 ^ data_2; if(transaction.ref_alu_output != behaviour_result) 'uvm_fata1("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SR_FUNCT3: begin case(transaction.ref_alu_output != behaviour_result) 'um_fata1("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour_result) 'uvm_fata1("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour_result)</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) iff(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLII Result: Behaviour; %%% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLIU_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); iff(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLII Result: Behaviour: %%% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'XOR_FUNCT3: begin behaviour_result = data_1 ^ data_2; iff(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour: %%% Model: %%%", behaviour_result, transaction.ref_alu_output)) end 'SR_FUNCT3: begin Case(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour: %%% Model: %%%", behaviour_result = data_1 >> data_2[4:0]; iff(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLII Result = data_1 >> data_2[4:0]; iff(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLII REF MODEL ERROR", \$sformatf ("Incorrect SLII RESULT Behaviour: %% Model: %%%, 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLI REF MODEL ERROR", \$sforma</pre>	;
<pre>("Incorrect SLLI Result: Behaviour: %%% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLT_FUNCT3: begin behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1) if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLII Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'SLUT_FUNCT3: begin behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SLII Result: Behaviour: %% Model: %%%, behaviour_result, transaction.ref_alu_output)) end 'XOR_FUNCT3: begin behaviour_result = data_1 ^ data_2; if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect XORI Result: Behaviour: %% Model: %%%", behaviour_result, transaction.ref_alu_output)) end 'SR_FUNCT3: begin case(transaction.ref_sLinstr['FUNCT7_HI:'FUNCT7_L0]) 'DEFAULT_FUNCT1: begin behaviour_result = data_1 >> data_2[4:0]; if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF MODEL ERROR", \$sformatf ("Incorrect SRLI Result: Behaviour: %% Model: %%", behaviour_result, transaction.ref_alu_output)) end</pre>	;

	<pre>if(transaction.ref_alu_output != behaviour_result) 'uvm_fatal("REF_MODEL_ERROR",&sformatf ("Incorrect_SRLI_Result: Behaviour: %8h _ Model: %8h", ''Incorrect_SRLI_Result: Behaviour: %8h _ Model: %8h",</pre>
	end
	endcase end
`OR_FU	<pre>NNCT3: begin behaviour_result = data_1 data_2;</pre>
	<pre>if(transaction.ref_alu_output != behaviour_result) `uvm_fatal("REF_MODEL_ERROR".\$sformatf</pre>
	("Incorrect ORI Result: Behaviour: \$8h Model: \$8h",
	end
AND_F	behaviour_result = data_1 & data_2;
	<pre>if(transaction.ref_alu_output != behaviour_result) `uvm_fatal("REF MODEL ERROR",\$sformatf</pre>
	("Incorrect ANDI Result: Behaviour: %8h Model: %8h", behaviour result, transaction.ref alu output))
endcas	end
end	
case (t	gin ransaction.ref_EX_instr[`FUNCT3_HI:`FUNCT3_LO])
BEQ_F	<pre>UUNCI3: begin behaviour_result = !(data_1 == data_2);</pre>
	<pre>if(transaction.ref_alu_output != behaviour_result) `uvm fatal("REF MODEL ERROR",\$sformatf</pre>
	("Incorrect BEQ Result: Behaviour: %8h Model: %8h", behaviour result transaction ref all output))
	end
BNE_F	<pre>behaviour_result = (data_1 == data_2);</pre>
	if(transaction.ref_alu_output != behaviour_result) `uvm_fatal("REF MODEL ERROR",&sformatf
	("Incorrect BNE Result: Behaviour: %8h Model: %8h", behaviour result, transaction.ref alu output))
	end
BLT_F	<pre>behaviour_result = ((\$signed(data_1) < \$signed(data_2)) ? 0 : 1);</pre>
	1f(transaction.ref_alu_output != behaviour_result) `uvm_fatal("REF MODEL ERROR",\$sformatf
	("Incorrect BLT Result: Behaviour: %8h Model: %8h", behaviour result, transaction.ref alu output))
BOF	end
E	<pre>behaviour_result = ((\$signed(data_1) >= \$signed(data_2)) ? 0 : 1);</pre>
	<pre>if(transaction.ref_alu_output != behaviour_result) `uvm_fatal("REF_MODEL_ERROR",\$sformatf</pre>
	("Incorrect BGE Result: Behaviour: %8h Model: %8h", behaviour result, transaction.ref alu output))
BLTH	end FUNCT3: begin
	behaviour result = ((data 1 < data 2) ? 0 : 1); if(ransaction ref alu output != behaviour result)
	'uvm fatal("REF MODEL ERROR", \$sformatf
	("incorrect bild Result: Benaviour: son Model: son", behaviour_result, transaction.ref_alu_output))
BGEU_	end FUNCT3: begin
	<pre>behaviour_result = ((data_1 >= data_2) ? 0 : 1); if(transaction.ref alu output != behaviour result)</pre>
	<pre>`uvm_fata1("REF MODEL ERROR", \$sformatf ("Incorrect RCFU Desult, Behaviour, \$sh Model, \$sh")</pre>
	behaviour_result, transaction.ref_alu_output))
endc	end Jase
ndcase	end
// Check for I	Load-use case and Stall assertion
if(load_flag &	:6 np ref TD instr('RS2 ADDR HT:'RS2 ADDR LO1 == transaction ref FX instr('RD ADDR HT:'RD ADDR LO1
transactio	<pre>>>>.ref_ID_instr['RS1_ADDR_HI:'RS1_ADDR_LO] == transaction.ref_EX_instr['RD_ADDR_HI:'RD_ADDR_LO]) 66 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>
load_u	<pre>use_flag = 1;</pre>
ise load_u	<pre>ise_flag = 0;</pre>
/ ID Stage Lo f(transaction	<pre>wad Detection a.ref ID instr[`OPCODE HI:`OPCODE LO] == `LOAD OPCODE)</pre>
load_f	(lag = 1;
load_f	(lag = 0; Stal Combinational Output upon EV Stars I and ID Carry Up
/ cneck for S f(load_use_fl	scarr compinacional Output upon EX stage Load ID stage USe Lag) <mark>begin</mark>
if(!tr	<pre>:ansaction.ref_stall) `uvm_fatal("REF MODEL ERROR","Load-use Case Not Stalled")</pre>
else	load use flag = 0;
nd	
// EXMEM Stage	: to MEMWB Stage Pipeline
reg_write_chec // Check instr	<pre>% = reg_write_check_buffer; suction type at EX Stage</pre>
<pre>case(transacti `R OPCODE.</pre>	<pre>ion.ref_EX_instr[`OPCODE_HI:`OPCODE_LO])</pre>
J_OPCODE,	
U_OPCODE,	
'I_OPCODE: beg	<pre>jin reg_write_check_buffer = 1;</pre>
en default: reg w	nd write check buffer = 0;
endcase	
// EXMEM Stage	to MEMWB Stage Pipeline
write_address_ write_data_che	<pre>check = write_address_buffer; :ck = write_data_buffer;</pre>
<pre>/rite_address_ // For JAL and</pre>	<pre>buffer = transaction.ref_EX_instr['RD_ADDR_H1:'RD_ADDR_L0]; i JALR</pre>
f(transaction	<pre>i.ref_EX_instr[`OPCODE_HI:`OPCODE_L0] == `J_OPCODE </pre>

'uvm_info("SCBD",\$sformatf("sra rd, rsl, rs2), UVM_MEDIUM) \$fdisplay(f1, "sra x\$2d, x\$ end default: 'uvm_fatal("ERROR",\$sformatf x%2d, x%2d, x%2d", x%2d, x%2d, x%2d", rd, rs1, rs2); "Unknown funct7 field Failing Field: %7b Failing Instruction: %8h", funct7, transaction.ref_instr)) endcase • oR FUNCT3: begin 'OR_FUNCT3: begin 'uvm_info('SCBD',\$sformatf('or x\$2d, x\$2d, x\$2d', rd, rsl, rs2), UVM_MEDIUM) ofdisplay(fl, "or x\$2d, x\$2d, x\$2d", rd, rsl, rs2) end 'AND_FUNCT3: begin x%2d, x%2d, x%2d", rd, rsl, rs2); m_info("SCBD",\$sformatf("and x\$2d, x\$2d, x\$2d", DIUM) x%2d, x%2d, x%2d", rd, rs1, rs2); Failing Instruction: %8h". funct3, transaction.ref_instr)) endcase end `LOAD_OPCODE: begin case (funct3)
`LB_FUNCT3: begin);;; Degin `uvm_info("SCBD",\$sformatf("lb x%2d, 0x%3h(x%2d)", rd, imm, rsl), UVM_MEDIUM) \$fdisplay(fl, "lb x%2d, 0x%3h(x%2d)", rd, imm, rsl); end end 'LH_FUNT3: begin 'uvm_info("SCBD",&sformatf("lh x%2d, 0x%3h(x%2d)", rd, imm, rsl), UVM_MEDIUM) &fdisplay(fl, "lh x%2d, 0x%3h(x%2d)", rd, imm, rsl); end end 'LW_FUNCT3: begin 'uvm_info("SCBD",\$sformatf("lw x%2d, 0x%3h(x%2d)", rd, imm, rsl), UVM_MEDIUM) \$fdisplay(fl, "lw x%2d, 0x%3h(x%2d)", rd, imm, rsl); end 'LBU_FUNCT3: begin 'LBU_FUNCT3: begin LDU_FUNUI3: Degin 'uvm_info("SCBD", Seformatf("lbu x%2d, 0x%3h(x%2d)", rd, imm, rsl), UVM_MEDIUM) \$fdisplay(fl, "lbu x%2d, 0x%3h(x%2d)", rd, imm, rsl); end 'LHU_FUNCT3: begin x%2d, 0x%3h(x%2d)", rd, imm, rsl); ("Unknown funct3 field Failing Field: %3b Failing Instruction: %8h". funct3, transaction.ref_instr)) endcase end `I_OPCODE: begin case (funct3)
`ADD_FUNCT3: begin `uvm_info("SCBD",\$sformatf("addi x%2d, x%2d, 0x%3h", rd, rsl, imm), UVM_MEDIUM) \$fdisplay(fl, "addi x%2d, x%2d, 0x%3h", rd, rsl, imm); end end `SLL_FUNCT3: begin `uvm_info("SCBD",\$sformatf("slli x%2d, x%2d, %d", rd, rsl, imm[4:0]), UVM_MEDIUM) \$fdisplay(fl, "slli x%2d, x%2d, %d", rd, rsl, imm[4:0]); end end "SLT_FUNCT3: begin "uvm_infc("SCBD",Ssformatf("slti x%2d, x%2d, 0x%3h", rd, rsl, imm), UVM_MEDIUM) \$fdisplay(fl, "slti x%2d, x%2d, 0x%3h", rd, rsl, imm); end SLTU_FUNCT3: begin varis: begin 'uvm_info("SCBD",\$sformatf("sltiu x%2d, x%2d, 0x%3h", rd, rsl, imm), UVM_MEDIUM) \$fdisplay(fl, "sltiu x%2d, x%2d, 0x%3h", rd, rsl, imm); end XOR FUNCT3: begin info("SCED", \$sformatf("xori x%2d, x%2d, 0x%3h", rd, rsl, imm), UVM_MEDIUM) ;fdisplay(fl, "xori x%2d, x%2d, 0x%3h", rd, rsl, imm); \$fdisplay(fl,
 end SR FUNCT3: begin case (funct7) x%2d, %d", rd, rsl, imm[4:0]); end `ALT_FUNCT7: begin `uvm_info("SCED",\$sformatf("srai x%2d, x%2d, %d", rd, rsl, imm[4:0]), UVM_MEDIUM) \$fdisplay(fl, "srai x%2d, x%2d, %d", rd, rsl, imm[4:0]); rd end end default: `uvm_fatal("ERROR",\$sformatf ("Onknown funct7 field Failing Field: %7b Failing Instruction: %8h", funct7, transaction.ref_instr)) endcase end OR_FUNCT3: begin List Begin 'uvm_info("SCBD",&sformatf("ori x%2d, x%2d, 0x%3h", rd, rsl, imm), UVM_MEDIUM) &fdisplay(fl, "ori x%2d, x%2d, 0x%3h", rd, rsl, imm); end AND_FUNCT3: begin NUIS: Degin `uvm_info("SCBD",\$sformatf("andi x%2d, x%2d, 0x%3h", rd, rsl, imm), UVM_MEDIUM) \$fdisplay(fl, "andi x%2d, x%2d, 0x%3h", rd, rsl, imm); end default: `uvm_fatal("ERROR",\$sformatf

("Unknown funct3 field Failing Field: %3b funct3, transaction.ref_instr)) Failing Instruction: %8h", 0x%3h(x%2d)", rs2, {funct7,rd}, rs1); end `SH_EUUCTS: begin `uvm_info("SCBD",\$sformatf("sh x%2d, 0x%3h(x%2d)", rs2, ffunct7,rd], rs1), UVM_MEDIUM) \$fdisplay(fl, "sh x%2d, 0x%3h(x%2d)", rs2, (funct7, cod 0x%3h(x%2d)", rs2, {funct7,rd}, rs1); end 'SW_EUUCTS: begin 'uvm_info("SCBD",\$sformatf("sw x%2d, 0x%3h(x%2d)", rs2, ffunct7,rd], rs1), UVM_MEDIUM) ffdisplay(fl, "sw x%2d, 0x%3h(x%2d)", rs2, (funct7, rd1 0x%3h(x%2d)", rs2, {funct7,rd}, rs1); sfulspiay(II, 'sw x*2d, 0x*3n(x*2d), FS2, (funct/,rd), FS1); end default: 'uvm_fatal("ERROR",Ssformatf ("Unknown funct3 field Failing Field: %3b Failing Instruction: %8h", funct3, transaction.ref_instr)) endcase end SB_OPCODE: begin case (funct3) case (funct3)
'BEO_FUNCT3: begin
'uvm_info("SCBD", \$sformatf("beq x%2d, x%2d, 0x%3h",
 rsl, rs2, branch), UVM_MEDIUM)
\$fidiplay(f1, "beq x%2d, x%2d, 0x%3h", rsl, rs2, branch);
end
'BNE_FUNCT3: begin
'uvm_info("SCBD", \$sformatf("bne x%2d, x%2d, 0x%3h",
 rat_rs2 branch) UUM_EFUIM) `BLT_FUNCT3: begin `uvm_info("SCBD",\$sformatf("blt x%2d, x%2d, 0x%3h", rsl, rs2, branch), UVM_MEDIUM) @fdisplay(fl, "blt x%2d, x%2d, 0x%3h", rsl, rs2, branch); end `BGE_FUNCT3: begin `uvm_info("SCBD",\$sformatf("bge x%2d, x%2d, 0x%3h", `BLTU_FUNCT3: begin
`'uvm_info("SCBD",\$sformatf("bltu x%2d, x%2d, 0x%3h",
 rs1, rs2, branch), UVM_MEDIUM)
 fdisplay(f1, "bltu x%2d, x%2d, 0x%3h", rs1, rs2, branch);
 end
'BGEU_FUNCT3: begin
''uvm_info("SCBD",\$sformatf("bgeu x%2d, x%2d, 0x%3h",
 rs1 rs2 branch). UVM MEDIUM) endcase end `U_OPCODE: begin UE: Degin `uvm_info("SCBD",&sformatf("lui x%2d, 0x%5h", rd, lui_constant), UVM_MEDIUM) &fdisplay(fl, "lui x%2d, 0x%5h", rd, lui_const 0x%5h", rd, lui_constant); end J_OPCODE: begin \$fdieplay(fl, "jal x%2d, 0x%5h", rd, jal_offset); end 'JALR_OPCODE: begin 'uvm_info("SCBD",Ssformatf("jalr x%2d, 0x%3h(x%2d)", rd, imm, rsl), UVM_MEDIUM) \$fdieplay(fl, "jalr x%2d, 0x%3h(x%2d)", rd, imm, rsl) end .vvp.pscreekee. x%2d, 0x%3h(x%2d)", rd, imm, rsl); end
'NOP_OPCODE: begin
'uvm_info("SCBD",&sformatf("nop"), UVM_MEDIUM)
&fdisplay(fl, "nop");
end endcase
\$fclose(fl); endfunction // Compare Reference Model Results and DUT Model Results
// Store corresponding information for logging
function void mismatch_check(seq_item transaction); int fh; fh = &fopen("PIPELINE.txt", "a+"); &fdiaplay(fh, "%lb", transaction.ref_stall); &fclose(fh); fh = &fopen("FLUSH.txt","a+"); &fdisplay(fh, "%lb", transaction.ref_flush); &fclose(fh); fh = &fopen("UUMP.txt","a+"); &fdiaplay(fh, "%lb", transaction.ref_jump_link); &fclose(fb); int fh; \$fclose(fh); fh = &fopen("IFID.txt", "a+"); &fdisplay(fh, "%8h %8h", transaction.ref_pc, transaction.dut_pc); &fdisplay(fh, "%8h %8h", transaction.ref_instr, transaction.dut_instr); \$fclose(fh); if(transaction.ref_pc != transaction.dut_pc) begin saction.ref_pc != transaction.dut_pc; pegin
mismatch = 1;
'uvm_info("MISMATCH","Mismatch Encountered at IF/ID Pipeline Register",UVM_LOW);
'uvm_info("MISMATCH","Mismatching Program Counter",UVM_LOW);
'uvm info("MISMATCH".Ssformatf("REF PC: %8h", transaction.ref pc).UVM_LOW);

	saction.ref_instr != transaction.dut_instr) begin
	<pre>mlsmatch = 1; `uvm info("MISMATCH", "Mismatch Encountered at IF/ID Pipeline Register",UVM LOW);</pre>
	<pre>`uvm_info("MISMATCH", "Mismatching Instruction Code", UVM_LOW);</pre>
	<pre>`uvm_info("MISMATCH",\$sformatf("REF Instr Code: %8h", transaction.ref_instr),UVM_LOW); `uvm_info("MISMATCH",\$sformatf("DUT Instr Code: %8h", transaction.dut instr),UVM_LOW);</pre>
end	· · · · · · · · · · · · · · · · · · ·
fh = \$f	open("IDEX.txt", "a+");
\$fdispl	ay(fh, "%d %8h", transaction.ref_reg_read_addr_1, transaction.ref_reg_read_data_1);
\$fdispl \$fdispl	ay(fh, "%d %8h", transaction.ref_reg_read_addr_2, transaction.ref_reg_read_data_2); av(fh, "%d %8h", transaction.dut reg_read_addr_1, transaction.dut reg_read_data_1);
\$fdispl	ay(fh, "%d %8h", transaction.dut_reg_read_addr_2, transaction.dut_reg_read_data_2);
\$fdispl	ay(fh, "%8h %8h", transaction.ref_imm_val, transaction.dut_imm_val);
SICIOSE	(11);
if(tran	<pre>saction.ref_reg_read_addr_1 != transaction.dut_reg_read_addr_1) begin microstch = l;</pre>
	<pre>mismatch = 1; `uvm info("MISMATCH", "Mismatch Encountered at ID/EX Pipeline Register",UVM LOW);</pre>
	<pre>`uvm_info("MISMATCH", "Mismatching Register 01 Address", UVM_LOW);</pre>
	<pre>`uvm_info("MISMATCH",\$sformatf("REF Reg01 Addr: %d", transaction.ref_reg_read_addr_1),UVM_LOW); `uvm_info("MISMATCH",\$sformatf("DUT Reg01 Addr: %d", transaction.dut reg_read_addr_1),UVM_LOW);</pre>
end	
if(tran	<pre>saction.ref_reg_read_addr_2 != transaction.dut_reg_read_addr_2) begin mismatch = 1;</pre>
	<pre>`uvm_info("MISMATCH", "Mismatch Encountered at ID/EX Pipeline Register", UVM_LOW);</pre>
	<pre>`uvm_info("MISMATCH", "Mismatching Register 02 Address", UVM_LOW); `uvm_info("MISMATCH", Coferentf("DEE Dec02 Address", UVM_LOW);</pre>
	'uvm info("MISMATCH", \$sformatf("DUT Reg02 Addr: %d", transaction.dut reg read_addr_2), UVM LOW);
end if(tren	saction ref reg read data] != transaction dut reg read data]) hegin
11 (uran	<pre>mismatch = 1;</pre>
	<pre>`uvm_info("MISMATCH", "Mismatch Encountered at ID/EX Pipeline Register", UVM_LOW); `uvm_info("MISMATCH", "Mismatchien Periode of Data";</pre>
	uvm_inro("MISMATCH","Mismatching Register Ol Data",UVM_LOW); `uvm_info("MISMATCH",Ssformatf("REF_Reg01_Data: %8h", transaction.ref_reg_read_data_1)_HUM_LOW).
	<pre>`uvm_info("MISMATCH",\$sformatf("DUT Reg01 Data: %8h", transaction.dut_reg_read_data_1),UVM_LOW);</pre>
end if(tran	saction.ref reg read data 2 != transaction.dut reg read data 2) hegin
(crall	mismatch = 1;
	<pre>`uvm_info("MISMATCH", "Mismatch Encountered at ID/EX Pipeline Register", UVM_LOW); `uvm_info("MISMATCH", "Mismatching Register 02 Data" UNA LOW;</pre>
	<pre>uvm_info("MISMATCH",\$sformatf("REF Reg02 Data: %8h", transaction.ref reg read data 2).UVM LOW);</pre>
_	<pre>`uvm_info("MISMATCH",\$sformatf("DUT Reg02 Data: %8h", transaction.dut_reg_read_data_2),UVM_LOW);</pre>
end if(tran	saction.ref imm val != transaction.dut imm val) begin
II (oran	mismatch = 1;
	<pre>`uvm_info("MISMATCH", "Mismatch Encountered at ID/EX Pipeline Register", UVM_LOW);</pre>
	'uvm info("MISMATCH", fsformatf("REF Imm Val: %8h", transaction.ref imm val),UVM LOW);
	<pre>`uvm_info("MISMATCH",\$sformatf("DUT Imm Val: %8h", transaction.dut_imm_val),UVM_LOW);</pre>
end	
\$fdispl	ay(fh, "\$8h \$8h", transaction.ref_alu_output, transaction.dut_alu_output);
\$fdispl \$fdispl \$fclose	ay(fh, "%0h %0h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh);
<pre>\$fdispl \$fdispl \$fclose if(tran</pre>	<pre>ay(fh, "%0h %0h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismarch</pre>
<pre>\$fdispl \$fdispl \$fclose if(tran</pre>	<pre>ay(fh, "%0h %0h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register", UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fclose if(tran</pre>	<pre>ay(fh, "%0h %0h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatching ALU Output",UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fclose if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh;; saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register", UVM_LOW); 'uvm_info("MISMATCH", "Mismatching ALU Output", UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Out; %8h", transaction.ref_alu_output), UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Out; %8h", transaction.dut_alu_output), UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fclose if(tran end</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatching ALU Output",UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("REF ALU Output", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DUT ALU Out; %8h", transaction.dut_alu_output),UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fclose if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Ind ALU Output",UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Out; %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Out; %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin</pre>
<pre>\$fdispl \$fdispl \$fdispl \$fclose if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatching ALU Output", UVM_LOW); 'uvm_info("MISMATCH", \$sformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", \$sformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fclose if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; `uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); `uvm_info("MISMATCH", %aformatf("REF ALU Output", UVM_LOW); `uvm_info("MISMATCH", %aformatf("REF ALU Output", VM_LOW); `uvm_info("MISMATCH", %aformatf("REF ALU Output", VM_LOW); `uvm_info("MISMATCH", %aformatf("REF ALU Output", VM_LOW); `uvm_info("MISMATCH", %aformatf("REF ALU Output", VM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; `uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register", UVM_LOW); `uvm_info("MISMATCH", "Mismatching ALU Zero", UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fdispl \$fclose if(tran end if(tran</pre>	<pre>ay(fh, "%0h %0h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; `uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); `uvm_info("MISMATCH", Saformatf("REF ALU Out: %0h", transaction.ref_alu_output),UVM_LOW); `uvm_info("MISMATCH", \$sformatf("REF ALU Out: %0h", transaction.dut_alu_output),UVM_LOW); `uvm_info("MISMATCH", \$sformatf("REF ALU Out: %0h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; `uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); `uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); `uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); `uvm_info("MISMATCH", Saformatf("REF ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); `uvm_info("MISMATCH", Saformatf("REF ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fdispl \$fclose if(tran end if(tran end</pre>	<pre>ay(fh, "%0h %0h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatching ALU Output", UVM_LOW); 'uvm_info("MISMATCH", "Mismatching ALU Output", UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Out: %8h", transaction.ref_alu_output), UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Out: %8h", transaction.dut_alu_output), UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register", UVM_LOW); 'uvm_info("MISMATCH", "Mismatching ALU Zero", UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Zero", UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.ref_alu_zero), UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero), UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero), UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fdispl \$fclose if(tran end if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatching ALU Output",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DIT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); saction.ref_ctl_op != transaction.dut_ctl_op) begin mismatch = 1;</pre>
<pre>\$fdispl \$fdispl \$fdispl \$fdispl \$fclose if(tran end if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero)); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero)); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero)); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero)); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero);); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero););</pre>
<pre>\$fdiapl \$fdiapl \$fdiapl \$fclose if(tran end if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Sformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DIT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatching ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Mismatching ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); saction.ref_ctl_op != transaction.dut_ctl_op) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", \$sformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", \$sformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", \$mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Pipeline Register",UVM_LOW);</pre>
<pre>\$fdispl \$fdispl \$fclose if(tran end if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatching ALU Zero: %1h", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Saformatf("DUT ALU Zero: %1h", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Aisomatf("REF CL OP: %bb", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF CL OP: %bb", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF CL OP: %bb", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("REF CL OP: %bb", transaction.dut ct I on.UVM_LOW);</pre>
<pre>\$fdiapl \$fdiapl \$fdiapl \$fclose if(tran end if(tran end if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", \$sformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Incountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Incountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Incountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF CTL OP: %bD", transaction.ref_ctl_op,UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP: %bD", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP: %bD", transaction.dut_ctl_op),UVM_LOW);</pre>
<pre>\$fdiap1 \$fdiap1 \$</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Saformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatching ALU Zero", UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); saction.ref_ctl_op != transaction.dut_ctl_op) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF CTL_OP) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF CTL_OP: %8b", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH", Saformatf("DUT CTL_OP: %8b", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH", Saformatf("DUT CTL_OP: %8b", transaction.dut_ctl_op),UVM_LOW);</pre>
<pre>@fdiapl @fdiapl @fdiapl @fdiapl if(tran end if(tran end if(tran end if(tran</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Output",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Output",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DIT ALU Output",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DIT ALU Output",UVM_IDEV); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Zero: %lb", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("CDUT ALU Zero: %lb", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Zero: %lb", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("CDUT ALU Zero: %lb", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Zero: %lb", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Incountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Seformatf("DUT CIL OP: %bD", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP: %bD", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH","seformatf("DUT CIL OP: %bD", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH","seformatf("DUT CIL OP: %bD", transaction.du</pre>
<pre>@fdiapl @fdiapl @fdiapl @fdiapl if (tran end if (tran end if (tran end if (tran end fh = \$ff @fdiapl @fdiapl </pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); seaction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Zero: %1h", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Dero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF CIL OP) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Incountered a</pre>
<pre>@fdiapl @fdiapl @fdiapl @fdiapl if (tran end if (tran end if (tran fh = @f @fdiapl @fdiapl @fdiapl @fdiapl @fdiapl</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Siformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Siformatf("DUT ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Re</pre>
<pre>@fdiapl @fdiapl @fdiapl @fdiapl if(tran end if(tran end if(tran fh = @ff %fdiapl %fdiapl %fdiapl %fdiapl %fdiapl</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Sformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",\$formatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",\$formatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_tero) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",\$formatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Sformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","formatf("REF CTL OP: %bb", transaction.ref_tl_op),UVM_LOW); 'uvm_info("MISMATCH",formatf("DUT CTL OP: %bb", transaction.ref_tl_op),UVM_LOW); 'uvm_info("MISMATCH",formatf("DUT CTL OP: %bb", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",formatf("DUT CTL OP: %bb", transaction.ref_mem_vrite, transaction.ref_mem_read y(fh, "%b %b%b", transaction.ref_reg_write, transaction.dut_ctl_op),UVM_LOW; y(fh, "%d %b%h", transaction.ref_mem_ddr, transaction.ref_mem_vrite_data); y(fh, "%d %bh", transaction.ref_reg_write_ddr, transaction.ref_data); y(fh, "%d %bh", transaction.ref_mem_transaction.ref_mem_vrite_data); y(fh, "%d %bh</pre>
<pre>ofdispl ofdispl ofdispl ofdispl ofclose if(tran end if(tran end if(tran end if(tran ofdispl ofdis</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Sformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Aismatching CIL OP", UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DUT CIL OP: %8b", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DUT CIL OP: %8b", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DUT CIL OP: %8b", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",\$sformatf("DUT CIL OP: %8b", transaction.ref_mem_write, transaction.ref_mem_react y(fh, "%6b %6b", transaction.ref_reg_write, transaction.ref_mem_write, transaction.ref_mem_react y(fh, "%6b %6b", transaction.ref_reg_write_addr, transaction.ref_mem_write_data); ay(fh, "%6b %6b", transaction.dut_mem_addr, transaction.ref_reg_write_data); ay(fh, "%6b %6b", transaction.dut_reg_write_addr, transact</pre>
<pre>efdiapl @fdiapl @fdiapl @fdiapl if(tran end end efdiapl efdiapl efdiapl efdiapl if(tran efd(tran efd(tran) efd(tran)</pre>	<pre>py(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); sy(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (h); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Out; %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Out; %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Out; %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Zero: %1h", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP", WDM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP: %8b", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP: %8b", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP: %8b", transaction.ref_mem_write, transaction.ref_mem_read y(fh, "%1b %1b", transaction.int_mem_addr, transaction.ref_mem_write, data); ay(fh, "%1b %1b", transaction.int_mem_addr, transaction.int_mem_write_data); ay(fh, "%4 %6h", transaction.int_mem_addr, transaction.int_ref_write_data); (h); saction.ref_mem_addr != transaction.dut_mem_addr) begin</pre>
<pre>ofdispl ofdispl ofdispl ofdispl if(tran end if(tran end if(tran end fhf=off ofdispl ofdis</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (h); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Seformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Incountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "</pre>
<pre>ofdiapl ofdiapl ofdiapl ofdiapl if(tran end if(tran end if(tran end if(tran end if(tran end if(tran if(tran if(tran if(tran if(tran) if(tran)</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Siformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Siformatf("REF ALU Zero: %1h", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("REF ALU Dero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("REF ALU Dero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Siformatf("REF CIL DP; %2h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Incountered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Incountered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Incountered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "M</pre>
<pre>\$fdispl \$fdispl \$fdispl \$fdispl \$fdispl \$if(tran end if(tran end if(tran end if(tran end fh = \$ff \$fdispl \$fdispl</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Saformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1h", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Saformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Atansaction.ref_reg_write, transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH", saformatf("DUT CIL OP: %8b", transaction.dut_ctl_op),UVM_LOW); 'uvm_info("MISMATCH", saformatf("DUT CIL OP: %8b", transaction.dut_ref_reg_write_data); ay(fh, "%6h %6h", transaction.dut_mem_addr, transaction.dut_reg_write_data); ay(fh, "%6h %6h", transaction.dut_mem_addr, transaction.dut_reg_write_data); ay(fh, "%6h %6h", transaction.dut_mem_addr, transaction.dut_reg</pre>
<pre>@fdiapl @fdiapl @fdiapl @fdiapl if(tran end if(tran end if(tran end fh = %f %fdiapl %fdia</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Seformatf("DUT ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Seformatf("DUT ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Incountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Incountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatchion.ref_reg_write, transaction.ref_mem_write, transaction.ref_mem_read y(fh, "%1b %1b", transaction.ref_reg_write, transaction.intef_reg_write_data); ay(fh, "%1b %8h", transaction.dut_mem_addr, transaction.dut_reg_write_data); ay(fh, "%1b %8h", transaction.dut_mem_addr, transaction.dut_reg_write_data); (fh); 'uvm_info("MISMATCH","Mismatch Encountered at</pre>
<pre>@fdiapl %fdiapl %fdiapl %fdiapl %fdiapl if(tran end if(tran end fh = %f %fdiapl %</pre>	<pre>py(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); sy(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Out; %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Out; %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Out; %8h", transaction.dut_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Zero: %1h", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT ALU Zero: %1h", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH",Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH","Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP: %8b", transaction.ref_totl_op),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("DUT CIL OP: %8b", transaction.ref_mem_write, transaction.ref_mem_read sy(fh, "%6h %6h", transaction.ref_reg_write, transaction.ref_mem_write, data); sy(fh, "%6h %6h", transaction.ref_reg_write, transaction.ref_reg_write_data); sy(fh, "%6h %6h", transaction.dut_mem_addr, transaction.ref_rem_write_data); section.ref_mem_addr != transaction.dut_mem_addr, transaction.dut_reg_write_data); (fh); saction.ref_mem_addr != transaction.dut_mem_addr) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountere</pre>
<pre>efdiapl efdiapl e</pre>	<pre>ay(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); ay(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (h); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info('MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", Seformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info('MISMATCH", Seformatf("DUT ALU Out: %8h", transaction.tef_alu_output),UVM_LOW); 'uvm_info('MISMATCH", Seformatf("DUT ALU Out: %8h", transaction.tef_alu_output),UVM_LOW); 'uvm_info('MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", "Mismatch alu_zero) begin mismatch = 1; 'uvm_info('MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info('MISMATCH", Seformatf("DUT ALU Zero: %1b", transaction.tef_alu_zero),UVM_LOW); 'uvm_info('MISMATCH", Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", Seformatf('DUT CLL OP: %8b", transaction.ref_ctl_op),UVM_LOW); 'uvm_info('MISMATCH", Seformatf('DUT CLL OP: %8b", transaction.ref_totl_op),UVM_LOW); 'uvm_info('MISMATCH", Seformatf('DUT CLL OP: %8b', transaction.ref_totl_op),UVM_LOW); 'uvm_info('MISMATCH", Seformatf('DUT CLL OP: %8b', transaction.ref_totl_op),UVM_LOW); 'uvm_info('MISMATCH", Seformatf('REF CTL OP: %8b', transaction.ref_totl_op),UVM_LOW); 'uvm_info('MISMATCH", Seformatf('REF CTL OP: %8b', transaction.ref_totl_op),UVM_LOW); 'uvm_info('MISMATCH", Seformatf('REF CTL OP: %8b', transaction.ref_totl_op),UVM_LOW); 'uvm_info('MISMATCH", Seformatf('REF MISMATCH', transaction.ref_totl_op),UVM_LOW); 'uvm_info('MISMATCH', Seformatf('REF MISMATCH', transaction.ref_totl_op); 'uvm_info('MISMATCH', Mismatch Encountered at MEM/MB Pipeline Register',UVM_LOW); 'uvm_info('MISMATCH', Mismatch Incountered at MEM/MB</pre>
<pre>ofdispl ofdispl ofdispl ofdispl if(tran end if(tran end if(tran end fh = off ofdispl ofdispl ofdispl ofdispl ofdispl if(tran end if(tran</pre>	<pre>vy(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); sy(fh, "%1b %1b", transaction.ref_alu_zero, transaction.dut_alu_zero); (h); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Out: %8h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("DUT ALU Out: %8h", transaction.dut_alu_output),UVM_LOW); saction.ref_alu_zero != transaction.dut_alu_zero) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Zero: %1b", transaction.ref_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF ALU Zero: %1b", transaction.dut_alu_zero),UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF CTL OF: %8b", transaction.ref_ctl_op),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("REF CTL OF: %8b", transaction.ref_mem_write, transaction.ref_mem_read y(fh, "%1b %1b %1b", transaction.ref_mem_write_data); ay(fh, "%1b %1b %1b", transaction.ref_mem_write_data); ay(fh, "%1b %1b %1b", transaction.ref_mem_write_data); ay(fh, "%1b %1b %1b", transaction.ref_mem_addr, transaction.ref_mem_write_data); ay(fh, "%1b %1b %1b", transaction.dut_mem_addr, transaction.ref_mem_write_data); ay(fh, "%1b %1b", transaction.dut_mem_addr, transaction.dut_reg_write_data); ay(fh, "%1b %1b", transaction.dut_mem_addr, transaction.ref_mem_addr); 'uvm_info("MISMATCH", "Mismatch Encountered at MEM/WB Pipeline</pre>
<pre>ofdiapl ofdiapl ofdiapl ofdiapl if(tran end if(tran end if(tran end if(tran end if(tran ofdiapl ofdiapl ofdiapl ofdiapl ofdiapl if(tran end if(tran</pre>	<pre>by(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); sy(fh, "%8h %8h", transaction.ref_alu_ero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info('MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", "Aimmatching CTL OP", UVM_LOW; 'uvm_info('MISMATCH", 'a+"); ay(fh, "%1b %1b, transaction.ref_reg_write, transaction.ref_mem_write, transaction.ref_mem_read ay(fh, "%1b %1b, transaction.ref_reg_write_addr, transaction.ref_reg_write_data); ay(fh, "%1b %1b, transaction.dut_reg_write_addr, transaction.dut_mem_write_data); (fh); saction.ref_mem_maddr != transaction.dut_mem_write_data) Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", "Mismatch Encountered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", "Mismatch Encountered at MEM/WB</pre>
<pre>efdiapl efdiapl efdiapl efdiapl if(tran end if(tran end if(tran end if(tran end efdiapl e</pre>	<pre>y(fh, "%6h %6h", transaction.ref_alu_output, transaction.dut_alu_output); yy(fh, "%6h %6h", transaction.ref_alu_pero, transaction.dut_alu_pero); (h); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info('MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", 'Sformatf('REF ALU Out; %6h", transaction.ref_alu_output).UVM_LOW); 'uvm_info('MISMATCH", 'Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", 'Mismatch Encountered at EX/MEM Pipeline Register',UVM_LOW); 'uvm_info('MISMATCH", 'Mismatch Encountered at EX/MEM Pipeline Register',UVM_LOW); 'uvm_info('MISMATCH", 'Mismatch Encountered at MEM/WB Pipeline Register',UVM_LOW); 'uvm_info('MISMATCH", 'Mismatch Encountered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", 'Mismatch Encountered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", 'Mismatch Encountered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info('MISMATCH", 'Mismatch Encountered at MEM/WB Pipeline Regi</pre>
<pre>ofdispl ofdispl ofdispl if(tran end if(tran end if(tran end if(tran end ofdispl ofdispl ofdispl ofdispl ofdispl ofdispl if(tran end if(tran end if(tran end if(tran</pre>	<pre>y(fh, "%8h %8h", transaction.ref_alu_output, transaction.dut_alu_output); yy(fh, "%8h %8h", transaction.ref_alu_ero, transaction.dut_alu_zero); (fh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info(MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info(MISMATCH", Saformatf("EDT ALU Zero", UVM_LOW); 'uvm_info(MISMATCH", Saformatf("EDT ALU Zero", UVM_LOW); 'uvm_info(MISMATCH", %Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info(MISMATCH", %Mismatch ing CTL OP: %BD", transaction.ref_mem_write, transaction.ref_mem_read y(fh, %%M %hfh", transaction.ref_mem_addr, transaction.dut_low); 'uvm_info(MISMATCH", %isformatf("DUT CTL OP: %BD", transaction.dut_ref_mem_write_data); ay(fh, %%M %hfh", transaction.dut_mem_addr, transaction.dut_mem_write_data); ay(fh, %%M %hfh", transaction.dut_mem_addr, transaction.dut_mem_write_data); ay(fh, %%M %hfh", transaction.dut_mem_addr, transaction.dut_mem_write_data); (MI); 'uvm_info(MISMATCH", %isformatf("BET Mem Add:: %BFh", transaction.dut_mem_addr),UVM_LOW); 'uvm_info(MISMATCH", %isformatf("DUT Mem Adde: %Bh", tra</pre>
<pre>ofdispl ofdispl ofdispl ofdispl ofclose if(tran end if(tran end if(tran end fh = of ofdispl if(tran end if(tran end if(tran</pre>	<pre>sy(fh, "%6h %6h", transaction.ref_alu_output, transaction.dut_alu_sero); (dh); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatching AUD Out: %6h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", "Mismatching AUD Cove",UVM_LOW); 'uvm_info("MISMATCH", "Mismatching AUD Zero",UVM_LOW); 'uvm_info("MISMATCH", "Mismatching AUD Zero",UVM_LOW); 'uvm_info("MISMATCH", "Mismatching AUD Zero", WUM_LOW); 'uvm_info("MISMATCH", "Mismatching AUD Zero", WUM_LOW); 'uvm_info("MISMATCH", "Mismatching CUD Zero", WUM_LOW); 'uvm_info("MISMATCH", "Mismatching CUD Zero", %1b", transaction.ref_alu_sero),UVM_LOW); 'uvm_info("MISMATCH", "Mismatching CUD CPU, UDM); 'uvm_info("MISMATCH", "Mismatching CUD OPU, UDM); 'uvm_info("MISMATCH", "Arsosction.ref_reg_write, transaction.ref_rem_write, transaction.ref_mem_read w(fh, "%8h %8h", transaction.ref_reg_write_addr, transaction.ref_rem_write_data); sy(fh, "%8h %8h", transaction.ref_reg_write_addr, transaction.ref_rem_write_data); sy(fh, "%8 %8h", transaction.dut_rem_write_data,'; transaction.dut_rem_write_data); sy(fh, "%8 %8h", transaction.dut_rem_write_data,'; transaction.dut_rem_write_data); sy(fh, "%8 %8h", transaction.dut_rem_write_data,'; tvvm_LOW); 'uvm_info("MISMATCH", "Mismatching Memory Address", UVM_LOW); 'uvm_info(MISMATCH", "Mismatching Memory Address", UVM_LOW); 'uvm_info(MISMATCH", "Mismatching Memory Micke Sh", transaction.ref_mem_addr), UVM_LOW); 'uvm_info(MISMATCH", "Mismatching Memor</pre>
<pre>@fdiapl @fdiapl @fdiapl @fdiapl @fclose if(tran end if(tran end if(tran end ff = @ff @fdiapl @fdiapl @fdiapl @fdiapl @fdiapl if(tran end if(tran end if(tran</pre>	<pre>sy(fh, "%%h %%h", transaction.ref_alu_output, transaction.dut_alu_sero); (h); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Seformatf("FE ALU Out: %%h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("EX FAUD Out: %%h", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("EX FAUD Cat: %h", transaction.ref_alu_sero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("EX FAUD Zero" %h", transaction.ref_alu_sero),UVM_LOW); 'uvm_info("MISMATCH", Seformatf("EX FAUD Zero" %h", transaction.ref_alu_sero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("CUT ALU Zero" %h", transaction.dut_alu_sero),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("CUT ALU Zero" %h", transaction.dut_alu_sero),UVM_LOW); 'uvm_info("MISMATCH",Mismatching CL OP",UVM_LOW); 'uvm_info("MISMATCH",Mismatching CL OP",UVM_LOW); 'uvm_info("MISMATCH",Mismatching CL OP",UVM_LOW); 'uvm_info("MISMATCH",Mismatching CL OP",UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF CIL OP: %bb", transaction.ref_cl_op),UVM_LOW); 'uvm_info("MISMATCH",Seformatf("REF CIL OP: %bb", transaction.ref_mem_write_data); sy(fh, %%h 6%h", transaction.ref_mem_write, transaction.ref_mem_write_data); sy(fh, %%h 6%h", transaction.ref_mem_addr, transaction.ref_mem_write_data); sy(fh, %%h 6%h", transaction.dut_mem_addr, transaction.ref_mem_write_data); sy(fh, %% 6%h", transaction.dut_mem_addr, transaction.dut_mem_write_data); sy(fh, %% 6%h", transaction.dut_mem_addr, transaction.ref_mem_write_data); sy(fh, %% 6%h", transaction.dut_mem_addr, transaction.ref_mem_write_data); sy(fh, %% 6%h", transaction.dut_mem_addr); twom_info("MISMATCH", MISMATCH", MISMATC</pre>
<pre>\$fdispl \$fdispl \$fdispl \$fdispl \$fclose if(tran end if(tran end if(tran end fh = \$ff \$fdispl \$fdi</pre>	<pre>sy(fh, "%th %th", transaction.ref_all_output, transaction.dut_all_sero); (h); saction.ref_alu_output != transaction.dut_alu_output) begin mismatch = 1; 'uvm_info("MISMATCH", "Mismatch Encountered at EX/MEM Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", 'Stormatt("REF ALUO Out: %th", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",'Stormatt("REF ALUO Out: %th", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",'Stormatt("REF ALUO Out: %th", transaction.ref_alu_output),UVM_LOW); 'uvm_info("MISMATCH",'Mismatching ALUO Caro,'UVM_LOW); 'uvm_info("MISMATCH",'Mismatching ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Mismatching ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Mismatching ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Mismatching ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Stormatf("DUT ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Stormatf("PEF ALU Zero: %lb", transaction.dut_alu_sero),UVM_LOW); 'uvm_info("MISMATCH",'Stormatf("DUT ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Stormatf("DUT ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Stormatf("DUT ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Stormatf("DUT ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Stormatf("DUT ALU Zero,'UVM_LOW); 'uvm_info("MISMATCH",'Mismatching CTL OP",UVM_LOW); 'uvm_info("MISMATCH,'Stormatf("DUT ALU OF", Vbh", transaction.ref_otl_op),UVM_LOW); 'uvm_info("MISMATCH",'Mismatchin.ref_mem_ddtr, transaction.ref_mem_write_data); av(fh, "%lb %lb", transaction.ref_mem_ddtr, transaction.ref_mem_write_data); av(fh, "%lb %lb", transaction.dut_mem_ddtr, transaction.ref_mem_write_data); av(fh, "%lb %lb", transaction.dut_mem_ddtr, transaction.dut_reg_write_data); av(fh, "%lb %lb", transaction.dut_mem_ddtr, transaction.dut_mem_write_data); (m); 'uvm_info("MISMATCH", "Mismatch Renovatered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Mismatch Renovatered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Mismatch Renovatered at MEM/WB Pipeline Register",UVM_LOW); 'uvm_info("MISMATCH", Mismatch Renovatered at MEM/WB Pipeline Re</pre>


```
code = $fscanf(fh_memwb,"%s",dump);
// Clear macro of stalled cycle
code = $fscanf(fh_flush,"%s",dump);
code = $fscanf(fh_jump,"%s",dump);
                                 stall count ++:
stall_count i,
continue;
end
code = {fscanf(fh_flush, "%s", flush); //Flush
code = {fscanf(fh_jump, "%s", jump); //Jump
if(flush == "1") begin
if(flush == "1") begin
code = {fscanf(fh_idex, "%s", file_transact_1); //Reg Add
code = {fscanf(fh_idex, "%s", file_transact_2); //Reg Add
code = {fscanf(fh_idex, "%s", file_transact_2); //Reg Dat
code = {fscanf(fh_idex, "%s", file_transact_3);
code = {fscanf(fh_idex, "%s", file_transact_6);
code = {fscanf(fh_idex, "%s", dump); //Imm Va;
code = {fscanf(fh_idex, "%s", dump);
{fdisplay(fh_log, "register Read : REF: x%2d:%bh",
file_transact_1, file_transact_2);
{fdisplay(fh_log, "
code = transact_3, file_transact_4);
                                 continue;
                                                                                                                                                                                                                         //Reg Addr 1
                                                                                                                                                                                                                         //Reg Data 1
//Reg Addr 2
                                                                                                                                                                                                                         //Reg Data 2
                                                                                                                                                                                                                        //Tmm Value
                                                                                                                                                                                                     ----Branch Compare
                                                                                                                                                                                                                                                                                                                        -----");
                                                                                          file_transact_3, file_transact_4);
                                                          file_transact_5, file_transact_6);

fdisplay(fn_log, " x%2d:%8h",
   file_transact_7, file_transact_8);

if((file_transact_1 != file_transact_5) || (file_transact_2 != file_transact_6) ||
   (file_transact_1 := file_transact_7) || (file_transact_4 != file_transact_8)) begin
        mismatch_found = 1;

                                                                                    break:
                                                          end
                               and
                                                                                                                                                                                                                                                                                                                                           ----"):
                                                                                      mismatch_found = 1;
                                                                                    break:
                                                          end
                                 end
                                 //Remove unused information for Conditional / Unconditional Branch
                               else begin
                                                        flush_count ++;
                               instr_count ++;
continue;
    end
code = &fscanf(fh_idex, "%s",file_transact_1);
code = &fscanf(fh_idex, "%s",file_transact_2);
code = &fscanf(fh_idex, "%s",file_transact_3);
code = &fscanf(fh_idex, "%s",file_transact_4);
code = &fscanf(fh_idex, "%s",file_transact_5);
code = &fscanf(fh_idex, "%s",file_transact_6);
code &fscanf(fh_idex, "%s",file_transact_6);
                                                                                                                                                                     //Reg Addr 1
                                                                                                                                                                     //Reg Data 1
                                                                                                                                                                     //Reg Addr 2
                                                                                                                                                                     //Reg Addr 2
                                                                                                                                                                  //Imm Value
     $fdisplay(fh_log, "-----Register Ac
$fdisplay(fh_log, "Register Read : REF: x%2d:%8h",

                                                                                                                                                    --Register Access
     $tdisplay(hi_doy, keyster ked : ktr: x2d*en,
file_transact_1, file_transact_2);
$fdisplay(fn_log, " x$2d:%6h",
file_transact_3, file_transact_4);
     $fdisplay(fh_log, "Register Read : DUT:
    file_transact_5, file_transact_6);
                                                                                                                                   : DUT: x%2d:%8h",
     file_transact_5, file_transact_6;;
file_transact_7, file_transact_6;;
file_transact_7, file_transact_8;;
file_transact_7, file_transact_8;;
file_transact_1, file_transact_2;;
file_transact_1, file_transact_2;;
if((file_transact_1!= file_transact_7) || (file_transact_2 != file_transact_6) ||
(file_transact_5 != file_transact_7) || (file_transact_4 != file_transact_8) ||
(file_transact_5 != file_transact_10)) begin
                                                                                                                                                                                                                                                           DUT: %8h",
                               mismatch found = 1;
```

```
break:
                                                                  end
                                                               end
code = &fscanf(fh_exmem, "%s",file_transact_1); //Control Signal
code = &fscanf(fh_exmem, "%s",file_transact_2);
code = &fscanf(fh_exmem, "%s",file_transact_3); //ALU Output
code = &fscanf(fh_exmem, "%s",file_transact_4);
code = &fscanf(fh_exmem, "%s",file_transact_5); //Zero
code = &fscanf(fh_exmem, "%s",file_transact_6);
&fdisplay(fh_log, "-----ALU Operation------
                                                                                                                                                                                                                                                                                                                                                                                   -----");
                                                               $fdisplay(h1_b0; "Control Signal : REF: %8b\n DUT: %
fdisplay(fh_log, "ALU Output : REF: %8b\n DUT: %
fdisplay(fh_log, "ALU Output : REF: %8h\n DUT: %
fdisplay(fh_log, "ALU Zero Signal : REF: %1b\n DUT: %
fdisplay(fh_log, "ALU Zero Signal : REF: %1b\n DUT: %
file_transact_1, file_transact_2);
if((file_transact_1, file_transact_2);
if((file_transact_5 != file_transact_6)) begin
    "march found = 1'
    "march 
                                                                                                                                                                                                                                                                                                                                                                                        DUT: %8b",
                                                                                                                                                                                                                                                                                                                                                                                        DUT: %8h",
                                                                                                                                                                                                                                                                                                                                                                                       DUT: %1b".
                                                                                                mismatch_found = 1;
                                                                                                 break;
                                                              end
code = $fscanf(fh_memwb,"%s",reg_write); //RegWrite
code = $fscanf(fh_memwb,"%s",store); //MemWrite
code = $fscanf(fh_memwb,"%s",load); //MemRead
code = $fscanf(fh_memwb,"%s",file_transact_1); //Mem Read
code = $fscanf(fh_memwb,"%s",file_transact_2); //Mem Wr.Data
code = $fscanf(fh_memwb,"%s",file_transact_3);
code = $fscanf(fh_memwb,"%s",file_transact_5); //Wr.Reg Addr
code = $fscanf(fh_memwb,"%s",file_transact_5); //Wr.Reg Addr
code = $fscanf(fh_memwb,"%s",file_transact_5); //Wr.Reg Data
code = $fscanf(fh_memwb,"%s",file_transact_5);
code = $fscanf(fh_memwb,"%s",file_transact_5); //Wr.Reg Data
code = $fscanf(fh_memwb,"%s",file_transact_5);
code = $fscanf(fh_memwb,
                                                                                                                                                                                                                                                 --Writeback Access-----"):
                                                                 if (store == "1")
                                                                                                re == "1") begin
$fdisplay(fh_log, "Memory Write
                                                                                                                                                                                                                                                               : REF:
                                                                                                                                                                                                                                                                                                     %4h:%8h",
                                                                                               break;
                                                                                                 end
                                                               break;
                                                                                               end
                                                                 instr_count ++;
                                 end
                                  $fclose(fh ifid);
                                 $fclose(fh_idex);
$fclose(fh_exmem)
                                   $fclose(fh_memwb);
                                  $fclose(fh log);
                                  $fclose(fh_log);
$fclose(fh_instr);
$fclose(fh_stall);
$fclose(fh_flush);
                                      fclose(fh jump);
 endfunction
    // Simple function for moving file to correct directory
// United work for wring file, string destination);
string full_command;
full_command;
    system(full_command);
    System(full_command);
 endfunction
  // Simple function to remove all temporary logging files
  function void clear_current_directory();
                                endfunction
    // Check macro status with history value or update macro history
 function void macro_check();
    int fh;
    int code;
                                 int
                                                                code;
                                string file_directory;
string file_address;
                                 stall check = 0;
                                 flush_check = 0;
                                $display("Begin Macro Checking");
if(!directed_test)
                                                      file_directory = {"test_repo/", test_seed};
                                else
                               else
    file_directory = {"test_repo/directed_test"};
file_address = {file_directory, "/MACRO.txt"};
fh = $fopen(file_address, "r");
if(fh is: {fore_gen is: !macro_overwrite) begin
    code = $fscanf(fh, "Stall: %d", stall_check);
    code = $fscanf(fh, "Flush: %d", flush_check);
```


APPENDIX CC: Instruction Set Manual

SUB					Subtraction
31 25 funct7	24 20	19 15	14 12 funct3	11 7 rd	6 0 opcode
0100000 7	5	5	<u> 000 </u>	5	0110011 7
Assembly Coc	le Format:	sub rd,	rs1, rs2		
Description:		Performs sul	otraction on th	ne contents sto	ored on source

register rd.

register rs1 and rs2 and stores the result onto destination

31	25	24	20	19	15	14	12	11	7	6	0
funct7 000000	0	rs2		r	·s1	func 00	et3 1	rd		opcoc 01100	le 11
7		5			5	3		5		7	
Assembly	Coc	le Format:		sll	rd,	rs1,	rs2				
Descriptio	n:			Perfo	orms log	gical left	shift o	on the reg	gister	content s	tored
				on so	ource reg	gister <i>rs</i> .	<i>l</i> by a	shift amo	unt s	pecified b	y the

on source register rs1 by a shift amount specified by the lower 5 bits of register rs2 and stores the result onto destination register rd. The shifted bits are replaced with 0s.

SLT

Set Less Than

31	25	24		20	19		15	14		12	11		7	6	0
funct7 0000000	0		rs2			rs1		fu: 0	nct3 10			rd		орсо 0110	ode 011
7			5			5		3			5		7	,	
Assembly	Coc	le Fo	rmat:		slt	ro	d,	rs1,	r	s2					

Description:Performs signed comparison between contents of source
registers rs1 and rs2 and sets destination register rd to 1
if rs1 is lesser than rs2, or 0 otherwise.

Set Less Than Unsigned

31 25	24 20	19 15	14 12	11 7	6 0
funct7 0000000	rs2	rs1	funct3 011	rd	opcode 0110011
7	5	5	3	5	7
Assembly Co	de Format:	sltu rd,	rs1, rs2		

Description: Performs unsigned comparison between contents of source registers rs1 and rs2 and sets destination register rd to 1 if rs1 is lesser than rs2, or 0 otherwise.

XOR

Bitwise Logical Exclusive OR

31 25	24 20	19 15	14 12	11 7	6 0
funct7 0000000	rs2	rs1	funct3 100	rd	opcode 0110011
7	5	5	3	5	7

Assembly Code Format: xor rd, rs1, rs2

Description: Performs bitwise logical exclusive OR on the contents of source register rs1 and rs2 and writes the result to the destination register rd.

31 25	24 20	19 15	14 12	11 7	6 0
funct7 0000000	rs2	rs1	funct3 101	rd	opcode 0110011
7	5	5	3	5	7
Assembly Coc	le Format:	srl rd,	rs1, rs2		
Description:		Performs log	ical right shift	on the register	content stored
		on source reg	gister <i>rs1</i> by a	shift amount sj	pecified by the

on source register rs1 by a shift amount specified by the lower 5 bits of register rs2 and stores the result onto destination register rd. The shifted bits are replaced with 0s.

SRA

SRL

Shift Right Arithmetic

31 25	24 20) 19 15	14 12	11 7	6 0
funct7 0100000	rs2	rs1	funct3 101	rd	opcode 0110011
7	5	5	3	5	7

Assembly Code Format: sra rd, rs1, rs2

Description:

Performs arithmetic right shift on the register content stored on source register rs1 by a shift amount specified by the lower 5 bits of register rs2 and stores the result onto destination register rd. The shifted bits are replaced with the sign bit.

31	25	24	20	19	15	14	12	11	7	6	0
func	2t7	rs2		r	rs1	func	xt3	rd		opcode	
7	000	5			5	3	0	5		7	
Assemb	ly Coc	le Format:		or	rd,	rs1,	rs2				
Descrip	tion:			Perfo	orms bit	wise log	gical C	OR on the	cont	ents of sour	rce

register rs1 and rs2 and writes the result to the destination register rd.

AND

OR

Bitwise Logical AND

31 25	24 20	19 15	14 12	11 7	6 0
funct7 0000000	rs2	rs1	funct3 111	rd	opcode 0110011
7	5	5	3	5	7

Assembly Code Format: and rd, rs1, rs2

Description: Performs bitwise logical AND on the contents of source register rs1 and rs2 and writes the result to the destination register rd.

31 20) 1	9	15	14	12	11	7	6	0
immediate		rs1		funct3 000		rd		opcode 0000011	l
12		5		3		5		7	
Assembly Code Format:	1	b r	d,	offset(rs	1)				

Description: Loads an 8-bit value from memory into destination register *rd*. The 8-bit value loaded is sign-extended to 32-bits before storing into *rd*.

LH Load Halfword

31 20	0 19		15	14	12	11	7	6	0
immediate		rs1		funct3 001		rd		opcod 000001	e 1
12		5		3		5		7	
Assembly Code Format:	lh	r	d,	offset(rs1	l)				

Description: Loads a 16-bit value from memory into destination register *rd*. The 16-bit value loaded is sign-extended to 32-bits before storing into *rd*.

31 20	19		15	14	12	11	7	6	0
immediate		rs1		funct3 010		1	d	opcode 0000011	L
12	5			3			5	7	
Assembly Code Format:	lw	r	d,	offset(rs	1)				

Description: Loads a 32-bit value from memory into destination register *rd*.

LBU

LW

Load Byte Unsigned

31 20	19		15	14	12	11		7	6	0
immediate		rs1		funct3 100			rd		opcode 0000011	
12		5		3			5		7	

Assembly Code Format: lbu rd, offset(rs1)

Description: Loads an 8-bit value from memory into destination register *rd*. The 8-bit value loaded is zero-extended to 32-bits before storing into *rd*.

_ 31 20	19		15	14	12	11	7	6	0
immediate		rs1		funct3 101		r	d	opcode 000001	1
12		5		3			5	7	
Assembly Code Format:	lhu	ı r	d,	offset(rs)	1)				

LHU

Description: Loads a 16-bit value from memory into destination register *rd*. The 16-bit value loaded is zero-extended to 32-bits before storing into *rd*.

ADDI Add Immediate

31	20	19	15	14	12	11	7	6	0
immediate		rs1		funct3 000			rd		opcode 0010011
12		5		3			5		7

Assembly Code Format: addi rd, rs1, immediate

Description: Performs addition on the content stored on source register *rs1* and a sign-extended 12-bit immediate and stores the result onto destination register *rd*.

31 26	25 20	19 15	14 12	11 7	6 0
funct6 000000	shamt	rs1	funct3 001	rd	opcode 0110011
6	6	5	3	5	7
Assembly Coc	le Format:	slli rd,	rs1, shan	nt	
Description:		Performs log	ical left shift o	on the register	content stored

on source register rs1 by a shift amount specified by *shamt* and stores the result onto destination register rd. The shifted bits are replaced with 0s.

SLTI

Set Less Than Immediate

31	20	19	15	14	12	11	7	6 0
immediate		rsl		funct3 010		rd		opcode 0010011
12		5		3		5		7

Assembly Code Format: slti rd, rs1, immediate

Description: Performs signed comparison between contents of source registers rs1 and a sign-extended 12-bit immediate and sets destination register rd to 1 if rs1 is lesser than the sign-extended immediate value, or 0 otherwise. **SLTIU**

31 20	19 1	5 14 12	11 7	6 0
immediate	rs1	funct3 011	rd	opcode 0010011
12	5	3	5	7

12	5	3	5	7
Assembly Code Format:	sltiu rd,	rs1, imn	nediate	
Description:	Performs ur source regi	nsigned comp sters <i>rs1</i> ar	arison betwee 1d a sign-ex	en contents of tended 12-bit
	immediate a	nd sets destina	ation register r	rd to 1 if rs1 is
	lesser than	the sign-exter	nded immedia	te value, or 0
	otherwise.			

XORI

Bitwise Logical Exclusive OR Immediate

31 20	19	15	14 12	11 7	6 0
immediate	rs1		funct3 100	rd	opcode 0010011
12	5		3	5	7

Assembly Code Format: xori rd, rs1, immediate

Description: Performs bitwise logical exclusive or on the content of source register *rs1* and a sign-extended 12-bit immediate and writes the result to the destination register *rd*.

31	26	25	20	19		15	14	12	11	7	6	0
funct 00000	6 10		shamt		rs1		func 101	t3 I	ro	1	opcode 011001	e 1
6			6		5		3		5		7	
Assembly	7 Coc	le F	ormat:	srli	i re	d,	rs1,	shan	nt			

Description:Performs logical right shift on the register content stored
on source register *rs1* by a shift amount specified by
shamt and stores the result onto destination register *rd*.
The shifted bits are replaced with 0s.

SRAI

Shift Right Arithmetic Immediate

31 26	25 20	19 15	14 12	11 7	6 0
funct6 010000	shamt	rs1	funct3 101	rd	opcode 0110011
6	6	5	3	5	7

Assembly Code Format: srai rd, rs1, shamt

Description: Performs arithmetic right shift on the register content stored on source register *rs1* by a shift amount specified by *shamt* and stores the result onto destination register *rd*. The shifted bits are replaced with sign bit.

31 20) 19	15	14	12	11	7	6 0
immediate]	rs1	funct3 110		rd		opcode 0010011
12		5	3		5		7
Assembly Code Format:	ori	rd,	rs1,	imm	ediate		

Description: Performs bitwise logical or on the content of source register rs1 and a sign-extended 12-bit immediate and writes the result to the destination register rd.

ANDI

ORI

Bitwise Logical AND Immediate

31 20	19		15	14	12	11		7	6 0
immediate		rs1		funct3 111			rd		opcode 0010011
12		5		3			5		7

Assembly Code Format: andi rd, rs1, immediate

Description: Performs bitwise logical and on the content of source register rs1 and a sign-extended 12-bit immediate and writes the result to the destination register rd.

JALR

Jump and Link Register

31 20	19	15	14 12	11 7	6 0
immediate	rs1		funct3 000	rd	opcode 1100111
12	5		3	5	7

Assembly Code Format:	jalr	rd,	offset(rs1)
-----------------------	------	-----	-------------

Description:

Performs indirect jump to a target address. The target address is obtained by summing the offset to the content of source register rs1 and setting the two least significant bits of the result to zero. The address of the subsequent instruction (program counter + 4) is stored onto destination register rd.

31 25	24	20	19	15	14	12	11	7 6	0
immediate [11:5]	rs2		rs1		func 000	t3)	immedia [4:0]	te	opcode 0110011
7	5		5		3		5		7

Assembly Code Format: sb rs2, offset(rs1)

Description: Stores 8-bit value from the low bits of the source register rs2 onto target memory address. Target memory address is obtained by summing the offset to the content of source register rs1.

31 25	24 2	0 19 15	14 12	11 7	6 0
immediate			funct3	immediate	opcode
[11:5]	rs2	rsı	001	[4:0]	0110011
7	5	5	3	5	7

Assembly C	Code Format:	sh	rs2,	offset(rs1)
2				

Description: Stores 16-bit value from the low bits of the source register *rs2* onto target memory address. Target memory address is obtained by summing the offset to the content of source register *rs1*.

SW

Store Word

31 25	24 20	19 15	14 12	11 7	6 0
immediate	r 0)	r a1	funct3	immediate	opcode
[11:5]	182	181	010	[4:0]	0110011
7	5	5	3	5	7

Assembly Code Format: sw rs2, offset(rs1)

Description: Stores 32-bit value from the source register *rs2* onto target memory address. Target memory address is obtained by summing the offset to the content of source register *rs1*.

31	30	25	24	20	19	15	14	12	11	8	7	6	<u>5</u> 0	
immediate	imme	diate			1		fun	ct3	imm	ediate	immediat	te	opcode	
[12]	[10:	5]	rs	rs2		rsı		000		:1]	[11]		1100011	
1	6		5	5	4	5	2	3		4	1		7	
Assembly C		bea	1	rs1,	rs	\$2,	imn	nediate	;					
Description	:			Со	mpa	res t	he co	onter	nts of	source	register <i>i</i>	rs1 a	nd <i>rs2</i> . If	

the contents of source register *rs1* and *rs2*. If the contents of source registers are equal, branch is executed to a target address formed by adding the offset to the program counter.

BNE

Branch if Not Equal

31	30 25	24 20	19 15	14 12	11 8	7	6 0
immediate	immediate				immediate	immediate	opcode
[12]	[10:5]	182	181	001	[4:1]	[11]	1100011
1	6	5	5	3	4	1	7

Assembly Code Format: bne rs1, rs2, immediate

Description: Compares the contents of source register *rs1* and *rs2*. If the contents of source registers are not equal, branch is executed to a target address formed by adding the offset to the program counter.

BEQ

31	30	25	24	20	19	15	14	12	11	8	7	6	0
immediate	immedi	iate		C		1	fune	ct3	imr	nediate	immediate	opec	ode
[12]	[10:5]	rs2		rsı		10	100		4:1]	[11]	1100	011
1	6		5		5	5	3			4	1	7	
Assembly C	ode For	mat:		blt		rs1,	rs	2,	im	mediate	:		

Description: Compares the contents of source register *rs1* and *rs2*. If the content *rs1* is lesser than *rs2*, branch is executed to a target address formed by adding the offset to the program counter.

BGE

Branch if Greater or Equal

31	30 25	24 20	19 15	14 12	11 8	7	6 0	
immediate	immediate	m a)	m a 1	funct3	immediate	immediate	opcode	
[12]	[10:5]	rs2	rsı	101	[4:1]	[11]	1100011	
1	6	5	5	3	4	1	7	

Assembly Code Format: bge rs1, rs2, immediate

Description: Compares the contents of source register *rs1* and *rs2*. If the content *rs1* is greater than or equal to *rs2*, branch is executed to a target address formed by adding the offset to the program counter.

31	30	25	24	20	19	15	14	12	11	8		7	6	0
immediate	immedi	ate			2		funct3		im	immediate		immediate		ode
[12]	[10:5]]	rs	Ζ	rs	1	11	0		[4:1]	[11]	1100	0011
1	6		5	5	5	5	3			4		1	2	7
Assembly C	ode Fori	mat:		bltı	1	rs1,	rs	2,	im	nmediate	;			
Description:				Co	mpa	res t	he ui	nsigi	ned	contents	of s	ource	registe	er <i>rs1</i>

Compares the unsigned contents of source register rs1and rs2. If the content rs1 is lesser than rs2, branch is executed to a target address formed by adding the offset to the program counter.

BGEU

Branch if Greater or Equal Unsigned

31	30 25	24 20	19 15	14 12	11 8	7	6 0	
immediate	immediate			funct3	immediate	immediate	opcode	
[12]	[10:5]	rs2	rsi	111	[4:1]	[11]	1100011	
1	6	5	5	3	4	1	7	

Assembly Code Format: bgeu rs1, rs2, immediate

Description:Compares the unsigned contents of source register *rs1*and *rs2*. If the content *rs1* is greater than or equal to *rs2*,branch is executed to a target address formed by adding
the offset to the program counter.

31				12	11		7	6	0
iı	nmediate					rd		opcod 01101	le 11
	20					5	·	7	
Assembly Code Format:	lui	rd,	imm	ediate					
Description:	Places	the	20-bit	immediate	in	the	higł	n bits	of
	destina	tion 1	egister	<i>rd</i> and fill th	e lo	wer 1	l2-bi	t with (0s.

JAL

LUI

Jump and Link

31	30 21	20	19	12	11	7	6 0
immediate	immediate	immediate	immediate			4	opcode
[20]	[10:1]	[11]	[19:12]		I	a	1101111
1	10	1	8			5	7

Assembly Code Format: jal rd, immediate

Description: Performs indirect jump to a target address obtained by summing the shifted offset to the program counter. The address of the subsequent instruction (program counter + 4) is stored onto destination register *rd*.