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IMPLEMENTATION OF VLSI DESIGN FLOW  

FOR MIPS-BASED SOC 

 

ABSTRACT 

 

MIPS is a VLSI microprocessor based on RISC architecture which focuses on 

increasing the performance with the trade-off of its hardware and instruction 

complexity. VLSI design flow is the common design methodology used for integrated 

circuit design. The two phases in the VLSI design flow are front-end design and back-

end design. The complete VLSI design flow is implemented to produce a MIPS-based 

SoC. EDA tools from Synopsys Inc are used in this project to carry out the processes 

including logic synthesis, floorplanning, placement, routing, physical verification, and 

others.  The use of EDA tools could shorten the long VLSI design cycle with design 

automation. The MIPS design is optimised to reduce the design cost and improve the 

performance of the design. Synopsys Design Compiler is used for the front-end design 

while Synopsys IC compiler is used to complete the back-end design. The final layout 

produced from the IC compiler is able to pass the timing and physicals verifications.   
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CHAPTER 1  

 

 

 

1.            INTRODUCTION 

 

 

  Background 

 

1.1.1. IC design 

 

According to the Semiconductor Industry Association (SIA) (2021), the 

semiconductor market is experiencing an increasing trend in sales globally and the 

sales growth rate of the year 2021 is forecast at 20 percent. The increasing sales are 

projecting the high demand for semiconductors worldwide. The advent of Industrial 

Revolution 4.0 (IR 4.0) comes with the rapid development of smart devices and 

gadgets, involving more use of chips. The chip can be foreseen to have an increasing 

demand with the ongoing IR 4.0 era. IC is playing an important role in our daily life. 

The application of IC chips ranges from consumer electronics, computing, industrial, 

military, aerospace, automotive, wired or wireless communication (King, Wu, and 

Pogkas, 2021).  

 

In the past decades, the prediction from Gordon Moore, the founder of Intel has been 

guiding the technology development in the semiconductor industry. Moore’s Law 

foreseen the IC chip will double the quantity of transistors every 24 months. By 

doubling the complexity, a chip is expected to grow with improved performance, 

decreasing cost, and higher reliability (Takahashi, 2005). The leading semiconductor 

manufacturer, TSMC (Taiwan Semiconductor Manufacturing Company) has put the 5 

nm technology into production using Field-Effect Transistor (FinFET) in 2020 and the 

company is planning to further downscale the transistor to 4nm for production by 2022 
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(TSMC, 2020). The continuous development of shrinking the size of the transistor is 

pushing the chip to its physical limit (Takahashi, 2005). 

 

Very large-scale integration (VLSI) technology refers to a single IC chip to have metal 

oxide semiconductor field effect transistors (MOSFET) with a quantity of hundreds of 

thousands while system-on-chip (SoC) contains billion or more transistor per chip (Xiu, 

2008). The semiconductor material is the main material used in VLSI chip 

manufacturing as it allows the control of conductivity for the tiny well-defined area 

(Kishore and Prabhakar, 2009). In this era, design automation is used to assist in the 

stages of the VLSI design flow.  

 

Electronic Design Automation (EDA) tools can support the engineers in the chip 

manufacturing process such as planning, design, verification, and other stages 

(Gianfagna, 2021). In the late 1960s, the first EDA tool to optimise the placement of 

devices on a circuit board was created (Kahng et al, 2011). The EDA equipped with 

programmed circuit synthesis function and able to route the design automatically had 

become dominant in the market by the 1990s (Kahng et al, 2011). Nowadays, the EDA 

tool is further completed with various functions towards design automation and the 

whole VLSI design flow is linked to the EDA tool (Kahng et al, 2011). Some of the 

major EDA software companies in the market include Mentor Graphics, Cadence 

Design Systems, and Synopsys (Kahng et al, 2011). 

 

 

 

1.1.2. CPU architecture  

 

The central processor unit (CPU) or processor consists of 2 major components which 

are datapath and control to act as the active part of the computer to perform an 

arithmetic operation, send signals to activate input/output devices (Patterson and 

Hennessy, 2014). Datapath is to carry out the arithmetic operand for the CPU while 

control is responsible to instruct the datapath, input/output devices, and memory to 

respond according to the instruction from the program (Patterson and Hennessy, 

2014).  
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           The abstract interface between the lowest-level software and hardware which 

consists of a machine language program to include all the essential information to 

ensure the correct running of the program is known as instruction set architecture (ISA) 

or architecture (Patterson and Hennessy, 2014). The improvement of the performance 

of the architecture could be in several forms. One of the methods is to increase the 

number of things to be done by a instruction and the other method is to cut the number 

of instructions used to execute a particular function (Abd-El-Barr and El-Rewini, 

2005). This is to reduce the number of operations to read or write memory which could 

result in faster performance (Abd-El-Barr and El-Rewini, 2005). Complex instruction 

set computer (CISC) philosophy suggested having complex instruction followed by an 

increase in the number of addressing modes to overcome the schematic gap during the 

conversion from high-level language to machine language (Abd-El-Barr and El-

Rewini, 2005). For instance, Pentium from intel, PowerPC by IBM & Macintosh, and 

MC68000 from Motorola are some of the machines using the CISC approach (Abd-

El-Barr and El-Rewini, 2005). Aside from that, the other popular approach is reduced 

instruction set computer (RISC) which allows the frequently used operation to be faster 

through a simpler instruction set and a smaller number of addressing modes (Abd-El-

Barr and El-Rewini, 2005). The scalable processor architecture (SPARC) from Sun 

Microsystem and Microprocessor without Interlocked Pipe Stages (MIPS) architecture 

are the examples of RISC approach. 
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 Problem Statements 

 

The problem statements of the project are as shown below: 

• Long turnaround time to design an MIPS-based SoC IC  

• High cost to design an IC manually 

• Low efficiency to execute instruction for Complex Instruction Set 

Computer (CISC) architectures 

• Higher cost to implement CISC architectures 

 

The VLSI design of an IC chip is a complex process that requires a long period 

to complete if the work is done from scratch without the help of EDA tools. The time 

to design a VLSI chip from scratch manually could cost years of effort (Kowalski et 

al, 1985). Design of VLSI chip with only human force involves the process of drawing 

logic gates manually on paper. This led to the high design cost of VLSI in terms of 

time and resources. Besides, the cost of making an error is high. The process of design 

and manufacture has to be repeated when there is an error on the end product.  

 

The CISC architecture emphasis on hardware and it requires complex 

instruction to execute a simple operand. This would reduce the efficiency of the chips 

in executing the operand. The complex instruction and additional hardware of CISC 

will increase the design cost (Harris and Harris, 2013). Therefore, the cost required to 

implement a CISC microprocessor is high.  
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 Aims and objectives  

 

The objectives of the project are stated as follows: 

1. To accomplish the complete VLSI design flow from front-end to back-

end using MIPS architecture. 

2. To shorten the design turnaround time through EDA tools. 

3. To synthesis the model of MIPS with complete timing constraints.  

4. To optimize the chip area and reduce the design cost.  

 

In this project, a MIPS based SoC will be built by going through the full VLSI 

design flow from the front-end to the back end. A single cycle MIPS processor will be 

built to increase the chip efficiency. The design steps to be gone through includes logic 

synthesis, floorplanning, routing, partitioning, and others. EDA tools will be used to 

complete the IC design flow to achieve design automation. This is to shorten the time 

consumed for VLSI design and verify the design to meet the requirement for 

manufacturing.  

 

The design is to be synthesis with complete timing constraints to ensure the 

functionality of the chip after manufacturing. At the same time, the chip area will be 

optimised to reduce the cost of design. Besides, the performance of the design can be 

boost through the optimisation process.  
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CHAPTER 2  

 

 

 

2.         LITERATURE REVIEW 

 

 

 

2.1.  CISC architecture 

 

Complex Instruction Set Computer (CISC) refers to the architectures which have 

instructions with high complexity (Harris and Harris, 2013).  Overhead is added to 

every instruction in CISC approach without considering the complexity even if the 

instruction is used in a low frequency (Harris and Harris, 2013). The common features 

of a CISC approach includes different kind of addressing mode, ample instruction set, 

and instruction set in multiple format and sizes (Jamil, 1995). A CISC processor has a 

microprogrammed control, and it is able to execute several instructions in different 

cycle (Jamil, 1995). Since the format, addressing modes, and opcode in large quantity 

have to be differentiated by the control unit, the control unit is said to be complex 

(Jamil, 1995).     
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2.2.  RISC Architecture  

 

Reduced Instruction Set Computer (RISC) is an architecture with a simple instruction 

set as well as hardware implementation (Harris and Harris, 2013). The common 

characteristics of a RISC processor include a reduced instruction set, regular format 

for instruction, redundant number of general-purpose register load and store operation 

for memory, only 1 instruction is executed every machine cycle, instruction set or 

execute units which are pipelined and control unit design with hardwired (Abd-El-Barr 

and El-Rewini, 2005). 

 

 

 

2.2.1. MIPS architecture   

 

MIPS or Microprocessor without Interlocked Pipe Stages, a VLSI microprocessor 

based on RISC (Reduced instruction set computer) developed by a team under the lead 

of John Hennessy from Standard University in the 1980s. In 1985, The team 

introduced R2000, the first MIPS processor to the market followed by R3000 after 2 

years. The first 64-bit MIPS microprocessor was brought to the market in 1991 along 

with the rapid development of MIPS architecture (Lamie, 2009). The MIPS 

architecture is widely used in our daily life including home networking, 

communication, game console, and even electric vehicle. According to Voica (2016) 

and Silbert (2012), MIPS microprocessor is used for PlayStation from Sony, Nintendo 

64, Smart Tab 1 of Karbonn Mobiles, and Tesla Model S. A MIPS architecture focuses 

on decreasing the complexity of individual instruction and hardware to boost the 

performance (Hennessy et al, 1982).   

 

There are only 32 registers for MIPS architecture and the small number of 

registers allows the MIPS to have faster performance as it reduces the time consuming 

to read data from the register as compared to the CPU with a large set of the register 

(Harris and Harris, 2013). For MIPS, the variables are stored in two types of register 

naming saved register, $s0 to $s7 and temporary register, $t0 to $t9, with the 

temporary register specifically to save intermediate or temporary variables (Harris and 

Harris, 2013). The register set for MIPS is shown in Table 2.1.  
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Table 2.1: MIPS register set (Harris and Harris, 2013) 

Register name Number  Function  

$0 0 Contain value 0 

$at 1 Assembler temporary 

$v0 - $v1 2 - 3 Function return value 

$a0 - $a3 4 – 7 Function arguments 

$t0 - $t7 8 -15 Store temporary variables 

$s0 - $s7 16 – 23 Saved variables 

$t8 – St9 24 – 25 Store temporary variables 

$k0 - $k1  26 – 27 Operating system (OS) temporaries 

$gp 28 Global pointer 

$sp 29 Stack pointer 

$fp 30 Frame pointer 

$ra 31  Function return address 

 

 

Besides register, MIPS also stores the data in the memory which has more data 

locations than register with the trade-off of longer accessing time (Harris and Harris, 

2013). The memory address and data words for MIPS are both 32-bit (Harris and 

Harris, 2013). As a byte-addressable memory, MIPS has a unique address for every 

byte of the memory (Harris and Harris, 2013). 
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2.3.  RICS and CISC comparison 

 

The main difference between the two architecture is RICS emphasis on software while 

CISC emphasis more on hardware (Jamil, 1995). The design objective of an RICS is 

to reduce the instruction execution time to the minimum by scarifying the program 

length (Jamil, 1995). CISC is the opposite of RISC in which maximizes the instruction 

to have minimum program length (Jamil, 1995).  

 

Therefore, when both architectures are to perform the same function, a RISC 

approach needs to execute more instructions than a CISC approach. RISC processor is 

hence having many CPU registers, extra instruction caches, and decoders to overcome 

the downside of long instruction (Abd-El-Barr and El-Rewini, 2005). This enables the 

RICS to have reduced traffic between memory and processor (Abd-El-Barr and El-

Rewini, 2005). While for CISC, there is a logic delay as its complex instruction comes 

with a complex decoding scheme (Abd-El-Barr and El-Rewini, 2005). In terms of 

instruction, RICS has fixed-length instruction and the instruction length of a CISC 

approach is variable (Jamil, 1995). 

 

According to Jamil (1995), the chip area of RISC architecture is smaller than 

CISC architecture as its control unit is simpler. The shrink in the VLSI chip area allows 

the regularization factor of a RISC approach to be higher, resulting in a decrease in 

design cost and a more profitable chip (Jamil, 1995). 

 

 

 

2.4.  MIPS instruction 

 

The instruction used for MIPS architecture is 32-bit. The 3 formats of instruction for 

MIPS include Register type (R-type), Intermediate type (I-type), and Jump type (J-

type). The hardware of MIPS is beneficial to form its small number of instruction 

formats since the limitation in regularity reduces the complexity of hardware (Harris 

and Harris, 2013). 
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2.4.1. R-type 

 

R-type instructions have 2 registers to be used as source and 1 register for the 

destination (Harris and Harris, 2013). The six fields for R-type instruction include 

operation code (op), source register (rs and rt), destination register (rd), shift amount 

(shamt) for shift operation, and function (func) (Harris and Harris, 2013). The op and 

func occupy 6 bits each and the rest of the fields occupy 5 bits per field (Harris and 

Harris, 2013). In R-type, the func will determine the operation to be executed.  

 

 

 

2.4.2. I-type 

 

I-type uses both register operand and immediate operand to hold 4 fields namely op, 

rs, rt and immediate (imm) (Harris and Harris, 2013). The bits occupied by op, rs, rt 

are similar to R-type while imm is occupying 16 bits (Harris and Harris, 2013). 

 

 

 

2.4.3. J-type 

 

J-type is a format specifically used for jump instruction begin with an op holding 6 

bits data followed by the address operand (add) occupying 26 bits to state the address.  

 

 

Figure 2.1: MIPS instruction format (Harris and Harris, 2013) 
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2.5.  Type of MIPS Microarchitectures 

 

2.5.1.  Single-cycle microarchitecture 

 

Single-cycle microarchitecture means a complete instruction is carried out for a cycle, 

without the presence of a non-architectural state and its control unit is uncomplicated 

(Harris and Harris, 2013). For single-cycle process, it requires every instruction to 

have an equal clock cycle length (Patterson and Hennessy, 2014). There are some 

limitations in the single-cycle process. The clock cycle must have sufficient length to 

support the slowest instruction and 3 adders are needed in the system which increases 

the design cost (Harris and Harris, 2013). Besides, the data memory and instruction 

are separated in a single-cycle process (Harris and Harris, 2013). 

 

 

Figure 2.2: Example of a single-cycle MIPS processor (Harris and Harris, 2013) 
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2.5.2.  Multicycle microarchitecture 

 

The multicycle processor implements instruction in a shorter clock cycle and reuses 

hardware blocks like memories and adders to achieve a cheaper cost for hardware 

(Harris and Harris, 2013). In the multicycle process, the microprocessor utilizes a few 

nanoarchitectural registers for the purpose of saving intermedia values to use the 

hardware block for different aims in the different cycles when executing a particular 

instruction (Harris and Harris, 2013). Therefore, the instruction could use several clock 

cycles even if there is one instruction to be executed in a row (Harris and Harris, 2013). 

 

The multicycle approach could overcome the 3 primary weaknesses in the 

single-cycle processor as it separates one instruction into different steps which are 

shorter (Harris and Harris, 2013). This allows the processor to have less complex 

instruction and shorten the execution time (Harris and Harris, 2013). On the other hand, 

the data and instructions for a multicycle processor are saved in combined memory 

and only an adder is needed for this approach (Harris and Harris, 2013). 
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2.5.3.  Pipelined microarchitecture 

 

As the name implies, it pipelines the single-cycle microarchitecture to enhance the 

performance by carrying out a few instructions at the same time (Harris and Harris, 

2013). The pipeline approach overlaps several instructions in the execution and hence 

increases the efficiency (Patterson and Hennessy, 2014). In order to realise this type 

of microarchitecture, the dependency among the instructions to be executed 

simultaneously must be managed through the use of logic (Harris and Harris, 2013). 

Nanoarchitectural pipeline register is another essential component to realise the 

pipelined microarchitecture. 

 

There are some principles to be applied to create a pipelined processor. The 

single-cycle processor is separated into 5 phases as shown below (Patterson and 

Hennessy, 2014):  

 

1. Fetch  

• The instruction is read from the memory 

 

2. Decode 

• The register is read for source code in this stage. 

• Control signal is decoded from the instruction. 

• The process of decoding and reading happens at the same time is 

allowed for MIPS instruction in regular format.  

 

3. Execute  

• The operation is executed or perform calculation for address.  

 

4. Memory 

• Read or write to the data memory.  

 

5. Write back 

• The result is written back into the register.  
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Figure 2.3: Timing diagram of a single-cycle processor and a pipelined processor 

(Harris and Harris, 2013) 
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2.6.  VLSI design flow  

 

MIPS is a VLSI microprocessor that can be designed using VLSI design flow. The 

VLSI design process involves design abstraction for a minimum of 5 levels: 

architectural, register transfer level (RTL), logical design, circuit design, and physical 

design (Kishore and Prabhakar, 2009). A series of steps to translate a chip idea 

expressed in RTL format into GDSII data is known as VLSI design flow (Kishore and 

Prabhakar, 2009). EDA tools or computer-aided design tool (CAD) is commonly used 

to turn VLAS design a partially or fully automated process (Das, 2010). These 

automated tools are used to help in processes such as synthesis, design, testing, 

simulation, and verification (Das, 2010). An example of a VLSI design flow is shown 

in Figure 2.4.  

 

            Concept and market research is the first step of a VLSI design flow to identify 

the competitiveness of the product in the market. After that, architectural specifications 

that reflect the design constraints in power consumption, speed, and area are specified 

(Kishore and Prabhakar, 2009). The hardware description (HDL) capture and RTL 

coding is the next phase after architectural specification. The function and structure of 

IC are described using HDL, Verilog and VHDL are the two standardised HDL 

languages to be applied in the IC design (Kishore and Prabhakar, 2009). RTL 

description defines the behaviour of a circuit through the description of signal flow 

among the hardware register and their logical operations (Kishore and Prabhakar, 

2009). Next, the RTL simulation should be carried out to verify the logic correctness 

or functionality of the RTL description (Kishore and Prabhakar, 2009). A testbench 

program or test vectors can be used to simulate the output of the RTL description 

program and the result is checked to match with the expected output.  

 

           After ensuring the functionality of the RTL netlist, the next phase in VLSI 

design is logic synthesis. The translation of the behavioural description of the circuit 

which is commonly in RTL into the logic gate is carried out in logic synthesis to 

produce the schematic or netlist (Kishore and Prabhakar, 2009). The netlist produced 

should have the same functionality as its initial RTL code (Kishore and Prabhakar, 

2009). During the logic synthesis process, logic optimization is executed to optimize 

the logic circuit to fulfil the design constraint (Kishore and Prabhakar, 2009). In this 
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phase, the area of the chip is minimized to meet the required delay of the design 

(Kishore and Prabhakar, 2009). Formal verification is performed in the next phase to 

make sure the design is able to function correctly, comparison between the design and 

reference designs is made for the logical functions (Kishore and Prabhakar, 2009). The 

last step for front-end VLSI design flow is pre-layout static timing analysis (STA). 

Computation of estimated timing of the design is done in this stage to verify the timing 

validity (Kishore and Prabhakar, 2009). The path facing the problem of hold or setup 

violation is identified as well as slow paths, glitch and clock skew (Kishore and 

Prabhakar, 2009). 

 

           Next, physical design processes such as floorplanning, placement, and routing 

are carried out after verifying the timing. After placement, clock tree synthesis (CTS) 

is done so that the needed elements receive the clock signal (Kishore and Prabhakar, 

2009). These processes will be repeated when the design does not fulfil the timing 

constraints (Kishore and Prabhakar, 2009). The last phase for a design passing post-

layout STA before tape out is verifications including layout versus schematic (LVS) 

and design rule checking (DVS) (Kishore and Prabhakar, 2009). 
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Figure 2.4: VLSI design flow (Kishore and Prabhakar, 2009) 
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2.6.1.  Digital design using HDL 

 

The introduction of the use of HDL language reduces the complexity of the digital 

design of the VLSI circuit consists of more than ten thousand logic gates 

(Ramachandran, 2007). With the use of HDL, the design cycle is shortened since the 

building of circuits using gates in the schematic approach can be avoided as HDL can 

represent circuits precisely through behavioural, data flow, and RTL description 

(Ramachandran, 2007). 

 

 

 

2.6.2.  Logic synthesis  

 

In logic synthesis, the structural design is transformed from the behavioural design 

(Das, 2010). The levels that could be involved in logic synthesis include the transistor 

level, block level, and top-level synthesis (Das, 2010). Due to a large number of 

transistors in a VLSI design, logic synthesis is commonly be executed with the assist 

of automated tools to optimise the chip in terms of area, power, and speed according 

to the requirements in the constraint file (Das, 2010).  

 

The cell library used in the logic synthesis process and the algorithm of the 

synthesis tool will greatly define the quality of the output (Kishore and Prabhakar, 

2009). A cell library is a package containing standard cells in a group (Kishore and 

Prabhakar, 2009). The netlist output from logic synthesis describes the 

interconnections and instances within the VLSI chip (Kishore and Prabhakar, 2009). 

It is important for the cell library to include sequential cells of various types so that 

they can match any storage requirement (Kishore and Prabhakar, 2009). Besides, in 

order to ensure the cell library is capable of performing any requirement for logic 

operation, there must be an adequate amount of combinational logic cells in the library 

(Kishore and Prabhakar, 2009). The main objective of logic synthesis is to fulfil the 

requirements in area, power, and speed points of view. The flow of logic synthesis is 

shown in Figure 2.5. 



19 

 

 

Figure 2.5: Flow of logic synthesis (Das, 2010) 

 

 

 

2.6.3.  Physical design 

 

Physical design refers to the procedure to generate a physical layout based on the gate-

level netlist of the VLSI design (Das, 2010). The components in the design circuit are 

transformed into a geometric presentation which contains a series of geometric 

patterns to perform the logical operation of the respective components (Chen, 2009). 

The four major steps in the physical design of VLSI design flow are partitioning, floor-

planning, placement, and routing (Das, 2010). The last step in physical design is to 

verify the functionality of the design (Das, 2010). 

 

 

 

2.6.3.1.  Partitioning 

 

There are more than ten thousand transistors in a VLSI chip, making the processing of 

the whole layout a challenging work due to limited computation power and memory 

space (Chen, 2009). Therefore, the complete VLSI circuit is divided into subcircuits 

in this phase (Chen, 2009). This is to ensure the subcircuits have the minimum 

interconnections among each other (Das, 2010). It is vital for all the subcircuits to fulfil 

all the prerequired design constraints (Kahng et al, 2011).  



20 

 

The factors affecting the partitioning output include the quantity of block and 

its size as well as the interconnections to link the blocks (Chen, 2009). The circuit will 

have more delays or become less reliable if the partition is done without taking into 

account the connections between the blocks (Kahng et al, 2011). Aside from that, 

inter-clock dependencies may be introduced to the design when the connections 

between the blocks are many and this will affect the productivity of the design 

(Kahng et al, 2011). An example of partitioning using 2 different partition methods is 

shown in Figure 2.6. 

 

 

Figure 2.6: Partitioning example using 2 different cuts (Kahng et al, 2011) 
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2.6.3.2.  Floorplanning 

 

The first major step in physical design is floorplanning. The important works in 

floorplanning are as below (Kishore and Prabhakar, 2009):   

• Die size analysation 

• Package selection 

• Placing of input/output (I/O) 

• Placement of macro cells 

• Plan for power and clock distribution  

• Hierarchy partitioning 

 

Every component and the interconnection between them are planned to be 

placed with the minimum occupied area (Das, 2010). The design can vary according 

to different characteristics including core limited, I/O limited, package limited, or 

block limited (Kishore and Prabhakar, 2009). These characteristics will define the 

dominating factor in affecting the chip size (Kishore and Prabhakar, 2009). Package 

selection is done according to factors such as die size, the quantity of I/O, power 

consumption, and cost (Kishore and Prabhakar, 2009). After that, the prime input and 

output cells arrangement is carried out and this step is affecting the routing of the chip 

(Kishore and Prabhakar, 2009). The power distribution network delivers the power to 

every transistor in the design with suitable voltage level so that they function correctly 

(Kishore and Prabhakar, 2009). 
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2.6.3.3.  Placement 

 

In the placement process, the placement of the cells in the appropriate location inside 

the floor plan is done (Kishore and Prabhakar, 2009). This step is to identify the 

physical layout of the VLSI design and act as the groundwork for the routing process 

(Das, 2010).  

 

This is an important step in physical design as it impacts the chip area and 

speed. Good placement can save more area and keep the chip area as small as possible 

(Kishore and Prabhakar, 2009). The routing will be difficult, or the design could be 

unroutable if the placement is poor (Kishore and Prabhakar, 2009). With a good 

placement, the overall delay of the design can be reduced to the minimum as the critical 

paths are having the shortest available length for wire and hence boost the chip 

performance speed (Kishore and Prabhakar, 2009). Thus, the goals of placements are 

to keep the wire length as short as possible for each of the nets and reduce the 

possibility of interconnection congestion to the minimum (Das, 2010). 

 

 

  

2.6.3.4.  Routing 

 

Routing is a step to finalize the defined interconnection in the netlist physically after 

the cells and pins with their exact location defined in placement (Kishore and 

Prabhakar, 2009). The wire to connect the signal, ground, power, and clock nets are 

drawn in this step (Das, 2010). It is crucial to make sure there is no short circuit in the 

nets (Kishore and Prabhakar, 2009). 

 

           There are 2 phases in routing which are global routing and detailed routing 

(Chen, 2009). Global routing refers to the planning of routing where there is no routing 

work done in this phase (Das, 2010). Global routing is carried out at the top level to 

define the routing regions, determine the channel terminals, and assign the nets to 

specific routing regions (Das, 2010). For detail routing, it is doing the real routing and 

it can be categorised into 2 groups which are area routing and channel routing (Das, 

2010).  
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2.6.3.5.  Physical Verification 

 

Physical verification is the last step in physical design. Physical verification is essential 

to make sure the proper functioning of the layout in terms of electrical and logical 

(Kahng et al, 2011). The categories of physical verification are as shown below (Kahng 

et al, 2011): 

• Layout vs Schematic (LVS) 

• Design Rule Checking (DRC) 

• Electrical Rule Checking (ERC) 

• Parasitic extraction 

• Antenna Rule Checking 

 

LVS checks the matching of layout with the netlist (Kishore and Prabhakar, 

2009). A netlist is extracted from the graphic design system (GDS) file which includes 

the information of physical layout of a circuit and the differences between the extracted 

netlist and the original netlist from the design are identified (Luo et al, 2010).  

 

DRC is responsible to check the layout with a set of guidelines or rules 

applicable to an IC layout to ensure the design is manufacturable (Das, 2010). The 

semiconductor makers will provide the parameters for design rules for verification of 

the layout suitability (Kishore and Prabhakar, 2009). This verification process 

emphasis on physical aspects only without considering design timing or logical 

operation (Kishore and Prabhakar, 2009).  

 

Besides, ERC is the verification to prove the connection of power and ground 

are correct (Luo et al, 2010). At the same time, it also examines the slew, fanouts, and 

capacitive loads to guarantee they are bounded correctly (Luo et al, 2010). In short, 

the network connectivity of the design is verified in ERC.  

 

Parasitic extraction is a process to validate circuit electrical characteristics 

through deriving the parasitic elements from the geometric information (Luo et 

al, 2010). Antenna rule checking is to avoid harm to logic gates in the manufacturing 

process due to antenna effects (Luo et al, 2010).  
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CHAPTER 3  

 

 

 

3.           METHODOLOGY 

 

 

 

3.1.  VLSI Design Methodology  

 

In VLSI design methodology, there are two design styles available which are the top-

down approach and the bottom-up approach. The top-down approach as shown in 

Figure 3.1 was adopted in this project. The focus of this project is to implement a VLSI 

design flow using a MIPS architecture as the design platform. The whole VLSI design 

flow was gone through in this project, including both the front-end design and back-

end design.  

 

           System specification, design of RTL, behavioural design, verification of the 

design, logic synthesis, and static timing analysis are considered as processes in front-

end design. The RTL source codes of MIPS design in this project are retained from 

the book “Digital Design and Computer Architecture” (Harris and Harris, 2013). The 

EDA tool used for front-end design methodology is Synopsys Design Compiler (DC).  

 

           The back-end design involves the steps to transform the logical design produced 

in front-end design into the layout or physical design. The processes in back-end 

design includes floorplanning, power network synthesis (PNS), placement and routing, 

CTS, STA, chip finishing, post-layout verification, physical verification, and tape out. 

For back-end design, the design tool to be used is the Synopsys IC compiler.   
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Figure 3.1: Top-down approach for VLSI design methodology 

  

Front-end design  

Back-end design  
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3.2.  Front-end design  

 

3.2.1.  Register Transfer Level (RTL) Design  

 

The 32-bits MIPS processor is written in System Verilog as the HDL language with 

ModelSim-Altera 10.1b as the platform. The MIPS processor is capable to support 29 

instructions as listed in Table 3.1.  

 

Table 3.1: Instructions supported by the design 

Instruction list 

R-type  I type J type 

ADD ADDI J 

SUB LUI JAL 

AND LW   

OR SW   

SLT BEQ   

SLL ANDI   

XOR ORI   

NOR XORI   

SRL SLTI   

SRA BNE   

SLLV BLEZ   

SRLV BGTZ   

SRAV     

JR     

JALR      

 

 

3.2.2.  Logic Synthesis 

 

Logic synthesis is started by importing the verified RTL codes into Synopsys Design 

Compiler, which is the EDA tool to be used in the front-end design. The design 

constraints such as are constraints and timing constraints are sourced to the design. In 
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this stage, the behavioural design will be transformed into a gate-level netlist. It is a 

must to ensure the specified technology library is set up in the DC compiler to provide 

information of cells and logic gates for synthesis. The gate-level netlist is mapped and 

optimised in terms of performance, speed, power, and area depending on the 

constraints sourced to the design.   

 

 

 

3.2.3.  Static Timing Analysis 

 

In this project, the STA is done at block-level using the built-in static timing analysis 

engine in Synopsis Design Compiler. STA is performed to check for timing violations 

in the design to determine whether the design meets the timing constraints. The timing 

constraints must be applied to the design in DC compiler as STA is checking all the 

path delays by comparing them to the timing constraints. 

 

STA is used during compilation to act as a guide for the compiler to make 

optimization decisions. Besides, the STA is used to generate timing reports and timing-

related reports after compilation. The timing violations are fixed until there is no 

violated path in the design. After the timing of the design is verified, the front-end 

design is completed. 
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3.3.  Back-end design  

 

3.3.1.  Floorplanning 

 

The floorplanning includes the processes of defining core size, location of I/O, power, 

corner and filler pad cells, standard cell placement constraints, and power gird. The 

core utilization ratio in this section is a factor to decide the ratio of the area of the entire 

cell to be used for cell placement. The ratio is set to a suitable value to make sure there 

is enough space for clock tree routing and power network. Besides, the chip size and 

routability of the chip should be considered as well for core utilization ratio selection. 

For example, if the core utilisation ratio is set to 0.7, the cell placement will use 70% 

of the core area while the remaining 30% will be saved for routing. 

 

The floorplan is modified until congestion is acceptable or no congestion issue. 

The modifications that can be made to the floorplan include altering the port or pad 

locations, use different metal layers, modify the size of the core, and restructure the 

power grid.   

 

 

 

3.3.2.  Power Network Synthesis 

 

Power rings and power straps are created in this phase to form a power network and 

provide sufficient power across the design. Hence, the voltage drop from power pads 

to the center of the design could be reduced. 

 

Power network constraints for macro rings, core rings, and straps are applied 

for the tools to perform placement of these elements. The number and width of the 

power straps can be calculated using the tool according to the required IR drop. IR 

drop analysis is done to analyse the drop of supply voltage after the power distribution 

network is created. When the supply voltage drop is below the design range, the power 

network is adjusted until the IR drop is within the design requirement.   
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3.3.3.  Placement 

 

The placement process can be done manually by placing the standard cells into the 

desired location in the core area through the drag and drop function of the tool. 

Alternately, the tool is equipped with an automated placement function which is more 

efficient and practical. Sufficient space is saved for routing during auto placement 

according to the requirement stated in the routing constraints to ensure the routability 

of the design. The physical optimization and power optimization are performed 

together with the auto placement using the command in the tool.  After placement, the 

congestion and timing violations are verified. The placement is modified until the 

congestion and timing violations are acceptable. 

 

 

 

3.3.4.  Clock Tree Synthesis 

 

Clock tree synthesis (CTS) is carried out after the placement phase so that the EDA 

tool is able to recognise the registers at their exact placement location in the floorplan. 

Hence, the buffer can be placed at a suitable location to have minimum clock skews 

and latency. The tool tried to produce a clock tree with a balanced structure using the 

least levels if possible.   

 

 

 

3.3.5.  Routing  

 

The IC compiler provides the auto routing function to ease the routing process for a 

large number of nets in the design. Both global routing and detail routing are 

performed in this stage. For detail routing, the antenna fixing option is selected to fix 

antenna violation using the layer jumping approach in this stage. The tool will try to 

route the design in the way with the least timing, DRC, and LVS violations. The timing, 

DRC, and LVS violations are verified after detailed routing. The design is rerouted if 

there are any violations. 
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3.3.6.  Chip Finishing 

 

Chip finishing is the last step of back-end design methodology before tape out. In this 

phase, the EDA tool is used to reduce critical areas. The critical area is defined as a 

region with catastrophic spot deflect on an IC which will result in circuit failure 

(Walker, 1992). If the center of conductive defects falls on the critical area, a short 

circuit will happen during fabrication while the center of non-conductive defects 

falling on the critical area will cause an open circuit. Therefore, the tool is reducing 

the critical area to avoid short and open in the fabrication process. 

 

The next step in chip finishing is to insert redundant vias to act as a support for 

a single via to reduce yield loss caused by vias failure. This step is optional as the vias 

are doubled in the detailed routing phase. The timing analysis, DRC, and LVS of the 

design are checked after each of the insertion steps to ensure the design has no 

violations. 

 

 

 

3.3.7.  Physical Verification 

 

The physical verification performed in this project includes DRC, LVS, and the 

extraction of parasitic. All of the above physical verifications are done using the EDA 

tool. If the DRC violations occur, the design is rerouted to fix the violation. 

 

While for LVS, it is to check the differences between the physical layout and the 

optimised gate-level netlist. This is to guarantee there is no change in the logical 

operation of design during the backed-end design methodology. The design must be 

verified to be clear from DRC and LVS violations before exporting the GSDII file 

using the tools for tape out. 
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3.4.  Design Tools 

 

3.4.1.  Synopsys Design Compiler 

 

The Design Compiler (DC) can be invoked using two interfaces which are the 

interactive shell, DC shell, and the interactive graphical user interface (GUI), Design 

Vision. The DC shell is the command line interface of the Design Compiler while 

Design Vision provides a graphical visualisation such as schematic generation. The 

general flow of using DC in this project is illustrated in Figure 3.3. A file named 

as .synopsys_dc.setup is used to setup file for DC to load the Synopsys installation 

directory, project working directory, and user home directory to the tool. The search 

path and logical libraries are included in the setup file.  

 

 

Figure 3.2: General flow for front-end design using Design Compiler 
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3.4.2.  Synopsys IC Compiler 

 

The IC compiler provides two types of interfaces to the user, a command line interface 

known as ICC shell and GUI. Both interfaces are used in this project. For GUI, it 

visualizes the design for physical design. For the ICC shell, commands are used in this 

interface to execute the respective task. The general flow of using the IC compiler in 

this project is illustrated in Figure 3.4. A file named as .synopsys_dc.setup is used to 

setup file for the IC compiler to load the Synopsys installation directory, project 

working directory, and user home directory to the tool. The search path, logical 

libraries, and physical libraries are included in the setup file. 

 

 
 

Figure 3.3: General flow in IC Compiler for back-end design 
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CHAPTER 4  

 

 

 

4. RESULTS AND DISCUSSIONS 

 

 

 

4.1.  Design Verification 

 

The design verification utilizes the simulation software from Synopsys DVE to check 

and test the functioning of the MIPS processor designed in this project. It is to ensure 

the design is able to respond according to the instructions loaded into the design with 

different input of values and generate a correct outcome. 

 

 

4.1.1.  Design Compilation and Simulation 

 

After the development of the RTL coding for the MIPS processor, the source codes 

are compiled using Synopsys VCS. A program that performs a computation using all 

of the 29 instructions supported by the processor is loaded into the instruction memory. 

The program is designed to relate the result of several instructions and save the 

computation results into a specific RAM address as listed in Table 4.1. A simple 

testbench is used to simulate and verify the functionality for all the instructions of the 

MIPS processor by comparing the data stored in RAM with the expected output. The 

testbench will generate an error message when the simulated result is not compatible 

with the expected output. The content of the program and the testbench are shown in 

the appendices. The simulation result is shown in Figure 4.1. All the instructions are 

executed correctly and able to generate the desired output.  The simulated waveforms 

of the design generated using DVE are shown below. 
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Table 4.1: Expected data stored in RAM after executing the program 

RAM Address  Expected value stored in 

decimal 

RAM[20] 3 

RAM[21] 261792 

RAM[22] 2 

RAM[23] 0 

RAM[24] -152 

 

 

 

 

Figure 4.1: The source codes are compiled and simulated successfully with correct 

results  
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Figure 4.2 shows the program system is reset (cycle 1 – 2) follows by loading 

initial values into the respective register using ADDI (cycle 3 – 5) and performing OR, 

AND, XOR, and ADD using the initial values (cycle 6 – 9). The loading of different 

instructions into the instruction memory is executed correctly, the instructions are 

decoded successfully with desired control signals generated. 

 

Figure 4.2: Output waveform for cycle 1 - 9 of the program 
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Figure 4.3: Output waveform for cycle 10 - 18 of the program 

 

 

Figure 4.3 shows that BEQ is tested for both unequal (cycle 10) and equal 

conditions (cycle 12). SLT is tested for the condition Rs larger than Rt (cycle 11). The 

result of cycle 11 is related to cycle 12. With branching happening in cycle 12, both 

the instructions are proved to function correctly under specific conditions. The SLT is 

again tested with condition Rs lesser than Rt (cycle 13), the result is then used as one 

of the input values for ADD. The SW (cycle 16) saves the computation result of ADD 

and SUB to be verified through the testbench. Based on Figure 4.1, the value loaded 

into data memory and the memory address are verified to be the same as the expected 

result, proving the proper functioning of instructions from cycles 1 to 16. The next 

cycle is to load the result saved into data memory in the last cycle to be used for a 

series of operations starting from cycle 18. 
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Figure 4.4: Output waveform for cycle 19 - 27 of the program 

 

 

In Figure 4.4, the waveform shows ORI, XORI, SLL, LUI, SUB, and J are 

executed. A jump that occurs in cycle 25 shows instruction J in the last cycle is decoded 

correctly. In cycle 25, the final result of computation from cycles 18 to 23 is saved into 

data memory and verified using testbench. There is no error detected. For cycles 26 to 

28, the new initial values are loaded into the register to be used for rotational operation 

later. 
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Figure 4.5: Output waveform for cycle 28 - 36 of the program 

 

   

Figure 4.5 shows the simulation waveform for cycles 28 to 36. SLTI and BNE 

are tested in cycles 29 to 31. The result of SLTI is used in the first BNE. The correct 

execution of SLTI causes no branching to happen during cycle 31 since both registers 

contain the same value for BNE. In cycle 31, two registers with unequal values are 

used for BNE and branching takes place in the next cycle. Cycles 32 and 33 are to test 

on the JAL and JR. The JR is used to jump to the next instruction after JAL. The 

waveform shows the two instructions are executed correctly as the PC for cycle 34 is 

exactly PC+4 of cycle 32. For cycles 34 to 36, SRAV, SRLV, and SLLV are performed. 
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Figure 4.6: Output waveform for cycle 37 - 45 of the program 

 

 

Figure 4.6 shows the storing of results from the previous cycle in the data 

memory in cycle 37 and the result matches the expected output. In cycle 38, the 

program branches to perform SRA, SLL, and SRL through the execution of BLEZ.  If 

BLEZ does not function correctly, no branching happens, a BGTZ will be executed 

instead of SRA. Hence, the values save in RAM will be wrong. A value is loaded into 

register R5 as the address for JALR in cycle 45. This value is also used to verify the 

execution of BGTZ during cycle 44. If BGTZ fails to perform correctly, a LUI 

instruction will be used to modify the R5 values, causing JALR to jump to the wrong 

address. The waveform has shown the correct execution of these instructions 
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Figure 4.7: Output waveform for cycle 46 - 51 of the program 

 

 

In cycle 46, BGTZ is again tested for the condition Rs are smaller than 0. AS 

shown in Figure 4.6, no branching is to be taken in the next cycle proving the 

instruction is functioning properly as it will only branch for Rs larger than Rt. The 

computation result of SRA, SLL, and SRL is stored in the data memory and verified 

to have the correct output in cycle 47. For cycles 48 and 49, NOR is executed and the 

result is again saved to data memory to be tested. The waveform shows there is no 

error detected for the NOR result. Lastly, the JR instruction is used to jump to the end 

of the program. Since JALR is the last instruction in the program, the JR will jump to 

load 0 into instruction memory as the sign for the end of the program as shown in 

Figure 4.6. Hence, all the 29 instructions are verified to be performed correctly by the 

design.   
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4.2.  Logic Synthesis 

 

In this stage, the verified design in RTL codes is transformed into a gate-level netlist 

which is the logical representation of the design. Logic synthesis is the combination of 

3 main processes: translation of RTL source code into a netlist, logic optimization, and 

mapping of gates. The gates with 32 nm technology are used in the logic synthesis 

process. 

 

 

 

4.2.1.  DC Setup and Design Translation 

 

A setup file is used to set up the library. There are three libraries: target library, link 

library, and synthetic library which are specified in the setup file. The target library is 

the library containing the cells for mapping and inferring in DC to produce a netlist 

that is technology specific. The link library is the cell library to be used for reference 

and the target library is listed in the link library list so that DC can link to the cells that 

are mapped in the netlist. The synthetic library refers to the standard synthetic library 

to be used for the implementation of the built-in HDL operators. The graphical 

representations of the cells from the technology library are stored in the symbol library. 

In this project, the saed32lvt_ss0p95v125c.db is used as the target library and listed in 

the link library. The synthetic library is dw_foundation.sldb while the symbol library 

is not specified in this project, DC is using the default library in this case which is 

generic.sdb to display the cells in GUI. 

 

 

Figure 4.8: Libraries setup result in DC 

 

.  

After setting up the libraries, the verified design in RTL codes is loaded into 

DC automatically as the setup file contains the command to load the design. By loading 

the design into DC, the RTL codes will be translated into a netlist which is unmapped 
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and unoptimized generic technology (GTECH) netlist. The top module is set as the 

current design. The analyze command is used to read and check the design. The 

translation of the design is done using elaborate command and the command will 

execute the link command automatically for design references. Figure 4.9 and Figure 

4.10 show the result of successful automated loading and translation of the design 

including top, sl2, alu32, pc, imem, regfile, aludec, dmem, maindec, and signext when 

setup DC. The top module is set as the current design after reading all the RTL codes 

into the tool. 

 

 

 

Figure 4.9: Result of loading and compilation of source codes in DC 

 

 

Figure 4.10: Result of building and translating source codes in DC 

 

  

A check on libraries setup after loading the design to ensure the desired and 

correct libraries are successfully loaded into the software is an essential step to avoid 

wrong referring to the library during the logic synthesis stage. This step is also to avoid 
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the use of built-in libraries due to library loading errors during setup. The built-in 

libraries will cause failure in physical design since the libraries used in physical design 

do not contain data matching with built-in libraries used in DC. The list_libs command 

is used to show all the names of the libraries used in the software. Figure 4.11 shows 

the libraries loaded into the compiler are saed32lvt_ss095v125c.db and 

dw_foundation.sldb as listed in setup file. 

 

 

Figure 4.11: Result of listing libraries used in DC 

 

 

 

4.2.2.  Design Checking before mapping and optimization 

 

It is vital to check the design loaded into the software before proceeding to the next 

stage. This is to check on the hierarchy issues along with the connectivity of the design. 

The summary of the check design result is shown in Figure 4.12. 

 

           There are 65 unconnected ports in the design. The detail of the warning for 

unconnected ports is generated as shown in Figure 4.13. After checking affected ports 

with the RTL codes, these ports are described intentionally to be unused in the specific 

module. Thus, these unconnected ports are removed in DC to avoid potential design 

issues during optimization. There are 2 ports to have constant outputs. This warning is 

ignored as the shifted [0] and shifted [1] are both purposely connected to logic 0 in the 

source code to shift the immediate value to left by 2. Since the two ports are connected 

to logic 0, they are shorted together as shown in Figure 4.14. This warning will be 

solved together with feedthrough and net connected to multiple pins on the same cell 

using command during the optimization process. Feedthroughs refer to the connection 

between multiple ports to connect an input to an output using nets. These warnings can 

be solved by inserting buffer into the nets during mapping and optimization. While for 
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the unloaded nets, they are the nets pc [1:0], and pc [31:8] in the top module. Figure 

4.15 shows all the nets with no load in the design before mapping. Since only pc 

[7:2] is connected to the imem module to obtain the address of instruction memory, 

the rest of the signals in pc net are unused. Thus, the warning is ignored as the nets are 

designed to be unloaded. The tools will load all the output ports when optimizing the 

design. The cells that drive nothing will be removed by the software during 

compilation.  

 

 

 

Figure 4.12: Summary of check design before mapping. 

 

 

Figure 4.13: Detail of unconnected ports before mapping 
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Figure 4.14: Detail of constant and shorted outputs 

 

 

Figure 4.15:  Detail of unloaded nets warning 
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4.2.3.  Analysis of Timing, Area and Power before Mapping 

 

By using the built-in static timing analyser from DC, a timing report is generated 

before optimization. Figure 4.16 shows the timing report of the design before any 

constraints is applied to the design. The total data arrival time is 0 ns before the 

optimization. It is because the design is currently a generic technology (GTECH) 

netlist which is technology independent. The GTECH components are built after 

loading the design into DC to act as the representations for the function of Boolean 

and they are unmapped (Bhatnagar, 2002). There is no timing information in the 

generic library. Thus, the longest maximum delay obtained by the tool before mapping 

is 0 ns. After applying constraints to the design and optimization, the tool will be able 

to calculate the data arrival time required by the design to meet the timing requirements.  

 

 

 

Figure 4.16: Timing report before mapping 
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The statistics and information of the design area before the optimization are 

generated as shown in Figure 4.17. The report shows the non-combinational area, 

combinational area, total area as well as the number of nets, ports, and cells. The library 

used to generate area report before mapping is gtech.db. Thus, the estimation of the 

area is based on the generic technology. Based on the report, there are 3157 ports, 

14690 nets, 5750 non-combinational cells, 3260 sequential cells, and 2427 

combinational cells that exist in the design. Besides, there are 477 inverters or buffers 

in the design. The area report before mapping is only able to calculate the net 

interconnect area of 12554. 583485 µm2. The generic technology library does not have 

the information on cell area. Thus, the tool calculated 0 µm2 for the cell area before 

the optimization process. After the design is mapped, the tool will be able to obtain 

area information from the target library and calculate the cell areas.   

 

 

Figure 4.17: Area report before mapping 

 

 

Power analysis of the unmapped design is generated by the tool. The DC 

provides the power information including net switching power, cell internal power, 

cell leakage power, and the sum of dynamic power. The report of power analysis 
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before the compilation is shown in Figure 4.18. From the report, the tool calculated a 

cell internal power of 0 µW and a net switching power of 210.5137 µW. The leakage 

power is 0 µW, causing the final total power consumption of the unmapped design to 

be 210.5137 µW. As mentioned before, the unmapped design is the GTECH 

components. Since they are technology independent, there is no power information for 

the tool to calculate the cell internal power and cell leakage power. Thus, both of the 

power parameters are 0 µW before the mapping process. After the mapping process, 

the logic cells will be mapped to specific technology which is 32 nm in this case and 

the target library contains the power information of the cells. Hence, a complete power 

report with net switching power, cell internal power, cell leakage power, and the sum 

of dynamic power calculated can be generated after the optimization. 

 

 

Figure 4.18: Power analysis before mapping 

 

 

 

4.2.4.  Mapping and Optimization of Design 

 

After checking the design and ensuring all the connections are correct as desired, the 

next step is carried out to map and optimize the design. For Synopsys DC, the mapping 

and optimization are carried out based on the constraints applied to the design. The 
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constraints are decided by the designer for the design to meet the requirements. The 

tool is used to automate the process of mapping and optimize the design using the 

algorithm. The design constraints are used to set the period for the clock signal, setup 

time, hold time, the load applied to the design, and other limitations.  

 

The target library is used to provide information on the logic gates for mapping. 

A gate-level netlist that matches the constraints applied to the design is generated using 

the logic gates from the library. At the same time, the setup violation is fixed. For hold 

time violation, it will be fixed in the physical design stage using ICC. The tool modifies 

the nets, cells, and ports of the design to meet the design requirement. It is important 

to set some necessary net, cells, or ports as don’t touch or ideal to avoid modification 

during optimization which hence affects the functionality of the design. In this project, 

the clock and reset signals are set as an ideal net to prevent the tool from changing 

these ports when optimizing the design.  

 

Since the tool can perform the mapping and optimization process, the 

command can be used to instruct the execution of the process. The tool provided 

several options for the user to select the suitable algorithm for optimization. The 

optimization modes including map effort, area effort, and power effort are set to high. 

Thus, the tool will put more CPU time during mapping, area recovery, and power 

optimization during compilation. Figure 4.19 shows the mapping and optimization are 

completed successfully and a gate-level netlist is generated. 

 

 

Figure 4.19: Execution and result of mapping and optimization process 
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4.2.5.  Analysis of Timing, Area and Power after Mapping and Optimization 

 

The mapped and optimized design is analyzed in terms of timing, area, and power to 

ensure the design is meeting the design requirements. The constraints applied to the 

design need to be modified and reapply to the unmapped design to repeat compilation 

if the design fails to meet the requirements.  

 

           One of the most important criteria is the optimized design must be clear with 

the setup violations. The timing report of the optimized design is generated using the 

built-in static timing analyser from the tool. The tool provides automation for the 

calculations of data arrival time and data required time. The path with the slowest 

maximum delay is listed in the timing report with the detail of increment for every 

delay. If the arrival time exceeds the required time, a setup violation occurs. In other 

words, the slack must be equal to or greater than zero in order to avoid setup violation. 

 

 

Figure 4.20: Result of timing report after mapping 

 

 

The result of the timing report is shown in Figure 4.20. The frequency of the 

clock applied to the design is about 294 MHz which is equivalent to a clock period of 

3.4 ns. For data arrival time, it is obtained by adding the clock network delay and the 

delays occur at the input of the sequential element receiving the signals along the 

complete path. Hence, the data arrival time for the slowest maximum delay path is 

3.18 ns. The required time for setup is calculated by summing the delay of the clock 

network, clock period, and setup time followed by the subtraction time required for 

library setup and the setup uncertainty. In this project, the setup uncertainty and hold 
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uncertainty are set as 10% of the lock period or 0.34 ns. Thus, the total required time 

is 3.22 ns. The result shows the optimized design has a positive slack with a margin of 

0.04 ns. Hence, there is no setup violation.   

 

 

Figure 4.21: Area report after mapping 

 

 

Besides, the report to analysing on the chip area is generated using the tool. 

The area report of the optimized design is shown in Figure 4.21. The total area of the 

optimized design is 63196.397551 µm2. Since the unmapped design only contains area 

information for the net interconnects area, the mapped design is found to have a larger 

area as the area for cells is calculated after mapping. There are no macro cells in the 

design. The number of ports, nets, and sequential cells reduces while the number of 

non-combinational cells, combinational cells, and buffer or inverter grow after 

optimization. The tools had modified the elements in the design to meet the constraints 

applied to it. Thus, the number of ports, nets non-combinational cells, combinational 

cells, sequential cells, and buffer or inverter changes after the design is optimized. In 

this project, the constraint of a maximum area equal to 0 µm2 is applied to the design 

to optimize the area during the mapping process. To further ensure the smallest 

possible area is generated during optimization, the effort to optimize the design area is 

set to high so that the tool spends more CPU time at the area recovery stage. Thus, a 
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design area of 63196.397551 µm2 is the minimum area the tool can generate at the 

same time promising the design is meeting the requirements. 

 

 

Figure 4.22: Power report after mapping 

 

  

Aside from timing and area, power consumption is another important 

parameter to analyze a chip's performance. DC supports automated power analysis, 

and a power report is generated as the result of the analysis. The result of the power 

report for the optimized design is shown in Figure 4.22. The design dissipated power 

with a total of 23.426 mW. The power due to cell leakage is 18.2094 mW and it 

contributes to 64.93 % of the total power dissipation. 

 

The remaining power consumption is due to the dynamic power which is 

equivalent to 5.2161 mW. Dynamic power is the sum of net switching power and cell 

internal power. The power consumption due to the discharging or changing of 

capacitance at the cell output ports is known as switching power while the internal 

power refers to the power dissipation inside a cell.  The reduction in net number after 

optimization had caused the net switching power to drop by 47.47 % from 255.9179 

µW to 134.4276 µW. The internal power consumed by the cell is 5.0817 mW. It makes 

up 97% of the total dynamic power. The register power group is contributing the most 
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to the cell's internal power and the leakage power. The register power group dissipated 

4.873 mW for internal power. At the same time, there is 11.734 mW of power leakage 

due to the registers group. Since the RAM and ROM are included in the design for 

logic synthesis, the use of a register in the design is plenty. Thus, the register group 

dissipated 70.90 % of the total power. The tool is instructed to apply high effort to 

optimize power during compilation. Hence, a power consumption of 23.426 mW is the 

minimum power the tool can achieve without violating the design requirement 

 

 

 

4.2.6.  Design Checking after Mapping and Optimization 

 

After compilation, the design is checked again for its connectivity. A design check can 

avoid the change in design functionality due to the modifications made by the tool in 

order to meet the design requirements. Actions should be taken to clear the warning 

when it affects the design functionality. Figure 4.23 shows the summary of the check 

design result after the mapping and optimization process. There are 46 unconnected 

ports in the optimized design. The unconnected ports are the input ports of adder, 

subtractor, and comparators connected to the ground as well as some unused output 

ports such as the CO of an adder. Since these ports are unused, they are removed 

manually using a command.  

 

The optimized design is checked again after removing the unused ports. The 

new result in Figure 4.26 shows there are 9 cells that exist with warnings in which 

there are 4 cells are found to be connected to logic 0 or logic 1 and 5 of them are 

connected to several pins of one cell. Thus, the detail of the warnings is checked to 

verify the connectivity of the reported cells and nets. Based on the detail of cells to be 

connected to ground or power, the pin shifted [1] and shifted [0] in the 

submodule pcreg and rf are connected to the ground. Since the shifted [1] and shifted 

[0] are designed intentionally to always be logic 0 as the result of shifting the 

immediate value to left by 2, these warnings can be ignored. While for the nets 

connected to several pins on the same cells, the listed cells in the warning detail are 

designed to be the same signal in the RTL code. Thus, the warning can be ignored to 

ensure the proper functioning of the design after mapping and optimization. The 
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unloaded nets show the affected nets are connected to ground or supply voltage pins 

as shown in Figure 4.28 and Figure 4.29. The unconnected nets are due to the removal 

of unused ports connected to logic 0. Since the nets are not connected to any ports, the 

functionality and connectivity of the design will not be affected. Hence, these warnings 

can be ignored with no action needed to fix them.  

 

           From the result of check design after mapping, the problems such as 

feedthroughs, unconnected nets, and cells do not drive are solved. The inserting of the 

buffer using the command can solve the feedthroughs that exist in the nets. During the 

optimization, the unconnected nets are removed. The tool is applied with a setting to 

remove the unloaded sequential cells during optimization. Thus, the cells without 

driving any nets are removed by the tool.  

 

 

Figure 4.23: Unconnected ports in optimised design 
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Figure 4.24: Information of part of the unconnected ports 

 

 

Figure 4.25: Connection of adder from pcreg module with connected ports 

 

 

Figure 4.26: Final result of check design after removing unconnected ports  
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Figure 4.27: Detail of the warnings in check design after removing unconnected ports 

 

 

Figure 4.28: Unloaded nets in pcreg module 

 

 

Figure 4.29: Unloaded nets in alu1 module 
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 Before outputting the gate-level netlist, the design is checked with the 

constraints applied to it. The report generated by the tool to list the violated constraints 

is shown in Figure 4.30 and Figure 4.31. There are three violations in the optimized 

design. The hold time violation occurs in the optimized design. For hold time violation, 

it will be fixed in the physical design through CTS. Hence, the hold time violation is 

ignored and left to be solved in the back-end design flow. The minimum capacitance 

allowed in the design is 1 fF. Since the actual capacitance in reset net is 0 F, lower 

than the minimum value, there is no actual violation. The constraint of minimum 

capacitance is set by the library. For the tool to generate a minimum area during 

optimization, the constraint of the maximum area is set to be 0 µm2. Since the 

constraint is applied to achieve the smallest design area instead of an actual area 

limitation, the actual design area of 63196.40 µm2 is not violating the maximum area 

constraint. Thus, the violations can be ignored.  

 

 

Figure 4.30: Hold time violation 

 

 

Figure 4.31: Result showing min capacitance and max area violation after mapping 
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4.2.7.  Output Gate-level Netlist 

 

When the design is analysed and verified to have met all the constraints applied to it, 

the gate-level netlist is output to be used in the back-end design. The violations of 

minimum capacitance and maximum area constraints are ignored. The optimized 

design is saved in ddc format and Verilog format to be used as a gate-level netlist. A 

sdc file is generated to act as a design constraint file with the record of all constraints 

applied to the design. Figure 4.32 shows the outing of the gate-level netlist is 

completed successfully. This makes a successful completion of logic synthesis and the 

end of the front-end design flow. 

 

 

Figure 4.32: Result for output gate-level netlist 
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4.3.  Physical design  

 

In this phase, the optimised gate-level netlist generated in logic synthesis stage is 

transformed into layout using Synopsys ICC as the design tool.  

 

 

 

4.3.1.  ICC Setup and Gate-netlist import 

 

A setup file is used to set up the library in ICC. The setup file specifies the target 

library, synthetic library, and link library. Since there are no I/O pads in this design, 

the I/O library is not loaded into the software. Similar to the library setup in Design 

Compiler, saed32lvt_ss0p95v125c.db is used as the target library and listed in the link 

library for ICC to ensure the same technical information as logic synthesis is used in 

the physical design. The synthetic library is dw_foundation.sldb. 

 

           A milkyway library named MW_MIPS is created using the setup file to act the 

design library. A tech file is loaded into the design library as shown in Figure 4.33. 

The setup of tluplus files is also done manually using the GUI as shown in Figure 4.34. 

After the setup, the ICC is ready to load the optimized netlist. The ddc netlist is 

imported into ICC. The loading of libraries is done when the design is imported into 

the tool. Figure 4.35 shows the design is imported successfully into ICC and the 

loading of libraries is completed. The tool creates an initial design cell after reading in 

the netlist as shown in Figure 4.36. Since the design does not consist of any macro 

cells and I/O pads, only standard cells are generated in the terms of purple rectangles. 

There are 12954 standard cells in the design. The list_libs command is executed to 

check and make sure all the required libraries are loaded into the tool. Figure 4.37 

shows all the required libraries have been loaded successfully and the tool is ready to 

perform physical design. 

 

 

Figure 4.33: Load tech file during design library creation 
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Figure 4.34: Setup of tluplus files 

 

 

Figure 4.35: Import of design and loading of libraries 

 

 

Figure 4.36: Initial view of the top module after loading the design 

 

 

Figure 4.37: Checking on libraries loading 
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4.3.2.  Floorplanning  

 

The first stage of physical design is floorplanning After setting up the libraries and the 

loading of design, the physical design is started with the floorplanning stage. 

Floorplanning acts as the foundation of physical design in which the quality of a 

floorplan will affect placement and routing process. In this stage, the chip area is 

defined and the area for routing is determined.  

 

Before creating a floorplan, logical connections for ground and power are 

created using the derive_pg_connection command. It is to ensure the ground net and 

power net are connected logically to pins including ground, power, and tie-off pins. 

The command is executed when there are changes in ground and power connection 

after floorplanning, placement, routing, and chip-finishing. The floorplan is generated 

by applying the command create_floorplan and some parameters are set. The setting 

to create the floorplan and the summary of the floorplan is as shown in Figure 4.38. 

The core utilization ratio is the parameter to determine the area reserves for placement. 

The core utilization ratio is set as 0.7 in which 70% of the chip area will be used for 

placement and the remaining 30% is available for routing. It is important to reserve 

sufficient area to avoid routing congestions later. The distance between the core area 

and the terminals or pads is set at 20 µm for all four sides of the design. By applying 

the setting, the tool generates an optimum area based on the design automatically as 

shown in Figure 4.39. The standard cells are placed along the right sides of the 

floorplan. The square inside the floorplan is the core of the chip. Based on the summary 

of the floorplan, the actual core utilization ratio is 0.704 or 70.4%. It is slightly higher 

than the pre-defined value of 0.7. The tool is generating a floorplan with an optimum 

area as close as possible to the predefined value. 
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Figure 4.38: Setting to create floorplan and summary of the floorplan 

 

 

Figure 4.39: Floorplan generated by the tool 

 

 

After the initial floorplan is generated, the next step is virtual flat placement to 

place the standard cells legally in the core area. This is to enhance the congestion and 

timing after creating the floorplan. There are some parameters are set before 

performing virtual flat placement. The congestion effort is set to high to reduce the 

congestion issues and the pin routing aware is set to true in order to avoid the DRC 

error using set_fp_placement_strategy command. Then, virtual flat placement is 

performed. A report of virtual flat placement is generated as shown in Figure 4.40. 

Based on the result, there is no overlapping of cells, and no cells are violating the core 

area. Hence, all the standard cells are placed in the predefined area which is 70% of 

the core area.  
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Figure 4.40: Summary of virtual flat placement 

 

 

Figure 4.41: Result of virtual flat placement 
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The congestion of the design is checked by generating a global route 

congestion map after performing virtual placement. The congestion map is the 

visualization of the placement quality. The overflow of the cells is determined and 

highlighted using different colours. The brighter the colour, the larger the overflow. 

The global route congestion map is shown in Figure 4.42. From the map, there are a 

few cells highlighted in blue, indicating the design does not have serious congestion 

issues. An enlarged map is shown in Figure 4.43. The tool calculates the congestion 

by comparing the supply and demand of nets based on the global routing cell (GRC). 

The number of tracks available for routing is the supply while the demand is the 

quantity of nets to cross the edge of GRC. When there the demand is greater than the 

supply, overflow occurs. A large overflow will lead to serious congestion issues during 

routing. The congestion report based on GRC is generated as shown in Figure 4.44. 

The design consists of 31152 GRC while 2 of them are having overflows. The 

overflow GRC is 0.006% of the total GRC. Since the number of overflow GRC is only 

2 with overflow below 10, the congestion is acceptable as the routablity is still high. 

Hence, the design is about to proceed to the next stage. 

 

 

Figure 4.42: Global route congestion map 
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Figure 4.43: Enlarged congestion map with congestion calculation 

 

 

Figure 4.44: Congestion report based on GRC 

 

 

In this stage, power network synthesis (PNS) is performed. Before performing 

PNS, power network constraints are applied to the design to control the number and 

the width of the power rings and metal strap. The tool calculates the number of straps 

required in PNS to evenly distribute the power according to the constraints. Since there 

are no I/O pads in the design, the design does not have any ground pad or power pad. 

In order to perform PNS, the power and ground pads are essential. Thus, virtual power 

pads for VSS and VDD are created using the GUI of the tool to solve the problem. The 

PNS is performed using the GUI and the setting is as shown in Figure 4.45. The 

essential parameters including the value of supply voltage, name of power net, target 

IR drop and power budget must be set to synthesize the power network. The power net 

is named VDD and VSS in this project. For supply voltage, it is set as 1.5 V while the 

10% of supply voltage is set as the target IR drop. In other words, the desired IR drop 

is 0.15 V.  
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According to the power report in the logic synthesis stage, the design dissipated 

about 23.7 mW. Hence, the power budget for the design is set as 26 mW with a 10% 

of safety margin to ensure there is sufficient power to drive the processor. The 

maximum IR drop is examined after the PNS. As shown in Figure 4.46, the summary 

of PNS reported a maximum instance IR drop of 9.356 mV. The maximum drop in 

voltage is smaller than the target value of 150 mV. The IR drop is acceptable. Hence, 

the power network is committed based on the PNS result. The PNS heat map is shown 

in Figure 4.47. The virtual power pads located around the chip are highlighted in light 

purple colour. The voltage drop at the center of the chip indicated in red colour is the 

worst. The voltage from the power rings drops along the power strap due to the 

resistance of the metal wire. Since the distance between the power rings and the center 

of the chip is the longest, the chip center experiences the most voltage drop. The layout 

after committing the power network is shown in Figure 4.48.  

 

After that, the pins in instances are connected to the ground and power 

using preroute_instances command. The set_preroute_drc_strategy command is used 

to prevent blockage of the signal pin access edge in this stage which can lead to DRC 

error. The ground and power pins of the standard cells are then connected to the power 

strap and rings. At the same time, the tool is instructed to remove the unconnected or 

floating segments from the design. Before proceeding to legalize the placement, the 

tool is set to avoid placement of cells under the power nets to avoid DRC errors and 

congestion by setting a complete blockage to the power straps. The legalization of 

placement is performed to adjust the locations of the standard cells which are violating 

the power strap. Figure 4.49 shows the result of placement legalization. The location 

of 8250 cells in the core of the chip is modified and 5492 cells are rotated. Next, actual 

global routing is performed, and the congestion report based on GRC is generated 

again to analyse the actual congestion. The report is shown in Figure 4.50. According 

to the report, there is no overflow in GRC after the global routing indicating there are 

no congestion issues in the design. The last step in floorplanning is timing optimization 

and fixing of violations in design rules using the command. Based on the result shown 

in Figure 4.51, 1884 cells have experienced modification in placement to optimize the 

timing and fix the design rule.  
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Figure 4.45: Setting applied to PNS 

 

 

Figure 4.46: Maximum IR drop reported in PNS summary 
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Figure 4.47:  Heat map for PNS 

 

 

Figure 4.48: Chip layout after committing the power network 
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Figure 4.49: Result of placement legalization 

 

 

Figure 4.50: Congestion report based of GRC after global routing 

 

 

Figure 4.51:Result for timing optimization and fixing of design rule violation 
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4.3.3.  Placement, CTS, and Routing  

 

After completing floorplanning and PNS, the next stage in physical design is 

placement. A few parameters are set for placement optimization is made. In order to 

obtain optimum chip area, the area recovery option is set to high to allow the tool to 

perform cell area recovery during placement optimization which helps to reduce 

congestion issues. Besides, the power option is set high to allow power optimization 

during placement. The CTS option is also enabled so that the tool can perform CTS 

when optimizing the placement of the cells.  The summary of placement optimization 

as shown in Figure 4.52 shows the design is having hold time violation with 3098 paths. 

CTS can be performed to solve the violations. 

 

 

Figure 4.52: Summary of placement optimization 

 

 

 After placement, CTS is carried out to fix the hold time violation by inserting 

a buffer into the clock path. The area recovery option is set high to optimize the area. 

The CTS result shows the CTS is completed successfully and there is no overlapping 

of cells, blockage, and violation at this stage. RC extraction is done and a QoR report 

is generated. As shown in Figure 4.54, the hold time violations are fixed and there is 

violating path after CTS. However, 1 out of 12653 nets is found to violate the design 

rule. The design rule violation can be fixed with the route of the clock tree and detailed 

routing. A clock tree report summary is generated using the tool as shown in Figure 

4.55. The clock skew is 0.0269 ns, and the longest path has a delay of 0.1112 ns. There 
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are 29 buffers inserted into the clock path to produce a balance clock delay and 

minimize the clock skew during CTS. By reducing clock skew, the clock signal can 

travel faster to a register, the data is held stable after the clock active edge for a longer 

time in a register. Hence, the hold violations are solved. The clock tree is routed using 

global routing. Figure 4.56 shows the total DRC violations after the global routing of 

the clock tree are 0 and the clock tree is built using 12607 nets. A visualization of the 

clock tree is shown in Figure 4.57. 

 

 

Figure 4.53: CTS result 

 

 

Figure 4.54: Part of QoR report after CTS 
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Figure 4.55: Clock tree summary 

 

 

 

Figure 4.56: Status of clock tree routing 

 

 

Figure 4.57: Visualisation of the clock tree 
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 The design is ready for detailed routing after performing CTS. The detailed 

routing is separated into two stages. The first stage is the initial route for assignment 

of the track, global routing, and detail routing. There is no optimization in the initial 

routing. Figure 4.58 shows the result of the initial routing. The initial routing is 

successful and the sum of DRC errors is 0, showing no congestion issues exist in the 

design. As a result, 30% of the chip area is sufficient for routing. If there are DRC 

errors after initial routing, detailed routing and ECO routing should be performed to 

solve the violations. However, a floorplan should be generated using a smaller core 

utilization ratio to provide more spacing for routing when the DRC errors still occur 

after detailed routing and ECO routing. For this project, the post route optimization is 

hence performed on the design as the design is free from congestion issues after the 

initial route. The area recovery and power options are set high to further optimize these 

two parameters. The tool had updated 979 nets during the optimization as shown in 

Figure 4.59.  

 

The LVS is performed to verify the LVS error. Figure 4.60 shows the LVS 

result after the initial routing. As shown in the result, there is a minor LVS error for 

20 floating ports in the design. The floating ports are the ports without connecting to 

any nets. Based on the detail of floating ports as shown in Figure 4.61, the floating 

ports are the unused output ports of the registers. For a register, there are 2 output ports 

Q and QN in which QN is the inverting result of Q. Since some of the registers is using 

only output, the floating ports violation occurs. However, this violation will not affect 

the design functionality. Hence, the floating port violations can be ignored. There are 

no floating nets, shorted nets, or open nets in the layout. With no electrical equivalent 

error in the layout, the layout can be said to have the same interconnection as the 

optimized gate-level netlist produced during the logic synthesis stage. Meanwhile, the 

nets are routed correctly as defined in the gate-level netlist since there is no must joint 

error in the layout. Hence, the LVS result is acceptable. 
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Figure 4.58: Result of initial routing. 

 

 

Figure 4.59: Result of postroute optimization 

 

 

Figure 4.60: LVS after initial route 
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Figure 4.61: Detail of the floating ports 

 

 

4.3.4.  Chip Finishing and Tape Out 

 

Chip finishing is the last stage in the physical design before tape out. The tool is used 

to reduce the critical area in this stage.  

 

           First, the short critical area map is generated using the tool as shown in Figure 

4.62. The maximum threshold value is set as 1. From the map, it can be seen the short 

critical area is small in the overall layout. Similarly, the open critical area map with 

the highest threshold of 1 is generated as shown in Figure 4.63. The map distribution 

shows the maximum open critical area ratio is below 40%. Spreading of wires is 

performed to enhance the critical area for shorts while widening of wires is carried out 

to reduce open critical area. Figure 4.64 shows that metal 3 is pushed off from the track 

due to wire spreading. The dotted line is the track for routing. The effect of widening 

wire is shown in Figure 4.65. Some part of the Metal 2 becomes wider, and the nets 

are pushed away from the original track. By pushing the nets away from the original 

track, the space between the metal traces increases. Hence, the critical area reduces. 

The DRC and LVS are performed again to ensure the design is still free of error, 

excepting the minor floating port error in LVS. Next, the redundant vias are inserted 

into the layout. The redundant vias had increased by 3. The DRC and LVS are checked 

again. The final DRC and LVS results are shown in Figure 4.68 and Figure 4.69. There 

is no DRC error and additional LVS error. 
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 The final timing, QoR, area, and power reports are generated and analysed. The 

timing report is generated before taping out to make sure the design is free from setup 

violations. As shown in Figure 4.70, the data arrives faster than the required time in 

the path with a maximum delay with a margin of 0.09 ns. There are no setup violations 

in the final design. Besides, the timing performance increases by 0.05 ns from the 

optimized gate-level netlist with a margin of 0.04 ns. It is because the clock delay is 

stabilised in CTS. In the logic synthesis stage, the clock delay is an estimation of 0.20 

ns and there is an uncertainty of 0.34 ns applied to the design. The post-CTS design 

has a stabilized clock delay of 0.06 ns only and the uncertainty is removed. Hence, the 

time required by the data increases by 0.20 ns from 3.22 ns to 3.42 ns as compared to 

the optimized netlist. Due to the reduction of clock skew after CTS, the final data 

arrival time had also increased by 0.16 ns from 3.18 ns to 3.34 ns. Since the increase 

in data arrival time is smaller than the data required time, the slack or margin improves. 

The QoR report is also generated to examine the hold time performance of the final 

layout as shown in Figure 4.73. The report shows there is no path to experiencing hold 

time violation. Hence, the design is proved to be free from timing issues.  

 

Aside from that, the area report of the final design is generated through ICC. 

The final area reports are shown in Figure 4.71. The total chip area had increased by 

15.28 % to 72852.436196 µm2. In order to avoid DRC errors, the metal nets are set to 

have a minimum distance between each other in the design. Besides, the power nets 

are included in the physical design. The cells and route tracks leave a distance from 

them to prevent design rule error as the power nets are set to have complete blockage 

for routing during preroute stage. The metal nets used for routing, power rings, and 

power nets have a certain width. Thus, in physical design, the chip area generated in 

the floorplan stage reserve a 30% area for routing. This causes the total chip area to 

increase as the area is fitting all the cells and the metal nets used for routing. Next, the 

power analysis of the final design is done based on the power report as shown in Figure 

4.72. The power dissipated by net switching increases significantly from 134.4276 µW 

to 1.2951 mW. This causes the total dynamic power to rise as well. Due to the 

significant increase in net switching power, its contribution to total dynamic power 

increases by about 15 %. The cell internal power increases slightly to 5.7733 mW 

while the cell leakage power reduces slightly to 18.0631 mW. As a result, the total 

power dissipated by the design, in the end, is 25.131 mW with an increase of 7.28 % 
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from the previous area. There are more switching nets when the clock tree nets increase. 

This leads to the rise in switching power as more nets will be discharging or charging 

the internal capacitance. The internal capacitance of the nets grows with the number 

of nets. Hence, the switching power became larger. The total power is within the power 

budget of 26 mW set in PNS. Hence, the design is still able to support the power 

consumption. 

 

Finally, the design is ready for tape out. The GDSII file is produced by the tool 

to be used for fabrication. For this project, the design is not suitable to be fabricated 

duet to the educational libraries used in the software. The result of outputting the 

GDSII file is shown in Figure 4.74. The final layout of the design is shown in Figure 

4.75. 

  

 

Figure 4.62: Short critical area of the design 
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Figure 4.63: Open critical area 

 

 

 

Figure 4.64: Metal 3 to be pushed off from the track 
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Figure 4.65: Metal 2 to become widen and pushed off from track 

 

 

Figure 4.66: Redundant conversion report before chip finishing 
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Figure 4.67: Redundant conversion report after chip finishing 

 

 

Figure 4.68: Final DRC verification result 

 

 

Figure 4.69: Final LVS verification result 
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Figure 4.70: Final timing report 

 

 

Figure 4.71: Final area report 
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Figure 4.72: Final power report 

 

 

Figure 4.73: QoR report showing hold time violation information 

 

 

Figure 4.74: Result of outputting GDSII file 
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Figure 4.75: Final layout 

 

 

Figure 4.76: Enlarged view of the layout 
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CHAPTER 5  

 

 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1.  Conclusion 

 

The objectives are achieved. In this project, the front-end and back-end design flow 

from RTL coding to tape out is completed successfully. A 32-bit MIPS processor with 

support for 29 instructions is developed and its functionality is verified. The complete 

VLSI design flow is implemented using EDA tools provided by Synopsys. The 

Synopsys DC is used to implement the logic synthesis stage in the front-end while the 

Synopsys ICC is to implement the physical design processes for back-end design flow. 

In logic synthesis, DC is used to map and optimize the design using the 32 nm libraries. 

At the same time, the software provided the automation for STA to analyse the setup 

time performance in this stage. Besides, the tool is used to generate reports to analyse 

the area and power of the design after mapping and optimization. This greatly reduced 

the time required for logic synthesis as the DC can map the Boolean equations in the 

RTL source codes to the gates in the provided libraries. While for ICC, it is used to 

carry out all the stages in back-end design with a built-in STA analyzer to analyse the 

timing. The algorithm of the software reduces the time consumption to provide a 

design layout that is free from timing issues. There are plenty of logic gates in the 

design. Manual execution of complete VLSI design flow is too complex for a human. 

Hence, the implementation of the VLSI design flow requires the help of the EDA tool 

to reduce the time to produce an SoC.  

 

           After completing the front-end design flow, the mapped and optimized design 

is verified to have no setup violation. The hold violations that exist in this stage are 

left to be solved in the physical design. The design is driven by a clock with a 

frequency of around 294 MHz. The timing constraints are applied to set the input delay, 
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output delay, setup uncertainty and hold uncertainty during logic synthesis stage to 

obtain a more accurate timing performance. The optimized gate-level netlist is checked 

to ensure its functionality. The design is modified and optimized without changing the 

functionality.  

 

           The optimized gate-level netlist is used to perform physical design. The hold 

time violations are fixed in this stage through CTS. At the same time, the setup time 

performance is improved slightly to the margin of 0.09 ns. However, the power 

dissipated by the design becomes larger due to the increase in net switching power in 

physical design. The high frequency of the clock used in the design had caused the 

switching power to increase. Besides, the large number of registers used for RAM and 

ROM in the design had contributed to the large power consumption. In conclusion, the 

power performance of the design is scarified to optimize the timing performance. 

 

 

 

5.2.  Recommendation  

 

One of the recommendations is to further improve the area performance and efficiency 

of the design using smaller transistor technology. The technology used in this project 

is 32 nm while 5 nm is the latest technology in the industry. There is room for 

improvement in terms of reducing transistor size. By using a smaller transistor, the 

chip area can be reduced as the same amounts of transistors can be placed in a smaller 

area. Thus, the cost to produce a chip can be reduced. Besides, by having more 

transistors in the chip, the processor becomes more powerful to execute instructions 

faster. A reduction in transistor size leads to a drop in its internal capacitance. The 

power required to drive the transistor is hence smaller. Thus, the smaller transistor is 

more power-efficient.  

 

           The margin for setup time for this design is 0.09 ns. The is a possibility for the 

design to have setup violations during the manufacturing process. The design can be 

improved by taking the margin for setup into account. In this project, the design is not 

available for fabrication. However, it is important for a designer to have the practice 
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to leave a safety margin for the manufacturing of the product. The margin can be 

improved by adjusting the timing constraints applied to the design during DC.  

 

           Besides, RAM and ROM should be designed as macro cells. The memory 

elements designed as macro cells can be optimized separately to achieve better timing 

and power performance. In the current design, the RAM and ROM are optimized as a 

group with the other submodules. This causes the register to dissipate large power and 

results in high power consumption in overall. By generating macrocells for RAM and 

ROM, they are optimized individually with specific power constraints applied to them. 

Thus, the power consumed by the RAM and ROM can be reduced, resulting in a lower 

power dissipation of the overall design. The macro cells can be generated using another 

EDA tool from Synopsys named Memory Compiler.  

 

            The current design is made without I/O pads. This causes the design to be 

unable to interface with other devices through external pins. In order to improve the 

design, the RTL codes should be modified to include the implementation of I/O pads 

to allow interfacing of external devices. Aside from that, the current design is a single 

cycle MIPS. The design can be modified into a pipelined design to improve efficiency. 

For a single cycle process, only 1 instruction is executed in a clock cycle. While for 

pipelined design, a single cycle processor is divided into several stages to execute 

instructions simultaneously. For a 5-stage pipelined processor, 5 instructions can be 

executed within a clock cycle in parallel. Hence, the processors can perform faster in 

terms of increasing the efficiency to execute the instructions.  
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APPENDICES 

 

 

APPENDIX A: Instruction loaded into the design 

 

 

 

20020005 //addi $2, $0, 5 

2003000C //addi $3, $0, 12 

2067fff7 //addi $7, $0, -9 

00E22025 //or $4, $7, $2 

00642824 //and $5, $3, $4 

00A72826 //xor $5, $5, $7 

00A43020 //add $6, $5, $4 

10C70010 //beq $6, $7, end 

0064202A //slt $4, $3, $4 

10800001 //beq $4, $0, around  

20050000 //addi $5, $0, 0  

00E2202A //slt $4, $7, $3 

00853820 //add $7, $4, $5 

00E23822 //sub $7, $7, $2 

AC670044 //sw $7, 68 ($3) 

8C020050 //lw $2, 80 ($0) 

30489616 //andi $8, $2, 38422 

35099600 //ori $9, $8, 38400 

392A9614 //xori $10, $9, 38420 

000A6100 //sll $12, $10, 4 

3C0B0004 //lui $11, 4 

016C6022 //sub $12, $11, $12 

08000018 //J end  
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20020001 //addi $2, 0, $1 

AC0C0054 //sw $12, 84(0) 

22120008 //addi s2 s0 8  

3C11F300 //lui s1 0xf300 

22310022 //addi s1 s1 0x0022 

2A57000A //slti s7 s2 10  

16E40002 //bne s7, $4, 2 

16320001 //bne s1, s2, 2 

3C11F300 //lui s1 0xf300 

0C00002A //jal 42  

02519807 //SRAv s3 s1 s2 (s3 = -851968) 

02F3A006 //SRLV $s4 $s3 $s7 (s4 = 2147057664) 

0254A004 //SllV $s4 $s4 $s2 (s4 = -109051904) 

AC140058 //sw s4, 88(r0) (ram[22] = 2] 

1A800005 //blez s4 0x0005 

1E800001 //bgtz s4, 1 

AC16005C //sw s6, 92(r0) (ram[23] = 0] 

02D5B827 //nor s7, s6,s5 ( ans = -153) 

AE170060 //sw s7, 96(r0) (ram[24] = -153) 

03E00008 //jr ra return to pc == 44 

0011B083 //sra s6 s1 0x0002 

0016B280 //sll s6 s6 0x000A 

0016B382 //srl s6 s6 0x000E 

1AC00001 //blez s6 0x0001 

3C11F300 //lui s1 0xf300 

22150098 //addi s5 s0 152 

1EA00001 //bgtz s5 0x0001 

3C11F300 //lui s1 0xf300 

02A0F809 //jalr ra s5 

00000000 
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APPENDIX B: Testbench for verification  

 

 

 

`timescale 1ns/1ps 

module tb_fyp(); 

  logic clk; 

  logic reset, error; 

  logic [2:0] check; 

 

  logic [31:0] readdata2, writedata, dataaddr; 

  logic memwrite; 

 

  // instantiate device to be tested 

  top dut (clk, reset, readdata2, writedata, dataaddr, memwrite); 

 

  // initialize test 

  initial 

    begin 

      check <= 0; error <= 0; 

      reset <= 1; # 22; reset <= 0; 

    end 

 

  // generate clock to sequence tests 

  always 

    begin 

      clk <= 1; # 5; clk <= 0; # 5; 

    end 

     

  // check results 

  always @(negedge clk) 

    begin 

      if (memwrite) begin 
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        if (dataaddr === 80 & readdata2 === 3) begin 

          $display("Arithmetic calculation succeeded"); 

          check = check +3'b001; 

        end  

        else if (dataaddr === 84 & readdata2 === 261792) begin 

          $display("Logical calculation succeeded"); 

          check = check +3'b001; 

        end  

         else if (dataaddr === 88 & readdata2 === -109051904) begin 

          $display("Variable rotation succeeded"); 

          check = check +3'b001; 

        end  

        else if (dataaddr === 92 & readdata2 === 0) begin 

          $display("Rotation succeeded"); 

        check = check +3'b001; 

        end  

        else if (dataaddr === 96 & readdata2 === -153) begin 

        $display("Logical NOR calculation succeeded"); 

        check = check +3'b001; 

        end  

        else begin 

          error = 1'b1; 

          end 

      end 

       

      if(error)begin  

       $display("\nError!!"); 

      $display ("Time %d, dmen addr(*2) = %b, mem write data = %b", 

      $realtime, dataaddr, readdata2); 

      #20; 

      $stop; 

    end 

    else if (check == 3'b101 && error == 0)begin 

      $display("\nSimulation Sucess!!"); 
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      #20; 

      $finish; 

    end 

  end 

endmodule 
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APPENDIX C: Setup file for DC  

 

 

 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

#  Library Setup 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

set search_path    "$search_path scripts ../ref/saed32nm/lib/stdcell_lvt/db_nldm" 

set target_library "saed32lvt_ss0p95v125c.db" 

set_app_var synthetic_library dw_foundation.sldb 

set link_library   "* saed32lvt_ss0p95v125c.db $synthetic_library" 

set symbol_library "generic.sdb" 

 

############ Do NOT edit below this line ############  

##################################################### 

 

echo "\n\nSettings:" 

echo "search_path:       $search_path" 

echo "link_library:      $link_library" 

echo "target_library:    $target_library" 

echo "symbol_library:    $symbol_library" 

 

 

define_design_lib DEFAULT -path ./analyzed 

 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

#  History 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

history keep 1000 
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# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

#  Aliases 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

alias h history 

alias rc "report_constraint -all_violators" 

alias rt report_timing 

alias ra report_area 

alias page_on {set sh_enable_page_mode true} 

alias page_off {set sh_enable_page_mode false} 

alias fr "remove_design -designs" 

 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

#  Alib for compile_ultra 

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 

# set alib_library_analysis_path [get_unix_variable HOME] 

set alib_library_analysis_path .. 

 

#read the files 

analyze -format sverilog { top.sv sl2.sv alu32.sv pc.sv imem.sv regfile.sv  aludec.sv 

dmem.sv maindec.sv signext.sv} 

 

#link top 

elaborate top 

 

#compile variable 

set write_name_nets_same_as_ports true 

set compile_advanced_fix_multiple_ports_nets true 

set compile_delete_unloaded_sequential_cells true 

 

echo "\n\nI am ready...\n" 

 

 



96 

 

APPENDIX D: Setup file for ICC 

 

 

 

set LIB_ROOT ../ref/saed32nm/lib 

set hdlin_enable_upf_naming_compatibility true 

 

set LVT_LIB " \ 

        saed32lvt_ss0p95v125c.db \ 

        " 

 

 

set LVT_LIB_SEARCH_PATH "$LIB_ROOT/stdcell_lvt/db_nldm" 

 

set search_path "$search_path \ 

                $LVT_LIB_SEARCH_PATH " 

 

set_app_var target_library $LVT_LIB 

set_app_var synthetic_library dw_foundation.sldb 

set_app_var link_library "* $target_library $synthetic_library" 

define_design_lib default -path ./work 

 

set mw_design_library MW_MIPS 

set mw_reference_library "$LIB_ROOT/stdcell_lvt/milkyway/saed32nm_lvt_1p9m " 

 

set TECH_FILE "$LIB_ROOT/tech/milkyway/saed32nm_1p9m_mw.tf" 

set MAP_FILE "$LIB_ROOT/tech/star_rc/saed32nm_tf_itf_tluplus.map" 

set TLUPLUS_MAX_FILE 

"$LIB_ROOT/tech/star_rc/saed32nm_1p9m_Cmax.tluplus" 

set TLUPLUS_MIN_FILE 

"$LIB_ROOT/tech/star_rc/saed32nm_1p9m_Cmin.tluplus" 

 

set MW_POWER_NET       "VDD" 
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set MW_POWER_PORT      "VDD" 

set MW_GROUND_NET      "VSS" 

set MW_GROUND_PORT     "VSS" 

set MIN_ROUTING_LAYER  "M1" 

set MAX_ROUTING_LAYER  "M6" 

set upf_create_implicit_supply_sets false 

 

if { [shell_is_in_topographical_mode] || ($::synopsys_program_name=="icc_shell") } 

{ 

    if {![file isdirectory $mw_design_library ]} { 

      create_mw_lib   -technology $TECH_FILE \ 

                      -mw_reference_library $mw_reference_library \ 

                      $mw_design_library 

    } else { 

      set_mw_lib_reference $mw_design_library \ 

        -mw_reference_library $mw_reference_library 

    } 

 

open_mw_lib $mw_design_library 

set_tlu_plus_files -max_tluplus $TLUPLUS_MAX_FILE \ 

                       -min_tluplus $TLUPLUS_MIN_FILE \ 

                       -tech2itf_map $MAP_FILE 

} 

 

 

 

 




