

IMPLEMENTATION OF VLSI DESIGN FLOW

FOR MIPS-BASED SOC

LEE ZHAO MIN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2022

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

Lee Zhao Min

17AGB04345

25.4.2022

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “IMPLEMENTATION OF VLSI DESIGN

FLOW FOR MIPS-BASED SOC” was prepared by LEE ZHAO MIN has met the

required standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Engineering (Hons) Electronic Engineering at Universiti Tunku Abdul

Rahman.

Approved by,

Signature : _________________________

Supervisor : Ir Dr. Loh Siu Hong

Date : _________________________

29/4/2022

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2022, Lee Zhao Min. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my deep sense of gratitude to my supervisor, Ir

Dr. Loh Siu Hong for his invaluable advice, guidance, and his enormous patience

throughout the development of the research.

In addition, I would also like to express my gratitude to my family, course

mates and friends who had helped and given me encouragement.

vi

IMPLEMENTATION OF VLSI DESIGN FLOW

FOR MIPS-BASED SOC

ABSTRACT

MIPS is a VLSI microprocessor based on RISC architecture which focuses on

increasing the performance with the trade-off of its hardware and instruction

complexity. VLSI design flow is the common design methodology used for integrated

circuit design. The two phases in the VLSI design flow are front-end design and back-

end design. The complete VLSI design flow is implemented to produce a MIPS-based

SoC. EDA tools from Synopsys Inc are used in this project to carry out the processes

including logic synthesis, floorplanning, placement, routing, physical verification, and

others. The use of EDA tools could shorten the long VLSI design cycle with design

automation. The MIPS design is optimised to reduce the design cost and improve the

performance of the design. Synopsys Design Compiler is used for the front-end design

while Synopsys IC compiler is used to complete the back-end design. The final layout

produced from the IC compiler is able to pass the timing and physicals verifications.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xvi

CHAPTER 1

1 INTRODUCTION 1

 Background 1

1.1.1 IC design 1

1.1.2 CPU architecture 2

 Problem Statements 4

 Aims and objectives 5

2 LITERATURE REVIEW 6

2.1 CISC architecture 6

2.2 RISC Architecture 7

2.2.1 MIPS architecture 7

2.3 RICS and CISC comparison 9

2.4 MIPS instruction 9

2.4.1 R-type 10

2.4.2 I-type 10

2.4.3 J-type 10

2.5 Type of MIPS Microarchitectures 11

2.5.1 Single-cycle microarchitecture 11

viii

2.5.2 Multicycle microarchitecture 12

2.5.3 Pipelined microarchitecture 13

2.6 VLSI design flow 15

2.6.1 Digital design using HDL 18

2.6.2 Logic synthesis 18

2.6.3 Physical design 19

2.6.3.1 Partitioning 19

2.6.3.2 Floorplanning 21

2.6.3.3 Placement 22

2.6.3.4 Routing 22

2.6.3.5 Physical Verification 23

3 METHODOLOGY 24

3.1 VLSI Design Methodology 24

3.2 Front-end design 26

3.2.1 Register Transfer Level (RTL) Design 26

3.2.2 Logic Synthesis 26

3.2.3 Static Timing Analysis 27

3.3 Back-end design 28

3.3.1 Floorplanning 28

3.3.2 Power Network Synthesis 28

3.3.3 Placement 29

3.3.4 Clock Tree Synthesis 29

3.3.5 Routing 29

3.3.6 Chip Finishing 30

3.3.7 Physical Verification 30

3.4 Design Tools 31

3.4.1 Synopsys Design Compiler 31

3.4.2 Synopsys IC Compiler 32

4 RESULTS AND DISCUSSIONS 33

4.1 Design Verification 33

4.1.1 Design Compilation and Simulation 33

4.2 Logic Synthesis 41

ix

4.2.1 DC Setup and Design Translation 41

4.2.2 Design Checking before mapping and optimization 43

4.2.3 Analysis of Timing, Area and Power before Mapping 46

4.2.4 Mapping and Optimization of Design 48

4.2.5 Analysis of Timing, Area and Power after Mapping and Optimization

 50

4.2.6 Design Checking after Mapping and Optimization 53

4.2.7 Output Gate-level Netlist 58

4.3 Physical design 59

4.3.1 ICC Setup and Gate-netlist import 59

4.3.2 Floorplanning 61

4.3.3 Placement, CTS, and Routing 70

4.3.4 Chip Finishing and Tape Out 75

5 CONCLUSION AND RECOMMENDATIONS 84

5.1 Conclusion 84

5.2 Recommendation 85

REFERENCE 87

APPENDICES 89

x

LIST OF TABLES

 TABLE TITLE PAGE

2.1 MIPS register set (Harris and Harris, 2013) 8

3.1 Instructions supported by the design 26

4.1 Expected data stored in RAM after executing the

program 34

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 MIPS instruction format (Harris and Harris, 2013) 10

2.2 Example of a single-cycle MIPS processor (Harris

and Harris, 2013) 11

2.3 Timing diagram of a single-cycle processor and a

pipelined processor (Harris and Harris, 2013) 14

2.4 VLSI design flow (Kishore and Prabhakar, 2009) 17

2.5 Flow of logic synthesis (Das, 2010) 19

2.6 Partitioning example using 2 different cuts (Kahng

et al, 2011) 20

3.1 Top-down approach for VLSI design methodology 25

3.2 General flow for front-end design using Design

Compiler 31

3.3 General flow in IC Compiler for back-end design 32

4.1 The source codes are compiled and simulated

successfully with correct results 34

4.2 Output waveform for cycle 1 - 9 of the program 35

4.3 Output waveform for cycle 10 - 18 of the program 36

4.4 Output waveform for cycle 19 - 27 of the program 37

4.5 Output waveform for cycle 28 - 36 of the program 38

4.6 Output waveform for cycle 37 - 45 of the program 39

xii

4.7 Output waveform for cycle 46 - 51 of the program 40

4.8 Libraries setup result in DC 41

4.9 Result of loading and compilation of source codes

in DC 42

4.10 Result of building and translating source codes in

DC 42

4.11 Result of listing libraries used in DC 43

4.12 Summary of check design before mapping. 44

4.13 Detail of unconnected ports before mapping 44

4.14 Detail of constant and shorted outputs 45

4.15 Detail of unloaded nets warning 45

4.16 Timing report before mapping 46

4.17 Area report before mapping 47

4.18 Power analysis before mapping 48

4.19 Execution and result of mapping and optimization

process 49

4.20 Result of timing report after mapping 50

4.21 Area report after mapping 51

4.22 Power report after mapping 52

4.23 Unconnected ports in optimised design 54

4.24 Information of part of the unconnected ports 55

4.25 Connection of adder from pcreg module with

connected ports 55

4.26 Final result of check design after removing

unconnected ports 55

4.27 Detail of the warnings in check design after

removing unconnected ports 56

4.28 Unloaded nets in pcreg module 56

xiii

4.29 Unloaded nets in alu1 module 56

4.30 Hold time violation 57

4.31 Result showing min capacitance and max area

violation after mapping 57

4.32 Result for output gate-level netlist 58

4.33 Load tech file during design library creation 59

4.34 Setup of tluplus files 60

4.35 Import of design and loading of libraries 60

4.36 Initial view of the top module after loading the

design 60

4.37 Checking on libraries loading 60

4.38 Setting to create floorplan and summary of the

floorplan 62

4.39 Floorplan generated by the tool 62

4.40 Summary of virtual flat placement 63

4.41 Result of virtual flat placement 63

4.42 Global route congestion map 64

4.43 Enlarged congestion map with congestion

calculation 65

4.44 Congestion report based on GRC 65

4.45 Setting applied to PNS 67

4.46 Maximum IR drop reported in PNS summary 67

4.47 Heat map for PNS 68

4.48 Chip layout after committing the power network 68

4.49 Result of placement legalization 69

4.50 Congestion report based of GRC after global

routing 69

xiv

4.51 Result for timing optimization and fixing of design

rule violation 69

4.52 Summary of placement optimization 70

4.53 CTS result 71

4.54 Part of QoR report after CTS 71

4.55 Clock tree summary 72

4.56 Status of clock tree routing 72

4.57 Visualisation of the clock tree 72

4.58 Result of initial routing. 74

4.59 Result of postroute optimization 74

4.60 LVS after initial route 74

4.61 Detail of the floating ports 75

4.62 Short critical area of the design 77

4.63 Open critical area 78

4.64 Metal 3 to be pushed off from the track 78

4.65 Metal 2 to become widen and pushed off from track

 79

4.66 Redundant conversion report before chip finishing 79

4.67 Redundant conversion report after chip finishing 80

4.68 Final DRC verification result 80

4.69 Final LVS verification result 80

4.70 Final timing report 81

4.71 Final area report 81

4.72 Final power report 82

4.73 QoR report showing hold time violation

information 82

4.74 Result of outputting GDSII file 82

xv

4.75 Final layout 83

4.76 Enlarged view of the layout 83

xvi

LIST OF SYMBOLS / ABBREVIATIONS

CAD Computer-aided Design

CISC Complex Instruction Set Computer

CPU Computer Processor Unit

CTS Clock Tree Synthesis

DRC Design Rule Checker

EDA Electronic Design Automation

GDSII Graphic Database System II

GUI Graphical User Interface

HDL Hardware Description Language

IC Integrated Circuit

ISA Instruction Set Architecture

LVS Layout vs Schematic

MIPS Microprocessor without Interlocked Pipe Stages

PNS Power Network Synthesis

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SoC System-on-Chip

STA Static Timing Analysis

VLSI Very large-scale Integration

1

CHAPTER 1

1. INTRODUCTION

 Background

1.1.1. IC design

According to the Semiconductor Industry Association (SIA) (2021), the

semiconductor market is experiencing an increasing trend in sales globally and the

sales growth rate of the year 2021 is forecast at 20 percent. The increasing sales are

projecting the high demand for semiconductors worldwide. The advent of Industrial

Revolution 4.0 (IR 4.0) comes with the rapid development of smart devices and

gadgets, involving more use of chips. The chip can be foreseen to have an increasing

demand with the ongoing IR 4.0 era. IC is playing an important role in our daily life.

The application of IC chips ranges from consumer electronics, computing, industrial,

military, aerospace, automotive, wired or wireless communication (King, Wu, and

Pogkas, 2021).

In the past decades, the prediction from Gordon Moore, the founder of Intel has been

guiding the technology development in the semiconductor industry. Moore’s Law

foreseen the IC chip will double the quantity of transistors every 24 months. By

doubling the complexity, a chip is expected to grow with improved performance,

decreasing cost, and higher reliability (Takahashi, 2005). The leading semiconductor

manufacturer, TSMC (Taiwan Semiconductor Manufacturing Company) has put the 5

nm technology into production using Field-Effect Transistor (FinFET) in 2020 and the

company is planning to further downscale the transistor to 4nm for production by 2022

2

(TSMC, 2020). The continuous development of shrinking the size of the transistor is

pushing the chip to its physical limit (Takahashi, 2005).

Very large-scale integration (VLSI) technology refers to a single IC chip to have metal

oxide semiconductor field effect transistors (MOSFET) with a quantity of hundreds of

thousands while system-on-chip (SoC) contains billion or more transistor per chip (Xiu,

2008). The semiconductor material is the main material used in VLSI chip

manufacturing as it allows the control of conductivity for the tiny well-defined area

(Kishore and Prabhakar, 2009). In this era, design automation is used to assist in the

stages of the VLSI design flow.

Electronic Design Automation (EDA) tools can support the engineers in the chip

manufacturing process such as planning, design, verification, and other stages

(Gianfagna, 2021). In the late 1960s, the first EDA tool to optimise the placement of

devices on a circuit board was created (Kahng et al, 2011). The EDA equipped with

programmed circuit synthesis function and able to route the design automatically had

become dominant in the market by the 1990s (Kahng et al, 2011). Nowadays, the EDA

tool is further completed with various functions towards design automation and the

whole VLSI design flow is linked to the EDA tool (Kahng et al, 2011). Some of the

major EDA software companies in the market include Mentor Graphics, Cadence

Design Systems, and Synopsys (Kahng et al, 2011).

1.1.2. CPU architecture

The central processor unit (CPU) or processor consists of 2 major components which

are datapath and control to act as the active part of the computer to perform an

arithmetic operation, send signals to activate input/output devices (Patterson and

Hennessy, 2014). Datapath is to carry out the arithmetic operand for the CPU while

control is responsible to instruct the datapath, input/output devices, and memory to

respond according to the instruction from the program (Patterson and Hennessy,

2014).

3

 The abstract interface between the lowest-level software and hardware which

consists of a machine language program to include all the essential information to

ensure the correct running of the program is known as instruction set architecture (ISA)

or architecture (Patterson and Hennessy, 2014). The improvement of the performance

of the architecture could be in several forms. One of the methods is to increase the

number of things to be done by a instruction and the other method is to cut the number

of instructions used to execute a particular function (Abd-El-Barr and El-Rewini,

2005). This is to reduce the number of operations to read or write memory which could

result in faster performance (Abd-El-Barr and El-Rewini, 2005). Complex instruction

set computer (CISC) philosophy suggested having complex instruction followed by an

increase in the number of addressing modes to overcome the schematic gap during the

conversion from high-level language to machine language (Abd-El-Barr and El-

Rewini, 2005). For instance, Pentium from intel, PowerPC by IBM & Macintosh, and

MC68000 from Motorola are some of the machines using the CISC approach (Abd-

El-Barr and El-Rewini, 2005). Aside from that, the other popular approach is reduced

instruction set computer (RISC) which allows the frequently used operation to be faster

through a simpler instruction set and a smaller number of addressing modes (Abd-El-

Barr and El-Rewini, 2005). The scalable processor architecture (SPARC) from Sun

Microsystem and Microprocessor without Interlocked Pipe Stages (MIPS) architecture

are the examples of RISC approach.

4

 Problem Statements

The problem statements of the project are as shown below:

• Long turnaround time to design an MIPS-based SoC IC

• High cost to design an IC manually

• Low efficiency to execute instruction for Complex Instruction Set

Computer (CISC) architectures

• Higher cost to implement CISC architectures

The VLSI design of an IC chip is a complex process that requires a long period

to complete if the work is done from scratch without the help of EDA tools. The time

to design a VLSI chip from scratch manually could cost years of effort (Kowalski et

al, 1985). Design of VLSI chip with only human force involves the process of drawing

logic gates manually on paper. This led to the high design cost of VLSI in terms of

time and resources. Besides, the cost of making an error is high. The process of design

and manufacture has to be repeated when there is an error on the end product.

The CISC architecture emphasis on hardware and it requires complex

instruction to execute a simple operand. This would reduce the efficiency of the chips

in executing the operand. The complex instruction and additional hardware of CISC

will increase the design cost (Harris and Harris, 2013). Therefore, the cost required to

implement a CISC microprocessor is high.

5

 Aims and objectives

The objectives of the project are stated as follows:

1. To accomplish the complete VLSI design flow from front-end to back-

end using MIPS architecture.

2. To shorten the design turnaround time through EDA tools.

3. To synthesis the model of MIPS with complete timing constraints.

4. To optimize the chip area and reduce the design cost.

In this project, a MIPS based SoC will be built by going through the full VLSI

design flow from the front-end to the back end. A single cycle MIPS processor will be

built to increase the chip efficiency. The design steps to be gone through includes logic

synthesis, floorplanning, routing, partitioning, and others. EDA tools will be used to

complete the IC design flow to achieve design automation. This is to shorten the time

consumed for VLSI design and verify the design to meet the requirement for

manufacturing.

The design is to be synthesis with complete timing constraints to ensure the

functionality of the chip after manufacturing. At the same time, the chip area will be

optimised to reduce the cost of design. Besides, the performance of the design can be

boost through the optimisation process.

6

CHAPTER 2

2. LITERATURE REVIEW

2.1. CISC architecture

Complex Instruction Set Computer (CISC) refers to the architectures which have

instructions with high complexity (Harris and Harris, 2013). Overhead is added to

every instruction in CISC approach without considering the complexity even if the

instruction is used in a low frequency (Harris and Harris, 2013). The common features

of a CISC approach includes different kind of addressing mode, ample instruction set,

and instruction set in multiple format and sizes (Jamil, 1995). A CISC processor has a

microprogrammed control, and it is able to execute several instructions in different

cycle (Jamil, 1995). Since the format, addressing modes, and opcode in large quantity

have to be differentiated by the control unit, the control unit is said to be complex

(Jamil, 1995).

7

2.2. RISC Architecture

Reduced Instruction Set Computer (RISC) is an architecture with a simple instruction

set as well as hardware implementation (Harris and Harris, 2013). The common

characteristics of a RISC processor include a reduced instruction set, regular format

for instruction, redundant number of general-purpose register load and store operation

for memory, only 1 instruction is executed every machine cycle, instruction set or

execute units which are pipelined and control unit design with hardwired (Abd-El-Barr

and El-Rewini, 2005).

2.2.1. MIPS architecture

MIPS or Microprocessor without Interlocked Pipe Stages, a VLSI microprocessor

based on RISC (Reduced instruction set computer) developed by a team under the lead

of John Hennessy from Standard University in the 1980s. In 1985, The team

introduced R2000, the first MIPS processor to the market followed by R3000 after 2

years. The first 64-bit MIPS microprocessor was brought to the market in 1991 along

with the rapid development of MIPS architecture (Lamie, 2009). The MIPS

architecture is widely used in our daily life including home networking,

communication, game console, and even electric vehicle. According to Voica (2016)

and Silbert (2012), MIPS microprocessor is used for PlayStation from Sony, Nintendo

64, Smart Tab 1 of Karbonn Mobiles, and Tesla Model S. A MIPS architecture focuses

on decreasing the complexity of individual instruction and hardware to boost the

performance (Hennessy et al, 1982).

There are only 32 registers for MIPS architecture and the small number of

registers allows the MIPS to have faster performance as it reduces the time consuming

to read data from the register as compared to the CPU with a large set of the register

(Harris and Harris, 2013). For MIPS, the variables are stored in two types of register

naming saved register, $s0 to $s7 and temporary register, $t0 to $t9, with the

temporary register specifically to save intermediate or temporary variables (Harris and

Harris, 2013). The register set for MIPS is shown in Table 2.1.

8

Table 2.1: MIPS register set (Harris and Harris, 2013)

Register name Number Function

$0 0 Contain value 0

$at 1 Assembler temporary

$v0 - $v1 2 - 3 Function return value

$a0 - $a3 4 – 7 Function arguments

$t0 - $t7 8 -15 Store temporary variables

$s0 - $s7 16 – 23 Saved variables

$t8 – St9 24 – 25 Store temporary variables

$k0 - $k1 26 – 27 Operating system (OS) temporaries

$gp 28 Global pointer

$sp 29 Stack pointer

$fp 30 Frame pointer

$ra 31 Function return address

Besides register, MIPS also stores the data in the memory which has more data

locations than register with the trade-off of longer accessing time (Harris and Harris,

2013). The memory address and data words for MIPS are both 32-bit (Harris and

Harris, 2013). As a byte-addressable memory, MIPS has a unique address for every

byte of the memory (Harris and Harris, 2013).

9

2.3. RICS and CISC comparison

The main difference between the two architecture is RICS emphasis on software while

CISC emphasis more on hardware (Jamil, 1995). The design objective of an RICS is

to reduce the instruction execution time to the minimum by scarifying the program

length (Jamil, 1995). CISC is the opposite of RISC in which maximizes the instruction

to have minimum program length (Jamil, 1995).

Therefore, when both architectures are to perform the same function, a RISC

approach needs to execute more instructions than a CISC approach. RISC processor is

hence having many CPU registers, extra instruction caches, and decoders to overcome

the downside of long instruction (Abd-El-Barr and El-Rewini, 2005). This enables the

RICS to have reduced traffic between memory and processor (Abd-El-Barr and El-

Rewini, 2005). While for CISC, there is a logic delay as its complex instruction comes

with a complex decoding scheme (Abd-El-Barr and El-Rewini, 2005). In terms of

instruction, RICS has fixed-length instruction and the instruction length of a CISC

approach is variable (Jamil, 1995).

According to Jamil (1995), the chip area of RISC architecture is smaller than

CISC architecture as its control unit is simpler. The shrink in the VLSI chip area allows

the regularization factor of a RISC approach to be higher, resulting in a decrease in

design cost and a more profitable chip (Jamil, 1995).

2.4. MIPS instruction

The instruction used for MIPS architecture is 32-bit. The 3 formats of instruction for

MIPS include Register type (R-type), Intermediate type (I-type), and Jump type (J-

type). The hardware of MIPS is beneficial to form its small number of instruction

formats since the limitation in regularity reduces the complexity of hardware (Harris

and Harris, 2013).

10

2.4.1. R-type

R-type instructions have 2 registers to be used as source and 1 register for the

destination (Harris and Harris, 2013). The six fields for R-type instruction include

operation code (op), source register (rs and rt), destination register (rd), shift amount

(shamt) for shift operation, and function (func) (Harris and Harris, 2013). The op and

func occupy 6 bits each and the rest of the fields occupy 5 bits per field (Harris and

Harris, 2013). In R-type, the func will determine the operation to be executed.

2.4.2. I-type

I-type uses both register operand and immediate operand to hold 4 fields namely op,

rs, rt and immediate (imm) (Harris and Harris, 2013). The bits occupied by op, rs, rt

are similar to R-type while imm is occupying 16 bits (Harris and Harris, 2013).

2.4.3. J-type

J-type is a format specifically used for jump instruction begin with an op holding 6

bits data followed by the address operand (add) occupying 26 bits to state the address.

Figure 2.1: MIPS instruction format (Harris and Harris, 2013)

11

2.5. Type of MIPS Microarchitectures

2.5.1. Single-cycle microarchitecture

Single-cycle microarchitecture means a complete instruction is carried out for a cycle,

without the presence of a non-architectural state and its control unit is uncomplicated

(Harris and Harris, 2013). For single-cycle process, it requires every instruction to

have an equal clock cycle length (Patterson and Hennessy, 2014). There are some

limitations in the single-cycle process. The clock cycle must have sufficient length to

support the slowest instruction and 3 adders are needed in the system which increases

the design cost (Harris and Harris, 2013). Besides, the data memory and instruction

are separated in a single-cycle process (Harris and Harris, 2013).

Figure 2.2: Example of a single-cycle MIPS processor (Harris and Harris, 2013)

12

2.5.2. Multicycle microarchitecture

The multicycle processor implements instruction in a shorter clock cycle and reuses

hardware blocks like memories and adders to achieve a cheaper cost for hardware

(Harris and Harris, 2013). In the multicycle process, the microprocessor utilizes a few

nanoarchitectural registers for the purpose of saving intermedia values to use the

hardware block for different aims in the different cycles when executing a particular

instruction (Harris and Harris, 2013). Therefore, the instruction could use several clock

cycles even if there is one instruction to be executed in a row (Harris and Harris, 2013).

The multicycle approach could overcome the 3 primary weaknesses in the

single-cycle processor as it separates one instruction into different steps which are

shorter (Harris and Harris, 2013). This allows the processor to have less complex

instruction and shorten the execution time (Harris and Harris, 2013). On the other hand,

the data and instructions for a multicycle processor are saved in combined memory

and only an adder is needed for this approach (Harris and Harris, 2013).

13

2.5.3. Pipelined microarchitecture

As the name implies, it pipelines the single-cycle microarchitecture to enhance the

performance by carrying out a few instructions at the same time (Harris and Harris,

2013). The pipeline approach overlaps several instructions in the execution and hence

increases the efficiency (Patterson and Hennessy, 2014). In order to realise this type

of microarchitecture, the dependency among the instructions to be executed

simultaneously must be managed through the use of logic (Harris and Harris, 2013).

Nanoarchitectural pipeline register is another essential component to realise the

pipelined microarchitecture.

There are some principles to be applied to create a pipelined processor. The

single-cycle processor is separated into 5 phases as shown below (Patterson and

Hennessy, 2014):

1. Fetch

• The instruction is read from the memory

2. Decode

• The register is read for source code in this stage.

• Control signal is decoded from the instruction.

• The process of decoding and reading happens at the same time is

allowed for MIPS instruction in regular format.

3. Execute

• The operation is executed or perform calculation for address.

4. Memory

• Read or write to the data memory.

5. Write back

• The result is written back into the register.

14

Figure 2.3: Timing diagram of a single-cycle processor and a pipelined processor

(Harris and Harris, 2013)

15

2.6. VLSI design flow

MIPS is a VLSI microprocessor that can be designed using VLSI design flow. The

VLSI design process involves design abstraction for a minimum of 5 levels:

architectural, register transfer level (RTL), logical design, circuit design, and physical

design (Kishore and Prabhakar, 2009). A series of steps to translate a chip idea

expressed in RTL format into GDSII data is known as VLSI design flow (Kishore and

Prabhakar, 2009). EDA tools or computer-aided design tool (CAD) is commonly used

to turn VLAS design a partially or fully automated process (Das, 2010). These

automated tools are used to help in processes such as synthesis, design, testing,

simulation, and verification (Das, 2010). An example of a VLSI design flow is shown

in Figure 2.4.

 Concept and market research is the first step of a VLSI design flow to identify

the competitiveness of the product in the market. After that, architectural specifications

that reflect the design constraints in power consumption, speed, and area are specified

(Kishore and Prabhakar, 2009). The hardware description (HDL) capture and RTL

coding is the next phase after architectural specification. The function and structure of

IC are described using HDL, Verilog and VHDL are the two standardised HDL

languages to be applied in the IC design (Kishore and Prabhakar, 2009). RTL

description defines the behaviour of a circuit through the description of signal flow

among the hardware register and their logical operations (Kishore and Prabhakar,

2009). Next, the RTL simulation should be carried out to verify the logic correctness

or functionality of the RTL description (Kishore and Prabhakar, 2009). A testbench

program or test vectors can be used to simulate the output of the RTL description

program and the result is checked to match with the expected output.

 After ensuring the functionality of the RTL netlist, the next phase in VLSI

design is logic synthesis. The translation of the behavioural description of the circuit

which is commonly in RTL into the logic gate is carried out in logic synthesis to

produce the schematic or netlist (Kishore and Prabhakar, 2009). The netlist produced

should have the same functionality as its initial RTL code (Kishore and Prabhakar,

2009). During the logic synthesis process, logic optimization is executed to optimize

the logic circuit to fulfil the design constraint (Kishore and Prabhakar, 2009). In this

16

phase, the area of the chip is minimized to meet the required delay of the design

(Kishore and Prabhakar, 2009). Formal verification is performed in the next phase to

make sure the design is able to function correctly, comparison between the design and

reference designs is made for the logical functions (Kishore and Prabhakar, 2009). The

last step for front-end VLSI design flow is pre-layout static timing analysis (STA).

Computation of estimated timing of the design is done in this stage to verify the timing

validity (Kishore and Prabhakar, 2009). The path facing the problem of hold or setup

violation is identified as well as slow paths, glitch and clock skew (Kishore and

Prabhakar, 2009).

 Next, physical design processes such as floorplanning, placement, and routing

are carried out after verifying the timing. After placement, clock tree synthesis (CTS)

is done so that the needed elements receive the clock signal (Kishore and Prabhakar,

2009). These processes will be repeated when the design does not fulfil the timing

constraints (Kishore and Prabhakar, 2009). The last phase for a design passing post-

layout STA before tape out is verifications including layout versus schematic (LVS)

and design rule checking (DVS) (Kishore and Prabhakar, 2009).

17

Figure 2.4: VLSI design flow (Kishore and Prabhakar, 2009)

18

2.6.1. Digital design using HDL

The introduction of the use of HDL language reduces the complexity of the digital

design of the VLSI circuit consists of more than ten thousand logic gates

(Ramachandran, 2007). With the use of HDL, the design cycle is shortened since the

building of circuits using gates in the schematic approach can be avoided as HDL can

represent circuits precisely through behavioural, data flow, and RTL description

(Ramachandran, 2007).

2.6.2. Logic synthesis

In logic synthesis, the structural design is transformed from the behavioural design

(Das, 2010). The levels that could be involved in logic synthesis include the transistor

level, block level, and top-level synthesis (Das, 2010). Due to a large number of

transistors in a VLSI design, logic synthesis is commonly be executed with the assist

of automated tools to optimise the chip in terms of area, power, and speed according

to the requirements in the constraint file (Das, 2010).

The cell library used in the logic synthesis process and the algorithm of the

synthesis tool will greatly define the quality of the output (Kishore and Prabhakar,

2009). A cell library is a package containing standard cells in a group (Kishore and

Prabhakar, 2009). The netlist output from logic synthesis describes the

interconnections and instances within the VLSI chip (Kishore and Prabhakar, 2009).

It is important for the cell library to include sequential cells of various types so that

they can match any storage requirement (Kishore and Prabhakar, 2009). Besides, in

order to ensure the cell library is capable of performing any requirement for logic

operation, there must be an adequate amount of combinational logic cells in the library

(Kishore and Prabhakar, 2009). The main objective of logic synthesis is to fulfil the

requirements in area, power, and speed points of view. The flow of logic synthesis is

shown in Figure 2.5.

19

Figure 2.5: Flow of logic synthesis (Das, 2010)

2.6.3. Physical design

Physical design refers to the procedure to generate a physical layout based on the gate-

level netlist of the VLSI design (Das, 2010). The components in the design circuit are

transformed into a geometric presentation which contains a series of geometric

patterns to perform the logical operation of the respective components (Chen, 2009).

The four major steps in the physical design of VLSI design flow are partitioning, floor-

planning, placement, and routing (Das, 2010). The last step in physical design is to

verify the functionality of the design (Das, 2010).

2.6.3.1. Partitioning

There are more than ten thousand transistors in a VLSI chip, making the processing of

the whole layout a challenging work due to limited computation power and memory

space (Chen, 2009). Therefore, the complete VLSI circuit is divided into subcircuits

in this phase (Chen, 2009). This is to ensure the subcircuits have the minimum

interconnections among each other (Das, 2010). It is vital for all the subcircuits to fulfil

all the prerequired design constraints (Kahng et al, 2011).

20

The factors affecting the partitioning output include the quantity of block and

its size as well as the interconnections to link the blocks (Chen, 2009). The circuit will

have more delays or become less reliable if the partition is done without taking into

account the connections between the blocks (Kahng et al, 2011). Aside from that,

inter-clock dependencies may be introduced to the design when the connections

between the blocks are many and this will affect the productivity of the design

(Kahng et al, 2011). An example of partitioning using 2 different partition methods is

shown in Figure 2.6.

Figure 2.6: Partitioning example using 2 different cuts (Kahng et al, 2011)

21

2.6.3.2. Floorplanning

The first major step in physical design is floorplanning. The important works in

floorplanning are as below (Kishore and Prabhakar, 2009):

• Die size analysation

• Package selection

• Placing of input/output (I/O)

• Placement of macro cells

• Plan for power and clock distribution

• Hierarchy partitioning

Every component and the interconnection between them are planned to be

placed with the minimum occupied area (Das, 2010). The design can vary according

to different characteristics including core limited, I/O limited, package limited, or

block limited (Kishore and Prabhakar, 2009). These characteristics will define the

dominating factor in affecting the chip size (Kishore and Prabhakar, 2009). Package

selection is done according to factors such as die size, the quantity of I/O, power

consumption, and cost (Kishore and Prabhakar, 2009). After that, the prime input and

output cells arrangement is carried out and this step is affecting the routing of the chip

(Kishore and Prabhakar, 2009). The power distribution network delivers the power to

every transistor in the design with suitable voltage level so that they function correctly

(Kishore and Prabhakar, 2009).

22

2.6.3.3. Placement

In the placement process, the placement of the cells in the appropriate location inside

the floor plan is done (Kishore and Prabhakar, 2009). This step is to identify the

physical layout of the VLSI design and act as the groundwork for the routing process

(Das, 2010).

This is an important step in physical design as it impacts the chip area and

speed. Good placement can save more area and keep the chip area as small as possible

(Kishore and Prabhakar, 2009). The routing will be difficult, or the design could be

unroutable if the placement is poor (Kishore and Prabhakar, 2009). With a good

placement, the overall delay of the design can be reduced to the minimum as the critical

paths are having the shortest available length for wire and hence boost the chip

performance speed (Kishore and Prabhakar, 2009). Thus, the goals of placements are

to keep the wire length as short as possible for each of the nets and reduce the

possibility of interconnection congestion to the minimum (Das, 2010).

2.6.3.4. Routing

Routing is a step to finalize the defined interconnection in the netlist physically after

the cells and pins with their exact location defined in placement (Kishore and

Prabhakar, 2009). The wire to connect the signal, ground, power, and clock nets are

drawn in this step (Das, 2010). It is crucial to make sure there is no short circuit in the

nets (Kishore and Prabhakar, 2009).

 There are 2 phases in routing which are global routing and detailed routing

(Chen, 2009). Global routing refers to the planning of routing where there is no routing

work done in this phase (Das, 2010). Global routing is carried out at the top level to

define the routing regions, determine the channel terminals, and assign the nets to

specific routing regions (Das, 2010). For detail routing, it is doing the real routing and

it can be categorised into 2 groups which are area routing and channel routing (Das,

2010).

23

2.6.3.5. Physical Verification

Physical verification is the last step in physical design. Physical verification is essential

to make sure the proper functioning of the layout in terms of electrical and logical

(Kahng et al, 2011). The categories of physical verification are as shown below (Kahng

et al, 2011):

• Layout vs Schematic (LVS)

• Design Rule Checking (DRC)

• Electrical Rule Checking (ERC)

• Parasitic extraction

• Antenna Rule Checking

LVS checks the matching of layout with the netlist (Kishore and Prabhakar,

2009). A netlist is extracted from the graphic design system (GDS) file which includes

the information of physical layout of a circuit and the differences between the extracted

netlist and the original netlist from the design are identified (Luo et al, 2010).

DRC is responsible to check the layout with a set of guidelines or rules

applicable to an IC layout to ensure the design is manufacturable (Das, 2010). The

semiconductor makers will provide the parameters for design rules for verification of

the layout suitability (Kishore and Prabhakar, 2009). This verification process

emphasis on physical aspects only without considering design timing or logical

operation (Kishore and Prabhakar, 2009).

Besides, ERC is the verification to prove the connection of power and ground

are correct (Luo et al, 2010). At the same time, it also examines the slew, fanouts, and

capacitive loads to guarantee they are bounded correctly (Luo et al, 2010). In short,

the network connectivity of the design is verified in ERC.

Parasitic extraction is a process to validate circuit electrical characteristics

through deriving the parasitic elements from the geometric information (Luo et

al, 2010). Antenna rule checking is to avoid harm to logic gates in the manufacturing

process due to antenna effects (Luo et al, 2010).

24

CHAPTER 3

3. METHODOLOGY

3.1. VLSI Design Methodology

In VLSI design methodology, there are two design styles available which are the top-

down approach and the bottom-up approach. The top-down approach as shown in

Figure 3.1 was adopted in this project. The focus of this project is to implement a VLSI

design flow using a MIPS architecture as the design platform. The whole VLSI design

flow was gone through in this project, including both the front-end design and back-

end design.

 System specification, design of RTL, behavioural design, verification of the

design, logic synthesis, and static timing analysis are considered as processes in front-

end design. The RTL source codes of MIPS design in this project are retained from

the book “Digital Design and Computer Architecture” (Harris and Harris, 2013). The

EDA tool used for front-end design methodology is Synopsys Design Compiler (DC).

 The back-end design involves the steps to transform the logical design produced

in front-end design into the layout or physical design. The processes in back-end

design includes floorplanning, power network synthesis (PNS), placement and routing,

CTS, STA, chip finishing, post-layout verification, physical verification, and tape out.

For back-end design, the design tool to be used is the Synopsys IC compiler.

25

Figure 3.1: Top-down approach for VLSI design methodology

Front-end design

Back-end design

26

3.2. Front-end design

3.2.1. Register Transfer Level (RTL) Design

The 32-bits MIPS processor is written in System Verilog as the HDL language with

ModelSim-Altera 10.1b as the platform. The MIPS processor is capable to support 29

instructions as listed in Table 3.1.

Table 3.1: Instructions supported by the design

Instruction list

R-type I type J type

ADD ADDI J

SUB LUI JAL

AND LW

OR SW

SLT BEQ

SLL ANDI

XOR ORI

NOR XORI

SRL SLTI

SRA BNE

SLLV BLEZ

SRLV BGTZ

SRAV

JR

JALR

3.2.2. Logic Synthesis

Logic synthesis is started by importing the verified RTL codes into Synopsys Design

Compiler, which is the EDA tool to be used in the front-end design. The design

constraints such as are constraints and timing constraints are sourced to the design. In

27

this stage, the behavioural design will be transformed into a gate-level netlist. It is a

must to ensure the specified technology library is set up in the DC compiler to provide

information of cells and logic gates for synthesis. The gate-level netlist is mapped and

optimised in terms of performance, speed, power, and area depending on the

constraints sourced to the design.

3.2.3. Static Timing Analysis

In this project, the STA is done at block-level using the built-in static timing analysis

engine in Synopsis Design Compiler. STA is performed to check for timing violations

in the design to determine whether the design meets the timing constraints. The timing

constraints must be applied to the design in DC compiler as STA is checking all the

path delays by comparing them to the timing constraints.

STA is used during compilation to act as a guide for the compiler to make

optimization decisions. Besides, the STA is used to generate timing reports and timing-

related reports after compilation. The timing violations are fixed until there is no

violated path in the design. After the timing of the design is verified, the front-end

design is completed.

28

3.3. Back-end design

3.3.1. Floorplanning

The floorplanning includes the processes of defining core size, location of I/O, power,

corner and filler pad cells, standard cell placement constraints, and power gird. The

core utilization ratio in this section is a factor to decide the ratio of the area of the entire

cell to be used for cell placement. The ratio is set to a suitable value to make sure there

is enough space for clock tree routing and power network. Besides, the chip size and

routability of the chip should be considered as well for core utilization ratio selection.

For example, if the core utilisation ratio is set to 0.7, the cell placement will use 70%

of the core area while the remaining 30% will be saved for routing.

The floorplan is modified until congestion is acceptable or no congestion issue.

The modifications that can be made to the floorplan include altering the port or pad

locations, use different metal layers, modify the size of the core, and restructure the

power grid.

3.3.2. Power Network Synthesis

Power rings and power straps are created in this phase to form a power network and

provide sufficient power across the design. Hence, the voltage drop from power pads

to the center of the design could be reduced.

Power network constraints for macro rings, core rings, and straps are applied

for the tools to perform placement of these elements. The number and width of the

power straps can be calculated using the tool according to the required IR drop. IR

drop analysis is done to analyse the drop of supply voltage after the power distribution

network is created. When the supply voltage drop is below the design range, the power

network is adjusted until the IR drop is within the design requirement.

29

3.3.3. Placement

The placement process can be done manually by placing the standard cells into the

desired location in the core area through the drag and drop function of the tool.

Alternately, the tool is equipped with an automated placement function which is more

efficient and practical. Sufficient space is saved for routing during auto placement

according to the requirement stated in the routing constraints to ensure the routability

of the design. The physical optimization and power optimization are performed

together with the auto placement using the command in the tool. After placement, the

congestion and timing violations are verified. The placement is modified until the

congestion and timing violations are acceptable.

3.3.4. Clock Tree Synthesis

Clock tree synthesis (CTS) is carried out after the placement phase so that the EDA

tool is able to recognise the registers at their exact placement location in the floorplan.

Hence, the buffer can be placed at a suitable location to have minimum clock skews

and latency. The tool tried to produce a clock tree with a balanced structure using the

least levels if possible.

3.3.5. Routing

The IC compiler provides the auto routing function to ease the routing process for a

large number of nets in the design. Both global routing and detail routing are

performed in this stage. For detail routing, the antenna fixing option is selected to fix

antenna violation using the layer jumping approach in this stage. The tool will try to

route the design in the way with the least timing, DRC, and LVS violations. The timing,

DRC, and LVS violations are verified after detailed routing. The design is rerouted if

there are any violations.

30

3.3.6. Chip Finishing

Chip finishing is the last step of back-end design methodology before tape out. In this

phase, the EDA tool is used to reduce critical areas. The critical area is defined as a

region with catastrophic spot deflect on an IC which will result in circuit failure

(Walker, 1992). If the center of conductive defects falls on the critical area, a short

circuit will happen during fabrication while the center of non-conductive defects

falling on the critical area will cause an open circuit. Therefore, the tool is reducing

the critical area to avoid short and open in the fabrication process.

The next step in chip finishing is to insert redundant vias to act as a support for

a single via to reduce yield loss caused by vias failure. This step is optional as the vias

are doubled in the detailed routing phase. The timing analysis, DRC, and LVS of the

design are checked after each of the insertion steps to ensure the design has no

violations.

3.3.7. Physical Verification

The physical verification performed in this project includes DRC, LVS, and the

extraction of parasitic. All of the above physical verifications are done using the EDA

tool. If the DRC violations occur, the design is rerouted to fix the violation.

While for LVS, it is to check the differences between the physical layout and the

optimised gate-level netlist. This is to guarantee there is no change in the logical

operation of design during the backed-end design methodology. The design must be

verified to be clear from DRC and LVS violations before exporting the GSDII file

using the tools for tape out.

31

3.4. Design Tools

3.4.1. Synopsys Design Compiler

The Design Compiler (DC) can be invoked using two interfaces which are the

interactive shell, DC shell, and the interactive graphical user interface (GUI), Design

Vision. The DC shell is the command line interface of the Design Compiler while

Design Vision provides a graphical visualisation such as schematic generation. The

general flow of using DC in this project is illustrated in Figure 3.3. A file named

as .synopsys_dc.setup is used to setup file for DC to load the Synopsys installation

directory, project working directory, and user home directory to the tool. The search

path and logical libraries are included in the setup file.

Figure 3.2: General flow for front-end design using Design Compiler

32

3.4.2. Synopsys IC Compiler

The IC compiler provides two types of interfaces to the user, a command line interface

known as ICC shell and GUI. Both interfaces are used in this project. For GUI, it

visualizes the design for physical design. For the ICC shell, commands are used in this

interface to execute the respective task. The general flow of using the IC compiler in

this project is illustrated in Figure 3.4. A file named as .synopsys_dc.setup is used to

setup file for the IC compiler to load the Synopsys installation directory, project

working directory, and user home directory to the tool. The search path, logical

libraries, and physical libraries are included in the setup file.

Figure 3.3: General flow in IC Compiler for back-end design

33

CHAPTER 4

4. RESULTS AND DISCUSSIONS

4.1. Design Verification

The design verification utilizes the simulation software from Synopsys DVE to check

and test the functioning of the MIPS processor designed in this project. It is to ensure

the design is able to respond according to the instructions loaded into the design with

different input of values and generate a correct outcome.

4.1.1. Design Compilation and Simulation

After the development of the RTL coding for the MIPS processor, the source codes

are compiled using Synopsys VCS. A program that performs a computation using all

of the 29 instructions supported by the processor is loaded into the instruction memory.

The program is designed to relate the result of several instructions and save the

computation results into a specific RAM address as listed in Table 4.1. A simple

testbench is used to simulate and verify the functionality for all the instructions of the

MIPS processor by comparing the data stored in RAM with the expected output. The

testbench will generate an error message when the simulated result is not compatible

with the expected output. The content of the program and the testbench are shown in

the appendices. The simulation result is shown in Figure 4.1. All the instructions are

executed correctly and able to generate the desired output. The simulated waveforms

of the design generated using DVE are shown below.

34

Table 4.1: Expected data stored in RAM after executing the program

RAM Address Expected value stored in

decimal

RAM[20] 3

RAM[21] 261792

RAM[22] 2

RAM[23] 0

RAM[24] -152

Figure 4.1: The source codes are compiled and simulated successfully with correct

results

35

Figure 4.2 shows the program system is reset (cycle 1 – 2) follows by loading

initial values into the respective register using ADDI (cycle 3 – 5) and performing OR,

AND, XOR, and ADD using the initial values (cycle 6 – 9). The loading of different

instructions into the instruction memory is executed correctly, the instructions are

decoded successfully with desired control signals generated.

Figure 4.2: Output waveform for cycle 1 - 9 of the program

36

Figure 4.3: Output waveform for cycle 10 - 18 of the program

Figure 4.3 shows that BEQ is tested for both unequal (cycle 10) and equal

conditions (cycle 12). SLT is tested for the condition Rs larger than Rt (cycle 11). The

result of cycle 11 is related to cycle 12. With branching happening in cycle 12, both

the instructions are proved to function correctly under specific conditions. The SLT is

again tested with condition Rs lesser than Rt (cycle 13), the result is then used as one

of the input values for ADD. The SW (cycle 16) saves the computation result of ADD

and SUB to be verified through the testbench. Based on Figure 4.1, the value loaded

into data memory and the memory address are verified to be the same as the expected

result, proving the proper functioning of instructions from cycles 1 to 16. The next

cycle is to load the result saved into data memory in the last cycle to be used for a

series of operations starting from cycle 18.

37

Figure 4.4: Output waveform for cycle 19 - 27 of the program

In Figure 4.4, the waveform shows ORI, XORI, SLL, LUI, SUB, and J are

executed. A jump that occurs in cycle 25 shows instruction J in the last cycle is decoded

correctly. In cycle 25, the final result of computation from cycles 18 to 23 is saved into

data memory and verified using testbench. There is no error detected. For cycles 26 to

28, the new initial values are loaded into the register to be used for rotational operation

later.

38

Figure 4.5: Output waveform for cycle 28 - 36 of the program

Figure 4.5 shows the simulation waveform for cycles 28 to 36. SLTI and BNE

are tested in cycles 29 to 31. The result of SLTI is used in the first BNE. The correct

execution of SLTI causes no branching to happen during cycle 31 since both registers

contain the same value for BNE. In cycle 31, two registers with unequal values are

used for BNE and branching takes place in the next cycle. Cycles 32 and 33 are to test

on the JAL and JR. The JR is used to jump to the next instruction after JAL. The

waveform shows the two instructions are executed correctly as the PC for cycle 34 is

exactly PC+4 of cycle 32. For cycles 34 to 36, SRAV, SRLV, and SLLV are performed.

39

Figure 4.6: Output waveform for cycle 37 - 45 of the program

Figure 4.6 shows the storing of results from the previous cycle in the data

memory in cycle 37 and the result matches the expected output. In cycle 38, the

program branches to perform SRA, SLL, and SRL through the execution of BLEZ. If

BLEZ does not function correctly, no branching happens, a BGTZ will be executed

instead of SRA. Hence, the values save in RAM will be wrong. A value is loaded into

register R5 as the address for JALR in cycle 45. This value is also used to verify the

execution of BGTZ during cycle 44. If BGTZ fails to perform correctly, a LUI

instruction will be used to modify the R5 values, causing JALR to jump to the wrong

address. The waveform has shown the correct execution of these instructions

40

Figure 4.7: Output waveform for cycle 46 - 51 of the program

In cycle 46, BGTZ is again tested for the condition Rs are smaller than 0. AS

shown in Figure 4.6, no branching is to be taken in the next cycle proving the

instruction is functioning properly as it will only branch for Rs larger than Rt. The

computation result of SRA, SLL, and SRL is stored in the data memory and verified

to have the correct output in cycle 47. For cycles 48 and 49, NOR is executed and the

result is again saved to data memory to be tested. The waveform shows there is no

error detected for the NOR result. Lastly, the JR instruction is used to jump to the end

of the program. Since JALR is the last instruction in the program, the JR will jump to

load 0 into instruction memory as the sign for the end of the program as shown in

Figure 4.6. Hence, all the 29 instructions are verified to be performed correctly by the

design.

41

4.2. Logic Synthesis

In this stage, the verified design in RTL codes is transformed into a gate-level netlist

which is the logical representation of the design. Logic synthesis is the combination of

3 main processes: translation of RTL source code into a netlist, logic optimization, and

mapping of gates. The gates with 32 nm technology are used in the logic synthesis

process.

4.2.1. DC Setup and Design Translation

A setup file is used to set up the library. There are three libraries: target library, link

library, and synthetic library which are specified in the setup file. The target library is

the library containing the cells for mapping and inferring in DC to produce a netlist

that is technology specific. The link library is the cell library to be used for reference

and the target library is listed in the link library list so that DC can link to the cells that

are mapped in the netlist. The synthetic library refers to the standard synthetic library

to be used for the implementation of the built-in HDL operators. The graphical

representations of the cells from the technology library are stored in the symbol library.

In this project, the saed32lvt_ss0p95v125c.db is used as the target library and listed in

the link library. The synthetic library is dw_foundation.sldb while the symbol library

is not specified in this project, DC is using the default library in this case which is

generic.sdb to display the cells in GUI.

Figure 4.8: Libraries setup result in DC

.

After setting up the libraries, the verified design in RTL codes is loaded into

DC automatically as the setup file contains the command to load the design. By loading

the design into DC, the RTL codes will be translated into a netlist which is unmapped

42

and unoptimized generic technology (GTECH) netlist. The top module is set as the

current design. The analyze command is used to read and check the design. The

translation of the design is done using elaborate command and the command will

execute the link command automatically for design references. Figure 4.9 and Figure

4.10 show the result of successful automated loading and translation of the design

including top, sl2, alu32, pc, imem, regfile, aludec, dmem, maindec, and signext when

setup DC. The top module is set as the current design after reading all the RTL codes

into the tool.

Figure 4.9: Result of loading and compilation of source codes in DC

Figure 4.10: Result of building and translating source codes in DC

A check on libraries setup after loading the design to ensure the desired and

correct libraries are successfully loaded into the software is an essential step to avoid

wrong referring to the library during the logic synthesis stage. This step is also to avoid

43

the use of built-in libraries due to library loading errors during setup. The built-in

libraries will cause failure in physical design since the libraries used in physical design

do not contain data matching with built-in libraries used in DC. The list_libs command

is used to show all the names of the libraries used in the software. Figure 4.11 shows

the libraries loaded into the compiler are saed32lvt_ss095v125c.db and

dw_foundation.sldb as listed in setup file.

Figure 4.11: Result of listing libraries used in DC

4.2.2. Design Checking before mapping and optimization

It is vital to check the design loaded into the software before proceeding to the next

stage. This is to check on the hierarchy issues along with the connectivity of the design.

The summary of the check design result is shown in Figure 4.12.

 There are 65 unconnected ports in the design. The detail of the warning for

unconnected ports is generated as shown in Figure 4.13. After checking affected ports

with the RTL codes, these ports are described intentionally to be unused in the specific

module. Thus, these unconnected ports are removed in DC to avoid potential design

issues during optimization. There are 2 ports to have constant outputs. This warning is

ignored as the shifted [0] and shifted [1] are both purposely connected to logic 0 in the

source code to shift the immediate value to left by 2. Since the two ports are connected

to logic 0, they are shorted together as shown in Figure 4.14. This warning will be

solved together with feedthrough and net connected to multiple pins on the same cell

using command during the optimization process. Feedthroughs refer to the connection

between multiple ports to connect an input to an output using nets. These warnings can

be solved by inserting buffer into the nets during mapping and optimization. While for

44

the unloaded nets, they are the nets pc [1:0], and pc [31:8] in the top module. Figure

4.15 shows all the nets with no load in the design before mapping. Since only pc

[7:2] is connected to the imem module to obtain the address of instruction memory,

the rest of the signals in pc net are unused. Thus, the warning is ignored as the nets are

designed to be unloaded. The tools will load all the output ports when optimizing the

design. The cells that drive nothing will be removed by the software during

compilation.

Figure 4.12: Summary of check design before mapping.

Figure 4.13: Detail of unconnected ports before mapping

45

Figure 4.14: Detail of constant and shorted outputs

Figure 4.15: Detail of unloaded nets warning

46

4.2.3. Analysis of Timing, Area and Power before Mapping

By using the built-in static timing analyser from DC, a timing report is generated

before optimization. Figure 4.16 shows the timing report of the design before any

constraints is applied to the design. The total data arrival time is 0 ns before the

optimization. It is because the design is currently a generic technology (GTECH)

netlist which is technology independent. The GTECH components are built after

loading the design into DC to act as the representations for the function of Boolean

and they are unmapped (Bhatnagar, 2002). There is no timing information in the

generic library. Thus, the longest maximum delay obtained by the tool before mapping

is 0 ns. After applying constraints to the design and optimization, the tool will be able

to calculate the data arrival time required by the design to meet the timing requirements.

Figure 4.16: Timing report before mapping

47

The statistics and information of the design area before the optimization are

generated as shown in Figure 4.17. The report shows the non-combinational area,

combinational area, total area as well as the number of nets, ports, and cells. The library

used to generate area report before mapping is gtech.db. Thus, the estimation of the

area is based on the generic technology. Based on the report, there are 3157 ports,

14690 nets, 5750 non-combinational cells, 3260 sequential cells, and 2427

combinational cells that exist in the design. Besides, there are 477 inverters or buffers

in the design. The area report before mapping is only able to calculate the net

interconnect area of 12554. 583485 µm2. The generic technology library does not have

the information on cell area. Thus, the tool calculated 0 µm2 for the cell area before

the optimization process. After the design is mapped, the tool will be able to obtain

area information from the target library and calculate the cell areas.

Figure 4.17: Area report before mapping

Power analysis of the unmapped design is generated by the tool. The DC

provides the power information including net switching power, cell internal power,

cell leakage power, and the sum of dynamic power. The report of power analysis

48

before the compilation is shown in Figure 4.18. From the report, the tool calculated a

cell internal power of 0 µW and a net switching power of 210.5137 µW. The leakage

power is 0 µW, causing the final total power consumption of the unmapped design to

be 210.5137 µW. As mentioned before, the unmapped design is the GTECH

components. Since they are technology independent, there is no power information for

the tool to calculate the cell internal power and cell leakage power. Thus, both of the

power parameters are 0 µW before the mapping process. After the mapping process,

the logic cells will be mapped to specific technology which is 32 nm in this case and

the target library contains the power information of the cells. Hence, a complete power

report with net switching power, cell internal power, cell leakage power, and the sum

of dynamic power calculated can be generated after the optimization.

Figure 4.18: Power analysis before mapping

4.2.4. Mapping and Optimization of Design

After checking the design and ensuring all the connections are correct as desired, the

next step is carried out to map and optimize the design. For Synopsys DC, the mapping

and optimization are carried out based on the constraints applied to the design. The

49

constraints are decided by the designer for the design to meet the requirements. The

tool is used to automate the process of mapping and optimize the design using the

algorithm. The design constraints are used to set the period for the clock signal, setup

time, hold time, the load applied to the design, and other limitations.

The target library is used to provide information on the logic gates for mapping.

A gate-level netlist that matches the constraints applied to the design is generated using

the logic gates from the library. At the same time, the setup violation is fixed. For hold

time violation, it will be fixed in the physical design stage using ICC. The tool modifies

the nets, cells, and ports of the design to meet the design requirement. It is important

to set some necessary net, cells, or ports as don’t touch or ideal to avoid modification

during optimization which hence affects the functionality of the design. In this project,

the clock and reset signals are set as an ideal net to prevent the tool from changing

these ports when optimizing the design.

Since the tool can perform the mapping and optimization process, the

command can be used to instruct the execution of the process. The tool provided

several options for the user to select the suitable algorithm for optimization. The

optimization modes including map effort, area effort, and power effort are set to high.

Thus, the tool will put more CPU time during mapping, area recovery, and power

optimization during compilation. Figure 4.19 shows the mapping and optimization are

completed successfully and a gate-level netlist is generated.

Figure 4.19: Execution and result of mapping and optimization process

50

4.2.5. Analysis of Timing, Area and Power after Mapping and Optimization

The mapped and optimized design is analyzed in terms of timing, area, and power to

ensure the design is meeting the design requirements. The constraints applied to the

design need to be modified and reapply to the unmapped design to repeat compilation

if the design fails to meet the requirements.

 One of the most important criteria is the optimized design must be clear with

the setup violations. The timing report of the optimized design is generated using the

built-in static timing analyser from the tool. The tool provides automation for the

calculations of data arrival time and data required time. The path with the slowest

maximum delay is listed in the timing report with the detail of increment for every

delay. If the arrival time exceeds the required time, a setup violation occurs. In other

words, the slack must be equal to or greater than zero in order to avoid setup violation.

Figure 4.20: Result of timing report after mapping

The result of the timing report is shown in Figure 4.20. The frequency of the

clock applied to the design is about 294 MHz which is equivalent to a clock period of

3.4 ns. For data arrival time, it is obtained by adding the clock network delay and the

delays occur at the input of the sequential element receiving the signals along the

complete path. Hence, the data arrival time for the slowest maximum delay path is

3.18 ns. The required time for setup is calculated by summing the delay of the clock

network, clock period, and setup time followed by the subtraction time required for

library setup and the setup uncertainty. In this project, the setup uncertainty and hold

51

uncertainty are set as 10% of the lock period or 0.34 ns. Thus, the total required time

is 3.22 ns. The result shows the optimized design has a positive slack with a margin of

0.04 ns. Hence, there is no setup violation.

Figure 4.21: Area report after mapping

Besides, the report to analysing on the chip area is generated using the tool.

The area report of the optimized design is shown in Figure 4.21. The total area of the

optimized design is 63196.397551 µm2. Since the unmapped design only contains area

information for the net interconnects area, the mapped design is found to have a larger

area as the area for cells is calculated after mapping. There are no macro cells in the

design. The number of ports, nets, and sequential cells reduces while the number of

non-combinational cells, combinational cells, and buffer or inverter grow after

optimization. The tools had modified the elements in the design to meet the constraints

applied to it. Thus, the number of ports, nets non-combinational cells, combinational

cells, sequential cells, and buffer or inverter changes after the design is optimized. In

this project, the constraint of a maximum area equal to 0 µm2 is applied to the design

to optimize the area during the mapping process. To further ensure the smallest

possible area is generated during optimization, the effort to optimize the design area is

set to high so that the tool spends more CPU time at the area recovery stage. Thus, a

52

design area of 63196.397551 µm2 is the minimum area the tool can generate at the

same time promising the design is meeting the requirements.

Figure 4.22: Power report after mapping

Aside from timing and area, power consumption is another important

parameter to analyze a chip's performance. DC supports automated power analysis,

and a power report is generated as the result of the analysis. The result of the power

report for the optimized design is shown in Figure 4.22. The design dissipated power

with a total of 23.426 mW. The power due to cell leakage is 18.2094 mW and it

contributes to 64.93 % of the total power dissipation.

The remaining power consumption is due to the dynamic power which is

equivalent to 5.2161 mW. Dynamic power is the sum of net switching power and cell

internal power. The power consumption due to the discharging or changing of

capacitance at the cell output ports is known as switching power while the internal

power refers to the power dissipation inside a cell. The reduction in net number after

optimization had caused the net switching power to drop by 47.47 % from 255.9179

µW to 134.4276 µW. The internal power consumed by the cell is 5.0817 mW. It makes

up 97% of the total dynamic power. The register power group is contributing the most

53

to the cell's internal power and the leakage power. The register power group dissipated

4.873 mW for internal power. At the same time, there is 11.734 mW of power leakage

due to the registers group. Since the RAM and ROM are included in the design for

logic synthesis, the use of a register in the design is plenty. Thus, the register group

dissipated 70.90 % of the total power. The tool is instructed to apply high effort to

optimize power during compilation. Hence, a power consumption of 23.426 mW is the

minimum power the tool can achieve without violating the design requirement

4.2.6. Design Checking after Mapping and Optimization

After compilation, the design is checked again for its connectivity. A design check can

avoid the change in design functionality due to the modifications made by the tool in

order to meet the design requirements. Actions should be taken to clear the warning

when it affects the design functionality. Figure 4.23 shows the summary of the check

design result after the mapping and optimization process. There are 46 unconnected

ports in the optimized design. The unconnected ports are the input ports of adder,

subtractor, and comparators connected to the ground as well as some unused output

ports such as the CO of an adder. Since these ports are unused, they are removed

manually using a command.

The optimized design is checked again after removing the unused ports. The

new result in Figure 4.26 shows there are 9 cells that exist with warnings in which

there are 4 cells are found to be connected to logic 0 or logic 1 and 5 of them are

connected to several pins of one cell. Thus, the detail of the warnings is checked to

verify the connectivity of the reported cells and nets. Based on the detail of cells to be

connected to ground or power, the pin shifted [1] and shifted [0] in the

submodule pcreg and rf are connected to the ground. Since the shifted [1] and shifted

[0] are designed intentionally to always be logic 0 as the result of shifting the

immediate value to left by 2, these warnings can be ignored. While for the nets

connected to several pins on the same cells, the listed cells in the warning detail are

designed to be the same signal in the RTL code. Thus, the warning can be ignored to

ensure the proper functioning of the design after mapping and optimization. The

54

unloaded nets show the affected nets are connected to ground or supply voltage pins

as shown in Figure 4.28 and Figure 4.29. The unconnected nets are due to the removal

of unused ports connected to logic 0. Since the nets are not connected to any ports, the

functionality and connectivity of the design will not be affected. Hence, these warnings

can be ignored with no action needed to fix them.

 From the result of check design after mapping, the problems such as

feedthroughs, unconnected nets, and cells do not drive are solved. The inserting of the

buffer using the command can solve the feedthroughs that exist in the nets. During the

optimization, the unconnected nets are removed. The tool is applied with a setting to

remove the unloaded sequential cells during optimization. Thus, the cells without

driving any nets are removed by the tool.

Figure 4.23: Unconnected ports in optimised design

55

Figure 4.24: Information of part of the unconnected ports

Figure 4.25: Connection of adder from pcreg module with connected ports

Figure 4.26: Final result of check design after removing unconnected ports

56

Figure 4.27: Detail of the warnings in check design after removing unconnected ports

Figure 4.28: Unloaded nets in pcreg module

Figure 4.29: Unloaded nets in alu1 module

57

 Before outputting the gate-level netlist, the design is checked with the

constraints applied to it. The report generated by the tool to list the violated constraints

is shown in Figure 4.30 and Figure 4.31. There are three violations in the optimized

design. The hold time violation occurs in the optimized design. For hold time violation,

it will be fixed in the physical design through CTS. Hence, the hold time violation is

ignored and left to be solved in the back-end design flow. The minimum capacitance

allowed in the design is 1 fF. Since the actual capacitance in reset net is 0 F, lower

than the minimum value, there is no actual violation. The constraint of minimum

capacitance is set by the library. For the tool to generate a minimum area during

optimization, the constraint of the maximum area is set to be 0 µm2. Since the

constraint is applied to achieve the smallest design area instead of an actual area

limitation, the actual design area of 63196.40 µm2 is not violating the maximum area

constraint. Thus, the violations can be ignored.

Figure 4.30: Hold time violation

Figure 4.31: Result showing min capacitance and max area violation after mapping

58

4.2.7. Output Gate-level Netlist

When the design is analysed and verified to have met all the constraints applied to it,

the gate-level netlist is output to be used in the back-end design. The violations of

minimum capacitance and maximum area constraints are ignored. The optimized

design is saved in ddc format and Verilog format to be used as a gate-level netlist. A

sdc file is generated to act as a design constraint file with the record of all constraints

applied to the design. Figure 4.32 shows the outing of the gate-level netlist is

completed successfully. This makes a successful completion of logic synthesis and the

end of the front-end design flow.

Figure 4.32: Result for output gate-level netlist

59

4.3. Physical design

In this phase, the optimised gate-level netlist generated in logic synthesis stage is

transformed into layout using Synopsys ICC as the design tool.

4.3.1. ICC Setup and Gate-netlist import

A setup file is used to set up the library in ICC. The setup file specifies the target

library, synthetic library, and link library. Since there are no I/O pads in this design,

the I/O library is not loaded into the software. Similar to the library setup in Design

Compiler, saed32lvt_ss0p95v125c.db is used as the target library and listed in the link

library for ICC to ensure the same technical information as logic synthesis is used in

the physical design. The synthetic library is dw_foundation.sldb.

 A milkyway library named MW_MIPS is created using the setup file to act the

design library. A tech file is loaded into the design library as shown in Figure 4.33.

The setup of tluplus files is also done manually using the GUI as shown in Figure 4.34.

After the setup, the ICC is ready to load the optimized netlist. The ddc netlist is

imported into ICC. The loading of libraries is done when the design is imported into

the tool. Figure 4.35 shows the design is imported successfully into ICC and the

loading of libraries is completed. The tool creates an initial design cell after reading in

the netlist as shown in Figure 4.36. Since the design does not consist of any macro

cells and I/O pads, only standard cells are generated in the terms of purple rectangles.

There are 12954 standard cells in the design. The list_libs command is executed to

check and make sure all the required libraries are loaded into the tool. Figure 4.37

shows all the required libraries have been loaded successfully and the tool is ready to

perform physical design.

Figure 4.33: Load tech file during design library creation

60

Figure 4.34: Setup of tluplus files

Figure 4.35: Import of design and loading of libraries

Figure 4.36: Initial view of the top module after loading the design

Figure 4.37: Checking on libraries loading

61

4.3.2. Floorplanning

The first stage of physical design is floorplanning After setting up the libraries and the

loading of design, the physical design is started with the floorplanning stage.

Floorplanning acts as the foundation of physical design in which the quality of a

floorplan will affect placement and routing process. In this stage, the chip area is

defined and the area for routing is determined.

Before creating a floorplan, logical connections for ground and power are

created using the derive_pg_connection command. It is to ensure the ground net and

power net are connected logically to pins including ground, power, and tie-off pins.

The command is executed when there are changes in ground and power connection

after floorplanning, placement, routing, and chip-finishing. The floorplan is generated

by applying the command create_floorplan and some parameters are set. The setting

to create the floorplan and the summary of the floorplan is as shown in Figure 4.38.

The core utilization ratio is the parameter to determine the area reserves for placement.

The core utilization ratio is set as 0.7 in which 70% of the chip area will be used for

placement and the remaining 30% is available for routing. It is important to reserve

sufficient area to avoid routing congestions later. The distance between the core area

and the terminals or pads is set at 20 µm for all four sides of the design. By applying

the setting, the tool generates an optimum area based on the design automatically as

shown in Figure 4.39. The standard cells are placed along the right sides of the

floorplan. The square inside the floorplan is the core of the chip. Based on the summary

of the floorplan, the actual core utilization ratio is 0.704 or 70.4%. It is slightly higher

than the pre-defined value of 0.7. The tool is generating a floorplan with an optimum

area as close as possible to the predefined value.

62

Figure 4.38: Setting to create floorplan and summary of the floorplan

Figure 4.39: Floorplan generated by the tool

After the initial floorplan is generated, the next step is virtual flat placement to

place the standard cells legally in the core area. This is to enhance the congestion and

timing after creating the floorplan. There are some parameters are set before

performing virtual flat placement. The congestion effort is set to high to reduce the

congestion issues and the pin routing aware is set to true in order to avoid the DRC

error using set_fp_placement_strategy command. Then, virtual flat placement is

performed. A report of virtual flat placement is generated as shown in Figure 4.40.

Based on the result, there is no overlapping of cells, and no cells are violating the core

area. Hence, all the standard cells are placed in the predefined area which is 70% of

the core area.

63

Figure 4.40: Summary of virtual flat placement

Figure 4.41: Result of virtual flat placement

64

The congestion of the design is checked by generating a global route

congestion map after performing virtual placement. The congestion map is the

visualization of the placement quality. The overflow of the cells is determined and

highlighted using different colours. The brighter the colour, the larger the overflow.

The global route congestion map is shown in Figure 4.42. From the map, there are a

few cells highlighted in blue, indicating the design does not have serious congestion

issues. An enlarged map is shown in Figure 4.43. The tool calculates the congestion

by comparing the supply and demand of nets based on the global routing cell (GRC).

The number of tracks available for routing is the supply while the demand is the

quantity of nets to cross the edge of GRC. When there the demand is greater than the

supply, overflow occurs. A large overflow will lead to serious congestion issues during

routing. The congestion report based on GRC is generated as shown in Figure 4.44.

The design consists of 31152 GRC while 2 of them are having overflows. The

overflow GRC is 0.006% of the total GRC. Since the number of overflow GRC is only

2 with overflow below 10, the congestion is acceptable as the routablity is still high.

Hence, the design is about to proceed to the next stage.

Figure 4.42: Global route congestion map

65

Figure 4.43: Enlarged congestion map with congestion calculation

Figure 4.44: Congestion report based on GRC

In this stage, power network synthesis (PNS) is performed. Before performing

PNS, power network constraints are applied to the design to control the number and

the width of the power rings and metal strap. The tool calculates the number of straps

required in PNS to evenly distribute the power according to the constraints. Since there

are no I/O pads in the design, the design does not have any ground pad or power pad.

In order to perform PNS, the power and ground pads are essential. Thus, virtual power

pads for VSS and VDD are created using the GUI of the tool to solve the problem. The

PNS is performed using the GUI and the setting is as shown in Figure 4.45. The

essential parameters including the value of supply voltage, name of power net, target

IR drop and power budget must be set to synthesize the power network. The power net

is named VDD and VSS in this project. For supply voltage, it is set as 1.5 V while the

10% of supply voltage is set as the target IR drop. In other words, the desired IR drop

is 0.15 V.

66

According to the power report in the logic synthesis stage, the design dissipated

about 23.7 mW. Hence, the power budget for the design is set as 26 mW with a 10%

of safety margin to ensure there is sufficient power to drive the processor. The

maximum IR drop is examined after the PNS. As shown in Figure 4.46, the summary

of PNS reported a maximum instance IR drop of 9.356 mV. The maximum drop in

voltage is smaller than the target value of 150 mV. The IR drop is acceptable. Hence,

the power network is committed based on the PNS result. The PNS heat map is shown

in Figure 4.47. The virtual power pads located around the chip are highlighted in light

purple colour. The voltage drop at the center of the chip indicated in red colour is the

worst. The voltage from the power rings drops along the power strap due to the

resistance of the metal wire. Since the distance between the power rings and the center

of the chip is the longest, the chip center experiences the most voltage drop. The layout

after committing the power network is shown in Figure 4.48.

After that, the pins in instances are connected to the ground and power

using preroute_instances command. The set_preroute_drc_strategy command is used

to prevent blockage of the signal pin access edge in this stage which can lead to DRC

error. The ground and power pins of the standard cells are then connected to the power

strap and rings. At the same time, the tool is instructed to remove the unconnected or

floating segments from the design. Before proceeding to legalize the placement, the

tool is set to avoid placement of cells under the power nets to avoid DRC errors and

congestion by setting a complete blockage to the power straps. The legalization of

placement is performed to adjust the locations of the standard cells which are violating

the power strap. Figure 4.49 shows the result of placement legalization. The location

of 8250 cells in the core of the chip is modified and 5492 cells are rotated. Next, actual

global routing is performed, and the congestion report based on GRC is generated

again to analyse the actual congestion. The report is shown in Figure 4.50. According

to the report, there is no overflow in GRC after the global routing indicating there are

no congestion issues in the design. The last step in floorplanning is timing optimization

and fixing of violations in design rules using the command. Based on the result shown

in Figure 4.51, 1884 cells have experienced modification in placement to optimize the

timing and fix the design rule.

67

Figure 4.45: Setting applied to PNS

Figure 4.46: Maximum IR drop reported in PNS summary

68

Figure 4.47: Heat map for PNS

Figure 4.48: Chip layout after committing the power network

69

Figure 4.49: Result of placement legalization

Figure 4.50: Congestion report based of GRC after global routing

Figure 4.51:Result for timing optimization and fixing of design rule violation

70

4.3.3. Placement, CTS, and Routing

After completing floorplanning and PNS, the next stage in physical design is

placement. A few parameters are set for placement optimization is made. In order to

obtain optimum chip area, the area recovery option is set to high to allow the tool to

perform cell area recovery during placement optimization which helps to reduce

congestion issues. Besides, the power option is set high to allow power optimization

during placement. The CTS option is also enabled so that the tool can perform CTS

when optimizing the placement of the cells. The summary of placement optimization

as shown in Figure 4.52 shows the design is having hold time violation with 3098 paths.

CTS can be performed to solve the violations.

Figure 4.52: Summary of placement optimization

 After placement, CTS is carried out to fix the hold time violation by inserting

a buffer into the clock path. The area recovery option is set high to optimize the area.

The CTS result shows the CTS is completed successfully and there is no overlapping

of cells, blockage, and violation at this stage. RC extraction is done and a QoR report

is generated. As shown in Figure 4.54, the hold time violations are fixed and there is

violating path after CTS. However, 1 out of 12653 nets is found to violate the design

rule. The design rule violation can be fixed with the route of the clock tree and detailed

routing. A clock tree report summary is generated using the tool as shown in Figure

4.55. The clock skew is 0.0269 ns, and the longest path has a delay of 0.1112 ns. There

71

are 29 buffers inserted into the clock path to produce a balance clock delay and

minimize the clock skew during CTS. By reducing clock skew, the clock signal can

travel faster to a register, the data is held stable after the clock active edge for a longer

time in a register. Hence, the hold violations are solved. The clock tree is routed using

global routing. Figure 4.56 shows the total DRC violations after the global routing of

the clock tree are 0 and the clock tree is built using 12607 nets. A visualization of the

clock tree is shown in Figure 4.57.

Figure 4.53: CTS result

Figure 4.54: Part of QoR report after CTS

72

Figure 4.55: Clock tree summary

Figure 4.56: Status of clock tree routing

Figure 4.57: Visualisation of the clock tree

73

 The design is ready for detailed routing after performing CTS. The detailed

routing is separated into two stages. The first stage is the initial route for assignment

of the track, global routing, and detail routing. There is no optimization in the initial

routing. Figure 4.58 shows the result of the initial routing. The initial routing is

successful and the sum of DRC errors is 0, showing no congestion issues exist in the

design. As a result, 30% of the chip area is sufficient for routing. If there are DRC

errors after initial routing, detailed routing and ECO routing should be performed to

solve the violations. However, a floorplan should be generated using a smaller core

utilization ratio to provide more spacing for routing when the DRC errors still occur

after detailed routing and ECO routing. For this project, the post route optimization is

hence performed on the design as the design is free from congestion issues after the

initial route. The area recovery and power options are set high to further optimize these

two parameters. The tool had updated 979 nets during the optimization as shown in

Figure 4.59.

The LVS is performed to verify the LVS error. Figure 4.60 shows the LVS

result after the initial routing. As shown in the result, there is a minor LVS error for

20 floating ports in the design. The floating ports are the ports without connecting to

any nets. Based on the detail of floating ports as shown in Figure 4.61, the floating

ports are the unused output ports of the registers. For a register, there are 2 output ports

Q and QN in which QN is the inverting result of Q. Since some of the registers is using

only output, the floating ports violation occurs. However, this violation will not affect

the design functionality. Hence, the floating port violations can be ignored. There are

no floating nets, shorted nets, or open nets in the layout. With no electrical equivalent

error in the layout, the layout can be said to have the same interconnection as the

optimized gate-level netlist produced during the logic synthesis stage. Meanwhile, the

nets are routed correctly as defined in the gate-level netlist since there is no must joint

error in the layout. Hence, the LVS result is acceptable.

74

Figure 4.58: Result of initial routing.

Figure 4.59: Result of postroute optimization

Figure 4.60: LVS after initial route

75

Figure 4.61: Detail of the floating ports

4.3.4. Chip Finishing and Tape Out

Chip finishing is the last stage in the physical design before tape out. The tool is used

to reduce the critical area in this stage.

 First, the short critical area map is generated using the tool as shown in Figure

4.62. The maximum threshold value is set as 1. From the map, it can be seen the short

critical area is small in the overall layout. Similarly, the open critical area map with

the highest threshold of 1 is generated as shown in Figure 4.63. The map distribution

shows the maximum open critical area ratio is below 40%. Spreading of wires is

performed to enhance the critical area for shorts while widening of wires is carried out

to reduce open critical area. Figure 4.64 shows that metal 3 is pushed off from the track

due to wire spreading. The dotted line is the track for routing. The effect of widening

wire is shown in Figure 4.65. Some part of the Metal 2 becomes wider, and the nets

are pushed away from the original track. By pushing the nets away from the original

track, the space between the metal traces increases. Hence, the critical area reduces.

The DRC and LVS are performed again to ensure the design is still free of error,

excepting the minor floating port error in LVS. Next, the redundant vias are inserted

into the layout. The redundant vias had increased by 3. The DRC and LVS are checked

again. The final DRC and LVS results are shown in Figure 4.68 and Figure 4.69. There

is no DRC error and additional LVS error.

76

 The final timing, QoR, area, and power reports are generated and analysed. The

timing report is generated before taping out to make sure the design is free from setup

violations. As shown in Figure 4.70, the data arrives faster than the required time in

the path with a maximum delay with a margin of 0.09 ns. There are no setup violations

in the final design. Besides, the timing performance increases by 0.05 ns from the

optimized gate-level netlist with a margin of 0.04 ns. It is because the clock delay is

stabilised in CTS. In the logic synthesis stage, the clock delay is an estimation of 0.20

ns and there is an uncertainty of 0.34 ns applied to the design. The post-CTS design

has a stabilized clock delay of 0.06 ns only and the uncertainty is removed. Hence, the

time required by the data increases by 0.20 ns from 3.22 ns to 3.42 ns as compared to

the optimized netlist. Due to the reduction of clock skew after CTS, the final data

arrival time had also increased by 0.16 ns from 3.18 ns to 3.34 ns. Since the increase

in data arrival time is smaller than the data required time, the slack or margin improves.

The QoR report is also generated to examine the hold time performance of the final

layout as shown in Figure 4.73. The report shows there is no path to experiencing hold

time violation. Hence, the design is proved to be free from timing issues.

Aside from that, the area report of the final design is generated through ICC.

The final area reports are shown in Figure 4.71. The total chip area had increased by

15.28 % to 72852.436196 µm2. In order to avoid DRC errors, the metal nets are set to

have a minimum distance between each other in the design. Besides, the power nets

are included in the physical design. The cells and route tracks leave a distance from

them to prevent design rule error as the power nets are set to have complete blockage

for routing during preroute stage. The metal nets used for routing, power rings, and

power nets have a certain width. Thus, in physical design, the chip area generated in

the floorplan stage reserve a 30% area for routing. This causes the total chip area to

increase as the area is fitting all the cells and the metal nets used for routing. Next, the

power analysis of the final design is done based on the power report as shown in Figure

4.72. The power dissipated by net switching increases significantly from 134.4276 µW

to 1.2951 mW. This causes the total dynamic power to rise as well. Due to the

significant increase in net switching power, its contribution to total dynamic power

increases by about 15 %. The cell internal power increases slightly to 5.7733 mW

while the cell leakage power reduces slightly to 18.0631 mW. As a result, the total

power dissipated by the design, in the end, is 25.131 mW with an increase of 7.28 %

77

from the previous area. There are more switching nets when the clock tree nets increase.

This leads to the rise in switching power as more nets will be discharging or charging

the internal capacitance. The internal capacitance of the nets grows with the number

of nets. Hence, the switching power became larger. The total power is within the power

budget of 26 mW set in PNS. Hence, the design is still able to support the power

consumption.

Finally, the design is ready for tape out. The GDSII file is produced by the tool

to be used for fabrication. For this project, the design is not suitable to be fabricated

duet to the educational libraries used in the software. The result of outputting the

GDSII file is shown in Figure 4.74. The final layout of the design is shown in Figure

4.75.

Figure 4.62: Short critical area of the design

78

Figure 4.63: Open critical area

Figure 4.64: Metal 3 to be pushed off from the track

79

Figure 4.65: Metal 2 to become widen and pushed off from track

Figure 4.66: Redundant conversion report before chip finishing

80

Figure 4.67: Redundant conversion report after chip finishing

Figure 4.68: Final DRC verification result

Figure 4.69: Final LVS verification result

81

Figure 4.70: Final timing report

Figure 4.71: Final area report

82

Figure 4.72: Final power report

Figure 4.73: QoR report showing hold time violation information

Figure 4.74: Result of outputting GDSII file

83

Figure 4.75: Final layout

Figure 4.76: Enlarged view of the layout

84

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

The objectives are achieved. In this project, the front-end and back-end design flow

from RTL coding to tape out is completed successfully. A 32-bit MIPS processor with

support for 29 instructions is developed and its functionality is verified. The complete

VLSI design flow is implemented using EDA tools provided by Synopsys. The

Synopsys DC is used to implement the logic synthesis stage in the front-end while the

Synopsys ICC is to implement the physical design processes for back-end design flow.

In logic synthesis, DC is used to map and optimize the design using the 32 nm libraries.

At the same time, the software provided the automation for STA to analyse the setup

time performance in this stage. Besides, the tool is used to generate reports to analyse

the area and power of the design after mapping and optimization. This greatly reduced

the time required for logic synthesis as the DC can map the Boolean equations in the

RTL source codes to the gates in the provided libraries. While for ICC, it is used to

carry out all the stages in back-end design with a built-in STA analyzer to analyse the

timing. The algorithm of the software reduces the time consumption to provide a

design layout that is free from timing issues. There are plenty of logic gates in the

design. Manual execution of complete VLSI design flow is too complex for a human.

Hence, the implementation of the VLSI design flow requires the help of the EDA tool

to reduce the time to produce an SoC.

 After completing the front-end design flow, the mapped and optimized design

is verified to have no setup violation. The hold violations that exist in this stage are

left to be solved in the physical design. The design is driven by a clock with a

frequency of around 294 MHz. The timing constraints are applied to set the input delay,

85

output delay, setup uncertainty and hold uncertainty during logic synthesis stage to

obtain a more accurate timing performance. The optimized gate-level netlist is checked

to ensure its functionality. The design is modified and optimized without changing the

functionality.

 The optimized gate-level netlist is used to perform physical design. The hold

time violations are fixed in this stage through CTS. At the same time, the setup time

performance is improved slightly to the margin of 0.09 ns. However, the power

dissipated by the design becomes larger due to the increase in net switching power in

physical design. The high frequency of the clock used in the design had caused the

switching power to increase. Besides, the large number of registers used for RAM and

ROM in the design had contributed to the large power consumption. In conclusion, the

power performance of the design is scarified to optimize the timing performance.

5.2. Recommendation

One of the recommendations is to further improve the area performance and efficiency

of the design using smaller transistor technology. The technology used in this project

is 32 nm while 5 nm is the latest technology in the industry. There is room for

improvement in terms of reducing transistor size. By using a smaller transistor, the

chip area can be reduced as the same amounts of transistors can be placed in a smaller

area. Thus, the cost to produce a chip can be reduced. Besides, by having more

transistors in the chip, the processor becomes more powerful to execute instructions

faster. A reduction in transistor size leads to a drop in its internal capacitance. The

power required to drive the transistor is hence smaller. Thus, the smaller transistor is

more power-efficient.

 The margin for setup time for this design is 0.09 ns. The is a possibility for the

design to have setup violations during the manufacturing process. The design can be

improved by taking the margin for setup into account. In this project, the design is not

available for fabrication. However, it is important for a designer to have the practice

86

to leave a safety margin for the manufacturing of the product. The margin can be

improved by adjusting the timing constraints applied to the design during DC.

 Besides, RAM and ROM should be designed as macro cells. The memory

elements designed as macro cells can be optimized separately to achieve better timing

and power performance. In the current design, the RAM and ROM are optimized as a

group with the other submodules. This causes the register to dissipate large power and

results in high power consumption in overall. By generating macrocells for RAM and

ROM, they are optimized individually with specific power constraints applied to them.

Thus, the power consumed by the RAM and ROM can be reduced, resulting in a lower

power dissipation of the overall design. The macro cells can be generated using another

EDA tool from Synopsys named Memory Compiler.

 The current design is made without I/O pads. This causes the design to be

unable to interface with other devices through external pins. In order to improve the

design, the RTL codes should be modified to include the implementation of I/O pads

to allow interfacing of external devices. Aside from that, the current design is a single

cycle MIPS. The design can be modified into a pipelined design to improve efficiency.

For a single cycle process, only 1 instruction is executed in a clock cycle. While for

pipelined design, a single cycle processor is divided into several stages to execute

instructions simultaneously. For a 5-stage pipelined processor, 5 instructions can be

executed within a clock cycle in parallel. Hence, the processors can perform faster in

terms of increasing the efficiency to execute the instructions.

87

REFERENCE

Abd-El-Barr, M., and El-Rewini, H., 2005. Fundamentals of computer organization

and architecture. New Jersey: John Wiley & Sons, Inc.

Bhatnagar, H, 2002. Advanced ASIC chip synthesis: using Synopsys Design Compiler

Physical Compiler and Prime Time. 2 nd ed. New York: Kluwer Academic

Publishers.

Chen, W., K., 2009. The circuits and filters handbook: computer aided design and

design automation. 3rd ed. Boca Raton: CRC Press.

Das, D., 2010. VLSI design. New Delhi: Oxford University Press.

Gianfagna, M., 2021. What is electronic design automation? [online] Available at: <

https://www.synopsys.com/glossary/what-is-electronic-design-automation.html>

[Accessed 9 August 2021].

Harris, D. M., and Harris, S. L., 2013. Digital design and computer architecture. 2nd

ed. Waltham: Elsevier, Inc.

Hennessy, J., L., Jouppi, N., Przybylski, S., Rowen, C., Gross, T., Baskett, F., and Gill,

J., 1982. MIPS: A microprocessor architecture. ACM SIGMICRO Newsletter, [e-

journal] 13(4). pp 17 -22. https://dl.acm.org/doi/10.1145/1014194.800930

Jamil, T., 1995. RISC versus CISC. IEEE Potentials, [e-journal] 14(3). pp 13-16.

https://doi.org/10.1109/45.464688

Kahng, A., B., Lienig, J., Markov, I., L., and Hu, J., 2011. VLSI physical design: from

graph partitioning to timing closure. Dordrecht: Springer.

King, I., Wu, D., and Pogkas, D., 2021. How a chip shortage snarled everything from

phones to cars. Bloomberg. [online] 29 March. Available at: <

https://www.bloomberg.com/graphics/2021-semiconductors-chips-shortage/>

[Accessed 9 August 2021].

Kishore, K., L., and Prabhakar, V., S., V., 2009. VLSI design. New Delhi: International

Publishing House Pvt. Ltd.

https://www.synopsys.com/glossary/what-is-electronic-design-automation.html
https://dl.acm.org/doi/10.1145/1014194.800930
https://doi.org/10.1109/45.464688
https://www.bloomberg.com/graphics/2021-semiconductors-chips-shortage/

88

Kowalski, T., J., Geiger, D., J., Wolf, W., H., and Fichtner, W., 1985. The VLSI design

automation assistant: from algorithms to silicon. IEEE Design & Test of Computers,

[e-journal] 2(4). pp 33-43. https://doi.org/10.1109/MDT.1985.294721

Lamie, E., L., 2009. Real-time embedded multithreading: using ThreadX and MIPS.

Oxford: Elsevier

Luo, T., C., Leong, E., Chao, M., C., T., Fisher, P., A. and Chang, W., H., 2010. Mask

versus schematic – an enhanced design-verification flow for first silicon success.

2020 IEEE International Test Conference, [e-journal] pp 1-9. pp. 1-9.

https://doi.org/10.1109/TEST.2010.5699238

Patterson, D., A., and Hennssy, J., L., 2014. Computer organization and design: the

hardware/software interface. 5th ed. Waltham: Elsevier, Inc.

Ramachandran, S., 2007. Digital VLSI systems design: a design manual of

implementation of projects on FPGAs and ASICs using Verilog. Dordrecht:

Springer.

SIA, 2021. Global semiconductor sales increase 1.9% month-to-month in April;

Annual sales projected to increase 19.7% in 2021, 8.8% I 2022. [online] Available

at: < https://www.semiconductors.org/global-semiconductor-sales-increase-1-9-

month-to-month-in-april-annual-sales-projected-to-increase-19-7-in-2021-8-8-in-

2021/> [Accessed 9 August 2021].

Silbert, S., 2012. $125 MIPS-based Smart Tab 1 brings Jelly Bean on budget to India.

[online] Available at: https://www.engadget.com/2012-07-31-125-mips-based-

smart-tab-1-jelly-bean.html [Accessed 9 August 2021].

Takahashi, D., 2005. Forty years of Moore’s Law. The Seattle Times. [online] 18 April.

Available at: <https://www.seattletimes.com/business/forty-years-of-moores-

law/> [Accessed 9 August 2021].

TSMC, 2020. Logic Technology. [online] Available at:

<https://www.tsmc.com/english/dedicatedFoundry/technology/logic> [Accessed 9

August 2021].

Voica, A., 2016. Five most iconic devices to use MIPS CPUs. [online] Available at: <

https://www.mips.com/blog/five-most-iconic-devices-to-use-mips-cpus/>

[Accessed 9 August 2021].

Walker, D., M., H., 1992. Critical area analysis. Proceedings International Conference

on Wafer Scale Integration. [e-journal] pp 281-290.

https://doi.org/10.1109/ICWSI.1992.171820

Xiu, L., M., 2008. VLSI circuit design methodology demystified: A conceptual

taxonomy. New Jersey: John Wiley & Sons, Inc.

https://doi.org/10.1109/MDT.1985.294721
https://doi.org/10.1109/TEST.2010.5699238
https://www.semiconductors.org/global-semiconductor-sales-increase-1-9-month-to-month-in-april-annual-sales-projected-to-increase-19-7-in-2021-8-8-in-2021/
https://www.semiconductors.org/global-semiconductor-sales-increase-1-9-month-to-month-in-april-annual-sales-projected-to-increase-19-7-in-2021-8-8-in-2021/
https://www.semiconductors.org/global-semiconductor-sales-increase-1-9-month-to-month-in-april-annual-sales-projected-to-increase-19-7-in-2021-8-8-in-2021/
https://www.engadget.com/2012-07-31-125-mips-based-smart-tab-1-jelly-bean.html
https://www.engadget.com/2012-07-31-125-mips-based-smart-tab-1-jelly-bean.html
https://www.mips.com/blog/five-most-iconic-devices-to-use-mips-cpus/
https://doi.org/10.1109/ICWSI.1992.171820

89

APPENDICES

APPENDIX A: Instruction loaded into the design

20020005 //addi $2, $0, 5

2003000C //addi $3, $0, 12

2067fff7 //addi $7, $0, -9

00E22025 //or $4, $7, $2

00642824 //and $5, $3, $4

00A72826 //xor $5, $5, $7

00A43020 //add $6, $5, $4

10C70010 //beq $6, $7, end

0064202A //slt $4, $3, $4

10800001 //beq $4, $0, around

20050000 //addi $5, $0, 0

00E2202A //slt $4, $7, $3

00853820 //add $7, $4, $5

00E23822 //sub $7, $7, $2

AC670044 //sw $7, 68 ($3)

8C020050 //lw $2, 80 ($0)

30489616 //andi $8, $2, 38422

35099600 //ori $9, $8, 38400

392A9614 //xori $10, $9, 38420

000A6100 //sll $12, $10, 4

3C0B0004 //lui $11, 4

016C6022 //sub $12, $11, $12

08000018 //J end

90

20020001 //addi $2, 0, $1

AC0C0054 //sw $12, 84(0)

22120008 //addi s2 s0 8

3C11F300 //lui s1 0xf300

22310022 //addi s1 s1 0x0022

2A57000A //slti s7 s2 10

16E40002 //bne s7, $4, 2

16320001 //bne s1, s2, 2

3C11F300 //lui s1 0xf300

0C00002A //jal 42

02519807 //SRAv s3 s1 s2 (s3 = -851968)

02F3A006 //SRLV $s4 $s3 $s7 (s4 = 2147057664)

0254A004 //SllV $s4 $s4 $s2 (s4 = -109051904)

AC140058 //sw s4, 88(r0) (ram[22] = 2]

1A800005 //blez s4 0x0005

1E800001 //bgtz s4, 1

AC16005C //sw s6, 92(r0) (ram[23] = 0]

02D5B827 //nor s7, s6,s5 (ans = -153)

AE170060 //sw s7, 96(r0) (ram[24] = -153)

03E00008 //jr ra return to pc == 44

0011B083 //sra s6 s1 0x0002

0016B280 //sll s6 s6 0x000A

0016B382 //srl s6 s6 0x000E

1AC00001 //blez s6 0x0001

3C11F300 //lui s1 0xf300

22150098 //addi s5 s0 152

1EA00001 //bgtz s5 0x0001

3C11F300 //lui s1 0xf300

02A0F809 //jalr ra s5

00000000

91

APPENDIX B: Testbench for verification

`timescale 1ns/1ps

module tb_fyp();

 logic clk;

 logic reset, error;

 logic [2:0] check;

 logic [31:0] readdata2, writedata, dataaddr;

 logic memwrite;

 // instantiate device to be tested

 top dut (clk, reset, readdata2, writedata, dataaddr, memwrite);

 // initialize test

 initial

 begin

 check <= 0; error <= 0;

 reset <= 1; # 22; reset <= 0;

 end

 // generate clock to sequence tests

 always

 begin

 clk <= 1; # 5; clk <= 0; # 5;

 end

 // check results

 always @(negedge clk)

 begin

 if (memwrite) begin

92

 if (dataaddr === 80 & readdata2 === 3) begin

 $display("Arithmetic calculation succeeded");

 check = check +3'b001;

 end

 else if (dataaddr === 84 & readdata2 === 261792) begin

 $display("Logical calculation succeeded");

 check = check +3'b001;

 end

 else if (dataaddr === 88 & readdata2 === -109051904) begin

 $display("Variable rotation succeeded");

 check = check +3'b001;

 end

 else if (dataaddr === 92 & readdata2 === 0) begin

 $display("Rotation succeeded");

 check = check +3'b001;

 end

 else if (dataaddr === 96 & readdata2 === -153) begin

 $display("Logical NOR calculation succeeded");

 check = check +3'b001;

 end

 else begin

 error = 1'b1;

 end

 end

 if(error)begin

 $display("\nError!!");

 $display ("Time %d, dmen addr(*2) = %b, mem write data = %b",

 $realtime, dataaddr, readdata2);

 #20;

 $stop;

 end

 else if (check == 3'b101 && error == 0)begin

 $display("\nSimulation Sucess!!");

93

 #20;

 $finish;

 end

 end

endmodule

94

APPENDIX C: Setup file for DC

-

Library Setup

-

set search_path "$search_path scripts ../ref/saed32nm/lib/stdcell_lvt/db_nldm"

set target_library "saed32lvt_ss0p95v125c.db"

set_app_var synthetic_library dw_foundation.sldb

set link_library "* saed32lvt_ss0p95v125c.db $synthetic_library"

set symbol_library "generic.sdb"

############ Do NOT edit below this line ############

echo "\n\nSettings:"

echo "search_path: $search_path"

echo "link_library: $link_library"

echo "target_library: $target_library"

echo "symbol_library: $symbol_library"

define_design_lib DEFAULT -path ./analyzed

-

History

-

history keep 1000

95

-

Aliases

-

alias h history

alias rc "report_constraint -all_violators"

alias rt report_timing

alias ra report_area

alias page_on {set sh_enable_page_mode true}

alias page_off {set sh_enable_page_mode false}

alias fr "remove_design -designs"

-

Alib for compile_ultra

-

set alib_library_analysis_path [get_unix_variable HOME]

set alib_library_analysis_path ..

#read the files

analyze -format sverilog { top.sv sl2.sv alu32.sv pc.sv imem.sv regfile.sv aludec.sv

dmem.sv maindec.sv signext.sv}

#link top

elaborate top

#compile variable

set write_name_nets_same_as_ports true

set compile_advanced_fix_multiple_ports_nets true

set compile_delete_unloaded_sequential_cells true

echo "\n\nI am ready...\n"

96

APPENDIX D: Setup file for ICC

set LIB_ROOT ../ref/saed32nm/lib

set hdlin_enable_upf_naming_compatibility true

set LVT_LIB " \

 saed32lvt_ss0p95v125c.db \

 "

set LVT_LIB_SEARCH_PATH "$LIB_ROOT/stdcell_lvt/db_nldm"

set search_path "$search_path \

 $LVT_LIB_SEARCH_PATH "

set_app_var target_library $LVT_LIB

set_app_var synthetic_library dw_foundation.sldb

set_app_var link_library "* $target_library $synthetic_library"

define_design_lib default -path ./work

set mw_design_library MW_MIPS

set mw_reference_library "$LIB_ROOT/stdcell_lvt/milkyway/saed32nm_lvt_1p9m "

set TECH_FILE "$LIB_ROOT/tech/milkyway/saed32nm_1p9m_mw.tf"

set MAP_FILE "$LIB_ROOT/tech/star_rc/saed32nm_tf_itf_tluplus.map"

set TLUPLUS_MAX_FILE

"$LIB_ROOT/tech/star_rc/saed32nm_1p9m_Cmax.tluplus"

set TLUPLUS_MIN_FILE

"$LIB_ROOT/tech/star_rc/saed32nm_1p9m_Cmin.tluplus"

set MW_POWER_NET "VDD"

97

set MW_POWER_PORT "VDD"

set MW_GROUND_NET "VSS"

set MW_GROUND_PORT "VSS"

set MIN_ROUTING_LAYER "M1"

set MAX_ROUTING_LAYER "M6"

set upf_create_implicit_supply_sets false

if { [shell_is_in_topographical_mode] || ($::synopsys_program_name=="icc_shell") }

{

 if {![file isdirectory $mw_design_library]} {

 create_mw_lib -technology $TECH_FILE \

 -mw_reference_library $mw_reference_library \

 $mw_design_library

 } else {

 set_mw_lib_reference $mw_design_library \

 -mw_reference_library $mw_reference_library

 }

open_mw_lib $mw_design_library

set_tlu_plus_files -max_tluplus $TLUPLUS_MAX_FILE \

 -min_tluplus $TLUPLUS_MIN_FILE \

 -tech2itf_map $MAP_FILE

}

