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ABSTRACT 

 

The solar energy collected by the sun-tracking system depends on the accuracy 

of the sun-tracking algorithm, which is different for each type of sun-tracking 

system. Furthermore, the solar image formed on the on-axis target can also be 

easily affected by gear backlash and wind load, and an absolute encoder is used 

to reduce the errors produced by the sun-tracking system. Therefore, a fully 

artificial intelligent (AI)-integrated sun-tracking algorithm is proposed and can 

be used in any type of sun-tracking systems such as concentrated photovoltaic 

(CPV), flat photovoltaic (PV) or heliostat systems. The proposed AI algorithm 

integrates two deep learning models which are object detection algorithm and 

reinforcement learning. YOLOv7 is chosen as the object detection algorithm to 

detect sun, while Q-learning is chosen as the algorithm for reinforcement 

learning to control the motors. A custom dataset of 300 images of sun and clouds 

is prepared for the training process of YOLOv7. The YOLOv7 is trained for 100 

epochs at different batch sizes, where the batch size of 4 shows the highest mean 

average precision (mAP) of 0.768 and the lowest loss. A python script is created 

to integrate both YOLOv7 and Q-learning to execute the tasks simultaneously 

to adjust the position of the sun tracker based on the detected sun. Once the sun 

coordinate is obtained, Q-learning will determine the minimum steps taken for 

the centre point of camera to reach the midpoint of the Sun. The algorithm is 

also tested under different conditions such as during sunny day, sunset and also 

when the sun is partially blocked. It shows that the sun is detected under each 

condition and has a confidence level of over 90%. The Q-learning provides the 

minimum steps and the movement options of the agent to move from the centre 

point to the sun coordinate. It shows that the agent is successful in reaching its 

goal which is the coordinate of the Sun. The proposed AI algorithm also 

eliminates the use of encoders as the algorithm can constantly feedback the 

errors due to the misalignment of the sun tracker. Thus, the sun tracker is able 

to adjust and align itself with the sun at the central receiver. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Global energy consumption is increasing due to the growth in population, and 

therefore the energy production is required to increase to meet the demand. 

However, this leads to environmental issues such as global warming and air 

pollution due to the increase usage of non-renewable energy sources such as oil, 

coal and natural gas. As a result, renewable energy sources such as solar energy, 

wind energy and biomass are considered as an alternative to the current energy 

framework. Solar energy is abundant as it can be harnessed directly from 

sunlight, which is one of the best renewable energy sources. Solar energy is the 

world’s fastest growing source of power and according to the World Economic 

Forum, the price for solar energy has dropped and is much cheaper than fossil 

fuels since 2021 (Masterson, 2021).  

 

 Solar technologies such as photovoltaic (PV) modules and 

concentrated solar power are used to collect and harnessed solar energy. Among 

PV technologies, flat PV systems are often installed as rooftop-mounted or 

building-integrated systems as flat PV has a competitive production cost. On 

top of that, flat PV has a comparatively lower maintenance cost and is easier to 

install. However, flat PV requires a large land area to generate a large amount 

of electricity which is inefficient. Therefore, concentrator photovoltaics (CPV) 

systems are proposed as an alternative to flat PV systems. CPV is also a PV 

technology which utilizes lens or mirrors to focus the incident solar radiation 

onto a solar cell, and would not cause any air or water pollution. In comparison 

with flat PV systems, CPV drastically reduced the area of solar cells as only a 

large area of mirrors or lenses are required to concentrate sunlight onto a small 

area of solar cells. Furthermore, the effect of temperature on PV modules can 

be reduced as the area of solar cells is smaller than in flat PV systems. 

 

 A solar tracking system can be used to orientate the CPV system 

towards the sun at all times, which allows more sunlight to be collected, thus 
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increasing the electricity generation of the system. In recent years, artificial 

intelligence (AI) has been applied to solar concentrator systems to increase the 

accuracy of predicting the sun position, and thus reducing tracking errors in the 

sun tracking algorithm. In a CPV system, external factors such as mechanical 

structure of the concentrator and immoderate high solar concentration ratio 

affects the sensitivity of the concentrator. Therefore, an AI integrated sun-

tracking system is proposed to reduce the tracking errors by detecting the Sun 

using object detection algorithm. Furthermore, reinforcement learning is used 

to determine the movement options of the motor and orientate the solar 

concentrator to the correct position. 

 

1.2 Importance of the Study 

An AI integrated sun tracking algorithm is important to increase the accuracy in 

tracking the position of the sun. The normal of the surface of the CPV has to 

always be parallel to the normal of the sun to collect maximum amount of 

incident solar radiation. The tracking errors can be reduced through computer 

vision algorithms such as object detection, and provide corrections to the tilt and 

roll angles of the CPV system based on the difference in coordinates of the 

actual sun position and the centre of the camera using reinforcement learning. 

The AI integrated sun-tracking system is proposed to achieve long term 

performance and reliability, and able to achieve high accuracy in long periods 

of time.  

 

1.3 Problem Statement 

The solar energy collected by the sun-tracking system depends on the accuracy 

of the sun-tracking algorithm, which is different for each type of sun-tracking 

system. Furthermore, the solar image formed on the on-axis target can also be 

easily affected by gear backlash and wind load, and an absolute encoder is used 

to reduce the errors produced by the sun-tracking system. Therefore, this project 

proposed an Artificial Intelligent (AI) sun-tracking algorithm to constantly 

detect the position and midpoint of the sun with a low-cost webcam without 

applying different sun-tracking algorithms. Besides that, the AI algorithm is 

capable of constantly adjusting the sun-tracking system to ensure the orientation 

angle of the sun-tracker is always parallel to the sunlight. Thus, the tracking 
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errors of the sun-tracking system can be reduced with the AI sun-tracking 

algorithm and without using an absolute encoder. 

 

1.4 Aim and Objectives 

The aim of this study is to tackle the long-term sun-tracking issue of a non-

imaging dish concentrator (NIDC) by integrating AI into the sun-tracking 

control algorithm to enhance the accuracy, reliability and long-term 

performance. The objectives of this project are described as follows: 

1. To develop an AI algorithm with the capability of solar image 

recognition at the central receiver. 

2. To design a sun-tracking system by integrating AI into the control 

system of the sun-tracking algorithm. 

3. To evaluate the sun tracking system based on the new AI algorithm. 

 

1.5 Scope and Limitation of the Study 

The project title for this project is “Artificial intelligent integrated into sun-

tracking system to enhance the accuracy, reliability and long-term performance 

in solar energy harnessing”. The scope of the project is to evaluate the 

performance of AI integrated sun-tracking algorithm for the CPV system that 

will ensure long term performance and reliability. The AI integrated sun 

tracking system must also produce high accuracy for long periods of time. The 

AI algorithm will predict the sun position by considering various weather 

conditions during detection stage. 

 

1.6 Report Overview 

This report describes the development of this study and is composed of the 

following chapters. 

 

 Chapter 1 is the introduction which consists of the background and 

objectives of the project. The importance of the study and problem statement 

has been described. 

 

Chapter 2 is the literature review which introduces the literature review 

of CPV systems and AI integrated solar trackers. This chapter also discuss on 
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problems faced in CPV design and AI integrated sun-tracking algorithm in past 

literature. 

 

Chapter 3 is the methodology which introduces the methodology and 

design of the prototype. The flowcharts for the motor control unit and sun 

tracking algorithm are introduced.  

 

Chapter 4 is the results and discussion which describes the evaluation 

of the performance of the AI sun-tracking algorithm. The algorithm is tested 

under different conditions and the results are presented. 

 

Chapter 5 is the conclusions and recommendations of the study of the 

proposed AI integrated sun-tracking algorithm. The recommendations of 

improving the project and future work are also discussed. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter introduces the background of CPV systems, sun tracking systems 

and also various AI models. An AI sun-tracking algorithm which integrates 

object detection algorithm and reinforcement learning is proposed to detect the 

position of the sun which can be used in CPV system such as shown in Figure 

2.1. Past literature on the computer vision algorithms and also weather 

classification in sun tracking algorithms is also discussed. Furthermore, deep 

learning models such as object detection algorithm and reinforcement learning 

are discussed in this chapter. 

 

 

Figure 2.1: The previously constructed prototype of dense array concentrator 

photovoltaic (DACPV) at TARUC, Setapak (Chong et al., 2017). The DACPV 

prototype consisted of a non-imaging dish concentrator (NIDC) and a DACPV 

receiver. 

 

2.2 Concentrator Photovoltaics (CPV) 

Concentrator photovoltaic (CPV) system is a PV technology that converts solar 

energy into electrical energy. CPV uses a large area of lenses or mirrors to focus 
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sunlight onto a small area of photovoltaic cells, which reduces the area of solar 

cells. The effect of temperature on CPV systems are minimal as the area of solar 

cells are lesser than in normal flat PV. The solar cell concentration ratio (SCR) 

is defined as the ratio of optical area to the solar cell area, and is divided into 

three classes: low concentration photovoltaic system (LCPV), high 

concentration photovoltaic system (HCPV) and ultra-high concentration 

photovoltaic system (UHCPV). The description of the three CPV classes are 

shown in Table 2.1, which describes the typical concentration ratio, tracking 

system and the suitable type of converter of each class. 

 

Table 2.1: Description of CPV classes. 

CPV class 

Typical 

concentration 

ratio 

Tracking 
Type of 

converter 

LCPV <100 
One or two-

axis 

c-Si or other 

cells 

HCPV 300-1000 Two-axis 

III-V multi-

junction solar 

cells 

UHCPV >1000 Two-axis 
Multi-junction 

solar cell 

 

2.2.1 Type of Concentrators 

Various type of solar concentrators is available in the market, and can be divided 

into either reflective optics or refractive optics. Solar concentrators that have a 

central receiver (heliostat tower), or in the shape of parabolic troughs or dishes 

are examples of solar concentrators with reflective optics; while concentrators 

that uses Fresnel lens are examples of refractive optics.  

 

 A concentrator that is shaped like a parabolic trough is constructed as 

a long parabolic mirror with a Dewar tube at the focal point along the 

concentrator axis. The parabolic trough concentrator uses line focusing optics, 

which allows the incident solar radiation to reflect onto the focal light toward a 
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receiver. This concentrator system is usually aligned on a north-south axis, and 

solar trackers can be installed to track the position of the sun throughout the day.  

 A parabolic dish concentrator is constructed by an array of parabolic 

dish-shaped mirrors. This concentrator utilizes the optical properties of a 

parabolic curved surface to concentrate incident solar radiation towards the 

focal point. A dual-axis solar tracker is installed on the parabolic dish 

concentrator to increase the collected solar concentration. 

 

 A heliostat is a solar power facility which consists of a central receiver 

(power tower) and uses a field of dual-axis tracking mirrors. Each tracking 

mirrors is individually controlled by a computer control system to reflect the 

incident solar radiation towards the central receiver. The solar concentration 

ratio of the combined effect of heliostats is theoretically possible to achieve 

ultra-high concentration photovoltaic that exceeds 1000 suns. 

 

 A refractive optics concentrator that uses Fresnel lens refracts the light 

to concentrate the incident solar radiation on the lens surface to a solar cell. A 

Fresnel lens solar concentrator is cheaper compared to other concentrators as 

the lens are moulded out of inexpensive plastic. This is due to the acrylic 

materials which are cheaper per square meter than mirrored glass, and the 

optical efficiency is greater as it only passes through one weathered or dirty 

surface. The point-focused Fresnel concentrator also uses a dual-tracking 

system to increase collected solar concentration. 

 

2.2.2 Non-Imaging Dish Concentrator (NIDC) 

Non-imaging concentrators are concentrators that do not form any optical image 

of a source, as opposed to an imaging concentrator which forms an image of the 

sun by reflecting it on the receiver. Various design of non-imaging concentrators 

is proposed in the past such as the non-imaging planar concentrator (NIPC) by 

Chong et al. (2009) which consists of numerous flat facet mirrors arranged in a 

square array and spaced evenly at the same height. The proposed NIPC produces 

high SCR and uniform solar irradiance, however is affected by the increasing 

shading effect as the ratio of the focal distance to width of the NIPC decreases. 

Furthermore, the facet mirrors that are further from the centre of the NIPC 
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requires higher tilting angles to reflect the incident solar radiation towards the 

focal point, while causing more incident solar radiation from an adjacent facet 

mirror to be blocked.  

 

In order to eliminate the blocking and shading effect from adjacent 

facet mirrors, Tan et al. (2014) proposed the NIDC with single-stage focusing 

and developed a computational algorithm to determine the initial configuration 

of facet mirrors.  The NIDC consists of a 2𝑚 × 2𝑛  array of identical facet 

mirrors which are arranged at different heights. The locality of each facet mirror 

in the NIDC is indexed as (𝑖, 𝑗) where 𝑖 and 𝑗 represents the position of facet 

mirror at the 𝑖th column and 𝑗th row of the NIDC respectively. The origin of the 

coordinate system is located at the centre of the NIDC with the coordinates 

assigned as (0,0,0). The coordinate of the central point of each facet mirror is 

represented by the matrix, 𝑀𝑖,𝑗 and is written as 

 

 𝑀𝑖,𝑗 = [

𝑀𝑥

𝑀𝑦

𝑀𝑧

]

𝑖,𝑗

 (2.1) 

 

The initial configuration of each facet mirrors in a NIDC is shown in Figure 2.2, 

where the configuration is divided into four quadrants. 
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Figure 2.2: The initial configuration of the facet mirrors of the NIDC. The 

concentrator can be divided into four quadrants, which are the top left, top right, 

bottom left and bottom right (Tan et al., 2014). 

 

The target is located at the focal point of the NIDC, which can be 

regarded as the height of the receiver from the centre point of the NIDC. The 

coordinate of the receiver, 𝑇 is defined as  

 

 𝑇 = [

𝑇𝑥

𝑇𝑦

𝑇𝑧

] = [
0
0
𝐹

] (2.2) 

 

where 𝐹 is the focal point of the NIDC and is also the shortest distance from the 

origin to the receiver. The tilting angle of each facet mirrors is given by tilted 

angle about Y axis, 𝜎𝑖,𝑗 and tilted angle about X axis, 𝛾𝑖,𝑗 which are given by 

 

 𝜎𝑖,𝑗 = sin−1 [
𝑀𝑥

2 cos 𝜃𝑖,𝑗√𝑀𝑥
2+𝑀𝑦

2+(𝐹−𝑀𝑧)2
]  (2.3) 
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 𝛾𝑖,𝑗 = 𝑡𝑎𝑛−1 [
𝑀𝑦

(𝐹−𝑀𝑧)+√𝑀𝑥
2+𝑀𝑦

2+(𝐹−𝑀𝑧)2
]  (2.4) 

 

respectively. Figure 2.3 shows the comparison of the initial configuration of 

facet mirrors between NIPC and NIDC, where the facet mirrors of the NIDC is 

shifted upwards along the Z axis, and has a smaller gap, 𝐺 between each facet 

mirror compared to NIPC. The configuration of facet mirrors of NIDC greatly 

reduces the shading effect caused by adjacent facet mirror and also reduces the 

area of the concentrator as the gap between facet mirrors is smaller. 

 

2.3 Sun Tracking System 

Sun tracking system can be categorized into single-axis and dual-axis sun 

tracking system. Single-axis sun tracking system moves only in one direction, 

while dual-axis sun tracking system moves in two directions. In dual-axis sun 

tracking system, it can be divided into tilt-roll tracking and azimuth-elevation 

tracking. Dual-axis sun tracking system is often preferable compared to single-

axis sun tracking system as it has an extra degree of movement, and faces the 

sun more accurately. As the position of the sun changes throughout the year, 

solar harnessing is maximized using dual-axis sun tracking system as it allows 

the normal of the sun to be parallel to the normal of the solar concentrator. 
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Figure 2.3: The conceptual drawing which defines the initial positions of each 

facet mirrors (Tan et al., 2014). 

 

The position of the sun changes throughout the day and varies with 

seasons, which affects the amount of sunlight collected by a fixed CPV system. 

Thus, a solar tracker can maximise the amount of sunlight collected by facing 

the CPV system towards the sun at all times. Prediction of the sun position 

relative to the concentrator based on the given input is important to collect the 

maximum solar energy from the sun. The position of the sun with reference to 

the frame of concentrator is governed by a few parameters, such as declination 

angle, solar time, hour angle, equation of time and local clock time, which are 

also the input parameters of the solar tracking algorithm.  

 

2.3.1 Non-Imaging Dish Concentrator (NIDC) 

The sun tracking algorithm requires several input parameters to accurately 

determine the position of the sun. The declination angle, 𝛿 refers to the angle 

between the equatorial plane and a line drawn from the centre of the Earth to 

the centre of the sun. The declination angle varies with the seasons as the Earth 

orbits around the sun on the ecliptic plane, and can be approximated as 

 

 𝛿 = sin−1{0.39795 cos[0.98563(𝑁 − 173)]}  (2.5) 
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where 𝑁 is the day number starting at 1st January which is defined as 𝑁 = 1. 

  

 In an azimuth-elevation solar tracking system, the movement of the 

solar concentrator depends on the azimuth and elevation angles. The solar 

azimuth angle, 𝐴 is the angle between the projection of the centre of the sun 

onto the horizontal plane that is towards the south direction. The azimuth angle 

can be approximated as 

 

 𝐴 = cos−1 {
sin(𝛿) cos(𝜙)−cos(𝛿) cos(𝜔) sin(𝜙)

cos 𝜙
}  (2.6) 

 

where 𝜙 is the local latitude and 𝐴 = 360° − 𝐴 if sin(𝜔) > 0.  

  

 The solar elevation angle is the elevation angle of the sun, which is 

between the direction of the sun and the horizon. The solar elevation angle can 

be approximated as 

 

 ℎ = sin−1{sin(𝛿) sin(𝜙) + cos(𝛿) cos(𝜙) cos(𝜔)}  (2.7) 

 

2.4 Artificial Intelligence 

In recent years, AI has been applied to sun-tracking system to enhance the 

accuracy and reliability in long-term solar harnessing. The AI integrated sun-

tracking system is improved through signal processing, image recognition and 

prediction of the sun path. The motor control of the sun-tracking system is aided 

by AI to predict the elevation and azimuth angle based on given input such as 

latitude, longitude, time and date. Solar image may not be formed on the on-

axis target of the solar concentrator due to imperfection of the mirror, refraction 

of the sun or other relevant factor, and can be corrected through AI. Machine 

learning (ML) can be divided into supervised and unsupervised learning, where 

labels known as the target variable is predicted from a set of features in 

supervised learning while the data used in unsupervised learning is unlabeled. 

ML algorithms are used to solve either a classification or regression problem, 

where the former is the task of predicting a discrete class label and the latter is 

the task of predicting a continuous value. The common algorithms that can be 
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used to model a regression problem include linear regression, decision tree, 

random forest, polynomial regression and support vector machines. 

 

2.4.1 Recent Developments in AI Integrated Sun-Tracking System 

In recent years, many studies on the AI integrated sun tracking systems have 

been published. Various AI models are used to control the sun tracking systems 

such as Logistic Regression, Fuzzy Logic, Genetic Algorithms and many more. 

Fuzzy logic principle is widely applied in control systems as it is flexible and 

allow modifications in the rules. A sun tracking control system that adapts 

Adaptive Neural Fuzzy Inference System (ANFIS) principle is proposed for 

single-axis and dual-axis sun tracking system (Nadia et al., 2020). The proposed 

ANFIS algorithms only uses three input variables which are the month of the 

year, day of the month and solar time of the day to predict the tilt and orientation 

angles for a dual-axis sun tracking system. The algorithms predicted the 

optimum tilt and orientation angles with high accuracy and low mean square 

error. The study shows that the system with three membership functions 

achieved a 100 % accuracy and mean square error of 6.580×10^(-6) for a dual-

axis sun tracking system. However, the proposed algorithm may not be suitable 

for more complicated systems such as NIDC systems, since the algorithm 

consider lesser factors. In a more complicated system, more external factors that 

will affect the accuracy in sun tracking have to be considered, such as wind load, 

pedestal tilt or apparent sun position. 

 

 Aside from the prediction of sun position, the performance of a CPV 

system is affected by weather conditions. In sunny conditions, the direct normal 

irradiance (DNI) is high and the position of the sun can be measured directly 

using most image processing methods. However, in overcast day, the presence 

of clouds affects the brightness of sun which makes the detection of sun position 

harder. Therefore, AI is applied to sun-tracking algorithms that considers 

weather conditions, thereby improving the accuracy of sun position prediction. 

The weather conditions are dynamic and uncertain, and will change throughout 

the day, where the DNI is affected by several factors such as the blocking of sun 

by clouds, presence of cloud and rain.  
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 Bayesian network (BN) algorithm is a supervised learning algorithm to 

handle problems with uncertainties and is often used in solving classification 

problems. A CPV tracking system with BN that considers various weather 

conditions is constructed (Kim & Cho, 2019). The proposed CPV system is 

applied with optimal selections of sun-tracking algorithms, which has a higher 

performance compared to those with only a single algorithm. The proposed 

system has a 93.9% accuracy and 16.58% higher energy generation was 

obtained from 1630 collected data. In the classification of weather conditions, 

the shape and type of the cloud was considered as it primarily affects the amount 

and position of sunlight. The nine weather conditions that are recognized in the 

proposed system are shown in Figure 2.4, which are classified according to the 

amount of sunlight and various physical features of clouds. However, the 

deviation is large for a complicated case such as in case 2 that has a complex 

cloud shape. The paper mentioned that in future works, the classification of 

weather of the proposed system will be improved by using additional data such 

as weather service information and more deliberate domain knowledge on visual 

features of various kind of weathers. 

 

 Although various AI algorithms have been proposed, most systems 

have system limitations due to cost and operational problems. Thus, a sun 

tracking system that applies computer vision techniques with low-cost hardware 

have been proposed (Carballo et al., 2018). The system uses object detection 

algorithms with region proposal techniques and convolutional neural network 

(CNN) to track the position of the sun. The control strategies of the system have 

been improved through key variables provided such as cloud movement 

prediction, block and shadow detection, atmospheric attenuation and measures 

of concentrated solar radiation, which improves the system performance. A low-

cost camera is placed at the centre of the heliostat to determine the coordinate 

of the centre of the sun and centre of the target using object detection algorithms. 

The midpoint of the coordinate is calculated and the motor in the heliostat will 

rotate in such a way that the centre is pointing to the that midpoint. This 

approach is advantageous as the algorithm is independent of the solar 

technologies used, the size of the system, location and also time, and is also not 

affected by external factors such as pedestal tilt, wind load and apparent sun 
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position. However, the solar image might not be formed on the central target 

even though the heliostat is facing to midpoint between centre of the sun and 

the central target due to imperfection of mirror. 

 

 

Figure 2.4: Weather classification according to cloud and sky conditions (Kim 

& Cho, 2019). 

 

2.4.2 Artificial Neural Networks (ANN) 

An artificial neural network (ANN) can recognize patterns through neural 

networks which are composed of multiple neurons to perform predictions based 

on the input. ANNs are comprised of an input layer, one or more hidden layers 

and an output layer, each containing various number of neurons or also known 

as nodes. Each node connects to another and has an associated weight and 

threshold value. The node is activated when the output of any individual node 

is above the specified threshold value and the data is sent to the next layer of the 

network. The accuracy of the neural network is improved as more training data 

is input to the neural network. 
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 Backpropagation method is used in ANN to adjust the connection 

weights to compensate for each error found in the learning process by using the 

loss function. The partial derivative of the loss function respective to each 

individual weights in the ANN is calculated, and is followed by applying chain 

rule to each path and the corresponding error is found. In backpropagation 

method, gradient descent is applied in the network to minimize the significant 

errors in the output.  

 

 Convolutional neural networks (CNN) are a type of neural networks 

which has greater performance in handling image, speech and audio signal 

inputs. CNNs are usually utilized in image and pattern recognition and also in 

computer vision. A CNN contains 3 layers, which are the convolutional layer, 

pooling layer and the fully-connected layer. In the convolutional layer, it uses 

convolutional filters which has adjustable weights to convolve the input image. 

The dot product between each subgroup of pixels encapsulated by it is 

performed when the input image is passed to the filter and new pixel values are 

calculated.  

 

 The pooling layers reduced the number of parameters by conducting 

dimensionality reduction. The pooling layer are similar to the convolutional 

layers; however, they do not contain weights as it sweeps a filter across the 

entire output. Although some information is lost in the pooling layer, it helps to 

reduce the complexity of the model and limit risk of overfitting.  

 

 The fully-connected layer is the last layer in the CNN, and perform 

classification based on the extracted features through the previous layers and 

filters. The fully-connected layers applied the softmax activation function to 

classify inputs as compared to ReLu functions used in convolutional and 

pooling layers. 

 

 In machine learning, a hyperparameter is a constant parameter that are 

specified before the learning process begins, and the value of the parameters are 

derived via the learning process. The hyperparameters include the learning rate, 

number of hidden layers and batch size which has an effect on the learning 
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process. However, there are values of some hyperparameters which are 

dependent of its hyperparameters such as the size of some layers are dependent 

on the overall number of layers. The learning rate in an ANN defines the size of 

the corrective steps that are required by the model to adjust for each error in an 

observation. A shorter training time is required for a high learning rate but is 

accompanied with a lower accuracy, where the reverse is also possible. 

 

2.4.3 Background of Computer Vision 

Computer vision is an important field of this study, which is a subset of AI that 

allows computers and systems to extract information from digital media such as 

images, videos or other visual inputs. Based on the collected information, 

computer vision allows the system to take action or make recommendations 

using deep learning or convolutional neural network (CNN). This would allow 

the systems to recognize the images and classify them accordingly, and this 

image recognition process can be divided into four categories, which are 

classification, tagging, detection and segmentation.  

 

 In object classification, a specific object can be identified and a 

bounding box is drawn around the object. The system is able to produce the 

class of the identified object, however it is not able to locate the position of the 

object. Thus, the coordinates of the identified object cannot be obtained, and is 

only able to identify the class that the object belongs to. For example, in an 

image where a dog is present, object classification algorithms are able to identify 

the class of the object, which is a dog, but is unable to give the location of the 

dog. 

 

 In object tagging, multiple objects can be identified by drawing 

bounding box around each specific object. It is similar to object classification; 

however, object tagging is able to produce the class of different objects and not 

just a specific class. Same as object tagging, the coordinates of the object cannot 

be obtained. For example, in an image where a dog and a cat are present, object 

tagging algorithms can identify the class of both objects, which is a dog and cat 

respectively, but is unable to locate the position of both objects. 
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 In object detection, it is the same as in object tagging. However, object 

detection algorithms are able to obtain the coordinates of the specified objects. 

The output of the algorithm are the coordinates of the bounding box, width, 

height and class of the object.  

 

 In object segmentation, the image is divided into different regions 

based on the characteristics of the pixels. Therefore, bounding boxes are not 

required to identify the objects as every pixel is related with an object type. 

Object segmentation is further divided into semantic segmentation and instance 

segmentation. Semantic segmentation algorithms mark all objects of the similar 

object type with one class label while instance segmentation algorithms mark 

similar objects with separate class labels. 

 

2.4.4 Object Detection 

In this study, an AI algorithm is required to predict the position of the sun while 

also considering weather conditions. Therefore, object detection algorithms are 

chosen to obtain the coordinates of the sun, the solar image formed, facet mirrors, 

on-axis target and also clouds. Each of the detected objects will be given a class 

label and also its coordinates, which allows the correction of the azimuth and 

elevation angles based on the coordinates of the detected objects. In object 

detection algorithms, one-stage and two stage object detection algorithms are 

available. Object detection algorithms extract features from the input image and 

solves two subsequent tasks, which are to first identify an arbitrary number of 

objects and then classify each object and estimate its size with a bounding box.  

 

  In two-stage detectors, deep networks are used to provide an 

approximate object region, followed by object classifications based on the 

extracted features. Although this kind of detectors achieve the highest detection 

accuracy, it consumes large amount of computational time as many inference 

steps per image are required. In one-stage detectors however, the object 

approximated region is not proposed, and bounding boxes are directly predicted 

over the images. This would drastically reduce the computational time needed, 

but is not efficient in recognizing irregularly shaped objects. Various one-stage 

detectors algorithms are proposed, including the newest algorithm that was 
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proposed in 2022, which is the You Only Look Once (YOLO) object detection 

algorithm (Wang et al., 2022).  

 

2.4.5 YOLOv7 

The YOLO framework is made up of three main components, which are the 

Backbone, Head and Neck. The Backbone extracts the essential features of an 

image, and the Neck will feed the extracted features to the Head. Feature maps 

are extracted by the Backbone and feature pyramids are created once the feature 

maps are collected by the Neck. Finally, the feature maps are collected by the 

Head which consists of output layers to execute the final detections. In summary, 

the image frames are featured through the Backbone, and the features are 

combined in the Neck and is finally passed to the Head where the YOLO 

algorithm predicts the locations of bounding boxes, classes of the bounding 

boxes and also the objectness of the bounding boxes.  

  

 In YOLOv7, the speed and accuracy of the algorithm was improved 

through the modification of the architectural structure of the YOLO framework. 

The YOLOv7 model is trained using the COCO dataset entirely instead of the 

pretrained backbones by ImageNet, similar to Scaled YOLOv4. The E-ELAN 

(Extended Efficient Layer Aggregation Network) architecture is the 

computational block in the YOLOv7 backbone, where it is designed based on 

factors such as memory access cost, activations and gradient path that will 

impact the speed and accuracy of the algorithm. The gradient to back-propagate 

through the layers affects the amount of memory it takes to keep the layers in 

memory; therefore, the structure is better in learning with a shorter gradient. 

Thus, the YOLOv7 framework learn better as compared to other models through 

the E-ELAN architecture (Wang, Bochkovskiy & Liao, 2022).  

 

 As compared to the previous YOLO models, YOLOv7 surpasses all 

the previous object detection algorithm in speed and also accuracy as shown in 

Figure 2.5. The YOLO models are compared using two metrics which are mAP 

(mean average precision) and FPS (frames per second) respectively. The 

YOLOv7 algorithm has a higher mAP compared to models such as YOLOv4 

and YOLOR due to a smaller parameter size. The YOLOv7 normal model has 
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a validation AP of 51.2% and has only 37 million parameters, where the 

parameter size of other YOLO models exceeded 46 million. YOLOv7 also 

achieved the highest FPS, and runs at 161 FPS and has a test AP of 51.4%. 

 

 

Figure 2.5: The Average Precision (AP) and speed of YOLOv7 model compared 

to previous YOLO model (Wang, Bochkovskiy & Liao, 2022). 

 

2.4.6 Reinforcement Learning 

Reinforcement learning is employed in many applications to find the best 

possible behaviour or path it should take by maximizing the reward for a given 

action. Reinforcement learning differs from supervised learning where the 

reinforcement agent decides what to do to perform the given task. Supervised 

learning however trains its model by using a training dataset with labeled data, 

which provides the correct answer. Therefore, reinforcement learning has to 

learn from its experience in the absence of a training dataset. The difference 

between reinforcement learning and supervised learning is shown in Table 2.2. 

 

 In reinforcement learning, an intelligent agent is used to perceive and 

interpret its environment and achieve a certain goal. The reinforcement learning 

is a training method that is based on rewarding desired behaviours and punished 
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undesired ones. This method assigned desired behaviours with positive values 

to encourage the agent and assigned undesired behaviours with negative values 

to penalize the agent. Thus, the agent will seek long-term and maximum overall 

reward to achieve an optimal solution. 

 

Table 2.2: Difference between reinforcement learning and supervised learning. 

Reinforcement Learning Supervised Learning 

Decision is made depending on 

the state of the current input 

and the next input depends on 

the output of the previous input 

Decision is made on the initial 

input given at the start 

Decision is dependent of each 

other 

Decision are independent of 

each other 

Example : Chess game Example : Object recognition 

 

 The input of the reinforcement learning is where the initial state from 

which the model will start, and there are many possible outputs due to the variety 

of solutions to a particular problem. The training will proceed and is based on 

the input, where the model will return a state and the model is either rewarded 

or punished based on its output. The model of the reinforcement learning will 

continue to learn and the best solution is decided based on the maximum reward. 

 Reinforcement learning can be categorised into two types, which are 

positive reinforcement and negative reinforcement. Positive reinforcement will 

have a positive effect on the behaviour of an event and will increase its strength 

and frequency of that behaviour. This will maximize the performance of the 

algorithm and allowed it to sustain change for a longer period of time. On the 

other hand, negative reinforcement will strengthen the behaviour of the event 

due to a negative condition is stopped or avoided. The negative reinforcement 

will increase the behaviour and provide resistance to a minimum standard of 

performance. 

 

 In reinforcement learning, a state space defines all the possible state 

that the agent can be in. The state space could be discrete or continuous, and 
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contains all the information that will determine the next state such as the 

coordinates of the points, the maximum steps taken and the velocity of the points.  

 

 As compared to state space, an actions space only defines all possible 

action the agent could take. For instance, the action space describes the direction 

or action the point can take such as moving left, right, up or down. Thus, action 

space is usually finite and contains lesser elements as compared to the state 

space. 

  

 The transition probability is the probability of the agent to get from its 

current state, 𝑆𝑡  to the next state, 𝑆𝑡 + 1  and executed an action, 𝐴𝑡.  The 

transition probability indicates that the behaviour of the agent is probabilistic, 

and the agent might not behave as instructed. Thus, a reward or penalty system 

is applied to train the agent to behave in a certain way, and is an important 

component in Q-Learning.  

 

 The reward in reinforcement learning is a function of state and action 

such that the reward function is 𝑅(𝑆𝑡, 𝐴𝑡). The reward is an incentive to the 

agent to encourage it to reach its desired goal more quickly and efficiently. A 

positive reward is set for the desired state and a negative reward or penalty is 

set for each extra step taken by the agent. In practical situations, the reward 

system is not well defined, and is normally defines by gathering the information 

to estimate the rewards through running a large sample of random actions 

executed by the agent.  

 

 The policy takes the current state as an input and the action state as the 

output, and maps a state into an action. The agent will constantly interact with 

the environment and gather information about the reward it gets to maximize its 

total rewards. The agent will execute an action as specific states and search for 

the most optimal action to take for each state. 

 

2.4.7 Q-Learning 

In reinforcement learning, Q-Learning is a type of value-based learning 

algorithms, where the objective of the agent is to optimize the value function 
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suitable for each problem. The value function is similar to the reward function, 

but only access a particular action in any particular state for a given policy. The 

value function takes account of all future rewards the agent gets from executing 

a particular action and not just its current reward. A Q-table is created in a Q-

Learning process which will store all the Q value for each state and each 

possible action. 

 

 The learning process in Q-Learning has four steps, which are the 

initialization stage, space exploration stage, reward observing stage and the 

value function update stage. All the Q-values in the Q-table are first initialized 

to 0, where the agent has no knowledge about the environment around it. The 

agent will then continue exploring the environment through executing different 

actions at different states. There are various considerations to set how the agent 

should behave in this stage, such as if the agent is set to execute an action which 

always return the highest value function, the problem will definitely converge 

to a global minimum, but this process is slow. Therefore, for a large state action 

space, the agent is set to occasionally choose its action randomly, and there is a 

chance that this process will return the optimal value much faster. The epsilon 

greedy approach is one such process, where the epsilon has a probability to 

choose a random action than the action to maximize the value function. With 

epsilon greedy approach, the parameter epsilon, 𝜀  controls the amount of 

exploration and determines the randomness in action selections (Watkins, 1989). 

 During the exploration stage, the reward obtained from executing an 

action at state, 𝑆𝑡 to go to the next stage, 𝑆𝑡 + 1 is observed by the agent. It will 

then update the value function for that particular state and action pair by using 

the update rule as described by Equation 2.8, 

 

𝑄(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 ∗ [𝑅𝑡(𝑠, 𝑎) + 𝛾 ∗ (𝑚𝑎𝑥𝑄(𝑆𝑡 + 1, 𝛼)) −

                 𝑄(𝑆𝑡, 𝐴𝑡)]  (2.8) 

 

where the 𝑄(𝑆𝑡, 𝐴𝑡) at the left-hand side is the updated Q-value, and the one at 

the right-hand side is the original Q-value, 𝛼 is the learning rate, 𝑅𝑡(𝑠, 𝑎) is the 

reward an agent get for its current state and action, 𝛾 is the discount rate and 
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𝑚𝑎𝑥𝑄(𝑆𝑡 + 1, 𝛼) is the maximum future value at state, 𝑠 + 1 if the agent take 

the best action, 𝑎. In the update rule, the learning rate and the discount rate are 

two hyperparameters that requires tuning to improve the Q-Learning. The 

discount rate is a parameter to incentivize the agent to achieve its objective faster, 

as it discounts its future value at the next state, 𝑆𝑡 + 1 . The learning rate 

determines the weights for the current value as compared to its future value. 

 

2.5 Summary 

NIDC is an efficient solar concentrator design which minimizes the shading 

effect caused by adjacent facet mirrors. Thus, the AI integrated sun tracking 

algorithm can greatly increase the accuracy of predicting the sun position and 

reduce the tracking errors. Based on the literature review, a CPV system with 

AI integrated sun tracking algorithm can provide maximum incident solar 

radiation and increase the electricity generation. Furthermore, the AI sun-

tracking algorithm can reduce tracking errors by constantly adjusting the sun-

tracking system using reinforcement learning. 
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CHAPTER 3 

 

3 METHODOLOGY 

 

3.1 Introduction 

This chapter provides the details regarding the proposed artificial intelligent (AI) 

sun-tracking system. The deep learning model used in the sun-tracking system 

consists of YOLOv7 for object detection and Q-learning for motor control. The 

training process of the deep learning model is discussed. Unfortunately, the AI 

sun-tracking algorithm is not able to be tested in real-time as the CPV system 

was not able to be built in time. 

 

3.2 System Design of the AI Sun-Tracking System 

The proposed AI sun-tracking system is used in the CPV system consisting of a 

NIDC prototype installed at the rooftop at KB Block, Universiti Tunku Abdul 

Rahman (UTAR), Sungai Long Campus. The NIDC prototype consists of an 

array of 8 × 8 mirrors with the centre 4 removed to avoid being blocked by the 

target, and requires 60 mirrors in total. The dimension of one facet mirror is 

120 𝑚𝑚 × 120 𝑚𝑚 and the focal distance is 1000 𝑚𝑚. Each mirror has a gap 

of 5 𝑚𝑚 between each other to avoid shading effect by adjacent facet mirrors. 

The NIDC prototype is adjustable and uses springs to adjust the height of each 

facet mirror, the same design used by Chong et al. (2017). A motor control unit 

that controls the two stepper motors are installed and is controlled by Arduino 

UNO.  

 

3.2.1 Design Architecture 

The design architecture for the AI sun-tracking system is as shown in Figure 3.1. 

In the AI sun-tracking system, a webcam with extension wire is used to capture 

the image frame and provides input to the embedded system for AI processing. 

A laptop will receive the input from the webcam and process the object detection 

algorithm to obtain the coordinates of the Sun. After the sun coordinate is 

obtained, the Q-learning algorithm is run to provide the minimum steps taken to 

reach the sun coordinate. A signal will then be sent to Arduino UNO to align 

the CPV system with the sun coordinate. The CPV position will constantly 
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feedback to the system throughout the day and sent a signal to the hardware 

control of the motor driver to adjust the tilt axis and roll axis. 

 

 

Figure 3.1: Design architecture for the AI sun-tracking system. 

 

3.2.2 Motor Control Unit 

The motor control unit is designed to control the tilting angle and rolling angle 

of the CPV system. This unit consists of a microcontroller unit, stepper motor 

drivers, absolute encoder and stepper motors. An Arduino UNO will be used as 

the microcontroller unit to produce pulse width modulation (PWM) pulse to 

control the speed of the stepper motors. A PWM is a technique to obtain 

analogue values by using digital control to create a square wave and the signal 

is switched between on and off. Thus, the speed of the stepper motor can be 

controlled by simulating this on-off pattern which affects the signal speed of the 

microcontroller.  

 

 Two CSD2120-P VEXTA stepper motor drivers will be used to control 

the rotating direction of each motor individually in the clockwise or 

anticlockwise direction. The stepper motor driver is connected to one 

PK296A2-SG36 Oriental Motor stepper motor each, which provides 12 Nm 

torque. The stepper motor will then be connected to a gearbox which provides 

tilt-roll rotation. One of the stepper motors is installed at the tilt shaft to rotate 

the tilt rotation, while the other stepper motor is installed at the roll shaft to 

rotate the roll rotation.  

 

3.2.3 Arduino 

An Arduino code is written to receive the signal generated from the AI sun-

tracking algorithm. The step size of the motor is 0.05° per revolution which 
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provides 7200 number of steps in one revolution. The Stepper library from 

Arduino is imported to the code, which provides the function ‘Stepper’, 

‘setSpeed’ and ‘step’. The minimum steps per move is defined as 200 steps, 

which allow precise movement for the sun-tracking system. The motor at the tilt 

shaft is defined as motorA and the motor at the roll shaft is defined as motorB. 

The number of rotations per minute is set as constant using the function setSpeed 

and is set at 20 rotations per minute. 

 

 The PIN connections of the Arduino UNO is as shown in Figure 3.2, 

where the PIN 9-12 is assigned to motor A, PIN 4-7 to motor B, and PIN 2, A0, 

A1, GND and 5V is assigned to the joystick. Two types of mode of tracking are 

created for the AI sun-tracking system, which are (i) Manual Tracking and (ii) 

Auto Tracking. In Manual Tracking, the CPV is controlled using the joystick 

connected to the Arduino UNO. The Manual Tracking is used to pre-set the 

initial position of the CPV to orientate towards the Sun or manually adjust the 

position of the CPV.  

 

 In Auto Tracking, the CPV is controlled by the AI system, which 

consists of the YOLOv7 object detection algorithm and the Q-Learning 

reinforcement learning algorithm. The YOLOv7 will obtain the coordinates of 

the Sun and passed the coordinates to Q-Learning. This will allow Q-Learning 

to get the minimum steps required for the CPV to align with the coordinates of 

the Sun. The Arduino UNO will receive the minimum steps required and 

orientate the CPV to the correct position. 
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Figure 3.2: PIN connections for Arduino Uno in the AI sun-tracking system. 

 

3.3 AI Sun-Tracking System 

The sun-tracking system of the CPV consists of 2 cameras which are use to 

capture images for computer vision. The 2 cameras are located at the center of 

the NIDC and at the target holder facing the sky. Once the image frame is 

captured, YOLOv7 algorithm will obtain the coordinate of the Sun for sun-

tracking. The sun coordinate is then processed using Q-learning to determine 

the minimum steps required to reach the sun coordinate from its current position. 

This chapter outlines the deep learning process for the AI sun-tracking system 

while Figure 3.3 shows the flowchart of the AI sun-tracking system. 
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Figure 3.3: Flow chart of the AI sun-tracking algorithm. 

 

3.3.1 Custom Dataset of Sun and Clouds 

A custom dataset consisting of the class ‘sun’ and ‘clouds’ are created using the 

labelImg software. The labelImg is a graphical image annotation tool and is used 

to label classes of objects by drawing bounding boxes over the target class. A 

total of 300 images of sun and clouds are taken in various orientations and also 

at different location and time to construct a model that can resists noise and 

environmental changes. The dataset is divided with a 70:30 ratio, where 210 

images are used for training and the remaining 90 images are used for validation. 

Figure 3.4 shows the examples of images of sun and clouds within the dataset.  
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Figure 3.4: Nine samples of dataset which contains the class ‘sun’ and ‘clouds’. 

 

 The bounding box is drawn over the object for labelling according to 

their classes as shown in Figure 3.5. The dataset is then saved in a txt file in 

YOLO format in the same directory as defined for the images. A classes.txt file 

is saved to the same directory, and the file defines the list of class names defined 

for the YOLO labels. The predefined classes which are the ‘sun’ and ‘clouds’ 

for this custom dataset is added in data/predefined_classes.txt. An example of 

the txt file of a labelled image is shown in Figure 3.6 and contains information 

of the class labelled and also the coordinates of the four corners of a bounding 

box. 
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Figure 3.5: Preparation of dataset in labelImg by drawing bounding boxes over 

the target classes ‘sun’ and ‘clouds. 

 

 

Figure 3.6: Text file containing the coordinates of the bounding box of the 

target class. ‘0’ represents the class ‘sun’ and ‘1’ represents the class 

‘cloud’. 

 

3.3.2 Model Training for Object Detection 

The YOLOv7 model is trained in Google Colab with GPU accelerator, which 

provides training speed that is 10 times faster for each step compared to a model 

trained using CPU only. Once the dataset is prepared as discussed in the 

previous subsection, the path of the txt file of each labelled image is written into 

a new txt file which contains the path of all the txt file of the labelled image.  

 

 Transfer learning is the most efficient way to be implemented to train 

the AI model. It can improve the performance of the neural network as it 

transfers the knowledge gained from previous trainings to its current task. To 

start the model training, the command as shown in Code Listing 3.1 is run in 
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Google Colab. The yolov7_training.pt weights file is used for transfer learning 

as it can reduce the time and size of dataset of the training process. To get a 

good AI model for object detection, the training process is run for 100 epochs 

with different batch sizes. The batch size that gives us the highest mean average 

precision (mAP) and lowest loss function will be chosen for the object detection 

model. 

 

!python train.py --workers 8 --device 0 --batch-size 4 --data data/custom.yaml --

img 640 640 --cfg cfg/training/yolov7_custom.yaml --weights 'yolov7_training.pt'  

--hyp data/hyp.scratch.custom.yaml --epochs 100 

Code Listing 3.1: Command to run training in Google Colab. 

 

3.3.3 Model Training for Reinforcement Learning 

Q-learning is chosen as the reinforcement learning for motor control in the 

proposed AI sun-tracking system. The code for Q-learning is written in Jupyter 

Notebook for both training process and motor control process. Before the Q-

learning starts the training process, some function class and dependencies are 

defined. The class ‘MOVINGPOINT’, ‘MOVINGTARGET’ and 

‘CENTERTARGET’ is defined for the environment and the agent. The class 

‘MOVINGPOINT’ is defined for the function to extract the sun coordinate from 

the YOLOv7 algorithm. The function ‘move’ is also assigned to the class 

‘MOVINGPOINT’ to send signal to Arduino to move the motors clockwise or 

anticlockwise. The class ‘CENTERTARGET’ is defined to provide the 

midpoint of the camera for the agent to move from the midpoint to the sun 

coordinate. The class ‘MOVINGTARGET’ is defined to be a randomised point, 

which defined the path taken for the agent to move from the CENTERTARGET 

to the MOVINGPOINT. 

 

 Before the training for Q-learning, the training parameters such as the 

episodes, rewards, maximum steps, learning rate and discount is set. The pixel 

size of the Q-learning process is set to match the pixel size frame of the webcam, 

where the XSIZE and YSIZE are 640 and 480 respectively. The number of 

episodes for the training set at 500000 and the maximum step per episode is 460 

which is the distance between the corners of the screen size and the midpoint. 
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The MOVE_REWARD and MOVE_PENALTY is set as 10 and 5 respectively, 

and the ON_TARGET_REWARD is set as 1000. The learning rate is 0.1 and 

discount is 0.95.  

 

 In the function ‘motormove’, the agent is trained to move from the 

centre point to the target point through a series of rewards. A Q-table is used to 

determine the behaviour of the agent, where the agent will be rewarded if the 

new distance is smaller than the old distance such that it will always move closer 

to the target point. If the agent reaches the target point, a larger reward called 

‘ON_TARGET_REWARD’ is assigned to the agent to encourage the agent to 

stay at the target point and discouraged from leaving. The new distance is 

constantly added into the Q-table, and if the new Q-value is not the 

ON_TARGET_REWARD, the new Q-value is calculated by: 

 

𝑛𝑒𝑤𝑞 = (1 − 𝐿𝐸𝐴𝑅𝑁𝐼𝑁𝐺𝑅𝐴𝑇𝐸) ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑞 + 𝐿𝐸𝐴𝑅𝑁𝐼𝑁𝐺𝑅𝐴𝑇𝐸 ∗ (𝑟𝑒𝑤𝑎𝑟𝑑 +

𝐷𝐼𝑆𝐶𝑂𝑈𝑁𝑇 ∗ max _𝑓𝑢𝑡𝑢𝑟𝑒_𝑞)   (3.1) 

 

The loop will only break when the reward is equal to the 

ON_TARGET_REWARD.  

 

 The training process of Q-learning starts by creating a new Q table to 

save the Q values of the training process for the motor control process. An empty 

array is used to save the rewards for each episode, where the initial reward given 

to the agent is zero. The epsilon for each episode is given by  

 

 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗ 𝑑𝑒𝑐𝑎𝑦𝑒𝑝𝑖𝑠𝑜𝑑𝑒   (3.2) 

  

where the future episode is the product of the current epsilon and the episode 

decay. To get a better model, the greedy epsilon approach is chosen where the 

behaviour of the agent is determined by a random generated number. If the 

generated number is larger than the epsilon, the agent will use the Q values to 

determine its next move. However, if the generated number is lesser than the 

epsilon, the next move of the agent is determined randomly. The whole training 
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process is shown visually as shown in Figure 3.7 where the blue point is the 

CENTERTARGET and the green point is the MOVINGTARGET.  

 

 

Figure 3.7: Visualisation of the MOVINGTARGET to move from the 

CENTERTARGET to the MOVINGTARGET. The blue  point is 

the CENTERTARGET while the green point is the 

MOVINGTARGET. 

 

3.3.4 AI Sun-Tracking Algorithm 

There are two machine learning algorithm that is used in the AI sun-tracking 

system which are YOLOv7 and Q-learning. The two algorithms are not 

connected to each other and can only perform their own tasks separately. 

Therefore, a python script is required to integrate both of the machine learning 

algorithm and form a complete AI sun-tracking algorithm. This AI sun-tracking 

algorithm can provide real-time sun tracking and will constantly adjust the 

position of the CPV and always face it towards the sun. The AI sun-tracking 

algorithm is connected to the Arduino UNO by using the serial library, the port 

and baudrate is set as ‘COM3’ and ‘115200’ respectively which is the same in 
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the Arduino code. The baudrate is set at 115200 which transfers at a speed of 

11520 bytes/s to allow for faster connection between laptop and Arduino. 

 

 The algorithm will first load the class functions and dependencies for 

both YOLOv7 and Q-learning as explained in the previous subsections. In order 

to create a connection between Jupyter Notebook and Arduino, functions 

‘write_read’ and ‘sendsignal’ is created to send the signal created by the AI sun-

tracking algorithm to the Arduino for motor control. This signal is defined as 0, 

1, 2 and 3 which are the movement options for the CPV system, which translates 

to the clockwise and anticlockwise movement of the tilt and roll motors.  

 

 The detect.py file of the official YOLOv7 is modified to include both 

object detection and Q-learning. The function ‘plot_box_point’ is created to plot 

the midpoint of the bounding box. This midpoint is useful as it extracts the 

coordinate of the centre point of the target, which is the sun in our case. Once 

the classes and dependencies are set up, a pipeline for the object detection of 

sun and clouds is created. The video frames are capture and is processed by the 

object detection to obtain the sun coordinate. Once the sun coordinate is 

obtained, the loop for the Q-learning will start to determine the minimum steps 

taken to reach the target point. The Arduino function will then send the signal 

which are the movement of the CPV from Jupyter Notebook to Arduino.  

 

 The Python script is saved to a file called detect.py and the command 

in Code Listing 3.2 is run in Jupyter Notebook for real-time object detection and 

automatic motor control.  

 

!python finaldetect.py --weights best.pt --img 640 --conf 0.30 --source 0 --classes 0 --

no-trace 

Code Listing 3.2: Command to run AI sun-tracking algorithm in Jupyter 

     Notebook. 

 

3.4 Summary 

The whole process of the AI sun-tracking system is outline in this chapter, which 

consisted of the object detection and reinforcement learning algorithm. 
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YOLOv7 is chosen as the object detection algorithm while Q-learning is chosen 

for motor control in this proposed AI sun-tracking system. The process for the 

deep learning model training is introduce for both YOLOv7 and Q-learning. A 

new python script is created for the AI sun-tracking algorithm is created to 

integrate both the YOLOv7 and Q-learning algorithms.  

 



37 

CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, the results of the deep learning training for the sun-tracking 

system will be discussed, which includes the deep learning model training for 

YOLOv7 and Q-learning. The model performance of the integrated AI sun-

tracking system is discussed in detail. The model will be tested for different 

situations such as during a clear and sunny days, during sunsets and also during 

cloudy days.  

 

4.2 Performance of the Model Training 

The deep learning models used in this AI sun-tracking system are YOLOv7 for 

object detection and Q-learning for the motor control. As discussed in 

Methodology section, the training process for YOLOv7 is conducted in Google 

Colab for utilising its free GPU option to reduce training time. The training 

process for Q-learning is conducted in Jupyter Notebook, while the visualisation 

of the agent moving from the CENTERTARGET to the MOVINGPOINT is 

shown using the OpenCV module. The training of both of the deep learning 

models will be discussed in details, and compared it to different situations such 

as different batch sizes. 

 

4.2.1 YOLOv7 

In machine learning, one of the difficulties is to create a generalized model that 

is good in predicting new data that are not available in the training process. 

However, through performance visualization, it can help to create a better 

generalized model by visualizing the learning curve of the deep learning model. 

The learning curve is visualised by plotting the learning performance against its 

experience. The model evaluated the training and validation dataset after each 

update and shows the learning curves.  

  

 The performance of a deep learning model can be evaluated by 

observing the model loss plot where the loss is plotted against number of epochs. 
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However, a model can have poor performance due to overfitting and 

underfitting, where overfitting refers to a model that is trained too well and 

underfitting refers to a model that can neither train data or generalize new data. 

Therefore, the model loss plot is important to evaluate the model and changes 

can be made to hyperparameters such as learning rate and number of layers in a 

network to improve the deep learning performance. 

 

 Figure 4.1 shows the transfer learning progress for YOLOv7 in Google 

Colab by utilising its GPU option to speed up the training process. The YOLOv7 

model is trained with a batch size of 4 and is trained for 100 epochs. After the 

completion of the model training, the mAP for each class is given as shown in 

Figure 4.2. The model training is repeated with different batch sizes and is 

trained for 100 epochs.  

 

 

Figure 4.1: Transfer learning for YOLOv7 model on Google Colab with batch 

size of 4 and 100 epochs. 
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Figure 4.2: Completion of the training for YOLOv7 model on Google Colab 

with batch size of 4 and 100 epochs. 

 

 One of the parameters that can affect the performance of a 

convolutional neural network is the batch size of the deep learning model. 

Therefore, the mAP of the transfer learning for YOLOv7 is plotted against the 

epochs for different batch sizes as shown in Figure 4.3. Generally, it is shown 

that the accuracy of a model increases with the number of batch size (Radiuk, 

2017). However, in the model training for the custom dataset of sun and clouds, 

the mAP is not in an increasing trend, where the lowest batch size which is 4 

shows the highest mAP. This situation may be due to the low number of sample 

size, as the largest batch size the laptop used can handle is batch size of 16 and 

the training process is very long compared to other models. The higher mAP for 

batch size of 4 may also be due to the fact that the mAP for batch size 4 is at a 

local maximum, thus more batch size is required to obtain an increasing trend. 

Thus, the increasing trend may be visible when a large amount of batch size is 

present. It is also shown that the effect of batch size on the accuracy of the model 

may varied with the dataset used (Masters & Luschi, 2018). Table 4.1 also 

shows the mAP for all classes and the time taken to complete the training. 
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Table 4.1: Comparison of YOLOv7 model on custom training dataset with 

different batch size. 

Batch Size mAP Average time per 

epoch/ s 

Total time used 

to train data/ h 

4 0.768 132.48 3.68 

8 0.757 130.93 3.63 

16 0.764 136.94 3.80 

 

 

Figure 4.3: Mean average precision (mAP) at 50% Intersection of Union (IoU) 

threshold for different batch sizes of 4, 8 and 16. Batch size of 4 

shows the best mAP score. 

 

 Another performance metrics that can evaluate the performance of a 

neural network is the loss curve graph. This graph gives us the details of the 

training process and the direction in which the network learns. As shown in 

Figure 4.4, the loss curve can show the learning rate of the model training, where 

the red curve shows a good learning rate. A good learning rate needs to have a 

steep or short learning curve, where the green curve shows the steepest curve 

indicating a high learning rate. The red curve is comparable to the loss curve as 

shown in Figure 4.5 which is the validation class plot of the training process for 

the custom dataset. This shows that the model training has a good learning curve, 

and indicates that a large amount of learning had taken place in a short period 

of time. Loss curves that have very high learning rate or learning rate are not 

desirable as the deep learning model might face issues in oversampling and 
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undersampling. Therefore, batch size of 4 is chosen for the model as it has the 

highest mAP and lowest loss. 

 

 

Figure 4.4: The effect of the learning rate on the loss of the deep learning model. 

 

 

Figure 4.5: The validation class loss for different batch sizes of 4, 8 and 16. 

Batch size of 4 shows the lowest validation class loss. 
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4.2.2 Q-Learning  

The Q-learning model training is run on Jupyter Notebook and the training 

process of the Q-learning is shown in Figure 4.6. Since the Q-learning has no 

previous Q-table, a new Q-table have to be created to store the Q-values from 

the training process. Therefore, the initial epsilon is set as 1 to train the Q-

learning model, where the future epsilon is the product of the current epsilon 

and epsilon decay as shown in Equation 3.2. In Figure 4.6, the mean episode 

rewards for every 1000 episodes are shown, where it is initially 1328 and 

gradually increase. This shows that during the initial training process, the agent 

has more penalty than rewards, which means that the agent is not able to reach 

its goal successfully. As there are insufficient Q-values, the agent tends to 

choose random values for the movement of the agent rather than using the values 

from the Q-table. However, as more Q-values are collected, the agent tends to 

use the Q-values, and therefore the rewards gained is increasing as the agent is 

able to reach its goal more effectively.  

 

 

Figure 4.6: Training process of the Q-learning in Jupyter Notebook. The epsilon 

is shown for every 1000 episodes, and the episode mean is shown. 

 

 The episode rewards obtained for every 1000 episodes is plotted as 

shown in Figure 4.7. The model is trained for 500000 episodes and the rewards 

obtained by the agent increases initially and   fluctuates between 3000 and 3250. 

This shows that the agent will initially tend to use random values to achieve the 

target, and store values in the Q-table. Once enough episodes are reached, the 

agent tends to use the values in the Q-table, and the rewards achieved start to 

fluctuate between 3000 and 3250.  
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Figure 4.7: Rewards obtained by the agent for every 1000 episodes for a 

training of 500000 episodes. 

 

4.3 Model Performance 

Once the model training of the AI sun-tracking algorithm is completed, the 

algorithm is evaluated based on several conditions. The effect of the confidence 

value on the detection of the AI sun-tracking algorithm will be evaluated. The 

algorithm is also tested on different weather conditions such as sunny, cloudy 

and sunset. The algorithm is considered successful if it is able to detect the Sun 

with high accuracy when the image is not available in the dataset used. 

 

4.3.1 Confidence Value for AI Sun-Tracking Algorithm 

It is shown in Figure 4.8 that the confidence level will affect the object detection 

algorithm where the Sun is detected in one but not in another. The confidence 

value reflects the probability of the bounding box containing the object of 

interest and how confident the classifier detects the object. The confidence value 

is zero when no object exists inside the bounding box. Therefore, the confidence 

level that is set will determine if the object is detected or not, and will only 

shows the detected object if the confidence value of the detected object is higher 

than the confidence value that is set for the detection algorithm.  
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Figure 4.8: Comparison between two images that is partially blocked by the 

cloud with different confidence level. The left image is at 

confidence level of 0.10 while the right image is at confidence level 

of 0.30.  

 

 However, there are cases when if the confidence value is set too low, 

wrong objects will be detected as shown in Figure 4.9. When the confidence 

value is set at 0.10, objects that are not the actual targeted object is detected. 

This might be due to the insufficient amount of training images, which may 

cause the algorithm to detect the wrong object due to it having similar shape, 

colour or brightness. However, this issue is settled when the confidence value 

is set at 0.30, where only the actual ‘Sun’ is detected. Therefore, the confidence 

value for the AI sun-tracking system will be set at 0.30. 
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Figure 4.9: Example of the wrongly detected object, where the left image 

wrongly detected the object while the right image only shows the 

correct detected object. The left image is at confidence level of 0.10 

while the right image is at confidence level of 0.30.  

 

4.3.2 Evaluating the Model at Different Conditions 

To evaluate the AI sun-tracking system for it to be able to detect the sun at all 

times, the AI algorithm is tested on a few images at different situations which 

are during sunny day, sunset or when the sun is partially blocked by the clouds 

as shown in Figure 4.10. It is shown that the sun is detected with high confidence 

level and is over 90% for each case. This means that the training of the object 

detection is successful and is able to detect objects in images that are not 

available in the dataset. The custom dataset for this project does not include too 

many images of the object at different conditions due to the difficulty in 

obtaining or capturing the image at that particular situation. However, a large 

amount of sample is needed to test the overall performance of the sun-tracking 

algorithm at different conditions. Once the sun is detected, the midpoint of the 

bounding box is obtained and is used for the Q-learning process for motor 

control. 
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Figure 4.10: Detection of the Sun at different situations. From left to right: (Left) 

Detection of Sun during sunny day, (Middle) Detection of Sun 

during sunset, (Right) Detection of Sun when partially blocked. The 

value beside the class ‘Sun’ is the confidence level of the detection 

algorithm, which is over 90% for each case. 

 

 The agent in the Q-learning has 4 movement options which are left, 

right, up and down. Once the midpoint of the sun is obtained, the agent will 

determine the path and minimum steps taken for the centre to reach the midpoint 

of the Sun which is shown in Figure 4.11. The movement of the agent will 

determine the signal sent to Arduino, which will control the clockwise and 

anticlockwise movement of the tilt and roll motors. With Q-learning, the same 

AI sun-tracking algorithm can be used in any type of sun-tracking system no 

matter if it’s a heliostat, flat PV or CPV system as the Q-learning can 

automatically adjust the position of the sun-tracking system to always have the 

sun coordinate at the centre point of the webcam. Encoders are also no longer 

required as the Q-learning can automatically and constantly feedback the errors 

and adjust the sun-tracker accordingly. 
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Figure 4.11: The path taken by the centre (centre point of camera) to reach the 

midpoint of the Sun and its corresponding steps taken. The path 

taken and minimum steps is determined for each sun detection as 

shown in Figure 4 from left to right. 

 

4.4 Summary 

The results for the training of the AI sun-tracking algorithm which consists of 

YOLOv7 and Q-learning are presented in this chapter. An in-depth analysis had 

been performed to evaluate the AI sun-tracking algorithm at different conditions. 

The AI sun-tracking system shows good performance even at different 

conditions such as when the sun is partially blocked. The AI sun-tracking 

algorithm can be used in any type of sun-tracking system and also eliminates 

the need of encoders for error feedback for motor control. Due to the absence of 

a physical setup of sun-tracking system, the model is only evaluated based on 

the performance of the deep learning model and various images at different 

conditions. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The AI sun-tracking system integrated object detection algorithm and 

reinforcement learning to detect the Sun and adjust the position of the sun-

tracking system. The YOLOv7 is chosen for object detection while Q-learning 

is chosen for reinforcement learning to control the motor. A custom dataset for 

the object detection is prepared which consists of a total of 300 images of sun 

and clouds. The deep learning training model for YOLOv7 is trained for 100 

epochs with different batch sizes, where the batch size of 4 is chosen due to its 

high mAP and low loss. After the training process for YOLOv7 in Google Colab, 

the Q-learning training process is trained in Jupyter Notebook for 500000 

episodes.  

 

 Once the training process for the AI sun-tracking algorithm is complete, 

the deep learning is evaluated under different conditions. It is shown that the 

confidence level will affect the object that is detected, where the detected object 

must have a confidence level higher than the confidence level that is set for the 

sun-tracking algorithm. The algorithm is also tested under different conditions 

such as during sunny day, sunset and also when the sun is partially blocked. It 

shows that the sun is detected under each condition and has a confidence level 

of over 90%. The Q-learning provides the minimum steps and the movement 

options of the agent to move from the centre point to the sun coordinate. It shows 

that the agent is successful in reaching its goal which is the coordinate of the 

Sun. 

 

 Through the evaluation of the AI sun-tracking algorithm, it shows that 

the AI integrated sun-tracking algorithm is suitable for any type of sun-tracking 

systems as the AI algorithm will learn by itself. Thus, it is no longer needed to 

create different formulas for each type of sun-tracking system. Furthermore, the 

external effects such as wind load does not affect the AI algorithm as it will 
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provide counter feedback to the Q-learning which will auto-correct the position 

of the CPV system. 

 

5.2 Recommendations for Future Work 

This project can be further improved to ensure the scenario where two suns will 

never appear, and only one sun coordinate is obtained. This can be done by first 

comparing the coordinate of the sun when only one sun is being detected with 

the coordinate of the suns when two sun is detected. The coordinate of the sun 

that is closest to the sun at previous time is chosen, where the coordinate of the 

other sun is ignored. This is due to the fact that the sun will not move too far 

apart within short time duration, therefore it is able to discard the other 

coordinate of the sun that is wrongly detected. 

 

 Once there is enough of data collected during the real-time operation 

of the AI sun-tracking system, a pattern of the movement of the sun throughout 

the day can be form. This allows us to predict the movement of the sun using 

another machine learning algorithm which can be the future work done for this 

study.  
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APPENDICES 

 

Appendix A: Final Artificial Intelligent (AI) Sun-Tracking Algorithm 

 

import argparse 

import time 

from pathlib import Path 

 

import cv2 

import torch 

import torch.backends.cudnn as cudnn 

from numpy import random 

 

from models.experimental import attempt_load 

from utils.datasets import LoadStreams, LoadImages 

from utils.general import check_img_size, check_requirements, check_imshow, 

non_max_suppression, apply_classifier, \ 

    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path 

from utils.plots import plot_one_box 

from utils.torch_utils import select_device, load_classifier, time_synchronized, 

TracedModel 

 

#Extra dependencies required for reinforcement learning 

import numpy as np 

from PIL import Image 

import matplotlib.pyplot as plt 

import pickle 

from matplotlib import style 

import time 

import serial #add Serial librart for Serial communication 

style.use("ggplot") 

 

#to connect Arduino 

arduino = serial.Serial(port='COM3', baudrate=115200, timeout=.1)#Create Serial port 

object called arduinoSerialData 
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#define parameter 

XSIZE = 640 

YSIZE = 480 

threshold_distance = 50# define threshold distance in pixel for the motor to run 

MOVE_PENALTY = 20 

MOVE_REWARD= 1  #Can be 0 

ON_TARGET_REWARD = 1000 

epsilon = 0 #0 for retraining and run the model 

EPS_DECAY = 0.9998  # Every episode will be epsilon*EPS_DECAY 

 

start_q_table = "qtable-1661796052.pickle" # None or Filename 

 

LEARNING_RATE = 0.1 

DISCOUNT = 0.95 

 

def write_read(x): 

    arduino.write(bytes(x, 'utf-8')) 

    time.sleep(0.05) 

    data = arduino.readline() 

    return data 

 

#send signal to arduino 

def sendsignal(desiredmove): 

    byte_command = write_read(desiredmove) 

    arduino.writelines(byte_command) #send a byte 

    time.sleep(0.05) # wait 0.5 seconds 

 

#functions required 

def SaveQtable(start_q_table,q_table): 

    if start_q_table != None: 

        with open(start_q_table, "wb") as f: 

            pickle.dump(q_table, f) 

            print("q_table is updated.") 

    else: 

        with open(f"qtable-{int(time.time())}.pickle", "wb") as f: 

            pickle.dump(q_table, f) 



54 

 

            print("New q_table is created.") 

             

# classes required 

# for environment and agent 

class MOVINGPOINT: 

    def __init__(self,Xcoordinate,Ycoordinate): 

        self.x = Xcoordinate 

        self.y = Ycoordinate 

    def __str__(self): 

        return f"{self.x}, {self.y}" 

 

    def __sub__(self, other): 

        return (self.x-other.x, self.y-other.y) 

 

    def action(self, choice): 

        ''' 

    Gives us 4 total movement options. (0,1,2,3) 

        ''' 

        if choice == 0: 

            #self.move(x=1, y=1)  

            self.move(x=1, y=0) 

             

        elif choice == 1: 

            #self.move(x=-1, y=-1) 

            self.move(x=-1, y=0) 

             

        elif choice == 2: 

            #self.move(x=-1, y=1) 

            self.move(x=0, y=1) 

             

        elif choice == 3: 

            #self.move(x=1, y=-1) 

            self.move(x=0, y=-1) 

 

    def move(self, x=False, y=False): 

        if not x: 
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           desiredmove = str(np.random.randint(3,6))#for 5, no horizontal movement) 

           sendsignal(desiredmove) 

        elif x == 1: 

           desiredmove = '3' #frame move left, target move right 

           sendsignal(desiredmove) 

        elif x == -1: 

           desiredmove = '4' #frame move right, target move left 

           sendsignal(desiredmove) 

        if not y: 

           desiredmove = str(np.random.randint(0,3))#for 0, no vertical movement) 

           sendsignal(desiredmove) 

        elif y == 1: 

           desiredmove = '2' #frame move down, target move up 

           sendsignal(desiredmove) 

        elif y == -1: 

           desiredmove = '1' #frame move up, target move down 

           sendsignal(desiredmove)      

             

class MOVINGTARGET(): 

    def __init__(self): 

        self.x = np.random.randint(0, XSIZE) 

        self.y = np.random.randint(0, YSIZE) 

    def __str__(self): 

        return f"{self.x}, {self.y}" 

 

    def __sub__(self, other): 

        return (self.x-other.x, self.y-other.y) 

     

    def action(self): 

        pass 

 

class CENTERTARGET(): 

    def __init__(self): 

        self.x = XSIZE//2 

        self.y = YSIZE//2 

    def __str__(self): 
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        return f"{self.x}, {self.y}" 

 

    def __sub__(self, other): 

        return (self.x-other.x, self.y-other.y) 

     

    def action(self): 

        pass 

 

#for loading or creating of Q-table 

if start_q_table is None: 

    # initialize the q-table# 

    q_table = {} 

    for i in range(-XSIZE+1, XSIZE): 

        for ii in range(-YSIZE+1, YSIZE): 

            q_table[(i, ii)] = [np.random.uniform(-5, 0) for i in range(4)] 

 

else: 

    with open(start_q_table, "rb") as f: 

        q_table = pickle.load(f) 

 

def motormove(moving_target,moving_point): 

    test_obs = moving_point - moving_target 

    test_distance = np.sqrt(test_obs[0]**2 + test_obs[1]**2) 

    if test_distance >= threshold_distance: #to avoid the movement of motor if it is 

within the threshold distance from the target 

        obs = moving_point - moving_target 

        old_distance = np.sqrt(obs[0]**2+obs[1]**2) 

        if np.random.random() > epsilon: 

            # GET THE ACTION 

            action = np.argmax(q_table[obs]) 

        else: 

            action = np.random.randint(0, 4) 

         

        moving_point.action(action) 

        new_obs = (moving_point-moving_target) 

        new_distance = np.sqrt(new_obs[0]**2+ new_obs[1]**2) 
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        if moving_point.x == moving_target.x and moving_point.y == moving_target.y: 

            reward = ON_TARGET_REWARD 

        elif new_distance < old_distance: 

            reward= MOVE_REWARD 

        else: 

            reward = -MOVE_PENALTY 

    

        max_future_q = np.max(q_table[new_obs]) 

        current_q = q_table[obs][action] 

     

        if reward == ON_TARGET_REWARD: 

            new_q = ON_TARGET_REWARD 

        else: 

            new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * 

(reward + DISCOUNT * max_future_q) 

            q_table[obs][action] = new_q 

 

 

def plot_box_point(x, img, color=None, label=None, line_thickness=None): 

    # Plots one bounding box on image img 

    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line 

thickness 

    color = color or [random.randint(0, 255) for _ in range(3)] 

    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) 

    midx = int ((c1[0]+c2[0])/2) 

    midy = int ((c1[1]+c2[1])/2) 

    Resolution=(img.shape[1],img.shape[0]) 

    centre=(int(Resolution[0]/2),int(Resolution[1]/2)) #define centre coodinate of the 

picture 

    cv2.circle(img, (centre[0],centre[1]), radius=3, color=(255,0,255), thickness = -1) 

#to plot centre point on the image 

    cv2.circle(img, (midx,midy), radius=3, color=(0,0,110), thickness = -1) 

    cv2.rectangle(img, c1, c2, color, thickness=tl) 

    if label: 

        tf = max(tl - 1, 1)  # font thickness 
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        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] 

        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 

        cv2.rectangle(img, c1, c2, color, -1)  # filled 

        cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, 

lineType=cv2.LINE_AA) 

 

 

def detect(save_img=False): 

    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, 

opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace 

    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images 

    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( 

        ('rtsp://', 'rtmp://', 'http://', 'https://')) 

 

    # Directories 

    save_dir = Path(increment_path(Path(opt.project) / opt.name, 

exist_ok=opt.exist_ok))  # increment run 

    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # 

make dir 

 

    # Initialize 

    set_logging() 

    device = select_device(opt.device) 

    half = device.type != 'cpu'  # half precision only supported on CUDA 

 

    # Load model 

    model = attempt_load(weights, map_location=device)  # load FP32 model 

    stride = int(model.stride.max())  # model stride 

    imgsz = check_img_size(imgsz, s=stride)  # check img_size 

 

    if trace: 

        model = TracedModel(model, device, opt.img_size) 

 

    if half: 

        model.half()  # to FP16 
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    # Second-stage classifier 

    classify = False 

    if classify: 

        modelc = load_classifier(name='resnet101', n=2)  # initialize 

        modelc.load_state_dict(torch.load('weights/resnet101.pt', 

map_location=device)['model']).to(device).eval() 

 

    # Set Dataloader 

    vid_path, vid_writer = None, None 

    if webcam: 

        view_img = check_imshow() 

        cudnn.benchmark = True  # set True to speed up constant image size inference 

        dataset = LoadStreams(source, img_size=imgsz, stride=stride) 

    else: 

        dataset = LoadImages(source, img_size=imgsz, stride=stride) 

 

    # Get names and colors 

    names = model.module.names if hasattr(model, 'module') else model.names 

    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] 

 

    # Run inference 

    if device.type != 'cpu': 

        model(torch.zeros(1, 3, imgsz, 

imgsz).to(device).type_as(next(model.parameters())))  # run once 

    t0 = time.time() 

    for path, img, im0s, vid_cap in dataset: 

        img = torch.from_numpy(img).to(device) 

        img = img.half() if half else img.float()  # uint8 to fp16/32 

        img /= 255.0  # 0 - 255 to 0.0 - 1.0 

        if img.ndimension() == 3: 

            img = img.unsqueeze(0) 

 

        # Inference 

        t1 = time_synchronized() 

        pred = model(img, augment=opt.augment)[0] 
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        # Apply NMS 

        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, 

classes=opt.classes, agnostic=opt.agnostic_nms) 

        t2 = time_synchronized() 

 

        # Apply Classifier 

        if classify: 

            pred = apply_classifier(pred, modelc, img, im0s) 

 

        # Process detections 

        for i, det in enumerate(pred):  # detections per image 

            if webcam:  # batch_size >= 1 

                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count 

            else: 

                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) 

 

            p = Path(p)  # to Path 

            save_path = str(save_dir / p.name)  # img.jpg 

            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else 

f'_{frame}')  # img.txt 

            s += '%gx%g ' % img.shape[2:]  # print string 

            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh 

            if len(det): 

                # Rescale boxes from img_size to im0 size 

                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() 

 

                # Print results 

                for c in det[:, -1].unique(): 

                    n = (det[:, -1] == c).sum()  # detections per class 

                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string 

 

                # Write results 

                for *xyxy, conf, cls in reversed(det): 

                    if save_txt:  # Write to file 

                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-

1).tolist()  # normalized xywh 
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                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label 

format 

                        with open(txt_path + '.txt', 'a') as f: 

                            f.write(('%g ' * len(line)).rstrip() % line + '\n') 

 

                    if save_img or view_img:  # Add bbox to image 

                        label = f'{names[int(cls)]} {conf:.2f}' 

                        plot_box_point(xyxy, im0, label=label, color=colors[int(cls)], 

line_thickness=3) 

                        if names[int(cls)]=='sun': 

                            c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])) 

                            Xcoordinate = int ((c1[0]+c2[0])/2) 

                            Ycoordinate = int ((c1[1]+c2[1])/2) 

                            centertarget = CENTERTARGET() 

                            moving_point = MOVINGPOINT(Xcoordinate,Ycoordinate) 

                            motormove(centertarget,moving_point) 

 

            # Print time (inference + NMS) 

            #print(f'{s}Done. ({t2 - t1:.3f}s)') 

 

            # Stream results 

            if view_img: 

                cv2.imshow(str(p), im0) 

                cv2.waitKey(1)  # 1 millisecond 

 

            # Save results (image with detections) 

            if save_img: 

                if dataset.mode == 'image': 

                    cv2.imwrite(save_path, im0) 

                    print(f" The image with the result is saved in: {save_path}") 

                else:  # 'video' or 'stream' 

                    if vid_path != save_path:  # new video 

                        vid_path = save_path 

                        if isinstance(vid_writer, cv2.VideoWriter): 

                            vid_writer.release()  # release previous video writer 

                        if vid_cap:  # video 
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                            fps = vid_cap.get(cv2.CAP_PROP_FPS) 

                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) 

                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) 

                        else:  # stream 

                            fps, w, h = 30, im0.shape[1], im0.shape[0] 

                            save_path += '.mp4' 

                        vid_writer = cv2.VideoWriter(save_path, 

cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) 

                    vid_writer.write(im0) 

 

    if save_txt or save_img: 

        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 

'labels'}" if save_txt else '' 

        #print(f"Results saved to {save_dir}{s}") 

 

    print(f'Done. ({time.time() - t0:.3f}s)') 

 

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', 

help='model.pt path(s)') 

    parser.add_argument('--source', type=str, default='inference/images', help='source')  

# file/folder, 0 for webcam 

    parser.add_argument('--img-size', type=int, default=640, help='inference size 

(pixels)') 

    parser.add_argument('--conf-thres', type=float, default=0.25, help='object 

confidence threshold') 

    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for 

NMS') 

    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or 

cpu') 

    parser.add_argument('--view-img', action='store_true', help='display results') 

    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') 

    parser.add_argument('--save-conf', action='store_true', help='save confidences in --

save-txt labels') 
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    parser.add_argument('--nosave', action='store_true', help='do not save 

images/videos') 

    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, 

or --class 0 2 3') 

    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic 

NMS') 

    parser.add_argument('--augment', action='store_true', help='augmented inference') 

    parser.add_argument('--update', action='store_true', help='update all models') 

    parser.add_argument('--project', default='runs/detect', help='save results to 

project/name') 

    parser.add_argument('--name', default='exp', help='save results to project/name') 

    parser.add_argument('--exist-ok', action='store_true', help='existing project/name 

ok, do not increment') 

    parser.add_argument('--no-trace', action='store_true', help='don`t trace model') 

    opt = parser.parse_args() 

    print(opt) 

    #check_requirements(exclude=('pycocotools', 'thop')) 

 

    with torch.no_grad(): 

        if opt.update:  # update all models (to fix SourceChangeWarning) 

            for opt.weights in ['yolov7.pt']: 

                detect() 

                strip_optimizer(opt.weights) 

        else: 

            detect() 
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Appendix B: Arduino Code for Auto Tracking 

 

#include <Stepper.h> 

 

int numberofsteps = 360/0.05; //0.05 steps per rev 

int minimum_steps_per_move = 200; // define minimum steps per move 

 

//the shaft of the motor shoud facing down to know the clockwise and anticlockwise 

direction of the motor A and B 

Stepper motorAcw(numberofsteps, 8, 9); //for motor A rotate in clockwise direction 

Stepper motorAccw(numberofsteps, 10, 11);// for motor A rotate in counter-clockwise 

direction  

Stepper motorBcw(numberofsteps, 4,5);//for motor B rotate in clockwise direction 

Stepper motorBccw(numberofsteps, 6,7);// for motor B rotate in counter-clockwise 

direction 

 

int incomingByte; //variable stores serial data 

 

void setup()  

   {  

      motorAcw.setSpeed(20); 

      motorAccw.setSpeed(20); 

      motorBcw.setSpeed(20); 

      motorBccw.setSpeed(20); 

      Serial.begin(115200);  

      Serial.println("Connection established..."); 

 

   } 

  

void loop()  

   { 

     while (Serial.available()) 

        { 

           incomingByte = Serial.read(); 

           if ((incomingByte == '0') || (incomingByte == '5')) 

           { 



65 

 

           Serial.println("No movement is done."); 

        } 

     else if (incomingByte == '1') //motorAcw 

     { 

        motorAcw.step(minimum_steps_per_move); 

        Serial.println("motor A move in clockwise success"); 

        Serial.println("Frame is moving down"); 

        Serial.println("Target is moving up");} 

              

     else if (incomingByte == '2') // motorAccw 

     {   motorAccw.step(minimum_steps_per_move); 

        Serial.println("motor A move in counter-clockwise success"); 

        Serial.println("Frame is moving up"); 

        Serial.println("Target is moving down");} 

         

     else if (incomingByte == '3') // motorBcw 

     { 

        motorBcw.step(minimum_steps_per_move); 

        Serial.println("motor B move in clockwise success"); 

        Serial.println("Frame is moving left"); 

        Serial.println("Target is moving right");} 

              

     else if (incomingByte == '4') // motorBccw 

     {   motorBccw.step(minimum_steps_per_move); 

        Serial.println("motor B move in counter-clockwise success"); 

        Serial.println("Frame is moving right"); 

        Serial.println("Target is moving left");} 

   } 

        } 
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Appendix C: Arduino Code for Manual Tracking 

 

#include <Stepper.h> 

 

int numberofsteps = 360/0.05; //0.05 steps per rev 

int minimum_steps_per_move = 5000; // define minimum steps per move 

 

//the shaft of the motor shoud facing down to know the clockwise and anticlockwise 

direction of the motor A and B 

Stepper motorAcw(numberofsteps, 8, 9); //for motor A rotate in clockwise direction 

Stepper motorAccw(numberofsteps, 10, 11);// for motor A rotate in counter-clockwise 

direction  

Stepper motorBcw(numberofsteps, 4,5);//for motor B rotate in clockwise direction 

Stepper motorBccw(numberofsteps, 6,7);// for motor B rotate in counter-clockwise 

direction 

 

int VRx = A0; 

int VRy = A1; 

int SW = 2; 

 

int xPosition = 0; 

int yPosition = 0; 

int SW_state = 0; 

int mapX = 0; 

int mapY = 0; 

 

void setup()  

{ 

  pinMode(VRx, INPUT); 

  pinMode(VRy, INPUT); 

  pinMode(SW, INPUT_PULLUP);  

 

  motorAcw.setSpeed(20); 

  motorAccw.setSpeed(20); 

  motorBcw.setSpeed(20); 

  motorBccw.setSpeed(20); 



67 

 

   

  Serial.begin(9600);  

  Serial.println("Connection established..."); 

} 

 

void loop()  

{ 

  xPosition = analogRead(VRx); 

  yPosition = analogRead(VRy); 

  SW_state = digitalRead(SW); 

 

  mapX = map(xPosition, 0, 1023, -512, 512); 

  mapY = map(yPosition, 0, 1023, -512, 512); 

 

  if (mapX > 20) // motorAcw 

     { 

        motorAcw.step(minimum_steps_per_move); 

        Serial.println("motor A move in clockwise success");} 

              

     else if (mapX < -20) // motorAccw 

     {   motorAccw.step(minimum_steps_per_move); 

        Serial.println("motor A move in counter-clockwise success");} 

         

     else if (mapY > 20) // motorBcw 

     { 

        motorBcw.step(minimum_steps_per_move); 

        Serial.println("motor B move in clockwise success");} 

              

     else if (mapY < -20) // motorBccw 

     {   motorBccw.step(minimum_steps_per_move); 

        Serial.println("motor B move in counter-clockwise success");} 

   

  //Serial.print("X: "); 

  //Serial.print(mapX); 

  //Serial.print(" | Y: "); 

  //Serial.print(mapY); 
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  //Serial.print(" | Button: "); 

  //Serial.println(SW_state); 

 

  delay(100); 

   

} 


