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ABSTARCT 

 

 

 

 

 

Ever since the experimental realization of graphene, two-dimensional (2D) 

materials have been an attractive field of research and extensively studied. 2D 

materials have received excessive attention from the solid state and material 

science scientific communities due to their exceptional and interesting 

electronic and mechanical properties. In this project, first-principles calculations 

based on density-functional theory (DFT) are performed using the Quantum 

ESPRESSO package to investigate the charge-induced electromechanical 

properties of 2D transition metal dichalcogenides (TMDCs), namely Niobium 

Disulfide (NbS2) and Niobium Diselenide (NbSe2), alongside with XCrySDen 

to visualize the atomic structures. The calculations are carried out to analyze the 

actuation responses such as stress and strain generated by the 2D materials in 

the case of charge doping. These results provide an important insight into their 

excellent properties as electromechanical actuators, making them attractive 

candidates and useful for artificial muscle applications.
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Introduction to Two-Dimensional (2D) Material 

Two-dimensional layered materials or 2D materials is defined as a family of 

crystalline materials comprise of only a single atom-thick layer, or in other 

words, a monolayer. The group of 2D materials are usually classified into either 

single element allotropes with the suffix “-ene” such as borophene or 

compounds of various elements with the suffixes “-ide” or “-ane”. Some 

examples of commonly known 2D materials are shown in Fig. 1.1 below. 

 

Figure 1.1: Atomic structures of some general 2D materials (Xuanye Leng et.al., 

2021) 

 

2D materials have been an attractive field of research and extensively studied 

ever since the experimental realization of graphene, a single atom layered 

graphite, by physicists Andre Geim and Konstantin Novoselov from University 

of Manchester, England back in 2004 (Novoselov et al., 2004). This first ever 
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2D material was discovered by simply exfoliating graphite, its bulk form, by 

using scotch tape, which this process is now known as mechanical exfoliation. 

From that day onwards, 2D materials have received excessive attention from the 

solid state and material science scientific communities due to their exceptional 

and interesting properties. Nowadays, the 2D materials family has already 

expanded beyond graphene. As shown in Fig. 1.1, these are some of schematic 

structures of 2D materials known to mankind; Hexagonal boron nitride (h-BN), 

graphene oxide (GO), transition-metal dichalcogenide (TMDC), 2D metal oxide, 

graphene, and 2D perovskite, just to name a few. 

The 2D materials have been a promising material due to their unique 

properties. One of the many outstanding aspects of 2D materials is exhibiting 

high specific surface area. For example, the high specific surface area of 

graphene of approximately 2630 m2/g can be used as additives in 

supercapacitors (Xuanye Leng et.al., 2021). Moreover, graphene also has an 

electron mobility that is above 15,000 𝑐𝑚2𝑉−1𝑠−1 which allow quantum Hall 

effect in room-temperature (Geim and Novoselov, 2009). The effective mass of 

electron in graphene of zero is in relation to the band structure of graphene 

where it forms 6 Dirac point at the vertices of its Brillouin Zone (BC). There are 

other exceptional properties for graphene as well: For instance, a Young’s 

modulus of around 1 TPa, an intrinsic mobility of 200000 𝑐𝑚2𝑉−1𝑠−1 at room 

temperature materials (Xuanye Leng et.al., 2021). Unfortunately, the only 

drawback to graphene is its limitation in the ability to turn off for semiconductor 

applications. They are many more intriguing properties of 2D materials where 

we will discuss further in detail. 

2D materials are commonly mechanically exfoliated from its bulk form 

where monolayers are stacked and bonded by weak van der Waals between layer 

(Novoselov et al., 2005). Compared to their bulk counterparts, 2D materials not 

only have higher tensile strength and can withstand larger stress, but also exhibit 

direct band gap whereas when they are bonded by weak interlayer forces, they 

exhibit indirect band gap and can be easily displaced. The optoelectronic 

properties of 2D materials are also able to be modulated by straining and 

stretching the material. In these processes, the band gap can be shifted from 
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indirect to direct (Roldán et al., 2015), their band structure, density of states 

(DOS), and charge density can also be altered. (Garay-Tapia, Romero and 

Barone, 2012). 

With tolerable and rigid structures, extraordinary electronic properties, 

tuneable capability as well as superior conductivity, 2D materials have 

manifested optimistic potential in various fields such as optoelectronic devices, 

battery engineering and catalyst. However, as of writing this report, most of the 

applications are still constrained to laboratory scale. To obtain a commercially 

affordable and easily to fabricate 2D materials, the race to find one has been 

going on intensively ever since the sparked from graphene. Later in this report, 

Niobium-based transition-metal dichalcogenides has been selected as the 

subject of study for the next potential 2D material to replace silicon based 

electronic used today. 

 

1.2 Introduction to Transition Metal Dichalcogenides 

One of the most prominent types of material from the 2D family is the transition 

metal dichalcogenides (TMDCs). TMDC monolayers are compound 

monolayers in the form of 𝑀𝑋2 with M being a transition metal atom such as 

vanadium (V), niobium (Nb), molybdenum (Mo), titanium (Ti), tungsten (W) 

and others, combined with two X atoms of the chalcogen family, group 16 

elements, such as selenium (Se), sulphur (S), tellurium (Te) and others. Some 

examples of TMDC are 𝑁𝑏𝑆2, 𝑉𝑆𝑒2, 𝑇𝑎𝑆2 and 𝑀𝑜𝑆2. The interlayer force of 

TMDC monolayers is van-der-Waals attraction force, which is similar to that of 

graphene, so single atomic thick TMDC monolayers (which are slightly thicker 

than graphene) can also be exfoliated from their bulk form by mechanical or 

chemical means. TMDC has a range of conductivity, so they can be categorized 

into conductor, semimetal, semiconductor and insulator. This gives TMDC an 

advantage over graphene in electronics, optoelectronics, spintronics and 

semiconductors application. Among the TMDC materials, 𝑀𝑜𝑆2  is the most 

commonly known 2D material studied for its exotic properties. As shown in Fig. 

1.2 below, 1.79 eV of direct energy band gap is exhibited by MoS2. 
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Figure 2.2: Atomic structures of TMDC MoS2 (Johnny Wong., 2014) 

 

In 2011, the first 𝑀𝑜𝑆2 transistor with 0.65 𝑛𝑚 channel thickness and mobility 

of at least 200 𝑐𝑚2𝑉−1𝑠−1  which is comparable to that of graphene 

nanoribbons, was constructed (Radisavljevic et al., 2011). This achievement has 

demonstrated the potential of TMDC in flexible transistors, memory storage 

device, sensors and solar cell application. 

 

1.3 Problem Statement 

Ever since the realization of graphene in the form of carbon nanotube (CNT) 

can act as an electromechanical actuator in 1999, charge induced actuation of 

2D nanomaterials has captured the attention of the scientific community. To 

understand what an actuator does, our very own muscle, a natural muscle, is the 

perfect example of actuator with superb performance even though the stress 

generation ability of natural is as low as 0.35 MPa (Madden, 2004). 2D materials 

are now being investigated in order to search for a replacement for artificial 

muscles, also known as electromechanical actuator. 2D materials are potential 

candidates for electromechanical actuator due to their thermal stability, 

mechanical flexibility, unique electronic properties and large surface doping 

(Thanh et al., 2021; van Thanh et al., 2018).  

According to Xie et al. (2011), 2D graphene was reported to be the 

primary candidate for electromechanical actuator as it has superior strain that 

approaches 0.85%. Later, Lu et al. (2018) has reported an electromechanical 

actuator with higher strain of 6.03 % and energy density of 11.5 kJ/m3 using 2D 

graphydiyne-based 2D materials. For reference, a mammal’s skeletal muscle 
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has energy density of about 8 kJ/m3. Unfortunately, none of the materials 

mentioned above can be employed as artificial muscle in large-scale 

applications as they are extremely costly to fabricate and laborious to synthesize. 

As you can see, searching for an alternative 2D actuator material with lesser 

fabrication cost and larger strain would be a drastic priority in order to artificial 

muscles to be commercially available. 

For this report, first-principle calculations within density functional 

theory (DFT) are used to calculate the electromechanical properties of 2D 

TMDC materials as a charge doping function for carrier doping, which are 

electrons and holes doping. We are selectively interested in the charge induced 

actuation of 𝑁𝑏𝑆2  and 𝑁𝑏𝑆𝑒2  as these materials have been experimentally 

exfoliated from their bulk form and theoretically proven to exhibit high linear 

strain and high Young’s modulus. 

 

1.4 Aim and Objectives 

This FYP aims to study and investigate the electronic and mechanical structure 

of 2D Niobium based TMDCs which are 𝑁𝑏𝑆2 and 𝑁𝑏𝑆𝑒2 , plus their 

electromechanical properties as the result of charge induced actuation materials 

using first-principle study framework within the scope of density functional 

theory (DFT). Using first-principles calculations, we investigate 

electromechanical properties of two-dimensional (2D) hexagonal Niobium 

based TMDC 2D material. Four objectives have been set to meet this final goal.  

 

The first objective is to carry out literature review on 2D TMDCs as electrode 

material electromechanical or electrochemical actuator. Literature reviews are 

required to verify the properties of 𝑁𝑏𝑆2  and 𝑁𝑏𝑆𝑒2  on whether they are 

suitable for large-scale electromechanical or electrochemical actuation 

applications. 

 

The second objective is to study and carry out literature review on the 

mechanical and electronic properties of 2D TMDC materials. Literature review 

is crucial in allowing us to comprehend the properties of 2D 𝑁𝑏𝑆2 and 𝑁𝑏𝑆𝑒2, 
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which will guide us in predicting and understanding the properties of the 

materials at the end of our research. By simulating the TMDCs layers, the 

obtained results can be compared with the published results through the 

literature review and we can verify whether the parameters used are appropriate. 

 

The third objective is to construct the optimized crystal structure of the 2D 

TMDC materials. This is done obtaining the lattice parameters for 𝑁𝑏𝑆2 and 

𝑁𝑏𝑆𝑒2 after the literature reviews and having them as PWscf file inputs. The 

crystal structure parameters can also be obtained from 2dmatpedia via POSCAR 

format and displaying using XCrySDen. 

 

The fourth objective is to calculate the band structures and density of states 

(DOS) of the 2D TMDC materials. From the structural parameters, these can be 

computed using DFT calculations via Quantum Espresso’s plane wave function 

(pw.x). Understanding the stress-strain response of the 2D TMDC materials will 

provide us the understanding on how much strain can the material withstand 

before tearing down, and from there, we are able to obtain the maximum strain 

that we can apply to the 2D TMDC materials to tune its electronic properties, 

which we can then extend the applicability of the 2D TMDC materials 

 

1.5 Scope and Limitation of the Study 

The scope of this study is mainly to investigate the charge induced actuation of 

2D TMDC materials 𝑁𝑏𝑆2  and 𝑁𝑏𝑆𝑒2 .Their crystal structure and electronic 

properties such as band structures, density of states and lattice parameters are 

also studied by implementing the Density Functional Theory (DFT). All 

simulation calculations are carried out under the framework of DFT as 

implemented in Quantum Espresso using pseudopotentials retrieved from its 

homepage. The pseudopotentials are of the form of generalized-gradient 

approximation developed by Perdew-Burke-Ernzerhof (PBE). The cut-off 

kinetic energy of our plane was calculations was set to 80 Rydberg throughout 

the simulation whereas the k points grid used in this simulation were 5 ×5 ×1 
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for both 𝑁𝑏𝑆2 and 𝑁𝑏𝑆𝑒2. Despite having longer computation duration, using 

higher values of k points grid and cut-off kinetic energy will generate a more 

accurate result. 

I have faced several difficulties and limitations throughout my study 

for this project. One of the limitations faced is the lack of computational 

resources and computing power. In order for Quantum Espresso (QE) to 

compute the DFT calculations, it is recommended to have a 4 core CPU in order 

for the simulation to run smoothly. Therefore, to compromise with this project, 

I had to operate on a desktop PC to run all the simulations required as the laptops 

I have are insufficient in computing power. As a result, I had to sacrifice at least 

100 gigabytes of solid-state drive (SSD) storage in order to install and store 

Ubuntu and Quantum Espresso. SSD storage is not cheap as well, in order to 

allocate this much space, it is estimated to cost me around RM 150 solely for 

Ubuntu-Windows dual boot. Furthermore, the denser the k points grid used in 

the calculation, the longer it will take for the simulation to run. Therefore, as an 

effort to save time, I have used an adequate 5×5×1 k points grid for this 

simulation. However, in order to increase the accuracy of the results, I would 

have to increase the k points values. This will result in longer wait time and 

troublesome computing processes. 

Another limitation I faced is the lack of experience in using Linux 

operating system and Ubuntu. The process of installing Ubuntu onto my PC via 

dual boot was a tedious process and has taken me more than 48 hours to have it 

successfully installed without any major issues. Installing Ubuntu is very time 

consuming and there are also various bugs which inhibits my PC from running 

the operating system smoothly. At the end, I have spent roughly RM1300 to 

purchase a refurbished HP Z230 workstation for a store recommended by my 

supervisor solely for Linux and Ubuntu. This way, the issues with Windows-

Ubuntu dual boot can be resolved. 
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(2.1) 

(2.2) 

CHAPTER 2 

 

2 THEORETICAL BACKGROUND 

 

2.1 Density Functional Theory (DFT) 

 

When dealing with a many-body problem, it is often said to be tedious and time 

consuming where the interaction Hamiltonian of all the protons and electrons in 

the material has to be solved in the electronic ground state. Electronic structure 

methods can only deal with formidable problem using the fundamental 

equations for electrons and protons. To ease these troubles, Density Functional 

Theory (DFT) is then introduced based on the idea of Thomas-Fermi theory of 

electronic structure of atoms back in 1927. In general, DFT is a framework to 

approximate and calculate the electronic ground state energy and introduces the 

concepts of electron density to take intro account of the interactions between 

every particle in the many-body system. DFT is revolutionary as it drastically 

minimizes the complexity of the computation for the electronic, optical, 

magnetic and mechanical properties of atomic systems. 

 

2.1.1 Many-Body System 

 

To solve the Density Functional Theory (DFT), a system of numerous 

interacting electrons and nuclei has to be solved through a many-body 

Schrödinger equation in order obtain the electronic properties. 

 

 

 

The Hamiltonian of a many-body system can be described as: 
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(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

The Hamiltonian can also be denoted into different terms: 

 

 

where 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 The Hohenberg-Kohn (HK) theorems 

 

DFT’s framework is derived from two fundamental theorems by Pierre 

Hohenberg and Walter Kohn, who are the pioneers of DFT. Known as the 

Hohenberg-Kohn theorems, the 2 theorems are: 

Theorem 1: The external potential, ground state energy and thus the total 

energy is a unique functional of the electron density. This theorem describes 

that any ground state electron density can determine the potential and thus all 

the possible properties of the system, even the many-body system’s 

wavefunction. The universal functional of electron density of Hohenberg-Kohn 

theorem is defined as: 

 

𝐹[𝑛] = 𝑇[𝑛] + 𝑉𝑒𝑒[𝑛] (2.8) 

 

𝐹[𝑛] is the electron density functional where the 𝑇[𝑛] represents the kinetic 

energy functional and 𝑉𝑒𝑒[𝑛] represents the Coulombic interaction functional. 

Theorem 2: The overall functional that is corresponding to the solutions of the 
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Schrodinger equation delivers the ground-state energy of the system if and only 

if the input electron density that minimizes the energy (lowest energy) is the true 

ground-state electron density. To paraphrase, the energy content of the 

Hamiltonian will be at the absolute minimum value when the electron charge 

density is at the ground state. For any electron density that satisfies this integral: 

 

∫ 𝜌𝑡(𝒓)𝑑𝒓 = 𝑛 (2.9) 
 

Then for any positive number of electrons 𝑛, the density functional 𝐹[𝑛] can 

be described as  

 

           𝐸𝑣,𝑛[𝑛] = 𝐹[𝑛] + ∫ 𝑣(𝒓)𝑛(𝒓)𝑑3𝒓 

  
 

2.1.3 The Kohn-Sham equations 

 

We should be able to tell the exact solution for the ground state energy and 

electron density if we know the exact functional for it. However, it is unfortunate 

that the HK theorem is still impractical for exact calculations. Therefore, Walter 

Kohn and Lu Jeu Sham mapped together a system of non-interacting particles 

from a system of interacting particles with the same electron density. 

Now, we can solve the many-body problem via DFT using these steps. 

 

 

 

 

 

 

 

 

 

Figure 2.1: General steps to solve the DFT for self-consistency 

Figure 2.2 below demonstrates the sequences to solve the self-consistency  

(2.10) 
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solutions using Kohn-Sham equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Flow chart diagram for obtaining the Self-Consistent Field (SCF) 

calculation using Kohn-Sham equations 
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 𝑰 − 𝒓𝒊 

𝑁

𝐼,𝑖

 (2.11) 

(2.12) 

2.1.4 Born-Oppenheimer Approximation 

 

In order to solve the complex many-body time-independent SE above, it is best 

to consider the wave functions of a diatomic molecule’s nucleus and electron to 

be separated at a fixed distance. Proposed by Max Born and J. Robert 

Oppenheimer in 1927, the Born-Oppenheimer (BO) approximation assumes 

that the position of the nuclei in a system is fixed or “static”, while solving the 

SE equation for the dynamic electrons due to the relatively larger mass of 

nucleus compared to electron. Also known as the adiabatic approximation, the 

lighter electrons are realized to move much faster than the heavier nuclear ions. 

Thus, the motion of the two degrees of freedom can be decoupled and the 

nuclear kinetic energy can be neglected by having nucleus locked in place. 

Hence, to solve the static nuclear states and energies, the Hamiltonian is reduced 

to: 

 

 

 

 

2.1.5 Band Structure 

 

The band energy of the electrons must be dependent on the wave vector so as 

the wavefunctions of the electrons, the relation: 

휀𝑛,𝒌+𝑲 = 휀𝑛,𝒌 

Which the energy is dependent on the wave k vectors, also known as the band 

structure. 

 

2.1.6 Spin-Orbit Coupling 

 

The band structure of crystal lattice is heavily affected by the effect of the spin-

orbit (SO) coupling as it lifts the degeneracy for the bands. Due to the coupling 

of the spin angular momentum of electron in the atom and the orbital angular 

momentum, the Hamiltonian: 
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𝐻 𝑆𝑂 = −
1

2𝑚2𝑐2

1

𝑟

𝑑𝑽

𝑑𝑟
𝑆 ∙ 𝐿  (2.13) 

𝑔(𝜺) =  𝑔𝑛(𝜺)

𝑛

 

𝑔𝑛(𝜺) = ∫
𝑑𝒌

4𝜋3
𝛿(휀 − 휀𝑛(𝒌)) 

(2.14) 

𝐸𝑋𝐶
𝐿𝐷𝐴 = ∫ 𝑑3𝒓𝑛(𝒓)휀𝑥𝑐 (𝑛(𝒓)) (2.15) 

 

 

In SO coupling treatment in atoms, we treat the system to be a perturbation. The 

crystal structure’s symmetry can heavily influence the SO effects on the crystal 

structure, it will split the band structure that break the space inversion symmetry. 

 

2.1.7 Density of States (DOS) 

 

The number of energy state per energy per volume, also known as the density 

of states: 

 

 

 

 

 

 

2.1.8 Exchange-Correlation (XC) Functional 

 

KS equation is incomplete without the Exchange-Correlation (XC) functional 

to accurately map the many-body problem onto a system of non-interacting 

electrons. With the presence of electrons, the Pauli exclusion and motion 

restriction effect has been taken into account in the system. This calls for the 

effects exchange and correlation.  In Density Functional Theory, we replace the 

original many-body problem with the effects of exchange and correlation with 

XC function 𝐸𝑋𝐶(𝑛). 

 

DFT approximation was initially approximated using local density 

approximation (LDA). Regarding on how the DFT scheme is approximated, 

homogeneous gaseous electron’s XC energy is used for this purpose on the XC 

energy. Only the local electron density is considered, and to be equivalent to the 

density of the electron gas: 
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(2.16) 휀𝑥𝑐  𝑛(𝒓) = 휀𝑐 𝑛(𝒓) + 휀𝑥 𝑛(𝒓)  

𝐸𝑋𝐶
𝐺𝐺𝐴 = ∫ 𝑑3𝒓𝑛(𝒓)휀𝑥𝑐 (𝑛(𝒓), ∇n(𝐫)) (2.17) 

where 휀𝑥𝑐 is the XC energy density of the homogenous electron gas, where the 

system is neutral electrically with a uniform positive background charge. The 

XC energy can then be separated into 2 parts, exchange and correlation: 

 

 

In the less complicated case of homogenous gaseous electron system, 

there is only the exchange energy (휀𝑥) expression but no analytic expression for 

the correlation energy (휀𝑐). Occasionally, quantum Monte Carlo (MC) method 

has to be used to numerically estimate the correlation energy value. The issue 

with LDA functional is that it consists of errors in energy degeneracy and long-

range tails that will lead to local variation. The underestimation of band gaps, 

large cohesive energy and absorption energy overestimation are drawbacks of 

LDA which made it impossible to be applied in real system. 

 

Besides LDA, approximation attempts such as Generalized Gradient 

Approximation (GGA), meta-GGA and Hybrid functional are also implement 

in DFT to improve upon LDA. Taking the gradient of electron density into 

account, GGA is sometimes used to approximate the XC energy. GGA is a 

modification LDA due to the absence of simple functional forms unlike LDA. 

 

 

Unfortunately, the computational power required for these 

approximations are much higher than LDA. Not only that, these sophisticated 

functional doesn’t always produce more accurate result compared to LDA. 

Luckily, different variation of GGA such as s PW91 (Perdew and Wang 1992, 

Perdew et al. 1992) and advanced version of PW91: PBE (Perdew et al. 1996) 

are proposed for XC functional. In this case, the Perdew-Burke-Ernzerh (PBE) 

version of Generalized Gradient Approximation (PBE-GGA) functional is 

implemented. 

2.1.9 Bloch’s Theorem 

Discovered in 1929 and named after Felix Bloch, the Bloch’s theorem defines 

that in order to solve for the solutions to SE, they have to be in the form of plane 
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(2.18) 

(2.19) 

wave modified by periodic functions. These functions are known as Bloch 

functions, they serve as the electron’s basis for the states or wave functions in a 

crystal. 

𝜓(𝒓) = 𝑒𝑖𝒌∙𝒓𝑢(𝒓) 

 

𝜓(𝒓) are the eigenstates of a single-electron Hamiltonian and is specific for a 

constant reciprocal lattice vector k. Thus, this wave vector k can be constrained 

to the first Brillouin zone of the reciprocal lattice. 

 

2.1.10 Plane Wave 

 

Due to Bloch’s theorem, it is obvious for us to use planewaves to solve the KS 

equations in a many-body system. Using Bloch’s theorem, the wavefunction can 

be expressed in terms of plane waves and the Hamiltonian terms can then be 

expanded in their Fourier series terms: 

 

 

 

 

The G represents the reciprocal lattice vectors whereas 휀 represents the eigen-

energy in the KS equation. The 𝑐𝑖,𝒌+𝑮 is the expanded plane waves’ coefficient 

for its wave function. However, if a truncation is not used, the sum of the 

equation (2.19) can be infinite. Hence, a maximum energy cutoff has to be 

chosen so the basis set of plane waves can be finite in order for the KS equation 

to be solved with approximation methods. To solve the plane waves in the 

system, the number of electrons and cutoff energy heavily influence the 

computational cost. Therefore, pseudopotentials are implemented in order to 

lessen the burden of the computational power on the plane wave based DFT 

calculations. 
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(2.20) 𝑉𝑝𝑠(𝑟) = ∑| 𝑌𝑙𝑚  𝑉𝑙𝑚 (𝑟) 𝑌𝑙𝑚 | 

2.2 Pseudopotential 

 

Pseudopotentials is an approximation method to replace the tight core electrons 

bonding and strong Coulomb potential with a faint effective potential. The 

weaker pseudopotential allows the pseudo wavefunctions of the core electrons 

to be constructed smoothly (Sholl and Stecker, 2009). Pseudopotential is 

introduced to shorten the computation time to solve the KS equation with many 

plane waves. Norm-conserving, ultrasoft, and plane-augmented wave (PAW) 

are the 3 main variations of pseudopotentials. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: A graph of pseudopotential and its corresponding pseudo 

wavefunction 

 

2.2.1 Norm-conserving pseudopotential 

 

Norm-conserving pseudopotential function is a common but better selection for 

total energy calculations in modern plane-wave structure codes. Basis-set with 

lesser cut-off energy can be used:  

 

The superiority of this method can smooth out the wave function by enforcing 

2 conditions: norm of each pseudo-wavefunction are identical inside cut-off 

radius and all electron and pseudo wavefunctions are identical outside. 
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CHAPTER 3 

 

3 LITERATURE REVIEW 

 

3.1 Niobium Disulphide (NbS2) 

Out of the plethora of 2D TMDCs material family, the first material that we are 

interested in is niobium disulphide. IUPAC name, Niobium (IV) disulphide 

(NbS2), has attracted international attention for its enticing properties, 

anisotropic structure, and versatile application prospects. NbS2 appears as a 

black-greyish coloured solid crystal layer that undergoes the same mechanical 

exfoliation process to obtain its ultrathin 2D form like any other TMDCs. With 

a molar mass of 157.038 g/mol, density of 4.4 𝑔/𝑐𝑚3  and magnetic 

susceptibility (𝜒) of +120 ∙ 10−6𝑐𝑚3/𝑚𝑜𝑙 (Lide, D.R. ed.,2005), NbS2 layer 

exhibits a wide variety of electronic properties such as superconductivity, 

semiconducting characteristics and modifiable compositions where its physical 

and electronic properties can be influenced. The crystal structure of NbS2 is 

shown in Fig. 3.1 below. 

 

 

 

 

 

 

 

 

Figure 3.1 Crystal structure of NbS2 (Ossila) 

 

3.1.1 Structural Properties 

NbS2 comprises of quasi-two-dimensional layered structure, in other words, 

niobium (Nb) and sulphur form the sheets of NbS2 in the (ab)-plane in the form 

of S-Nb-S and stack on one another along c-plane. Fig. 3.1 above shows the 

atomic structure of 1T (trigonal) phase of NbS2. Depending on the film thickness 



18 

 

18 

 

 

from exfoliation process, NbS2 could exist in 3 different general phase or 

stacking polytypes: 1T (trigonal), 2H(hexagonal), and 3R (rhombohedral). The 

hexagonal 2H- NbS2 phase is the most common polytype where the hexagonal 

layers of S atoms stack one over another known as hexagonal packing with the 

sites between S atoms layers occupied by Nb in a trigonal-prismatic formation, 

thus forming a sandwiched layer structure. The interlayers are bound by van der 

Waals forces, which are weak forces, hence bulk NbS2 can be mechanically or 

liquid chemically exfoliated to obtain its 2D TMDCs nanosheets. Fig. 3.2 below 

shows the atomic crystal structure of each different types of phases for TMDCs. 

 

 

 

 

 

 

Figure 3.2: Types of TMDCs crystal structure and phases where transition metal 

atoms are shown in blue and chalcogen atoms are shown in yellow 

(Kim & Lee, 2018) 

 

According to Ossila, a chemical and material science supplier company, the two 

most commonly used and major types of packing are 2Н- NbS2 and 3R- NbS2 

as 1T phase is thermodynamically unfavoured. The crystal structure of 2H- and 

3R- phase NbS2 from various sources are shown in Table 3.1 below. Based on 

literature review, we can observe that the published values of the lattice 

parameters for both 2H-phase and 3R-phase have acceptable agreement. 

 

Sulphide Phase Space group 𝒂 = 𝒃 (Å) 𝒄 (Å) Sources 

NbS2 2H- NbS2 P63/mmc 3.310 11.89 Jellinek et al 

Nb1,39S2 2H- NbS2 P63/mmc 3.308 12.71 Kadijk & Jellinek 

NbS2 3R- NbS2 R3m 3.330 17.91 Morosin 

Nb1,06S2 3R- NbS2 R3m 3.329 17.91 Powell & Jacobson 

Table 3.1: Some examples of different types of phases and packings in NbS2 
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Figure 3.3: Crystal structures of 2H- NbS2 (Tissen et al., 2013) 

 

According to Tissen et al. (2013), the lattice parameters can be agreed upon 

comparison as 𝒂 = 3.321 Å  and 𝒄 = 11.761 Å . Fig 3.3 shown a 2Н- NbS2 

packing in general that has hexagonal symmetry and contains 2 layers of 

trigonal prisms flipped 180° with respect to each other. 

 

3.1.2 Electronic Properties 

The band structure and density of states of 2Н- NbS2 are shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Electronic Band Structure of 2Н- NbS2 (Doran et al., 2001) 
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Figure 3.5: Density of States (DOS) of 2Н- NbS2 (Doran et al., 2001) 

 

According to Ossila, 2Н- NbS2 and 3R- NbS2 exhibit metallic properties. More 

interestingly, 2Н- NbS2 polytype is a superconducting material with critical 

temperature of 6 K. As we can see from Fig. 3.4 above, the fermi energy level 

is not lying at the peak DOS according to Mattheiss but rather on the high-

energy side of an asymmetric curve. The saddle point at gamma causes a 

shoulder beyond the fermi energy level. 

 

As for the charge-induced electronic properties, Yanmei Zang et.al. have 

performed the first principles calculations on NbS2 under the strain effect from 

-5% to 5% shown in Fig. 3.6 below. 

 

 

 

 

 

 

 

 

Figure 3.6: Band structures of NbS2 under external strain ranging from -5% to 

5% (Yanmei Zang, Yandong Ma, 2020) 
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(Mater. Adv., 

2021, 2, 6631) 

(ACS Omega 2021, 

6, 2956−2965) 

Zang, Yanmei & Ma, Yandong & Peng, Rui & Wang, Hao & Huang, Baibiao 

& Dai, Ying. (2020). Large valley-polarized state in single-layer NbX2 (X = S, 

Se): Theoretical prediction. Nano Research. 14. 10.1007/s12274-020-3121-1. 

 

3.1.3 Mechanical Properties 

Hao Sun et. al. have calculated all the linear mechanical properties for NbS2. 

Table 3.2 below shows their mechanical properties and elastic properties. The 

literature review compares the DFT calculated mechanical properties, including 

elastic constants (𝐶11, 𝐶22, 𝐶12, 𝐶21 ), 2D strain (휀 ), 2D layer modulus (𝛾 ), 

Young’s modulus (Y), and Poisson’s ratio (𝑣). All moduli are in unit of N/m. 

 

[N/m] 𝑪𝟏𝟏 𝑪𝟐𝟐 𝑪𝟏𝟐 𝑪𝟐𝟏 𝜺𝒙 𝜺𝒚 𝜸 𝒀𝟏𝟎 𝒀𝟎𝟏 𝝂𝟏𝟎 𝝂𝟎𝟏 

NbS2 90.09 90.03 25.61 22.12 0.23 0.23 57.85 82.81 82.81 0.28 0.28 

NbS2  112.79 109.20 38.58 33.91 - - - 99.15 96.00 - - 

 

Table 3.2: DFT calculated mechanical properties for NbS2 (Hao Sun et.al., 2021) 
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Figure 3.7: Stress-strain curves of NbS2 highlighted in green (a) and (b) x-

uniaxial tension, (c) and (d) y-uniaxial, (e) and (f) biaxial along x and 

y directions respectively. (Hao Sun et.al., 2021) 

 

3.2 Niobium Diselenide (NbSe2) 

Similar to NbS2, the next material that we are interested in is niobium diselenide. 

IUPAC name, Niobium (IV) diselenide (NbSe2), has attracted international 

attention for its enticing properties, anisotropic structure, and versatile 

application prospects. NbSe2 appears as a gray coloured solid crystal layer that 

undergoes the same mechanical exfoliation process to obtain its ultrathin 2D 

form like any other TMDCs. With a molar mass of 250.83 g/mol, density of 

6.3 𝑔/𝑐𝑚3 and melting point of over 1300°C (Haynes & William, 2011). NbS2 

layer exhibits a wide variety of electronic properties such as superconductivity, 

semiconducting characteristics and modifiable compositions where its physical 

and electronic properties can be influenced. The crystal structure of NbS2 is 

shown in Fig. 3.8 below. 

 

 

 

 

 

 

 

 

 

Figure 3.8 Crystal structure of NbSe2 (Hong Wang et al., 2017) 

3.2.1 Structural Properties 

NbSe2 comprises of quasi-two-dimensional layered structure, in other words, 

niobium (Nb) and Selenium (Se) form the sheets of NbSe2 in the (ab)-plane in 

the form of Se-Nb-Se and stack on one another along c-plane. Fig. 3.8 above 

shows the atomic structure of 2H (hexagonal) phase of NbSe2. Depending on 
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the film thickness from exfoliation process, NbSe2 could exist in 3 different 

general phase or stacking polytypes: 1T (trigonal), 2H(hexagonal), and 3R 

(rhombohedral). The hexagonal 2H- NbSe2 phase is the most common polytype 

where the hexagonal layers of Se atoms stack one over another known as 

hexagonal packing with the sites between Se atoms layers occupied by Nb in a 

trigonal-prismatic formation, thus forming a sandwiched layer structure. The 

interlayers are bound by van der Waals forces, which are weak forces, hence 

bulk NbSe2 can be mechanically or liquid chemically exfoliated to obtain its 2D 

TMDCs nanosheets.  

 

As shown in Fig. 3.9 below, the crystal structure of 2H-NbSe2 of space group 

P63/mmc can be seen. According to Sidoumou et al. (2021), the unit cell 

dimensions for this structure are 𝒂 = 3.4475 Å  and 𝒄 = 12.5702 Å  . 

According to Fisher & Sienko (1980), they are non-stoichiometric. For 2H-

NbSe2, the Nb atoms are sandwiched directly upon one another along the c axis, 

which is not the case for 3R-NbSe2. 

 

 

 

 

 

 

 

Figure 3.9: Crystal structure of 2H- NbSe2 (Sidoumou et al., 2021), 

 

Polytype Space group 𝒂 = 𝒃 (Å) 𝒄 (Å) 

2H-NbSe2 P63/mmc 3.463 13.210 

2H-Nb1,1Se2 P63/mmc 3.470 13.807 

3R-NbSe2 R3m 3.506 19,708 

3R-Nb1,1Se2 R3m 3.412 21.679 
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Table 3.3: Some examples of different types of phases and packings in NbSe2 

(Sidoumou et al., 2021) 

 

3.2.2 Electronic Properties 

The band structure and density of states of 2Н- NbSe2 are shown below.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Electronic Band Structure of 2Н- NbSe2 (Doran et al., 2001) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Density of States (DOS) of 2Н- NbSe2 (Doran et al., 2001) 
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Figure 3.12: Electronic band structures and DOS of the relaxed 2D NbSe2 

(Yeoh et al., 2020) 

 

As for the charge-induced electronic properties, Yanmei Zang et.al. have 

performed the first principles calculations on NbSe2 under the strain effect from 

-5% to 5% shown in Fig. 3.13 below. 

 

 

Figure 3.13: Band structures of NbSe2 under external strain ranging from -5% 

to 5% (Yanmei Zang, Yandong Ma, 2020) 

 

 

3.2.3 Mechanical Properties 

Hao Sun et. al. have calculated all the linear mechanical properties for NbSe2. 

Table 3.4 below shows their mechanical properties and elastic properties. The 

literature review compares the DFT calculated mechanical properties, including 

elastic constants (𝐶11, 𝐶22, 𝐶12, 𝐶21 ), 2D strain (휀 ), 2D layer modulus (𝛾 ), 

Young’s modulus (Y), and Poisson’s ratio (𝑣). All moduli are in unit of N/m. 
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[N/m] 𝑪𝟏𝟏 𝑪𝟐𝟐 𝑪𝟏𝟐 𝑪𝟐𝟏 𝜺𝒙 𝜺𝒚 𝜸 𝒀𝟏𝟎 𝒀𝟎𝟏 𝝂𝟏𝟎 𝝂𝟎𝟏 

NbSe2 86.58 89.53 30.74 28.47 0.37 0.25 57.85 75.67 75.67 0.36 0.36 

NbSe2 83.27 87.96 30.64 32.42 - - - 72.61 76.68 - - 

 

Table 3.4: DFT calculated mechanical properties for NbSe2 (Hao Sun et.al., 

2021) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Stress-strain curves of NbSe2 highlighted in blue (a) and (b) x-

uniaxial tension, (c) and (d) y-uniaxial, (e) and (f) biaxial along x 

and y directions respectively. 
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CHAPTER 4 

 

4 METHODOLOGY AND WORK PLAN 

 

4.1 DFT calculation with Quantum ESPRESSO 

Throughout this research project, an open-source package codes for electronic-

structure research calculations and modelling, Quantum Espresso (QE), is 

implemented for DFT calculations. Quantum Espresso is actually an acronym 

for Quantum Open-Source Package for Research Electronic Structure, 

Simulation and Optimization (Giannozi, 2009). Fig. 4.1 below shows the logo 

of QE. In order to run this package, it is mandatory to have a Linux-based 

operating system like Ubuntu, although there is some software out there that are 

capable of running QE on Windows. On the other hand, to determine the 

electronic structure and crystal materials at quantum level, VASP is a better 

DFT calculating package than QE. However, QE is chosen over VASP here due 

to the fact that it’s free to use and more accessible for undergraduate students. 

 

Figure 4.1: Quantum ESPRESSO. (Giannozi, 2009) 

 

4.2 Visualization of crystal structure with XCrySDen 

What Quantum Espresso does only is applying the plane wave (PW) density 

functional theory (DFT) along with pseudopotentials and periodic boundary 

conditions. In order to visualize the atomic structure and geometries generated 

from QE, we need to use one more software package known as XCrySDen 

(Kokalj, 1999). XCrySDen is utilized to display the atomic structure modelled 

from PWscf input or output files. Furthermore, we can also measure the distance 

between atoms and also vary the bond angles. After the crystal structure is 

geometrically relaxed via QE’s VC-relax, XCrySDen is helpful in aiding us 
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verifying and determining the atomic geometry and positions. Fig. 4.2 shows 

the user interface of XCrySDen and Fig. 4.3 demonstrates on how the bond 

distance is observed and measured. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: XCrySDen’s User Interface 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Interface of Measuring the Atomic Distance using XCrySDen. 
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(a) (b) 

4.3 Performing Calculations 

QE can perform various types of calculations, from self-consistent field (SCF) 

calculation to density of states. QE is also capable of calculating the electronic 

structure and total energy in Rydberg by implementing the plane-wave basis 

sets and pseudopotential techniques. Density Function Theory (DFT) 

calculations with Perdew-Burke-Ernzerhof (PBE) (Perdew, Burke, Enzerhof, 

1996) generalized gradient approximation (GGA) functional are performed in 

QE. Fig. 4.4 shows the input file that consists of the necessary parameters which 

is required for any QE calculation. For SCF calculation, the convergence 

threshold for total force, total energy has to be specified. Other than that, the 

crystal structure properties have to be defined, this includes lattice vector, cell 

parameters, atomic positions, atomic species, atomic weight, pseudopotential 

and k-point grid. In general, after the necessary input file is written, run the 

codes by using the command in a Linux terminal as shown in Fig. 4.5. 

                             

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Input file for (a) SCF calculation and (b) Geometrical 

Relaxation via QE 

 

 

Figure 4.5: Command to initiate the computation via Linux Terminal 
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4.4 High Symmetry Point 

In order to calculate the band structure and density of states, high symmetry k 

point has to be determined and stated in the input file. Figure 4.6 below shows 

the Brillouin Zone (BZ) and the high symmetry points for a hexagonal lattice.  

 

 

 

 

 

 

Figure 4.6: Brillouin Zone for a Hexagonal System (Retrieved from Bilbao 

crystallographic server) 

 

Using XCrySDen, the high symmetry points that I have chosen to used are: Γ, 

K, M with path Γ → K → M → Γ as shown in Fig. 4.6 below.  

 

 

 

 

 

 

 

 

 

 

Figure 4.7: XCrySDen k-path selection 

 

 

 

 

Figure 4.8: High Symmetry k-points 
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4.5 Work Plan 

Three main steps are used to perform the calculation and data collections. The 

first step is the calculation for electronic properties and structural optimization 

of crystal structure. The second step involves the investigation of actuator 

performance with stress-strain calculations. Last but not least, the third step is 

to study the mechanical properties of these materials. 

 

4.5.1 Structural Optimization and Electronic Properties Calculation 

We first perform DFT calculations using Quantum Espresso with the flowchart 

shown in Figure 4.9 below. 

 

 

 

 

 

 

 

 

 

Figure 4.9: Flowchart of DFT calculation using Quantum Espresso for 

electronic and structural properties 

 

 We then plot the band strucutre and density of state (DOS) graph after 

this step by transferring the data collected from bands and dos to mathematical 

plotting softwares. 

4.5.2 Calculation of Actuator Performance 

In this step, the variable-cell relation calculation is performed for both NbS2 and 
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휀 =
𝑎𝑐ℎ𝑎𝑟𝑔𝑒𝑑 − 𝑎0

𝑎0
 (4.1) 

NbSe2 under charge doping. Using 0.03 e/atom increment, the range of total 

charge doping per atom is from +0.12 e/atom to -0.12 e/atom. Figure 4.10 below 

shows a variable line of total charge named “tot_charge” to indicate the injection 

of a number of charges into the system. With the addition of the total charge 

injected in the input file, a total of 9 set of data are expected from each material. 

 

 

 

 

 

 

Figure 4.10: Inserting a total charge of 0.12 into the input file 

 

On the other hand, the strain 휀 induced by the charge injection is calculated 

using the equation below: 

 

 

where a is the lattice parameter of the charge-doped material whereas 𝑎0 refers 

to the neutral lattice parameter. If the strain is a negative value, it indicates a 

compressive strain whereas if the strain is a positive value, it indicates a tensile 

strain. The strain against charge per atom graphs are then plotted. 

 

4.5.3 Calculation of Mechanical Properties 

-0.6% to +0.6% of strain in the biaxial direction, along the xx direction and 

along the yy direction is applied with interval of 0.2% to determine three sets of 

strain data with each set consisting of seven subsets of cell parameters. Then, 

relaxation calculation is performed on the materials and the energy of the 

material is obtained at various strain values. A polynomial curve fit of degree 

of 2 is then plotted. The Young’s Modulus and Poisson’s ratio of the NbS2 and 
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𝐸 = 𝐸0 +
1

2
𝐶11휀𝑥𝑥

2 +
1

2
𝐶22휀𝑦𝑦

2 + 𝐶12휀𝑥𝑥 휀𝑦𝑦  

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

NbSe2 is obtained using these calculations. 3 sets of parabolic curves, biaxial 

strain, strain along xx direction and strain along yy direction graphs are curve 

fitted using: 

 

For xx direction, 𝑊𝑥𝑥 = 𝑐𝑥𝑥 + 𝑎𝑥𝑥𝑧2 + 𝑏𝑥𝑥𝑧 
 

For yy direction, 𝑊𝑦𝑦 = 𝑐𝑦𝑦 + 𝑎𝑦𝑦𝑧2 + 𝑏𝑦𝑦𝑧 

 
For biaxial, 𝑊𝑏𝑖 = 𝑐𝑏𝑖 + 𝑎𝑏𝑖𝑧

2 + 𝑏𝑏𝑖𝑧 
 
The parabolic curves are plotted to obtain the a, b and c value. Note that the 

value for b should be very small. 

 
The energy equation in the material is expressed as: 
 

 

The 𝐸0 denotes the energy of the material at neutral condition while 𝐶11 is the 

linear elastic constant along xx direction, 𝐶22 is the linear elastic constant along 

yy direction and 휀 refers to the strain. When in the case of xx direction strain: 

휀𝑦𝑦 = 0 

Fitting into equation (4.2), then  

𝑐11 = 2𝑎𝑥𝑥 

Based on Quantum ESPRESSO’s standard unit of operation, the total energy 

has to be in the unit of Rydberg, thus the elastic constant value has to be 

converted to SI unit: 

𝐶11 = 𝑐11 ×
13.61 × 1.6 × 10−19

𝐴
 

Where A refers to the area of the unit cell in 𝑚2 calculated via cross product of 

the cell parameter vectors. 

On the other hand, when in the case of yy direction strain: 

휀𝑥𝑥 = 0;  

Fitting into equation (4.3), then: 𝑐22 = 2𝑎𝑦𝑦   
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𝑣10 =
𝐶12

𝐶22
 

𝑣01 =
𝐶12

𝐶11
 

𝑌10 =
𝐶11𝐶22 − 𝐶12

2

𝐶22
 

𝑌01 =
𝐶11𝐶22 − 𝐶12

2

𝐶11
 

(4.7) 

(4.8) 

Based on Quantum ESPRESSO’s standard unit of operation, the total energy 

has to be in the unit of Rydberg, thus the elastic constant value has to be 

converted to SI unit: 

𝐶22 = 𝑐22 ×
13.61 × 1.6 × 10−19

𝐴
 

Last but not least, when in the case of biaxial strain: 

휀𝑥𝑥 = 휀𝑦𝑦 

Fitting into equation (4.4), then  

𝑐12 = 𝑎𝑏𝑖 −
1

2
𝑐11 −

1

2
𝑐22 

𝑐12 = 𝑎𝑏𝑖 − 𝑎𝑥𝑥 − 𝑎𝑦𝑦 

Based on Quantum ESPRESSO’s standard unit of operation, the total energy 

has to be in the unit of Rydberg, thus the elastic constant value has to be 

converted to SI unit: 

𝐶12 =  𝑎𝑏𝑖 − 𝑎𝑥𝑥 − 𝑎𝑦𝑦 ×
13.61 × 1.6 × 10−19

𝐴
 

After obtaining 𝐶11, 𝐶22, 𝐶12, Young’s modulus (Y01 & Y10) and Poisson’s 

ratio can then be calculated using: 

 

 

 

 

 

 

where 𝑣10  and 𝑣01  are the Poisson’s ratio in the xx and yy directions 

respectively. The values required for the stress-strain curve can be obtained 

from the diagonal element of the Cauchy stress tensor of both NbS2 and NbSe2. 
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CHAPTER 5 

 

5 RESULTS AND DISCUSSIONS 

 

5.1 Niobium Disulphide (NbS2) 

First and foremost, the three-dimensional crystal structure is constructed by 

having its cell parameters and atomic position input into the NbS.scf.in file. The 

material parameter is obtained from the website 2dmatpedia where 2dm-3019 is 

the material ID for this NbS2. This NbS2 is a hexagonal 2H-phase polytype and 

belonging to the space group P-6m2. The pseudopotential files used to perform 

the calculations are Nb_OCNV_PBE_sr.upf and S_OCNV_PBE_sr.upf. These 

pseudopotential codes are optimized norm-conserving Vanderbilt 

pseudopotential (ONCVPSP or OCNV) scalar-relativistic version produced by 

D.R. Hamann. The crystal structure is then visualized using XCrySDen as 

shown in Fig. 5.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Top and Side view of NbS2 atomic structure from XCrySDen 
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5.1.1 Convergence Tests 

The optimum cut-off kinetic energy and k-point mesh have to be determined 

before any band structure calculations can be performed. As shown in Fig. 5.2 

below, the convergence calculations for cut-off kinetic energy (ecutwfc) are 

done by performing multiple series of calculations for the total energy while 

varying the cut-off kinetic energy input and fixed the k-points mesh at 5×5×1. 

The total energy is then plotted in relation to the cut-off kinetic energy, thus 

showing a curve that convergences towards a constant value. As you can see, 

the total energy converges after 40 Ry point and remain relatively constant 

through 60Ry to 100 Ry. From SCF calculation, its fermi energy is -0.9077 eV. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Convergence calculation for the cut-off energy of NbS2 

 

On the other hand, for k-points mesh convergence test, as shown in Fig. 5.3 

below, the convergence calculations for k-points grid are done by performing 

multiple series of calculations for the total energy while varying the number of 

k-points in the form of k×k×1 and fixed the cut-off kinetic energy at 80 Ry. 

The total energy is then plotted in relation to the k-point number, thus showing 

a curve that convergences towards a constant value. As you can see, the total 

energy converges after 4 k-point and remain relatively from 6 till 8. Although 

there’s a dip in 5 k-point, the difference is relatively small and insignificant, this 

was probably due to the discrepancy in computing processes. 
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Figure 5.3: Convergence calculation for the k points grid of NbS2 

 

5.1.2 Band Structure and Density of States 

The monolayer strucure of 2D NbS2 with a vertical gap of 18 Å between cells. 

For the calculation, the cut-off kinetic energy is set to 80 Ry and the k-point 

mesh is set to 5×5×1. By using VC-relax function in Quantum Espresso, the 

relaxed data or parameters were obtained. The fermi energy of NbS2 is obtained 

to be -0.9513 eV compared to the fermi energy of -0.9077 eV from SCF run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: The calculated band strucure and DOS for NbS2 
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5.2 Niobium Diselenide (NbSe2) 

Similar to NbS2, first and foremost, the three-dimensional crystal structure of 

NbSe2 is constructed by having its cell parameters and atomic position input 

into the NbSe.scf.in file. The material parameter is obtained from the website 

2dmatpedia where 2dm-3941 is the material ID for this NbSe2. This NbSe2 is a 

hexagonal 2H-phase polytype and belonging to the space group P-6m2. The 

pseudopotential files used to perform the calculations are 

Nb_OCNV_PBE_sr.upf and Se_OCNV_PBE_sr.upf. These pseudopotential 

codes are optimized norm-conserving Vanderbilt pseudopotential (ONCVPSP 

or OCNV) scalar-relativistic version produced by D.R. Hamann. The crystal 

structure is then visualized using XCrySDen as shown in Fig. 5.5 below. From 

SCF calculation, its fermi energy is -0.2154 eV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Top and Side view of NbSe2 atomic structure from XCrySDen 
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5.2.1 Convergence Tests 

The optimum cut-off kinetic energy and k-point mesh have to be determined 

before any band structure calculations can be performed. As shown in Fig. 5.6 

below, the convergence calculations for cut-off kinetic energy (ecutwfc) are 

done by performing multiple series of calculations for the total energy while 

varying the cut-off kinetic energy input and fixed the k-points mesh at 5×5×1. 

The total energy is then plotted in relation to the cut-off kinetic energy, thus 

showing a curve that convergences towards a constant value. As you can see, 

the total energy converges after 40 Ry point and remain relatively constant 

through 60Ry to 100 Ry. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Convergence calculation for the cut-off energy of NbSe2 

 

On the other hand, for k-points mesh convergence test, as shown in Fig. 5.7 

below, the convergence calculations for k-points grid are done by performing 

multiple series of calculations for the total energy while varying the number of 

k-points in the form of k×k×1 and fixed the cut-off kinetic energy at 80 Ry. 

The total energy is then plotted in relation to the k-point number, thus showing 

a curve that convergences towards a constant value. As you can see, the total 

energy converges after 4 k-point and remain relatively from 6 till 8. Although 
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there’s a dip in 5 k-point, the difference is relatively small and insignificant, this 

was probably due to the discrepancy in computing processes. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Convergence calculation for the k points grid of NbSe2 

 

5.2.2 Band Structure and Density of States 

The monolayer strucure of 2D NbSe2 with a vertical gap of 18 Å between cells. 

For the calculation, the cut-off kinetic energy is set to 80 Ry and the k-point 

mesh is set to 5×5×1. By using VC-relax function in Quantum Espresso, the 

relaxed data or parameters were obtained. The fermi energy of NbS2 is obtained 

to be -0.1937 eV compared to the fermi energy of -0.2154 eV from SCF run. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: The calculated band strucure and DOS for NbS2 
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5.3 Crystal Structure  

The crystal structure of NbS2 and NbSe2 produced after optimization are 

compared with the literature reviewed values that applied similar XC functional 

with this work in Table 5.1 and Table 5.2 below. 

 

Lattice constant, a (Å) Source 

3.353 From this work 

3.355 Zang et al. (2020) 

3.321 Tissen et al. (2013) 

 

Table 5.1: Lattice constants of NbS2 from literature review that applied GGA 

functional 

 

 

Lattice constant, a (Å) Source 

3.487 From this work 

3.483 Zang et al. (2020) 

3.463 Sidoumou et al. (2021) 

 

 

Table 5.2: Lattice constants of NbSe2 from literature review that applied GGA 

functional 

 

As observed, our data are in excellent agreement with the reviewed 

values in the literature from the theoretical studies. 
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5.4 Actuator Performance 

In Fig. 5.9 and Fig. 5.10 respectively, the actuator strain 휀 of the NbS2 and 

NbSe2 is shown as a function of charge doping q ranging from -0.12 to 0.12 

e/atom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Actuator strain of NbS2 as a function of charge doping ranging 

from -0.12 to 0.12 e per atom.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Actuator strain of NbSe2 as a function of charge doping ranging 

from -0.12 to 0.12 e per atom.  
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In the neutral doping case (q = 0), strain, ε= 0 is obtained. For the 

electron doping case, ε is approximately a linear function of charge(q). Both 

materials show isotropic strain under charge doping (Thanh & Hung & Truong, 

2018). As observed from the figures above, the ε values are heavily influenced 

on the number of S and Se. In which under the same charge doping case, NbSe2 

strain value is higher than NbS2.  

 

 

5.5 Mechanical Performance 

The mechanical properties of NbS2 and NbSe2 at neutral charge doping are 

calculated from Quantum ESPRESSO and obtained in Table 5.3 below. 

 

 Materials 

[N/m] 

𝒂𝟎 𝑪𝟏𝟏 𝑪𝟐𝟐 𝑪𝟏𝟐 𝒀𝟏𝟎 𝒀𝟎𝟏 𝝂𝟏𝟎 𝝂𝟎𝟏 

NbS2 3.353 137.54 140.94 42.95 124.45 127.53 0.3047 0.3122 

NbSe2 3.487 97.23 97.68 33.07 86.03 86.43 0.3386 0.3401 

 

 

Table 5.3: Mechanical properties of neutral charge (q=0) NbS2 and NbSe2 

 

 

At the moment of this report writing, the lack of experimentally 

exfoliated NbS2 and NbSe2 monolayer materials have led to issue of verifying 

our results. There are currently no available open-source data for us to determine 

the accurate value for the Young’s moduli and Poisson ratio obtained from this 

work. As a result, parameters such as monolayer thickness or buckling height 

for NbS2 and NbSe2 are presumed using assumptions of around 3 Å . The 

following graphs are just their mechanical properties estimated using other 

similar materials and it shows very accurate predictions. 
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Fig. 5.11 and Fig 5.12 below shows the stress-strain curve of NbS2 and 

NbSe2 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.11: The stress-strain curve of NbS2 in biaxial, x and y directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.12: The stress-strain curve of NbSe2 in biaxial, x and y directions. 

 

 



45 

 

45 

 

 

 Looking at the stress-strain curves, anisotropic behaviour of these 2D 

hexagonal material can be observed under tensile strain. The linear elastic limit 

of NbS2 is at around 휀=0.20 whereas the elastic limit NbSe2 of is at around 

휀=0.25. Therefore, it can be concluded that the tensile strength of is NbSe2 

higher than NbS2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.13: Young’s moduli of NbS2 and NbSe2 plotted as function of charge 

doping per atom 
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Table 5.14: Stress generated by NbS2 and NbSe2 plotted as function of charge 

doping per atom 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.15: Work density per cycle of NbS2 and NbSe2 plotted as function of 

charge doping per atom 

 

 

With the assumption of effective layer thickness of NbS2 and NbSe2, the stress 

generated can determine the power of electromechanical actuators,𝜎 = 𝑌휀. The 

performance of the electrotechnical actuators can then be characterized by the 

work density per cycle expressed as: 

𝑊𝑠 =
1

2
𝑌휀2 

The highest 𝑊𝑠 value obtained in NbS2 is at q=-0.12 e/atom with 41.4 MJ/m3 

and in NbSe2 is at q=0.12 e/atom with 25 MJ/m3. These work density per cycle 

are at least 300 times more than that of mammalian muscle, which is only around 

0.08 MJ/m3. These results suggest that electron doping should be excellent to 

achieve high-performance electromechanical actuator for NbS2 and NbSe2 in 

artificial muscle application. 
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CHAPTER 6 

6 CONCLUSION AND RECOMMENDATION 

 

6.1 Summary 

In summary, we have studied the electromechanical actuator performance of the 

2D TMDC materials with 1H structures using first-principle calculations of 

DFT. The properties of hexagonal H-phase NbS2 and NbSe2 are investigated 

using this framework via Quantum ESPRESSO. We have evaluated the charge 

induced actuation performance of NbS2 and NbSe2 by studying their structural 

properties and electromechanical properties. The lattice structure constants of 

NbS2 and NbSe2 agrees with the results obtained from literature review. 

 

With charge doping per atom ranging from +0.12 e/atom to -0.12 

e/atom, linear and isotropic characteristics have been observed from the strain 

of NbS2 and NbSe2. The Young’s modulus and Poisson’s ratio obtained from 

this work are in excellent agreement with published values. Unfortunately, these 

values cannot be verified for their accuracy due to the absence of experimentally 

proven data or open and available data sources. The electromechanical actuator 

performance of the NbS2 and NbSe2 is highly dependent on the charge doping 

level. The NbS2 and NbSe2 have the best electromechanical performances when 

doped with electron with work density per cycle as high as 41.4 MJ/m3 and 25 

MJ/m3, respectively. These results of this first-principle study show promising 

information for designing and fabricating artificial muscles with NbS2 and 

NbSe2. 

 

6.2 Recommendation for Future Works 

 

It is in our best interest to increase the accuracy of the results obtained from the 

DFT calculation via Quantum ESPRESSO. Therefore, we recommend that 

higher k-point grid value can be implement on the same materials when future 

studies are conducted instead of using lower value such as 5 ×5 ×1 like in this 

work. 
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6.3 Problems Encountered 

 

There are slight discrepancies between the results calculated using Quantum 

Espresso in different PC. With the same lines of codes and files used, the 

calculated output of scf, bands, and DOS might defer slightly based on the 

central processing unit (CPU) model of that particular computer. For example, 

when performing calculation with my personal desktop PC with the CPU model 

Ryzen 5 3600, the fermi energy of NbS2 is -0.9077 eV whereas if the 

calculations are performed on my HP Z230 workstation, the fermi energy is -

0.9076 eV. Although the difference is extremely small, we cannot simply ignore 

the fact that different computing unit may cause a tiny disparity between results. 

We might not know whether this slight inconsistency would result in larger 

errors from the results obtained in future calculations. 

 

6.4 Recommended Solutions 

 

In order to maintain consistency of the results obtained, it is recommended that 

all calculations done using Quantum Espresso has to be performed on the same 

computer. 

.  
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