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ABSTRACT 

 
 

Natural disasters such as floods frequently occur in Malaysia. Internet of 

Things (IoT)-based flood early warning systems can forecast the cataclysmic 

flood event and subsequently inform the public to take evacuation action 

earlier. However, the issue of disseminating critical information remains an 

open issue if the communication network is broken. This project aims to 

develop a lightweight Artificial Intelligence (AI) disaster forecasting and a 

vicinity communication infrastructure, a resilient NerveNet mesh network with 

Wi-Fi and LoRa. It will disseminate the information about forecasted flood 

events ahead of time reliably to the designated recipients even if the base 

station is destroyed due to a flood. Using the NerveNet Hearsay daemon, texts 

and images can be synchronised wirelessly in multiple NerveNet nodes' 

databases. Experimental results validate the AI model, network, and database 

synchronisation performance. The project findings can serve as the guideline 

for designing an AI flood early warning system in real life. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Flood forecasting models have been researched in the hydrological 

engineering area for many years. Recently, there has been increased research 

interest in river flood prediction and modelling, defined as data-driven 

approaches. The ANN model is the most famous usual data-driven approach. 

Most conventional statistical methods require a lot of data for their models, 

and they can generate no assumptions for both linear and non-linear systems. 

Hence, the data-driven approach, ANN, is an alternative to hydrological flood 

forecasting instead of the existing methods (Kişi, 2011). 

Artificial Intelligence made essential development in modelling 

hydrological forecasting and dynamic hydrological issues. With the 

advancement of information technology, the application of ANN models in 

many aspects of science and engineering is increasingly becoming common 

due to its simplicity of structure. Diverse neural network modelling 

approaches have been applied, like implementing the model approaches 

individually or combining process-based approaches to minimise mistakes and 

increase the models' forecasting accuracy. The study by (Yaseen et al., 2015) 

applied AI models to forecast river flow for 15 years starting from 2000 since 

there are many advantages of ANN models in hydrological modelling and 

forecasting related to hydrology fields (Yaseen et al., 2015). 

However, there are also some limitations of the ANNs model. One of 

them is lacking understanding of watershed processes. Furthermore, the 

limitation of memory in calculating sequential data exposes the disadvantages 

of the ANNs model. The breakthrough in computational science has recently 

increased the interest in DNN approaches that rely on ANN. In addition, the 

most recent DNN applications, such as the LSTM and GRU neural networks, 

have been efficiently implemented in diverse areas and fields, such as time 

sequence problems. Those models can apply to machine translation, speech 

recognition, tourism field, language modelling, rainfall-runoff simulation, 

stock prediction and river flow forecasting. 
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On 11th March 2011, around 29000 cellular towers were damaged in 

the East Japan Great Earthquake. These damages have restricted the broadcast 

of evacuation notices and the collection of historical information for disaster 

forecasting. Hence, it can be known that the resilience of a network remains an 

open issue in the deployment of the fault-tolerant network during an 

emergency disaster. Fortunately, a disaster-resilient mesh-topological network 

called NerveNet was developed by Japan NICT. Each NerveNet node is 

independent and tolerant to system failure and link disconnection due to its 

mesh structure. 

In this project, a flood forecasting model is proposed. In the study area, 

rainfall and river water levels collected at hydrological stations are input as the 

dataset for the training and testing process of the AI models. Then, the 

forecasted flood water level will be processed to generate the flood warning 

message and graph. It will be sent through the NerveNet Wi-Fi and LoRa 

mesh network. After that, the flood warning message and graph are 

synchronised to every node. Finally, the performance of the AI model, 

NerveNet Wi-Fi and LoRa mesh network and database synchronisation are 

evaluated. 

 
1.2 Importance of the Study 

This project meets specific needs with appropriate consideration for public 

health and safety. An efficient and effective flood forecasting model can 

reduce the effect of flood events, which increases the public's safety. Besides 

that, effective flood forecasting systems will be able to record the rainfall and 

river water levels to produce essential forecasted river water levels in the 

future. In addition, a reliable NerveNet mesh network can disseminate critical 

information reliably to the designated recipients even if the base station is 

destroyed due to a flood so that the public can prepare to retreat from the 

coming flood-affected area. According to a study by (Faruq et al., 2020), flood 

forecasting models are frequently useful in flood warning and management 

systems (Faruq et al., 2020). The availability of flood forecasting systems was 

associated with a substantial decrease in the likelihood of public-facing floods. 

Apart from that, several situational factors also appear to be associated with 

the likelihood of flood forecasting systems being available and useful. This 
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project shows that implementing a flood forecasting system will help 

safeguard the public to a higher degree. 

 
1.3 Problem Statement 

Over the past decades, several studies have been conducted in various areas, 

such as monitoring, detection, early warning systems, and so on, to minimise 

the impact of flooding by alerting the public about a flood event occurrence 

ahead of time. Significantly, accurate flood forecasting is essential to predict 

the hourly water level to reduce the risk of floods. It is also crucial for water 

resources systems planning and management. However, it is difficult to 

accurately forecast the river discharge since the river's flood analysis is a 

complicated non-linear operation influenced by many temporal and spatial 

variables. Besides that, the flow of the river is also a non-linear operation. It is 

affected by many variables such as rainfall, climate, river basin surface mantle, 

and riverbed terrain. Therefore, several predictive actions need a plethora of 

data to predict floods accurately based on the measured surrounding conditions. 

The hardware prototype will consume many time and power to collect the big 

data. 

The current network in Malaysia has a shortcoming which is the 

absence of regional resilient network topology and architecture for emergency 

use. Besides that, a database synchronisation feature must also be set in the 

resilient network. The database synchronisation feature allows devices to 

access data from each other natively in the resilient regional network. 

 
1.4 Aim and Objectives 

There exist several flood forecasting solutions in the current market. However, 

the forecasting efficiency is limited due to the conventional approaches, which 

are complex and time-consuming. Besides that, most of the networks are tree 

topology networks. Hence, the objectives of this project are: 

 
1. To develop a lightweight AI disaster detection. 

2. To set up a NerveNet mesh network testbed with LoRa and Wi-Fi. 

3. To synchronise AI results among NerveNet nodes. 
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1.5 Scope and Limitation of the Study 

Natural disasters are the significant factors in social losses, economic losses, 

and human life loss. Various natural disasters pose a potential danger to 

densely populated areas worldwide. Therefore, a natural disaster risk 

management system is essential to reduce natural disaster risk. However, it is 

quite a vast scope and area to include all types of natural disasters in one risk 

management system. Besides that, a long time, much power and many 

resources will be consumed to collect all the variables that influence the 

occurrence of all types of natural disasters and build forecasting models for 

every kind of natural disaster. Therefore, in this project, the development of 

the natural disaster forecasting system will only focus on the flood event that 

always happens during Malaysia's monsoon season. 

Besides that, it is known that many variables influence the occurrence 

of flood events. It is a high cost to distribute various data collection stations 

for all types of variables in the whole Malaysia area. Hence, there are only two 

variables used in this project which are the rainfall and river water level. In 

addition, it is known that flood events are significant natural disasters in 

various parts of the world. Several pieces of flood prediction research are 

overseas to support their natural disaster risk management system. In this 

project, an efficient flood forecasting system will be introduced to focus on 

these frequent flood-affected areas during the monsoon season, which is 

Malaysia, to improve Malaysia's own natural disaster risk management system 

in a better way. 

 
1.6 Contribution of the Study 

An AI flood forecasting model is developed to forecast the flood event 

occurrence ahead of time. Besides that, the NerveNet mesh network testbed 

using Wi-Fi and LoRa is deployed as a disaster forecasting network in this 

study. The data is synchronised between every node within the NerveNet mesh 

network for data resiliency. Since NICT ASEAN IVO funds the development 

of the NerveNet mesh network, this project's findings and outcomes will 

become the guideline and reference for the deployment of NerveNet in 

Malaysia and other countries. 
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1.7 Outline of the Report 

This report has five chapters. The first chapter introduces the project's title, 

aim and objectives. Then, the second chapter explores the concept and areas 

related to the project, such as artificial intelligence, mesh network, LoRa, 

database synchronisation and so on. After that, the third chapter shows the 

project's work plan and methodology. Next, the fourth chapter shows the result 

and the discussion on the performance of the AI model, mesh network and 

database synchronisation. Lastly, the final chapter concludes the objectives 

and outcomes of the project and gives future recommendations to improve the 

project. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter introduces the project's related areas: IoT, distributed computing, 

Artificial Intelligence, network topology, LoRa and NerveNet. The 

combination of these areas will give an overview of edge AI in the LoRa- 

based mesh network for the flood early warning system. 

 
2.2 Internet of Things (IoT) 

IoT is a network of a cluster of connected embedded devices with identifiers. 

Its communication that uses the standard communication protocol can be 

implemented without any intervention from a human. In the era of 

modernisation, IoT is one of the leading technology trends in disaster 

monitoring and detection system to predict the disaster incidents such as 

earthquakes, tsunamis, floods and so on, so that the loss of life and property 

damage can be minimised. IoT provides many functions such as intelligent 

information processing, reliable information transmission and overall 

information perception. These characteristics of IoT can provide an effective 

guarantee for disaster forecasting, detection and precaution ahead of time 

through the IoT-based early warning system so that the impact of a disaster 

can be reduced (Samikwa, n.d.). 

 
2.3 Distributed Computing 

The distributed processing or distributed computing uses multiple processors, 

computers, or software components but runs as a single system. The 

components can be connected within LAN or WAN, which makes the entire 

network structure work as a single computer to offer benefits such as 

scalability and redundancy. In other words, the system can be expanded easily, 

while several components can provide the same services to ensure service 

continuity when one of the machines is unavailable (IBM, 2021). 
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2.3.1 Edge Computing 

Edge computing is a part of distributed computing technology. It acts as an 

additional layer between the end devices and the server. Edge computing shifts 

the computational power nearer to the end devices (Gezer, Um and 

Ruskowski, 2018). The collected data processing is implemented close to the 

edge instead of at the central server. The scalability problem of IoT 

architectures is attributed to the exponential growth of devices that connect to 

the internet to receive data from the cloud and send data to the cloud. 

In general, the end devices in the IoT networks have sensors that 

produce a large amount of data at a very high speed during their operations. In 

the traditional IoT mechanism, these data are transmitted to the remote central 

cloud platform through the internet to be processed. However, there is a 

problem where the big data transmitting process consumes enormous energy, 

time, cost and bandwidth. Therefore, edge computing is introduced to process 

and analyse the valuable information from the raw sensor data at the edge 

level in real-time. In fact, edge computing utilises the computational resources 

of the network's edge and shifts the data processing nearer to where data are 

generated (Rausch, Nastic and Dustdar, 2018). Thus, it can improve the QoS of 

applications and reduce the tasks' latency (Chen et al., 2018). Figure 2.1 

illustrates edge computing’s paradigm. The computing processes of the task 

can be offloaded to the edge using edge computing. Hence, the response time is 

reduced, and the system's efficiency increases. 

 
 

Figure 2.1: The Paradigm of Edge Computing (Samikwa, n.d.). 
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2.4 Machine Learning 

Machine learning is a branch of AI applied in several areas, such as predictive 

data analytics. In general, before predicting a specific type of output, the 

machine learning model must undergo a model training process. Before the 

model building, a dataset in which each data contains some features and a label 

are required to be prepared according to the use case. After the dataset is 

divided into a training dataset and a testing dataset, the training set acts as the 

input to the machine learning model during its training process to identify the 

weightage of those features. There are several types of machine learning 

algorithms, such as supervised, unsupervised, and reinforcement learning. 

Supervised learning is a data sample training from a dataset with the 

features and their labels. Supervised learning plays a role in training the 

machine learning model with the labelled dataset. After that, the machine 

learning model's predicted outputs are compared with the ground truth to 

calculate the machine learning model's accuracy. 

 
2.4.1 Random Forest 

Random Forest is defined as an ensemble classifier where multiple learning 

algorithms are utilised to obtain a better accuracy for its prediction (Mushtaq, 

Augustin and Mellouk, 2012). The Random Forest algorithm uses a few 

Decision Tree models. Each tree makes its prediction, and the Random Forest 

model will opt for the most votes class. Figure 2.2 illustrates the Random 

Forest algorithm. 

 

 

 

Figure 2.2: Random Forest Algorithm's Architecture (Aung and Hla, 2009). 
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The Random Forest algorithm has greater accuracy and is more 

reliable than the decision tree algorithm (Aung and Hla, 2009). However, the 

Random Forest algorithm does not always perform well in every scenario, 

especially when it meets the class imbalance instances (Segal, 2004). This 

problem can be solved by the additional class weighing parameters, but at the 

same time, it will make the evaluation process complicated, and the Random 

Forest algorithm becomes not feasible. 

 
2.4.2 Long Short-Term Memory (LSTM) 

LSTM was introduced to address the drawbacks of RNN by integrating 

additional interactions per memory cell (Hochreiter and Schmidhuber, 1997). 

LSTMs can gain long-term dependencies and remember that information for 

an extended period. An LSTM model is constructed in a chain structure form. 

The LSTM has its repeating memory cells in the different structures from the 

single neural network in an RNN, as shown in Figure 2.3. Each memory cell 

contains four interacting layers with special communication approaches, as 

shown in Figure 2.4. 

 
 

Figure 2.3: Single Neural Network in RNN (Le et al., 2019). 
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Figure 2.4: The Structure of LSTM (Le et al., 2019). 

 
 

The structure of an LSTM neural network is some repeating memory 

cells, as shown in Figure 2.4. Two states are transferred from the previous cell 

to the succeeding, which are the hidden state and the cell state. The function of 

the cell state is making the information transferred forward unchanged, but 

some linear transformations in the data flow may occur. The data can be 

eliminated or updated through the sigmoid gates in the memory cells. A gate 

works as various kinds of matrix operations based on various weights. 

Several steps are needed to construct an LSTM neural network. First 

and foremost, the unnecessary information will be identified and eliminated 

from the memory cell. This process is determined by a sigmoid function based 

on the present input at a certain time and the product of the previous memory 

cell at the previous time. That function decides the previous output's parts that 

are needed to be removed. This gate is known as forget gate and its values 

range between 0 and 1. 

Secondly, the information from the new input is decided whether it 

needs to be saved in the cell state, and then the cell state is also updated. This 

step has two layers, which are the tanh layer and the sigmoid layer. A sigmoid 
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layer has the same function as the first step, where it can decide whether the 

new information should be ignored or updated by giving out a value of 1 or 0. 

On the other hand, the tanh layer decides the importance level of the new 

information between -1 to 1 by giving the values that are passed by a weight. 

After that, these two types of values will be timed to give a piece of new 

information to the current cell state. Then, the recent memory will be summed 

with the previous memory to produce new memory. 

Last but not least, there is a final step where a sigmoid layer will first 

decide the cell state's parts that should become the output cell state. The 

sigmoid gate's product is then timed with a value resulting from the tanh layer 

of the cell state. The range of the new output value is between -1 and 1. 

 
2.4.3 Gated Recurrent Unit (GRU) 

GRU neural network is an easier version of the LSTM neural network. 

Although they have significant similarities in their structure to solve the 

vanishing gradient problem in a typical RNN, there are some differences 

between GRU neural network and LSTM neural network. The structure of the 

GRU module is illustrated in Figure 2.5 (Le, Ho and Lee, 2020). 

 
 

Figure 2.5: A GRU Module's Structure (Le, Ho and Lee, 2020). 
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The cell in the GRU model is different from the architecture of the 

LSTM cell, where it has no separate memory cell(Junyoung et al., 2014). 

Besides that, the GRU has two gates. Firstly, the reset gate determines the 

amount of data from the previous memory that is needed to be forgotten. 

Secondly, the update gate determines the amount of data from the previous 

memory needed to be transferred to the future. 

The performance and convergence speed of the GRU model is 

sometimes greater than the LSTM model. Besides that, the GRU model's 

training is also easier than the LSTM model since there are lesser gating 

classes and parameters in the GRU model's training (Junyoung et al., 2014). 

 
2.5 Network Topology 

The influencing factor of network resilience includes network topology. There 

are several basic network topologies, such as point-to-point topology, ring 

topology, bus topology, star topology, and the list goes on. Besides that, there 

are some advanced network topologies based on the basic topologies' 

extension, such as mesh topology. The feasibility of the computer networkings 

on the project, which are star topology, mesh topology and hybrid topology 

network, are discussed in the following section. 

 
2.5.1 Star Topology 

In the star topology network, there is a central hub that connects all the end 

devices. The central hub plays the role of transmitting the data packet from 

one node to another node depending on the specified destination nodes. There 

is a serious issue that when the central hub fails or is broken, the whole 

network will also fail. This topology is commonly used in the scenario of a 

wireless access point (AP) forming a Wireless Local Area Network (WLAN). 

Figure 2.6 illustrates the structure of the star topology. 
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Figure 2.6: The Structure of Star Topology (Lim, 2021). 

 
 

2.5.2 Mesh Topology 

In the mesh topology, all the devices are connected. They can transmit data 

packets from one device to another device. A full mesh network is a network 

with which all devices are directly connected. On the other hand, a partial 

mesh network is a network that can still communicate with each other through 

relaying data packets, although not all the devices are directly connected. 

Since the mesh network always has an alternative route to relay the data 

packets even if some of the devices are failed or broken in their original path, 

the mesh network highly contributes to the aspects of the network resilience. 

Figure 2.7 illustrates the structure of the mesh network. 

 

 

 

Figure 2.7: The Structure of Mesh Topology (Lim, 2021). 
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2.5.3 Hybrid Topology Network 

There may be some scenarios that only one kind of network topology cannot 

efficiently solve. Therefore, a hybrid network is introduced in which different 

network topologies are joined together to build a larger and more efficient 

network for various kinds of complex scenarios. Figure 2.8 shows the structure 

of the hybrid topology network of a star network and a mesh network. 

 

 

 

Figure 2.8: The Structure of Hybrid Topology (Lim, 2021). 

 
 

2.6 Long Range (LoRa) 

IoT has exponential growth in several application areas in these few years. 

However, most of the devices in IoT are connected through mobile 

communication networks such as Wi-Fi, Cellular data, Bluetooth and so on. 

These communication networks aim for the human's internet consumption, 

such as video streaming, file uploading and downloading as well as web 

browsing, which all need enormous bandwidth. 

In the real scenario, it is estimated that 75 % of IoT devices, such as 

sensors, often transmit small data packets only and do not require a huge 

amount of bandwidth that consumes high power. In addition, IoT devices in 

remote areas rarely have sufficient power to support the high-power 

consumption of mobile communication network connectivity for a very long 

period. Therefore, Low Power Wide Area Network (LPWAN) is introduced. It 
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is a wireless WAN technology used for the devices' low bit rates 

interconnection, which consumes low power and lower bandwidth only over a 

long range. The forefront of LPWAN is LoRa. 

LoRa (Long Range) is an LPWAN modulation technique patented by 

LoRa Alliance, which is derived from Chirp Spread Spectrum (CSS) 

technology (The Things Network, 2022). LoRa is ideal for long-range 

transmission with relatively low bit rates. Data can be transmitted through 

LoRa at a wider range as compared to Wi-Fi and Bluetooth, which makes it 

suites for low-power remote applications such as sensors and actuators (The 

Things Network, 2022). 

 
2.6.1 LoRaWAN 

In industry, the wireless sensor network will decrease the signal's bandwidth 

or increase the signal's power when it transmits the data over a long range. 

Therefore, LoRaWAN is introduced. It is a class of wireless sensor network 

for the devices to sustain their network connection to send the data and have a 

prolonged battery life regularly. Besides that, it is also a standard protocol 

based on LoRa modulation (HIVEMQ, 2022). As shown in Figure 2.9, the 

LoRa-enabled sensors first broadcast the data packets in omni directional. 

After that, the LoRaWAN gateways will receive these data packets using their 

antennas. At the same time, the LoRaWAN gateways will also demodulate the 

LoRa data packets and send them to the LoRaWAN network server through 

mobile communication networks such as Wi-Fi, 4G, 5G and so on. In fact, the 

network server also manages the networks, such as the over-the-air activation 

(OTAA) process and the elimination of repeated messages. Furthermore, the 

network server will check the data packets and determine their target 

LoRaWAN application server. Finally, the application server will receive, 

decrypt, and process the messages with the application protocols. Moreover, 

the application server will send back some desired messages to the devices 

before. 
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Figure 2.9: The Structure of LoRaWAN (HIVEMQ, 2022). 

 
 

2.7 NerveNet 

NerveNet is a resilient network developed by NICT in Japan. NerveNet is a 

specially developed network for the regional area to provide reliable network 

access and a stable, resilient information-sharing platform in emergencies, 

even if the base station is destroyed in a disaster. The base stations of 

NerveNet are interconnected by the Ethernet-based wired or wireless 

transmission systems such as satellite, Wi-Fi, LoRa and so on. They will form 

a mesh-topological network. 

Nowadays, the current trend of the common network infrastructures 

uses the tree topology. As compared to it, NerveNet has the characteristic that 

it is more tolerant to the faults such as node failures, disconnections, 

destruction of the base station and so on. Since the base station in the 

NerveNet supports basic services such as SIP proxy, DNS, DHCP and so on, 

the NerveNet can also continuously provide connectivity services to the 

devices. 

NerveNet has the property of database synchronisation. It uses a 

hearsay daemon to synchronise the database of every node within the 

NerveNet network. Hearsay daemon synchronises MySQL databases by 

updating the queries only and will not delete any actions when there is a lack 

of queries in another node's database. When the NerveNet node is connected to 

the NerveNet network, it will seek the difference in the table with other nodes. 
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After that, the database will be updated with the latest data. However, suppose 

all the NerveNet nodes are shut down. In that case, the data in the database 

will be deleted. Since all the existing databases are empty, they cannot relieve 

the data back by using the hearsay daemon synchronisation. 

 
2.8 Summary 

There are some basic requirements such as IoT, edge computing, Artificial 

Intelligence, mesh network, LoRa and NerveNet to design a reliable flood 

forecasting system. Edge computing and AI support an efficient and intelligent 

way to forecast the flood ahead of time by generating alert messages. After 

that, the NerveNet mesh network can help achieve fault tolerance during 

emergencies. Lastly, the LoRa-based end devices have the advantages of wide 

range connectivity coverage and low power consumption. 
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CHAPTER 3 

METHODOLOGY AND WORK PLAN 

3.1 Introduction 

This project aims to develop an edge AI flood forecasting resilient mesh 

network with NerveNet Wi-Fi and LoRa connection. The flood warning 

message and the forecasted flood water level graph are synchronised 

throughout the network. Case studies and literature reviews in Chapter 2 above 

are necessary to build the planned prototype. 

 
3.2 Work Plan 

In part one of the Final Year Project, the main task is to study the knowledge 

and theory to build the whole system. As mentioned previously, the literature 

review includes the concept of IoT, edge computing, AI, mesh network, LoRa 

and NerveNet. Then, the hardware used is prepared. Next, the AI models used 

for the project are determined. The model training and testing are carried out 

in the cloud-based platform. Lastly, the progress report and presentation are 

also made. Figure 3.1 illustrates the Gantt Chart for Final Year Project part 1. 

 
 

Figure 3.1: Gantt Chart for Final Year Project Part 1. 

 
 

Part two of the Final Year Project's scope is to set up the NerveNet Wi-

Fi and LoRa Network. The testbed is set up around the UTAR Sungai Long 

campus to test the network's performance. Then, the testing and evaluation are 

carried out by using the testbed. Finally, the final report is made. Figure 3.2 

illustrates the Gantt Chart for Final Year Project part 2. 
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Figure 3.2: Gantt Chart for Final Year Project part 2. 

 
 

3.3 Artificial Intelligence (AI) Flood Forecasting 

In the real application, the AI model works upon the hydrological data 

collected from the sensors around the Sungai Long area, such as rainfall, river 

water level, humidity and so on, in real-time on the edge devices carried by the 

buses. In this project, five types of AI models, which are Random Forest, 

XGBoost, SVM, LSTM and GRU, are trained and tested on the prepared 

dataset to evaluate and record the performance of the system in flood water 

level forecasting. 

The trained models are then compared, and the best AI model is 

transferred to the edge devices to forecast the real flood water level in the real 

scenario. The experimental setup is done in such a way that the dataset for the 

training and testing is scaled within the limits of the actual dataset (Samikwa, 

n.d.). 

 
3.3.1 Study Site and Dataset 

A watershed chosen as the study site of the project is the Abashiri River 

watershed, located northeast of Hokkaido, Japan, as shown in Figure 3.3. The 

area of the watershed is around 1380 𝑘𝑚2. It has a 115 km long main river to 

the North Pacific and a range of elevation from 0 m to 978 m (Kimura et al., 

2019). In the project, the AI models are trained and tested using the datasets 

observed at the downstream stations called 'Hongou'. The used datasets are 

hourly datasets with the water level and rainfall variables from 1st January 

2019 to 31st December 2020. 
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Figure 3.3: Abashiri River Watershed (Kimura et al., 2019). 

 
 

3.3.2 Data Preparation 

During data pre-processing, the rainfall and water level data undergo a train- 

test split, separated into 70 % of the data as a training dataset and 30 % as a 

testing dataset. The training data calculates the training process's error and 

estimates the AI models' parameters. The testing data provides an independent 

performance evaluation of the AI models after training (Sungai Bedup, 

Sarawak). As shown in Table 3.1, this project applies the hydrological dataset 

with one and five months for training and the remaining seven months for 

testing. 

Next, the hydrological dataset has also undergone data standardisation 

where the values' distribution is rescaled to a mean value of 0 and a standard 

deviation value of 1. Data scaling is essential to fasten the training process of 

the AI model because the AI models can converge more rapidly if the dataset 

features are closer to the normal distribution. Before AI model training, the 

time series dataset is converted into sequential data with 24-time steps as the 

sequence length. The model performs equally well when the sequence length 

is between five to 15 or more. Therefore, in this project, the sequence length 

value of 24 is used in the model to represent 24 hours in one day. 

 
Table 3.1: Training and Testing Period for the Dataset. 

 

Dataset Training Testing 

Hongou (January 2019 – 

December 2020) 

January 2019 to May 

2020 

June 2020 to December 

2020 
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3.3.3 Model Training 

In this project, five AI models are used for the short-term prediction of river 

water levels. For three supervised learning models, Random Forest, XGBoost 

and Support Vector Machines, the output of these models is a river water level 

forecast by observing an ordinary multivariate dataset of water level and 

rainfall. On the other hand, for the deep learning models, LSTM and GRU, the 

input to these models is 24 hours time steps sequence of multivariate time 

series dataset of water level and rainfall, and their outputs are a forecast of 

river water level ahead of 1 hour. 

 
3.3.4 Random Forest 

The parameter 'max_depth' represents each tree's depth in the forest. In the 

project, the max_depth value is determined as 2. 

 
3.3.5 XGBoost 

There is a learning task parameter called objective. In the project, the learning 

objective is a regression with squared error. Besides that, the number of 

estimator is the number of runs that the XGBoost model tries to learn. 

 
3.3.6 Support Vector Machines (SVM) 

The parameter 'kernel' is the function the SVM model uses to solve problems. 

In the project, the kernel chosen is 'rbf'. 

 
3.3.7 Long Short-Term Memory (LSTM) 

There are several parameters in the LSTM model-building process. Firstly, the 

optimisation algorithm is the stochastic gradient descent procedure's extension 

to update the weights iterative of the network according to the training dataset. 

Besides that, it is also widely applied in implementing deep learning in natural 

language processing and computer vision. Secondly, an epoch is defined as the 

whole dataset transferring forward and backwards across the model's neural 

network once. Thirdly, the batch size is the number of samples propagating 

throughout the entire neural network (Le et al., 2019). Table 3.2 demonstrates 

the parameter values of the LSTM model. 
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Table 3.2: The Parameters' Values of LSTM Model. 
 

Training Parameters Details 

Sequence Length 24 

Optimisation Algorithm Root Mean Squared Propagation 

(RMSProp) 

Epochs' Amount 50 

Batch Size 64 

 
3.3.8 Gated Recurrent Unit (GRU) 

In the project, there are the same parameter type and values as the LSTM 

model to construct the build and train the GRU models. 

 
3.4 Application of the Trained AI Model 

Figure 3.4 shows the overall process for applying the trained AI models in 

edge devices. In the development process, the models are trained in a cloud- 

based platform. Then, they are saved from being exported out in .h5 format. 

These trained models are then converted to the .pb format. 

 
 

Figure 3.4: General Process for Trained AI Models' Application in Edge 

Device. 

 
The OpenVINO toolkit is used to enable the faster running of the 

application of the AI models. There are two main components in the 

OpenVINO toolkit, which are the model optimiser and inference engine. 

Firstly, when the trained model in .pb format is fed into the model optimiser, it 

converts them to the .IR format. At the same time, it optimises the 
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performance, space, and hardware-agnostic with conservative topology 

transformations. The output of the model optimiser is the 

trained_AI_models.xml and trained_AI_models.bin (Dubey Abhishek, 2020). 

Secondly, the AI inferencing process is performed at the inference engine, 

client edge devices which are Intel Neural Compute Stick 2 in the project, 

rather than straightly running the AI over the ordinary general-purpose 

hardware. Before feeding to the inference engine, the data is scaled using the 

scaler.gz exported from the training process. The scaled data is then reframed. 

The historical time series data representing the last 24 hours is extracted from 

the scaled dataset by retrieving the top 24 values of the rainfall and water level 

data. After that, the sequence data and the trained model in .IR format are fed 

into the inference engine to generate the water levels ahead of 1 hour in text 

form and the result graph in image form, as shown in Figure 3.5. 

 

 

 
 

 

Figure 3.5: The Example Graph of Forecasted Water Level Result against 

Time Step. 
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3.5 GPS Tracking 

Before the GPS tracking process, the bus locations at which the AI model is 

triggered to forecast the water level are determined. The GPS coordinates of 

those locations are determined by using Google Maps. In this project, there are 

three bus routes for three different edge nodes respectively which are Bandar 

Sungai Long & Palm Walk route 1, Bandar Sungai Long & Palm Walk route 2 

and MRT Bukit Dukung Station Route 6. Each route has five different location 

points to cover the whole area of Sungai Long to forecast the whole area's 

water level. Figure 3.6 illustrates the determined location points in the Bandar 

Sungai Long & Palm Walk route 1, and the Bandar Sungai Long & Palm Walk 

route 2. Furthermore, the location points in the MRT Bukit Dukung Station 

Route 6 are shown in Figure 3.7. In addition, Figure 3.8 illustrates the 

determined location points in the Bandar Mahkota Cheras 1 Route 4. 

 

 

 
 

Figure 3.6: Location Points in Bandar Sungai Long & Palm Walk Route 1 and 

Route 2. 



25 
 

 

 

Figure 3.7: Location Points in MRT Bukit Dukung Station Route 6. 
 

 

Figure 3.8: Location Points in Bandar Mahkota Cheras 1 Route 4. 

 
 

The overall process flow for the GPS tracking process is shown in 

Figure 3.9. The GPS tracking process of each edge device is first initialised by 

extracting the GPS coordinates of the location points in the bus route in which 

the edge device will pass through it. Then, the real-time location coordinates 

of the edge device are read in the NMEA format via the GPS receiver at 

intervals. The edge device will continuously read its location's coordinates 

until it reaches the surrounding of one of the location points. When the edge 

device detects that it is within 111 m range of the specific location point, the 

historical time series data from the local dataset of that detected location point 
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is retrieved by the edge device. This historical dataset is then checked to 

determine whether its amount is equal to or more than the number of steps 

which is 24-time steps in our AI models. Otherwise, the process will return to 

the step of continuously detecting the location coordinates. If the condition is 

fulfilled, the water level of that detected location is forecasted by applying the 

trained AI models in the edge device. This process repeats until the bus 

carrying the edge device has finished running its route. 

 
 

Figure 3.9: General Process for GPS Tracking. 
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3.6 Job Scheduling 

There are two types of AI flood forecasting model outputs: the forecasted 

water level ahead of time in text form and the result graph in image form. At 

the initial stage, the forecasted warning text message is transmitted from the 

edge devices to the subscriber side through the LoRa based on the order of the 

text generated. However, it is observed that the edge devices will repeatedly 

publish the same warning text message throughout the whole bus route if it 

does not get the acknowledgement from the subscriber side that it has already 

received the message packets. This disobeys the objectives and purpose of the 

project where the warning text message that is more important than the 

message before may not be able to be transmitted to the gateway or server in 

time, resulting in colossal damage loss by flood due to late information. 

 
3.6.1 Create task 

The proposed solution to this issue is priority-based job scheduling. There are 

two separate workflows of the job scheduling mechanism. Figure 3.10 

illustrates the first workflow, which is creating the task. Firstly, after the AI 

flood forecasting model generates the forecasted water level ahead of time, the 

result will fall into a condition. If the forecasted water level is within the 

normal level, the workflow will return to the AI flood forecasting model to 

continue generating the next forecasted water level. On the other hand, if the 

forecasted water level is outside the normal level, a sending job with the 

priority. The job consists of several variables such as unique record id, 

publisher node id, subscriber node id, forecasted water level, the determined 

threshold level, the remaining time of flood occurrence, the forecasted flood 

location and the priority of the job. The determined threshold level is the 

severity of the forecasted river water level. Table 3.3 illustrates three levels of 

the severity of the forecasted water level. 
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Table 3.3: The Severity of The Forecasted Water Level(Department of 

Irrigation and Drainage, 2022). 

Threshold Level Description Indicator 

 
Alert 

The river level is significantly 

higher than the normal river 

water level. 

 
1 

 

 

Warning 

The river water level is 

approaching to the level that 

flood may occur and the public 

needs to prepare for the 

evacuation action. 

 

 

2 

 
Danger 

The river water level can bring a 

considerable flood and the public 

needs to start to evacuate. 

 
3 

 
Besides that, the job's priority is defined as the urgency level of the 

message packets to be sent to the subscriber side. The priority of the job can be 

computed by the multiplication of the severity indicator and the remaining 

time of flood occurrence. After the job is created, it is stored in the job_list.csv. 

Finally, the workflow will return to the AI flood forecasting model and 

continue repeating the works. 
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Figure 3.10: The Workflow for Creating the Task. 

 
 

3.6.2 Job Scheduling 

Figure 3.11 illustrates the mechanism's second workflow, job scheduling. 

Firstly, the acknowledgement variable, which is used to determine whether the 

subscriber node receives the message packet or not, is always initialised to 

False. Secondly, the job_list.csv is read to get the job list. If the job list is 

empty, the edge device will display that the job is finished and is waiting for 

the new job. After that, the workflow will return to the step of initialising and 

resetting the acknowledgement variable to False. On the other hand, if there 

are jobs in the job list, the edge device will search for the job with the highest 
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priority in the job list. Then, that particular job is transmitted from the edge 

device to the subscriber node through LoRa within 5 minutes. After that, the 

response or received data from the transmission on the edge device side is read. 

By using the regular expression (regex), the edge device will search for the 

"Completed" keyword in the received data, and it will set the 

acknowledgement variable to True if there is a "Completed" keyword in the 

received data strings. 

If the acknowledgement variable remains as False, the workflow will 

return to the step of initialising and resetting the acknowledgement variable to 

False. On the contrary, if the acknowledgement variable is True, which 

indicates the subscriber node receives the message packets, the particular job 

will be removed from the job_list.csv. Then, the edge device will display that 

that particular job is sent successfully. Finally, the workflow will go back to 

the step of resetting the acknowledgement variable to False and continue 

repeating the works. 
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Figure 3.11: The Workflow of Job Scheduling. 
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3.7 NerveNet Wireless Mesh Network 

A mesh network has a redundant connection for every device within the 

network. If the primary peer of the device is broken or failed, the devices will 

search for an alternative pathway to transmit the data packets to their 

destination. 

 
3.7.1 Hardware Selection 

The hardware chosen to deploy the network is listed. 

i. 8 units of Archer T4U AC1300 Wireless Dual Band USB Adapter 

ii. 4 units of Alfa Awus036ACH 1200mbps Wi-Fi Adapter 

iii. 4 units of LoRa RFLink RM-92A + RFLink RM-92XUSB + 920MHz 

Whip Antenna ANT-92XA + Antenna Cable 

iv. 2 units of USB GPS GlobalSat BU-353S4 G-STAR IV 

v. 2 units of USB GPS DFRobot GPS Module 

vi. 3 units Raspberry Pi 4 8 GB 

vii. 5 units of Intel NUC BXNUC10i7FNH3 64 GB RAM 2 TB 

viii. 1 unit of TP-Link TL-WN725N 150Mbps Wireless N Nano USB 

Adapter 

 
 

3.7.1   Architecture of Hybrid Wi-Fi and LoRa Mesh Network 

The overall architecture for the hybrid Wi-Fi and LoRa mesh network testbed 

is shown in Figure 3.12. As discussed earlier, after the bus reaches the 

designated locations, the edge devices which are node 201, node 202 and node 

203, will run the AI flood forecasting inference on the Intel Neural Compute 

Stick 2, which outputs the flood alert text message and result graph image. 

Next, the flood alert text messages are then transmitted to the node 204 device 

located at the 8th floor's pantry through the LoRa route, and then the alert text 

message will be synchronised to every node in their own 'disaster_application' 

database. On the other hand, the result graph image is saved in node 201, node 

202, and node 203 themselves until they are near the UTAR bus stop. The 

result graph images are then transmitted to node 210, located at the ground 

floor's pantry, through the Wi-Fi route, and then the result graph image will 

also be synchronised to every node in their own 'shbt_boxshare' database. 



33 
 

 

 

Figure 3.12: The Architecture of Hybrid Wi-Fi and LoRa Mesh Network. 

 
 

During the construction of the architecture, it is observed that the Wi- 

Fi network between node 204 and node 210 is disconnected if the Archer T4U 

AC1300 Wireless Dual Band USB Adapters are used to provide the 

connectivity for node 204 and node 210. This is because the connectivity 

range provided by this type of adapter is insufficient to cover the long distance 

between node 204 and node 210. They are located at the ground pantry and 8th 

floor's pantry, respectively, where it is estimated that the distance between 

them is around 80 m if it is assumed that one floor has 10 m high. Therefore, 

the Alfa AWUS036ACH 1200 Mbps Wi-Fi Adapters are introduced. 

According to its datasheet, the AWUS036ACH has 802.11ac standards with 

hardware-based Wi-Fi optimisation that gives out an extra-large coverage and 

a strong strength to penetrate the walls so that the Wi-Fi dead spots are 

eliminated (ALFA NETWORK DISTRIBUTOR, 2010b). In addition, the 

external antennas of the AWUS036ACH are changed to Alfa APA M04 

Accurate 7dBi Wi-Fi directional Antenna instead of its original five dBi 

omnidirectional antennas. As shown in Figure 3.13, the directional antenna 

concentrates its gain in a particular direction and has stronger strength of the 

signal in the direction it points to (ALFA NETWORK DISTRIBUTOR, 

2010a). Thus, the Wi-Fi network between node 204 and node 210 can be 

easily connected, although the distance between them is long. 
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Figure 3.13: The Coverage of Directional Antenna (ALFA NETWORK 

DISTRIBUTOR, 2010a). 

 
Moreover, the same problem goes to the Wi-Fi network between node 

210 and the edge devices, which are node 201, node 202 and node 203. The 

Alfa AWUS036ACH 1200 Mbps Wi-Fi Adapters are also used at node 210 

and node 203 to solve this issue. There is a difference which is the external 

antennas of the AWUS036ACH are changed to Alfa Wi-Fi Antenna ARS-N19 

9 dBi Dipole Antennas. It has a higher gain than the original antennas and the 

directional antennas, as mentioned above, to give a stronger signal strength. 

Besides that, since the buses' rest place covers a large coverage area which is 

from the bus stop to the back door of the KB block, the omnidirectional 

antenna is preferable because it has its gain distributed to every direction, as 

shown in Figure 3.14. Thus, the Wi-Fi adapter can detect more signals overall 

from the buses that are distributed near and behind the KB block. 

 
 

 
Figure 3.14: The Coverage of Omni-directional Antenna (ALFA NETWORK 

DISTRIBUTOR, 2010c). 
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3.8 Database Synchronisation 

Wi-Fi mesh network framework provides database synchronisation to share 

common data within the mesh network. In NerveNet, a MySQL database is 

included. The lookup feature is built by using a service daemon called 

PTMGR (Path Tree Management Generation). It needs to be installed in the 

essential node within the mesh network. PTMGR continuously seeks for peers' 

network status to identify if any node is down or a new node has joined the 

network. If PTMGR steadily maintains the connection between nodes, the 

nodes could directly connect or access each other and perform NerveNet SQL 

database synchronisation. The nodes will compare the data rows within each 

other to update with the latest data. 

 
3.9 Performance Evaluation 

In the project, there are several types of performance evaluation, such as AI 

model performance evaluation, NerveNet x86 Wi-Fi Mesh performance 

evaluation, NerveNet LoRa messaging performance, image synchronisation 

test and text synchronisation test. 

 
3.9.1 Mean Absolute Error (MAE) 

The MAE is the mean of the differences between the original value with the 

forecasted value. On an excellent flood forecast, the MAE should be smaller. 

Moreover, it can be computed by the equation (3.1) (Adhikari and Agrawal, 

n.d.). 

 
 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

 
(3.1) 

 
 

3.9.2 Mean Absolute Percentage Error (MAPE) 

The MAPE is the percentage of the mean of the total error. On an excellent 

flood forecast, the MAPE should be smaller. In addition, it can be computed by 

the equation (3.2) (Adhikari and Agrawal, n.d.). 
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3.9.3 Root Mean Squared Error (RMSE) 

RMSE is the square root of the average squared deviation of the forecasted 

flood water level value. On an excellent flood forecast, the RMSE should be 

smaller. In addition, it can be computed by the equation (3.3) (Adhikari and 

Agrawal, n.d.). 

 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑒𝑖2
𝑛

𝑖=1

 

(3.3) 

 

3.9.4 R Squared (𝑹𝟐) 

R squared is the coefficient of determination and goodness of fit. With an 

excellent flood forecast, the 𝑅2 should be larger. In addition, it can be 

computed by the equation (3.4) (Adhikari and Agrawal, n.d.). 

 

𝑅2 = 1 − 
𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑆𝑆𝑅) 

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆𝑇) 

(3.4) 

 

 

3.9.5 Latency 

The latency of the NerveNet Wi-Fi network is benchmarked using the ping 

command. Ping uses the Internet Control Message protocol. The ping 

command will output the minimum, maximum, and average latency in 

milliseconds in the terminal after repeating the ping 100 times. In the 

performance evaluation, the average latency is taken to evaluate the NerveNet 

Wi-Fi network. 

 
3.9.6 TCP/UDP Throughput 

The TCP and UDO throughput of the NerveNet Wi-Fi network is 

benchmarked by using Iperf3. For TCP throughput, 100 packets are sent to the 

receiver node. After that, throughput is obtained in milliseconds by dividing 

the total data size received at the receiver side by the time taken. For UDP 
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throughput, the sender bandwidth is set at 50 MBps. By default, the duration to 

send dummy data is 10 seconds. Therefore, 500 MB of data will be sent in 

total. The UDP packet receiver node will not acknowledge the sender node if 

the packet is lost in the transmission. The UDP throughput is obtained by 

dividing the received data size by 10 seconds. 

 
3.9.7 Jitter 

In real-life applications, several influencing factors, such as queuing, 

congestions, slow network connection, and so on that, causes a certain delay 

between continuous packets, also called jitter. The jitter with a high value will 

reduce the performance of the NerveNet Wi-Fi mesh network and the user 

experience. The jitter is also obtained when measuring UDP throughput using 

the Iperf3 tool. 

 
3.9.8 LoRa Messaging Performance 

The NerveNet LoRa data transmission performance is evaluated by sending 

the LoRa message with 30 Bytes and 90 Bytes payload size ten times and 40 

times at once, respectively. After that, the packet delivery ratio (PDR) of LoRa 

packets and the number of packets lost in each case are recorded. The packet 

delivery ratio of LoRa packets can be calculated with the equation (3.5). 

 

 

𝑃𝐷𝑅 = 
 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡 
 
 

3.9.9 NerveNet Database Text Synchronisation 

NerveNet database supports flood warning text message synchronisation to 

other nodes. The average time synchronising the flood warning text message 

in real scenarios is recorded. The average of the flood warning text message in 

the project is around 30 Bytes. Therefore, the database synchronisation 

throughput can be calculated by dividing the 30 Bytes by the average time 

taken to synchronise the flood warning text message. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 (3.5) 
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3.9.10 NerveNet Database Image Synchronisation 

The NerveNet database supports image synchronisation to other nodes. The 

average time synchronising the result graph image in real scenarios and 

different-sized images is recorded. Besides that, the database synchronisation 

throughput can be calculated by dividing the average number of image size 

with the average time taken to synchronise the image. 

 
3.10 Summary 

Firstly, five different AI models are trained and compared to get the best 

model for flood water level forecasting. After that, the best AI model is 

converted into .IR format by the OpenVINO model optimiser so that it can be 

applied in edge devices. When the edge device pasted on the bus reaches some 

designated location points, it will trigger the AI model to generate the 

forecasted water level and result image graph. The forecasted water level is 

then processed to generate the flood alert messages and is shared among node 

204 through LoRa immediately. On the other hand, the result graph is stored in 

the edge device and shared to node 204 through Wi-Fi when the edge device is 

close to the UTAR KB block. All the essential data is synchronised in the 

databases among each node by using the NerveNet mesh network. The 

performance of the AI model, NerveNet Wi-Fi and LoRa network and the 

database synchronisation are discussed in the next chapter. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Introduction 

The performances of five types of Artificial Intelligence models, which are 

Random Forest, XGBoost, SVM, LSTM and GRU, are evaluated with the 

testing dataset. In addition, the NerveNet Triangular Wi-Fi mesh network 

performances within x86 (node 206, node 208, node 209) are evaluated. 

Furthermore, the NerveNet LoRa mesh MQTT messaging performance within 

x86 and armhf where node 201, node 202 and node 203 act as the publisher 

side while node 204 acts as the subscriber side. Figure 3.12 shows Wi-Fi links 

and LoRa links for the whole architecture. 

Moreover, the database synchronisation test in terms of text and image 

is carried out within the whole testbed, as mentioned previously. 

 
4.2 Artificial Intelligence Model Benchmark 

There are many methods that can be used for time series forecasting, and there 

is no clear winner. Model selection should always depend on the complexity 

of the data and the objectives that want to be achieved, such as the desired 

period ahead of the forecasting. Some models may be stronger against outliers. 

However, they may also perform worse than the more sensible ones, and they 

still are the best option based on the use case. Therefore, it is crucial to explore 

different kinds of methods for forecasting and their performance in various 

metrics to solve the problem of determining the suitable and optimal AI model 

for our case. 

Figure 4.1 demonstrates the water level forecasting performance of five 

AI model types, which are Random Forest, XGBoost, SVM, LSTM and GRU 

on the proposed testing datasets. Theoretically, the deep learning methods 

outperform the conventional machine learning methods when the big data 

comes into its input (Mahapatra, 2018). This is similar to the project's case, 

where the LSTM and GRU models have a lower value of MAE, MAPE and 

RMSE than the Random Forest, XGBoost and SVM models. This indicates 

that the deep learning models have a lower deviation of the forecasted results 
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from the ground truth and a lower error percentage. A higher R2 value 

indicates a more excellent time series forecasting performance from the deep 

learning models. As shown in Figure 4.2, although the conventional machine 

learning' performance is preferable when the data size is small, the deep 

learning method has an incremental performance when the data size is getting 

larger (Mahapatra, 2018). In the project, a huge amount of 2-year time series 

hydrological data comes into the inputs of the AI models. Therefore, the 

LSTM and GRU in the project have much higher performance than the 

conventional machine learning methods. 

 
 

Figure 4.1: Benchmarking Metrics Values of Five Types of AI Models. 
 

 

Figure 4.2: The Relationship Between the Amount of Data and the 

Performance of the Deep Learning and Conventional Machine Learning 

(Mahapatra, 2018). 
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Furthermore, this is also because the core of conventional machine 

learning is simple, and its training needs a plethora of human intervention and 

domain expertise if there is an error. On the other hand, the deep learning 

method learns about the high-level features in the data by themselves via the 

neuron network in an incremental manner. Deep learning itself maps the task 

as a hierarchy of concepts where a series of easier concepts defines each 

complex concept. It does not require human intervention and domain expertise 

(Shchutskaya, 2018). Therefore, deep learning always outperforms when 

applied to complex problems such as time series forecasting in the project. 

As shown in Figure 4.1, the LSTM model has more excellent 

performance than the GRU model since it has lower MAE, MAPE, RMSE and 

higher R2. This finding is consistent with the study by (Yang, Yu and Zhou, 

2020), where the LSTM model performs better than the GRU model in the 

case of short text processing and large-size datasets. In the project, there is a 

huge amount of rainfall and water level dataset where both types of variables 

are short integers. They act as the inputs to the LSTM and GRU models. 

Therefore, it can be seen that the LSTM is more appropriate than the GRU 

models in these scenarios. 

All in all, the LSTM has the best performance in the AI water level 

forecasting since it has the lowest MAE, MAPE and RMSE while the highest 

R2 among all the proposed AI models. Therefore, LSTM is chosen as the 

project's AI water level forecasting model. In addition, all the benchmarking 

metrics on the LSTM model is also within the acceptable range. Therefore, the 

objective of developing a lightweight AI disaster detection model is also 

successfully achieved. 

 
4.3 NerveNet x86 Wi-Fi Mesh Benchmark 

NerveNet x86 Wi-Fi Mesh Network is benchmarked with ICMP ping and 

iperf3. The benchmarking metrics of the network are latency, TCP throughput, 

UDP throughput, and jitter. The network performance evaluation encompasses 

mesh links only. The network performance evaluation in mesh link is 

implemented by powering on node 206, node 208 and node 209 within the Wi- 

Fi domain. 
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Latency is the primary benchmarking metric used to discuss the 

performance of the Wi-Fi network since latency is the influencing factor that 

affects the throughputs (Glonaldots, 2015). As shown in Figure 4.3, there are 

no significant differences in the latencies of the two route directions between 

node 206 and node 208. Besides that, the two opposite route directions 

between node 208 and node 209 are also almost similar. This can be explained 

by the Wi-Fi client interface and Wi-Fi AP interface for the route between 

node 206 with node 208 are using the Archer T4U AC1300 Wireless Dual 

Band USB Adapter. Therefore, the routes between node 206 and node 208 

have the same gain and transmission rate to send data to its destination and 

back to the source in almost equal time. The same reason goes for explaining 

the latencies of the routes between node 208 and node 209. However, the route 

from 209 to node 206 is higher than that from 206 to 209. This is because the 

Wi-Fi client interface in node 209 uses TP-Link TL-WN725N 150Mbps 

Wireless N Nano USB Adapter, while the Wi-Fi AP interface in node 206 uses 

Archer T4U AC1300 Wireless Dual Band USB Adapter, which has a higher 

gain and transmission rate to send data to its destination and back to the source 

in a shorter time. 

 
 

Figure 4.3: Benchmarking Metrics Values of NerveNet x86 Wi-Fi Mesh 

Network. 
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The shorter the distance between sending and receiving end, the 

greater the network latency (Glonaldots, 2015). Therefore, the latencies of the 

route between node 208 and node 209 are the lowest since it has the shortest 

distance between the sending and receiving end, as shown in Figure 4.4. 

Although the route between node 206 and node 208 has a shorter distance as 

compared to the route between node 206 and node 209, the route between 

node 206 and node 208 still takes a longer time to send data to its destination 

and back to the source as the data needs to penetrate the thick concrete wall of 

the staircase. Therefore, the latencies of the route between node 206 and node 

208 are the highest. In addition, the route between node 206 and node 209 has 

latency with intermediate values. 

 
 

Figure 4.4: The Distance Between the Nodes. 

 
 

As shown in Figure 4.3, the UDP jitter of all the route directions is 

similar. The highest UDP jitter is 25.579 milliseconds, and the lowest UDP 

jitter is 10.610 milliseconds. This fulfils the QoS requirement of jitter for 

applications such as video conferencing, which is less than 30 milliseconds 
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(Khalifeh, Gholamhosseinian and Hajibagher, 2011). Hence, the NerveNet x86 

Wi-Fi Mesh Network has the acceptable range of UDP jitter to handle the 

applications that need low jitter, such as providing VoIP services. 

 
4.4 NerveNet LoRa Messaging Performance 

The primary benchmarking metric of the NerveNet LoRa network is the 

number of lost LoRa packets since the testing of the NerveNet LoRa MQTT 

applies the Quality of Service (QoS) level zero. The QoS level zero guarantees 

best-effort message delivery but not a message delivery guarantee since the 

sender only transmits the message at most once (HIVEMQ, 2015). Therefore, 

the LoRa message packets may be lost during the transmission process. It is 

crucial to evaluate the number of lost LoRa packets to conclude the efficiency 

of the LoRa in the flood alert message transmission in the NerveNet partial 

mesh network testbed. 

MQTT payload sizes of 30 Bytes and 90 Bytes are used to test the 

NerveNet LoRa MQTT messaging performance. Besides that, the influencing 

factors include the number of LoRa packets sent at once since it can affect the 

ratio of lost packets. Hence the number of LoRa messages published at once is 

varied at 10 and 40 messages. After the LoRa MQTT subscriber has not 

received any message for 20 minutes, the remaining LoRa packets are 

considered lost. After that, the number of lost message packets under different 

scenarios is recorded accordingly, and the packet delivery ratio is calculated 

using the equation (4.1). 

 

 

𝑃𝐷𝑅 = 
 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑆𝑒𝑛𝑡 
 
 

The test is carried out using node 204 as a LoRa MQTT subscriber, while node 

201, node 202 and node 203 act as the LoRa MQTT publisher for the bus route 

of Bandar Sungai Long & Palm Walk, Bandar Makhota Cheras 1 and MRT 

Bukit Dukung respectively. Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8, 

illustrate the packet delivery ratio under different locations that have the  

LoRa packets received to study the efficiency of the NerveNet LoRa 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 (4.1) 
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messaging performance based on the distance between the subscriber node and 

publisher node. 

 
 

Figure 4.5: The Packet Delivery Ratio over Time for Scenario of 10 Messages 

with MQTT Payload Size of 30 Bytes Published at Once. 

 
 

Figure 4.6: The Packet Delivery Ratio over Time for Scenario of 40 Messages 

with MQTT Payload Size of 30 Bytes Published at Once. 
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Figure 4.7: The Packet Delivery Ratio over Time for Scenario of 10 Messages 

with MQTT Payload Size of 90 Bytes Published at Once. 

 
 

 
Figure 4.8: The Packet Delivery Ratio over Time for Scenario of 40 Messages 

with MQTT Payload Size of 90 Bytes Published at Once. 

 

 

Theoretically, when the distance between the nodes and gateway 

increases, the packet delivery rate through LoRa decreases. Besides that, the 

obstacles could also influence the packet delivery rate (Choi, Lee and Lee, 

2020). Those observations are similar to our cases. As shown in Figure 4.5, 

Figure 4.6, Figure 4.7, and Figure 4.8, it can be seen that the further the 

distance between the publisher side and subscribe side, as shown in Figure 4.9, 

the lower the LoRa packet delivery rate. Furthermore, although the distance 

between the publisher node around the Pangsapuri AZALEA and Lebuhraya 
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SILK with the subscriber node is almost similar, the publisher node around 

Pangsapuri AZALEA still has a slightly higher LoRa packet delivery rate. It 

can be seen that the difference is attributed to the obstacles, such as trees 

around the Lebuhraya SILK area. The big change in humidity of the trees zone 

causes the decline of the packet delivery rate relying on the time and weather. 

 
 

Figure 4.9: The Distance Between Subscriber Node and Publisher Node at 

Different Locations. 

 
Besides the distance between the publisher node and subscriber node, 

the manipulating variable is LoRa MQTT payload size because the bandwidth 

is fixed. A larger payload size means a higher bit rate, increasing the risk of 

LoRa signals being interfered with or corrupted. As shown in Figure 4.10, the 

number of NerveNet MQTT LoRa messages lost increases when the payload 

size increases. Hence, it is concluded that the larger the LoRa MQTT payload 

size, the slower the LoRa packet transmission, and the higher the risk of the 

LoRa packet being lost. According to the European Telecommunications 

Standards Institute (ESTI), the number of lost packets of the LoRa is placed in 

the good category which is between 3 % and 14 % (Suharjono et al., 2018). 
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Figure 4.10: Number of LoRa MQTT Packet Lost at Different Location Points. 

 
 

However, some of the location points, which are Forest Green 

Condominium, SJK(C) Bandar Sungai Long, Persiaran Mahkota Cheras 2, 

McDonald's and UTAR Mahkota Cheras Parking, have 100 % of LoRa 

packets lost and the packet delivery ratio of zero value. This is due to many 

obstacles around UTAR Sungai Long Campus, such as the thick concrete wall 

of the shop lots and condominiums and the electromagnetic interference from 

the residential areas that corrupt or interfere with the LoRa message packets 

during transmission. This decreases the transmission range of the LoRa 

packets. However, there is one exceptional location point which is Sungai 

Long Residence. The publisher node at that location can successfully send the 

LoRa packet message to the receiver node at the UTAR KB block, although 

there is a long distance between them which is 1.20 km. This is because the 

location point is a small hill with a clear space between that particular location 

point and the UTAR KB block, as shown in Figure 4.11. Therefore, it can 

conclude that if there are obstacles or interference between the subscriber node 

and publisher node, the NerveNet transmission range will be reduced. On the 

other hand, the NerveNet LoRa network can achieve long-distance 

transmission properties if there is a clear space between the subscriber node 

and publisher node. 
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Figure 4.11: Clear Space between Sungai Long Residence with UTAR KB 

Block. 

 
4.5 Text Database Synchronisation Test 

The AI flood warning text message in the real scenario is used to study the 

efficiency of the text database synchronisation if the project is applied in real 

life. The average text size is around 30 Bytes depending on the number of 

characters in the location string and the water level string. 

The texts start to be synchronised from node 204 since node 204 is the 

text receiver node for those three edge devices, which are node 201, node 202 

and node 203. Each text is synchronised throughout the network several times. 

Then, the average time taken for each text to be synchronised in the database 

in each node is calculated to get more accurate results. 

As shown in Figure 4.12, when the distance between the initial 

receiver node, which is node 204, with the afterwards receiver node increases, 

the time taken for each text to be synchronised in the database in each node 

increases. The maximum time taken for a text to be synchronised throughout 

every node is at most 30 seconds based on the network condition. Since the 

system only needs to transmit small-size flood warning text messages, it is 

sufficient for the system to synchronise the flood warning text message at a 

very fast speed so that the control centre can get the notifications from the 

gateway node and take action in the shortest time. 



50 
 

 

 

Figure 4.5.1: The Time Taken for Text Synchronised at Every Node. 

 
 

4.6    Image Database Synchronisation Test 

Three different sizes of images are used to measure the performance of the 

image database synchronisation test. Besides that, the AI output result graph 

image in the real scenario is also used to study the efficiency of the image 

database synchronisation if the project is applied in real life. The size of the 

images is tabulated in Table 4.1. 

The images are started to be synchronised from node 210 since node 

210 is the image receiver node for those three edge devices, which are node 

201, node 202 and node 203. Each image is synchronised throughout the 

network several times. Then, the average time taken for each image to be 

synchronised in the database in each node is calculated to get more accurate 

results. 

 
Table 4.1: Image File Size Used for Image Database Synchronisation 

Performance Benchmarking. 

Image File Name File Size 

real_image.png 31.9 KB 

image_small_size.jpg 47.4 KB 

image_middle_size.jpg 745 KB 

image_large_size.jpg 1.14 MB 
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As shown in Figure 4.13, when the image file size increases, the time 

taken for each image to be synchronised in the database in each node increases. 

The maximum time taken for the image with a size of equal to and less than 

1.14 MB to be synchronised throughout every node is at most 30 minutes 55 

seconds based on the network condition. Moreover, based on the test results, it 

can be observed that the result graph image requires at most 8 minutes 23 

seconds for it to be fully synchronised in the real scenario. Therefore, since the 

system only needs to transmit a small size image after finished running a route, 

it is sufficient for the system to synchronise the images during the rest time of 

the buses at the UTAR bus stop because the minimum rest time of the bus is at 

least 15 minutes according to the schedule of the bus as shown in Figure 4.14. 

 

 

 

Figure 4.13: The Time Taken for Image Synchronised at Every Node. 
 

 

 
Figure 4.14: The Bus Schedule. 
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4.7    Summary 

From the study, the AI model is considered acceptable for flood water level 

forecasting. In addition, the NerveNet Wi-Fi mesh network is reliable. The 

TCP/UDP throughput, jitter, and latency within a triangular topology can fulfil 

most of the requirements of a flood forecasting system. If properly planned 

and configured, the NerveNet x86 Wi-Fi mesh devices can handle simple 

Internet services during natural disaster events. For NerveNet LoRa mesh, the 

LoRa message could be received in a few seconds if the MQTT payload size is 

small and there are no obstacles and interference between the subscriber node 

and publisher node. It is suitable to be implemented in a flood forecasting 

system since the flood warning message is in short plain text only. 

Furthermore, since the system only needs to transmit the small size flood 

warning text messages, it is sufficient for the system to synchronise the flood 

warning text message at a very fast speed so that the control centre can get the 

notifications from the gateway node and take action at the shortest time. 

Moreover, since the system only needs to transmit a small image after running 

a route, it is enough for the system to synchronise the images during the rest 

time of the buses at the UTAR bus stop. 
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CHAPTER 5 

 
 

CONCLUSIONS AND RECOMMENDATIONS 

 
 

5.1 Conclusions 

In conclusion, lightweight AI disaster detection has been successfully 

developed. The AI model used is LSTM, which has proven beneficial for the 

flood forecasting system. In addition, a NerveNet mesh network testbed with 

LoRa and Wi-Fi has been successfully designed and deployed. The design of 

the network meets the requirements set by the International 

Telecommunication Union. Besides that, the network's performance is also 

within an acceptable range of a resilient flood forecasting network. Lastly, the 

synchronisation of AI results among the node has also been successfully 

achieved. Since the system only needs to transmit the small size flood warning 

text messages and a small size image, it is enough for the system to 

synchronise the flood warning text message at a very fast speed so that the 

control centre can get the notifications from the gateway node and take action 

as soon as possible. 

 
5.2 Recommendations for future work 

Firstly, the AI model training and the testing dataset are obtained from Japan's 

organisation. Hence, the AI results may not apply to the local area since the 

weather, season, humidity, and geographical condition of Malaysia are 

different from Japan. The local dataset can be requested from the local 

government to build an AI model that can fit the situation in Malaysia's local 

area so that a better understanding of the feasibility of the AI model in disaster 

detection in Malaysia. 

Secondly, the testbed is not fully deployed with powerful hardware 

due to budget constraints. There are only some of the nodes that use the 

powerful Wi-Fi adapter. As a solution, the project team can seek for a sponsor 

to support the budget that can improve the hardware throughout the whole 

network architecture. Hence, a better and more extensive network performance 
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test can be conducted to have a better understanding of the feasibility of the 

network and system. 

  

Besides, the system performance analysis may not be good and accurate 

enough because only three edge node devices operate on the dedicated bus 

routes and locations. Some blind spots that the floods frequently occur are not 

included in the testbed. As a solution, the number of the NerveNet nodes can be 

increased to have the AI flood forecasting operation in more locations. A larger 

testbed can be deployed to cover the whole Sungai Long area. Additional flood 

forecasting applications and features can be developed and tested with this 

testbed. 

In addition, all the node devices in the project use the command-line 

operating systems, which are Linux and Raspberry Pi OS. The users need to 

memorise or refer to the documentation to operate the AI flood forecasting 

system. Hence, a graphical user interface (GUI) can be incorporated into the 

system because of its more modern appearance and ease of use. The GUI can be 

developed using some python packages such as the Tkinter package, PyQt5 

package, wxPython package and so on. As a result, the system can become more 

user-friendly and efficient.  

Last but not least, there is a problem encountered in the actual 

application of the system on the bus where the power supply cannot sustain the 

daily power consumption from the edge nodes in the buses. Each edge node in 

the bus is supplied by the power bank, which must be removed from the 

installation and charged with the power socket daily. This increases the labour 

fee to recruit people for this nuisance operation. Each edge node can be 

equipped with an off-grid solar power system as a solution. The solar panels 

installed on the buses’ roofs convert the solar energy into DC power with the 

photovoltaic (PV) effect. After that, a solar inverter is applied to convert the DC 

power to AC power, which is then stored in the battery storage components 

called power banks. The AC power is fed into the edge node for its usage. Hence, 

the AI flood forecasting system can maintain operation over a longer period.  



55 
 

 

REFERENCES 

 

 

 
Adhikari, R. and Agrawal, R.K., n.d. An Introductory Study on Time Series 

Modeling and Forecasting. 

 
ALFA NETWORK DISTRIBUTOR, 2010a. Alfa APA M05 Accurate 7dBi 

Wifi Directional Antenna - Antenna Outdoor / Indoor. [online] Available at: 

<https://www.alfa.net.my/products/Alfa-APA-M05-Accurate-7dBi-Wifi- 

Directional-Antenna/17> [Accessed 12 September 2022]. 

 
ALFA NETWORK DISTRIBUTOR, 2010b. Alfa AWUS036ACH WiFi USB 

3.0 AC Wifi Adapter Dual Band - Indoor Wireless. [online] Available at: 

<https://www.alfa.net.my/products/Alfa-AWUS036ACH-WiFi-USB-3.0-AC- 

Wifi-Adapter-Dual-Band/66> [Accessed 12 September 2022]. 

 
ALFA NETWORK DISTRIBUTOR, 2010c. Alfa Wifi Antenna ARS-N19 

2.4GHz 9dBi Dipole Antenna - Indoor Wireless. [online] Available at: 

<https://www.alfa.net.my/products/Alfa-Wifi-Antenna-ARS-N19-2.4GHz- 

9dBi-Dipole-Antenna/14> [Accessed 12 September 2022]. 

 
IBM, 2021. What is distributed computing. [online] Available at: 

<https://www.ibm.com/docs/en/txseries/8.1.0?topic=overview-what-is- 

distributed-computing> [Accessed 12 September 2022]. 

 
Aung, W.T. and Hla, K.H.M.S., 2009. Random forest classifier for multi- 

category classification of web pages. 2009 IEEE Asia-Pacific Services 

Computing Conference, APSCC 2009, pp.372–376. 

https://doi.org/10.1109/APSCC.2009.5394100. 

 
Chen, M., Li, W., Hao, Y., Qian, Y. and Humar, I., 2018. Edge cognitive 

computing based smart healthcare system. Future Generation Computer 

Systems, 86, pp.403–411. https://doi.org/10.1016/J.FUTURE.2018.03.054. 

http://www.alfa.net.my/products/Alfa-APA-M05-Accurate-7dBi-Wifi-
http://www.alfa.net.my/products/Alfa-APA-M05-Accurate-7dBi-Wifi-
http://www.alfa.net.my/products/Alfa-AWUS036ACH-WiFi-USB-3.0-AC-
http://www.alfa.net.my/products/Alfa-AWUS036ACH-WiFi-USB-3.0-AC-
http://www.alfa.net.my/products/Alfa-Wifi-Antenna-ARS-N19-2.4GHz-
http://www.alfa.net.my/products/Alfa-Wifi-Antenna-ARS-N19-2.4GHz-
http://www.ibm.com/docs/en/txseries/8.1.0?topic=overview-what-is-
http://www.ibm.com/docs/en/txseries/8.1.0?topic=overview-what-is-


56 
 

 

Choi, R., Lee, S.G. and Lee, S., 2020. Reliability Improvement of LoRa with 

ARQ and Relay Node. Symmetry 2020, Vol. 12, Page 552, [online] 12(4), 

p.552. https://doi.org/10.3390/SYM12040552. 

 
 

Department of Irrigation and Drainage, 2022. River Water Level Data – The 

Official Web of Public Infobanjir. [online] Available at: 

<https://publicinfobanjir.water.gov.my/aras-air/data-paras- 

air/?state=WLH&lang=en> [Accessed 12 September 2022]. 

 
Dubey Abhishek, 2020. A quick intro to Intel’s OpenVINO toolkit for faster 

deep learning inference. [online] Available at: 

<https://towardsdatascience.com/a-quick-intro-to-intels-openvino-toolkit-for- 

faster-deep-learning-inference-d695c022c1ce> [Accessed 12 September 2022]. 

 
Faruq, A., Arsa, H.P., Hussein, S.F.M., Razali, C.M.C., Marto, A. and 

Abdullah, S.S., 2020. Deep Learning-Based Forecast and Warning of Floods 

in Klang River, Malaysia. Ingenierie des Systemes d’Information, 25(3), 

pp.365–370. https://doi.org/10.18280/ISI.250311. 

 
Gezer, V., Um, J. and Ruskowski, M., 2018. An Introduction to Edge 

Computing and A Real-Time Capable Server Architecture. [online] 

International  Journalon  Advances  in  Intelligent  Systems.  Available  at: 

<https://www.researchgate.net/publication/326441179_An_Introduction_to_E 

dge_Computing_and_A_Real-Time_Capable_Server_Architecture> 

[Accessed 12 September 2022]. 

 
Glonaldots, 2015. Latency vs Low Bandwidth - Impact on Web Performance. 

[online] Available at: <https://www.globaldots.com/resources/blog/high- 

latency-vs-low-bandwidth-impact-on-web-performance/>   [Accessed   12 

September 2022]. 

http://www.researchgate.net/publication/326441179_An_Introduction_to_E
http://www.researchgate.net/publication/326441179_An_Introduction_to_E
http://www.globaldots.com/resources/blog/high-
http://www.globaldots.com/resources/blog/high-


57 
 

 

HIVEMQ, 2015. Quality of Service (QoS) 0,1, & 2 MQTT Essentials: Part 6. 

[online] Available at: <https://www.hivemq.com/blog/mqtt-essentials-part-6- 

mqtt-quality-of-service-levels/> [Accessed 12 September 2022]. 

 
HIVEMQ, 2022. LoRaWAN and MQTT Integration for IoT Application 

Design. [online] Available at: <https://www.hivemq.com/blog/lorawan-and- 

mqtt-integrations-for-iot-applications-design/> [Accessed 12 September 2022]. 

 
Hochreiter, S. and Schmidhuber, J., 1997. Long Short-Term Memory. Neural 

Computation, [online] 9(8), pp.1735–1780. 

https://doi.org/10.1162/NECO.1997.9.8.1735. 

 
Junyoung, C., Gulcehre, C., KyungHyun, C. and Bengio, Y., 2014. Empirical 

Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. 

[online] Available at: 

<https://www.researchgate.net/publication/269416998_Empirical_Evaluation_ 

of_Gated_Recurrent_Neural_Networks_on_Sequence_Modeling> [Accessed 

12 September 2022]. 

Khalifeh, A., Gholamhosseinian, A. and Hajibagher, N.Z., 2011. QOS For 

Multimedia Applications with Emphasize on Video Conferencing. [online] 

Available at: <http://www.diva- 

portal.org/smash/get/diva2:504299/FULLTEXT01.pdf>   [Accessed   12 

September 2022]. 

Kimura, N., Yoshinaga, I., Sekijima, K., Azechi, I. and Baba, D., 2019. 

Convolutional Neural Network Coupled with a Transfer-Learning Approach 

for Time-Series Flood Predictions. Water 2020, Vol. 12, Page 96, [online] 

12(1), p.96. https://doi.org/10.3390/W12010096. 

http://www.hivemq.com/blog/mqtt-essentials-part-6-
http://www.hivemq.com/blog/mqtt-essentials-part-6-
http://www.hivemq.com/blog/lorawan-and-
http://www.hivemq.com/blog/lorawan-and-
http://www.researchgate.net/publication/269416998_Empirical_Evaluation_
http://www.researchgate.net/publication/269416998_Empirical_Evaluation_


58 
 

 
Kişi, Ö., 2011. A combined generalized regression neural network wavelet 

model for monthly streamflow prediction. KSCE Journal of Civil Engineering 

2011 15:8, [online] 15(8), pp.1469–1479. https://doi.org/10.1007/S12205-011- 

1004-4. 

 
 

Le, X.H., Ho, H.V. and Lee, G., 2020. Application of gated recurrent unit (Gru) 

network for forecasting river water levels affected by tides. APAC 2019 - 

Proceedings of the 10th International Conference on Asian and Pacific Coasts, 

[online] pp.673–680. https://doi.org/10.1007/978-981-15-0291-0_92/COVER. 

 
Le, X.H., Ho, H.V., Lee, G. and Jung, S., 2019. Application of Long Short- 

Term Memory (LSTM) Neural Network for Flood Forecasting. Water 2019, 

Vol. 11, Page 1387, [online] 11(7), p.1387. 

https://doi.org/10.3390/W11071387. 

 
Lim, W.S., 2021. Disaster Resilient Mesh Network With Data Synchronization 

Using Nervenet. 

 
Mahapatra, S., 2018. Why Deep Learning over Traditional Machine Learning? 

[online] Available at: <https://towardsdatascience.com/why-deep-learning-is- 

needed-over-traditional-machine-learning-1b6a99177063>  [Accessed  12 

September 2022]. 

 
 

Mushtaq, M.S., Augustin, B. and Mellouk, A., 2012. Empirical study based on 

machine learning approach to assess the QoS/QoE correlation. 2012 17th 

European Conference on Network and Optical Communications, NOC 2012, 

7th Conference on Optical Cabling and Infrastructure, OC and I 2012. 

https://doi.org/10.1109/NOC.2012.6249939. 

 
Rausch, T., Nastic, S. and Dustdar, S., 2018. EMMA: Distributed QoS-aware 

MQTT middleware for edge computing applications. Proceedings - 2018 

IEEE International Conference on Cloud Engineering, IC2E 2018, pp.191– 

197. https://doi.org/10.1109/IC2E.2018.00043. 



59 
 

 

Samikwa, E., n.d. Flood Prediction System Using IoT and Artificial Neural 

Networks with Edge Computing. DEGREE PROJECT IN COMPUTER 

SCIENCE AND ENGINEERING. 

 
Segal, M.R., 2004. UCSF Recent Work Title Machine Learning Benchmarks 

and Random Forest Regression Publication Date Machine Learning 

Benchmarks and Random Forest Regression. 

 
Shchutskaya, V., 2018. Latest Trends on Computer Vision Market – InData 

Labs Blog. [online] Available at: <https://indatalabs.com/blog/trends- 

computer-vision-software-market> [Accessed 12 September 2022]. 

 
Suharjono, A., Apriantoro, R., Mukhlisin, M., Anif, M., Hidayat, S.S., 

Setiawan, T.A. and Kadiran, S.A., 2018. Network Design and Performance 

Evaluation of MQTT Based HetNet Using LoRa Network and IEEE 802.11 

for    Internet    of    Things.    [online]    Available    at: 

<https://www.researchgate.net/publication/333915594_Network_Design_and_ 

Performance_Evaluation_of_MQTT_Based_HetNet_Using_LoRa_Network_a 

nd_IEEE_80211_for_Internet_of_Things> [Accessed 12 September 2022]. 

 
The Things Network, 2022. What are LoRa and LoRaWAN? [online] 

Available at: <https://www.thethingsnetwork.org/docs/lorawan/what-is- 

lorawan/> [Accessed 12 September 2022]. 

 
Yang, S., Yu, X. and Zhou, Y., 2020. LSTM and GRU Neural Network 

Performance Comparison Study: Taking Yelp Review Dataset as an Example. 

Proceedings - 2020 International Workshop on Electronic Communication 

and Artificial Intelligence, IWECAI 2020, [online] pp.98–101. 

https://doi.org/10.1109/IWECAI50956.2020.00027. 

http://www.researchgate.net/publication/333915594_Network_Design_and_
http://www.researchgate.net/publication/333915594_Network_Design_and_
http://www.thethingsnetwork.org/docs/lorawan/what-is-
http://www.thethingsnetwork.org/docs/lorawan/what-is-


60 
 

 

Yaseen, Z.M., El-shafie, A., Jaafar, O., Afan, H.A. and Sayl, K.N., 2015. 

Artificial intelligence based models for stream-flow forecasting: 2000–2015. 

Journal of Hydrology, 530, pp.829–844. 

https://doi.org/10.1016/J.JHYDROL.2015.10.038. 



61 
 

 



62 
 

 


