

ANOMALY DETECTION FOR VISION-BASED

INSPECTION

CHEW YAN ZHE

UNIVERSITI TUNKU ABDUL RAHMAN

ANOMALY DETECTION FOR VISION-BASED INSPECTION

CHEW YAN ZHE

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2022

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : Chew Yan Zhe

ID No. : 1806357

Date : 28 August 2022

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “ANOMALY DETECTION FOR

VISION-BASED INSPECTION” was prepared by CHEW YAN ZHE has

met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Honours) Electrical

and Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Chua Sing Yee

Date : 3 September 2022

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2022, Chew Yan Zhe. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude towards Dr. Chua Sing Yee for her

guidance and invaluable advice throughout the duration of the project, it would

have been difficult to set proper goals and directions within the project without

her guidance and patience. I would also like to thank my parents, who have

been so supportive of my academic progress and endeavours, I will not be here

without their unyielding support. Last but not least, I would like to thank my

friends and course mates who have offered me their help and advice throughout

this project.

v

ABSTRACT

The usage of Artificial Intelligence (AI) techniques in vision-based anomaly

detection is gaining traction within the manufacturing industry for quality

inspection purposes. The implementation of visual inspection in a production

line can effectively detect defective products, while saving time and cost by

increasing the efficiency through process automation. There are two

approaches to visual inspection: the conventional approach which uses image

processing techniques and the modern AI-based approach through deep

learning. This study aims to implement visual inspection systems using both

approaches and determine the suitability of each approach for visual anomaly

detection. Tests were conducted on the MVTec Anomaly Detection dataset,

which is a dataset for benchmarking anomaly detection methods with a focus

on industrial inspection. The algorithms that were used for the conventional

approach are Template Matching, Structural Similarity Index, Scale Invariant

Feature-Transform and Oriented FAST and Rotated BRIEF, whereas the deep

learning models that were used for the modern approach are Patch Distribution

Modelling (PaDiM) and PatchCore. The results demonstrate that conventional

approaches are not suitable for anomaly detection, whereas modern AI

approaches are able to detect anomalies and segmentate the area with a high

degree of accuracy. The average Image Area Under the Receiver-Operator

Characteristic Curve (AUROC) and Image F1 Score for the PaDiM model is

0.9151 and 0.9033, whereas for the PatchCore model the scores are 0.9993 and

0.9979 respectively. Nevertheless, there are still some instances where AI

models will fail to perform as intended, but generally the performance is good.

Future work regarding visual anomaly detection should be focused on modern

AI-based approach, but classical methods can be applied at other suitable areas

where the effectiveness to complexity trade-off is warranted.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 4

1.5 Scope and Limitation of the Study 4

1.6 Contribution of the Study 5

1.7 Outline of the Report 5

2 LITERATURE REVIEW 6

2.1 Computer Vision 6

2.2 Machine Learning and Deep Learning 8

2.3 Conventional Methods for Vision-based

Anomaly Detection 11

2.3.1 Template Matching 11

2.3.2 Structural Similarity Index 17

2.3.3 Feature Matching 18

2.4 Modern AI based Methods for Vision-based

Anomaly Detection 21

2.5 Process to Deploy Deep Learning models 24

vii

2.6 Summary 26

3 METHODOLOGY AND WORK PLAN 27

3.1 Introduction 27

3.2 Hardware Setup 28

3.3 Software Setup 28

3.4 Image Dataset 29

3.5 Template Matching 31

3.6 Structural Similarity Index 33

3.7 Feature Matching 34

3.8 AI-Based Methods 37

3.9 Project Work Plan 41

4 RESULTS AND DISCUSSION 42

4.1 Introduction 42

4.2 Template Matching 42

4.3 Structural Similarity Index 47

4.4 Feature Matching 51

4.5 AI-based Method 53

4.6 Summary 60

5 CONCLUSIONS AND RECOMMENDATIONS 63

5.1 Conclusions 63

5.2 Recommendations for Future Work 63

REFERENCES 64

viii

LIST OF TABLES

Table 3.1: Specifications of Laptop Used in the Project. 28

Table 3.2: Number of Training and Testing Images. 30

Table 4.1: SSIM Scores for Different Test Subjects. 50

Table 4.2: ORB Scores for Different Test Subjects. 53

Table 4.3: Image AUROC Scores for Different Models and Objects.54

Table 4.4: Image F1 Scores for Different Models and Objects. 54

Table 4.5: Pixel AUROC Scores for Different Models and Objects. 54

Table 4.6: Pixel F1 Scores for Different Models and Objects. 54

Table 4.7: Summarised Findings from This Study. 62

ix

LIST OF FIGURES

Figure 2.1: A Simple Fruit Recognition Computer Vision Program. 7

Figure 2.2: Pixel Data Diagram of an Image. 7

Figure 2.3: General Process Flow for Supervised Learning. 10

Figure 2.4: Original Image (Left) and Possible Template Images

(Right). 12

Figure 2.5: Sliding of Template Image Over Original Image. 12

Figure 2.6: Results for Template-based Approach (Top) and Feature

-based Approach (Bottom) for Rotated Template Image. 14

Figure 2.7: Comparison of Cross-Correlation (Top) and Normalised

Cross-Correlation (Bottom) Outputs. 15

Figure 2.8: TM Methods from OpenCV. 16

Figure 2.9: Measurement System of SSIM. 17

Figure 2.10: Different Types of Anomaly Detection Based On

Learning Method of Models. 22

Figure 3.1: General Process Flow. 27

Figure 3.2: Software Setup. 29

Figure 3.3: Normal Transistor (Left) and Defective Transistor

(Right). 31

Figure 3.4: Process Flow for TM Program. 32

Figure 3.5: Process Flow for SSIM Program. 33

Figure 3.6: Process Flow for SIFT Feature Matching. 35

Figure 3.7: Process Flow for ORB Feature Matching. 36

Figure 3.8: Architecture of the Anomalib Library. 38

Figure 3.9: Architecture of the PaDiM Framework. 38

x

Figure 3.10: Architecture of the PatchCore Framework. 38

Figure 3.11: Project Gantt Chart for Semester 1 (Top) and Semester 2

(Bottom). 41

Figure 4.1: Original Image (Right) and Enlarged Template Image

(Left). 43

Figure 4.2: Results when Threshold Value Equals 0.8 (Top) and

0.78 (Bottom). 44

Figure 4.3: Results when Threshold Value Equals 0.5. 45

Figure 4.4: Good Transistor as Template Image. 46

Figure 4.5: Defective Transistor Matched with Good Transistor. 46

Figure 4.6: Good Bottles Matched with the Template Image of a

Good Bottle. 46

Figure 4.7: Defective Bottles Matched with a Good Bottle. 47

Figure 4.8: Spot the Differences between Original Image (Left) vs

Modified Image (Right). 48

Figure 4.9: Bounding Boxes on Differences on Modified Image

(Left) and Thresholding to Accentuate Modified Parts

(Right). 48

Figure 4.10: Planar Rotation of Metal Nuts Perceived as a

Difference Between Images. 50

Figure 4.11: Differences in the Tile Pattern for Good Tile Images. 50

Figure 4.12: Matched Keypoints between Original and Rotated

Image for SIFT (Top) and ORB (Bottom). 51

Figure 4.13: Rotated by 90 Degrees to the Left (Left) and Translated

by -45 x -45 pixels (Right). 52

xi

Figure 4.14: Three-Dimensional Rotation of Good Hazelnut Test

Image. 53

Figure 4.15a: Sample Inferencing Results for the PaDiM Model. 55

Figure 4.15b: Sample Inferencing Results for the PaDiM Model. 56

Figure 4.16a: Sample Inferencing Results for the PatchCore Model. 57

Figure 4.16b: Sample Inferencing Results for the PatchCore Model. 58

Figure 4.17: Comparison between Test Image (Left), PaDiM

Results (Middle) and PatchCore Results (Right). 59

Figure 4.18: PaDiM (Middle) and PatchCore (Right) Not Able to

Pinpoint Bent Lead Anomaly on Right Lead (Left). 60

Figure 4.19: Using TM to Detect Components Within a Printed

Circuit Board. 61

Figure 4.20: Using SSIM to Pinpoint Differences between

Barcodes. 61

Figure 4.21: Stitching Three Images (Top) to Form a Panoramic

Image (Bottom). 62

xii

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

TM Template Matching

SSIM Structural Similarity Index

SIFT Scale Invariant Feature-Transform

DoG Difference-of-Gaussian

SURF Speeded Up Robust Features

ORB Oriented FAST and Rotated BRIEF

FAST Features from Accelerated Segment Test

BRIEF Binary Robust Independent Elementary Features

BFM Brute-Force Matcher

FLANN Fast Library for Approximate Nearest Neighbours Matcher

VAE Variational Automatic Encoder

CNN Convolutional Neural Network

GAN Generative Adversarial Network

GPU Graphics Processing Unit

OS Operating System

PaDiM Patch Distibution Modelling Framework

AUROC Area Under the Receiver-Operator Characteristic Curve

TPR True Positive Rate

FPR False Positive Rate

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Anomaly detection is the act of identifying peculiar data points or trends that

deviates from the conventional behaviour of a system. These unexpected

occurrences are also known as dataset outliers, and the emergence of these may

indicate the presence of corrupted data, hardware malfunctions, fraudulent

activity etc depending on the scenario. The traditional method to perform

anomaly detection is being replaced with Artificial Intelligence (AI)-based

techniques such as Machine Learning (ML) algorithms and Deep Learning

(DL) neural networks, which enables a faster, more efficient and accurate

detection process. Properly identified system anomalies helps to prevent and

eliminate major system malfunctions.

 The usage of ML in anomaly detection is gaining a lot of traction in

recent years as there is an exponential increase of data generated across all

industries. Processing and analysing the huge amount of unstructured data that

is collected in a timely, efficient and accurate manner using conventional

methods is no longer a viable option. Besides that, companies are also

unwilling to allocate large financial and human resources to perform anomaly

detection using inefficient and costly methods. This is where ML comes in to

play as the most viable option to process large datasets.

 Proper ML-based anomaly detection is essential in industries where

the data needs to be processed in a structured and comprehensive manner while

maintaining the integrity of data. As an example, anomaly detection is

especially prevalent in industries where the detection and prevention of

suspicious activity and fraud is of utmost importance, such as the banking,

finance and insurance industries. The payment and spending habits of users

can be profiled and fed into detection models, which can detect and even

predict the occurrence of fraud or suspicious transactions.

 The healthcare industry also benefits from ML-powered anomaly

detection, where algorithms are used to effectively detect abnormalities from

medical diagnoses. Such instances can be seen in the usage of in-depth X-ray

2

image analysis, which helps doctors to obtain a more precise diagnosis, and

thereby reducing human errors. Network security applications can also heavily

benefit from the usage of anomaly detection, such as performing unauthorised

access detection and suspicious request detection. The manufacturing industry

also reaps in serious benefits from the usage of anomaly detection, such as

collecting sensor data to predict when machines or hardware will fail, which is

also known as predictive maintenance. Anomaly detection is also used to

perform quality checks on manufactured products to detect faulty items (NIX

United, 2021).

 Vision-based inspection or visual inspection is a subset within the

large domain of anomaly detection. This type of inspection is usually applied

in the manufacturing industry for quality inspection purposes such as detecting

flaws in products, ensuring that the positioning and measurement of

components are correct, identifying missing or additional parts in a product

and so forth. The usual set-up for a visual inspection system is having high

quality cameras to capture pictures for inspection, and the images are

transferred to the hardware setup. There, these images are fed into software

algorithms to render and analyse the given data. A proper environment at the

test site such as adequate lighting is essential to obtain accurate results.

 The implementation of visual inspection in a production line can

significantly uncover hidden defects of products. For example, inspecting

automobile components for flaws or missing components, detecting defects on

silicon wafers, checking construction raw materials for any cracks or dents etc.

In recent times, DL approaches are frequently used to perform vision-based

inspection as neural networks are extremely suitable to process image or video-

based data and generate inferences, which saves significant time and effort as

compared to conventional methods.

1.2 Importance of the Study

To design a vision-based inspection manually using conventional methods is

difficult, inaccurate and time consuming. An inherent limitation that comes

with the usage of manual labour is the requirement of human personnel to

perform assessment of the products and making a judgement based on previous

training and experience. However, the errors that comes from manual visual

3

inspection usually range from 20% to 30% (Khan, 2021). A certain percentage

of errors can be reduced through proper training and experience, but it cannot

be completely removed. The main reason behind this is the undependability of

the human vision, as well as the imprecision of eyesight. On top of these issues,

hiring human operators to perform inspections are also costly. It is also nearly

impossible for humans to go through a large number of products within given

period of time. With all these considered, the usage of human operators for

visual inspection simply cannot match the efficiency and accuracy of

automated DL-powered systems (Khan, 2021).

 Hence, the implementation progress of DL-based neural networks for

vision-based inspection is growing at a very fast pace and will sooner or later

be the de-facto industry standard when it comes to visual quality checks. With

this technology, process automation is embedded into the system, whereby

machine vision systems can be automated and process a large number of parts

within a short time. These DL models can also self-learn, or the parameters of

the model can always be fine-tuned down the road, which gives the model sort

of an adaptive performance. The overall handling of the system would be easier

as well due to the automated and systematic approach, which allows manpower

to be distributed to tasks absolutely requires manual work. Some other benefits

that come with DL-based inspection are performance increase of system,

overall increase in system stability, and reduction in time and cost (NIX United,

2021).

 However, there also exists more conventional computer vision

methods for anomaly detection, such as by template and pattern matching, or

similarity detection. Even though most companies are favouring the usage of

AI techniques to perform visual inspection, conventional methods are not

completely phased out as these are much easier to implement as compared to

DL neural networks. Through this study, a comparison between conventional

methods and AI-based methods for vision-based inspection will be made, and

further analysis can be done to highlight the pros and cons of both systems.

1.3 Problem Statement

Traditionally, the process of quality checking in a production line is performed

by human operators who will visually inspect the manufactured products for

4

defects and flaws. However, this process is a repetitive one, which introduces

errors in human judgement as the operators are unable to stay focused for long

periods of time. Besides that, the sheer number of products that requires to be

checked cannot be processed efficiently and accurately by humans. Therefore,

the manufacturing industry has been looking for other alternatives to resolve

this issue.

 Machine vision methods can be implemented to automate and

simplify the whole process, while increasing the performance and efficiency

of the system. However, the machine vision domain consists of conventional

methods and AI-based methods, which are usually DL neural networks when

it comes to dealing with image or video related data. Although the DL method

is gaining traction, conventional methods are still used in some cases because

the deployment of DL algorithms is not a straightforward task. Therefore, there

is a need to study the effectiveness and disadvantages of both the conventional

and AI-based methods.

1.4 Aim and Objectives

The aim of this project is to perform anomaly detection for vision-based

inspection by using conventional image processing methods and AI-based

methods in order to make a comparison between these two methods. In order

to do so, the following objectives should be met:

i. Develop a vision-based inspection system.

ii. Investigate and implement anomaly detection methods based on

classical image processing algorithms and modern AI-based

approaches.

iii. Analyse the performance of respective methods and making

evaluations using suitable metrics.

1.5 Scope and Limitation of the Study

The main focus of this study is on the implementation of classical image

processing methods as well as modern DL-based approaches to perform

anomaly detection for vision-based inspection. The identified methods were

developed and compared by using quantitative metrics to assess the

performance of these methods.

5

 This study is fully based on the MVTec Anomaly Detection dataset,

where all the training and benchmarking process are solely based on this

dataset. Therefore, the obtained results may not be the same when it is

implemented on other image datasets. Besides that, the study is based on static

images only, where real-time analysis based on dynamic images is not covered

due to time constraints. Hence, the real-time performance of these

implementations may differ from the obtained results.

1.6 Contribution of the Study

This study explores both classical and modern approaches for vision-based

anomaly detection and provides a comprehensive comparison between the two.

Current comparisons that were made only focuses on either the conventional

approach or the modern approach, but comparison between the two approaches

by using relevant examples or datasets for both methods have not been

performed before. Hence, this study performs the necessary tests on both

approaches to make a detailed comparison between conventional and modern

approaches for visual anomaly detection.

1.7 Outline of the Report

This report contains five chapters in total. Chapter 1 provides an overview of

this study while explaining the importance of this project. It also provides the

problem statement, aim and objectives, scope and limitation of the study, and

the contribution of the study. Chapter 2 then provides the literature review on

previous works that are related to this project. Chapter 3 explains the

methodology and work plan of the entire project and the process flows of the

classical and modern approaches for visual anomaly detection. Chapter 4

presents the results that were obtained from this study, and the discussion and

analysis regarding the obtained results. Chapter 5 provides a conclusion to the

study and recommendations for future works.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Computer Vision

Computer vision is the field of study that enables computers or machines to

derive meaningful information and provide inferences and recommendations

from images, videos and other types of visual inputs. Basically, computer

vision enables computers to see and detect visual stimulus, observe and

understand the situation, and extract information from visual data like humans

are able to (IBM, n.d.). Figure 2.1 illustrates a simple computer vision program

that is able to recognise what type of fruit is detected by a camera. When it

comes to human vision, the eyes are the sensory organs that can detect visual

stimulus, and these stimuli are converted into electrical signals that are sent to

the brain for processing. In this case, the brain will be able to accurately

recognise the fruits in the image provided that the person has seen those fruits

before. For computer vision, the sensing device is usually a camera, and the

images and videos that are captured by the camera are fed into a computer

vision algorithm. This trained algorithm will be able to recognise all the fruits

in the picture.

A lot of research has been done on computer vision and its

applications, and it has also been implemented in a lot of real-world scenarios

that are related to business, entertainment, transportation, healthcare,

manufacturing etc. Computer vision technology is especially useful in tasks

that are related to image classification, object detection, object tracking. As the

name implies, image classification algorithms take in image inputs and classify

them. Hence, it is able to accurately determine whether the input image is under

a certain class or not. Object detection algorithms are used to detect specific

objects from an image or video input, or even pinpoint minor differences

between similar objects. These algorithms can be used to detect anomalies and

defects from products on a production line. Object tracking is used to follow

or track an object when detected and is often used with real-time video inputs

(IBM, n.d.).

7

Figure 2.1: A Simple Fruit Recognition Computer Vision Program

(Krasnokutsky, 2021).

The fundamental approach to developing computer vision

technologies is to discover patterns within images in order to decode individual

objects. This concept is used because it is similar to the way the human brain

functions. Hence, pattern recognition is a huge part of today’s computer vision

algorithms. For example, if a computer vision model is being developed in

order to accurately detect faces, then a huge amount of human face images will

be used to train the model in order for it to identify patterns that are

representative of all human faces. Through this training process, the model will

then be able to identify human faces whenever images are fed into the system.

For a computer to understand the input images, the images are usually decoded

into pixels with specific colour values and brightness. From the image in

Figure 2.2, the computer decodes the person’s face into pixel grids. The value

of each pixel represents the brightness at that particular point. These numbers

are used by the machine to perform further analysis and inferencing (Babich,

2020).

Figure 2.2: Pixel Data Diagram of an Image (Levin, n.d.).

8

2.2 Machine Learning and Deep Learning

ML is a subset of AI which deals with data and mathematical algorithms in

order to mimic the way humans process information, which helps to increase

the model’s efficiency with time and more data. Although ML is not a field

that was pioneered within these few decades, it was only until recently when

the processing power of computers and machines have reached a certain

prowess that the field of ML has started to really take off. It is now a major

part of most companies and projects because the value and impact it brings to

the table is immense. This is especially true in the growing field of data science,

where algorithms are developed to provide accurate classifications and

inferencing, which then generates impactful insights that has the ability to

transform companies and organisations (IBM, 2020a).

 ML is based upon mathematical models, statistics-based reasoning

and optimisation methods that power machines to analyse huge datasets and

identify important patterns to generate crucial insights. ML techniques can also

be used to leverage upon historical data to provide predictions for the future.

Three essential components are typically used to build up supervised ML

algorithms. First, a decision process is usually present, which is basically

feeding input data into a series of mathematical calculations to obtain a

quantitative score. If the score is higher than a set threshold (or at times lower),

then the specific input data is what the algorithm is trying to detect. After going

through this decision process, an error function is used to measure the accuracy

of the decision process by comparing it to known and tested examples. Once

the error function evaluates the accuracy of the decision process, an updating

and optimization process is applied to detect where errors occur from the

decision process and further optimizes the model. The model is now able to

make decisions that are more accurate. These processes are iterative, and they

occur automatically without any human intervention, which allows these

models to uncover hidden insights without being manually programmed (UC

Berkeley, 2022).

The ever-increasing importance of ML techniques are due to the fact

that these algorithms are able to extract insights from datasets that are too large

to be processed manually by humans. On top of that, humans cannot deal with

the velocity of data generation nowadays. With the constant improvement of

9

processing power, these models can operate autonomously while discovering

hidden details within huge datasets (UC Berkeley, 2022).

DL is a subset of ML, and these are usually neural networks with three

or more layers. A neural network is an algorithm that is under ML, but it is also

the backbone for DL algorithms. The depth of the neural network determines

whether the algorithm is ML-based or DL-based. These neural networks mimic

the way the human brain learns and interprets information, but up till this point

these neural networks are still far from the capabilities of the human brain. The

number of layers determines whether the model is able to make approximate

guesses or make accurate predictions that are more optimised and refined. This

is why when the number of layers is higher, the algorithms are under DL

techniques. Of course, neural networks are only a part of the whole ML

algorithm family, and what truly separates ML and DL algorithms are the types

of input data these models can handle, and the way these algorithms learn from

the given input data (IBM, 2020b).

ML algorithms works best with structured and labelled data to

perform analysis and inferencing. This means that the important features are

pre-labelled or annotated by human experts and then organised into structured

tables. Therefore, if the input data on hand is unstructured data (e.g. texts,

images, audio), it needs to be processed into structured data before further

analysis. When it comes to DL, unstructured data can be utilised directly by

DL models. This is because the feature extraction process is automated, so

human experts will not need to manually perform this part. Let’s say if a model

is being trained to differentiate between humans and animals, DL algorithms

will be able to determine automatically which features are the most important

to determine a human from an animal. For example, the gait of humans is

different from animals as humans walk on two legs as compared to four legs

for most animals, so this might be a differentiator between humans and animals

(IBM, 2020b).

ML and DL algorithms as a whole can be classified into several

different learning models, where the difference between these categories lies

in the method each model uses to learn. The most common learning model is

supervised learning, where a labelled dataset is used for the training process.

Labelled dataset serves as a reference for the algorithm to know which are the

10

important features that are important for the decision-making process, and for

measuring the performance of the model as well. Basically, each data within

the training dataset is tagged with the correct answer that the model is supposed

to come up with itself. This is as if the machine is performing a task under the

supervision of a human expert and is being told whether the obtained output is

correct or not. Let’s say a model is being trained to differentiate species of

birds, the input labelled data should label which images are eagles, hornbills,

sparrows, owls etc. When the model is trained, new images are fed into the

model and compared to the training data to predict the correct type of bird.

Figure 2.3 shows the general process for supervised learning. From these

processes, it is evident that supervised learning is best suited to problems where

there exists reference answers or ground truth data to train the model. However,

a lot of complex problems do not have readily available reference data for

training data (Salian, 2018).

In contrast with supervised learning, unsupervised learning is able to

utilise unlabelled data without human experts telling the model what to do with

it explicitly. The collection of training data that is fed into the model comes

without any specific feature or answer to be analysed. Instead, the model will

perform feature extraction automatically and analyse the structure of the given

data to generate useful predictions. Unsupervised learning is much more useful

than supervised learning in a lot of real-world scenarios because a lot of data

that are generated is unstructured data which are not labelled and cannot be

organised in a structured manner. Besides that, human experts are not capable

of sifting through humongous datasets to look for uncovered features or

insights within a short amount of time. This is why unsupervised learning is

very effective in tackling problems that are related to anomaly detection, where

the anomalies within data are usually random and unpredictable (Salian, 2018).

Figure 2.3: General Process Flow for Supervised Learning (Salian, 2018).

11

2.3 Conventional Methods for Vision-based Anomaly Detection

Prior research has been carried out for vision-based anomaly detection, and

most of the state-of-the-art methods are based on DL models. However, there

exists several classical image processing methods that can be used for anomaly

detection. In this study, several classical image processing methods that are

useful for visual anomaly detection will be explored.

2.3.1 Template Matching

Template Matching (TM) is a conventional method that is used to compute the

similarity between a template image and an original input image by using

mathematical algorithms. What this method basically does is identifying

whether there is a specific object in an image, and where is the specific location

in the said image. Figure 2.4 shows the original image on the left side, and the

possible template images that can be used on the right side. If TM is used to

detect the location of face in the image, the face will be cropped and used as

the template image and slides through all pixels of the original image. The

region that has the highest similarity score will be the location of the face in

the original image (Hashemi, et al., 2016).

 The template image is the object that needs to be detected from the

original image, and it is located by sliding the template image through the

original image while a similarity score is computed, which is illustrated in

Figure 2.5. The template image, which is the head of a dog, is slid over the

original image one pixel at a time. At each region in the original image, a metric

or similarity score is calculated. The higher the similarity score, the more likely

the region is where the target object is in the image (OpenCV, n.d.a). Hence,

TM is a high-level computer vision technique that is used to detect objects

from images given the specific image.

12

Figure 2.4: Original Image (Left) and Possible Template Images (Right)

(Hashemi, et al., 2016).

Figure 2.5: Sliding of Template Image Over Original Image (OpenCV, n.d.a).

There are a few approaches when it comes to the implementation of

TM. The easier and simpler method is the template-based approach, which is

suitable for cases when the templates do not have any strong features because

the matches are determined by the intensity of the pixel values of both the

original image and the template image. The sliding of the template image over

the original image as shown in Figure 2.5 is a template-based approach, where

the similarity value of the target object is measured pixel by pixel. To do so,

usually both images are converted into grayscale images, and then TM

algorithms such as cross-correlation or sum of squared difference are applied.

While these algorithms are easy to implement, it is ineffective when the scale

of the image or the orientation of the images are different, which means that

this method is both scale and rotation invariant. To solve issues related to scale

invariance, the original image can be resized to multiple scales and then

13

compared to the template image. When different sizes of the original images

are looped through, the scale which presents the highest similarity score is the

most suitable scale to perform TM. However, problems that are related to

rotation invariance are much more difficult to be solved (Luces, 2019).

 The other approach is the feature-based approach, which is usually

used when there exists more common features and control points between the

original and template images. Some examples of features are points, curves,

and surface models. These features provide a lot of information on the content

of the image, and the usage of local features and their descriptors are the basis

for many machine vision algorithms. Since the features are unique to each

image, it is especially useful for object detection and classification and tracking

purposes. The most useful part of this approach is that the features can be

matched between two images even if they are scaled differently or rotated. This

method is also more efficient when the resolution of the image is large.

However, this approach is not desirable if the images have little common

features, or when different types of objects share the same features. These will

cause the algorithm to not detect the target object or detect objects that are not

the target object. Figure 2.6 shows the different output results for template-

based and feature-based approaches when the template image is rotated. It is

demonstrated that template-based approaches are rotation invariant, whereas

feature-based approaches can accurately detect the target object even when it

is rotated, which makes it much more robust. However, the implementation

process is much more complicated than template-based approaches (Luces,

2019).

14

Figure 2.6: Results for Template-based Approach (Top) and Feature-based

Approach (Bottom) for Rotated Template Image (Luces, 2019).

When it comes to template-based approaches, there are a few methods

that are commonly used to measure the similarity between the template image

and the original image. The basic method is known as naïve TM, which

basically uses a template image that is directly obtained from the original

image, and the similarity score is calculated by scanning the template through

the original image. The template image is usually not scaled or manipulated,

which makes this method to be very efficient for simple use cases. However,

only regions that have a very high similarity score will be considered as a

match, which renders it ineffective when there is a certain degree of variation

between the template image and original image. The mathematical algorithm

that is usually used is the sum of squared differences, but there are other

algorithms such as root mean square distance, sum of absolute values

differences etc that can be applied (Hashemi, et al., 2016).

Another method that is more robust to variations is the image cross-

correlation technique, which enables the matching of images that have slightly

larger deviations, but the images must be aligned properly for the results to be

15

accurate. Cross-correlation is basically determining how similar two images

are, the more similar the images are, the higher the degree of correlation

between the images (Hashemi et al., 2016). Although a higher correlation value

does indicate that two images are similar, this method is not completely robust

as a change in the global brightness of the images will severely affect the

accuracy of the outcome. This is where the normalised cross-correlation

technique is introduced to combat this issue. The results from the normalised

cross-correlation technique are invariant to changes in the global brightness of

the image. Besides that, the output correlation values of the images are

normalised to a range of [-1,1], where identical images will have a correlation

of 1, while images with no correlation have a value of -1 (Adaptive Vision,

n.d.). Figure 2.7 shows a comparison on the similarity scores that are obtained

between the cross-correlation and normalised cross-correlation methods.

Cross-correlation similarity scores are random and large, whereas scores for

normalised cross-correlation are standardised to the range of [-1,1]. Not only

does this makes it easier to gauge the similarity between two images, but it also

has the added benefit from being invariant to global brightness changes of the

images.

Figure 2.7: Comparison of Cross-Correlation (Top) and Normalised Cross-

Correlation (Bottom) Outputs (Adaptive Vision, n.d.).

16

OpenCV, which is an open-source computer vision and ML software

library, has provided built-in methods for template-based approaches for TM

applications. Besides the aforementioned sum of squared difference and cross-

correlation methods, OpenCV also has a correlation coefficient technique that

provides more accurate results and is more robust as compared to the

previously discussed methods. Figure 2.8 shows the list of methods provided

by OpenCV, where SQDIFF stands for sum of squared differences, CCORR

stands for cross-correlation, CCOEFF stands for correlation coefficient, and

NORMED stands for normalised algorithm. From the mathematical equations,

I(x,y) represents the source or original image, T(x,y) represents the template

image, R(x,y) is the generated output result, and (w,h) is the width and height

of the template image (OpenCV, n.d.a).

Figure 2.8: TM Methods from OpenCV (OpenCV, n.d.a).

17

2.3.2 Structural Similarity Index

Structural Similarity Index (SSIM) is an algorithm developed by Wang, et al.

(2004), where this algorithm is mainly developed for image quality assessment.

The SSIM algorithm essentially determines the visual perceptual difference

between two images, but the score itself is not able to determine which image

is “better”. Hence, the user should have prior knowledge on which image is the

original one and which is the modified one. Generally, the SSIM algorithm

measures the luminance and contrast of two images and generates three

comparisons, which are the luminance comparison, contrast comparison and

structure comparison. The combination of these three comparisons gives the

SSIM score. The SSIM measurement system is illustrated in Figure 2.9.

Figure 2.9: Measurement System of SSIM (Wang, et al., 2004).

 The SSIM score has a range of -1 to 1, where a score of 1 indicates

perfect similarity. Therefore, computing the SSIM score for identical images

should yield a score of 1, and images that are very different from each other

will have a score of -1. However, when it comes to the application of visual

anomaly detection, this algorithm is unable to pinpoint where the anomaly is

within an image. Besides that, SSIM is originally used for image quality

assessment purposes instead of defect detection within images, but the SSIM

algorithm can be combined with other image processing methods such as

thresholding and contouring to visualise the differences based on the computed

similarity score. Another issue with the SSIM algorithm is that it is rotation

and scale invariant, which is similar to the TM algorithm. Therefore, both of

the images that are being compared must have the same orientation and scale

for this algorithm to work effectively.

18

2.3.3 Feature Matching

As discussed in Chapter 2.3.1, feature-based matching or feature matching is a

more robust method to match images as this method is scale and rotation

invariant, which means that it is able to match images even when the images

are of different orientation and scale. However, this algorithm is only useful

when there are enough common features between the images, else the

algorithm might perform inaccurate matching between two images.

 Features are information from specific areas or structures within an

image such as points, edges or objects, and they can be divided into two

categories. Some features that appear in specific location within images such

as at the peak of a mountain top, corner of buildings or architectures, around

the eyes of a person are called as keypoint features. These are localised features

that are described by patches of pixels around a location. Another type of

feature is called edges, which are matched based on the orientation and local

orientation. These are good indicators of object boundaries. There are three

main components for feature detection and matching, which are detection,

description and matching. At the detection stage, feature points will need to be

identified within the images. Then at the description stage, the surrounding

local area within feature points are described in a way that is invariant to scale,

rotation, translation and illumination using descriptor vectors. Lastly,

descriptors between images are compared to match similar features at the

matching stage (Tyagi, 2019).

The first feature matching algorithm to be widely used and reviewed

is the Scale Invariant Feature-Transform (SIFT) algorithm, and it was proposed

by Lowe (2004). The study develops a method to extract distinctive invariant

features from image that can be utilised to perform matching between different

images reliably regardless of rotation and scale variation, and even with a

change in three-dimensional viewpoint, addition of noise and change in

illumination. The obtained features are also highly distinctive, so it can be used

for object recognition applications as well.

The four main steps in this algorithm are scale-space extrema

detection, keypoint localisation, orientation assignment and keypoint

descriptor. The first stage, which is scale-space extrema detection is basically

the mathematical computations to search through the image matrix using a

19

difference-of-Gaussian (DoG) method to determine potential points that are

scale and orientation invariant. At the second stage, the potential points from

the first stage are fit into a model to determine the location and scale. Keypoints

will be selected from those potential points based on their stability, and scale

invariance is achieved at this point. After that, one or several orientations are

given to the keypoints based on local image gradient directions. Hence, later

operations will be performed on keypoints that have been transformed relative

to the assigned scale, orientation and location. Therefore, orientation

invariance can be achieved. For the last step, a descriptor is computed for the

local image region for each keypoint so that the keypoints are highly distinctive,

hence providing invariance to change of viewpoint and illumination. When it

comes to keypoint matching, features between two images are matched by

identifying the nearest neighbours surrounding the feature. However, the

second closest match might be too near to the closest match due to external

factors such as noise. Therefore, Lowe proposed the ratio test of the closest

distance to second closest distance neighbors, if this ratio is larger than 0.8,

then the keypoint is rejected. Lowe suggests that this will remove 90% of

incorrect matches while only discarding 5% of correct matches.

 Although the SIFT algorithm have a relatively high accuracy, the

high dimensionality of the generated descriptors during the matching stage

imposes a large computational burden, which causes the matching speed to

reach a bottleneck if the device has insufficient computational capability.

Hence, Bay, Tuytelaars and Van Gool (2006) devised another algorithm

known as the Speeded Up Robust Features (SURF) which has an improved

accuracy and computational speed over SIFT and other state-of-the-art

algorithms at that time. However, at this moment SURF is a patented algorithm,

so it is not freely accessible. Later on, Rublee, et al. (2011) from OpenCV Labs

created another new feature matching algorithm known as Oriented FAST and

Rotated BRIEF (ORB), where FAST stands for Features from Accelerated

Segment Test and BRIEF stands for Binary Robust Independent Elementary

Features. Hence, ORB is a combination of the FAST keypoint detector and the

BRIEF descriptor with some added modifications to increase the performance.

 The ORB algorithm initially uses the FAST algorithm to detect

keypoints, and then the Harris corner measure is used to find the top N points

20

among all the keypoints. After that, a multiscale image pyramid is applied to

the image to produce multiscale features. However, since FAST does not

compute orientation, the authors of ORB added a modification to compute the

intensity centroid of the patch with the located corner at the centre. The

direction of the vector from the located corner to the centroid provides

orientation to the image, which provides rotation invariance. Hence, this is now

known as oriented FAST (OpenCV, n.d.b).

For the descriptor, ORB uses the BRIEF descriptor, but this descriptor

has a poor performance when it comes to image rotation. Hence, ORB steers

the BRIEF descriptors to follow the orientation of keypoints, where the

rotation step is discretised to an angle of 12 degrees, and a lookup table is

constructed with precomputed BRIEF formations. However, the orientation of

the keypoints means that the variance of the features is reduced, which is not

desirable to generate highly discriminative features. Therefore, a greedy search

is performed among all binary tests to determine keypoints that have both a

high variance and a mean value that is approximately 0.5. This is now known

as rotated BRIEF (OpenCV, n.d.b).

Once the features are detected and the local descriptors are generated,

matching algorithms are used to match similar features between images. Two

algorithms are mainly used for feature matching, which are the Brute-Force

Matcher (BFM) and the Fast Library for Approximate Nearest Neighbours

Matcher (FLANN). The BFM is relatively simple as it takes all the descriptors

of one feature from the first image and compares it with all the descriptors from

one feature from the second image using a distance calculation, and the

descriptor with the shortest distance is returned. For the FLANN matcher, it

utilises algorithms to search for nearest neighbours in a much optimised and

faster method within huge datasets and high dimensional features, hence it is

much faster than BFM. However, its accuracy is lower than BFM as it only

determines the approximate nearest neighbours, whereas BFM will determine

the best match. Therefore, it is a trade-off between accuracy and speed between

these two feature matching algorithms (OpenCV, n.d.c).

21

2.4 Modern AI based Methods for Vision-based Anomaly Detection

Modern methods for visual anomaly detection are usually based on AI

techniques, which enables the processing of large datasets efficiently and

effectively. As discussed in previous sections, there are several learning

methods when it comes to the training of an AI model. The selection of

learning method heavily depends on the availability of correctly labelled

datasets. For anomaly detection, there are three main types of learning methods

that are usually used. The first one is supervised anomaly detection, where the

training and test datasets are fully labelled. However, this type of learning

method is not practical for most real-life scenarios because it is very difficult

to find and label every type of anomalies beforehand. This also indicates that

it is hard to find or manually curate a dataset that encompasses all known

anomalies for a given situation. Next, semi-supervised anomaly detection uses

training data that comprises of normal data that are not anomalous. Once the

model learns what constitutes of a normal situation from the training data,

anomalies can be detected from the test data by categorising data that deviates

from the normal behaviour of the training data. Thirdly, there is unsupervised

anomaly detection, which is the most flexible learning method as the training

and testing data does not require any labels. The model is able to distinguish

abnormal regions from normal ones automatically, provided that sufficient

data is fed to the model for training (Goldstein and Uchida, 2016). Figure 2.9

illustrates the training process for these three learning methods.

 When it comes to modern approaches for vision-based anomaly

detection, most studies are based on DL unsupervised or semi-supervised

learning methods. In addition to that, the training method for unsupervised

learning also resembles most practical application scenarios, where anomalies

vary greatly and there is no standard pattern or trend on how anomalies will

occur. Visual anomaly detection can be split into two categories, which are

image-level and pixel-level detection. Image-level detection considers an

image as a whole to detect whether it is normal or abnormal, whereas pixel-

level detection dives deeper into the pixel data to determine the specific regions

where there is an anomaly in the image (Yang, et al., 2021).

22

Figure 2.10: Different Types of Anomaly Detection Based on Learning

Method of Models (Goldstein and Uchida, 2016).

 Yang, et al. (2021) made a comprehensive survey that looks into

unsupervised and semi-supervised methods for image-level and pixel-level

visual anomaly detection. For image-level methods, the reviewed techniques

are density estimation, one-class classification, image reconstruction, and self-

supervised classification, however self-supervised classification will not be

discussed here. Density estimation is basically generating a probability

distribution of features that are obtained from normal training images. Then,

the probability distribution of test images is generated and compared to the

distribution obtained from original images. If a test image’s probability

distribution is not close enough to the probability distribution of normal images,

then it is considered as an anomalous image. There are classical methods for

density estimation such as Gaussian models, but these methods are not optimal

for data with high number of dimensions such as images. Deep generative

models are able to process high dimension data, but a large number of images

are needed to train these models. On top of that, these models are not

sufficiently robust and stable for anomaly detection. The findings suggest that

popular deep generative models such as Variational Automatic Encoder (VAE)

are not good enough for simple visual anomaly detection tasks.

 One-class classification generates a binary decision on whether an

image is anomalous or not. Since it does not take so many points of an image

23

to generate a probability distribution, it does not require a huge number of

training images. However, it faces problems such as dimension disaster and

scalability issues. With the development of DL, researchers have looked into

combining deep Convolutional Neural Networks (CNN) with conventional

one-class classification methods. Another method for image-level anomaly

detection is image reconstruction, which reduces an image to its latent space,

which is the low-dimensional vector representation of the image that

encompasses the essential features of the image. After reducing the dimensions

of the image, the low-dimensional vector is then used to reconstruct the

original image. The difference between normal images and anomalous images

is that the error from reconstructing the original image is small for normal

images, and larger errors ensue from the reconstruction of anomalous images.

Autoencoders are frequently used for image reconstruction, which is a neural

network that comprises of a narrow middle hidden layer. The narrowing of the

hidden layers compresses the input data by removing redundant information

while maintaining essential features of the images (Yang, et al., 2021).

 For pixel-level methods, the reviewed techniques are image

reconstruction and feature modelling. As mentioned above, image

reconstruction is used to reduce the dimension of an image until the lowest

possible size, where the vector contains all the essential information only. Then,

this low-dimension vector is used to reconstruct the original image. After the

original image is reconstructed, potential abnormal regions are detected by

calculating the pixel difference between the input image and the reconstructed

image by using methods such as the pixel-level l2-distance or SSIM. Deep

generative models such as VAE and generative adversarial networks (GAN)

are frequently used as the model to reconstruct the images. This method is

considered to be intuitive, and it is also expected to regenerate high quality

original images because it detects anomalies within the pixel space. However,

it is still difficult to regenerate high quality original images, where issues such

as difficulty in generating sharp edges and complex texture structure of images

causes reconstruction errors in edge or texture regions. This causes a large

number of false positive alarms for anomaly detection (Yang, et al., 2021).

Whereas for feature modelling, anomalies are detected within the

feature space instead of the image space. These features are usually hand-

24

crafted or determined by neural networks. Then, ML models such as sparse

coding, Gaussian mixed model and K-means clustering can be used to model

the distribution of the features pertaining to the images. If the regional feature

of an image deviates from the modelled feature distribution from the training

dataset, then the specific region can be considered as an anomalous region

(Yang, et al., 2021).

2.5 Process to Deploy Deep Learning models

The majority of studies or real-world applications that are related to computer

vision applications are based on DL technology, which is a subset under ML

technology that is powered by neural networks. In general, a neural network is

developed by feeding a huge amount of training data that is related for a

specific application, so that it is able to decipher common traits from the input

data and then generate a mathematical equation, which describes the behaviour

of the neural network. This equation acts as a differentiator which is able to

classify input images or videos into different categories, which is especially

useful in visual inspection applications as the algorithm is able to separate

defective images from normal ones (Krasnokutsky, 2021).

To develop a DL algorithm that can be used in visual inspection

software, relevant training data must first be collected. Consider creating a

visual inspection program for electronic components, the training data that

needs to be gathered should be examples of defective components such as

transistors with bent pins, integrated circuits with burnt surfaces etc. However,

it needs to be specific to one component only. When sufficient data is fed to

the neural network, it is able to differentiate defective and normal components

without additional input by the user at a relatively high accuracy. The process

to integrate DL visual inspection programs into a system is complicated and

requires structured and well-planned steps to be performed (Krasnokutsky,

2021).

 The whole process can be broken down into five main steps, where

the first one is to define the main business problem that needs to be solved. So,

if a company is manufacturing tyres, the problem to be solved is of course the

detection of tyre defects. Besides that, there are a lot of important questions

that needs to be asked, such as how the environment of the inspection site is,

25

should the defects be categorised or is it just a binary defect/non-defect

problem, is there any existing software that addresses the current problem, are

there proper training data for the development of a DL model and so forth.

After answering important questions revolving the project, the second step is

to gather and prepare relevant data. High quality data is essential to train a DL

algorithm, and these data can be obtained from open-source sites to client data,

as well as gathering data from scratch. For data related to visual inspection, the

collected images or videos must be of high resolution, or else the obtained

results will be subpar (Krasnokutsky, 2021).

After obtaining the required data, the third step will be to start

developing a DL model. There are multiple options when it comes to this step,

where the company will have to choose between using DL model development

services, using pre-trained models, or developing a DL model from scratch.

DL model development services such as Google Cloud ML Engine and

Amazon ML provides pre-defined templates that are non-customisable. So, if

the defined problem can be solved using a provided template, this is a very

viable option as significant time and cost can be saved because DL models do

not need to be developed from scratch. For the second option, using a pre-

trained model is doable if there is a DL model that is already created which

solves similar issues that revolves around the main problem. Intel OpenVINO

offers these models to be used by the public and using these enables companies

to significantly shorten the deployment time and cost. The downside is that a

pre-trained model will not completely comply with the defined problem, so the

performance may not be as expected depending on the application. The third

option is to develop a DL model from scratch, which is the way to go if the

problem is extremely complex. High initial costs and long development hours

are expected from this method, but the performance of the model is usually

optimal as the model is tailor-made for the specific application. The fourth step

is to train and evaluate the model, where the performance of the DL algorithm

is evaluated and validated. After that, the last step is to deploy the visual

inspection program and constantly look for ways to optimise and improve the

overall model (Krasnokutsky, 2021).

26

2.6 Summary

Vision-based anomaly detection is an ongoing research topic within the CV

community. It is applicable in a lot of practical areas, with the potential to

transform the workflow of organisations into a much efficient and effective

one. Studies on modern AI-based techniques for visual anomaly detection has

been carried out for a relatively long period as well, and more research on this

is still in progress. From reviewing previous works, it is suggested that

unsupervised methods should be used for visual anomaly detection because it

is difficult to curate a training dataset that covers all possible anomalies for a

specific item. Besides that, unsupervised methods resemble real world

scenarios, where anomalies are not known beforehand. However, there exists

some open-source datasets that enables researchers to use supervised methods

to perform visual anomaly detection as well.

27

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this study, the proposed approach to implement vision-based anomaly

detection is to utilise both conventional and modern methods on relevant

training images, and the performance of these methods will be evaluated. In

order to properly implement these methods, relevant hardware devices and

software tools are required. The flowchart in Figure 3.1 illustrates the general

process flow for this project.

Figure 3.1: General Process Flow.

28

3.2 Hardware Setup

The hardware setup for this project is relatively simple. To develop the

required programs for visual anomaly detection, only a laptop was used to

develop the whole program, where the Operating System (OS) is Windows 10.

However, only the classical method was developed directly using the local

platform, whereas the AI-based methods was run on Google Colaboratory’s

cloud computing system to run heavier workloads that requires Graphics

Processing Unit (GPU) processing power. Table 3.1 shows the specification of

the laptop used to develop the program.

Table 3.1: Specifications of Laptop Used in the Project.

CPU Intel Core i7-7700HQ CPU @ 2.80GHz

CPU Cores 4

Memory 16 GB

Storage 256 GB SSD/1 TB HDD

GPU Nvidia Geforce GTX 1050

OS Windows 10

3.3 Software Setup

To run the programs locally on the device, an anaconda environment was set-

up to ensure that the installed python modules will not interfere with the global

python settings. Python is used as the programming language, which is

preferred over other languages for its simplicity and readily available modules.

More importantly, it supports essential libraries that are crucial to this project,

such as OpenCV which is an open-source CV and ML software library, and

also some other DL frameworks such as PyTorch, TensorFlow, Keras etc. The

overall software setup for the local device is illustrated in Figure 3.2. The

environment in Google Colaboratory is Linux based. Since the runtime is only

available for a specific duration of time, the modules and frameworks can be

installed directly without creating a virtual environment as the system will reset

everything once the allocated duration is over.

29

Figure 3.2: Software Setup.

3.4 Image Dataset

To train the AI models for visual anomaly detection, the open-source MVTec

Anomaly Detection (MVTec AD) dataset will be used. This image dataset

focuses on industrial inspection, and it has more than 5000 high-resolution

images with various defects, as well as normal images. The pixel-precise

annotations for all kinds of anomalies are also provided within this dataset

(Bergmann, et al., 2021).

 Five objects from the MVTec dataset were used for the training of AI

models, which are bottle, transistor, metal nut, tile and hazelnut. The images

for an image dataset are divided into training images and testing images.

Training images are images of the objects in good condition, and these images

will be used to train the AI models. Testing images comprises of both images

of defective objects and good objects, which will be used to test whether the

AI models are working as intended, and also for benchmarking purposes. Table

3.2 shows the number of training and testing images for each image dataset.

For each image dataset, there will be several scenarios of defective objects,

which are shown in Table 3.2. Figure 3.3 shows an example of a normal

transistor and a defective transistor with a damaged case.

30

Table 3.2: Number of Training and Testing Images.

Image Dataset Num of Training Images Num of Testing Images

Bottle 209 broken large: 20

broken small: 22

contamination: 21

good: 20

Transistor 213 bent lead: 10

cut lead: 10

damaged case: 10

misplaced: 10

good: 60

Metal Nut 220 bent: 25

color:22

flip: 23

scratch: 23

good: 22

Tile 230 crack: 17

glue strip: 18

gray stroke: 16

oil: 18

rough:15

good: 33

Hazelnut 391 crack: 18

cut: 17

hole: 18

print: 17

good: 40

31

Figure 3.3: Normal Transistor (Left) and Defective Transistor (Right).

3.5 Template Matching

To implement TM, OpenCV already has several built-in methods to effectively

implement this. The approach that was taken to implement the test program is

to first obtain the original image, the template image and the threshold value

for detection. This means that if an object has a detection score which is higher

than the threshold value, then the object is a match with the template image.

For this case, the template image is the specific anomaly that is required to be

detected from the images.

 To start the matching process, both the template and original images

are first converted to grayscale. To make sure that both the original image and

the template image are having the size, the original image will be looped

through different scales to find the size that produces a high enough matching

score to be considered as a good fit. This means that when the image is looped

through a certain scale, then TM is performed using OpenCV’s

cv2.matchTemplate method. To obtain a more accurate result, the

cv2.TM_CCOEFF_NORMED TM algorithm is used, which returns a

normalised score with a maximum value of one. If the largest matching score

for this image scale is higher than the threshold value that was set earlier, this

means that this scale for the original image is able to generate an accurate

match with template. Hence, this scale will be used for further matching and

detection visualisation.

 After the desired scale is set, then the result from the earlier TM

process is used to determine which are the regions within the image where

32

there is a possible anomaly. The obtained result from TM is a matrix, so the

np.where method from Python’s numpy module is used to filter out (x,y)

coordinates where the detection threshold is higher than the value that was

initially set at the start of the program. As an example, if the detection threshold

is set to be 0.8, then the locations where matching scores are higher than 0.8

within the result matrix will be recorded. After this, non-maxima suppression

is applied to prevent the situation where multiple locations within the result

matrix is actually referring to the same object. Once that is done, the relevant

locations of possible anomalies are drawn on the original image using the

cv2.rectangle method to visualise the detection of anomalies. The summarised

process flow of the TM program is illustrated in Figure 3.4.

Figure 3.4: Process Flow for TM Program.

33

3.6 Structural Similarity Index

The SSIM algorithm is a built-in function within the scikit-learn python

module which can be implemented directly. The program starts by taking two

images as inputs, which is the first image and the second image. Since SSIM

can only work if both images have the same dimensions, so the second image

will be resized to have the same size as the first image if the size is different.

After that, both images are converted to grayscale. Once that is completed, both

images are fed into the compare_ssim function. This function returns the

computed SSIM score, as well as the locations where there are differences

between both images. The obtained locations are then fed into the opencv

method cv2.threshold to perform thresholding on the areas where there are

differences between the two images to highlight the differences, and the

thresholded areas are then fed into the cv2.findContours to perform contouring.

Therefore, the areas where both images differ can be shown clearly using

thresholding and contouring. Lastly, bounding boxes are drawn at areas where

there are differences between the two images. Figure 3.5 illustrates the process

flow for the SSIM program.

Figure 3.5: Process Flow for SSIM Program.

34

3.7 Feature Matching

When it comes to feature matching, the SIFT and ORB algorithms were

implemented in this project. In addition to that, the BFM matcher is used over

the FLANN matcher as the number of images that are dealt with in this project

is not too large, so BFM will not be too slow, and it provides better accuracy

as well. To start the program, two images are fed into the program as well,

which are the first image and second image. Since feature matching algorithms

are scale and rotation invariant, the scale of both images can be different from

each other. Then, both input images will be fed into the sift_brute function and

the orb_brute function for SIFT and ORB feature matching respectively.

 To perform SIFT feature matching, a sift object needs to first be

created using OpenCV’s cv2.SIFT_create() method. Then, the sift object will

be used to detect and compute the keypoints and descriptors of both images.

After that, a BFM object is created using the cv2.BFMatcher() method. To

perform matching, the BFM object will use K-nearest neighbours matching

with a K value of 2 by using the descriptors from both images. All the macthes

will be stored into a variable. Now, to filter out high quality matches, the ratio

test from Lowe’s paper was implemented. If the distance of a descriptor from

the first image is less than the ratioed distance of a descriptor from the second

image, then the match is considered as a good match. All prior detected

matches will be filtered through this ratio test, and good matches are stored

into a separate variable. Then, the good matches are visualised on both of the

images. To compute a SIFT score to represent how similar both images are,

the ratio v was calculated and returned by the function. The higher the SIFT

score, the higher the similarity between two images. The process flow for SIFT

feature matching is shown in Figure 3.6.

 The process for ORB feature matching is very similar to the process

for SIFT feature matching. An ORB object is first created using the

cv2.ORB_create() method, and the keypoints and descriptors are detected and

computed for both images. Then, the BFM object is created, and matching is

performed as well. However, the K-nearest neighbours matching is not used in

this case, so the direct BFM matching was used. After matching, the matches

were sorted in order of their distance. Since ORB matches are different from

SIFT matches, the ratio test was not used. Instead, a good match is defined as

35

one with a distance of less than 50, note that ORB matches have a distance of

0 to 100. If a match has a distance of less than 50, it is considered as a good

match, and it will be appended into another variable. All good matches will be

visualised on both images, and the ORB score is also calculated by using the

ratio between the number of good matches and the number of total matches.

The higher the ORB score, the higher the similarity between two images. The

process flow for ORB feature matching is shown in Figure 3.7.

Figure 3.6: Process Flow for SIFT Feature Matching.

36

Figure 3.7: Process Flow for ORB Feature Matching.

37

3.8 AI-Based Methods

When it comes to vision-based anomaly detection, the unsupervised learning

approach is much more effective and practical than supervised learning,

because it is nearly impossible to curate a dataset that covers all types of

anomalies to train a model using supervised learning. Hence, unsupervised

learning is the way forward for real life visual anomaly detection applications.

In this project, the Anomalib DL library for anomaly detection will be used,

which was developed by Akcay, et al. (2022). This open-source library focuses

on unsupervised learning for anomaly detection purposes, and a set of state-of-

the-art models and algorithms are included in the library. In addition to that,

Anomalib provides an end-to-end process from the training dataset to

deployment of model, and the architecture of this library is shown in Figure

3.8.

 From the selection of provided AI models, the models that were

implemented in this project are the Patch Distibution Modelling Framework

(PaDiM) and the PatchCore model. PaDiM was proposed by Defard, et al.

(2021), and it is a patch-based algorithm that relies on a pre-trained CNN

feature extractor for embedding extraction. This means that an image will be

divided into patches, and embeddings are extracted for each image patch. All

layers of the pre-trained CNN will be utilised to ensure that all details are

encapsulated. To reduce redundant information within the embeddings, a

random selection method was used, which surprisingly performed well while

reducing the complexity and training time of the model. A multivariate

gaussian distribution is created for each patch embedding, and these

distributions are modelled as a matrix of gaussian parameters. For the inference

process, the Mahalanobis distance was used by the authors to compute an

anomaly score for each patch of the image. The architectural overview of the

PaDiM framework is illustrated in Figure 3.9.

The PatchCore model was proposed by Roth, et al. (2022), and the

algorithm also divides an image into patches. The idea behind this algorithm

is that an image is anomalous if any of the patches are anomalous. This model

is also based on a pre-trained CNN, but only the middle layers are utilised as

the authors believed that the lower layers are too broad, whereas the higher

layers are too specific to the dataset the model is trained on. For the inferencing

38

process, the memory bank is coreset subsampled, which creates a subset of the

image dataset in order to reduce the search cost that is frequently seen in

nearest neighbour search algorithms. The anomaly score is obtained by taking

the maximum distance between the test patch in each collection to each

respective nearest neighbour. Figure 3.10 shows the architectural overview of

the PatchCore model.

Figure 3.8: Architecture of the Anomalib Library (Akcay, et al., 2022).

Figure 3.9: Architecture of the PaDiM Framework (Defard, et al., 2021).

Figure 3.10: Architecture of the PatchCore Framework (Roth, et al., 2022).

39

The Anomalib library is available as a Python module, so Anomalib

has to first be installed into the Python environment. After that, the python

program to kickstart the training process needs to be run, while specifying the

specific configuration file to be used in order to decide whether the PaDiM or

PatchCore model is to be used, as well as which object from the MVTec AD

dataset will be fed to the model for training. After the training is completed,

the model will then be used in another program to perform inferencing on test

images, in which the anomalous regions will be segmented and visualised on

the test images.

To benchmark the AI models, two metrics will be used, which are the

Area Under the Receiver-Operator Characteristic Curve (AUROC) and F1

Score. The AUROC curve is a benchmarking metric that is usually used for

binary classification problems, and it is a probability curve. The area under this

curve is essentially the measure of separability, so it tells how capable a model

is at segregating the data into binary classes. The ROC curve is generated by

plotting the True Positive Rate (TPR) of the data against the False Positive

Rate (FPR). The TPR is defined in equation 3.1, whereas the FPR is defined in

equation 3.2. The TPR indicates the proportion of positive class that was

classified correctly, whereas the FPR indicates the proportion of negative class

that was classified incorrectly. For this application, a high AUROC score

means that the model is good at distinguishing between normal and anomalous

images, so a high AUROC score is desirable.

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.1)

where

TP = Number of True Positive Cases

FN = Number of False Negative Cases

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3.2)

where

FP = Number of False Positive Cases

TN = Number of True Negative Cases

40

 The F1 Score is another benchmarking metric that is suitable for

classification models. This score is the improvement of two simpler

performance metrics, which are the Precision and Recall metrics, both of these

are defined in equation 3.3 and 3.4 respectively. Precision is the measure of

correct percentage of true positives, whereas recall is the percentage of

detected true positives within all positive cases. In other words, precision is the

question where out of all positive predictions, how many are truly positive?

Whereas recall is the question where out of all real positive cases, how many

are predicted as positive? The F1 score is a combination of precision and recall,

which is defined in equation 3.5. Since the F1 score is the harmonic mean of

precision and recall, it gives equal weight to both precision and recall. Hence,

a high F1 Score means that both the precision and recall are high, which is

desirable.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.3)

where

TP = Number of True Positive Cases

FP = Number of False Positive Cases

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.4)

where

TP = Number of True Positive Cases

FN = Number of False Negative Cases

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3.5)

For both metrics, the image and pixel level scores will be calculated.

The difference between image and pixel level scores is that the image level

score takes the whole image as a whole for benchmarking purposes, whereas

pixel level score considers each pixel within an image for benchmarking

purposes. For example, determining whether an image contains an anomaly or

not is an image level problem, whereas determining whether a single pixel

within an image is considered as anomalous is a pixel level problem.

41

3.9 Project Work Plan

Figure 3.11: Project Gantt Chart for Semester 1 (Top) and Semester 2

(Bottom).

42

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

Results for conventional and modern AI-based methods were analysed and

compared. In addition to that, benchmarking was also performed for AI-based

methods to assess the performance and accuracy of the model to detect

anomalies for the defective items.

4.2 Template Matching

The program for TM was tested using a simple template image and original

image, which is as shown in Figure 4.1 below. It is shown that the template

image is a yellow-coloured circular port, in which there are seven of them in

the original image. Using TM algorithms, the goal is to detect all occurrences

of this yellow port in the original image. Since the template image has the same

scale with the original image, the best possible match occurs when the scale of

the original image is maintained at the original size. Initially when the program

was run with a threshold value of 0.9, only three occurrences of the template

image were detected on the original image. This means that only three regions

within the original image have a match that is 0.9 and above with the template

image. When the threshold value is reduced to 0.8, four of the occurrences

were detected accurately. However, when the threshold is reduced to 0.78, a

false occurrence was detected in the image, but the remaining three

occurrences that were not detected previously were still not detected. Figure

4.2 shows the results when the threshold value is 0.8 and 0.78.

43

Figure 4.1: Original Image (Right) and Enlarged Template Image (Left)

(PythonProgramming, n.d.).

Notice that there is a false positive detection on the left side of the image when

the threshold value is 0.78. However, the three yellow ports at the bottom are

still not detected. This suggests that the orientation of the ports within the

image, as well as the brightness of the specific region will likely play a huge

part in determining whether an occurrence can be accurately detected. When

the threshold value is decreased to 0.5, more false positive occurrences were

detected, which is shown in Figure 4.3. From these results, it can be observed

that TM is accurate only if the region within an image is almost identical to the

template image.

 In addition to that, TM is only effective if the object to be detected is

almost identical to the template image. In this above example, the yellow-

coloured port is the exact object that exists in the original image, hence its’

occurrence was detected, but not all occurrences were able to be detected

accurately. However, situations like this are almost non-existent in practical

scenarios for anomaly detection, where defects will occur in all shapes and

sizes.

44

Figure 4.2: Results when Threshold Value Equals 0.8 (Top) and 0.78

(Bottom).

45

Figure 4.3: Results when Threshold Value Equals 0.5.

Another possible implementation for anomaly detection using TM is

to use the image of a good item as the template image, and then trying to match

the whole image to other images to see if the images will match. If the images

match, this means that the item in the original image is not defective. Figure

4.4 shows a good transistor from the MVTec AD dataset being used as the

template image, and a few good and defective transistors were used as the

original image to be tested. The results show that not only is the algorithm

unable to accurately differentiate good and defective transistors, but it also only

matches with images that are very close to the original image in terms of

placement and background of the image. Figure 4.5 shows a defective

transistor with a damaged case that was matched with the transistor in Figure

4.4. Upon visual inspection, the placement of the transistor and the background

of the original image is similar to the template image, which is why the

algorithm detected this as a match with a detection threshold of 0.8. In another

scenario where a bottle in good condition is used as the template image, all the

tested good and defective bottles were matched to the template image, because

all the bottles are positioned at the same exact position. Hence, the TM

algorithm detects all the bottles as having a good match with the template

image. The results are shown in Figure 4.6 and Figure 4.7.

46

Figure 4.4: Good Transistor as Template Image.

Figure 4.5: Defective Transistor Matched with Good Transistor.

Figure 4.6: Good Bottles Matched with the Template Image of a Good Bottle.

47

Figure 4.7: Defective Bottles Matched with a Good Bottle.

 From the above results, it was shown that TM is not suitable for

anomaly detection applications as it is impossible to set an anomaly as a

template image. This is because anomalies and defects can occur in all types

of shapes and sizes. It is futile to set different types of template images to detect

anomalies as there are too many defect variations. When it comes to matching

the whole image to the template image, the results have shown that this method

is unreliable as TM takes into account of the difference in pixel properties

within a region, and it cannot differentiate the defective object. Hence, there

are scenarios where a defective object managed to match with the good

template image because the position of the object and the background is similar

to the one in the template image.

4.3 Structural Similarity Index

There are scenarios where SSIM can perform well to detect changes or outliers

within an image, which is when the images follow a specific format or template.

Figure 4.8 showcases some scenarios where the SSIM algorithm is able to

pinpoint the differences or anomalies within the images. As shown on the

images, SSIM can perform well if all the images to be compared are almost

perfectly aligned and structured. Figure 4.9 illustrates the result on the test

images from Figure 4.8, and the algorithm is able to successfully determine the

modified areas accurately. However, a key part to the SSIM algorithm is the

generated score, and the score for these two images is 0.9347.

48

Figure 4.8: Spot the Differences between Original Image (Left) vs Modified

Image (Right) (Wikipedia, n.d.).

Figure 4.9: Bounding Boxes on Differences on Modified Image (Left) and

Thresholding to Accentuate Modified Parts (Right).

 Take note that the SSIM score has a range of 1 to -1, where a score of

1 represents perfect resemblance between the two images. Hence, a score of

0.9347 indicates that both images are almost identical to each other. However,

this score is misleading because there are differences between the two images,

and these small differences are in fact the defects that needs to be filtered out

when it comes to anomaly detection. By conventional logic, a SSIM score of

0.9347 would suggest that there are no anomalies within the test images, but

the result shows otherwise. Therefore, when it comes to real life anomaly

49

detection, a high SSIM score as in this scenario cannot guarantee that there are

no defects within the tested image.

The SSIM algorithm was also tested on the MVTec AD dataset, and

the results are displayed in Table 4.1, which compares relative SSIM scores of

different test subjects with respect to a good sample of the specific object. From

the obtained results, the first observation is that there is not much difference in

the computed SSIM scores between good and defective objects when they are

compared to a good object as a reference. When the bottle is used as the

reference object, it was observed that the overall SSIM score is higher than

other items, which is because the image of all the bottles are positioned in a

fairly similar manner. Therefore, there is very less variation of bottle placement

between all the images, which means that there is less perceived difference of

the test subject, which gives a relatively high SSIM score. The same could be

said for the transistors, where the images all look fairly similar where the

transistor is focused in the middle with a simlar background for all the test

images. Hence, the SSIM algorithm is unable to discriminate between items

that have defects and normal items.

The SSIM scores of metal nuts are lower because the images of metal

nuts will have a different planar rotation, so the placement of the subject in one

image will not be as similar to the placement of the subject in another image,

which causes the reduction in SSIM scores. Figure 4.10 demonstrates the

planar rotation of metal nuts in different images. Tiles have the lowest overall

SSIM score because the patterns in tiles are completely randomised, so there

is no fixed structure on how the patterns and dots will be aligned within the tile

itself. Hence, SSIM classifies the difference in tile pattern as a difference in

structure, hence the low computed scores. Figure 4.11 illustrates the random

patterns on different tile images. Nevertheless, the overall score of all the items

are not important if there is no clear distinction between scored for good and

defective objects, which again shows that SSIM algorithms are not fit for

detecting small and actual differences between test subjects under practical

settings.

50

Table 4.1: SSIM Scores for Different Test Subjects.

Reference

Object

SSIM Scores

Good

Object 1

Good

Object 2

Defective

Object 1

Defective

Object 2

Defective

Object 3

Good

Bottle

0.7636 0.7576 0.7922 0.7042 0.7572

Good

Transistor

0.6904 0.7352 0.6853 0.7323 0.7545

Good

Metal Nut

0.5535 0.5744 0.6149 0.5880 0.5471

Good Tile 0.2648 0.2525 0.2303 0.2516 0.2500

Figure 4.10: Planar Rotation of Metal Nuts Perceived as a Difference Between

Images.

Figure 4.11: Differences in Tile Pattern for Good Tile Images.

51

4.4 Feature Matching

Feature-based matching should be more robust as compared to previously

reviewed conventional methods as it is scale and rotation invariant. The tested

feature matching algorithms are SIFT and ORB, and the BFM algorithm was

used to match the descriptors as it is more accurate than the FLANN based

matcher. Figure 4.12 illustrates an example of the matching result between a

picture of Mona Lisa and its rotated counterpart by 45 degrees. As shown in

the Figure 4.12, both SIFT and ORB algorithms were able to detect similar

features from both images even when one of the images is rotated. To generate

a similarity score, the ratio between the number of high-quality matches and

the total number of matches was computed. The similarity score for SIFT is

0.48, and the score for ORB is 0.9849. From the similarity scores, it can be

deduced that ORB performs exceptionally better than SIFT as it is able to

produce a lot of high-quality matches that are low in distance.

Figure 4.12: Matched Keypoints between Original and Rotated Image for

SIFT (Top) and ORB (Bottom).

52

 By using two other Mona Lisa test images where one of the images is

rotated by 90 degrees to the left, and the other test image is translated by -45 x

-45 pixels as shown in Figure 4.13, the similarity scores, (SIFT, ORB) for both

of these images are (0.75, 1.0) and (0.505, 0.9342) respectively. Again, ORB

has performed exceptionally better than SIFT as it was able to match strong

features between the images with a high degree of accuracy. Therefore, the

ORB algorithm will be used to perform tests on the MVTec AD dataset to

determine if it is able to discriminate defective samples from good ones. The

results are tabulated in Table 4.2 and note that an additional hazelnut test image

was added in this test.

 From the results in Table 4.2, it is obvious that the ORB algorithm is

also unable to accurately differentiate good and defective products as the

similarity scores for both good and defective images are relatively close to each

other. An interesting occurrence for this test is the very low similarity scores

for the tile and hazelnut images. This is caused by the lack of distinctive

features within these images, which makes it difficult for the ORB algorithm

to extract keypoints that are essential to perform matching. In addition to that,

the three-dimensional rotation of the hazelnut test image which is shown in

Figure 4.14 also drastically affects the ability of the algorithm to match

keypoints, as different sides of the hazelnut may have different keypoints and

descriptors. Nevertheless, feature-based matching algorithms are not able to

accurately differentiate between good and anomalous test images.

Figure 4.13: Rotated by 90 Degrees to the Left (Left) and Translated by -45 x

-45 pixels (Right).

53

Table 4.2: ORB Scores for Different Test Subjects.

Reference

Object

ORB Scores

Good

Object 1

Good

Object 2

Defective

Object 1

Defective

Object 2

Defective

Object 3

Good

Bottle

0.5528 0.6148 0.4824 0.4632 0.5932

Good

Transistor

0.5508 0.4486 0.5636 0.5214 0.5000

Good

Metal Nut

0.5128 0.4643 0.4597 0.3761 0.3852

Good Tile 0.3194 0.3007 0.0840 0.1151 0.2208

Good

Hazelnut

0.0000 0.0000 0.0284 0.0286 0.0238

Figure 4.14: Three-Dimensional Rotation of Good Hazelnut Test Image.

4.5 AI-based Method

AI-based methods have shown very promising results when it comes to real-

world anomaly detection scenarios. Two models were used from the Anomalib

library to train and perform inferencing on the MVTec AD dataset, which are

the PaDiM and PatchCore models. To benchmark the performance of these

models, the AUROC and F1 Score metrics were used. The range for both of

these metrics is [0,1], where a score of 1 is the best possible score, and a score

of 0 is the worst possible score. Table 4.3, Table 4.4, Table 4.5 and Table 4.6

54

shows the image AUROC, image F1 Score, pixel AUROC and pixel F1 Score

respectively for different objects. Note that the higher the score, the better the

performance of the model at distinguishing between the good and defective

objects.

Table 4.3: Image AUROC Scores for Different Models and Objects.

Model Image AUROC Scores

Bottle Transistor Metal

Nut

Tile Hazelnut Average

PaDiM 0.9937 0.9200 0.9614 0.9502 0.7504 0.9151

PatchCore 1.0000 1.0000 0.9966 1.0000 1.0000 0.9993

Table 4.4: Image F1 Scores for Different Models and Objects.

Model Image F1 Scores

Bottle Transistor Metal

Nut

Tile Hazelnut Average

PaDiM 0.9764 0.7957 0.9738 0.9341 0.8364 0.9033

PatchCore 1.0000 1.0000 0.9894 1.0000 1.0000 0.9979

 Table 4.5: Pixel AUROC Scores for Different Models and Objects.

Model Pixel AUROC Scores

Bottle Transistor Metal

Nut

Tile Hazelnut Average

PaDiM 0.9830 0.9679 0.9696 0.9339 0.9779 0.9665

PatchCore 0.9844 0.9817 0.9895 0.9610 0.9874 0.9808

Table 4.6: Pixel F1 Scores for Different Models and Objects.

Model Pixel F1 Scores

Bottle Transistor Metal

Nut

Tile Hazelnut Average

PaDiM 0.7220 0.6316 0.7646 0.5397 0.5621 0.6440

PatchCore 0.7215 0.6688 0.8527 0.6271 0.6220 0.6984

55

 As shown from the obtained results above, AI-based methods are able

to achieve much better results as compared to classical methods. Most of the

benchmarking scores are above 0.9, except for the pixel F1 Scores which are

low for both models. To test the accuracy of the segmentation of anomalies

from the test images, each of the test images were fed into an inferencing

program. Figure 4.15a and Figure 4.15b shows the sample results for the

PaDiM model, whereas Figure 4.16a and Figure 4.16b shows the sample

results for the PatchCore model. These results clearly prove the ability of AI

models to accurately point out anomalies from defective objects, which is

much better when compared to classical methods that were discussed above.

This indicates that the learning process AI models go through is essential for a

program to accurately learn the differences between normal and anomalous

objects.

Figure 4.15a: Sample Inferencing Results for the PaDiM Model.

56

Figure 4.15b: Sample Inferencing Results for the PaDiM Model.

57

Figure 4.16a: Sample Inferencing Results for the PatchCore Model.

58

Figure 4.16b: Sample Inferencing Results for the PatchCore Model.

When comparing both of these AI models, it is evident that the

PatchCore model is able to segmentalise anomalies with better accuracy,

whereas the PaDiM model will actually segmentalise some regions that are not

exactly anomalous. Further tests on this were conducted, and the results are

shown in Figure 4.17. It was observed that the PatchCore model is able to

determine anomalous regions more accurately as compared to the PaDiM

model in general. However, there are also instances where the PaDiM model

is able to determine anomalous regions with better precision. There are even

occurrences, albeit very little, where the PatchCore model was not able to point

out the anomalous region within a defective object. There is also a scenario

where both models cannot accurately pinpoint the anomalous region, which is

shown in Figure 4.18. Nevertheless, the PatchCore model still has a better

overall performance than the PaDiM model.

59

Figure 4.17: Comparison between Test Image (Left), PaDiM Results

(Middle) and PatchCore Results (Right).

60

Figure 4.18: PaDiM (Middle) and PatchCore (Right) Not Able to Pinpoint

Bent Lead Anomaly on Right Lead (Left).

4.6 Summary

After going through both classical and modern AI methods, it can be said that

classical methods are not robust enough to accurately detect anomalies from

defective objects, whereas AI-based methods outperform conventional

methods in all aspects of this application and is able to pinpoint defects with a

high degree of accuracy. Nevertheless, there are still other avenues of detection

applications where these conventional methods are able to perform well. When

it comes to TM, it can be used to detect whether specific objects are present in

an image or not. For example, detecting specific components within a printed

circuit board. Since the circuit board for a specific product is identical for each

of those products, TM can be used to detect whether the desired components

are detected within the circuit board, which is illustrated in Figure 4.19.

However, for this to work effectively, the lighting conditions must be

consistent for each testing as this will affect the detection accuracy of the

algorithm.

 For SSIM, it was demonstrated earlier that this algorithm is very

useful in highlighting differences between images if the images have a defined

structure. An example of an object with defined structure are barcodes, where

the positioning of the numbers and lines are fixed. However, the SSIM score

alone cannot be used as a metric to determine whether two images have

differences or not, as it was shown in the results above that a high SSIM score

does not mean that two images are the same. Instead, the algorithm should be

paired with thresholding and contouring to visualise the area of defect, which

is illustrated in Figure 4.20.

61

Figure 4.19: Using TM to Detect Components Within a Printed Circuit Board

(Rovani, n.d.).

Figure 4.20: Using SSIM to Pinpoint Differences Between Barcodes.

 When it comes to feature matching algorithms like SIFT and ORB,

these algorithms can be used for object or even human detection applications

in situations that require more robust detection as compared to TM or SSIM as

these algorithms are not greatly affected by affine transformations. However,

the detection object should have a considerable number of visual features that

can be used as keypoints for detection. Another usage of feature matching is

for panorama stitching. Since these algorithms are able to detect and match

keypoints between images, several images can be stitched together based on

similar keypoints to form a panoramic image as demonstrated in Figure 4.21.

62

Figure 4.21: Stitching Three Images (Top) to Form a Panoramic Image

(Bottom) (Rosebrock, 2018).

 As a whole, the findings from this study are summarised in Table 4.7.

It can be concluded that only modern AI approaches are suitable for accurate

and robust anomaly detection, whereas conventional methods are not capable

of doing so. However, there are other use cases for the aforementioned classical

methods, which was thoroughly discussed in this section. Therefore, classical

methods can be used for the right applications as these approaches are less

complex and requires much lesser computational power.

Table 4.7: Summarised Findings from This Study.

Approaches /

Algorithms

Suitable for Anomaly

Detection

Recommended Use-Cases

TM No Specific Object Detection,

Presence/Absence of an Object

SSIM No Highlighting Differences

between Structured Images

Feature

Matching

No Object/Human Detection,

Image Stitching

Modern AI Yes Various but model requires

dataset to be trained

63

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this study, vision-based anomaly detection was performed using both

conventional and modern AI approaches. The obtained result for the classical

methods indicates that they were unable to discriminate between normal and

defective objects. The average Image AUROC and Image F1 Score for the

PaDiM model is 0.9151 and 0.9033, whereas for the PatchCore model the

scores are 0.9993 and 0.9979 respectively. The results are in clear favour of

modern AI methods being more suitable for this application, whereas classical

methods were not able to produce substantial results for visual anomaly

detection. However, there are other avenues where it is justifiable to implement

classical methods over AI-based methods as classical methods have a better

effectiveness to implementation complexity trade-off for other recommended

use-cases, which was discussed in the previous chapter. Nevertheless, AI

methods should be the de-facto standard for all visual anomaly detection

research and application in the future.

5.2 Recommendations for Future Work

Vision-based anomaly detection is usually implemented in production lines in

order to segregate the defective items. In a practical scenario, the processing

and computational speed of a program should be as fast as possible increase

the productivity, but the accuracy needs to be high as well to correctly filter

out the defective items. Hence, real-time testing can be performed in the future

to test the practical efficiency and accuracy of the AI models. Further

improvements can also be made on the AI models by performing

hyperparameter tuning to improve the accuracy. In addition to that, more

anomaly detection datasets should be explored in order to cover more items

that are not included within the MVTec AD dataset. More benchmarking

metrics can also be explored in order to evaluate the AI models in a more non-

biased and accurate manner.

64

REFERENCES

Adaptive Vision, n.d. Template Matching. [online] Available at:

<https://docs.adaptive-

vision.com/4.7/studio/machine_vision_guide/TemplateMatching.html>

[Accessed 21 April 2022].

Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N. and Genc, U.,

2022. Anomalib: A Deep Learning Library for Anomaly Detection. [online]

Available at: <https://doi.org/10.48550/arXiv.2202.08341> [Accessed 10

August 2022].

Babich, N., 2020. What Is Computer Vision & How Does it Work?. An

Introduction. [online] Available at:

<https://xd.adobe.com/ideas/principles/emerging-technology/what-is-

computer-vision-how-does-it-work/> [Accessed 21 April 2022].

Bay, H., Tuytelaars, T. and Van Gool, L., 2006. SURF: Speeded Up Robust

Features. European Conference on Computer Vision 2006, [e-journal] pp.404-

417. https://doi.org/10.1007/11744023_32.

Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D. and Steger, C., 2021.

The MVTec Anomaly Detection Dataset: A Comprehensive Real-World

Dataset for Unsupervised Anomaly Detection. International Journal of

Computer Vision 2021, [e-journal] 129, pp. 1038-1059.

https://doi.org/10.1007/s11263-020-01400-4.

Defard, T., Setkov, A., Loesch, A. and Audigier, R., 2021. PaDiM: A Patch

Distribution Modeling Framework for Anomaly Detection and Localization.

Pattern Recognition. ICPR International Workshops and Challenges 2021, [e-

journal] pp. 475-489. https://doi.org/10.1007/978-3-030-68799-1_35.

Goldstein, M. and Uchida, S., 2016. A Comparative Evaluation of

Unsupervised Anomaly Detection Algorithms for Multivariate Data. PLoS

ONE, [e-journal] 11(4): e0152173.

https://doi.org/10.1371/journal.pone.0152173.

Hashemi, N.S., Aghdam, R.B., Ghiasi, A.S.B., and Fatemi, P., 2016. Template

Matching Advances and Applications in Image Analysis. American Academic

Scientific Research Journal for Engineering, Technology, and Sciences, [e-

journal] 26(3), pp. 91-108.

https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view

/2378.

IBM, 2020a. Machine Learning. [online] Available at:

<https://www.ibm.com/cloud/learn/machine-learning> [Accessed 21 April

2022].

65

IBM, 2020b. Deep Learning. [online] Available at:

<https://www.ibm.com/cloud/learn/deep-learning> [Accessed 21 April 2022].

IBM, n.d. What is computer vision?. [online] Available at:

<https://www.ibm.com/my-en/topics/computer-vision> [Accessed 21 April

2022].

Khan, J., 2021. Everything you need to know about Visual Inspection with AI.

[online] Available at: <https://nanonets.com/blog/ai-visual-inspection/>

[Accessed 21 April 2022].

Krasnokutsky, E., 2021. AI Visual Inspection For Defect Detection. [online]

Available at: <https://mobidev.biz/blog/ai-visual-inspection-deep-learning-

computer-vision-defect-detection> [Accessed 21 April 2022].

Levin, G., n.d. Image Processing and Computer Vision. [online] Available at:

<https://openframeworks.cc/ofBook/chapters/image_processing_computer_vi

sion.html> [Accessed 21 April 2022].

Lowe, D.G., 2004. Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, [e-journal] 60, pp. 91-110.

https://doi.org/10.1023/B:VISI.0000029664.99615.94.

Luces, R.N., 2019. Template-based versus Feature-based Template Matching.

[online] Available at: <https://medium.datadriveninvestor.com/template-

based-versus-feature-based-template-matching-e6e77b2a3b3a> [Accessed 21

April 2022].

NIX United, 2021. MACHINE LEARNING FOR ANOMALY DETECTION:

IN-DEPTH OVERVIEW. [online] Available at: <https://nix-

united.com/blog/machine-learning-for-anomaly-detection-in-depth-overview/>

[Accessed 21 April 2022].

OpenCV, n.d.a. Template Matching. [online] Available at:

<https://docs.opencv.org/4.x/de/da9/tutorial_template_matching.html>

[Accessed 21 April 2022].

OpenCV, n.d.b. ORB (Oriented FAST and Rotated BRIEF). [online] Available

at: <https://docs.opencv.org/4.6.0/d1/d89/tutorial_py_orb.html> [Accessed 10

August 2022].

OpenCV, n.d.c. Feature Matching. [online] Available at:

<https://docs.opencv.org/4.6.0/dc/dc3/tutorial_py_matcher.html> [Accessed

10 August 2022].

PythonProgramming, n.d. Template Matching OpenCV Python Tutorial.

[online] Available at: <https://pythonprogramming.net/template-matching-

python-opencv-tutorial/> [Accessed 21 April 2022].

66

Rosebrock, A., 2018. Image Stitching with OpenCV and Python. [online]

Available at: <https://pyimagesearch.com/2018/12/17/image-stitching-with-

opencv-and-python/> [Accessed 10 August 2022].

Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T. and Gehler, P., 2022.

Towards Total Recall in Industrial Anomaly Detection. [online] Available at:

<https://doi.org/10.48550/arXiv.2106.08265> [Accessed 10 August 2022].

Rovani, n.d. End-to-end Object Detection with Template Matching using

Python. [online] Available at: <https://www.sicara.fr/blog-technique/object-

detection-template-matching> [Accessed 10 August 2022].

Rublee, E., Rabaud, V., Konolige, K. and Bradski, G., 2011. ORB: An efficient

alternative to SIFT or SURF. 2011 Internatiopnal Conference on Computer

Vision, [e-journal] pp. 2564-2571.

https://doi.org/10.1109/ICCV.2011.6126544.

Salian, I., 2018. SuperVize Me: What’s the Difference Between Supervised,

Unsupervised, Semi-Supervised and Reinforcement Learning?. [online]

Available at: <https://blogs.nvidia.com/blog/2018/08/02/supervised-

unsupervised-learning/> [Accessed 21 April 2022].

Tyagi, D., 2019. Introduction To Feature Detection And Matching. [online]

Available at: <https://medium.com/data-breach/introduction-to-feature-

detection-and-matching-65e27179885d> [Accessed 10 August 2022].

UC Berkeley, 2022. What Is Machine Learning (ML)?. [online] Available at:

<https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/>

[Accessed 21 April 2022].

Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P., 2004. Image quality

assessment: from error visibility to structural similarity. IEEE Transactions on

Image Processing, [e-journal] 13(4), pp. 600-612.

https://doi.org/10.1109/TIP.2003.819861.

Wikipedia, n.d. Spot the difference. [online] Available at:

<https://en.wikipedia.org/wiki/Spot_the_difference> [Accessed 10 August

2022].

Yang, J., Xu, R., Qi, Z. and Shi, Y., 2021. Visual Anomaly Detection for

Images: A Survey. [online] Available at:

<https://doi.org/10.48550/arXiv.2109.13157> [Accessed 21 April 2022].

