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ABSTRACT 

 

The usage of Artificial Intelligence (AI) techniques in vision-based anomaly 

detection is gaining traction within the manufacturing industry for quality 

inspection purposes. The implementation of visual inspection in a production 

line can effectively detect defective products, while saving time and cost by 

increasing the efficiency through process automation. There are two 

approaches to visual inspection: the conventional approach which uses image 

processing techniques and the modern AI-based approach through deep 

learning. This study aims to implement visual inspection systems using both 

approaches and determine the suitability of each approach for visual anomaly 

detection. Tests were conducted on the MVTec Anomaly Detection dataset, 

which is a dataset for benchmarking anomaly detection methods with a focus 

on industrial inspection. The algorithms that were used for the conventional 

approach are Template Matching, Structural Similarity Index, Scale Invariant 

Feature-Transform and Oriented FAST and Rotated BRIEF, whereas the deep 

learning models that were used for the modern approach are Patch Distribution 

Modelling (PaDiM) and PatchCore. The results demonstrate that conventional 

approaches are not suitable for anomaly detection, whereas modern AI 

approaches are able to detect anomalies and segmentate the area with a high 

degree of accuracy. The average Image Area Under the Receiver-Operator 

Characteristic Curve (AUROC) and Image F1 Score for the PaDiM model is 

0.9151 and 0.9033, whereas for the PatchCore model the scores are 0.9993 and 

0.9979 respectively. Nevertheless, there are still some instances where AI 

models will fail to perform as intended, but generally the performance is good. 

Future work regarding visual anomaly detection should be focused on modern 

AI-based approach, but classical methods can be applied at other suitable areas 

where the effectiveness to complexity trade-off is warranted. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Anomaly detection is the act of identifying peculiar data points or trends that 

deviates from the conventional behaviour of a system. These unexpected 

occurrences are also known as dataset outliers, and the emergence of these may 

indicate the presence of corrupted data, hardware malfunctions, fraudulent 

activity etc depending on the scenario. The traditional method to perform 

anomaly detection is being replaced with Artificial Intelligence (AI)-based 

techniques such as Machine Learning (ML) algorithms and Deep Learning 

(DL) neural networks, which enables a faster, more efficient and accurate 

detection process. Properly identified system anomalies helps to prevent and 

eliminate major system malfunctions. 

 The usage of ML in anomaly detection is gaining a lot of traction in 

recent years as there is an exponential increase of data generated across all 

industries. Processing and analysing the huge amount of unstructured data that 

is collected in a timely, efficient and accurate manner using conventional 

methods is no longer a viable option. Besides that, companies are also 

unwilling to allocate large financial and human resources to perform anomaly 

detection using inefficient and costly methods. This is where ML comes in to 

play as the most viable option to process large datasets. 

 Proper ML-based anomaly detection is essential in industries where 

the data needs to be processed in a structured and comprehensive manner while 

maintaining the integrity of data. As an example, anomaly detection is 

especially prevalent in industries where the detection and prevention of 

suspicious activity and fraud is of utmost importance, such as the banking, 

finance and insurance industries. The payment and spending habits of users 

can be profiled and fed into detection models, which can detect and even 

predict the occurrence of fraud or suspicious transactions.  

 The healthcare industry also benefits from ML-powered anomaly 

detection, where algorithms are used to effectively detect abnormalities from 

medical diagnoses. Such instances can be seen in the usage of in-depth X-ray 
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image analysis, which helps doctors to obtain a more precise diagnosis, and 

thereby reducing human errors. Network security applications can also heavily 

benefit from the usage of anomaly detection, such as performing unauthorised 

access detection and suspicious request detection. The manufacturing industry 

also reaps in serious benefits from the usage of anomaly detection, such as 

collecting sensor data to predict when machines or hardware will fail, which is 

also known as predictive maintenance. Anomaly detection is also used to 

perform quality checks on manufactured products to detect faulty items (NIX 

United, 2021). 

 Vision-based inspection or visual inspection is a subset within the 

large domain of anomaly detection. This type of inspection is usually applied 

in the manufacturing industry for quality inspection purposes such as detecting 

flaws in products, ensuring that the positioning and measurement of 

components are correct, identifying missing or additional parts in a product 

and so forth. The usual set-up for a visual inspection system is having high 

quality cameras to capture pictures for inspection, and the images are 

transferred to the hardware setup. There, these images are fed into software 

algorithms to render and analyse the given data. A proper environment at the 

test site such as adequate lighting is essential to obtain accurate results.  

 The implementation of visual inspection in a production line can 

significantly uncover hidden defects of products. For example, inspecting 

automobile components for flaws or missing components, detecting defects on 

silicon wafers, checking construction raw materials for any cracks or dents etc. 

In recent times, DL approaches are frequently used to perform vision-based 

inspection as neural networks are extremely suitable to process image or video-

based data and generate inferences, which saves significant time and effort as 

compared to conventional methods. 

 

1.2 Importance of the Study 

To design a vision-based inspection manually using conventional methods is 

difficult, inaccurate and time consuming. An inherent limitation that comes 

with the usage of manual labour is the requirement of human personnel to 

perform assessment of the products and making a judgement based on previous 

training and experience. However, the errors that comes from manual visual 
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inspection usually range from 20% to 30% (Khan, 2021). A certain percentage 

of errors can be reduced through proper training and experience, but it cannot 

be completely removed. The main reason behind this is the undependability of 

the human vision, as well as the imprecision of eyesight. On top of these issues, 

hiring human operators to perform inspections are also costly. It is also nearly 

impossible for humans to go through a large number of products within given 

period of time. With all these considered, the usage of human operators for 

visual inspection simply cannot match the efficiency and accuracy of 

automated DL-powered systems (Khan, 2021). 

 Hence, the implementation progress of DL-based neural networks for 

vision-based inspection is growing at a very fast pace and will sooner or later 

be the de-facto industry standard when it comes to visual quality checks. With 

this technology, process automation is embedded into the system, whereby 

machine vision systems can be automated and process a large number of parts 

within a short time. These DL models can also self-learn, or the parameters of 

the model can always be fine-tuned down the road, which gives the model sort 

of an adaptive performance. The overall handling of the system would be easier 

as well due to the automated and systematic approach, which allows manpower 

to be distributed to tasks absolutely requires manual work. Some other benefits 

that come with DL-based inspection are performance increase of system, 

overall increase in system stability, and reduction in time and cost (NIX United, 

2021).  

 However, there also exists more conventional computer vision 

methods for anomaly detection, such as by template and pattern matching, or 

similarity detection. Even though most companies are favouring the usage of 

AI techniques to perform visual inspection, conventional methods are not 

completely phased out as these are much easier to implement as compared to 

DL neural networks. Through this study, a comparison between conventional 

methods and AI-based methods for vision-based inspection will be made, and 

further analysis can be done to highlight the pros and cons of both systems. 

 

1.3 Problem Statement 

Traditionally, the process of quality checking in a production line is performed 

by human operators who will visually inspect the manufactured products for 
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defects and flaws. However, this process is a repetitive one, which introduces 

errors in human judgement as the operators are unable to stay focused for long 

periods of time. Besides that, the sheer number of products that requires to be 

checked cannot be processed efficiently and accurately by humans. Therefore, 

the manufacturing industry has been looking for other alternatives to resolve 

this issue. 

 Machine vision methods can be implemented to automate and 

simplify the whole process, while increasing the performance and efficiency 

of the system. However, the machine vision domain consists of conventional 

methods and AI-based methods, which are usually DL neural networks when 

it comes to dealing with image or video related data. Although the DL method 

is gaining traction, conventional methods are still used in some cases because 

the deployment of DL algorithms is not a straightforward task. Therefore, there 

is a need to study the effectiveness and disadvantages of both the conventional 

and AI-based methods.  

 

1.4 Aim and Objectives 

The aim of this project is to perform anomaly detection for vision-based 

inspection by using conventional image processing methods and AI-based 

methods in order to make a comparison between these two methods. In order 

to do so, the following objectives should be met: 

i. Develop a vision-based inspection system. 

ii. Investigate and implement anomaly detection methods based on 

classical image processing algorithms and modern AI-based 

approaches. 

iii. Analyse the performance of respective methods and making 

evaluations using suitable metrics. 

 

1.5 Scope and Limitation of the Study 

The main focus of this study is on the implementation of classical image 

processing methods as well as modern DL-based approaches to perform 

anomaly detection for vision-based inspection. The identified methods were 

developed and compared by using quantitative metrics to assess the 

performance of these methods. 
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 This study is fully based on the MVTec Anomaly Detection dataset, 

where all the training and benchmarking process are solely based on this 

dataset. Therefore, the obtained results may not be the same when it is 

implemented on other image datasets. Besides that, the study is based on static 

images only, where real-time analysis based on dynamic images is not covered 

due to time constraints. Hence, the real-time performance of these 

implementations may differ from the obtained results. 

 

1.6 Contribution of the Study  

This study explores both classical and modern approaches for vision-based 

anomaly detection and provides a comprehensive comparison between the two. 

Current comparisons that were made only focuses on either the conventional 

approach or the modern approach, but comparison between the two approaches 

by using relevant examples or datasets for both methods have not been 

performed before. Hence, this study performs the necessary tests on both 

approaches to make a detailed comparison between conventional and modern 

approaches for visual anomaly detection. 

 

1.7 Outline of the Report 

This report contains five chapters in total. Chapter 1 provides an overview of 

this study while explaining the importance of this project. It also provides the 

problem statement, aim and objectives, scope and limitation of the study, and 

the contribution of the study. Chapter 2 then provides the literature review on 

previous works that are related to this project. Chapter 3 explains the 

methodology and work plan of the entire project and the process flows of the 

classical and modern approaches for visual anomaly detection. Chapter 4 

presents the results that were obtained from this study, and the discussion and 

analysis regarding the obtained results. Chapter 5 provides a conclusion to the 

study and recommendations for future works. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Computer Vision 

Computer vision is the field of study that enables computers or machines to 

derive meaningful information and provide inferences and recommendations 

from images, videos and other types of visual inputs. Basically, computer 

vision enables computers to see and detect visual stimulus, observe and 

understand the situation, and extract information from visual data like humans 

are able to (IBM, n.d.). Figure 2.1 illustrates a simple computer vision program 

that is able to recognise what type of fruit is detected by a camera. When it 

comes to human vision, the eyes are the sensory organs that can detect visual 

stimulus, and these stimuli are converted into electrical signals that are sent to 

the brain for processing. In this case, the brain will be able to accurately 

recognise the fruits in the image provided that the person has seen those fruits 

before. For computer vision, the sensing device is usually a camera, and the 

images and videos that are captured by the camera are fed into a computer 

vision algorithm. This trained algorithm will be able to recognise all the fruits 

in the picture. 

A lot of research has been done on computer vision and its 

applications, and it has also been implemented in a lot of real-world scenarios 

that are related to business, entertainment, transportation, healthcare, 

manufacturing etc. Computer vision technology is especially useful in tasks 

that are related to image classification, object detection, object tracking. As the 

name implies, image classification algorithms take in image inputs and classify 

them. Hence, it is able to accurately determine whether the input image is under 

a certain class or not. Object detection algorithms are used to detect specific 

objects from an image or video input, or even pinpoint minor differences 

between similar objects. These algorithms can be used to detect anomalies and 

defects from products on a production line. Object tracking is used to follow 

or track an object when detected and is often used with real-time video inputs 

(IBM, n.d.).  
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Figure 2.1: A Simple Fruit Recognition Computer Vision Program 

(Krasnokutsky, 2021). 

  

The fundamental approach to developing computer vision 

technologies is to discover patterns within images in order to decode individual 

objects. This concept is used because it is similar to the way the human brain 

functions. Hence, pattern recognition is a huge part of today’s computer vision 

algorithms. For example, if a computer vision model is being developed in 

order to accurately detect faces, then a huge amount of human face images will 

be used to train the model in order for it to identify patterns that are 

representative of all human faces. Through this training process, the model will 

then be able to identify human faces whenever images are fed into the system. 

For a computer to understand the input images, the images are usually decoded 

into pixels with specific colour values and brightness. From the image in 

Figure 2.2, the computer decodes the person’s face into pixel grids. The value 

of each pixel represents the brightness at that particular point. These numbers 

are used by the machine to perform further analysis and inferencing (Babich, 

2020). 

 

 

Figure 2.2: Pixel Data Diagram of an Image (Levin, n.d.). 
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2.2 Machine Learning and Deep Learning 

ML is a subset of AI which deals with data and mathematical algorithms in 

order to mimic the way humans process information, which helps to increase 

the model’s efficiency with time and more data. Although ML is not a field 

that was pioneered within these few decades, it was only until recently when 

the processing power of computers and machines have reached a certain 

prowess that the field of ML has started to really take off. It is now a major 

part of most companies and projects because the value and impact it brings to 

the table is immense. This is especially true in the growing field of data science, 

where algorithms are developed to provide accurate classifications and 

inferencing, which then generates impactful insights that has the ability to 

transform companies and organisations (IBM, 2020a).  

 ML is based upon mathematical models, statistics-based reasoning 

and optimisation methods that power machines to analyse huge datasets and 

identify important patterns to generate crucial insights. ML techniques can also 

be used to leverage upon historical data to provide predictions for the future. 

Three essential components are typically used to build up supervised ML 

algorithms. First, a decision process is usually present, which is basically 

feeding input data into a series of mathematical calculations to obtain a 

quantitative score. If the score is higher than a set threshold (or at times lower), 

then the specific input data is what the algorithm is trying to detect. After going 

through this decision process, an error function is used to measure the accuracy 

of the decision process by comparing it to known and tested examples. Once 

the error function evaluates the accuracy of the decision process, an updating 

and optimization process is applied to detect where errors occur from the 

decision process and further optimizes the model. The model is now able to 

make decisions that are more accurate. These processes are iterative, and they 

occur automatically without any human intervention, which allows these 

models to uncover hidden insights without being manually programmed (UC 

Berkeley, 2022). 

The ever-increasing importance of ML techniques are due to the fact 

that these algorithms are able to extract insights from datasets that are too large 

to be processed manually by humans. On top of that, humans cannot deal with 

the velocity of data generation nowadays. With the constant improvement of 
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processing power, these models can operate autonomously while discovering 

hidden details within huge datasets (UC Berkeley, 2022). 

DL is a subset of ML, and these are usually neural networks with three 

or more layers. A neural network is an algorithm that is under ML, but it is also 

the backbone for DL algorithms. The depth of the neural network determines 

whether the algorithm is ML-based or DL-based. These neural networks mimic 

the way the human brain learns and interprets information, but up till this point 

these neural networks are still far from the capabilities of the human brain. The 

number of layers determines whether the model is able to make approximate 

guesses or make accurate predictions that are more optimised and refined. This 

is why when the number of layers is higher, the algorithms are under DL 

techniques. Of course, neural networks are only a part of the whole ML 

algorithm family, and what truly separates ML and DL algorithms are the types 

of input data these models can handle, and the way these algorithms learn from 

the given input data (IBM, 2020b). 

ML algorithms works best with structured and labelled data to 

perform analysis and inferencing. This means that the important features are 

pre-labelled or annotated by human experts and then organised into structured 

tables. Therefore, if the input data on hand is unstructured data (e.g. texts, 

images, audio), it needs to be processed into structured data before further 

analysis. When it comes to DL, unstructured data can be utilised directly by 

DL models. This is because the feature extraction process is automated, so 

human experts will not need to manually perform this part. Let’s say if a model 

is being trained to differentiate between humans and animals, DL algorithms 

will be able to determine automatically which features are the most important 

to determine a human from an animal. For example, the gait of humans is 

different from animals as humans walk on two legs as compared to four legs 

for most animals, so this might be a differentiator between humans and animals 

(IBM, 2020b). 

ML and DL algorithms as a whole can be classified into several 

different learning models, where the difference between these categories lies 

in the method each model uses to learn. The most common learning model is 

supervised learning, where a labelled dataset is used for the training process. 

Labelled dataset serves as a reference for the algorithm to know which are the 
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important features that are important for the decision-making process, and for 

measuring the performance of the model as well. Basically, each data within 

the training dataset is tagged with the correct answer that the model is supposed 

to come up with itself. This is as if the machine is performing a task under the 

supervision of a human expert and is being told whether the obtained output is 

correct or not. Let’s say a model is being trained to differentiate species of 

birds, the input labelled data should label which images are eagles, hornbills, 

sparrows, owls etc. When the model is trained, new images are fed into the 

model and compared to the training data to predict the correct type of bird. 

Figure 2.3 shows the general process for supervised learning. From these 

processes, it is evident that supervised learning is best suited to problems where 

there exists reference answers or ground truth data to train the model. However, 

a lot of complex problems do not have readily available reference data for 

training data (Salian, 2018). 

In contrast with supervised learning, unsupervised learning is able to 

utilise unlabelled data without human experts telling the model what to do with 

it explicitly. The collection of training data that is fed into the model comes 

without any specific feature or answer to be analysed. Instead, the model will 

perform feature extraction automatically and analyse the structure of the given 

data to generate useful predictions. Unsupervised learning is much more useful 

than supervised learning in a lot of real-world scenarios because a lot of data 

that are generated is unstructured data which are not labelled and cannot be 

organised in a structured manner. Besides that, human experts are not capable 

of sifting through humongous datasets to look for uncovered features or 

insights within a short amount of time. This is why unsupervised learning is 

very effective in tackling problems that are related to anomaly detection, where 

the anomalies within data are usually random and unpredictable (Salian, 2018). 

 

 

Figure 2.3: General Process Flow for Supervised Learning (Salian, 2018). 
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2.3 Conventional Methods for Vision-based Anomaly Detection 

Prior research has been carried out for vision-based anomaly detection, and 

most of the state-of-the-art methods are based on DL models. However, there 

exists several classical image processing methods that can be used for anomaly 

detection. In this study, several classical image processing methods that are 

useful for visual anomaly detection will be explored.  

 

2.3.1 Template Matching 

Template Matching (TM) is a conventional method that is used to compute the 

similarity between a template image and an original input image by using 

mathematical algorithms. What this method basically does is identifying 

whether there is a specific object in an image, and where is the specific location 

in the said image. Figure 2.4 shows the original image on the left side, and the 

possible template images that can be used on the right side. If TM is used to 

detect the location of face in the image, the face will be cropped and used as 

the template image and slides through all pixels of the original image. The 

region that has the highest similarity score will be the location of the face in 

the original image (Hashemi, et al., 2016). 

 The template image is the object that needs to be detected from the 

original image, and it is located by sliding the template image through the 

original image while a similarity score is computed, which is illustrated in 

Figure 2.5. The template image, which is the head of a dog, is slid over the 

original image one pixel at a time. At each region in the original image, a metric 

or similarity score is calculated. The higher the similarity score, the more likely 

the region is where the target object is in the image (OpenCV, n.d.a). Hence, 

TM is a high-level computer vision technique that is used to detect objects 

from images given the specific image. 
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Figure 2.4: Original Image (Left) and Possible Template Images (Right) 

(Hashemi, et al., 2016). 

 

Figure 2.5: Sliding of Template Image Over Original Image (OpenCV, n.d.a). 

 

There are a few approaches when it comes to the implementation of 

TM. The easier and simpler method is the template-based approach, which is 

suitable for cases when the templates do not have any strong features because 

the matches are determined by the intensity of the pixel values of both the 

original image and the template image. The sliding of the template image over 

the original image as shown in Figure 2.5 is a template-based approach, where 

the similarity value of the target object is measured pixel by pixel. To do so, 

usually both images are converted into grayscale images, and then TM 

algorithms such as cross-correlation or sum of squared difference are applied. 

While these algorithms are easy to implement, it is ineffective when the scale 

of the image or the orientation of the images are different, which means that 

this method is both scale and rotation invariant. To solve issues related to scale 

invariance, the original image can be resized to multiple scales and then 
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compared to the template image. When different sizes of the original images 

are looped through, the scale which presents the highest similarity score is the 

most suitable scale to perform TM. However, problems that are related to 

rotation invariance are much more difficult to be solved (Luces, 2019).  

 The other approach is the feature-based approach, which is usually 

used when there exists more common features and control points between the 

original and template images. Some examples of features are points, curves, 

and surface models. These features provide a lot of information on the content 

of the image, and the usage of local features and their descriptors are the basis 

for many machine vision algorithms. Since the features are unique to each 

image, it is especially useful for object detection and classification and tracking 

purposes. The most useful part of this approach is that the features can be 

matched between two images even if they are scaled differently or rotated. This 

method is also more efficient when the resolution of the image is large. 

However, this approach is not desirable if the images have little common 

features, or when different types of objects share the same features. These will 

cause the algorithm to not detect the target object or detect objects that are not 

the target object. Figure 2.6 shows the different output results for template-

based and feature-based approaches when the template image is rotated. It is 

demonstrated that template-based approaches are rotation invariant, whereas 

feature-based approaches can accurately detect the target object even when it 

is rotated, which makes it much more robust. However, the implementation 

process is much more complicated than template-based approaches (Luces, 

2019).  
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Figure 2.6: Results for Template-based Approach (Top) and Feature-based 

Approach (Bottom) for Rotated Template Image (Luces, 2019). 

 

When it comes to template-based approaches, there are a few methods 

that are commonly used to measure the similarity between the template image 

and the original image. The basic method is known as naïve TM, which 

basically uses a template image that is directly obtained from the original 

image, and the similarity score is calculated by scanning the template through 

the original image. The template image is usually not scaled or manipulated, 

which makes this method to be very efficient for simple use cases. However, 

only regions that have a very high similarity score will be considered as a 

match, which renders it ineffective when there is a certain degree of variation 

between the template image and original image. The mathematical algorithm 

that is usually used is the sum of squared differences, but there are other 

algorithms such as root mean square distance, sum of absolute values 

differences etc that can be applied (Hashemi, et al., 2016). 

Another method that is more robust to variations is the image cross-

correlation technique, which enables the matching of images that have slightly 

larger deviations, but the images must be aligned properly for the results to be 
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accurate. Cross-correlation is basically determining how similar two images 

are, the more similar the images are, the higher the degree of correlation 

between the images (Hashemi et al., 2016). Although a higher correlation value 

does indicate that two images are similar, this method is not completely robust 

as a change in the global brightness of the images will severely affect the 

accuracy of the outcome. This is where the normalised cross-correlation 

technique is introduced to combat this issue. The results from the normalised 

cross-correlation technique are invariant to changes in the global brightness of 

the image. Besides that, the output correlation values of the images are 

normalised to a range of [-1,1], where identical images will have a correlation 

of 1, while images with no correlation have a value of -1 (Adaptive Vision, 

n.d.). Figure 2.7 shows a comparison on the similarity scores that are obtained 

between the cross-correlation and normalised cross-correlation methods. 

Cross-correlation similarity scores are random and large, whereas scores for 

normalised cross-correlation are standardised to the range of [-1,1]. Not only 

does this makes it easier to gauge the similarity between two images, but it also 

has the added benefit from being invariant to global brightness changes of the 

images.  

 

 

 

Figure 2.7: Comparison of Cross-Correlation (Top) and Normalised Cross-

Correlation (Bottom) Outputs (Adaptive Vision, n.d.). 
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OpenCV, which is an open-source computer vision and ML software 

library, has provided built-in methods for template-based approaches for TM 

applications. Besides the aforementioned sum of squared difference and cross-

correlation methods, OpenCV also has a correlation coefficient technique that 

provides more accurate results and is more robust as compared to the 

previously discussed methods.  Figure 2.8 shows the list of methods provided 

by OpenCV, where SQDIFF stands for sum of squared differences, CCORR 

stands for cross-correlation, CCOEFF stands for correlation coefficient, and 

NORMED stands for normalised algorithm. From the mathematical equations, 

I(x,y) represents the source or original image, T(x,y) represents the template 

image, R(x,y) is the generated output result, and (w,h) is the width and height 

of the template image (OpenCV, n.d.a). 

 

 

Figure 2.8: TM Methods from OpenCV (OpenCV, n.d.a). 
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2.3.2 Structural Similarity Index  

Structural Similarity Index (SSIM) is an algorithm developed by Wang, et al. 

(2004), where this algorithm is mainly developed for image quality assessment. 

The SSIM algorithm essentially determines the visual perceptual difference 

between two images, but the score itself is not able to determine which image 

is “better”. Hence, the user should have prior knowledge on which image is the 

original one and which is the modified one. Generally, the SSIM algorithm 

measures the luminance and contrast of two images and generates three 

comparisons, which are the luminance comparison, contrast comparison and 

structure comparison. The combination of these three comparisons gives the 

SSIM score. The SSIM measurement system is illustrated in Figure 2.9. 

 

Figure 2.9: Measurement System of SSIM (Wang, et al., 2004). 

  

 The SSIM score has a range of -1 to 1, where a score of 1 indicates 

perfect similarity. Therefore, computing the SSIM score for identical images 

should yield a score of 1, and images that are very different from each other 

will have a score of -1. However, when it comes to the application of visual 

anomaly detection, this algorithm is unable to pinpoint where the anomaly is 

within an image. Besides that, SSIM is originally used for image quality 

assessment purposes instead of defect detection within images, but the SSIM 

algorithm can be combined with other image processing methods such as 

thresholding and contouring to visualise the differences based on the computed 

similarity score. Another issue with the SSIM algorithm is that it is rotation 

and scale invariant, which is similar to the TM algorithm. Therefore, both of 

the images that are being compared must have the same orientation and scale 

for this algorithm to work effectively. 
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2.3.3 Feature Matching 

As discussed in Chapter 2.3.1, feature-based matching or feature matching is a 

more robust method to match images as this method is scale and rotation 

invariant, which means that it is able to match images even when the images 

are of different orientation and scale. However, this algorithm is only useful 

when there are enough common features between the images, else the 

algorithm might perform inaccurate matching between two images.  

 Features are information from specific areas or structures within an 

image such as points, edges or objects, and they can be divided into two 

categories. Some features that appear in specific location within images such 

as at the peak of a mountain top, corner of buildings or architectures, around 

the eyes of a person are called as keypoint features. These are localised features 

that are described by patches of pixels around a location. Another type of 

feature is called edges, which are matched based on the orientation and local 

orientation. These are good indicators of object boundaries. There are three 

main components for feature detection and matching, which are detection, 

description and matching. At the detection stage, feature points will need to be 

identified within the images. Then at the description stage, the surrounding 

local area within feature points are described in a way that is invariant to scale, 

rotation, translation and illumination using descriptor vectors. Lastly, 

descriptors between images are compared to match similar features at the 

matching stage (Tyagi, 2019). 

The first feature matching algorithm to be widely used and reviewed 

is the Scale Invariant Feature-Transform (SIFT) algorithm, and it was proposed 

by Lowe (2004). The study develops a method to extract distinctive invariant 

features from image that can be utilised to perform matching between different 

images reliably regardless of rotation and scale variation, and even with a 

change in three-dimensional viewpoint, addition of noise and change in 

illumination. The obtained features are also highly distinctive, so it can be used 

for object recognition applications as well.  

The four main steps in this algorithm are scale-space extrema 

detection, keypoint localisation, orientation assignment and keypoint 

descriptor. The first stage, which is scale-space extrema detection is basically 

the mathematical computations to search through the image matrix using a 
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difference-of-Gaussian (DoG) method to determine potential points that are 

scale and orientation invariant. At the second stage, the potential points from 

the first stage are fit into a model to determine the location and scale. Keypoints 

will be selected from those potential points based on their stability, and scale 

invariance is achieved at this point. After that, one or several orientations are 

given to the keypoints based on local image gradient directions. Hence, later 

operations will be performed on keypoints that have been transformed relative 

to the assigned scale, orientation and location. Therefore, orientation 

invariance can be achieved. For the last step, a descriptor is computed for the 

local image region for each keypoint so that the keypoints are highly distinctive, 

hence providing invariance to change of viewpoint and illumination. When it 

comes to keypoint matching, features between two images are matched by 

identifying the nearest neighbours surrounding the feature. However, the 

second closest match might be too near to the closest match due to external 

factors such as noise. Therefore, Lowe proposed the ratio test of the closest 

distance to second closest distance neighbors, if this ratio is larger than 0.8, 

then the keypoint is rejected. Lowe suggests that this will remove 90% of 

incorrect matches while only discarding 5% of correct matches. 

  Although the SIFT algorithm have a relatively high accuracy, the 

high dimensionality of the generated descriptors during the matching stage 

imposes a large computational burden, which causes the matching speed to 

reach a bottleneck if the device has insufficient computational capability. 

Hence, Bay, Tuytelaars and Van Gool (2006) devised another algorithm 

known as the Speeded Up Robust Features (SURF) which has an improved 

accuracy and computational speed over SIFT and other state-of-the-art 

algorithms at that time. However, at this moment SURF is a patented algorithm, 

so it is not freely accessible. Later on, Rublee, et al. (2011) from OpenCV Labs 

created another new feature matching algorithm known as Oriented FAST and 

Rotated BRIEF (ORB), where FAST stands for Features from Accelerated 

Segment Test and BRIEF stands for Binary Robust Independent Elementary 

Features. Hence, ORB is a combination of the FAST keypoint detector and the 

BRIEF descriptor with some added modifications to increase the performance.     

 The ORB algorithm initially uses the FAST algorithm to detect 

keypoints, and then the Harris corner measure is used to find the top N points 
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among all the keypoints. After that, a multiscale image pyramid is applied to 

the image to produce multiscale features. However, since FAST does not 

compute orientation, the authors of ORB added a modification to compute the 

intensity centroid of the patch with the located corner at the centre. The 

direction of the vector from the located corner to the centroid provides 

orientation to the image, which provides rotation invariance. Hence, this is now 

known as oriented FAST (OpenCV, n.d.b).  

For the descriptor, ORB uses the BRIEF descriptor, but this descriptor 

has a poor performance when it comes to image rotation. Hence, ORB steers 

the BRIEF descriptors to follow the orientation of keypoints, where the 

rotation step is discretised to an angle of 12 degrees, and a lookup table is 

constructed with precomputed BRIEF formations. However, the orientation of 

the keypoints means that the variance of the features is reduced, which is not 

desirable to generate highly discriminative features. Therefore, a greedy search 

is performed among all binary tests to determine keypoints that have both a 

high variance and a mean value that is approximately 0.5. This is now known 

as rotated BRIEF (OpenCV, n.d.b). 

Once the features are detected and the local descriptors are generated, 

matching algorithms are used to match similar features between images. Two 

algorithms are mainly used for feature matching, which are the Brute-Force 

Matcher (BFM) and the Fast Library for Approximate Nearest Neighbours 

Matcher (FLANN). The BFM is relatively simple as it takes all the descriptors 

of one feature from the first image and compares it with all the descriptors from 

one feature from the second image using a distance calculation, and the 

descriptor with the shortest distance is returned. For the FLANN matcher, it 

utilises algorithms to search for nearest neighbours in a much optimised and 

faster method within huge datasets and high dimensional features, hence it is 

much faster than BFM. However, its accuracy is lower than BFM as it only 

determines the approximate nearest neighbours, whereas BFM will determine 

the best match. Therefore, it is a trade-off between accuracy and speed between 

these two feature matching algorithms (OpenCV, n.d.c).  
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2.4 Modern AI based Methods for Vision-based Anomaly Detection 

Modern methods for visual anomaly detection are usually based on AI 

techniques, which enables the processing of large datasets efficiently and 

effectively. As discussed in previous sections, there are several learning 

methods when it comes to the training of an AI model. The selection of 

learning method heavily depends on the availability of correctly labelled 

datasets. For anomaly detection, there are three main types of learning methods 

that are usually used. The first one is supervised anomaly detection, where the 

training and test datasets are fully labelled. However, this type of learning 

method is not practical for most real-life scenarios because it is very difficult 

to find and label every type of anomalies beforehand. This also indicates that 

it is hard to find or manually curate a dataset that encompasses all known 

anomalies for a given situation. Next, semi-supervised anomaly detection uses 

training data that comprises of normal data that are not anomalous. Once the 

model learns what constitutes of a normal situation from the training data, 

anomalies can be detected from the test data by categorising data that deviates 

from the normal behaviour of the training data. Thirdly, there is unsupervised 

anomaly detection, which is the most flexible learning method as the training 

and testing data does not require any labels. The model is able to distinguish 

abnormal regions from normal ones automatically, provided that sufficient 

data is fed to the model for training (Goldstein and Uchida, 2016). Figure 2.9 

illustrates the training process for these three learning methods.  

 When it comes to modern approaches for vision-based anomaly 

detection, most studies are based on DL unsupervised or semi-supervised 

learning methods. In addition to that, the training method for unsupervised 

learning also resembles most practical application scenarios, where anomalies 

vary greatly and there is no standard pattern or trend on how anomalies will 

occur. Visual anomaly detection can be split into two categories, which are 

image-level and pixel-level detection. Image-level detection considers an 

image as a whole to detect whether it is normal or abnormal, whereas pixel-

level detection dives deeper into the pixel data to determine the specific regions 

where there is an anomaly in the image (Yang, et al., 2021).  
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Figure 2.10: Different Types of Anomaly Detection Based on Learning 

Method of Models (Goldstein and Uchida, 2016). 

 

 Yang, et al. (2021) made a comprehensive survey that looks into 

unsupervised and semi-supervised methods for image-level and pixel-level 

visual anomaly detection. For image-level methods, the reviewed techniques 

are density estimation, one-class classification, image reconstruction, and self-

supervised classification, however self-supervised classification will not be 

discussed here. Density estimation is basically generating a probability 

distribution of features that are obtained from normal training images. Then, 

the probability distribution of test images is generated and compared to the 

distribution obtained from original images. If a test image’s probability 

distribution is not close enough to the probability distribution of normal images, 

then it is considered as an anomalous image. There are classical methods for 

density estimation such as Gaussian models, but these methods are not optimal 

for data with high number of dimensions such as images. Deep generative 

models are able to process high dimension data, but a large number of images 

are needed to train these models. On top of that, these models are not 

sufficiently robust and stable for anomaly detection. The findings suggest that 

popular deep generative models such as Variational Automatic Encoder (VAE) 

are not good enough for simple visual anomaly detection tasks.  

  One-class classification generates a binary decision on whether an 

image is anomalous or not. Since it does not take so many points of an image 
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to generate a probability distribution, it does not require a huge number of 

training images. However, it faces problems such as dimension disaster and 

scalability issues. With the development of DL, researchers have looked into 

combining deep Convolutional Neural Networks (CNN) with conventional 

one-class classification methods. Another method for image-level anomaly 

detection is image reconstruction, which reduces an image to its latent space, 

which is the low-dimensional vector representation of the image that 

encompasses the essential features of the image. After reducing the dimensions 

of the image, the low-dimensional vector is then used to reconstruct the 

original image. The difference between normal images and anomalous images 

is that the error from reconstructing the original image is small for normal 

images, and larger errors ensue from the reconstruction of anomalous images. 

Autoencoders are frequently used for image reconstruction, which is a neural 

network that comprises of a narrow middle hidden layer. The narrowing of the 

hidden layers compresses the input data by removing redundant information 

while maintaining essential features of the images (Yang, et al., 2021). 

 For pixel-level methods, the reviewed techniques are image 

reconstruction and feature modelling. As mentioned above, image 

reconstruction is used to reduce the dimension of an image until the lowest 

possible size, where the vector contains all the essential information only. Then, 

this low-dimension vector is used to reconstruct the original image. After the 

original image is reconstructed, potential abnormal regions are detected by 

calculating the pixel difference between the input image and the reconstructed 

image by using methods such as the pixel-level l2-distance or SSIM. Deep 

generative models such as VAE and generative adversarial networks (GAN) 

are frequently used as the model to reconstruct the images. This method is 

considered to be intuitive, and it is also expected to regenerate high quality 

original images because it detects anomalies within the pixel space. However, 

it is still difficult to regenerate high quality original images, where issues such 

as difficulty in generating sharp edges and complex texture structure of images 

causes reconstruction errors in edge or texture regions. This causes a large 

number of false positive alarms for anomaly detection (Yang, et al., 2021). 

Whereas for feature modelling, anomalies are detected within the 

feature space instead of the image space. These features are usually hand-
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crafted or determined by neural networks. Then, ML models such as sparse 

coding, Gaussian mixed model and K-means clustering can be used to model 

the distribution of the features pertaining to the images. If the regional feature 

of an image deviates from the modelled feature distribution from the training 

dataset, then the specific region can be considered as an anomalous region 

(Yang, et al., 2021). 

 

2.5 Process to Deploy Deep Learning models 

The majority of studies or real-world applications that are related to computer 

vision applications are based on DL technology, which is a subset under ML 

technology that is powered by neural networks. In general, a neural network is 

developed by feeding a huge amount of training data that is related for a 

specific application, so that it is able to decipher common traits from the input 

data and then generate a mathematical equation, which describes the behaviour 

of the neural network. This equation acts as a differentiator which is able to 

classify input images or videos into different categories, which is especially 

useful in visual inspection applications as the algorithm is able to separate 

defective images from normal ones (Krasnokutsky, 2021). 

To develop a DL algorithm that can be used in visual inspection 

software, relevant training data must first be collected. Consider creating a 

visual inspection program for electronic components, the training data that 

needs to be gathered should be examples of defective components such as 

transistors with bent pins, integrated circuits with burnt surfaces etc. However, 

it needs to be specific to one component only. When sufficient data is fed to 

the neural network, it is able to differentiate defective and normal components 

without additional input by the user at a relatively high accuracy. The process 

to integrate DL visual inspection programs into a system is complicated and 

requires structured and well-planned steps to be performed (Krasnokutsky, 

2021).  

 The whole process can be broken down into five main steps, where 

the first one is to define the main business problem that needs to be solved. So, 

if a company is manufacturing tyres, the problem to be solved is of course the 

detection of tyre defects. Besides that, there are a lot of important questions 

that needs to be asked, such as how the environment of the inspection site is, 
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should the defects be categorised or is it just a binary defect/non-defect 

problem, is there any existing software that addresses the current problem, are 

there proper training data for the development of a DL model and so forth. 

After answering important questions revolving the project, the second step is 

to gather and prepare relevant data. High quality data is essential to train a DL 

algorithm, and these data can be obtained from open-source sites to client data, 

as well as gathering data from scratch. For data related to visual inspection, the 

collected images or videos must be of high resolution, or else the obtained 

results will be subpar (Krasnokutsky, 2021). 

After obtaining the required data, the third step will be to start 

developing a DL model. There are multiple options when it comes to this step, 

where the company will have to choose between using DL model development 

services, using pre-trained models, or developing a DL model from scratch. 

DL model development services such as Google Cloud ML Engine and 

Amazon ML provides pre-defined templates that are non-customisable. So, if 

the defined problem can be solved using a provided template, this is a very 

viable option as significant time and cost can be saved because DL models do 

not need to be developed from scratch. For the second option, using a pre-

trained model is doable if there is a DL model that is already created which 

solves similar issues that revolves around the main problem. Intel OpenVINO 

offers these models to be used by the public and using these enables companies 

to significantly shorten the deployment time and cost. The downside is that a 

pre-trained model will not completely comply with the defined problem, so the 

performance may not be as expected depending on the application. The third 

option is to develop a DL model from scratch, which is the way to go if the 

problem is extremely complex. High initial costs and long development hours 

are expected from this method, but the performance of the model is usually 

optimal as the model is tailor-made for the specific application. The fourth step 

is to train and evaluate the model, where the performance of the DL algorithm 

is evaluated and validated. After that, the last step is to deploy the visual 

inspection program and constantly look for ways to optimise and improve the 

overall model (Krasnokutsky, 2021). 
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2.6 Summary 

Vision-based anomaly detection is an ongoing research topic within the CV 

community. It is applicable in a lot of practical areas, with the potential to 

transform the workflow of organisations into a much efficient and effective 

one. Studies on modern AI-based techniques for visual anomaly detection has 

been carried out for a relatively long period as well, and more research on this 

is still in progress. From reviewing previous works, it is suggested that 

unsupervised methods should be used for visual anomaly detection because it 

is difficult to curate a training dataset that covers all possible anomalies for a 

specific item. Besides that, unsupervised methods resemble real world 

scenarios, where anomalies are not known beforehand. However, there exists 

some open-source datasets that enables researchers to use supervised methods 

to perform visual anomaly detection as well.  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this study, the proposed approach to implement vision-based anomaly 

detection is to utilise both conventional and modern methods on relevant 

training images, and the performance of these methods will be evaluated. In 

order to properly implement these methods, relevant hardware devices and 

software tools are required. The flowchart in Figure 3.1 illustrates the general 

process flow for this project. 

 

 

Figure 3.1: General Process Flow. 
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3.2 Hardware Setup 

The hardware setup for this project is relatively simple. To develop the 

required programs for visual anomaly detection, only a laptop was used to 

develop the whole program, where the Operating System (OS) is Windows 10. 

However, only the classical method was developed directly using the local 

platform, whereas the AI-based methods was run on Google Colaboratory’s 

cloud computing system to run heavier workloads that requires Graphics 

Processing Unit (GPU) processing power. Table 3.1 shows the specification of 

the laptop used to develop the program. 

 

Table 3.1: Specifications of Laptop Used in the Project. 

CPU Intel Core i7-7700HQ CPU @ 2.80GHz 

CPU Cores 4 

Memory 16 GB  

Storage 256 GB SSD/1 TB HDD 

GPU Nvidia Geforce GTX 1050 

OS Windows 10 

 

3.3 Software Setup 

To run the programs locally on the device, an anaconda environment was set-

up to ensure that the installed python modules will not interfere with the global 

python settings. Python is used as the programming language, which is 

preferred over other languages for its simplicity and readily available modules. 

More importantly, it supports essential libraries that are crucial to this project, 

such as OpenCV which is an open-source CV and ML software library, and 

also some other DL frameworks such as PyTorch, TensorFlow, Keras etc. The 

overall software setup for the local device is illustrated in Figure 3.2. The 

environment in Google Colaboratory is Linux based. Since the runtime is only 

available for a specific duration of time, the modules and frameworks can be 

installed directly without creating a virtual environment as the system will reset 

everything once the allocated duration is over.  
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Figure 3.2: Software Setup. 

 

3.4 Image Dataset 

To train the AI models for visual anomaly detection, the open-source MVTec 

Anomaly Detection (MVTec AD) dataset will be used. This image dataset 

focuses on industrial inspection, and it has more than 5000 high-resolution 

images with various defects, as well as normal images. The pixel-precise 

annotations for all kinds of anomalies are also provided within this dataset 

(Bergmann, et al., 2021).  

 Five objects from the MVTec dataset were used for the training of AI 

models, which are bottle, transistor, metal nut, tile and hazelnut. The images 

for an image dataset are divided into training images and testing images. 

Training images are images of the objects in good condition, and these images 

will be used to train the AI models. Testing images comprises of both images 

of defective objects and good objects, which will be used to test whether the 

AI models are working as intended, and also for benchmarking purposes. Table 

3.2 shows the number of training and testing images for each image dataset. 

For each image dataset, there will be several scenarios of defective objects, 

which are shown in Table 3.2. Figure 3.3 shows an example of a normal 

transistor and a defective transistor with a damaged case.  
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Table 3.2: Number of Training and Testing Images. 

Image Dataset Num of Training Images Num of Testing Images 

Bottle 209 broken large: 20 

broken small: 22 

contamination: 21 

good: 20 

 

Transistor 213 bent lead: 10 

cut lead: 10 

damaged case: 10 

misplaced: 10 

good: 60 

Metal Nut 220 bent: 25 

color:22 

flip: 23 

scratch: 23 

good: 22 

Tile 230 crack: 17 

glue strip: 18 

gray stroke: 16 

oil: 18 

rough:15 

good: 33 

Hazelnut 391 crack: 18 

cut: 17 

hole: 18 

print: 17 

good: 40 
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Figure 3.3: Normal Transistor (Left) and Defective Transistor (Right). 

 

3.5 Template Matching 

To implement TM, OpenCV already has several built-in methods to effectively 

implement this. The approach that was taken to implement the test program is 

to first obtain the original image, the template image and the threshold value 

for detection. This means that if an object has a detection score which is higher 

than the threshold value, then the object is a match with the template image. 

For this case, the template image is the specific anomaly that is required to be 

detected from the images.  

 To start the matching process, both the template and original images 

are first converted to grayscale. To make sure that both the original image and 

the template image are having the size, the original image will be looped 

through different scales to find the size that produces a high enough matching 

score to be considered as a good fit. This means that when the image is looped 

through a certain scale, then TM is performed using OpenCV’s 

cv2.matchTemplate method. To obtain a more accurate result, the 

cv2.TM_CCOEFF_NORMED TM algorithm is used, which returns a 

normalised score with a maximum value of one. If the largest matching score 

for this image scale is higher than the threshold value that was set earlier, this 

means that this scale for the original image is able to generate an accurate 

match with template. Hence, this scale will be used for further matching and 

detection visualisation.  

 After the desired scale is set, then the result from the earlier TM 

process is used to determine which are the regions within the image where 
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there is a possible anomaly. The obtained result from TM is a matrix, so the 

np.where method from Python’s numpy module is used to filter out (x,y) 

coordinates where the detection threshold is higher than the value that was 

initially set at the start of the program. As an example, if the detection threshold 

is set to be 0.8, then the locations where matching scores are higher than 0.8 

within the result matrix will be recorded. After this, non-maxima suppression 

is applied to prevent the situation where multiple locations within the result 

matrix is actually referring to the same object. Once that is done, the relevant 

locations of possible anomalies are drawn on the original image using the 

cv2.rectangle method to visualise the detection of anomalies. The summarised 

process flow of the TM program is illustrated in Figure 3.4. 

 

 

Figure 3.4: Process Flow for TM Program. 
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3.6 Structural Similarity Index 

The SSIM algorithm is a built-in function within the scikit-learn python 

module which can be implemented directly. The program starts by taking two 

images as inputs, which is the first image and the second image. Since SSIM 

can only work if both images have the same dimensions, so the second image 

will be resized to have the same size as the first image if the size is different. 

After that, both images are converted to grayscale. Once that is completed, both 

images are fed into the compare_ssim function. This function returns the 

computed SSIM score, as well as the locations where there are differences 

between both images. The obtained locations are then fed into the opencv 

method cv2.threshold to perform thresholding on the areas where there are 

differences between the two images to highlight the differences, and the 

thresholded areas are then fed into the cv2.findContours to perform contouring. 

Therefore, the areas where both images differ can be shown clearly using 

thresholding and contouring. Lastly, bounding boxes are drawn at areas where 

there are differences between the two images. Figure 3.5 illustrates the process 

flow for the SSIM program. 

 

 

Figure 3.5: Process Flow for SSIM Program. 
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3.7 Feature Matching 

When it comes to feature matching, the SIFT and ORB algorithms were 

implemented in this project. In addition to that, the BFM matcher is used over 

the FLANN matcher as the number of images that are dealt with in this project 

is not too large, so BFM will not be too slow, and it provides better accuracy 

as well. To start the program, two images are fed into the program as well, 

which are the first image and second image. Since feature matching algorithms 

are scale and rotation invariant, the scale of both images can be different from 

each other. Then, both input images will be fed into the sift_brute function and 

the orb_brute function for SIFT and ORB feature matching respectively.  

 To perform SIFT feature matching, a sift object needs to first be 

created using OpenCV’s cv2.SIFT_create() method. Then, the sift object will 

be used to detect and compute the keypoints and descriptors of both images. 

After that, a BFM object is created using the cv2.BFMatcher() method. To 

perform matching, the BFM object will use K-nearest neighbours matching 

with a K value of 2 by using the descriptors from both images. All the macthes 

will be stored into a variable. Now, to filter out high quality matches, the ratio 

test from Lowe’s paper was implemented. If the distance of a descriptor from 

the first image is less than the ratioed distance of a descriptor from the second 

image, then the match is considered as a good match. All prior detected 

matches will be filtered through this ratio test, and good matches are stored 

into a separate variable. Then, the good matches are visualised on both of the 

images. To compute a SIFT score to represent how similar both images are, 

the ratio v was calculated and returned by the function. The higher the SIFT 

score, the higher the similarity between two images. The process flow for SIFT 

feature matching is shown in Figure 3.6. 

 The process for ORB feature matching is very similar to the process 

for SIFT feature matching. An ORB object is first created using the 

cv2.ORB_create() method, and the keypoints and descriptors are detected and 

computed for both images. Then, the BFM object is created, and matching is 

performed as well. However, the K-nearest neighbours matching is not used in 

this case, so the direct BFM matching was used. After matching, the matches 

were sorted in order of their distance. Since ORB matches are different from 

SIFT matches, the ratio test was not used. Instead, a good match is defined as 
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one with a distance of less than 50, note that ORB matches have a distance of 

0 to 100. If a match has a distance of less than 50, it is considered as a good 

match, and it will be appended into another variable. All good matches will be 

visualised on both images, and the ORB score is also calculated by using the 

ratio between the number of good matches and the number of total matches. 

The higher the ORB score, the higher the similarity between two images. The 

process flow for ORB feature matching is shown in Figure 3.7. 

 

 

Figure 3.6: Process Flow for SIFT Feature Matching. 
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Figure 3.7: Process Flow for ORB Feature Matching. 
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3.8 AI-Based Methods 

When it comes to vision-based anomaly detection, the unsupervised learning 

approach is much more effective and practical than supervised learning, 

because it is nearly impossible to curate a dataset that covers all types of 

anomalies to train a model using supervised learning. Hence, unsupervised 

learning is the way forward for real life visual anomaly detection applications. 

In this project, the Anomalib DL library for anomaly detection will be used, 

which was developed by Akcay, et al. (2022). This open-source library focuses 

on unsupervised learning for anomaly detection purposes, and a set of state-of-

the-art models and algorithms are included in the library. In addition to that, 

Anomalib provides an end-to-end process from the training dataset to 

deployment of model, and the architecture of this library is shown in Figure 

3.8.  

 From the selection of provided AI models, the models that were 

implemented in this project are the Patch Distibution Modelling Framework 

(PaDiM) and the PatchCore model. PaDiM was proposed by Defard, et al. 

(2021), and it is a patch-based algorithm that relies on a pre-trained CNN 

feature extractor for embedding extraction. This means that an image will be 

divided into patches, and embeddings are extracted for each image patch. All 

layers of the pre-trained CNN will be utilised to ensure that all details are 

encapsulated. To reduce redundant information within the embeddings, a 

random selection method was used, which surprisingly performed well while 

reducing the complexity and training time of the model. A multivariate 

gaussian distribution is created for each patch embedding, and these 

distributions are modelled as a matrix of gaussian parameters. For the inference 

process, the Mahalanobis distance was used by the authors to compute an 

anomaly score for each patch of the image. The architectural overview of the 

PaDiM framework is illustrated in Figure 3.9.  

The PatchCore model was proposed by Roth, et al. (2022), and the 

algorithm also divides an image into patches. The idea behind this algorithm 

is that an image is anomalous if any of the patches are anomalous. This model 

is also based on a pre-trained CNN, but only the middle layers are utilised as 

the authors believed that the lower layers are too broad, whereas the higher 

layers are too specific to the dataset the model is trained on. For the inferencing 
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process, the memory bank is coreset subsampled, which creates a subset of the 

image dataset in order to reduce the search cost that is frequently seen in 

nearest neighbour search algorithms. The anomaly score is obtained by taking 

the maximum distance between the test patch in each collection to each 

respective nearest neighbour. Figure 3.10 shows the architectural overview of 

the PatchCore model. 

 

 

Figure 3.8: Architecture of the Anomalib Library (Akcay, et al., 2022). 

 

 

Figure 3.9: Architecture of the PaDiM Framework (Defard, et al., 2021). 

 

 

Figure 3.10: Architecture of the PatchCore Framework (Roth, et al., 2022). 
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The Anomalib library is available as a Python module, so Anomalib 

has to first be installed into the Python environment. After that, the python 

program to kickstart the training process needs to be run, while specifying the 

specific configuration file to be used in order to decide whether the PaDiM or 

PatchCore model is to be used, as well as which object from the MVTec AD 

dataset will be fed to the model for training. After the training is completed, 

the model will then be used in another program to perform inferencing on test 

images, in which the anomalous regions will be segmented and visualised on 

the test images.  

To benchmark the AI models, two metrics will be used, which are the 

Area Under the Receiver-Operator Characteristic Curve (AUROC) and F1 

Score. The AUROC curve is a benchmarking metric that is usually used for 

binary classification problems, and it is a probability curve. The area under this 

curve is essentially the measure of separability, so it tells how capable a model 

is at segregating the data into binary classes. The ROC curve is generated by 

plotting the True Positive Rate (TPR) of the data against the False Positive 

Rate (FPR). The TPR is defined in equation 3.1, whereas the FPR is defined in 

equation 3.2. The TPR indicates the proportion of positive class that was 

classified correctly, whereas the FPR indicates the proportion of negative class 

that was classified incorrectly. For this application, a high AUROC score 

means that the model is good at distinguishing between normal and anomalous 

images, so a high AUROC score is desirable. 

                                                     

                                                  𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3.1) 

where 

TP = Number of True Positive Cases 

FN = Number of False Negative Cases 

 

                                                  𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
   (3.2) 

where 

FP = Number of False Positive Cases 

TN = Number of True Negative Cases 
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 The F1 Score is another benchmarking metric that is suitable for 

classification models. This score is the improvement of two simpler 

performance metrics, which are the Precision and Recall metrics, both of these 

are defined in equation 3.3 and 3.4 respectively. Precision is the measure of 

correct percentage of true positives, whereas recall is the percentage of 

detected true positives within all positive cases. In other words, precision is the 

question where out of all positive predictions, how many are truly positive? 

Whereas recall is the question where out of all real positive cases, how many 

are predicted as positive? The F1 score is a combination of precision and recall, 

which is defined in equation 3.5. Since the F1 score is the harmonic mean of 

precision and recall, it gives equal weight to both precision and recall. Hence, 

a high F1 Score means that both the precision and recall are high, which is 

desirable. 

 

                                                  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (3.3) 

where 

TP = Number of True Positive Cases 

FP = Number of False Positive Cases 

 

                                                  𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3.4) 

where 

TP = Number of True Positive Cases 

FN = Number of False Negative Cases 

 

                                        𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (3.5) 

 

For both metrics, the image and pixel level scores will be calculated. 

The difference between image and pixel level scores is that the image level 

score takes the whole image as a whole for benchmarking purposes, whereas 

pixel level score considers each pixel within an image for benchmarking 

purposes. For example, determining whether an image contains an anomaly or 

not is an image level problem, whereas determining whether a single pixel 

within an image is considered as anomalous is a pixel level problem. 
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3.9 Project Work Plan 

 

 

Figure 3.11: Project Gantt Chart for Semester 1 (Top) and Semester 2 

(Bottom). 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

Results for conventional and modern AI-based methods were analysed and 

compared. In addition to that, benchmarking was also performed for AI-based 

methods to assess the performance and accuracy of the model to detect 

anomalies for the defective items.  

 

4.2 Template Matching 

The program for TM was tested using a simple template image and original 

image, which is as shown in Figure 4.1 below. It is shown that the template 

image is a yellow-coloured circular port, in which there are seven of them in 

the original image. Using TM algorithms, the goal is to detect all occurrences 

of this yellow port in the original image. Since the template image has the same 

scale with the original image, the best possible match occurs when the scale of 

the original image is maintained at the original size. Initially when the program 

was run with a threshold value of 0.9, only three occurrences of the template 

image were detected on the original image. This means that only three regions 

within the original image have a match that is 0.9 and above with the template 

image. When the threshold value is reduced to 0.8, four of the occurrences 

were detected accurately. However, when the threshold is reduced to 0.78, a 

false occurrence was detected in the image, but the remaining three 

occurrences that were not detected previously were still not detected. Figure 

4.2 shows the results when the threshold value is 0.8 and 0.78. 
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Figure 4.1: Original Image (Right) and Enlarged Template Image (Left) 

(PythonProgramming, n.d.). 

 

Notice that there is a false positive detection on the left side of the image when 

the threshold value is 0.78. However, the three yellow ports at the bottom are 

still not detected. This suggests that the orientation of the ports within the 

image, as well as the brightness of the specific region will likely play a huge 

part in determining whether an occurrence can be accurately detected. When 

the threshold value is decreased to 0.5, more false positive occurrences were 

detected, which is shown in Figure 4.3. From these results, it can be observed 

that TM is accurate only if the region within an image is almost identical to the 

template image.  

 In addition to that, TM is only effective if the object to be detected is 

almost identical to the template image. In this above example, the yellow-

coloured port is the exact object that exists in the original image, hence its’ 

occurrence was detected, but not all occurrences were able to be detected 

accurately. However, situations like this are almost non-existent in practical 

scenarios for anomaly detection, where defects will occur in all shapes and 

sizes.  
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Figure 4.2: Results when Threshold Value Equals 0.8 (Top) and 0.78 

(Bottom). 
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Figure 4.3: Results when Threshold Value Equals 0.5. 

 

Another possible implementation for anomaly detection using TM is 

to use the image of a good item as the template image, and then trying to match 

the whole image to other images to see if the images will match. If the images 

match, this means that the item in the original image is not defective. Figure 

4.4 shows a good transistor from the MVTec AD dataset being used as the 

template image, and a few good and defective transistors were used as the 

original image to be tested. The results show that not only is the algorithm 

unable to accurately differentiate good and defective transistors, but it also only 

matches with images that are very close to the original image in terms of 

placement and background of the image. Figure 4.5 shows a defective 

transistor with a damaged case that was matched with the transistor in Figure 

4.4. Upon visual inspection, the placement of the transistor and the background 

of the original image is similar to the template image, which is why the 

algorithm detected this as a match with a detection threshold of 0.8. In another 

scenario where a bottle in good condition is used as the template image, all the 

tested good and defective bottles were matched to the template image, because 

all the bottles are positioned at the same exact position. Hence, the TM 

algorithm detects all the bottles as having a good match with the template 

image. The results are shown in Figure 4.6 and Figure 4.7. 
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Figure 4.4: Good Transistor as Template Image. 

 

Figure 4.5: Defective Transistor Matched with Good Transistor. 

 

      

Figure 4.6: Good Bottles Matched with the Template Image of a Good Bottle. 
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Figure 4.7: Defective Bottles Matched with a Good Bottle. 

 

 From the above results, it was shown that TM is not suitable for 

anomaly detection applications as it is impossible to set an anomaly as a 

template image. This is because anomalies and defects can occur in all types 

of shapes and sizes. It is futile to set different types of template images to detect 

anomalies as there are too many defect variations. When it comes to matching 

the whole image to the template image, the results have shown that this method 

is unreliable as TM takes into account of the difference in pixel properties 

within a region, and it cannot differentiate the defective object. Hence, there 

are scenarios where a defective object managed to match with the good 

template image because the position of the object and the background is similar 

to the one in the template image.    

 

4.3 Structural Similarity Index 

There are scenarios where SSIM can perform well to detect changes or outliers 

within an image, which is when the images follow a specific format or template. 

Figure 4.8 showcases some scenarios where the SSIM algorithm is able to 

pinpoint the differences or anomalies within the images. As shown on the 

images, SSIM can perform well if all the images to be compared are almost 

perfectly aligned and structured. Figure 4.9 illustrates the result on the test 

images from Figure 4.8, and the algorithm is able to successfully determine the 

modified areas accurately. However, a key part to the SSIM algorithm is the 

generated score, and the score for these two images is 0.9347. 
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Figure 4.8: Spot the Differences between Original Image (Left) vs Modified 

Image (Right) (Wikipedia, n.d.). 

 

     

Figure 4.9: Bounding Boxes on Differences on Modified Image (Left) and 

Thresholding to Accentuate Modified Parts (Right). 

  

 Take note that the SSIM score has a range of 1 to -1, where a score of 

1 represents perfect resemblance between the two images. Hence, a score of 

0.9347 indicates that both images are almost identical to each other. However, 

this score is misleading because there are differences between the two images, 

and these small differences are in fact the defects that needs to be filtered out 

when it comes to anomaly detection. By conventional logic, a SSIM score of 

0.9347 would suggest that there are no anomalies within the test images, but 

the result shows otherwise. Therefore, when it comes to real life anomaly 
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detection, a high SSIM score as in this scenario cannot guarantee that there are 

no defects within the tested image. 

The SSIM algorithm was also tested on the MVTec AD dataset, and 

the results are displayed in Table 4.1, which compares relative SSIM scores of 

different test subjects with respect to a good sample of the specific object. From 

the obtained results, the first observation is that there is not much difference in 

the computed SSIM scores between good and defective objects when they are 

compared to a good object as a reference. When the bottle is used as the 

reference object, it was observed that the overall SSIM score is higher than 

other items, which is because the image of all the bottles are positioned in a 

fairly similar manner. Therefore, there is very less variation of bottle placement 

between all the images, which means that there is less perceived difference of 

the test subject, which gives a relatively high SSIM score. The same could be 

said for the transistors, where the images all look fairly similar where the 

transistor is focused in the middle with a simlar background for all the test 

images. Hence, the SSIM algorithm is unable to discriminate between items 

that have defects and normal items.  

The SSIM scores of metal nuts are lower because the images of metal 

nuts will have a different planar rotation, so the placement of the subject in one 

image will not be as similar to the placement of the subject in another image, 

which causes the reduction in SSIM scores. Figure 4.10 demonstrates the 

planar rotation of metal nuts in different images. Tiles have the lowest overall 

SSIM score because the patterns in tiles are completely randomised, so there 

is no fixed structure on how the patterns and dots will be aligned within the tile 

itself. Hence, SSIM classifies the difference in tile pattern as a difference in 

structure, hence the low computed scores. Figure 4.11 illustrates the random 

patterns on different tile images. Nevertheless, the overall score of all the items 

are not important if there is no clear distinction between scored for good and 

defective objects, which again shows that SSIM algorithms are not fit for 

detecting small and actual differences between test subjects under practical 

settings.   
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Table 4.1: SSIM Scores for Different Test Subjects. 

Reference 

Object 

SSIM Scores 

Good 

Object 1 

Good 

Object 2 

Defective 

Object 1 

Defective 

Object 2 

Defective 

Object 3 

Good 

Bottle 

0.7636 0.7576 0.7922 0.7042 0.7572 

Good 

Transistor 

0.6904 0.7352 0.6853 0.7323 0.7545 

Good 

Metal Nut 

0.5535 0.5744 0.6149 0.5880 0.5471 

Good Tile 0.2648 0.2525 0.2303 0.2516 0.2500 

 

    

Figure 4.10: Planar Rotation of Metal Nuts Perceived as a Difference Between 

Images. 

 

    

Figure 4.11: Differences in Tile Pattern for Good Tile Images. 
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4.4 Feature Matching 

Feature-based matching should be more robust as compared to previously 

reviewed conventional methods as it is scale and rotation invariant. The tested 

feature matching algorithms are SIFT and ORB, and the BFM algorithm was 

used to match the descriptors as it is more accurate than the FLANN based 

matcher. Figure 4.12 illustrates an example of the matching result between a 

picture of Mona Lisa and its rotated counterpart by 45 degrees. As shown in 

the Figure 4.12, both SIFT and ORB algorithms were able to detect similar 

features from both images even when one of the images is rotated. To generate 

a similarity score, the ratio between the number of high-quality matches and 

the total number of matches was computed. The similarity score for SIFT is 

0.48, and the score for ORB is 0.9849. From the similarity scores, it can be 

deduced that ORB performs exceptionally better than SIFT as it is able to 

produce a lot of high-quality matches that are low in distance.  

 

 

 

Figure 4.12: Matched Keypoints between Original and Rotated Image for 

SIFT (Top) and ORB (Bottom). 
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 By using two other Mona Lisa test images where one of the images is 

rotated by 90 degrees to the left, and the other test image is translated by -45 x 

-45 pixels as shown in Figure 4.13, the similarity scores, (SIFT, ORB) for both 

of these images are (0.75, 1.0) and (0.505, 0.9342) respectively. Again, ORB 

has performed exceptionally better than SIFT as it was able to match strong 

features between the images with a high degree of accuracy. Therefore, the 

ORB algorithm will be used to perform tests on the MVTec AD dataset to 

determine if it is able to discriminate defective samples from good ones. The 

results are tabulated in Table 4.2 and note that an additional hazelnut test image 

was added in this test. 

 From the results in Table 4.2, it is obvious that the ORB algorithm is 

also unable to accurately differentiate good and defective products as the 

similarity scores for both good and defective images are relatively close to each 

other. An interesting occurrence for this test is the very low similarity scores 

for the tile and hazelnut images. This is caused by the lack of distinctive 

features within these images, which makes it difficult for the ORB algorithm 

to extract keypoints that are essential to perform matching. In addition to that, 

the three-dimensional rotation of the hazelnut test image which is shown in 

Figure 4.14 also drastically affects the ability of the algorithm to match 

keypoints, as different sides of the hazelnut may have different keypoints and 

descriptors. Nevertheless, feature-based matching algorithms are not able to 

accurately differentiate between good and anomalous test images. 

 

    

Figure 4.13: Rotated by 90 Degrees to the Left (Left) and Translated by -45 x 

-45 pixels (Right). 
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Table 4.2: ORB Scores for Different Test Subjects. 

Reference 

Object 

ORB Scores 

Good 

Object 1 

Good 

Object 2 

Defective 

Object 1 

Defective 

Object 2 

Defective 

Object 3 

Good 

Bottle 

0.5528 0.6148 0.4824 0.4632 0.5932 

Good 

Transistor 

0.5508 0.4486 0.5636 0.5214 0.5000 

Good 

Metal Nut 

0.5128 0.4643 0.4597 0.3761 0.3852 

Good Tile 0.3194 0.3007 0.0840 0.1151 0.2208 

Good 

Hazelnut 

0.0000 0.0000 0.0284 0.0286 0.0238 

 

    

Figure 4.14: Three-Dimensional Rotation of Good Hazelnut Test Image. 

 

4.5 AI-based Method 

AI-based methods have shown very promising results when it comes to real-

world anomaly detection scenarios. Two models were used from the Anomalib 

library to train and perform inferencing on the MVTec AD dataset, which are 

the PaDiM and PatchCore models. To benchmark the performance of these 

models, the AUROC and F1 Score metrics were used. The range for both of 

these metrics is [0,1], where a score of 1 is the best possible score, and a score 

of 0 is the worst possible score. Table 4.3, Table 4.4, Table 4.5 and Table 4.6 
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shows the image AUROC, image F1 Score, pixel AUROC and pixel F1 Score 

respectively for different objects. Note that the higher the score, the better the 

performance of the model at distinguishing between the good and defective 

objects. 

 

Table 4.3: Image AUROC Scores for Different Models and Objects. 

Model Image AUROC Scores 

Bottle Transistor Metal 

Nut 

Tile Hazelnut Average 

PaDiM 0.9937 0.9200 0.9614 0.9502 0.7504 0.9151 

PatchCore 1.0000 1.0000 0.9966 1.0000 1.0000 0.9993 

  

Table 4.4: Image F1 Scores for Different Models and Objects. 

Model Image F1 Scores 

Bottle Transistor Metal 

Nut 

Tile Hazelnut Average 

PaDiM 0.9764 0.7957 0.9738 0.9341 0.8364 0.9033 

PatchCore 1.0000 1.0000 0.9894 1.0000 1.0000 0.9979 

 

 Table 4.5: Pixel AUROC Scores for Different Models and Objects. 

Model Pixel AUROC Scores 

Bottle Transistor Metal 

Nut 

Tile  Hazelnut Average 

PaDiM 0.9830 0.9679 0.9696 0.9339 0.9779 0.9665 

PatchCore 0.9844 0.9817 0.9895 0.9610 0.9874 0.9808 

 

Table 4.6: Pixel F1 Scores for Different Models and Objects. 

Model Pixel F1 Scores 

Bottle Transistor Metal 

Nut 

Tile  Hazelnut Average 

PaDiM 0.7220 0.6316 0.7646 0.5397 0.5621 0.6440 

PatchCore 0.7215 0.6688 0.8527 0.6271 0.6220 0.6984 
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 As shown from the obtained results above, AI-based methods are able 

to achieve much better results as compared to classical methods. Most of the 

benchmarking scores are above 0.9, except for the pixel F1 Scores which are 

low for both models. To test the accuracy of the segmentation of anomalies 

from the test images, each of the test images were fed into an inferencing 

program. Figure 4.15a and Figure 4.15b shows the sample results for the 

PaDiM model, whereas Figure 4.16a and Figure 4.16b shows the sample 

results for the PatchCore model. These results clearly prove the ability of AI 

models to accurately point out anomalies from defective objects, which is 

much better when compared to classical methods that were discussed above. 

This indicates that the learning process AI models go through is essential for a 

program to accurately learn the differences between normal and anomalous 

objects. 

 

    

     

Figure 4.15a: Sample Inferencing Results for the PaDiM Model. 
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Figure 4.15b: Sample Inferencing Results for the PaDiM Model. 
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Figure 4.16a: Sample Inferencing Results for the PatchCore Model. 
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Figure 4.16b: Sample Inferencing Results for the PatchCore Model. 

  

When comparing both of these AI models, it is evident that the 

PatchCore model is able to segmentalise anomalies with better accuracy, 

whereas the PaDiM model will actually segmentalise some regions that are not 

exactly anomalous. Further tests on this were conducted, and the results are 

shown in Figure 4.17. It was observed that the PatchCore model is able to 

determine anomalous regions more accurately as compared to the PaDiM 

model in general. However, there are also instances where the PaDiM model 

is able to determine anomalous regions with better precision. There are even 

occurrences, albeit very little, where the PatchCore model was not able to point 

out the anomalous region within a defective object. There is also a scenario 

where both models cannot accurately pinpoint the anomalous region, which is 

shown in Figure 4.18. Nevertheless, the PatchCore model still has a better 

overall performance than the PaDiM model. 
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Figure 4.17: Comparison between Test Image (Left), PaDiM Results 

(Middle) and PatchCore Results (Right). 
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Figure 4.18: PaDiM (Middle) and PatchCore (Right) Not Able to Pinpoint 

Bent Lead Anomaly on Right Lead (Left). 

 

4.6 Summary 

After going through both classical and modern AI methods, it can be said that 

classical methods are not robust enough to accurately detect anomalies from 

defective objects, whereas AI-based methods outperform conventional 

methods in all aspects of this application and is able to pinpoint defects with a 

high degree of accuracy. Nevertheless, there are still other avenues of detection 

applications where these conventional methods are able to perform well. When 

it comes to TM, it can be used to detect whether specific objects are present in 

an image or not. For example, detecting specific components within a printed 

circuit board. Since the circuit board for a specific product is identical for each 

of those products, TM can be used to detect whether the desired components 

are detected within the circuit board, which is illustrated in Figure 4.19. 

However, for this to work effectively, the lighting conditions must be 

consistent for each testing as this will affect the detection accuracy of the 

algorithm. 

 For SSIM, it was demonstrated earlier that this algorithm is very 

useful in highlighting differences between images if the images have a defined 

structure. An example of an object with defined structure are barcodes, where 

the positioning of the numbers and lines are fixed. However, the SSIM score 

alone cannot be used as a metric to determine whether two images have 

differences or not, as it was shown in the results above that a high SSIM score 

does not mean that two images are the same. Instead, the algorithm should be 

paired with thresholding and contouring to visualise the area of defect, which 

is illustrated in Figure 4.20. 
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Figure 4.19: Using TM to Detect Components Within a Printed Circuit Board 

(Rovani, n.d.). 

 

     

Figure 4.20: Using SSIM to Pinpoint Differences Between Barcodes. 

 

 When it comes to feature matching algorithms like SIFT and ORB, 

these algorithms can be used for object or even human detection applications 

in situations that require more robust detection as compared to TM or SSIM as 

these algorithms are not greatly affected by affine transformations. However, 

the detection object should have a considerable number of visual features that 

can be used as keypoints for detection. Another usage of feature matching is 

for panorama stitching. Since these algorithms are able to detect and match 

keypoints between images, several images can be stitched together based on 

similar keypoints to form a panoramic image as demonstrated in Figure 4.21. 
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Figure 4.21: Stitching Three Images (Top) to Form a Panoramic Image 

(Bottom) (Rosebrock, 2018). 

 

 As a whole, the findings from this study are summarised in Table 4.7. 

It can be concluded that only modern AI approaches are suitable for accurate 

and robust anomaly detection, whereas conventional methods are not capable 

of doing so. However, there are other use cases for the aforementioned classical 

methods, which was thoroughly discussed in this section. Therefore, classical 

methods can be used for the right applications as these approaches are less 

complex and requires much lesser computational power.  

 

Table 4.7: Summarised Findings from This Study. 

Approaches / 

Algorithms 

Suitable for Anomaly 

Detection 

Recommended Use-Cases 

TM No Specific Object Detection, 

Presence/Absence of an Object 

SSIM No Highlighting Differences 

between Structured Images 

Feature 

Matching 

No Object/Human Detection, 

Image Stitching 

Modern AI Yes Various but model requires 

dataset to be trained 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this study, vision-based anomaly detection was performed using both 

conventional and modern AI approaches. The obtained result for the classical 

methods indicates that they were unable to discriminate between normal and 

defective objects. The average Image AUROC and Image F1 Score for the 

PaDiM model is 0.9151 and 0.9033, whereas for the PatchCore model the 

scores are 0.9993 and 0.9979 respectively. The results are in clear favour of 

modern AI methods being more suitable for this application, whereas classical 

methods were not able to produce substantial results for visual anomaly 

detection. However, there are other avenues where it is justifiable to implement 

classical methods over AI-based methods as classical methods have a better 

effectiveness to implementation complexity trade-off for other recommended 

use-cases, which was discussed in the previous chapter. Nevertheless, AI 

methods should be the de-facto standard for all visual anomaly detection 

research and application in the future.   

 

5.2 Recommendations for Future Work 

Vision-based anomaly detection is usually implemented in production lines in 

order to segregate the defective items. In a practical scenario, the processing 

and computational speed of a program should be as fast as possible increase 

the productivity, but the accuracy needs to be high as well to correctly filter 

out the defective items. Hence, real-time testing can be performed in the future 

to test the practical efficiency and accuracy of the AI models. Further 

improvements can also be made on the AI models by performing 

hyperparameter tuning to improve the accuracy. In addition to that, more 

anomaly detection datasets should be explored in order to cover more items 

that are not included within the MVTec AD dataset. More benchmarking 

metrics can also be explored in order to evaluate the AI models in a more non-

biased and accurate manner. 
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