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ABSTRACT 

 

Detecting people in an image or a video has become more prevalent due to 

the rapid advancement of technologies in the field of artificial intelligence. In 

conventional video surveillance systems, most of the person detection 

methods are based on frontal view, which may have lower accuracy 

stemming from the occlusion problem. This project proposes an overhead 

view based person counting system by enabling wider scene coverage and 

visibility. The entire project methodology can be divided into several phases. 

First, the YOLOv4 and YOLOv4-tiny object detection models are trained 

with the dataset of overhead camera perspective. Second, the OpenVINO 

Inference Engine is utilized to optimize the trained models in order to 

facilitate real-time implementation. Third, the accurate tracking of each 

detected person is performed using the deep learning based tracking 

framework, known as DeepSORT. Lastly, the performance of the proposed 

system is benchmarked based on the detection accuracy, frames per second 

(FPS) and counting accuracy. Based on the results obtained, the YOLOv4-

tiny model is chosen as it can achieve high fps without the need of high 

processing power. Besides, the Centroid Tracking algorithm achieves around 

38.4% to 40.4% higher fps as compared to that of the DeepSORT tracking 

algorithm. However, the counting accuracy of Centroid Tracking algorithm is 

about 22.2% lower than the DeepSORT tracking algorithm. Hence, the 

overall performance of the YOLOv4-tiny model integrated with DeepSORT 

algorithm outperforms the other tracking algorithms. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In this era of digitalization, a neural network with deep learning has become 

more essential as it makes things easier. Most companies rely on deep 

learning algorithms to meet their consumer expectations. Deep learning is a 

type of machine learning and also a subset of artificial intelligence (AI). 

Machine learning enables computers to perform tasks without explicit 

programming whereas deep learning focuses on allowing computers to think 

using structure modelled on the human brain and perform complex tasks. The 

comparison between AI, machine learning as well as deep learning is shown 

in Figure 1.1.  

 Today, there are a variety of object detection frameworks, two of 

which are machine learning as well as deep learning. Object detection 

consists of two computer vision tasks which include classifying the image 

and localizing the object in the image. For image classification, prediction of 

the class of an object within an image is done. Meanwhile, for object 

localization, the objects within an image are located and their locations are 

indicated with bounding boxes. As such, object detection combines both the 

tasks which localize the objects with bounding boxes and then classify them 

into a list of categories. In a person counting system, tracking people is also a 

form of object detection, in which the target objects are people. 

 

Figure 1.1: AI vs. Machine Learning vs. Deep Learning (Miraftabzadeh et al., 

2019) 



2 

 In recent years, automatically detecting people in images has gained 

importance in deep learning because of the wide variety of its applications, 

for example, prevention of criminal activities, behaviour analysis, as well as 

person counting and tracking. Different researchers have put in lots of effort 

so that person detection can be done with much higher accuracy. In 

conventional or frontal view based person detection, occlusion problems may 

occur when the tracked person is hidden by another person during the real-

time people tracking. Hence, an overhead view based person detection is 

often preferred as it provides better scene coverage and visibility (Ahmad et 

al., 2019). The overhead view gives an elevated view of objects from above 

which allows people detection with a completely different perspective as 

compared to the frontal view based technique. 

 

1.2 Importance of Study 

Deep learning is a subfield of AI which imitates how the human brain works 

in processing data and decision making. Today, there are a lot of applications 

that are involved in deep learning such as computer vision, voice recognition, 

automated driving and medical research. With deep learning, complex tasks 

like object classification, and data prediction can be done by computers 

effortlessly.  

The deep learning algorithm is often used for detecting and tracking 

objects due to its excellent detection results. In video surveillance system, 

person detection and tracking system using the deep learning algorithm has a 

wide variety of applications such as gait recognition, crime prevention, 

behaviour analysis of people and so on. These applications bring great 

benefits to society. For example, burglars or thieves can be tracked down 

more easily. Besides, the person counting system can also be used to ensure 

social distancing practices during the Covid-19 pandemic.  

 

1.3 Problem Statement 

Currently, there are a lot of libraries like Caffe and TensorFlow which 

support object detection. The detection methods based on deep learning such 

as Single Shot MultiBox Detector (SSD), You Only Look Once (YOLO), as 

well as Faster Region-based Convolutional Neural Network (Faster R-CNN) 
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can achieve high accuracy and high efficiency. However, their ability to track 

the object detected is still far from that of human beings mainly because of 

occlusion which occurs when the tracked object is hidden or overlapped by 

another object. During real-time object tracking, the objects could be lost due 

to miss calculations if occlusion occurs. Another problem that shows up due 

to the occlusion problem is that the identities of the tracked object might be 

switched frequently during the tracking process. These problems will greatly 

deteriorate the performance of the object tracking model. 

Thus, this project aims to find a more efficient real-time detection 

and tracking solution by using the overhead view based person detection, 

instead of the conventional frontal view based person detection to solve the 

problems arised due to occlusion. 

 

1.4 Aim and Objectives 

This project aims to use the deep learning method to detect, track and count 

the person based on the overhead view in a certain area in real-time. The 

objectives of this study include: 

• To detect people from the overhead view 

• To track the detected person and count 

• To evaluate the performance of different tracking algorithms 

 

1.5 Scope and Limitation of Study 

The scope of this study includes designing a people tracking algorithm based 

on the overhead view using the deep learning detection method and then 

integrating it with a counting system.  

 The limitation of the study includes the efficiency of the prototype 

which depends on the processing power. The processing power of laptop may 

be insufficient to handle some unusual situations. For example, when there 

are many people appearing at the same time, the achievable frames per 

second (fps) may drop. Other than that, there are difficulties in using the 

model analysis namely OpenVINO Deep Learning Workbench, as it is a 

toolkit that was released in 2018. The source of information and support 

about the DL Workbench may be limited and hence, more efforts need to be 

put in to solve the problem. 
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1.6 Contribution of Study 

This project contributes to the field of person counting based on overhead 

view. The deep neural networks and tracking algorithms were investigated in 

this project. The performance of the prototype was evaluated based on 

various criteria such as the total inference time, fps, and counting accuracy. 

This prototype is expected to be deployed in practical in the future. 

 

1.7 Outline of the Report 

This report consists of the following chapters: 

• Introduction 

• Literature Review 

• Methodology 

• Results and Discussion 

• Conclusion and Recommendations 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction to Person Counting System 

In video surveillance, there are two different perspectives for person 

detection which are frontal and overhead. Although overhead view based 

person detection can prevent occlusion and provide better scene coverage, it 

is a challenging task due to the following factors: different person body 

appearance, variation in poses, complex background, and uncontrolled 

lighting conditions (Ahmad et al., 2019). Over the last few years, a variety of 

top view based person detection algorithms have been developed by many 

researchers and these techniques can be classified into several groups which 

include the blob based algorithm, the machine learning based algorithm, as 

well as the deep learning based techniques. 

 A real-time object tracking algorithm is also needed for tracking and 

counting the detected person. There are several popular object tracking 

algorithms that most researchers use which include the Centroid Tracking 

algorithm and the Deep SORT algorithm. For the counting system, Zhao et al. 

(2016) stated that two existing counting systems are mostly used in two 

scenarios, namely counting based region-of-interest (ROI) and crossing based 

line-of-interest (LOI).  

 

2.2 Blob based Algorithm 

In images, a blob can be generalized as a bunch of pixel values that create a 

sort of colony or a huge object which is distinct from its background. These 

blobs can then be identified through image processing. Ahmad et al. (2019) 

stated that in blob based person detection algorithm, the background 

subtraction method is used to obtain a foreground image. However, several 

pre-processing techniques are performed before the background subtraction 

so that the noise, illumination and shadow can be removed. Then, the blob is 

extracted from the foreground image to be classified as one single person or 

another object according to its shape, motion, colour, and other feature. The 

overall framework of blob based algorithms is shown in Figure 2.1. 
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There are some basic blob features for person detection which 

include the blob shape, hair colour, texture and body size. Nakatani et al. 

(2012) stated that hair colour and hairstyle are usually different between 

persons. Thus, when extracting the blob feature, the total brightness of each 

pixel in the head area is taken into consideration. Other than that, the location 

of hair whorl is also one of the significant features for the identification of a 

person’s head. An example of the extracted hair whorl feature is shown in 

Figure 2.2.  

 

 

Figure 2.1:  Overall Framework of Blob Based Algorithms (Ahmad et al., 

2019) 

  

 

Figure 2.2:  Extracted Hair Whorl Feature (Nakatani et al., 2012) 
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2.3 Machine Learning based Algorithm 

Due to the advancement in computer vision and machine learning nowadays, 

various machine learning based person detection algorithms have gained 

popularity thanks to their high detection accuracy. For feature-based person 

detection, features like shape, colour, texture, direction, motion and so on are 

extracted from images. The images are usually split into samples for training 

and testing purposes. Then, machine learning classifiers, such as the 

AdaBoost, K-Nearest Neighbour (KNN), Support Vector Machine (SVM), 

and so on are used to classify those samples as person or non-person images 

(Ahmad et al., 2019).  

There are two popular machine learning based algorithms which 

include the Histogram of Oriented Gradients (HOG) as well as the Scale-

Invariant Feature Transform (SIFT). The overall framework of machine 

learning based algorithms is shown in Figure 2.3.  

 

 

Figure 2.3:  Overall Framework of Machine Learning Based Algorithms 

(Ahmad et al., 2019) 
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2.3.1 Histogram of Oriented Gradients (HOG) 

HOG works as a feature descriptor to extract features from an image. 

According to Dalal and Triggs (2005), the shape and appearance of an object 

in a picture can be defined by the intensity gradients distribution or edge 

directions. The HOG algorithm works by first dividing the image into small 

squared cells, and creating a histogram of gradient directions for the pixel 

within each cell. After that, the result is normalized using a block-wise 

pattern and a descriptor is returned for every cell. In other words, the HOG 

method counts the occurrence of gradient orientation in localized segments of 

an image. A machine learning classifier such as SVM can be used to stack the 

cells into a region of squared images to be used as an image window 

descriptor for object detection. The process of forming the HOG descriptor is 

shown in Figure 2.4. 

 Ahmed et al. (2017) proposed an efficient Rotated-Histogram of 

Oriented Gradients (RHOG) method for people detection based on top view 

images. In the RHOG algorithm, bounding boxes of variable sizes with 

different orientations are used. Hence, different geometric transformations 

are needed to orient the bounding box based on the person’s orientation in the 

image. This is done to improve the overall detection rate. According to 

Ahmed et al. (2017), the RHOG algorithm with a detection rate of 95% 

performed far better than the standard HOG algorithm which only obtain a 

detection rate of 59%.  

 

 

Figure 2.4:  Process of forming HOG descriptor (Olejniczak and Kraft, 2017) 
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2.3.2 Scale-Invariant Feature Transform (SIFT) 

According to Lowe (1999), SIFT algorithm is used to transform an image 

into local feature vectors for the extraction of image features. These feature 

vectors are invariant, which are unaffected by any rotation, translation or 

scaling of the image.  

 According to Lowe (2004), the SIFT algorithm can be divided into 

four steps which include detecting the feature point, localizing the feature 

point, assigning the orientation, as well as generating the feature descriptor. 

The first stage which is the feature point detection identifies the potential 

interest points which are invariant to scale and orientation. The next stage 

which is the keypoint localization locates the feature keypoints accurately 

according to the measures of their stability. Next, in the third stage which is 

the assignment of orientation, one or more orientations are assigned to each 

location of the keypoint according to the local image gradient directions. The 

last stage which is the keypoint descriptor describes the key points as a high 

dimensional vector which is called the SIFT key. For object detection, the 

SIFT key is used in a nearest-neighbour algorithm so that the objects within 

the image can be identified. 

 Ozturk et al. (2009) proposed an optical flow of SIFT algorithm to 

observe the orientation change in the body and head. Although the proposed 

algorithm works very well for one person detection, but when there are a lot 

of people in the scene at the same time, improvements are needed to obtain a 

better system performance. Overall, the proposed SIFT algorithm still gives 

quite promising results. 

 

2.4 Deep Learning based Algorithm 

Recently, Deep Learning based techniques that are often based on 

convolutional neural networks (CNN) can perform object detection without 

specifying the features. Unlike machine learning approach which requires the 

features to be defined through various methods before the image 

classification, deep learning approach can perform the entire detection 

process without the need to specify the features for image classification. 



10 

2.4.1 Convolutional Neural Network (CNN) 

CNN is a feed-forward artificial neural network that is commonly used to 

provide accurate performance in computer vision tasks (Krizhevsky et al., 

2012). CNN is often used to process 2D matrix of pixels such as images for 

image classification and object detection. In comparison to the traditional 

neural network, the CNN has deeper layers and its neurons are arranged in a 

volumetric way such as height, width, and depth. It is composed of three-

layer types which include a convolutional layer, a sub-sampling layer, as well 

a fully connected layer. The convolution layer and the sub-sampling layer are 

connected alternatively in the middle section of the network while the fully 

connected layer is the last layer of the CNNs. The CNN architecture is shown 

in Figure 2.5.  

 The convolution layers apply filters for the extraction of features 

from the input image. Meanwhile, the function of the sub-sampling layers is 

to downsample or reduce the spatial dimensions such as width and height. 

For the fully connected layer, the probability distributions over the number of 

output classes is computed by applying the softmax activation function 

(Galvez et al., 2018). 

 

 

Figure 2.5:  CNN Architecture (Gulli and Pal, 2017) 
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2.4.2 Region-based Convolutional Network (R-CNN) 

R-CNN which is also known as “Regions with CNN Features” was 

introduced by Girshick et al. in 2014. According to Girshick et al. (2014), 

Convolutional Neural Networks are overly slow and relatively expensive. 

Hence, R-CNN tackles these problems by adopting a technique which is 

known as Selective Search. The Selective Search approach replaces the 

Exhaustive search approach which looks for objects in thousands of windows 

although the image is small in size. The Selective Search method searches for 

the object through different size windows. For each size, the adjacent pixels 

are grouped by colour, texture or intensity for object identification. 

 According to Girshick et al. (2014), the R-CNN model contains 

three modules. The first module is ‘Region Proposal’ which generates and 

extracts category-independent region proposals. In other words, it defines the 

number of bounding-box candidate detections by using Selective Search. The 

second module is ‘Feature Extraction’ which extracts features from every 

candidate region through the use of a large CNN. The third module is 

‘Classification’ which classifies the extracted features by using linear SVM 

classifiers. The R-CNN model architecture is shown in Figure 2.6. 

 After the great success of R-CNN, the Fast Region-based 

Convolutional Network (Fast R-CNN) which is significantly faster in terms 

of training and making predictions was proposed by Girshick in 2015. In the 

following year, Ren et al. (2016) further improved the speed of training and 

detection as well as the detection accuracy by proposing the Faster R-CNN 

model.  

 

Figure 2.6:  R-CNN Architecture (Girshick et al., 2014) 
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2.4.3 You Only Look Once (YOLO) 

The YOLO model proposed by Redmon et al. (2016) can predict bounding 

box and class probability directly with a single neural network. Even though 

the YOLO model has more localization errors and lower prediction accuracy, 

but it can operate faster which is at 45 fps and up to 155 fps for a smaller 

network. 

 The workflow of the YOLO model is first dividing the input image 

into an S × S grid. Whenever an object’s centre is within a cell of the grid, 

then the cell will be responsible for the detection of the object. The bounding 

box and its confidence score are also predicted by the grid cell. The 

confidence score shows the degree whereby the object is certain to be inside 

the predicted bounding box. The grid cell also predicts the conditional class 

probabilities. Then, the bounding boxes with confidence scores are integrated 

with the class probability map to produce a final set of bounding boxes and 

class labels (Redmon et al., 2016). The general workflow of the YOLO 

model is shown in Figure 2.7. 

Over the years, the YOLO model was further improved with its 

versions named YOLOv2, YOLOv3 and YOLOv4, whereby the YOLOv4 

model is the updated YOLO model with improved performance in terms of 

detection speed and accuracy. The YOLOv3 and YOLOv4 models use 

Darknet53 for the extraction of features. This makes the models to be more 

accurate as compared to the YOLOv2 model which uses Darknet19 with only 

19 convolutional layers as the feature extractor.  

 

 

Figure 2.7:  General Workflow of YOLO model (Redmon et al., 2016) 
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2.4.4 Single Shot MultiBox Detector (SSD) 

Liu et al. (2016) proposed a single shot detection model which is known as 

Single Shot MultiBox Detector (SSD) and stated that it is faster and 

significantly more accurate than the previous YOLOv2 model. The 

comparison of the performance of several different detection models is 

shown in Table 2.1. Unlike YOLO, the SSD model does not have a constant 

aspect ratio for grid cells. Instead, it uses a distinct aspect ratio with multi 

boxes to achieve higher detection accuracy.  

 The SSD object detection works by first extracting the feature maps, 

and then applying convolution filters for object detection. First, an image 

with ground truth boxes for every object is inputted into the SSD. A small set 

of default boxes with different aspect ratios is evaluated in a convolutional 

fashion in some feature maps with different scales such as 8 × 8 and 4 × 4 

feature maps as shown in Figure 2.8 (b) and (c) respectively. Then, the 

confidence scores and the shape offsets for all categories of objects are 

predicted for each default box. The SSD framework is shown in Figure 2.8. 

 

Table 2.1:  Comparison between Different Detection Models (Liu et al., 

2016 ) 
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Figure 2.8:  Framework of SSD (Liu et al., 2016) 

 

2.5 Review of Real-Time Object Tracking Algorithm 

After the object detection, a tracking system is needed to track the object for 

counting purposes. The overall process of object tracking begins with taking 

an initial set of bounding box coordinates, then generating a unique ID for 

each of the bounding boxes, and lastly tracking the objects while maintaining 

their unique IDs. There are several popular object tracking algorithms that 

most researchers use which include the Centroid Tracking algorithm and the 

DeepSORT algorithm. 

 

2.5.1 Centroid Tracking Algorithm 

After detecting the person, the information of the classified bounding box is 

utilized for counting the total number of people within the image. For every 

classified bounding box detected, it will be assigned a count number or a 

unique ID. Then, the bounding box coordinates are determined and the 

centroids are calculated by using the diagonal points of the bounding box as 

shown in Figure 2.9. The equation for the calculation of the centroid is shown 

in equation (2.1) below: 

 

 𝑥𝐶 =
𝑥1 + 𝑥2
2
, 𝑦𝐶 =

𝑦1 + 𝑦2
2

 (2.1) 

where 

𝑥1, 𝑦1 and 𝑥2, 𝑦2 represent the diagonal points of the bounding box 

𝑥C and 𝑦C represent the centroid of the bounding box 
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Figure 2.9:  Locating Centroids for each Classified Bounding Box (Ahmad et 

al., 2019) 

 

 For object tracking, the centroids are calculated for every subsequent 

frame in the video stream. However, rather than assigning a new ID to the 

detected object, the Euclidean distances are computed between existing 

objects and the new bounding boxes detected. Then, the x and y coordinates 

for the existing objects are updated while the new object detected is assigned 

with a unique ID. The tracking process continues until the object leaves the 

field of view or disappears, the object will be deregistered from the system. 

 

2.5.2 DeepSORT Algorithm 

Wojke et al. (2017) stated that Simple Online and Real-Time Tracking with a 

Deep Association Metric (DeepSORT) is one of the most robust and fastest 

object tracking algorithms. It was developed based on the Simple Online and 

Real-time Tracking (SORT) approach which focuses on associating object 

detections on each frame (Bewley et al., 2016). The SORT approach makes 

use of the CNNs for more accurate object detection. It also implements two 

traditional methods in motion prediction and data association, namely the 

Hungarian algorithm and the Kalman filter as its tracking components.  

Bewley et al. (2016) stated that SORT is over twenty times faster 

than other state-of-the-art online tracking approaches. However, according to 

Wojke et al. (2017), the major drawback of SORT is that the tracked object 

identities might be switched frequently during the tracking process due to the 

occlusions. In order to solve this issue, DeepSORT integrates a deep 
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appearance-based metric derived from the convolutional network (CNN), 

rather than using only the motion-based metrics in data association. A large 

person re-identification dataset is used for training the CNN applied in 

DeepSORT to discriminate the pedestrians. This results in increasing the 

system robustness against occlusions, as well as reducing the number of 

identity switches by approximately 45% (Wojke et al., 2017). The 

architecture of the DeepSORT algorithm is shown in Figure 2.10. 

 

Figure 2.10: DeepSORT Architecture (Parico and Ahamed, 2021) 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this chapter, both the hardware and software required to design an 

overhead view based person counting system using deep learning are 

introduced.  

This project is divided into several parts as shown in Figure 3.1. 

Firstly, the dataset required to train the YOLOv4 and YOLOv4-tiny object 

detection models which include the images of people based on overhead view 

and the images of human faces were obtained from online sources. Then, all 

the dataset was annotated in YOLO format by using LabelImg. Next, the 

Darknet was installed to train both the YOLOv4 and YOLOv4-tiny models. 

After that, the OpenVINO Inference Engine was utilized to optimize the 

performance of the models. Tracking algorithms which include Centroid 

Tracking and DeepSORT tracking algorithms were implemented into the 

code to track and count the person detected by the detection model. Lastly, 

the performance of the prototype was evaluated based on the total inference 

time, fps as well as counting accuracy.  
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Figure 3.1: Workflow of the Project 

 

3.2 Overview of System Requirement 

In this project, the hardware required include a laptop and a USB stick. 

Meanwhile, the required software include Rufus, Ubuntu 18.04 LTS, 

OpenCV, TensorFlow 2.0, Darknet, and OpenVINO toolkit. 

 

3.2.1 Ubuntu 18.04 LTS 

The first step to start the project is by installing the Linux operating system 

on the laptop. The Ubuntu 18.04 LTS which is one of the popular Linux 

distributions is chosen. The latest version of Ubuntu 21.04 is not preferred to 

avoid software incompatibility issues.  

Since the laptop comes preinstalled with Windows 10 Home, the 

Ubuntu 18.04 LTS operating system is installed along with (dual booting) 

Windows 10. The steps to dual boot the Ubuntu 18.04 LTS along with 

Windows 10 is shown in Figure 3.2. Firstly, the disk partition for Ubuntu 
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installation is created in the Windows menu. Around 200 GB of free space is 

allocated to Ubuntu. Then, the ISO image file for Ubuntu 18.04 LTS is 

downloaded from the official Ubuntu website. After that, the USB is plugged 

in and a bootable Ubuntu USB is created by using the Rufus software. Once 

the live Ubuntu USB is ready, the next step is to boot from it and then the 

installation procedure of Ubuntu can be started. When the installation process 

is complete, the laptop is restarted and the laptop can finally be booted into 

either Ubuntu or Windows through the GRUB boot options. 

After installing the Ubuntu 18.04 LTS operating system, the 

necessary software and packages are ready to be installed on the machine.  

 

 

 

Figure 3.2: Dual Booting Ubuntu 18.04 LTS along with Windows 10 
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3.2.2 OpenCV 

OpenCV is a machine learning library which consists of functions for real-

time computer vision tasks like image processing, frame capturing and so on. 

The codes for installing OpenCV on Ubuntu 18.04 LTS are attached in 

Appendix A. The steps to install OpenCV on Ubuntu 18.04 LTS are as 

follows: 

 

1. First, the required OpenCV dependencies are installed. 

2. Then, the OpenCV is downloaded from its official source. 

3. After completing the download, a temporary build directory is created 

and the OpenCV build is set up with CMake. 

4. Next, the OpenCV is compiled using the make command. 

5. Finally, the OpenCV is installed. 

 

3.2.3 TensorFlow 

TensorFlow developed by Google is a free open-source platform which is 

important for machine learning. In this project, TensorFlow is used as the 

framework for the Deep SORT object tracking algorithm. The codes for 

installing TensorFlow in the virtual machine are attached in Appendix B. 

TensorFlow is installed in a Python virtual environment and the installation 

steps are as follows: 

 

1. First, a virtual environment is created. 

2. Once the virtual environment is activated, the ‘pip’ is upgraded to the 

latest version and the TensorFlow package which includes GPU 

support is installed. 
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3.2.4 Darknet 

Darknet is an open-source framework which is used for the implementation 

of neural networks such as the YOLO algorithm. In our project, Darknet is 

used to train the YOLOv4 and YOLOv4-tiny deep learning models.  

 The steps to install the Darknet are shown in Figure 3.3. Firstly, the 

Darknet git repository created by Alexey AB is cloned. Then, the 

dependencies of Darknet which include CUDA and cuDNN are installed. 

Next, the makefile is configured based on the Nvidia GPU architecture of my 

laptop. After that, the ‘make’ command is run and then an executable file 

named ‘darknet’ is created.  

 

 

Figure 3.3: Steps to Install Darknet 
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3.2.5 OpenVINO Toolkit 

The Open Visual Inference and Neural Network Optimization (OpenVINO) 

toolkit is a free and cross-platform software provided by Intel. The toolkit is 

simple to use and it helps to optimize the YOLOv4 and YOLOv4-tiny deep 

learning models for faster inference time on any Intel hardware such as Intel 

Neural Compute Stick 2 (NCS2), Intel CPU, Intel GPU, and so on.  

 The workflow of the OpenVINO toolkit is shown in Figure 3.4. 

Firstly, the trained YOLOv4 or YOLOv4-tiny deep learning model is fed into 

the Model Optimizer of the toolkit. The YOLO models will be optimized 

with techniques such as quantization, fusion, freezing and so on. Then, an 

Intermediate Representation (IR) of the model which includes the .xml 

and .bin files will be generated. The Intermediate Representation is then fed 

into the Inference Engine to check the compatibility of the model based on 

the framework and hardware used. In our project, the framework used is 

TensorFlow while the hardware used includes Intel CPU and Intel GPU, 

which are all supported by OpenVINO. Lastly, the model can be executed on 

the devices through C++ or Python scripts. 

 

Figure 3.4: Workflow of OpenVINO toolkit 
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3.3 Dataset Preparation 

In implementing an object detection model, a sufficient dataset is required 

before the training and testing of the model. It is important to have enough 

datasets with object annotations and labelling so that the neural network can 

learn the pattern of the detected object and classify them accordingly.  

 In this project, there are two use cases where the first use case (Use 

Case 1) is to detect, track and count the number of people entering the 

geofencing. Meanwhile, the second use case (Use Case 2) is simulating the 

scenario in a bus where the total number of people boarding and exiting the 

bus is recorded. For Use Case 1, only the images of people based on the 

overhead view are required to train the deep learning model. Meanwhile, for 

Use Case 2, the person images based on the overhead view and also the 

images of human faces are needed. This is because the detection of the 

human face is applied at the entrance of the bus while the detection of the 

person based on the overhead view is applied at the exit.  

The dataset is obtained from open sources such as Kaggle, and 

CVonline. For Use Case 1, the dataset consists of 1000 images of people 

based on the overhead view. Meanwhile, for Use Case 2, the dataset contains 

500 images of people based on the overhead view and 500 images of the 

human face. Since some of the object annotations in the dataset are missing 

or miss-aligned, the particular dataset is re-annotated by using labelImg. The 

labelling file is then stored in the desired YOLO format. The example of 

object annotation for overhead view person image is shown in Figure 3.5.  

The images from the dataset are split into a ratio of 8:2, whereby 80% of the 

images are utilized to train the model while 20% rest of the images are used 

to test the model. 

 

 

Figure 3.5:  Object Annotation for Overhead View Person Image 
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3.4 Deep Learning Model Framework 

3.4.1 Selection of Deep Learning Model 

There are several Deep Learning based object detection algorithms as 

discussed earlier in Chapter 2. In this project, the YOLOv4 model is used for 

person detection. According to Bochkovskiy et al. (2020), the accuracy and 

the fps of the YOLOv4 model improve by 10% and 12% respectively as 

compared to the previous YOLOv3 model. The comparison between different 

deep learning detection methods is shown in Figure 3.6. 

 However, Bochkovskiy et al. (2020) recommended that the 

YOLOv4 model shall be used on a conventional GPU with a minimum of 

8GB VRAM for the best performance. Since the YOLOv4 requires high 

processing power, the compressed version of YOLOv4, which is the 

YOLOv4-tiny model is introduced into this project. The YOLOv4-tiny model 

is usually used to obtain faster training and detection speed. This is because 

its network structure is much simpler and has lesser parameters than the 

YOLOv4 model. This allows the YOLOv4-tiny model to be more feasible for 

the development on mobile or embedded devices (Jiang et al., 2020). The 

comparison of the YOLOv4 and the YOLOv4-tiny model is shown in Table 

3.1 below. According to Jiang et al. (2020), the YOLOv4-tiny model obtains 

a lower mean average precision (mAP) than that of the YOLOv4 model. The 

lower the mAP, the less accurate the detection model is. However, the 

YOLOv4-tiny obtains relatively high fps, which is around 6.5 times greater 

as compared to the YOLOv4 model which has only 41 fps. Besides, the mAP 

of the YOLOv4-tiny model can be further improved by feeding in more 

datasets for transfer learning on the customised classes of objects. 

 

 

Figure 3.6: Comparison of YOLOv4 models and Other Object Detection 

Models 
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Table 3.1: Comparison of Different Detection Methods (Jiang et al., 2020) 

 

 

3.4.2 Training of Deep Learning Model 

In this project, the deep learning models selected which include the YOLOv4 

and YOLOv4-tiny models are trained using Darknet environment. Since there 

are two use cases in our project, both the YOLOv4 and YOLOv4-tiny models 

are trained on a single class, as well as on two classes for Use Case 1 and Use 

Case 2 respectively. Thus, a total of four YOLO models will be trained.  

The steps to train an object detection model using Darknet are 

shown in Figure 3.7. Firstly, the custom dataset prepared in the previous 

section is moved to the Darknet directory. Then, configuration is done on the 

config files, .data file and .names file with respect to each use case. Next, 

instead of training a deep learning model from scratch, the pre-trained 

YOLOv4 and YOLOv4-tiny weights are downloaded for transfer learning. 

After getting everything prepared, the training of the YOLO models can be 

started. 
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Figure 3.7: Steps to Train a Custom Detection Model using Darknet 

 

3.5 Implementation of Tracking Algorithm 

After training the custom detection model, a tracking system is then required 

to track the person for counting purposes. As discussed in the previous 

chapter, there are two tracking algorithms that will be implemented in this 

project which include the Centroid Tracking and the DeepSORT algorithm. 

The performance of each algorithm will be evaluated afterwards.  

 

3.5.1 Centroid Tracking Algorithm 

For the Centroid Tracking algorithm, the information of the classified 

bounding box is used to track the person who enters the geofencing. For 

every classified bounding box detected, it will be assigned a count number or 

a unique ID. Then, the bounding box coordinates are determined and the 

centroids are calculated by using the diagonal points of the bounding box. In 

the subsequent frame, if the centroid distance between the old object and the 

new object exceeds the maximum distance set, a new unique ID is assigned 

to the new object, and the old object will be deregistered. Whenever a new 

object ID is registered, the total number of people present in the scene is 

increased by 1. Figure 3.8 shows the flowchart of the Centroid Tracking 

algorithm. 
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Figure 3.8: Flowchart of Centroid Tracking Algorithm 

 

3.5.2 DeepSORT Tracking Algorithm 

For the DeepSORT tracking algorithm, a deep appearance-based metric 

derived from CNN is applied, rather than using only the motion-based 

metrics as in the SORT algorithm. The overall architecture of the DeepSORT 

tracking algorithm is shown in Figure 3.9. The architecture consists of three 

main modules which include the Kalman Filter (KF) based estimation, data 

association, as well as track management. After the object is detected by the 

YOLO models, the Kalman Filter predicts the object locations in the current 

frame. The predicted object locations by KF, together with the object 
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detections by the YOLO models, are the inputs of the data association 

module. To enhance the data association, a CNN is used by DeepSORT to 

compute the appearance features which allows the re-identification of tracks 

even after a long period of occlusion (Pereira et al., 2022). Finally, the array 

of tracks which contains the bounding boxes and track IDs will be the output 

of this DeepSORT tracking algorithm. Whenever there is a new track ID, the 

total number of people in the scene is increased by 1. 

 

 

Figure 3.9: Overall Architecture of DeepSORT Tracking Algorithm 
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3.6 Evaluation of Performance 

After getting the tracking algorithms ready, the performance of each 

prototype will be evaluated. The evaluation of performance is done based on 

the total inference time, fps, mAP for object detection as well as the detection 

accuracy. 

 Since there are two use cases in our project, the performance of each 

prototype will be evaluated separately for each use case. For example, the 

performance of the YOLOv4 model integrated with the DeepSORT algorithm 

will be evaluated separately for Use Case 1 and 2. After the performance 

evaluation, the results are recorded and discussed in the following Chapter 4.  

 

3.6.1 OpenVINO Deep Learning (DL) Workbench 

Deep Learning (DL) Workbench is a web-based graphical environment 

which allows us to visualize, fine-tune and analyse the performance of deep 

learning models on Intel CPU, Intel GPU, Intel Neural Compute Stick 2 

(NCS2), and so on.  

 In this project, the OpenVINO DL Workbench of version 

2021.4.582 is used to evaluate the IR models’ performance. The conversion 

of YOLO to IR models through the OpenVINO toolkit is discussed earlier in 

Section 3.2.5.  The result of the DL Workbench is recorded and discussed in 

Chapter 4. Figure 3.10 shows the User Interface of the OpenVINO DL 

Workbench. 

 

Figure 3.10: User Interface of the OpenVINO DL Workbench 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, the performance of this prototype which consists of the object 

detection models and the tracking algorithm was evaluated based on mean 

average precision (mAP) for object detection, frames per second (fps), and 

the detection accuracy. Besides, the performance of the prototype was 

evaluated based on two use cases. The Use Case 1 is detecting, tracking, and 

counting the number of people entering the geofencing. Figure 4.1 shows an 

example result for use case 1. Meanwhile, the Use Case 2 is simulating the 

scenario in a bus where the number of people boarding and exiting the bus is 

tracked and counted. Figure 4.2 shows an example result for use case 2. The 

formula to calculate fps and mAP are shown in equations (4.1) and (4.2) 

respectively. 

 

  (4.1) 

 

  (4.2) 

 

where 

fps = frames per second 

mAP = mean average precision, % 

APi = average precision of class i 

N = number of classes 

𝑓𝑝𝑠 =
𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑎𝑚𝑒

𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒
 

𝑚𝐴𝑃 =
1

𝑁
 𝐴𝑃𝑖
𝑁

𝑖=1
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Figure 4.1: Example Result for Use Case 1 

  

 

Figure 4.2: Example Result for Use Case 2 

 

The evaluation of the performance consists of three sections as follows: 

1. Performance of the Detection Model 

2. Performance of the Tracking Algorithm 

• Performance based on Total Inference Time 

• Performance based on fps 

• Performance based on Counting Accuracy 

3. Results of OpenVINO DL Workbench 
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4.2 Performance of the Detection Model 

In this project, the pre-trained YOLOv4, and YOLOv4-tiny models by 

Alexey Bochkovskiy were downloaded and further trained for 6000 iterations 

on the class of object named “person”. For the second use case, both the pre-

trained detection models were also further trained for 6000 iterations as well, 

but on two classes namely “person” and “human face”. After training for 

6000 iterations, both the trained YOLOv4 and YOLOv4-tiny weight files 

with the best mAP recorded were chosen as our detection models.  

 Table 4.1 shows the performance of the YOLOv4 and YOLOv4-tiny 

models in terms of mAP as well as total detection time for use case 1. Based 

on Table 4.1, the mAP of the YOLOv4 model is 86.48 % which is 1.56 % 

higher than that of the YOLOv4-tiny model. However, the total detection 

time for the YOLOv4 model takes 13 seconds longer than the YOLOv4-tiny 

model. Table 4.2 tabulates the performance of both the detection models for 

use case 2. Similarly, for use case 2, the mAP of the YOLOv4 model is 

greater than that of the YOLOv4-tiny model, but the total detection time of 

the YOLOv4 model is around 4 times longer as compared to the YOLOv4-

tiny model. Figure 4.3 compares the mAP of YOLOv4 and YOLOv4-tiny 

models under both use cases. Based on Figure 4.3, the mAP achieved by both 

YOLOv4 and YOLOv4-tiny model for use case 1 is greater than the use case 

2. This is because for use case 1, all the dataset are used to train on the same 

single class, but for use case 2, the dataset is divided to train on 2 new classes 

which include person from overhead view and human faces. 

 

Table 4.1: Performance of the Detection Models for Use Case 1 

 

 

Table 4.2: Performance of the Detection Models for Use Case 2 
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Figure 4.3: mAP of YOLO models for Both Cases 

 

4.3 Performance of the Tracking Algorithm 

In this section, both the trained YOLOv4 and YOLOv4-tiny models were 

integrated with one of the tracking algorithms which include the Centroid 

Tracking (CT) and DeepSORT (DS) tracking algorithms. The performance of 

the YOLO models with different tracking algorithms was evaluated based on 

the total inference time, fps, and the counting accuracy which is computed in 

terms of the number of miscounts. Other than that, the performance of these 

solutions was also evaluated based on the processing unit used. The 

processing units include the laptop’s CPU (i5-6300 HQ) and GPU (Intel HD 

Graphics 530). 

 

4.3.1 Performance based on Total Inference Time 

Figures 4.4 and 4.5 show the total inference time of each YOLO model when 

integrated with different tracking algorithms for Use Case 1 and 2, 

respectively. Based on Figures 4.4 and 4.5, for both use cases, the total 

inference time for YOLOv4-tiny models is a lot shorter than that of the 

YOLOv4 models, regardless of the tracking algorithms used.  

Besides, the effect of different processing units is significant as well. 

For YOLOv4 models, the total inference time of GPU (Intel HD Graphics 

530) is around 3 times shorter than CPU (i5-6300HQ). Meanwhile, for 

YOLOv4-tiny models, the total inference time of GPU is about 2 times lower 
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than that of CPU. Based on Figure 4.5, for both YOLOv4 and YOLOv4-tiny 

models, the total inference time recorded when integrated with Centroid 

Tracking is slightly shorter as compared to integrating the DeepSORT 

tracking algorithm.  

 

 

Figure 4.4: Total Inference Time of YOLO models with different Tracking 

Algorithms (Use Case 1) 

 

 

Figure 4.5: Total Inference Time of YOLO models with different Tracking 

Algorithms (Use Case 2) 
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4.3.2 Performance based on fps 

Frames per second (fps) measures how fast the YOLO models can detect the 

person and generate the desired output. Figures 4.6 and 4.7 illustrate the fps 

achieved by the YOLO models with different tracking algorithms for Use 

Case 1 and 2 respectively. For both use cases, the highest fps is recorded by 

the YOLOv4-tiny detection model integrated with the Centroid Tracking 

algorithm. For use case 1, it can achieve 21.03 fps when running with GPU 

and 10.08 fps when running with CPU. Meanwhile, for use case 2, the 

highest fps recorded when running with GPU is 22.24 fps and 10.86 fps with 

CPU. For both use cases, the fps achieved by the YOLOv4 model is 

significantly smaller as compared to that of the YOLOv4-tiny models. In 

terms of the processing unit, for YOLOv4 models, the fps achieved when 

running with GPU is around 3 times faster than CPU. Meanwhile, for 

YOLOv4-tiny models, the fps obtained when running with GPU is about 2 

times faster than that of CPU. 

 

 

Figure 4.6: Fps Achieved by YOLO models with different Tracking 

Algorithms (Use Case 1) 
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Figure 4.7: Fps Achieved by YOLO models with different Tracking 

Algorithms (Use Case 2) 

 

4.3.3 Performance based on Counting Accuracy 

Tables 4.3 and 4.4 tabulate the total number of miscounts generated by the 

prototype and the accuracy for use case 1 and 2 respectively. The number of 

miscounts recorded may be in positive or negative value. The ground truth 

values for use case 1 and use case 2 are 9 people and 11 people respectively. 

If the number of miscounts is positive, this means that there is an extra 

number of people recorded as compared to the ground truth value. Otherwise, 

if the number of miscounts recorded is negative, the value shows that there 

are how many people that are not being detected by the prototype. The lesser 

the total number of miscounts recorded, the more accurate the prototype is. 

The accuracy is calculated by using equation (4.3). 

 

  (4.3) 

 

Based on Table 4.3, the YOLOv4-tiny integrated with the Centroid 

Tracking algorithm has the highest number of miscounts which is a total of 3 

miscounts. According to Section 4.3.2, although the YOLOv4-tiny model 
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counting accuracy is relatively low as compared to other solutions. On the 

other hand, although the YOLOv4-tiny integrated with the DeepSORT 

tracking algorithm achieves only the second highest fps, but it manages to 

record a smaller total number of miscounts with the accuracy of 88.9% and 

90.9% for use case 1 and use case 2 respectively.  

 

Table 4.3: Total Number of Miscounts and Accuracy for Use Case 1 

 

 

Table 4.4: Total Number of Miscounts and Accuracy for Use Case 2 
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4.4 Results of OpenVINO DL Workbench 

Deep Learning (DL) Workbench is a web-based graphical environment 

which allows us to visualize, fine-tune and analyse the performance of deep 

learning models on Intel Neural Compute Stick 2 (NCS2), Intel CPU, Intel 

GPU, and so on. After the installation of DL Workbench on the local system, 

the OpenVINO Intermediate Representation (IR) model is imported, and the 

validation dataset is uploaded for analysis. After modifying all the 

configuration settings, the result of the model analysis on DL Workbench in 

terms of fps is shown in Figure 4.8.  

 

 

Figure 4.8: Result of Model Analysis on DL Workbench 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this project, a person tracking and counting system based on overhead 

view was developed. Transfer learning of the YOLO model was done by 

using a custom dataset which includes the images of person based on the 

overhead view and the images of the human face. This prototype consists of a 

deep learning detection model integrated with one of the tracking algorithms. 

The YOLOv4-tiny detection model is selected due to its lightweight property 

and its ability to achieve high fps without the need for high processing power. 

Even though the Centroid Tracking algorithm achieves around 38.4% to 40.4% 

higher fps as compared to that of the DeepSORT tracking algorithm, its 

counting accuracy is around 22.2% lower than the DeepSORT tracking 

algorithm. Hence, the overall performance of the YOLOv4-tiny model 

integrated with the DeepSORT algorithm is better as compared to the others. 

 

5.2 Recommendations for future work 

The bounding boxes generated by the YOLOv4-tiny detection model were 

slightly larger than the normal and accurate bounding boxes. Hence, further 

training of the YOLOv4-tiny detection model is recommended to increase the 

detection accuracy.  

 Other than that, a front-end development can be done to improve the 

user experience. For example, a web-based user interface or dashboard can be 

created for this prototype. 
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APPENDICES 

 

Appendix A: Code for Installing OpenCV 

 

$ sudo apt-get install build-essential cmake unzip pkg-config 

$ sudo apt-get install libjpeg-dev libpng-dev libtiff-dev  

$ sudo apt-get install libjasper-dev 

$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev 

$ sudo apt-get install libv4l-dev libxvidcore-dev libx264-dev 

$ sudo apt-get install libgtk-3-dev 

$ sudo apt-get install libatlas-base-dev gfortran 

$ sudo apt-get install python3-dev 

$ sudo apt-get install openexr libtbb2 libtbb-dev libdc1394-22-dev 

$ mkdir ~/opencv_build && cd ~/opencv_build 

$ git clone https://github.com/opencv/opencv.git 

$ git clone https://github.com/opencv/opencv_contrib.git 

$ cd ~/opencv_build/opencv 

$ mkdir build && cd build 

$ cmake -D CMAKE_BUILD_TYPE=RELEASE \ 

    -D CMAKE_INSTALL_PREFIX=/usr/local \ 

    -D INSTALL_C_EXAMPLES=ON \ 

    -D INSTALL_PYTHON_EXAMPLES=ON \ 

    -D OPENCV_GENERATE_PKGCONFIG=ON \ 

    -D 

OPENCV_EXTRA_MODULES_PATH=~/opencv_build/opencv_contrib/mo

dules \ 

    -D BUILD_EXAMPLES=ON .. 

$ make -j8 

$ sudo make install 
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Appendix B: Codes for Installing TensorFlow 

 

$ sudo apt install python3-venv 

$ mkdir my_tensorflow 

$ cd my_tensorflow 

$ python3 -m venv venv 

$ source venv/bin/activate 

$ pip install --upgrade pip 

$ pip install --upgrade tensorflow-gpu 

 

 

 

 




