

OVERHEAD VIEW BASED PERSON

COUNTING USING DEEP LEARNING

KAW CHEE ZHAO

UNIVERSITI TUNKU ABDUL RAHMAN

OVERHEAD VIEW BASED PERSON COUNTING USING DEEP

LEARNING

KAW CHEE ZHAO

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2022

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Kaw Chee Zhao

ID No. : 1704522

Date : 15 / 5 / 2022

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “OVERHEAD VIEW BASED

PERSON COUNTING USING DEEP LEARNING” was prepared by

KAW CHEE ZHAO has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering at Universiti Tunku Abdul

Rahman.

Approved by,

Signature :

Supervisor : Ir Ts Dr. Tham Mau Luen

Date : 15 / 5 / 2022

iii

The copyright of this report belongs to the author under the terms of

the Copyright Act 1987 as qualified by the Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be

made of the use of any material contained in, or derived from, this report.

© 2022, Kaw Chee Zhao. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Dr Tham Mau Luen for his invaluable advice, guidance and his enormous

patience throughout the development of the research.

v

ABSTRACT

Detecting people in an image or a video has become more prevalent due to

the rapid advancement of technologies in the field of artificial intelligence. In

conventional video surveillance systems, most of the person detection

methods are based on frontal view, which may have lower accuracy

stemming from the occlusion problem. This project proposes an overhead

view based person counting system by enabling wider scene coverage and

visibility. The entire project methodology can be divided into several phases.

First, the YOLOv4 and YOLOv4-tiny object detection models are trained

with the dataset of overhead camera perspective. Second, the OpenVINO

Inference Engine is utilized to optimize the trained models in order to

facilitate real-time implementation. Third, the accurate tracking of each

detected person is performed using the deep learning based tracking

framework, known as DeepSORT. Lastly, the performance of the proposed

system is benchmarked based on the detection accuracy, frames per second

(FPS) and counting accuracy. Based on the results obtained, the YOLOv4-

tiny model is chosen as it can achieve high fps without the need of high

processing power. Besides, the Centroid Tracking algorithm achieves around

38.4% to 40.4% higher fps as compared to that of the DeepSORT tracking

algorithm. However, the counting accuracy of Centroid Tracking algorithm is

about 22.2% lower than the DeepSORT tracking algorithm. Hence, the

overall performance of the YOLOv4-tiny model integrated with DeepSORT

algorithm outperforms the other tracking algorithms.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of Study 3

1.6 Contribution of Study 4

1.7 Outline of the Report 4

2 LITERATURE REVIEW 5

2.1 Introduction to Person Counting System 5

2.2 Blob based Algorithm 5

2.3 Machine Learning based Algorithm 7

2.3.1 Histogram of Oriented Gradients (HOG) 8

2.3.2 Scale-Invariant Feature Transform (SIFT) 9

2.4 Deep Learning based Algorithm 9

2.4.1 Convolutional Neural Network (CNN) 10

2.4.2 Region-based Convolutional Network (R-

CNN) 11

vii

2.4.3 You Only Look Once (YOLO) 12

2.4.4 Single Shot MultiBox Detector (SSD) 13

2.5 Review of Real-Time Object Tracking

Algorithm 14

2.5.1 Centroid Tracking Algorithm 14

2.5.2 DeepSORT Algorithm 15

3 METHODOLOGY AND WORK PLAN 17

3.1 Introduction 17

3.2 Overview of Equipment Required 18

3.2.1 Ubuntu 18.04 LTS 18

3.2.2 OpenCV 20

3.2.3 TensorFlow 20

3.2.4 Darknet 21

3.2.5 OpenVINO Toolkit 22

3.3 Dataset Preparation 23

3.4 Deep Learning Model Framework 24

3.4.1 Selection of Deep Learning Model 24

3.4.2 Training of Deep Learning Model 25

3.5 Implementation of Tracking Algorithm 26

3.5.1 Centroid Tracking Algorithm 26

3.5.2 DeepSORT Tracking Algorithm 27

3.6 Evaluation of Performance 29

3.6.1 OpenVINO Deep Learning (DL)

Workbench 29

4 RESULTS AND DISCUSSION 30

4.1 Introduction 30

4.2 Performance of the Detection Model 32

4.3 Performance of the Tracking Algorithm 33

4.3.1 Performance based on Total Inference

Time 33

4.3.2 Performance based on fps 35

4.3.3 Performance based on Counting Accuracy 36

4.4 Results of OpenVINO DL Workbench 38

5 CONCLUSIONS AND RECOMMENDATIONS 39

viii

5.1 Conclusions 39

5.2 Recommendations for future work 39

REFERENCES 40

APPENDICES 43

ix

LIST OF TABLES

Table 2.1: Comparison between Different Detection Models (Liu

et al., 2016) 13

Table 3.1: Comparison of Different Detection Methods (Jiang et al.,

2020) 25

Table 4.1: Performance of the Detection Models for Use Case 1 32

Table 4.2: Performance of the Detection Models for Use Case 2 32

Table 4.3: Total Number of Miscounts and Accuracy for Use Case

1 37

Table 4.4: Total Number of Miscounts and Accuracy for Use Case

2 37

x

LIST OF FIGURES

Figure 1.1: AI vs. Machine Learning vs. Deep Learning

(Miraftabzadeh et al., 2019) 1

Figure 2.1: Overall Framework of Blob Based Algorithms (Ahmad

et al., 2019) 6

Figure 2.2: Extracted Hair Whorl Feature (Nakatani et al., 2012) 6

Figure 2.3: Overall Framework of Machine Learning Based

Algorithms (Ahmad et al., 2019) 7

Figure 2.4: Process of forming HOG descriptor (Olejniczak and

Kraft, 2017) 8

Figure 2.5: CNN Architecture (Gulli and Pal, 2017) 10

Figure 2.6: R-CNN Architecture (Girshick et al., 2014) 11

Figure 2.7: General Workflow of YOLO model (Redmon et al.,

2016) 12

Figure 2.8: Framework of SSD (Liu et al., 2016) 14

Figure 2.9: Locating Centroids for each Classified Bounding Box

(Ahmad et al., 2019) 15

Figure 2.10: DeepSORT Architecture (Parico and Ahamed, 2021) 16

Figure 3.1: Workflow of the Project 18

Figure 3.2: Dual Booting Ubuntu 18.04 LTS along with Windows

10 19

Figure 3.3: Steps to Install Darknet 21

Figure 3.4: Workflow of OpenVINO toolkit 22

Figure 3.5: Object Annotation for Overhead View Person Image 23

Figure 3.6: Comparison of YOLOv4 models and Other Object

Detection Models 24

Figure 3.7: Steps to Train a Custom Detection Model using Darknet 26

Figure 3.8: Flowchart of Centroid Tracking Algorithm 27

Figure 3.9: Overall Architecture of DeepSORT Tracking Algorithm 28

xi

Figure 3.10: User Interface of the OpenVINO DL Workbench 29

Figure 4.1: Example Result for Use Case 1 31

Figure 4.2: Example Result for Use Case 2 31

Figure 4.3: mAP of YOLO models for Both Cases 33

Figure 4.4: Total Inference Time of YOLO models with different

Tracking Algorithms (Use Case 1) 34

Figure 4.5: Total Inference Time of YOLO models with different

Tracking Algorithms (Use Case 2) 34

Figure 4.6: Fps Achieved by YOLO models with different Tracking

Algorithms (Use Case 1) 35

Figure 4.7: Fps Achieved by YOLO models with different Tracking

Algorithms (Use Case 2) 36

Figure 4.8: Result of Model Analysis on DL Workbench 38

xii

LIST OF SYMBOLS / ABBREVIATIONS

AI artificial intelligence

CNN convolutional neural network

CT Centroid Tracking

DS DeepSORT

FPS frame per second

HOG Histogram of Oriented Gradients

KNN K-Nearest Neighbour

LOI line-of-interest

mAP Mean Average Precision

R-CNN Region-based Convolutional Neural Network

RHOG Rotated-Histogram of Oriented Gradients

ROI region-of-interest

SIFT Scale-Invariant Feature Transform

SORT Simple Online and Real-time Tracking

SSD Single Shot MultiBox Detector

SVM Support Vector Machine

YOLO You Only Look Once

xiii

LIST OF APPENDICES

Appendix A: Code for Installing OpenCV 43

Appendix B: Codes for Installing TensorFlow 44

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In this era of digitalization, a neural network with deep learning has become

more essential as it makes things easier. Most companies rely on deep

learning algorithms to meet their consumer expectations. Deep learning is a

type of machine learning and also a subset of artificial intelligence (AI).

Machine learning enables computers to perform tasks without explicit

programming whereas deep learning focuses on allowing computers to think

using structure modelled on the human brain and perform complex tasks. The

comparison between AI, machine learning as well as deep learning is shown

in Figure 1.1.

 Today, there are a variety of object detection frameworks, two of

which are machine learning as well as deep learning. Object detection

consists of two computer vision tasks which include classifying the image

and localizing the object in the image. For image classification, prediction of

the class of an object within an image is done. Meanwhile, for object

localization, the objects within an image are located and their locations are

indicated with bounding boxes. As such, object detection combines both the

tasks which localize the objects with bounding boxes and then classify them

into a list of categories. In a person counting system, tracking people is also a

form of object detection, in which the target objects are people.

Figure 1.1: AI vs. Machine Learning vs. Deep Learning (Miraftabzadeh et al.,

2019)

2

 In recent years, automatically detecting people in images has gained

importance in deep learning because of the wide variety of its applications,

for example, prevention of criminal activities, behaviour analysis, as well as

person counting and tracking. Different researchers have put in lots of effort

so that person detection can be done with much higher accuracy. In

conventional or frontal view based person detection, occlusion problems may

occur when the tracked person is hidden by another person during the real-

time people tracking. Hence, an overhead view based person detection is

often preferred as it provides better scene coverage and visibility (Ahmad et

al., 2019). The overhead view gives an elevated view of objects from above

which allows people detection with a completely different perspective as

compared to the frontal view based technique.

1.2 Importance of Study

Deep learning is a subfield of AI which imitates how the human brain works

in processing data and decision making. Today, there are a lot of applications

that are involved in deep learning such as computer vision, voice recognition,

automated driving and medical research. With deep learning, complex tasks

like object classification, and data prediction can be done by computers

effortlessly.

The deep learning algorithm is often used for detecting and tracking

objects due to its excellent detection results. In video surveillance system,

person detection and tracking system using the deep learning algorithm has a

wide variety of applications such as gait recognition, crime prevention,

behaviour analysis of people and so on. These applications bring great

benefits to society. For example, burglars or thieves can be tracked down

more easily. Besides, the person counting system can also be used to ensure

social distancing practices during the Covid-19 pandemic.

1.3 Problem Statement

Currently, there are a lot of libraries like Caffe and TensorFlow which

support object detection. The detection methods based on deep learning such

as Single Shot MultiBox Detector (SSD), You Only Look Once (YOLO), as

well as Faster Region-based Convolutional Neural Network (Faster R-CNN)

3

can achieve high accuracy and high efficiency. However, their ability to track

the object detected is still far from that of human beings mainly because of

occlusion which occurs when the tracked object is hidden or overlapped by

another object. During real-time object tracking, the objects could be lost due

to miss calculations if occlusion occurs. Another problem that shows up due

to the occlusion problem is that the identities of the tracked object might be

switched frequently during the tracking process. These problems will greatly

deteriorate the performance of the object tracking model.

Thus, this project aims to find a more efficient real-time detection

and tracking solution by using the overhead view based person detection,

instead of the conventional frontal view based person detection to solve the

problems arised due to occlusion.

1.4 Aim and Objectives

This project aims to use the deep learning method to detect, track and count

the person based on the overhead view in a certain area in real-time. The

objectives of this study include:

• To detect people from the overhead view

• To track the detected person and count

• To evaluate the performance of different tracking algorithms

1.5 Scope and Limitation of Study

The scope of this study includes designing a people tracking algorithm based

on the overhead view using the deep learning detection method and then

integrating it with a counting system.

 The limitation of the study includes the efficiency of the prototype

which depends on the processing power. The processing power of laptop may

be insufficient to handle some unusual situations. For example, when there

are many people appearing at the same time, the achievable frames per

second (fps) may drop. Other than that, there are difficulties in using the

model analysis namely OpenVINO Deep Learning Workbench, as it is a

toolkit that was released in 2018. The source of information and support

about the DL Workbench may be limited and hence, more efforts need to be

put in to solve the problem.

4

1.6 Contribution of Study

This project contributes to the field of person counting based on overhead

view. The deep neural networks and tracking algorithms were investigated in

this project. The performance of the prototype was evaluated based on

various criteria such as the total inference time, fps, and counting accuracy.

This prototype is expected to be deployed in practical in the future.

1.7 Outline of the Report

This report consists of the following chapters:

• Introduction

• Literature Review

• Methodology

• Results and Discussion

• Conclusion and Recommendations

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction to Person Counting System

In video surveillance, there are two different perspectives for person

detection which are frontal and overhead. Although overhead view based

person detection can prevent occlusion and provide better scene coverage, it

is a challenging task due to the following factors: different person body

appearance, variation in poses, complex background, and uncontrolled

lighting conditions (Ahmad et al., 2019). Over the last few years, a variety of

top view based person detection algorithms have been developed by many

researchers and these techniques can be classified into several groups which

include the blob based algorithm, the machine learning based algorithm, as

well as the deep learning based techniques.

 A real-time object tracking algorithm is also needed for tracking and

counting the detected person. There are several popular object tracking

algorithms that most researchers use which include the Centroid Tracking

algorithm and the Deep SORT algorithm. For the counting system, Zhao et al.

(2016) stated that two existing counting systems are mostly used in two

scenarios, namely counting based region-of-interest (ROI) and crossing based

line-of-interest (LOI).

2.2 Blob based Algorithm

In images, a blob can be generalized as a bunch of pixel values that create a

sort of colony or a huge object which is distinct from its background. These

blobs can then be identified through image processing. Ahmad et al. (2019)

stated that in blob based person detection algorithm, the background

subtraction method is used to obtain a foreground image. However, several

pre-processing techniques are performed before the background subtraction

so that the noise, illumination and shadow can be removed. Then, the blob is

extracted from the foreground image to be classified as one single person or

another object according to its shape, motion, colour, and other feature. The

overall framework of blob based algorithms is shown in Figure 2.1.

6

There are some basic blob features for person detection which

include the blob shape, hair colour, texture and body size. Nakatani et al.

(2012) stated that hair colour and hairstyle are usually different between

persons. Thus, when extracting the blob feature, the total brightness of each

pixel in the head area is taken into consideration. Other than that, the location

of hair whorl is also one of the significant features for the identification of a

person’s head. An example of the extracted hair whorl feature is shown in

Figure 2.2.

Figure 2.1: Overall Framework of Blob Based Algorithms (Ahmad et al.,

2019)

Figure 2.2: Extracted Hair Whorl Feature (Nakatani et al., 2012)

7

2.3 Machine Learning based Algorithm

Due to the advancement in computer vision and machine learning nowadays,

various machine learning based person detection algorithms have gained

popularity thanks to their high detection accuracy. For feature-based person

detection, features like shape, colour, texture, direction, motion and so on are

extracted from images. The images are usually split into samples for training

and testing purposes. Then, machine learning classifiers, such as the

AdaBoost, K-Nearest Neighbour (KNN), Support Vector Machine (SVM),

and so on are used to classify those samples as person or non-person images

(Ahmad et al., 2019).

There are two popular machine learning based algorithms which

include the Histogram of Oriented Gradients (HOG) as well as the Scale-

Invariant Feature Transform (SIFT). The overall framework of machine

learning based algorithms is shown in Figure 2.3.

Figure 2.3: Overall Framework of Machine Learning Based Algorithms

(Ahmad et al., 2019)

8

2.3.1 Histogram of Oriented Gradients (HOG)

HOG works as a feature descriptor to extract features from an image.

According to Dalal and Triggs (2005), the shape and appearance of an object

in a picture can be defined by the intensity gradients distribution or edge

directions. The HOG algorithm works by first dividing the image into small

squared cells, and creating a histogram of gradient directions for the pixel

within each cell. After that, the result is normalized using a block-wise

pattern and a descriptor is returned for every cell. In other words, the HOG

method counts the occurrence of gradient orientation in localized segments of

an image. A machine learning classifier such as SVM can be used to stack the

cells into a region of squared images to be used as an image window

descriptor for object detection. The process of forming the HOG descriptor is

shown in Figure 2.4.

 Ahmed et al. (2017) proposed an efficient Rotated-Histogram of

Oriented Gradients (RHOG) method for people detection based on top view

images. In the RHOG algorithm, bounding boxes of variable sizes with

different orientations are used. Hence, different geometric transformations

are needed to orient the bounding box based on the person’s orientation in the

image. This is done to improve the overall detection rate. According to

Ahmed et al. (2017), the RHOG algorithm with a detection rate of 95%

performed far better than the standard HOG algorithm which only obtain a

detection rate of 59%.

Figure 2.4: Process of forming HOG descriptor (Olejniczak and Kraft, 2017)

9

2.3.2 Scale-Invariant Feature Transform (SIFT)

According to Lowe (1999), SIFT algorithm is used to transform an image

into local feature vectors for the extraction of image features. These feature

vectors are invariant, which are unaffected by any rotation, translation or

scaling of the image.

 According to Lowe (2004), the SIFT algorithm can be divided into

four steps which include detecting the feature point, localizing the feature

point, assigning the orientation, as well as generating the feature descriptor.

The first stage which is the feature point detection identifies the potential

interest points which are invariant to scale and orientation. The next stage

which is the keypoint localization locates the feature keypoints accurately

according to the measures of their stability. Next, in the third stage which is

the assignment of orientation, one or more orientations are assigned to each

location of the keypoint according to the local image gradient directions. The

last stage which is the keypoint descriptor describes the key points as a high

dimensional vector which is called the SIFT key. For object detection, the

SIFT key is used in a nearest-neighbour algorithm so that the objects within

the image can be identified.

 Ozturk et al. (2009) proposed an optical flow of SIFT algorithm to

observe the orientation change in the body and head. Although the proposed

algorithm works very well for one person detection, but when there are a lot

of people in the scene at the same time, improvements are needed to obtain a

better system performance. Overall, the proposed SIFT algorithm still gives

quite promising results.

2.4 Deep Learning based Algorithm

Recently, Deep Learning based techniques that are often based on

convolutional neural networks (CNN) can perform object detection without

specifying the features. Unlike machine learning approach which requires the

features to be defined through various methods before the image

classification, deep learning approach can perform the entire detection

process without the need to specify the features for image classification.

10

2.4.1 Convolutional Neural Network (CNN)

CNN is a feed-forward artificial neural network that is commonly used to

provide accurate performance in computer vision tasks (Krizhevsky et al.,

2012). CNN is often used to process 2D matrix of pixels such as images for

image classification and object detection. In comparison to the traditional

neural network, the CNN has deeper layers and its neurons are arranged in a

volumetric way such as height, width, and depth. It is composed of three-

layer types which include a convolutional layer, a sub-sampling layer, as well

a fully connected layer. The convolution layer and the sub-sampling layer are

connected alternatively in the middle section of the network while the fully

connected layer is the last layer of the CNNs. The CNN architecture is shown

in Figure 2.5.

 The convolution layers apply filters for the extraction of features

from the input image. Meanwhile, the function of the sub-sampling layers is

to downsample or reduce the spatial dimensions such as width and height.

For the fully connected layer, the probability distributions over the number of

output classes is computed by applying the softmax activation function

(Galvez et al., 2018).

Figure 2.5: CNN Architecture (Gulli and Pal, 2017)

11

2.4.2 Region-based Convolutional Network (R-CNN)

R-CNN which is also known as “Regions with CNN Features” was

introduced by Girshick et al. in 2014. According to Girshick et al. (2014),

Convolutional Neural Networks are overly slow and relatively expensive.

Hence, R-CNN tackles these problems by adopting a technique which is

known as Selective Search. The Selective Search approach replaces the

Exhaustive search approach which looks for objects in thousands of windows

although the image is small in size. The Selective Search method searches for

the object through different size windows. For each size, the adjacent pixels

are grouped by colour, texture or intensity for object identification.

 According to Girshick et al. (2014), the R-CNN model contains

three modules. The first module is ‘Region Proposal’ which generates and

extracts category-independent region proposals. In other words, it defines the

number of bounding-box candidate detections by using Selective Search. The

second module is ‘Feature Extraction’ which extracts features from every

candidate region through the use of a large CNN. The third module is

‘Classification’ which classifies the extracted features by using linear SVM

classifiers. The R-CNN model architecture is shown in Figure 2.6.

 After the great success of R-CNN, the Fast Region-based

Convolutional Network (Fast R-CNN) which is significantly faster in terms

of training and making predictions was proposed by Girshick in 2015. In the

following year, Ren et al. (2016) further improved the speed of training and

detection as well as the detection accuracy by proposing the Faster R-CNN

model.

Figure 2.6: R-CNN Architecture (Girshick et al., 2014)

12

2.4.3 You Only Look Once (YOLO)

The YOLO model proposed by Redmon et al. (2016) can predict bounding

box and class probability directly with a single neural network. Even though

the YOLO model has more localization errors and lower prediction accuracy,

but it can operate faster which is at 45 fps and up to 155 fps for a smaller

network.

 The workflow of the YOLO model is first dividing the input image

into an S × S grid. Whenever an object’s centre is within a cell of the grid,

then the cell will be responsible for the detection of the object. The bounding

box and its confidence score are also predicted by the grid cell. The

confidence score shows the degree whereby the object is certain to be inside

the predicted bounding box. The grid cell also predicts the conditional class

probabilities. Then, the bounding boxes with confidence scores are integrated

with the class probability map to produce a final set of bounding boxes and

class labels (Redmon et al., 2016). The general workflow of the YOLO

model is shown in Figure 2.7.

Over the years, the YOLO model was further improved with its

versions named YOLOv2, YOLOv3 and YOLOv4, whereby the YOLOv4

model is the updated YOLO model with improved performance in terms of

detection speed and accuracy. The YOLOv3 and YOLOv4 models use

Darknet53 for the extraction of features. This makes the models to be more

accurate as compared to the YOLOv2 model which uses Darknet19 with only

19 convolutional layers as the feature extractor.

Figure 2.7: General Workflow of YOLO model (Redmon et al., 2016)

13

2.4.4 Single Shot MultiBox Detector (SSD)

Liu et al. (2016) proposed a single shot detection model which is known as

Single Shot MultiBox Detector (SSD) and stated that it is faster and

significantly more accurate than the previous YOLOv2 model. The

comparison of the performance of several different detection models is

shown in Table 2.1. Unlike YOLO, the SSD model does not have a constant

aspect ratio for grid cells. Instead, it uses a distinct aspect ratio with multi

boxes to achieve higher detection accuracy.

 The SSD object detection works by first extracting the feature maps,

and then applying convolution filters for object detection. First, an image

with ground truth boxes for every object is inputted into the SSD. A small set

of default boxes with different aspect ratios is evaluated in a convolutional

fashion in some feature maps with different scales such as 8 × 8 and 4 × 4

feature maps as shown in Figure 2.8 (b) and (c) respectively. Then, the

confidence scores and the shape offsets for all categories of objects are

predicted for each default box. The SSD framework is shown in Figure 2.8.

Table 2.1: Comparison between Different Detection Models (Liu et al.,

2016)

14

Figure 2.8: Framework of SSD (Liu et al., 2016)

2.5 Review of Real-Time Object Tracking Algorithm

After the object detection, a tracking system is needed to track the object for

counting purposes. The overall process of object tracking begins with taking

an initial set of bounding box coordinates, then generating a unique ID for

each of the bounding boxes, and lastly tracking the objects while maintaining

their unique IDs. There are several popular object tracking algorithms that

most researchers use which include the Centroid Tracking algorithm and the

DeepSORT algorithm.

2.5.1 Centroid Tracking Algorithm

After detecting the person, the information of the classified bounding box is

utilized for counting the total number of people within the image. For every

classified bounding box detected, it will be assigned a count number or a

unique ID. Then, the bounding box coordinates are determined and the

centroids are calculated by using the diagonal points of the bounding box as

shown in Figure 2.9. The equation for the calculation of the centroid is shown

in equation (2.1) below:

 𝑥𝐶 =
𝑥1 + 𝑥2
2
, 𝑦𝐶 =

𝑦1 + 𝑦2
2

 (2.1)

where

𝑥1, 𝑦1 and 𝑥2, 𝑦2 represent the diagonal points of the bounding box

𝑥C and 𝑦C represent the centroid of the bounding box

15

Figure 2.9: Locating Centroids for each Classified Bounding Box (Ahmad et

al., 2019)

 For object tracking, the centroids are calculated for every subsequent

frame in the video stream. However, rather than assigning a new ID to the

detected object, the Euclidean distances are computed between existing

objects and the new bounding boxes detected. Then, the x and y coordinates

for the existing objects are updated while the new object detected is assigned

with a unique ID. The tracking process continues until the object leaves the

field of view or disappears, the object will be deregistered from the system.

2.5.2 DeepSORT Algorithm

Wojke et al. (2017) stated that Simple Online and Real-Time Tracking with a

Deep Association Metric (DeepSORT) is one of the most robust and fastest

object tracking algorithms. It was developed based on the Simple Online and

Real-time Tracking (SORT) approach which focuses on associating object

detections on each frame (Bewley et al., 2016). The SORT approach makes

use of the CNNs for more accurate object detection. It also implements two

traditional methods in motion prediction and data association, namely the

Hungarian algorithm and the Kalman filter as its tracking components.

Bewley et al. (2016) stated that SORT is over twenty times faster

than other state-of-the-art online tracking approaches. However, according to

Wojke et al. (2017), the major drawback of SORT is that the tracked object

identities might be switched frequently during the tracking process due to the

occlusions. In order to solve this issue, DeepSORT integrates a deep

16

appearance-based metric derived from the convolutional network (CNN),

rather than using only the motion-based metrics in data association. A large

person re-identification dataset is used for training the CNN applied in

DeepSORT to discriminate the pedestrians. This results in increasing the

system robustness against occlusions, as well as reducing the number of

identity switches by approximately 45% (Wojke et al., 2017). The

architecture of the DeepSORT algorithm is shown in Figure 2.10.

Figure 2.10: DeepSORT Architecture (Parico and Ahamed, 2021)

17

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, both the hardware and software required to design an

overhead view based person counting system using deep learning are

introduced.

This project is divided into several parts as shown in Figure 3.1.

Firstly, the dataset required to train the YOLOv4 and YOLOv4-tiny object

detection models which include the images of people based on overhead view

and the images of human faces were obtained from online sources. Then, all

the dataset was annotated in YOLO format by using LabelImg. Next, the

Darknet was installed to train both the YOLOv4 and YOLOv4-tiny models.

After that, the OpenVINO Inference Engine was utilized to optimize the

performance of the models. Tracking algorithms which include Centroid

Tracking and DeepSORT tracking algorithms were implemented into the

code to track and count the person detected by the detection model. Lastly,

the performance of the prototype was evaluated based on the total inference

time, fps as well as counting accuracy.

18

Figure 3.1: Workflow of the Project

3.2 Overview of System Requirement

In this project, the hardware required include a laptop and a USB stick.

Meanwhile, the required software include Rufus, Ubuntu 18.04 LTS,

OpenCV, TensorFlow 2.0, Darknet, and OpenVINO toolkit.

3.2.1 Ubuntu 18.04 LTS

The first step to start the project is by installing the Linux operating system

on the laptop. The Ubuntu 18.04 LTS which is one of the popular Linux

distributions is chosen. The latest version of Ubuntu 21.04 is not preferred to

avoid software incompatibility issues.

Since the laptop comes preinstalled with Windows 10 Home, the

Ubuntu 18.04 LTS operating system is installed along with (dual booting)

Windows 10. The steps to dual boot the Ubuntu 18.04 LTS along with

Windows 10 is shown in Figure 3.2. Firstly, the disk partition for Ubuntu

19

installation is created in the Windows menu. Around 200 GB of free space is

allocated to Ubuntu. Then, the ISO image file for Ubuntu 18.04 LTS is

downloaded from the official Ubuntu website. After that, the USB is plugged

in and a bootable Ubuntu USB is created by using the Rufus software. Once

the live Ubuntu USB is ready, the next step is to boot from it and then the

installation procedure of Ubuntu can be started. When the installation process

is complete, the laptop is restarted and the laptop can finally be booted into

either Ubuntu or Windows through the GRUB boot options.

After installing the Ubuntu 18.04 LTS operating system, the

necessary software and packages are ready to be installed on the machine.

Figure 3.2: Dual Booting Ubuntu 18.04 LTS along with Windows 10

20

3.2.2 OpenCV

OpenCV is a machine learning library which consists of functions for real-

time computer vision tasks like image processing, frame capturing and so on.

The codes for installing OpenCV on Ubuntu 18.04 LTS are attached in

Appendix A. The steps to install OpenCV on Ubuntu 18.04 LTS are as

follows:

1. First, the required OpenCV dependencies are installed.

2. Then, the OpenCV is downloaded from its official source.

3. After completing the download, a temporary build directory is created

and the OpenCV build is set up with CMake.

4. Next, the OpenCV is compiled using the make command.

5. Finally, the OpenCV is installed.

3.2.3 TensorFlow

TensorFlow developed by Google is a free open-source platform which is

important for machine learning. In this project, TensorFlow is used as the

framework for the Deep SORT object tracking algorithm. The codes for

installing TensorFlow in the virtual machine are attached in Appendix B.

TensorFlow is installed in a Python virtual environment and the installation

steps are as follows:

1. First, a virtual environment is created.

2. Once the virtual environment is activated, the ‘pip’ is upgraded to the

latest version and the TensorFlow package which includes GPU

support is installed.

21

3.2.4 Darknet

Darknet is an open-source framework which is used for the implementation

of neural networks such as the YOLO algorithm. In our project, Darknet is

used to train the YOLOv4 and YOLOv4-tiny deep learning models.

 The steps to install the Darknet are shown in Figure 3.3. Firstly, the

Darknet git repository created by Alexey AB is cloned. Then, the

dependencies of Darknet which include CUDA and cuDNN are installed.

Next, the makefile is configured based on the Nvidia GPU architecture of my

laptop. After that, the ‘make’ command is run and then an executable file

named ‘darknet’ is created.

Figure 3.3: Steps to Install Darknet

22

3.2.5 OpenVINO Toolkit

The Open Visual Inference and Neural Network Optimization (OpenVINO)

toolkit is a free and cross-platform software provided by Intel. The toolkit is

simple to use and it helps to optimize the YOLOv4 and YOLOv4-tiny deep

learning models for faster inference time on any Intel hardware such as Intel

Neural Compute Stick 2 (NCS2), Intel CPU, Intel GPU, and so on.

 The workflow of the OpenVINO toolkit is shown in Figure 3.4.

Firstly, the trained YOLOv4 or YOLOv4-tiny deep learning model is fed into

the Model Optimizer of the toolkit. The YOLO models will be optimized

with techniques such as quantization, fusion, freezing and so on. Then, an

Intermediate Representation (IR) of the model which includes the .xml

and .bin files will be generated. The Intermediate Representation is then fed

into the Inference Engine to check the compatibility of the model based on

the framework and hardware used. In our project, the framework used is

TensorFlow while the hardware used includes Intel CPU and Intel GPU,

which are all supported by OpenVINO. Lastly, the model can be executed on

the devices through C++ or Python scripts.

Figure 3.4: Workflow of OpenVINO toolkit

23

3.3 Dataset Preparation

In implementing an object detection model, a sufficient dataset is required

before the training and testing of the model. It is important to have enough

datasets with object annotations and labelling so that the neural network can

learn the pattern of the detected object and classify them accordingly.

 In this project, there are two use cases where the first use case (Use

Case 1) is to detect, track and count the number of people entering the

geofencing. Meanwhile, the second use case (Use Case 2) is simulating the

scenario in a bus where the total number of people boarding and exiting the

bus is recorded. For Use Case 1, only the images of people based on the

overhead view are required to train the deep learning model. Meanwhile, for

Use Case 2, the person images based on the overhead view and also the

images of human faces are needed. This is because the detection of the

human face is applied at the entrance of the bus while the detection of the

person based on the overhead view is applied at the exit.

The dataset is obtained from open sources such as Kaggle, and

CVonline. For Use Case 1, the dataset consists of 1000 images of people

based on the overhead view. Meanwhile, for Use Case 2, the dataset contains

500 images of people based on the overhead view and 500 images of the

human face. Since some of the object annotations in the dataset are missing

or miss-aligned, the particular dataset is re-annotated by using labelImg. The

labelling file is then stored in the desired YOLO format. The example of

object annotation for overhead view person image is shown in Figure 3.5.

The images from the dataset are split into a ratio of 8:2, whereby 80% of the

images are utilized to train the model while 20% rest of the images are used

to test the model.

Figure 3.5: Object Annotation for Overhead View Person Image

24

3.4 Deep Learning Model Framework

3.4.1 Selection of Deep Learning Model

There are several Deep Learning based object detection algorithms as

discussed earlier in Chapter 2. In this project, the YOLOv4 model is used for

person detection. According to Bochkovskiy et al. (2020), the accuracy and

the fps of the YOLOv4 model improve by 10% and 12% respectively as

compared to the previous YOLOv3 model. The comparison between different

deep learning detection methods is shown in Figure 3.6.

 However, Bochkovskiy et al. (2020) recommended that the

YOLOv4 model shall be used on a conventional GPU with a minimum of

8GB VRAM for the best performance. Since the YOLOv4 requires high

processing power, the compressed version of YOLOv4, which is the

YOLOv4-tiny model is introduced into this project. The YOLOv4-tiny model

is usually used to obtain faster training and detection speed. This is because

its network structure is much simpler and has lesser parameters than the

YOLOv4 model. This allows the YOLOv4-tiny model to be more feasible for

the development on mobile or embedded devices (Jiang et al., 2020). The

comparison of the YOLOv4 and the YOLOv4-tiny model is shown in Table

3.1 below. According to Jiang et al. (2020), the YOLOv4-tiny model obtains

a lower mean average precision (mAP) than that of the YOLOv4 model. The

lower the mAP, the less accurate the detection model is. However, the

YOLOv4-tiny obtains relatively high fps, which is around 6.5 times greater

as compared to the YOLOv4 model which has only 41 fps. Besides, the mAP

of the YOLOv4-tiny model can be further improved by feeding in more

datasets for transfer learning on the customised classes of objects.

Figure 3.6: Comparison of YOLOv4 models and Other Object Detection

Models

25

Table 3.1: Comparison of Different Detection Methods (Jiang et al., 2020)

3.4.2 Training of Deep Learning Model

In this project, the deep learning models selected which include the YOLOv4

and YOLOv4-tiny models are trained using Darknet environment. Since there

are two use cases in our project, both the YOLOv4 and YOLOv4-tiny models

are trained on a single class, as well as on two classes for Use Case 1 and Use

Case 2 respectively. Thus, a total of four YOLO models will be trained.

The steps to train an object detection model using Darknet are

shown in Figure 3.7. Firstly, the custom dataset prepared in the previous

section is moved to the Darknet directory. Then, configuration is done on the

config files, .data file and .names file with respect to each use case. Next,

instead of training a deep learning model from scratch, the pre-trained

YOLOv4 and YOLOv4-tiny weights are downloaded for transfer learning.

After getting everything prepared, the training of the YOLO models can be

started.

26

Figure 3.7: Steps to Train a Custom Detection Model using Darknet

3.5 Implementation of Tracking Algorithm

After training the custom detection model, a tracking system is then required

to track the person for counting purposes. As discussed in the previous

chapter, there are two tracking algorithms that will be implemented in this

project which include the Centroid Tracking and the DeepSORT algorithm.

The performance of each algorithm will be evaluated afterwards.

3.5.1 Centroid Tracking Algorithm

For the Centroid Tracking algorithm, the information of the classified

bounding box is used to track the person who enters the geofencing. For

every classified bounding box detected, it will be assigned a count number or

a unique ID. Then, the bounding box coordinates are determined and the

centroids are calculated by using the diagonal points of the bounding box. In

the subsequent frame, if the centroid distance between the old object and the

new object exceeds the maximum distance set, a new unique ID is assigned

to the new object, and the old object will be deregistered. Whenever a new

object ID is registered, the total number of people present in the scene is

increased by 1. Figure 3.8 shows the flowchart of the Centroid Tracking

algorithm.

27

Figure 3.8: Flowchart of Centroid Tracking Algorithm

3.5.2 DeepSORT Tracking Algorithm

For the DeepSORT tracking algorithm, a deep appearance-based metric

derived from CNN is applied, rather than using only the motion-based

metrics as in the SORT algorithm. The overall architecture of the DeepSORT

tracking algorithm is shown in Figure 3.9. The architecture consists of three

main modules which include the Kalman Filter (KF) based estimation, data

association, as well as track management. After the object is detected by the

YOLO models, the Kalman Filter predicts the object locations in the current

frame. The predicted object locations by KF, together with the object

28

detections by the YOLO models, are the inputs of the data association

module. To enhance the data association, a CNN is used by DeepSORT to

compute the appearance features which allows the re-identification of tracks

even after a long period of occlusion (Pereira et al., 2022). Finally, the array

of tracks which contains the bounding boxes and track IDs will be the output

of this DeepSORT tracking algorithm. Whenever there is a new track ID, the

total number of people in the scene is increased by 1.

Figure 3.9: Overall Architecture of DeepSORT Tracking Algorithm

29

3.6 Evaluation of Performance

After getting the tracking algorithms ready, the performance of each

prototype will be evaluated. The evaluation of performance is done based on

the total inference time, fps, mAP for object detection as well as the detection

accuracy.

 Since there are two use cases in our project, the performance of each

prototype will be evaluated separately for each use case. For example, the

performance of the YOLOv4 model integrated with the DeepSORT algorithm

will be evaluated separately for Use Case 1 and 2. After the performance

evaluation, the results are recorded and discussed in the following Chapter 4.

3.6.1 OpenVINO Deep Learning (DL) Workbench

Deep Learning (DL) Workbench is a web-based graphical environment

which allows us to visualize, fine-tune and analyse the performance of deep

learning models on Intel CPU, Intel GPU, Intel Neural Compute Stick 2

(NCS2), and so on.

 In this project, the OpenVINO DL Workbench of version

2021.4.582 is used to evaluate the IR models’ performance. The conversion

of YOLO to IR models through the OpenVINO toolkit is discussed earlier in

Section 3.2.5. The result of the DL Workbench is recorded and discussed in

Chapter 4. Figure 3.10 shows the User Interface of the OpenVINO DL

Workbench.

Figure 3.10: User Interface of the OpenVINO DL Workbench

30

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the performance of this prototype which consists of the object

detection models and the tracking algorithm was evaluated based on mean

average precision (mAP) for object detection, frames per second (fps), and

the detection accuracy. Besides, the performance of the prototype was

evaluated based on two use cases. The Use Case 1 is detecting, tracking, and

counting the number of people entering the geofencing. Figure 4.1 shows an

example result for use case 1. Meanwhile, the Use Case 2 is simulating the

scenario in a bus where the number of people boarding and exiting the bus is

tracked and counted. Figure 4.2 shows an example result for use case 2. The

formula to calculate fps and mAP are shown in equations (4.1) and (4.2)

respectively.

 (4.1)

 (4.2)

where

fps = frames per second

mAP = mean average precision, %

APi = average precision of class i

N = number of classes

𝑓𝑝𝑠 =
𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑎𝑚𝑒

𝑒𝑛𝑑 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒

𝑚𝐴𝑃 =
1

𝑁
 𝐴𝑃𝑖
𝑁

𝑖=1

31

Figure 4.1: Example Result for Use Case 1

Figure 4.2: Example Result for Use Case 2

The evaluation of the performance consists of three sections as follows:

1. Performance of the Detection Model

2. Performance of the Tracking Algorithm

• Performance based on Total Inference Time

• Performance based on fps

• Performance based on Counting Accuracy

3. Results of OpenVINO DL Workbench

32

4.2 Performance of the Detection Model

In this project, the pre-trained YOLOv4, and YOLOv4-tiny models by

Alexey Bochkovskiy were downloaded and further trained for 6000 iterations

on the class of object named “person”. For the second use case, both the pre-

trained detection models were also further trained for 6000 iterations as well,

but on two classes namely “person” and “human face”. After training for

6000 iterations, both the trained YOLOv4 and YOLOv4-tiny weight files

with the best mAP recorded were chosen as our detection models.

 Table 4.1 shows the performance of the YOLOv4 and YOLOv4-tiny

models in terms of mAP as well as total detection time for use case 1. Based

on Table 4.1, the mAP of the YOLOv4 model is 86.48 % which is 1.56 %

higher than that of the YOLOv4-tiny model. However, the total detection

time for the YOLOv4 model takes 13 seconds longer than the YOLOv4-tiny

model. Table 4.2 tabulates the performance of both the detection models for

use case 2. Similarly, for use case 2, the mAP of the YOLOv4 model is

greater than that of the YOLOv4-tiny model, but the total detection time of

the YOLOv4 model is around 4 times longer as compared to the YOLOv4-

tiny model. Figure 4.3 compares the mAP of YOLOv4 and YOLOv4-tiny

models under both use cases. Based on Figure 4.3, the mAP achieved by both

YOLOv4 and YOLOv4-tiny model for use case 1 is greater than the use case

2. This is because for use case 1, all the dataset are used to train on the same

single class, but for use case 2, the dataset is divided to train on 2 new classes

which include person from overhead view and human faces.

Table 4.1: Performance of the Detection Models for Use Case 1

Table 4.2: Performance of the Detection Models for Use Case 2

33

Figure 4.3: mAP of YOLO models for Both Cases

4.3 Performance of the Tracking Algorithm

In this section, both the trained YOLOv4 and YOLOv4-tiny models were

integrated with one of the tracking algorithms which include the Centroid

Tracking (CT) and DeepSORT (DS) tracking algorithms. The performance of

the YOLO models with different tracking algorithms was evaluated based on

the total inference time, fps, and the counting accuracy which is computed in

terms of the number of miscounts. Other than that, the performance of these

solutions was also evaluated based on the processing unit used. The

processing units include the laptop’s CPU (i5-6300 HQ) and GPU (Intel HD

Graphics 530).

4.3.1 Performance based on Total Inference Time

Figures 4.4 and 4.5 show the total inference time of each YOLO model when

integrated with different tracking algorithms for Use Case 1 and 2,

respectively. Based on Figures 4.4 and 4.5, for both use cases, the total

inference time for YOLOv4-tiny models is a lot shorter than that of the

YOLOv4 models, regardless of the tracking algorithms used.

Besides, the effect of different processing units is significant as well.

For YOLOv4 models, the total inference time of GPU (Intel HD Graphics

530) is around 3 times shorter than CPU (i5-6300HQ). Meanwhile, for

YOLOv4-tiny models, the total inference time of GPU is about 2 times lower

86.48

84.92
84.20

80.33

77

78

79

80

81

82

83

84

85

86

87

YOLOv4 YOLOv4-tiny YOLOv4 (2 classes) YOLOv4-tiny (2
classes)

M
ea

n
 A

ve
ra

ge
 P

re
ci

si
o

n
 (

%
)

YOLO models

mAP of YOLO models

34

than that of CPU. Based on Figure 4.5, for both YOLOv4 and YOLOv4-tiny

models, the total inference time recorded when integrated with Centroid

Tracking is slightly shorter as compared to integrating the DeepSORT

tracking algorithm.

Figure 4.4: Total Inference Time of YOLO models with different Tracking

Algorithms (Use Case 1)

Figure 4.5: Total Inference Time of YOLO models with different Tracking

Algorithms (Use Case 2)

35

4.3.2 Performance based on fps

Frames per second (fps) measures how fast the YOLO models can detect the

person and generate the desired output. Figures 4.6 and 4.7 illustrate the fps

achieved by the YOLO models with different tracking algorithms for Use

Case 1 and 2 respectively. For both use cases, the highest fps is recorded by

the YOLOv4-tiny detection model integrated with the Centroid Tracking

algorithm. For use case 1, it can achieve 21.03 fps when running with GPU

and 10.08 fps when running with CPU. Meanwhile, for use case 2, the

highest fps recorded when running with GPU is 22.24 fps and 10.86 fps with

CPU. For both use cases, the fps achieved by the YOLOv4 model is

significantly smaller as compared to that of the YOLOv4-tiny models. In

terms of the processing unit, for YOLOv4 models, the fps achieved when

running with GPU is around 3 times faster than CPU. Meanwhile, for

YOLOv4-tiny models, the fps obtained when running with GPU is about 2

times faster than that of CPU.

Figure 4.6: Fps Achieved by YOLO models with different Tracking

Algorithms (Use Case 1)

0.952 0.9601

10.0825

6.32943.102 2.8969

21.0286

14.9799

0

5

10

15

20

25

YOLOv4 (CT) YOLOv4 (DS) YOLOv4-tiny (CT) YOLOv4-tiny (DS)

Fr
am

es
 p

er
 s

ec
o

n
d

YOLO models

Performance of YOLO models with different tracking algorithms
(Case 1)

CPU (i5-6300HQ) GPU (Intel HD Graphics 530)

36

Figure 4.7: Fps Achieved by YOLO models with different Tracking

Algorithms (Use Case 2)

4.3.3 Performance based on Counting Accuracy

Tables 4.3 and 4.4 tabulate the total number of miscounts generated by the

prototype and the accuracy for use case 1 and 2 respectively. The number of

miscounts recorded may be in positive or negative value. The ground truth

values for use case 1 and use case 2 are 9 people and 11 people respectively.

If the number of miscounts is positive, this means that there is an extra

number of people recorded as compared to the ground truth value. Otherwise,

if the number of miscounts recorded is negative, the value shows that there

are how many people that are not being detected by the prototype. The lesser

the total number of miscounts recorded, the more accurate the prototype is.

The accuracy is calculated by using equation (4.3).

 (4.3)

Based on Table 4.3, the YOLOv4-tiny integrated with the Centroid

Tracking algorithm has the highest number of miscounts which is a total of 3

miscounts. According to Section 4.3.2, although the YOLOv4-tiny model

with Centroid Tracking algorithm achieves the highest fps, however, the

0.9986 0.9573

10.8605
8.8359

3.2428 2.9685

22.2389

16.0712

0

5

10

15

20

25

YOLOv4 (CT) YOLOv4 (DS) YOLOv4-tiny (CT) YOLOv4-tiny (DS)

Fr
am

es
 p

er
 s

ec
o

n
d

YOLO models

Performance of YOLO models with different tracking
algorithms (Case 2)

CPU (i5-6300HQ) GPU (Intel HD Graphics 530)

37

counting accuracy is relatively low as compared to other solutions. On the

other hand, although the YOLOv4-tiny integrated with the DeepSORT

tracking algorithm achieves only the second highest fps, but it manages to

record a smaller total number of miscounts with the accuracy of 88.9% and

90.9% for use case 1 and use case 2 respectively.

Table 4.3: Total Number of Miscounts and Accuracy for Use Case 1

Table 4.4: Total Number of Miscounts and Accuracy for Use Case 2

38

4.4 Results of OpenVINO DL Workbench

Deep Learning (DL) Workbench is a web-based graphical environment

which allows us to visualize, fine-tune and analyse the performance of deep

learning models on Intel Neural Compute Stick 2 (NCS2), Intel CPU, Intel

GPU, and so on. After the installation of DL Workbench on the local system,

the OpenVINO Intermediate Representation (IR) model is imported, and the

validation dataset is uploaded for analysis. After modifying all the

configuration settings, the result of the model analysis on DL Workbench in

terms of fps is shown in Figure 4.8.

Figure 4.8: Result of Model Analysis on DL Workbench

3.19 3.16

27.32 27.34

0

5

10

15

20

25

30

YOLOv4 YOLOv4 (2 classes) YOLOv4-tiny YOLOv4-tiny (2
classes)

Th
ro

u
gh

p
u

t
(f

p
s)

YOLO models

fps on OpenVINO DL Workbench

39

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this project, a person tracking and counting system based on overhead

view was developed. Transfer learning of the YOLO model was done by

using a custom dataset which includes the images of person based on the

overhead view and the images of the human face. This prototype consists of a

deep learning detection model integrated with one of the tracking algorithms.

The YOLOv4-tiny detection model is selected due to its lightweight property

and its ability to achieve high fps without the need for high processing power.

Even though the Centroid Tracking algorithm achieves around 38.4% to 40.4%

higher fps as compared to that of the DeepSORT tracking algorithm, its

counting accuracy is around 22.2% lower than the DeepSORT tracking

algorithm. Hence, the overall performance of the YOLOv4-tiny model

integrated with the DeepSORT algorithm is better as compared to the others.

5.2 Recommendations for future work

The bounding boxes generated by the YOLOv4-tiny detection model were

slightly larger than the normal and accurate bounding boxes. Hence, further

training of the YOLOv4-tiny detection model is recommended to increase the

detection accuracy.

 Other than that, a front-end development can be done to improve the

user experience. For example, a web-based user interface or dashboard can be

created for this prototype.

40

REFERENCES

Ahmad, M., Ahmed, I., & Adnan, A., 2019. Overhead View Person Detection

Using YOLO. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics &

Mobile Communication Conference (UEMCON).

Ahmed, I. and Adnan, A., 2017. A robust algorithm for detecting people in

overhead views. Cluster Computing, 21(1), pp. 633–654.

Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B., 2016. Simple online

and realtime tracking. 2016 IEEE International Conference on Image

Processing (ICIP).

Bochkovskiy, A., Wang, C., & Liao, H.M., 2020. YOLOv4: Optimal Speed

and Accuracy of Object Detection.

Dalal, N., & Triggs, B., 2005. Histograms of Oriented Gradients for Human

Detection. 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05).

Galvez, R. L., Bandala, A. A., Dadios, E. P., Vicerra, R. R. P., & Maningo, J.

M. Z., 2018. Object Detection Using Convolutional Neural Networks.

TENCON 2018 - 2018 IEEE Region 10 Conference.

Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on

Computer Vision (ICCV).

Girshick, R., Donahue, J., Darrell, T., & Malik, J., 2014. Rich Feature

Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014

IEEE Conference on Computer Vision and Pattern Recognition.

41

Gulli, A. and Pal, S., 2017. Deep Learning with Keras. Birmingham: Packt

Publishing.

Jiang, Z., Zhao, L., Li, S., & Jia, Y., 2020. Real-time object detection method

for embedded devices.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg,

A. C., 2016. SSD: Single Shot MultiBox Detector. Lecture Notes in

Computer Science, pp. 21-37.

Lowe, D. G., 1999. Object recognition from local scale-invariant features.

Proceedings of the Seventh IEEE International Conference on Computer

Vision.

Lowe, D. G., 2004. Distinctive Image Features from Scale-Invariant

Keypoints. International Journal of Computer Vision, 60(2), pp. 91–110.

Miraftabzadeh, S. M., Foiadelli, F., Longo, M., & Pasetti, M., 2019. A

Survey of Machine Learning Applications for Power System Analytics. 2019

IEEE International Conference on Environment and Electrical Engineering

and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC /

I&CPS Europe).

Nakatani, R., Kouno, D., Shimada, K. & Endo, T., 2012. A Person

Identification Method Using a Top-view Head Image from an Overhead

Camera. 2012 Journal of Advanced Computational Intelligence and

Intelligent Informatics, 16(6).

Olejniczak, M. & Kraft, M., 2017. Taming the HoG: The Influence of

Classifier Choice on Histogram of Oriented Gradients Person Detector

Performance. International Conference on Artificial Intelligence and Soft

Computing, 552-560.

42

Ozturk, O., Toshihiko Yamasaki, & Kiyoharu Aizawa., 2009. Tracking of

humans and estimation of body/head orientation from top-view single camera

for visual focus of attention analysis. 2009 IEEE 12th International

Conference on Computer Vision Workshops, ICCV Workshops.

Parico, A.I.B. & Ahamed, T., 2021. Real Time Pear Fruit Detection and

Counting Using YOLOv4 Models and Deep SORT. Sensors, 21(14), pp.

4803.

Pereira, R., Carvalho, G., Garrote, L., & Nunes, U.J., 2016. Sort and Deep-

SORT Based Multi-Object Tracking for Mobile Robotics: Evaluation with

New Data Association Metrics. Applied Sciences, 12(3), 1319.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., 2016. You Only Look

Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

Ren, S., He, K., Girshick, R., & Sun, J., 2017. Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39(6), pp. 1137–1149.

Wojke, N., Bewley, A., & Paulus, D., 2017. Simple online and realtime

tracking with a deep association metric. 2017 IEEE International Conference

on Image Processing (ICIP).

Zhao, Z., Li, H., Zhao, R. and Wang, X., 2016. Crossing-line crowd counting

with two-phase deep neural networks. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 9912 LNCS, pp.712–726.

43

APPENDICES

Appendix A: Code for Installing OpenCV

$ sudo apt-get install build-essential cmake unzip pkg-config

$ sudo apt-get install libjpeg-dev libpng-dev libtiff-dev

$ sudo apt-get install libjasper-dev

$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev

$ sudo apt-get install libv4l-dev libxvidcore-dev libx264-dev

$ sudo apt-get install libgtk-3-dev

$ sudo apt-get install libatlas-base-dev gfortran

$ sudo apt-get install python3-dev

$ sudo apt-get install openexr libtbb2 libtbb-dev libdc1394-22-dev

$ mkdir ~/opencv_build && cd ~/opencv_build

$ git clone https://github.com/opencv/opencv.git

$ git clone https://github.com/opencv/opencv_contrib.git

$ cd ~/opencv_build/opencv

$ mkdir build && cd build

$ cmake -D CMAKE_BUILD_TYPE=RELEASE \

 -D CMAKE_INSTALL_PREFIX=/usr/local \

 -D INSTALL_C_EXAMPLES=ON \

 -D INSTALL_PYTHON_EXAMPLES=ON \

 -D OPENCV_GENERATE_PKGCONFIG=ON \

 -D

OPENCV_EXTRA_MODULES_PATH=~/opencv_build/opencv_contrib/mo

dules \

 -D BUILD_EXAMPLES=ON ..

$ make -j8

$ sudo make install

44

Appendix B: Codes for Installing TensorFlow

$ sudo apt install python3-venv

$ mkdir my_tensorflow

$ cd my_tensorflow

$ python3 -m venv venv

$ source venv/bin/activate

$ pip install --upgrade pip

$ pip install --upgrade tensorflow-gpu

