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ABSTRACT 

 

Digitization is one of the major components in Industrial Revolution 4 (IR 4.0). 

It provides a lot of benefits to the industrial, such as increasing productivity, 

better data visualisation, simplifying parameters control, etc. Although many 

meters nowadays come with the smart Internet of Things (IoT) features, which 

provides real-time monitoring and data storing, many industries still prefer to 

continue using the existing analogue meters in their manufacturing plants as 

replacing the existing analogue meters with the cloud-connected digital meters 

can be very costly especially for industrial grade meters. In this project, a cost-

effective image recognition system to capture and digitize the analogue meter’s 

readings using deep learning model (SSD MobileNet) as well as optical 

character recognition (Tesseract) was demonstrated. The deep learning model 

has been trained with a dataset of 750 images and was used to detect the region 

of interest (meter’s readings). The OCR is used to convert the readings to string 

datatype. Besides, the image processing techniques via OpenCV library has 

been implemented for enhancing the quality of the ROI. The programme 

developed has been transferred and executed on the Raspberry Pi 

microcomputer with camera module attached to an analogue water meter. The 

results show that the accuracies of the deep learning model and OCR are 95% 

and 91%, respectively. In addition, the memory occupation of the deep learning 

model is about 10 MB, which is suited the embedded system with limited 

memory capacity. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Industrial Revolution is the transition of agricultural and handicraft economy to 

industrial and machine-manufacturing economy. It has been divided into four 

periods, namely the 1st revolution for steam power (1760-1820), the 2nd 

revolution for electrical power usage (1820-1900), the 3rd revolution for 

electronic and computing (1900s) and the 4th revolution for cyber-physical 

system in manufacturing (IR 4.0). 

 The ultimate goal of IR 4.0 is to attain a fully automated smart factory, 

which the manufacturing processes  are fully automated and the number of 

operators is minimized. The backbone of a smart factory is the Cyber Physical 

System (CPS). The CPS integrates the parameters of the processes in physical 

world with the software components via digitization to achieve the machine-to-

machine and machine-to-human interactions (Zhou, Liu and Zhou, 2016). This 

system mainly consists of the latest technologies and advancements, namely the 

Internet of Things, Big Data Analytics and Artificial Intelligence.  

 Internet of Things (IoT) is defined as the connections between machines, 

which are embedded with instrumentation, sensors, actuators and antenna, via 

the internet to the cloud and SCADA system (Oracle, n.d.). The IoT provides a 

channel for the linkage of physical world to the digital world which enables data 

collection, data exchange and real-time update and monitoring. Due to the 

centralization of data, the operators can visualize the conditions of the 

manufacturing processes conveniently, without inspecting the machines one 

after another; thus, increasing the working efficiency.   

 Big Data Analytics is the process of evaluating and interpreting a 

tremendous amount of data, either in raw or structured, to unveil the patterns, 

trends and correlations among the data (tableau, n.d.). As the technology 

advances, the speed of processor and the volume of the memory storage increase 

rapidly, thus making the big data analytics, in the size of gigabytes to zettabytes 

possible.  



2 

 Artificial Intelligence (AI) describes the capability of an electronic 

device to execute tasks associated with intelligent beings. When a system is 

integrated with AI, it has the potential of learning, reasoning, generalizing and 

deciding (Copeland, 2020). Thus, in IR 4.0 and smart factory, the AI is expected 

to make precise decisions based on the results from big data analytics to control 

the operations of the machines and enhance the automation within the factory.  

 

1.2 Importance of the Study 

Industrial Revolution 4.0 and Digitization are the current trends in industrial and 

manufacturing sectors. They provide a lot of benefits to the industry. According 

to Caylar and Noterdaeme (2016), IR 4.0 can increase the productivity up to 45% 

through automation, reduce machine downtime up to 50%, increase forecast 

accuracy to 85% and reduce production cost up to 40%. 

In Malaysia, the Government of Malaysia initiated the TN50 plan for 

digitization and forecasted that the country’s economy will be uplifted to 2 

trillion USD in 8 years (Mohammad et al., 2018). However, according to a study 

done by Idris (2019), only 40% of the respondents implied that Malaysia is 

ready to embrace the IR 4.0. The challenges faced by the companies include 

large investment, technical and compatibility issues and insufficient 

qualification of workers. 

This research primarily focuses on providing an easier and more feasible 

way for digitization in the factory. Besides, the proposed solution, in terms of 

hardware and software, will be in minimized cost to ensure that the 

implementation of Internet of Things (IoT) is economical and in large scale to 

promote IR 4.0. 

 

1.3 Problem Statement 

Digitization is one of the most important steps towards Industry 4.0 

transformation. Although many meters nowadays are equipped with IoT 

features that enable the digitation of readings and real-time monitoring, many 

industries are still preferably using analogue meters for their manufacturing 

plants. One of the reasons is that some IoT meters are still very costly and that 

may hinder the owners or directors from the intention to implement the 

transition.  
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 Besides, various types of smart meters from different suppliers are 

required for different manufacturing processes. A divergence in the standards 

of electronic communication and protocols used by each meter becomes a 

challenge to integrate them to an already-built control system of the factory. It 

is not economical for the factory to undergo a major overhaul. 

 Moreover, most of the workers in the factory are already used to deal 

with the analogue meters and they are lack of the knowledge for using and 

calibrating some complex smart meters. Thus, the requirement of extra training 

and investment on the workers turns out to be an obstacle for the progress 

towards IR 4.0 (Rymarczyk, 2020). 

 

1.4 Aim and Objectives 

The aim of this research is to develop a cost-effective image recognition system 

to capture and monitor the analogue meter’s readings and send the data to the 

cloud system of the factory as a part of digitization and automation. 

The objectives of the project are as follows: 

i. To investigate the feasibility of image recognition system for 

analogue meter’s reading detection. 

ii. To develop the image recognition system.  

iii. To evaluate the functions and performance of the system. 

 

1.5 Project Overview 

There is a wide variety of tools available for deep learning and image 

recognition such as Python, MATLAB, TensorFlow, etc. Besides, there are 

many different libraries and techniques involved. In the first stage, different 

approaches were investigated and the most suitable approach, in terms of cost 

effectiveness, complexity and usability would be implemented. 

 In the second stage, the software for image recognition was developed 

and trained. Next, the performance and accuracy of the image recognition were 

assessed and optimized during the simulation process. 

 Subsequently, the integration of hardware and software was performed. 

Lastly, the image recognition system developed in previous stage was tested and 

installed at the real meter to observe its real-world performance. 
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1.6 Scope and Limitation of the Study 

This project predominantly focuses on detecting and extracting the Region of 

Interest (ROI), i.e. the analogue meter’s readings, recognizing and converting 

the numerical information to digital format using deep learning, image 

processing technique and optical character recognition engine. 

The limitation of the study is on the diversity of the meters being 

recognized. Due to the constraint in various parameters involving the image 

processing, computer vision and character recognition, the system developed is 

only applicable to detect and convert the numerical reading. Thus, the image 

recognition system is not universal.   

 

1.7 Contribution of the Study 

This project demonstrates the method of digitizing an analogue meter’s reading 

using deep learning, image processing and optical character recognition. 

Besides, the solution proposed is cost effective and easy to be implemented 

which eventually enhances the digitization and adoption of IR 4.0 in a factory. 

 

1.8 Outline of the Report 

The project report consists of 5 main chapters, namely introduction, literature 

review, methodology, results and discussion and conclusion. 

The first chapter, introduction, mainly focuses on providing the details 

and benefits of digitization, problem statement, aim and objectives as well as 

overview of the project. 

The second chapter is literature review. This chapter  provides technical 

reviews and interpretations on the topics related to image recognition. Besides, 

in-depth reviews and explanations on the functions and working principles 

involved in the deep learning and image processing are delivered. 

Next, the third chapter, methodology, provides the details regarding the 

configuration of the proposed system, the processes and flowchart of the system, 

the software and hardware involved, as well as the list and cost of components. 

In addition, the work plan, project milestones, schedule of each activity and the 

Gantt Charts are illustrated. 

The fourth chapter is results and discussion. This chapter mainly 

illustrates and explains the outcomes of each sub-system as mentioned in the 
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methodology. In-depth analysis have been performed on the results, in terms of 

software, hardware and accuracy evaluation, to verify and ensure that the 

solutions provided and system developed are able to achieve the aim and 

objectives of this project. 

Lastly, the fifth chapter is conclusion. This chapter provides an overall 

summary of the project as well as the conclusion to the work carried out and 

results obtained during the research. Moreover, the recommendations for future 

work is delivered.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter provides technical reviews and interpretations on the topics related 

to image recognition. Firstly, the general concept, methods and algorithms of 

the image recognition are introduced and elaborated. Subsequently, the tools 

and software available for the image and character recognition are explored. An 

in-depth reviews and explanations on the functions involved in the image 

recognition processes and their working principles are investigated. 

 

2.2 Image Recognition Concepts 

 

2.2.1 General Concept 

Image recognition refers to the ability of an electronic device in detecting and 

identifying certain objects based on their features and properties. Its working 

principles are analogous to that of how humans or animals’ brains identify and 

recognize an object. The visual performance of humans is exceptional due to the 

capability of our brain in features extraction, contours detection, classification, 

contextual knowledge and paralleling processing (Mujtaba, 2020). A digital 

image is represented in arrays of number, called pixels. Thus, the computer 

analyses the characteristics of an image depending on the pattern and correlation 

among the numerical data using mathematical function. Figure 2.1 shows an 

image represented as arrays of number.  

 

 

Figure 2.1: Image Represented as Arrays of Number (Mujtaba, 2020) 
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2.2.2 Digital Image Capturing 

An image sensor is used to carry out the digital image capturing process. It is an 

electronic device that consists of photosensitive elements which can convert the 

analogue optical signal to digital signal. The operation of an image sensor is 

based on a physics phenomenon known as photoelectric effect, which electrons 

are emitted during the bombardment of photons on the surface of the 

photosensitive material. The relationship of the magnitudes of light signal and 

electrical signal is proportional. Nowadays, the photosensitive element is made 

up of Complementary Metal Oxide Semiconductor (CMOS). Figure 2.2 shows 

the block diagram of a CMOS sensor. 

 

 

Figure 2.2: CMOS Sensor Block Diagram (University of Maine, n.d.) 

 

A CMOS image sensor mainly consists of colour filter, pixel cell array, 

2D array driver, control logic, analogue-to-digital converter (ADC) and output 

data bus. Firstly, the environmental light is focused by an optical lens placed 

above the sensor. Next, the light passes through the colour filter and illuminates 

the pixel array in the CMOS. Only the light with similar colour to the colour 

filter’s segment is able to penetrate through, thus the colour of the image is 

represented by each respective pixel. The photodiode of each pixel performs the 

conversion of light signal to electrical signal. 

 Subsequently, the 2D array driver will scan the pixel array row by row 

to extract the electrical signal and transmit the respective signal to the amplifier 

to increase the signal-to-noise (SNR) ratio. Thereafter, the signal undergoes 

digitization by the ADC and finally output as binary data. (Utmel Electronic, 

2020) 
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2.2.3 Methods of Image Recognition 

There are two major approaches for image recognition: image processing and 

deep learning. The image processing method comprises of extracting key 

features from an image via several mathematical functions and input parameters. 

It is very effective in pixel-based recognition utilizations such as template 

matching, colour-based detection, image segmentation, shape extraction and 

blob analysis. 

 On the other hand, deep learning incorporates the neural network, for 

instance Convolutional Neural Network (CNN) to enable self-executive 

learning and training process of a model based on a collection of images and 

data set to such an extent that the features of an image can be automatically 

identified with satisfactory accuracy (MathWorks, n.d.). 

 Generally, the image processing technique will be implemented first to 

determine whether the results and accuracy can fulfil the requirement as the 

deep learning approach requires a huge number of data set (in terms of 

thousands) and complicated framework to achieve decent accuracy. 

 

2.2.4 General Algorithms 

The basic procedures involve in image recognition and region detection are 

shown in Figure 2.3. The algorithm starts with capturing the image of interest. 

A camera module with high resolution, e.g. 5 MPs and above, is preferred to 

ensure the readability of the image captured in different conditions and thus the 

accuracy for character recognition is reliable. 

 

 

Figure 2.3: General Algorithm for Image Recognition (Sajjad, 2012) 
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 Secondly, the image captured will undergo pre-processing. It comprises 

a set of algorithms to remove unwanted noise and provide enhancement to the 

quality of the image. Besides, it involves conversion of the image’s format, i.e. 

from colourful to grayscale and to binary as the algorithms associated in the 

subsequent procedure can only take in single channel formatted parameters and 

arrays. 

 Next, localization will be performed to detect and filter the contours or 

borders of the components within the image. Generally, the contours of the 

useful components will be in connected or grouped orientation; thus, connected 

components analysis is implemented for identifying the region of interest (ROI). 

After the ROI has been identified, segmentation process is executed for 

extracting the ROI by cropping and the background or unwanted components 

are eliminated (Sajjad, 2012). 

 Finally, the character recognition is performed on the ROI which 

contains the characters or numbers, to digitize them into ASCII format for 

further usage, e.g. mathematical calculation. There are two different solutions 

for character recognition. The first solution is the well-developed Optical 

Character Recognition (OCR) engine such as Tesseract which was developed 

by HP and Google. The second solution is via the self-develop deep learning 

model using neural network such as Convolutional Neural Network (CNN) and 

K Nearest Neighbour (KNN).  

 

2.3 Deep Learning 

 

2.3.1 Introduction 

Deep Learning is a subtype of machine learning which provides the computers 

with ability to mimic how human thinks, making decisions as well as 

recognizing and classifying objects. The general structure of deep learning 

algorithm is motivated by human’s brain and neurons. It consists of multiple 

layers of neural networks, with each basic unit called Perceptron (Figure 2.4). 

The perceptrons are connected to each other via mathematical method, as 

analogous to the connections of brain’s neurons (Oppermann, 2019). 
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Figure 2.4: Structure of Perceptron (Taud and Mas, 2018) 

 

 The deep learning algorithm for image recognition is generally classified 

as supervised learning. It means both the input data and their labels are provided 

to the learning algorithm. The labels act as referencing answers to the algorithm 

which the prediction from the deep learning model is compared with the labels. 

Subsequently, the error between the label and the prediction is calculated and 

this value will be used to fine-tune the model for improving its accuracy, also 

known as training process (IBM Cloud Education, 2020). Figure 2.5 illustrates 

the idea of supervised learning. 

 

 

Figure 2.5: Supervised Learning (Kumar, 2021) 

 

2.3.2 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a neural network architecture under 

deep learning. It has remarkable performance and accuracy on the tasks 

involving image classification and object detection. Besides, it possesses the 

ability of automatic feature extraction; meaning, the features of an object inside 

an image are identified and extracted automatically via the convolution 

operation based on the entire pixels of that image. Thus, the time-consuming 
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manual feature extraction procedure is eliminated and the image pre-processing 

required is greatly reduced (IBM Cloud Education, 2020). 

  The general structure of the CNN comprises of image input, 

convolutional layers, pooling layers, fully-connected layers and predicted 

outputs. Figure 2.6 illustrates the architecture and the components of CNN. 

 

 

Figure 2.6: Architecture of CNN (MathWorks, n.d.) 

 

 The convolutional layer mainly consists of feature extractor, made up of 

two-dimensional (2D) kernel or filter which can be mathematically expressed 

as matrix. The kernel is being convoluted with the input image pixels which 

returns the feature map that contains the extracted features, such as edges, colour,  

brightness, etc. In addition, each convolutional layer can identify one type of 

features. Thus, for the model to detect various types of objects with different 

characteristics, multiple layers, in terms of hundreds or thousands are required 

(MathWorks, n.d.). 

 The pooling layer performs downsampling on the convoluted feature 

which reduces its dimension and number of parameters while retaining the 

dorminant features. The benefits of downsampling include decreasing the 

computational power required for model training and reducing the size of 

memory required. The pooling techniques are categorized into two types, 

namely max pooling and average pooling. In max pooling, the maximum value 

of the pixels under the kernel is extracted whereas in average pooling, the 

average value among the pixels is extracted (Saha, 2018). 

 The fully-connected layer is the layer that learns and performs 

classification based on the features extracted in the previous layers. In this layer, 

each perceptron in one layer is fully connected with the perceptrons in both its 
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previous and next layers. In addition, weights are present between the 

connections. They are values, typically real numbers, that will be multiplied 

with the output of each perceptron before sending the outputs to next layer. 

These weights are to be fine-tuned during the training process (IBM Cloud 

Education, 2020). 

 

2.3.3 Training Mechanism of CNN 

The technique being implemented to perform training on a CNN deep learning 

model is known as the backpropagation algorithm. This algorithm consists of 

two processes, namely forward propagation and backward propagation.  

During the forward propagation, the input parameters pass through all 

the layers of the CNN architecture and a prediction in terms of probability will 

be generated as output. Next, the predicted output is compared with the labels 

provided and returns the error values.  

Subsequently, the error values will be used to update and fine-tune the 

weights of the neural network in the fully-connected layers. The 

backpropagation algorithm is repeated for multiple times and when each time 

the weights are updated, it is considered as one step. The training process will 

be terminated when the pre-defined criteria are fulfilled, such as constant loss 

function value (McGonagle, et al., n.d.). Ultimately, the accuracy of the model 

is maximized whereas the error is minimized. Figure 2.7 illustrates the 

backpropagation algorithm. 

 

 

Figure 2.7: Backpropagation Algorithm (Johnson, 2022) 
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2.3.3.1 Forward Propagation 

Forward propagation refers to the process of generating a prediction based on 

the input parameters by passing through every layer in the neural network. In 

the forward propagation,  the input image will first undergo convolution 

operation based on the kernel defined. The output of the convolution is the dot 

product between the kernel and the input image’s region covered by the kernel 

as shown in Figure 2.8. After this operation has been executed, one particular 

feature of the image is extracted. 

 

 

Figure 2.8: Convolution Operation (IBM Cloud Education, 2020) 

 

Next, the pooling operation will be performed on the convoluted output 

to reduce its spatial size. Generally, the max pooling technique is implemented, 

which the maximum pixel value under the kernel is retained whereas the others 

are eliminated as shown in Figure 2.9. In addition to reduce of size, the max 

pooling technique provides noise suppressing to the image (Saha, 2018). The 

convolution and pooling operations work in pair and multiple pairs are present 

to extract different types of feature from the image. 

 

 

Figure 2.9: Pooling Operation (Dertat, 2017) 

 

 Subsequently, the 2D matrix is converted to a column vector which is 

then fed into the fully-connected layers of neural network. The neural network, 
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comprises of perceptrons, will classify the image and generate the prediction 

based on the weights and activation function such as ReLU. This mechanism of 

generating the prediction with respect to probability is known as Softmax 

Classification technique (Saha, 2018) . 

 

2.3.3.2 Backward Propagation   

The backward propagation is the mechanism to fine-tune the weights of the 

neural network based on the error values. Error is defined as the difference 

between the targeted value and the actual value. It is calculated by comparing 

the value of the predicted output from the model with the value from the labels 

or reference answers. 

 After obtaining the error values, the gradient descent algorithm is 

implemented to compute the amount of value change applied on the current 

weights. The gradient descent algorithm is known as optimizer in machine 

learning as it calculates the optimal values to the weights which maximize the 

accuracy of the model’s prediction (Johnson, 2022). 

 Ultimately, after consecutive steps of training on the deep learning 

model, the difference between the predicted value and the reference value is 

minimized and the model is capable to make reliable predictions based on the 

input image. 

 

2.4 Image Processing Techniques 

 

2.4.1 OpenCV 

Open Source Computer Vision Library, known as OpenCV, is a free and open 

source library developed by Intel from the year 2000. It incorporates diverse 

algorithms for computer vision and machine learning which are mainly used for 

image processing and object identification. The OpenCV library comprises of 

more than 2500 programming functions to perform various tasks such as colour 

space conversion, edge detection, orientation and angle modification, contours 

detection, etc.  

Besides, the functions and algorithms of OpenCV library are written in 

C++ and well optimized. It also provides various wrappers for multiple 

programming languages such as Java, MATLAB and Python; thus, the coding 
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developed by the programmers can be executed on different platforms, 

including low-processing power application, in a rapid manner with minimized 

execution time and power consumption. (OpenCV Organisation, n.d.) 

 

2.4.2 Grayscaling 

An image captured by the CMOS image sensor is in RGB (Red, Green, Blue) 

colour space due to the presence of colour filter as discussed in Section 2.3.1. 

However, most of the OpenCV functions for image processing can only take in 

the single channel image (Gray) instead of three channels image (RGB); thus, 

the initial step will be the grayscaling. 

Figure 2.10 shows that each pixel in grayscale is represented by single 

digit which denotes the intensity. Contrarily, each pixel of a colour image 

consists of 3 digits representing the intensity of the respective RGB colour 

channels. Therefore, by implementing the equation (2.1), the colour space 

conversion can be achieved (OpenCV Organisation, 2020). 

 

 𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2.1) 

 

 

Figure 2.10: Illustration of Grayscale vs RGB in Arrays (Rune, 2020) 

 

2.4.3 Image Filtering 

Filtering can be performed on an image via two-dimensional (2D) convolution 

operation. When an image is filtered by a low pass filter (LPF), the noise within 

the image can be eliminated and the image is smoothened; whereas when it is 

filtered by a high pass filter (HPF), the edges in the image are sharpen. To 

perform 2D convolution, a kernel is needed to represent the type of filter. It is 

an 𝑛 × 𝑛 matrix as shown below. 
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 𝐾𝑒𝑟𝑛𝑒𝑙 = 𝐾

=  [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] 
(2.2) 

 

 The equation for the 2D convolution is 

 

 

𝑔(𝑥, 𝑦) =  ∑ ∑ 𝐾(𝑖, 𝑗)

𝑏

𝑗=−𝑏

𝑓(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑎

𝑖=−𝑎

 (2.3) 

 

where 

𝑥 and 𝑦 are the coordinate of the pixel 

𝑖 and 𝑗 are the row and column element of the kernel respectively 

 

 Basically, the operation of convolution is to sum up the product of each 

element of the kernel and the respective element of the image which is encircled 

by the kernel. Next, the sum will be the value for the centre pixel as compounded 

by the kernel for the filtered image. The process is illustrated in Figure 2.11. 

 

 

Figure 2.11: Process of 2D Convolution (Stanford University, n.d.) 

 

2.4.4 Thresholding 

Thresholding is the process of binarizing a gray-scaled image, i.e. converting 

the value of each pixel to either 0 or maximum depending on the threshold value 

defined, as represented by the equation (2.4). The purpose of thresholding is to 

fade out or remove unnecessary elements within the image such as background 
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and reflection. This can be achieved as there is a variation between the 

background and object in terms of pixel intensity as illustrated by Figure 2.12. 

 

 
𝑓(𝑥) = {

 255, 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑥 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (2.4) 

 

 

Figure 2.12: Difference in Intensity between Background and Object 

(Rogowska, 2009) 

 

Besides, there are two types of thresholding, i.e. simple thresholding and 

adaptive thresholding. In simple thresholding, a threshold with constant value 

is defined and it is applied to every pixel of the image. However, the simple 

thresholding’s result is inferior when the image lighting condition is fluctuating. 

On the other hand, the adaptive thresholding uses an algorithm to vary the 

threshold value for each pixel depends on its surrounding region. Thus, the 

thresholding result is optimized for different illumination. The Otsu’s 

binarization algorithm is utilized to determine the threshold value, t, that keeps 

the weighted within-class variance in minimum (equation 2.5) (OpenCV 

Organisation, n.d.). 

 

 𝜎𝑤
2 (𝑡) = 𝑞1(𝑡)𝜎1

2(𝑡) +  𝑞2(𝑡)𝜎2
2(𝑡) (2.5) 

 

where 

𝜎 is the variance of each class 

𝑞 is the probability of each class 
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2.4.5 Morphological Transformation 

Morphological transformation is a set of algorithms to process an image based 

on the shape of the components. It mainly consists of four operations which are 

erosion, dilation, closing and opening. The algorithms perform comparison on 

the pixel in the input image with its surrounding pixels to decide the value of 

the corresponding pixel in the output image (Sreedhar, 2012). 

 The erosion operation adjusts the pixel of the output image to zero (black) 

if any of its surrounding pixels under the kernel is zero. Thus, the overall white 

pixels in the image will be reduced and converted to black pixels as illustrated 

in Figure 2.13. This operation is effective for the removal of white noises. 

 

 

Figure 2.13: Erosion Operation 

 

The dilation operation is opposite to the erosion. It sets the pixel of the 

output image to one (white) if any of the adjacent pixels within the kernel is one. 

Therefore, the white pixels in the image will be increased after dilation which 

can be observed in Figure 2.14. 

 

 

Figure 2.14: Dilation Operation 

 

Closing and opening are the operations that combine both erosion and 

dilation. Closing is erosion comes after dilation whereas opening is dilation 

comes after erosion. These two operations are very effective and convenient for 

extending the shape, fixing the broken lines and patching up small holes in the 
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image. The operation should be selected depending on the background of the 

image (white or black). 

 

2.4.6 Edge Detection 

The Canny edge detector developed by John F. Canny is considered as one of 

the most popular edge detectors used in image processing due to its accuracy 

and flexibility. There are five stages in the detection algorithms, namely 

smoothing, finding derivatives, calculating gradient magnitude and orientation, 

non-maximum suppression and hysteresis. 

 Smoothing is the first stage as the edge detection is vulnerable to noise 

which can cause errors or inaccuracy. In the Canny’s algorithm, a Gaussian 

kernel (in 𝑛 × 𝑛 matrix) is used to filter the noise (equation 2.6). 

 

 
𝐾𝑖,𝑗 =  

1

2𝜋𝜎2
𝑒

−
(𝑥2+𝑦2)

2𝜎2  (2.6) 

where 

𝑥 = 𝑖 − (𝑘 + 1), 1 ≤ 𝑖 ≤ 2𝑘 + 1    

𝑦 = 𝑗 − (𝑘 + 1), 1 ≤ 𝑗 ≤ 2𝑘 + 1   

𝑘 =  
𝑛−1

2
  

 

 Next, the 1st derivatives for the edges are being calculated for the 

horizontal direction and vertical direction, represented as Gx and Gy. From these 

values, the edge gradient and direction can be calculated using the equations 2.7 

and 2.8, respectively. 

 

 
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  √𝐺𝑥 + 𝐺𝑦 (2.7) 

 
𝜃 = tan−1 (

𝐺𝑦

𝐺𝑥
) (2.8) 

  

Subsequently, every pixel is checked to determine whether it is a local 

maximum within the adjacent pixels in the gradient direction. The pixel which 

is local maximum will be examined next stage whereas the other will be 

suppressed. Lastly, in the hysteresis stage, a maximum threshold and minimum 
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threshold value will be defined. If an edge with gradient larger than the 

maximum threshold, it is classified as an edge, whereas if the gradient is smaller 

than the minimum threshold, it is eliminated (Teli, 2019). 

 

2.4.7 Contour Detection 

Contours detection is used to detect the borders of a component or the outline 

of a shape in the image. It is the fundamental for various applications including 

object recognition, image classification and region of interest extraction. The 

contour of a specific object is defined as the boundary pixels with identical 

characteristics such as intensity and colour. Thus, by comparing a pixel with its 

adjacent pixels based on their characteristics, the contour can be detected (Gong 

et al., 2018). 

 There are two different algorithms for contour detection, namely the 

CHAIN_APPROX_SIMPLE algorithm and CHAIN_APPROX_NONE 

algorithm. The CHAIN_APPROX_NONE will detect the contour of a shape 

and store all the points of that particular contour; thus, the contour will be 

indicated with line segments. On the other hand, the 

CHAIN_APPROX_SIMPLE method will truncate the contour’s line segments 

and preserve their vertices. Therefore, this method indicates the contour with 

discrete points, utilizes less memory and executes faster (Mallick, n.d.). The 

comparison of both methods is illustrated in Figure 2.15. The former method is 

more suitable for irregular shape whereas the latter for regular shape. 

 

 

Figure 2.15: CHAIN_APPROX_NONE vs CHAIN_APPROX_SIMPLE 

 

2.4.8 Orientation Correction 

The orientation of an image may not be upright and straight all the time due to 

the misplacement of camera. With the image tilted or rotated in different 

directions, the accuracy of the object detection or character recognition is 
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greatly affected. Thus, it is necessary to apply correction to the orientation of 

that particular image. There are two elements involve in this process, namely 

the angle detection and affine transformation. 

 Firstly, a reference component such as rectangle or square in the image 

is selected via the contour detection. Next, by implementing a shaping function 

such as the minAreaRect, the characteristics of the rectangle such as the size, 

tilted angle and position of centre can be obtained as illustrated in Figure 2.16 

below. 

 

Figure 2.16: Parameters Returned by minAreaRect 

 

Subsequently, a rotation matrix (equation 2.9) is to be defined using the 

parameters obtained from the previous step to perform the rotation. As in 

programming aspect, the mathematical function is executed in matrix 

calculation. Lastly, the warpAffine function performs matrix multiplication of 

the rotation matrix and the vector of the initial point to complete the geometric 

transformation (Mallick, n.d.). 

 

 
𝑀 = [

𝛼 𝛽 (1 − 𝛼)𝑐𝑥 − 𝛽𝑐𝑦

−𝛽 𝛼 𝛽𝑐𝑥 + (1 − 𝛼)𝑐𝑦
] (2.9) 

where 

𝛼 = 𝑘𝑐𝑜𝑠(𝜃)  

𝛽 = 𝑘𝑠𝑖𝑛(𝜃)  

cx and cy are the coordinates of the centre   

k is the scaling factor 
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2.4.9 ROI Extraction 

Once the region of interest (ROI) has been identified, it is to be extracted and 

cropped to appropriate size (depending on the application) for further operation 

such as character recognition. A mask is required to perform the ROI extraction. 

It is an image arrays with identical size to the original image and contains the 

area of the ROI in white (255) and the external region in black (0) as shown in 

Figure 2.17. 

 

 

Figure 2.17: Mask for ROI Extraction 

 

Next, the bitwise AND operation will be performed on the original 

image with the mask. The bitwise AND operation returns the pixel value of the 

original image if the pixel of the mask is not 0, else the output pixel will be 0 

(black) as shown in the equation 2.10. Thus, the ROI in the original image is 

retained and the external region is replaced with black pixel. The ROI is said to 

be extracted. 

 

 
𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) =  {

𝑖𝑛𝑝𝑢𝑡(𝑥, 𝑦),   𝑖𝑓 𝑚𝑎𝑠𝑘(𝑥, 𝑦) ! = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.10) 

 

where 

x and y are the coordinates of the pixel 

 

2.5 Character Recognition 

Optical Character Recognition (OCR) is a technology being utilized for 

converting the characters in an image to the machine language such as ASCII 

format. This conversion is necessary for the digitization purpose and it enables 

further operations to be performed on the characters, for examples mathematical 

calculation, text manipulation and uploading to cloud. 
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 Tesseract is a free and open source OCR engine developed by Hewlett 

Packet (HP) and Google using neural network. This engine can recognize more 

than 100 languages. Moreover, it is written and compiled in C and C++, thus it 

can be executed in various platforms such as Linux, Windows and MacOS (Patel 

et al, 2012). Besides, to run the Tesseract engine in Python, a library wrapper 

known as PyTesseract is required. It consists of the Tesseract class in Python 

language and is able to deal with various type of images, for instance jpg, png, 

etc as supported by the Pillow library.   

 

2.6 Summary 

In this chapter, the theories, concepts and working principles regarding the 

image recognition have been discussed. There are many tools and functions 

provided by the OpenCV library which can be utilized to determine and extract 

the region of interest. Subsequently, the ROI can be processed by the optical 

character recognition engine to obtain the digitized readings. The knowledge 

and idea acquired from this chapter will be applied into the project subsequently. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter provides the details regarding the configuration of the proposed 

system, the processes and flowchart of the system, the software and hardware 

involved, as well as the list and cost of components. Besides, the work plan, 

project milestones, schedule of each activity and the Gantt Charts are illustrated 

subsequent to the methodology. They deliver the information about the progress 

and tasks that have been achieved during the execution of this project.  

 

3.2 Methodology 

This section describes the general procedures and tools utilized in developing 

the meter’s reading detection system. The development process is illustrated by 

a flowchat as shown in Figure 3.1. 

Firstly, the images of various types of analogue meters had been 

collected and labelled manually to form the dataset for the training of the deep 

learning model. Next, the deep learning model, namely SSD MobileNet V2,  

was trained using the TensorFlow architecture via Google Colab.  

Subsequently, the software for the system, comprised of image 

inferencing, region of interest (ROI) extraction, image processing, optical 

character recognition and clouding was developed. Thereafter, the software was 

transferred to the Raspberry Pi microcomputer for execution. It was installed on 

the real meter for readings digitization and accuracy evaluation as real-world 

application.  

 

 

Figure 3.1: Flowchart of the System Development 
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3.3 Software 

 

3.3.1 Overview 

The software of meter’s reading detection system consisted of six major 

operations as shown in Figure 3.2. Firstly, the self-trained deep learning model 

was loaded into the system’s RAM. Next, the image of the meter can either be 

captured directly using the camera integrated on the microcomputer or loaded 

from the storage. The deep learning model loaded previously was used to 

perform inference on the image to localize the meter reading’s area. 

Subsequently, the region of interest (ROI) containing the readings was extracted. 

Thereafter, the ROI underwent image processing for noise removal and quality 

enhancement. Lastly, the optical character recognition (OCR), namely Tesseract, 

was used to recognise the digits and convert them to ASCII format which would 

then be uploaded to the cloud (Firebase). 

 

 

Figure 3.2: Operations of the Meter’s Readings Detection System 

 

3.3.2 Platforms 

 

3.3.2.1 Python 

The programming language used in this project is Python. It is a high-level 

object-oriented programming language which offers user-friendly and high code 

readability experience. Python supports multiple libraries, modules and 

packages for various applications such as image processing, data analysis, 

hardware integration, etc. Besides, the Python codes are standardized in 

different platforms. Thus, the Python programme developed in the Windows 

platform can be directly migrated and executed in the Raspberry Pi OS without 

extra modifications. 
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3.3.2.2 Google Colab 

The Google Colab is a Python development environment, provided freely by 

Google Inc that runs entirely on the cloud which the programmer can access the 

Colab notebook using internet browsers. Due to its cloud-based characteristic, 

many benefits are available. Firstly, it enables auto-saving on cloud so that the 

programme being developed are always up-to-date. Besides, it is integrated with 

pre-installed libraries, especially for deep learning such as TensorFlow and 

Keras. Morever, it provides high amount of RAM and powerful GPU which 

enables accerelation and optimisation for the model training process (Nelson 

and Hoover, 2020). 

 

3.3.2.3 Spyder IDE 

Spyder is an integrated development environment (IDE) specifically for Python 

programming language. It is an open-source and cross-platform software which 

provides comprehensive development tools and functionalities such as variable 

explorer, auto error detection, keywords suggestion, codes documentation and 

debugging console. The Spyder IDE user interface is shown in Figure 3.3. 

 

 

Figure 3.3: Spyder IDE 

 

3.3.2.4 LabelImg 

LabelImg is a free image annotation software developed by Tzutalin in 2015. It 

has a simple and user-friendly interface which enables quick image labelling 
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and class defining. Besides, it supports two different labelling formats, namely 

PASCAL VOC and YOLO (Tzutalin, 2015). In this project, the TensorFlow 

architecture used the PASCAL VOC format. Figure 3.4 shows the user interface 

of the LabelImg software. 

 

 

Figure 3.4: LabelImg Annotation Software 

 

3.3.2.5 Firebase 

Firebase is an online platform developed by Google, primarily for cloud services. 

It provides various functions such as real-time database, web hosting, cloud 

storage and users analytics (Moroney, 2017). The programme developed in this 

project used the Firebase’s real-time database for uploading and storing the 

digitized meter’s readings which enabled the real-time monitoring function. 

Figure 3.5 shows the console of the Firebase platform. 

 

 

Figure 3.5: Firebase Console 
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3.3.3 Deep Learning Model 

The deep learning model used in the image recognition system was based on the 

SSD MobileNet V2. This model was chosen because it required lesser 

processing power and storage than other conventional models such as VGG, 

ResNet, Inception and AlexNet (Howard et al., 2017). It was suitable to be 

deployed in resource-limited devices, such as a low-cost mobile phone or 

embedded system, e.g., Raspberry Pi. 

 

3.3.3.1 Dataset 

A dataset containing 750 meter images has been prepared and then labelled with 

the labelImg software. A class of ‘readings’ has been defined. A portion of the 

images are generated with augmentation techniques to increase the variability. 

The dataset is divided with 8:2 ratio: 600 images for training and 150 images 

for validation. Figure 3.6 shows the examples of meter images within the dataset. 

 

 

Figure 3.6: Examples of Meter Images in the Dataset 

 

3.3.3.2 Model Training 

The deep learning model was trained using the TensorFlow library via Google 

Colab with GPU accelerator. The GPU accelerator was activated as it provided 

10 times faster training speed for each step of the model as compared to using 

CPU only. Figure 3.7 shows the overall flowchart of the training procedures. 



29 

 Firstly, the dataset for the deep learning model had been prepared as 

discussed in previous subsection. Each image being labelled with the labelImg 

software came with a XML file which contained the information about the 

image and the coordinate of the labelling box, as shown in Figure 3.8. 

 Next, all the XML files of the images within the dataset were combined 

into one file by converting them into CSV format. Subsequently, a tf.record file 

was generated based on the CSV file created previously. The tf.record file is a 

binary formatted file specialised for the TensorFlow architecture. It has been 

optimised for the TensorFlow model’s training usage which improves the 

training performance and reduces the dataset file size (Gamauf, 2018). 

 Besides, a label map, the file used to define the name of classes in the 

dataset, was created. In this project, the label map contained only one class, 

namely “readings”. 

 Next, the configuration file (pipeline.config) for the training process was 

set up. It contained the model configuration and hyperparameters such as batch 

size, learning rate, activation function, tf.record file location and training 

checkpoint file location. In this project, the batch size considered was 32 due to 

the size of RAM provided by Google Colab. 

In addition, the transfer learning approach was implemented using the 

pre-trained object detection model based on the COCO dataset to save the 

training time, reduce the size of dataset and improve the performance of the 

neural network, as it transfers the knowledges gained from previous trainings to 

current task (Torrey and Shavlik, n.d.). 

After all the requirements had been fulfilled, the training of the model 

was started. During the training process, new checkpoint file which contained 

the latest progress was created for every 1000 training steps. The TensorBoard 

was used to convert the numerical information in the checkpoint file to graphical 

information in terms of charts. Thus, the training parameters such as various 

types of losses, learning rate and steps per second can be easily visualized. 

When the total loss of the model had reached a constant value, i.e. 0.2 in 

this case, the deep learning model was considered saturated and well-trained. 

Thus, the training process was interrupted and the training steps were around 

15000. The training was stopped at this moment to prevent the over-fitting issue. 
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Lastly, the latest checkpoint file was converted to the final model 

(saved_model.pb) using the model exporter programme. The saved_model.pb 

file can be used to perform inferencing on the meter images and thus localizing 

the reading region. 

 

 

Figure 3.7: Flowchart of Deep Learning Model Training via TensorFlow 
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Figure 3.8: XML file of the Labelled Image 

 

3.3.4 Extraction of ROI 

The region of interest (ROI) is the area within the detection box where the 

meter’s reading located. It is necessary to extract the ROI by removing the area 

outside the detection box while retaining the area within the box so that 

unintended characters would not be recognized during the OCR process. This 

was achieved using the contour detection functions of OpenCV. By setting the 

skip_labels parameter to be true during the inference, the ‘readings’ labelling 

can be removed. 

First, the meter image that had been inferenced by the deep learning 

model was converted to HSV format using the colour space conversion. As the 

detection box was green, the lower and upper limits of the HSV values were 

defined as (40,200,200) and (50,255,255) respectively. Next, the image was 

compared with the limits defined using the inRange function to obtain a mask 

containing only the box outline and position. 

Thereafter, the findContours function was used to locate the box and a 

new mask with the region of interest in white (255) was created using 

drawContours. Next, the bitwise AND operation was performed on the meter 

image with the new mask. Subsequently, the positions of vertices of the ROI 

were obtained using the NumPy min and max functions. These vertices values 

were essential for cropping out the ROI. 
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3.3.5 Image Processing 

Image processing is to remove the noise and enhance the quality of the extracted 

ROI. This step is crucial to improve the accuracy of the OCR. According to the 

documentation (Tesseract, n.d.), the Tesseract OCR engine prefers the 

characters in black and white, and the characters should be resized to at least 

300 dpi of resolution. 

The ROI was first enlarged to three times its original size using the resize 

function in OpenCV. The superior interpolation method of INTER_CUBIC was 

used to enlarge the image. It performed bicubic interpolation over a 4×4-pixel 

neighbourhood (Asthana, 2014) and outputted a clear and large image as desired. 

Next, the enlarged ROI was converted to grayscale using the cvtColor 

function. It was then thresholded to binarize the grey-scaled image into black 

and white only by converting the value of each pixel to either 0 or maximum. 

Moreover, the sharpening process can be carried out using the filter2D 

function if necessary, by defining an appropriate matrix utilizing the 

numpy.array function. 

 

3.3.6 Optical Character Recognition 

Optical Character Recognition, OCR is a technology being utilized for 

converting the characters in an image to the machine language such as ASCII 

format. In this paper, a free version of OCR engine, known as Tesseract is used. 

To run the Tesseract engine in Python, a library wrapper known as PyTesseract, 

which consists of the Tesseract class in Python language is required. 

The Tesseract engine can only operate with the image in PIL format. 

However, the ROI as extracted and processed in previous steps was represented 

in arrays form. Thus, it was mandatory to convert the ROI format using the 

Image.fromarray function from the PIL library. Thereafter, the 

pytesseract.image_to_string function was executed with the ROI in PIL format 

as an input parameter and the function would return the recognized characters 

as a string. 

There were various configurations that can be defined for the 

pytesseract.image_to_string function to achieve better performance depending 

on the usage and character orientation. First was the lang parameter which refers 

to the Tesseract dataset being used for the recognition process. Officially, there 
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are three types of datasets (.traindata file) with different sizes, accuracy and 

execution speed (Tesseract, 2017). Thus, the user can choose to use either type 

according to the requirements. Next was the segmentation mode which depends 

on the orientation of the characters (Tesseract, n.d.), in this case the psm 7 was 

used, meaning the characters were in the format of single line of text. 

Furthermore, for recognizing digits only as in the meter’s readings, the 

outputbase digits config was employed. In addition, the re.sub function was 

used to eliminate unnecessary spacing and symbols recognized. 

 

3.3.7 Uploading Data to Cloud 

The meter’s reading after being digitized, would be uploaded to the Firebase’s 

real-time database for real-time monitoring. In Python, an additional library 

namely python-firebase, was installed to perform the Firebase cloud accessing. 

The data being uploaded to the cloud were in the following format: 

 

Date: DD-MM-YYYY, Time: hh:mm:ss, Reading: XXXX 

 

where 

DD is day; MM is month; YYYY is year 

hh is hours; mm is minutes; ss is second 

XXXX is the digitized meter’s reading 

 

3.3.8 Additional Libraries 

 

3.3.8.1 Imutils 

Imutils is the supplemental package that aids the operation of OpenCV. It 

provides various functions to deal with the output from OpenCV such as contour 

grabbing, contour sorting and transformation. 

 

3.3.8.2 Numpy 

Numpy is a library that handles arrays and matrices with multiple dimensions. 

It provides algorithms for array creation, transposing, reshaping, obtaining min 

and max values in an array, etc. This library is essential in image processing as 



34 

the images are represented by different dimensions of numeric arrays in Python 

and OpenCV. (Numpy Organisation, 2021) 

 

3.3.8.3 PIL 

PIL stands for Python Imaging Library. It is the main image manipulation 

library for Python which provides functions such as image opening, enhancing, 

format conversion and exporting. The Tesseract character recognition engine 

only supports the image in PIL format, thus this library is necessary to convert 

the image array from OpenCV format. 

 

3.3.8.4 re 

Regular Expression (re) is a module that allows the user to define certain rules 

or patterns for the string. It is mainly used to search, split or replace the 

particular characters in a string with reference to the patterns defined. For 

example, unnecessary spacing in a string can be eliminated using the re function.     

 

3.3.8.5 Pytesseract 

Pytesseract is a library wrapper for the Tesseract engine. It enables the execution 

of Tesseract engine within the Python IDE using a sets of python coding and 

simplifies the work of a developer. 

 

3.4 Hardware 

 

3.4.1 Configuration 

The microcomputer employed in the image recognition system was the 

Raspberry Pi 4 Model B. It was powered by a 240 V AC to 5 V DC Adapter 

with 15 W power rating. A camera module was attached to the microcomputer 

via the CSI port for capturing the image of the analogue meter. Besides, the 

microcomputer was connected to WiFi and upload the digitized readings to the 

cloud system, namely Firebase. Moreover, a monitor together with a pair of 

keyboard and mouse were connected to the microcomputer during the set up 

and debugging process to allow the developer interfacing with the 

microcomputer. Figure 3.9 shows the overall block diagram of the system 

proposed. 
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Figure 3.9: Block Diagram of the System 

 

3.4.2 Raspberry Pi 4 Model B 

The Raspberry Pi 4 Model B is a microcomputer developed by the UK-based 

Raspberry Pi Foundation. It was released in June 2019 and is currently the latest 

version in the Pi series. This model is integrated with its own processor, memory 

chip (RAM), connectivity modules, various I/O ports and camera peripheral. It 

can offer computing performance comparable to a typical entry-level laptop and 

supports Python programming. A micro SD card is used as a hard drive to store 

the operating system, software and files of the microcomputer.  

Besides, the Model B supports both Bluetooth and WiFi wireless 

connections. The Bluetooth version supported is 5.0 and the WiFi is dual-band 

2.4/5 GHz. Thus, it is very convenience for the online cloud access and internet-

of-thing (IoT) purposes. The power consumption of the Model B is 15 W and is 

supplied by an AC to DC adapter with output of 5 V/3 A. To configure and 

control the microcomputer, a set of USB keyboard and mouse are required. 

 

 

Figure 3.10: Raspberry Pi 4 Model B 
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Table 3.1: Specifications of Raspberry Pi 4 Model B (RaspberryPi, 2020) 

Components Details 

Processor Broadcom BCM2711 (ARM v.8) 

Memory LPDDR4 (1/2/4/8 GB) 

Connectivity 2.4/5 GHz IEEE 802.11b/g/n/ac wireless 

Bluetooth v5.0 

4x USB ports 

Gigabits Ethernet 

40 GPIO pins 

Video & Sound Micro HDMI, camera peripheral, audio port  

Power supply 15 W, 5 V 3 A DC 

Environment 0 – 50 °C 

 

3.4.2.1 Operating System 

The official operating system (OS) for Raspberry Pi 4 Model B is the Raspberry 

Pi OS. It is a Debian-based OS developed by the Raspberry Pi Foundation and 

is highly optimized for the ARM CPU. The OS has a built-in Package Manager 

which consists of various applications such as web browser, document editor, 

etc. The Python IDE such as Spyder is also supported on the Raspberry Pi OS. 

The OS is to be downloaded into an SD Card using Windows and subsequently 

installed on the microcomputer.  

 

3.4.3 Camera Module 

The Raspberry Pi Camera Module is a camera board officially released by the 

Raspberry Pi Foundation. It consists of a 5 MP OV5647 CMOS sensor 

developed by OmniVision. The module is weighted at 3 g and with a size of 6 

cm2. Besides capturing a 5 MP image, it is also capable of recording a video 

with 1080p30 and 720p60 resolutions. The camera module is connected to the 

Raspberry Pi 4 Model B microcomputer via the high data rate CSI port 

integrated on the board. 
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Figure 3.11: Raspberry Pi Camera Module 

 

 

Figure 3.12: Camera Connection with CSI Port 

 

3.5 Cost of Components 

Table 3.2 shows the cost of each compenents for this project. 

Table 3.2: Cost of Components 

Component Quantity Price (RM) 

Raspberry Pi 4 Model B 

(4 GB RAM) 

1 240.00 

Power Adapter  

(240 V AC to 5V 3A DC) 

1 35.00 

MicroSD card (32 GB) 1 28.90 

Raspberry Pi Camera 

Module 

1 29.90 

Total Price (RM) 333.80 
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3.6 Planning and Milestones 

 

3.6.1 Project Milestones 

There are 6 milestones for the project as shown in Table 3.3 

 

Table 3.3: Project Milestones 

Label Milestone 

M1 Preliminary investigation for customer’s requirements and 

problem statement 

M2 Literature review and research 

M3 Data collection 

M4 Model Development 

M5 Model Evaluation and Optimization 

M6 Integration of Software and Hardware 

 

3.6.2 Project Schedule and Gantt Chart 

Table 3.4 shows the project schedule and activities for FYP part 1 and Figure 

3.13 shows the Gantt Chart for Part 1. 

 

Table 3.4: Project Schedule for FYP Part 1 

Milestone Activities Duration 

(weeks) 

M1 A1 Discuss with supervisor and understand 

the scope of project 

1 

M1 A2 Preliminary investigation and project 

planning 

1 

M2 A3 Perform literature review and research on 

related topics for image processing 

6 

M3 A4 Collect the required data and images 2 

M4 A5 Develop the software model for image 

recognition system 

7 

M5 A6 Initial model testing and obtaining 

preliminary results 

3 

- A7 Documentation and report writing 2 
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Figure 3.13: Gantt Chart for FYP Part 1 

 

Table 3.5 shows the project schedule and activities for FYP part 2 and Figure 

3.14 shows the Gantt Chart for Part 2. 

 

Table 3.5: Project Schedule for FYP Part 2 

Milestone Activities Duration 

(weeks) 

M5 A8 Software model testing and optimization 8 

M6 A9 Obtain the hardware components 3 

M6 A10 Build the hardware prototype 2 

M6 A11 Integrate the software with hardware  4 

M6 A12 On-site testing and results collection 5 

- A13 Documentation and final report writing 3 
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Figure 3.14: Gantt Chart for FYP Part 2 

 

3.7 Summary 

This chapter has elaborated the details of methodology involved in the project  

such as the system configuration, execution procedures, flowchart, software, 

hardware components and cost of materials. Besides, the workplan, milestones, 

activities and their respective schedule and duration were listed out. The author 

carried out the project based on the above information to ensure that it could be 

successfully completed and all the objectives were able to be achieved. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter mainly illustrates and explains the outcomes of each sub-system as 

mentioned previously in the methodology section. In-depth analysis have been 

performed on the results, in terms of software, hardware and accuracy 

evaluation, to verify and ensure that the solutions provided and system 

developed are able to achieve the aim and objectives of this project. 

 

4.2 Software Simulation 

 

4.2.1 Deep Learning Model 

The deep learning model was based on the SSD MobileNet V2 achitecture. The 

size of the model, with training steps of 15000, was about 10 MB. It was 

appropriate for resource-limited applications due to small sized.  

Figure 4.1 illustrates the on-going training process of the deep learning 

model on Google Colab with TensorFlow. It can be observed that the time taken 

for each training step was about 0.75 seconds as accelerated by the GPU. 

Besides, the loss parameters were updated for every 100 training steps. 

Moreover, Figure 4.2 shows the graphs of various loss functions for the 

training process of the deep learning model. It can be observed that the curve of 

the total loss function was decreasing and approaching constant as the training 

steps increased. Thus, the training process had been stopped to avoid overfitting. 
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Figure 4.1: On-going Training Process of Deep Learning Model on Google 

Colab 

 

 

Figure 4.2: Graphs of various Loss Functions 

 

Both the deep learning model and meter image were loaded into the 

system memory. The meter image was then being inferenced and drawn with 

detection box using the viz_utils.visualize_boxes_and_labels_on_image_array 

function as shown in Figure 4.3. Figure 4.4 shows the inferencing of various 
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types of meters by the deep learning model. It can be observed that the meter’s 

readings area had been framed with detection box and labelled as readings. 

 

 

Figure 4.3: Detection Box Visualizing Function 

 

 

Figure 4.4: Inferencing of various Types of Meters 

 

4.2.2 Extraction of ROI 

The Region of Interest (ROI), containing the meter’s reading, was extracted by  

removing the area outside the detection box and retaining the area within the 

box so that any unintended characters would not be recognized during the OCR. 

This process was achieved using the contour detection and masking methods.  

Figure 4.5 shows the meter image that had been inferenced using the 

deep learning model where the “readings” labelling was hidden with the 

skip_labels parameter in the visualization_utils function as it was unnecessary 

for the ROI extraction. 
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Figure 4.5: Inferenced Meter Image with Label Hidden 

 

Figure 4.6 shows the output of the inRange function with lower and 

upper limits of HSV values of (40,200,200) and (50,255,255) respectively. It 

can be observed that the outline of the detection box is extracted in white (bits 

of 255) whereas the other region became black (bits of 0).  

 

 

Figure 4.6: Output of inRange function 

  

Figure 4.7 shows the mask created using the findContours and 

drawContours functions. Firstly, the findContours detects the outline extracted. 

Next, the drawContours makes the area within the box to be white. The mask is 

essential for the extraction of ROI which will be implemented with the bitwise 

AND operation. 
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Figure 4.7: Mask for ROI Extraction 

 

Figure 4.8 shows the ROI containing the meter’s reading which is 

obtained by applying the bitwise AND function on the mask as well as the meter 

image. Figure 4.9 shows the excessive region in black was cropped using the 

positions of vertices of the ROI, obtained from the NumPy min and max 

functions. 

 

 

Figure 4.8: Output of bitwise AND Function 

 

 

Figure 4.9: ROI Extracted 
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4.2.3 Image Processing 

The ROI extracted had undergone image processing to remove the noise and 

enhance its quality. This step was essential as to improve the accuracy of the 

optical character recognition. 

 Firstly, the ROI was enlarged using the resize function of the OpenCV 

with the INTER_CUBIC interpolation method as shown in Figure 4.10. It can 

be observed that the quality of the image, in terms of clearness, can still be 

retained after enlarging. 

 

 

Figure 4.10: ROI being Enlarged 

 

 Next, grey-scaling was performed on the ROI using the colour space 

conversion function. This step was necessary as the thresholding function of 

OpenCV in the next step can only take in a single-channel (Grey) image instead 

of three-channels (RGB) image. Figure 4.11 shows the ROI in grey-scale. 

 

 

Figure 4.11: Grey-scaled ROI 

 

 Afterwards was the thresholding operation. Figure 4.12 illustrates the 

thresholding of the ROI in which the image being represented in binary form, 

which was black (0) and white (max). It can be observed that some of the noises 

and unnecessary components are removed. 

 

 

Figure 4.12: Thresholded ROI 
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4.2.4 Character Recognition 

Finally, the ROI after being processed, was performed with optical character 

recognition using the Tesseract OCR engine. The numerical characters in the 

ROI are digitized and converted to string datatype as shown in Figure 4.13. 

Furthur operations such as uploading to the cloud can be performed using this 

string data. 

 

 

Figure 4.13: Output of Tesseract OCR   

 

4.3 Hardware Implementation 

 

4.3.1 Setup 

The Raspberri Pi microcomputer was setup with its operating system, namely 

Raspberry Pi OS, as well as all the essential libraries as mentioned in the 

methodology section. Next, the camera module was intalled on the CSI 

peripheral and being activated.  

Subsequently, the microcomputer with camera module was fixed on a 

plastic holder with clipping function as shown in Figure 4.14. Morover, the 

power of the hardware was supplied by a power bank to enable the its portability 

as illustrated in Figure 4.15. The image recognition software developed in 

previous steps is transferred to the Raspberry Pi microcomputer for execution 

and validation. 
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Figure 4.14: Hardware Setup 

 

 

Figure 4.15: Hardware Connected to Power Bank 
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4.3.2 Installation on Meter 

After the Raspberry Pi microcomputer had been set up and the image 

recognition software was successfully executed on the microcomputer, the 

hardware was then installed on the water meter for practicallity testing and real-

time monitoring. The hardware installation on the water meter is shown in 

Figure 4.16. 

 

 
Figure 4.16: Hardware Installation on Water Meter 
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4.4 Cloud and Real-time Database 

The digitized meter’s reading was uploaded to the Firebase Real-time Database 

to enable the cloud storing and real-time monitoring functions. The interval of 

data upload had been configured to two minutes; thus, the data in the Firebase 

would be updated for every two minutes. 

 The real-time database can be accessed using internet browser, by 

logging in to the Firebase’s website with URL of console.firebase.google.com. 

Figure 4.17 shows the data being collected and stored in the Firebase Real-time 

Database. It can be observed that each data consists of information in date, time 

and reading digitized. 

 

 

Figure 4.17: Data Collected in Firebase 

 

4.5 Accuracy Evaluation 

The accuracy of the system was evaluated in terms of two criteria, namely the 

accuracy of meter’s reading region localization by the deep learning model and 

the average accuracy of optical character recognition on the meter’s reading. 

Figure 4.18 shows the data being collected, tabulated and compared using 

Microsoft Excel. In addition, Equation 4.1 was used to calculate the accuracy of 

the optical character recognition.  Besides, the overall results of the accuracy 

evaluation are shown in Table 4.1. 
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Figure 4.18: Data Tabulated using Microsoft Excel 

 

 
% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁𝑢𝑚 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑖𝑔𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚 𝑜𝑓 𝐷𝑖𝑔𝑖𝑡𝑠 
× 100 (4.1) 

 

Table 4.1: Results of Accuracy Evaluation 

Aspects Values 

Accuracy of meter’s readings region detection by 

Deep Learning Model 

95% 

Average accuracy of character recognition by  

Tesseract OCR 

91% 

 

From the evaluation process, it is noticed that the accuracy of the meter’s 

readings region detection by deep learning model is affected by the size and 

resolution of the meter images. When the meter faces are small, which is 

occupying less than 30% of the whole image, there is higher chance that the 

deep learning model detects the false area. Thus, it is recommended to place the 

camera near and centred to the meter face.  

 Besides, the Tesseract OCR engine is sensitive to the skewing of the 

characters. Hence, it is suggested that during the capturing process of the image, 
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the camera should be placed correctly with respect to the meter-face orientation 

to optimise the performance of the Tesseract. 

 Moreover, the sharpness and quality of the image taken are affected by 

the vibration caused by wind or movement of vehicles. When the vibration 

occurs at the camera module, the photo capture is blurry and thus, the 

performance and accuracy of the optical character recognition are greatly 

reduced. In order to mitigate this issue, the camera module is suggested to be 

installed on a stable and enduring platform. 

 

4.6 Summary 

The results obtained from each sub-module of the software, as well as the 

hardware and accuracy evaluation have been presented in this chapter. In-depth 

analysis had been performed and detailed explanations were provided along 

with each result to ensure that the information on operating principles and 

functions of each sub-system are clearly delivered.  
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CHAPTER 5 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

Digitization is one of the major components in IR 4.0. It provides a lot of 

benefits to the industrial, such as increasing productivity, better data 

visualisation, simplifying parameters control, etc.  One of the important steps in 

digital transformation is to make all the instrumental devices connected to the 

cloud. However, replacing the existing analogue meters with the cloud-

connected digital meters can be very costly especially for industrial grade meters. 

The aim of this research is to develop a cost-effective image recognition 

system to capture and monitor the analogue meter’s readings and send the data 

to the cloud system of the factory as a part of digitization and automation.  The 

objectives of this project, namely to investigate the feasibility of image 

recognition system for analogue meter’s reading detection, to develop the image 

recognition system and to evaluate the functions and performance of the system 

have been achieved accordingly. 

The system developed consists of a deep learning model based on SSD 

MobileNet V2 and optical character recognition engine referring to the 

Tesseract. The deep learning model was trained with a dataset of 750 meters’ 

images, and it is used to detect the region of interest where the meter’s readings 

are located. The OCR is used to convert the readings to string datatype. Besides, 

the image processing techniques via the OpenCV library are implemented for 

enhancing the quality of the ROI.  

The programme developed is executed on Raspberry Pi microcomputer 

with camera module installed and its performance has been evaluated. The 

results show that the deep learning model and OCR accuracies are 95% and 91%, 

respectively.  Moreover, the data were successfully uploaded to the cloud-based 

service platform, namely Firebase. 
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5.2  Recommendations for future work

The limitation of this  project  is on the diversity of the meters being recognized.

Due  to  the  constraint  in  various  parameters  involving  the  image  processing,

computer  vision  and  character  recognition,  the  system  developed  is  only

applicable to detect and convert the numerical reading  (digits). Thus, the image

recognition system is not universal.  In future, the deep learning model can be

further  trained  to  recognize  and  digitize  the  analogue  meter  with  arrows  or

pointers so that the system is applicable to more variety of meters.

  Besides, the current hardware system uses  WiFi connection for internet

access  and  uploading  the  data  to  cloud.  Due  to  the  absence  of  WiFi  signal  at

certain places, the cloud access will fail. Thus, mobile connectivity such as 3G

or 4G technology can be added to the system  to address  the problem.
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Reading 
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APPENDIX B: Code of Deep Learning Model Training (Google Colab) 

 

%cd /content/drive/MyDrive/Colab Notebooks/models/research 

 

!protoc object_detection/protos/*.proto --python_out=. 

 

!export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim 

 

!apt-get install -qq protobuf-compiler python-pil python-

lxml python-tk 

 

!pip install -

qq Cython contextlib2 pillow lxml matplotlib pycocotools 

 

cd /content/drive/MyDrive/Colab Notebooks/models 

 

pip install --user -r official/requirements.txt 

 

pip install tf_slim 

 

pip install dataclasses 

 

pip install tensorflow-addons 

 

pip install tensorflow-text-nightly 

 

pip install utils 

 

pip install lvis 

 

import os 

os.environ['PYTHONPATH']+=":/content/drive/MyDrive/Colab Not

ebooks/models" 

os.environ['PYTHONPATH']+=":/content/drive/MyDrive/Colab Not

ebooks/models/research" 

 

!python generate_tfrecord.py --

csv_input=data/test_labels.csv  --

output_path=tf_record/test.record --image_dir=test_images 

 

!python model_main_tf2.py  \ 

  --model_dir=trained-checkpoint --num_train_steps=50000 \ 

  --sample_1_of_n_eval_examples=1 \ 

  --pipeline_config_path=pipeline.config \ 

  --alsologtostderr 

 

!python exporter_main_v2.py \ 
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    --input_type image_tensor \ 

    --pipeline_config_path pipeline.config \ 

    --trained_checkpoint_dir trained-checkpoint \ 

    --output_directory exported-model 

 

 

APPENDIX C: Code of TensorBoard 

 

cd /content/drive/MyDrive/Colab Notebooks/models 

 

import tensorflow as tf 

import datetime, os 

 

%load_ext tensorboard 

 

%tensorboard --logdir trained-checkpoint 
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APPENDIX D: Code of Image Recognition Software Developed 

 

import os 

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'    # Suppress TensorFlow logging (1) 

import pathlib 

import tensorflow as tf 

import cv2 

import numpy 

import numpy as np 

from PIL import Image 

tf.get_logger().setLevel('ERROR')           # Suppress TensorFlow logging (2) 

import re 

import pytesseract 

import imutils 

from firebase import firebase 

from datetime import datetime 

from time import sleep 

firebase = firebase.FirebaseApplication('https://yj-fyp-default-rtdb.firebaseio.com/', None) 

 

# Enable GPU dynamic memory allocation 

gpus = tf.config.experimental.list_physical_devices('GPU') 

for gpu in gpus: 

    tf.config.experimental.set_memory_growth(gpu, True) 

 

pytesseract.pytesseract.tesseract_cmd = r'D:\Program Files\Tesseract\tesseract.exe' 
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PATH_TO_LABELS = r'D:\User Files\Desktop\readings\label_map.pbtxt' 

 

import time 

from object_detection.utils import label_map_util 

from object_detection.utils import visualization_utils as viz_utils 

 

PATH_TO_SAVED_MODEL = r'D:\User Files\Desktop\readings\My model\exported-model_ver1\saved_model' 

 

print('Loading model...', end='') 

start_time = time.time() 

 

# Load saved model and build the detection function 

detect_fn = tf.saved_model.load(PATH_TO_SAVED_MODEL) 

 

end_time = time.time() 

elapsed_time = end_time - start_time 

print('Done! Took {} seconds'.format(elapsed_time)) 

 

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,use_display_name=True) 

 

import matplotlib.pyplot as plt 

import warnings 

warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings 

 

def load_image_into_numpy_array(path): 
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    return np.array(Image.open(path)) 

 

for i in range(100): 

    image_path = r'D:\User Files\Desktop\{}.jpg'.format(i+1) 

     

    print('Running inference for {}... '.format(image_path), end='') 

     

    image_np = load_image_into_numpy_array(image_path) 

     

    # Condition based: 

    # Flip horizontally 

    # image_np = np.fliplr(image_np).copy() 

     

    # Convert image to grayscale 

    # image_np = np.tile( 

    #     np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8) 

     

    # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. 

    input_tensor = tf.convert_to_tensor(image_np) 

    # The model expects a batch of images, so add an axis with `tf.newaxis`. 

    input_tensor = input_tensor[tf.newaxis, ...] 

     

    # input_tensor = np.expand_dims(image_np, 0) 

    detections = detect_fn(input_tensor) 
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    num_detections = int(detections.pop('num_detections')) 

    detections = {key: value[0, :num_detections].numpy() 

                   for key, value in detections.items()} 

    detections['num_detections'] = num_detections 

     

    detections['detection_classes'] = detections['detection_classes'].astype(np.int64) 

     

    image_np_with_detections = image_np.copy() 

     

    viz_utils.visualize_boxes_and_labels_on_image_array( 

          image_np_with_detections, 

          detections['detection_boxes'], 

          detections['detection_classes'], 

          detections['detection_scores'], 

          category_index, 

          skip_scores=True, 

          skip_labels=True, 

          use_normalized_coordinates=True, 

          max_boxes_to_draw=1, 

          min_score_thresh=0.2, 

          agnostic_mode=False) 

     

    print('Done') 

    print(detections['detection_classes']) 

    print(detections['detection_scores']) 

    im_PIL = Image.fromarray(image_np_with_detections) 
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    im_cv = cv2.cvtColor(numpy.array(im_PIL), cv2.COLOR_RGB2BGR) 

    

    inferenced = im_cv 

    inferenced_copy = inferenced.copy() 

     

    inferenced_HSV = cv2.cvtColor(inferenced, cv2.COLOR_BGR2HSV) 

    lower_green = np.array([40,200,200]) 

    upper_green = np.array([50,255,255])  

    green_box_detect = cv2.inRange(inferenced_HSV, lower_green, upper_green) 

    contours = cv2.findContours(green_box_detect, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 

    contours = imutils.grab_contours(contours) 

    contours = sorted(contours, key = cv2.contourArea, reverse = True)[:10] 

    screenCnt = None 

    for c in contours: 

         

        peri = cv2.arcLength(c, True) 

        approx = cv2.approxPolyDP(c, 0.018 * peri, True) 

      

        if len(approx) >= 4 and len(approx) <=6: 

            screenCnt = approx 

            break 

         

    if screenCnt is None: 

        detected = 0 

        print ("No contour detected") 

    else: 
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         detected = 1 

          

    mask = np.zeros(green_box_detect.shape,np.uint8) 

    mask = cv2.drawContours(mask,[screenCnt],0,255,-1,) 

    extracted = cv2.bitwise_and(inferenced,inferenced,mask=mask) 

    (x, y) = np.where(mask == 255) 

    (topx, topy) = (np.min(x), np.min(y)) 

    (bottomx, bottomy) = (np.max(x), np.max(y)) 

    readings_ROI = inferenced[topx+5:bottomx-5, topy:bottomy]  

     

    scale_percent = 300 # percent of original size 

    width = int(readings_ROI.shape[1] * scale_percent / 100) 

    height = int(readings_ROI.shape[0] * scale_percent / 100) 

    dim = (width, height) 

    readings_ROI_resized = cv2.resize(readings_ROI, dim, interpolation = cv2.INTER_CUBIC) 

    readings_ROI_resized_gray = cv2.cvtColor(readings_ROI_resized, cv2.COLOR_BGR2GRAY) 

     

    ret, readings_ROI_resized_thresh = cv2.threshold(readings_ROI_resized_gray,128,255, cv2.THRESH_BINARY) 

    ROI_PIL = Image.fromarray(readings_ROI_resized_thresh) 

    text = pytesseract.image_to_string(ROI_PIL,lang = 'eng',config = '--psm 7 outputbase digits') 

    converted = re.sub('[^0-9]','', text) 

     

    now_time = (datetime.now()).strftime("%d-%m-%Y, %H:%M:%S") 

    data =  {'Reading': converted} 

    name = "Date：{}, Time：{}, Reading：{}".format(now_time[0:10], now_time[12:], converted) 

    result = firebase.patch(name,data) 
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    sleep(5) 

       

 

 


	FYP_Report Cover page
	FYP_Chong Yue Jiet_1702386_3E_amended (1)



