

DEVELOPMENT OF IMAGE

RECOGNITION SYSTEM FOR ANALOGUE

METER’S READING DETECTION

CHONG YUE JIET

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPMENT OF IMAGE RECOGNITION SYSTEM FOR

ANALOGUE METER’S READING DETECTION

CHONG YUE JIET

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electrical and Electronic Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2022

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : Chong Yue Jiet

ID No. : 17UEB02386

Date :

22 April 2022

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled DEVELOPMENT OF IMAGE

RECOGNITION SYSTEM FOR ANALOGUE METER’S READING

DETECTION was prepared by CHONG YUE JIET has met the required

standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Engineering (Honours) Electrical and Electronic at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Assoc. Prof. Ir. Dr. Chua Kein Huat

Date : 22 April 2022

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2022, Chong Yue Jiet. All right reserved.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude towards my

FYP supervisor, Assoc. Prof. Ir. Dr. Chua Kein Huat, for giving me an

opportunity to collaborate with him for my final year project and his patience,

guidance, as well as recommendations during the project period. Besides, Dr.

Chua has provided a lot of efforts and assistance in the success of publishing a

conference paper for this project.

 In addition, I would like to thanks my family members and friends who

have given me encouragements and technical supports which led to my

successful completion of this project.

vi

ABSTRACT

Digitization is one of the major components in Industrial Revolution 4 (IR 4.0).

It provides a lot of benefits to the industrial, such as increasing productivity,

better data visualisation, simplifying parameters control, etc. Although many

meters nowadays come with the smart Internet of Things (IoT) features, which

provides real-time monitoring and data storing, many industries still prefer to

continue using the existing analogue meters in their manufacturing plants as

replacing the existing analogue meters with the cloud-connected digital meters

can be very costly especially for industrial grade meters. In this project, a cost-

effective image recognition system to capture and digitize the analogue meter’s

readings using deep learning model (SSD MobileNet) as well as optical

character recognition (Tesseract) was demonstrated. The deep learning model

has been trained with a dataset of 750 images and was used to detect the region

of interest (meter’s readings). The OCR is used to convert the readings to string

datatype. Besides, the image processing techniques via OpenCV library has

been implemented for enhancing the quality of the ROI. The programme

developed has been transferred and executed on the Raspberry Pi

microcomputer with camera module attached to an analogue water meter. The

results show that the accuracies of the deep learning model and OCR are 95%

and 91%, respectively. In addition, the memory occupation of the deep learning

model is about 10 MB, which is suited the embedded system with limited

memory capacity.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Project Overview 3

1.6 Scope and Limitation of the Study 4

1.7 Contribution of the Study 4

1.8 Outline of the Report 4

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Image Recognition Concepts 6

2.2.1 General Concept 6

2.2.2 Digital Image Capturing 7

2.2.3 Methods of Image Recognition 8

2.2.4 General Algorithms 8

2.3 Deep Learning 9

2.3.1 Introduction 9

viii

2.3.2 Convolutional Neural Network (CNN) 10

2.3.3 Training Mechanism of CNN 12

2.4 Image Processing Techniques 14

2.4.1 OpenCV 14

2.4.2 Grayscaling 15

2.4.3 Image Filtering 15

2.4.4 Thresholding 16

2.4.5 Morphological Transformation 18

2.4.6 Edge Detection 19

2.4.7 Contour Detection 20

2.4.8 Orientation Correction 20

2.4.9 ROI Extraction 22

2.5 Character Recognition 22

2.6 Summary 23

3 METHODOLOGY AND WORK PLAN 24

3.1 Introduction 24

3.2 Methodology 24

3.3 Software 25

3.3.1 Overview 25

3.3.2 Platforms 25

3.3.3 Deep Learning Model 28

3.3.4 Extraction of ROI 31

3.3.5 Image Processing 32

3.3.6 Optical Character Recognition 32

3.3.7 Uploading Data to Cloud 33

3.3.8 Additional Libraries 33

3.4 Hardware 34

3.4.1 Configuration 34

3.4.2 Raspberry Pi 4 Model B 35

3.4.3 Camera Module 36

3.5 Cost of Components 37

3.6 Planning and Milestones 38

3.6.1 Project Milestones 38

3.6.2 Project Schedule and Gantt Chart 38

ix

3.7 Summary 40

4 RESULTS AND DISCUSSION 41

4.1 Introduction 41

4.2 Software Simulation 41

4.2.1 Deep Learning Model 41

4.2.2 Extraction of ROI 43

4.2.3 Image Processing 46

4.2.4 Character Recognition 47

4.3 Hardware Implementation 47

4.3.1 Setup 47

4.3.2 Installation on Meter 49

4.4 Cloud and Real-time Database 50

4.5 Accuracy Evaluation 50

4.6 Summary 52

5 CONCLUSION AND RECOMMENDATIONS 53

5.1 Conclusion 53

5.2 Recommendations for future work 54

REFERENCES 55

APPENDICES 59

x

LIST OF TABLES

Table 3.1: Specifications of Raspberry Pi 4 Model B 36

Table 3.2: Cost of Components 37

Table 3.3: Project Milestones 38

Table 3.4: Project Schedule for FYP Part 1 38

Table 3.5: Project Schedule for FYP Part 2 39

Table 4.1: Results of Accuracy Evaluation 51

xi

LIST OF FIGURES

Figure 2.1: Image Represented as Arrays of Number 6

Figure 2.2: CMOS Sensor Block Diagram 7

Figure 2.3: General Algorithm for Image Recognition 8

Figure 2.4: Structure of Perceptron 10

Figure 2.5: Supervised Learning 10

Figure 2.6: Architecture of CNN 11

Figure 2.7: Backpropagation Algorithm 12

Figure 2.8: Convolution Operation 13

Figure 2.9: Pooling Operation 13

Figure 2.10: Illustration of Grayscale vs RGB in Arrays 15

Figure 2.11: Process of 2D Convolution 16

Figure 2.12: Difference in Intensity between Background and Object 17

Figure 2.13: Erosion Operation 18

Figure 2.14: Dilation Operation 18

Figure 2.15: CHAIN_APPROX_NONE vs CHAIN_APPROX_SIMPLE 20

Figure 2.16: Parameters Returned by minAreaRect 21

Figure 2.17: Mask for ROI Extraction 22

Figure 3.1: Flowchart of the System Development 24

Figure 3.2: Operations of the Meter’s Readings Detection System 25

Figure 3.3: Spyder IDE 26

Figure 3.4: LabelImg Annotation Software 27

Figure 3.5: Firebase Console 27

Figure 3.6: Examples of Meter Images in the Dataset 28

xii

Figure 3.7: Flowchart of Deep Learning Model Training via TensorFlow 30

Figure 3.8: XML file of the Labelled Image 31

Figure 3.9: Block Diagram of the System 35

Figure 3.10: Raspberry Pi 4 Model B 35

Figure 3.11: Raspberry Pi Camera Module 37

Figure 3.12: Camera Connection with CSI Port 37

Figure 3.13: Gantt Chart for FYP Part 1 39

Figure 3.14: Gantt Chart for FYP Part 2 40

Figure 4.1: Training Process of Deep Learning Model on Google Colab 42

Figure 4.2: Graphs of various Loss Functions 42

Figure 4.3: Detection Box Visualizing Function 43

Figure 4.4: Inferencing of various Types of Meters 43

Figure 4.5: Inferenced Meter Image with Label Hidden 44

Figure 4.6: Output of inRange function 44

Figure 4.7: Mask for ROI Extraction 45

Figure 4.8: Output of bitwise AND Function 45

Figure 4.9: ROI Extracted 45

Figure 4.10: ROI being Enlarged 46

Figure 4.11: Grey-scaled ROI 46

Figure 4.12: Thresholded ROI 46

Figure 4.13: Output of Tesseract OCR 47

Figure 4.14: Hardware Setup 48

Figure 4.15: Hardware Connected to Power Bank 48

Figure 4.16: Hardware Installation on Water Meter 49

Figure 4.17: Data Collected in Firebase 50

xiii

Figure 4.18: Data Tabulated using Microsoft Excel 51

xiv

LIST OF SYMBOLS / ABBREVIATIONS

Gx 1st derivative in x-axis direction

Gy 1st derivative in y-axis direction

ADC analogue to digital comverter

AI artificial intelligence

ASCII American standard code for information interchange

CMOS complementary metal oxide semiconductor

CNN convolutional neural network

CPS cyber physical system

CSI camera serial interface

HDMI high-definition multimedia interface

HPF high pass filter

IDE integrated development environment

IoT internet of things

I/O input or output

IR 4.0 industrial revolution 4.0

KNN K nearest neighbour

LPF low pass filter

MP megapixel

OCR optical character recognition

OpenCV open source computer vision

OS operating system

PIL python imaging library

ReLU Rectified Linear Unit

RGB red, green and blue colourspace

ROI region of interest

SCADA supervisory control and data acquisition

SNR signal to noise ratio

USB universal serial bus

xv

LIST OF APPENDICES

APPENDIX A: Acceptance of Conference Paper 59

APPENDIX B: Code of Deep Learning Model Training (Google Colab)

APPENDIX C: Code of TensorBoard

APPENDIX D: Code of Image Recognition Software Developed

60

61

62

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Industrial Revolution is the transition of agricultural and handicraft economy to

industrial and machine-manufacturing economy. It has been divided into four

periods, namely the 1st revolution for steam power (1760-1820), the 2nd

revolution for electrical power usage (1820-1900), the 3rd revolution for

electronic and computing (1900s) and the 4th revolution for cyber-physical

system in manufacturing (IR 4.0).

 The ultimate goal of IR 4.0 is to attain a fully automated smart factory,

which the manufacturing processes are fully automated and the number of

operators is minimized. The backbone of a smart factory is the Cyber Physical

System (CPS). The CPS integrates the parameters of the processes in physical

world with the software components via digitization to achieve the machine-to-

machine and machine-to-human interactions (Zhou, Liu and Zhou, 2016). This

system mainly consists of the latest technologies and advancements, namely the

Internet of Things, Big Data Analytics and Artificial Intelligence.

 Internet of Things (IoT) is defined as the connections between machines,

which are embedded with instrumentation, sensors, actuators and antenna, via

the internet to the cloud and SCADA system (Oracle, n.d.). The IoT provides a

channel for the linkage of physical world to the digital world which enables data

collection, data exchange and real-time update and monitoring. Due to the

centralization of data, the operators can visualize the conditions of the

manufacturing processes conveniently, without inspecting the machines one

after another; thus, increasing the working efficiency.

 Big Data Analytics is the process of evaluating and interpreting a

tremendous amount of data, either in raw or structured, to unveil the patterns,

trends and correlations among the data (tableau, n.d.). As the technology

advances, the speed of processor and the volume of the memory storage increase

rapidly, thus making the big data analytics, in the size of gigabytes to zettabytes

possible.

2

 Artificial Intelligence (AI) describes the capability of an electronic

device to execute tasks associated with intelligent beings. When a system is

integrated with AI, it has the potential of learning, reasoning, generalizing and

deciding (Copeland, 2020). Thus, in IR 4.0 and smart factory, the AI is expected

to make precise decisions based on the results from big data analytics to control

the operations of the machines and enhance the automation within the factory.

1.2 Importance of the Study

Industrial Revolution 4.0 and Digitization are the current trends in industrial and

manufacturing sectors. They provide a lot of benefits to the industry. According

to Caylar and Noterdaeme (2016), IR 4.0 can increase the productivity up to 45%

through automation, reduce machine downtime up to 50%, increase forecast

accuracy to 85% and reduce production cost up to 40%.

In Malaysia, the Government of Malaysia initiated the TN50 plan for

digitization and forecasted that the country’s economy will be uplifted to 2

trillion USD in 8 years (Mohammad et al., 2018). However, according to a study

done by Idris (2019), only 40% of the respondents implied that Malaysia is

ready to embrace the IR 4.0. The challenges faced by the companies include

large investment, technical and compatibility issues and insufficient

qualification of workers.

This research primarily focuses on providing an easier and more feasible

way for digitization in the factory. Besides, the proposed solution, in terms of

hardware and software, will be in minimized cost to ensure that the

implementation of Internet of Things (IoT) is economical and in large scale to

promote IR 4.0.

1.3 Problem Statement

Digitization is one of the most important steps towards Industry 4.0

transformation. Although many meters nowadays are equipped with IoT

features that enable the digitation of readings and real-time monitoring, many

industries are still preferably using analogue meters for their manufacturing

plants. One of the reasons is that some IoT meters are still very costly and that

may hinder the owners or directors from the intention to implement the

transition.

3

 Besides, various types of smart meters from different suppliers are

required for different manufacturing processes. A divergence in the standards

of electronic communication and protocols used by each meter becomes a

challenge to integrate them to an already-built control system of the factory. It

is not economical for the factory to undergo a major overhaul.

 Moreover, most of the workers in the factory are already used to deal

with the analogue meters and they are lack of the knowledge for using and

calibrating some complex smart meters. Thus, the requirement of extra training

and investment on the workers turns out to be an obstacle for the progress

towards IR 4.0 (Rymarczyk, 2020).

1.4 Aim and Objectives

The aim of this research is to develop a cost-effective image recognition system

to capture and monitor the analogue meter’s readings and send the data to the

cloud system of the factory as a part of digitization and automation.

The objectives of the project are as follows:

i. To investigate the feasibility of image recognition system for

analogue meter’s reading detection.

ii. To develop the image recognition system.

iii. To evaluate the functions and performance of the system.

1.5 Project Overview

There is a wide variety of tools available for deep learning and image

recognition such as Python, MATLAB, TensorFlow, etc. Besides, there are

many different libraries and techniques involved. In the first stage, different

approaches were investigated and the most suitable approach, in terms of cost

effectiveness, complexity and usability would be implemented.

 In the second stage, the software for image recognition was developed

and trained. Next, the performance and accuracy of the image recognition were

assessed and optimized during the simulation process.

 Subsequently, the integration of hardware and software was performed.

Lastly, the image recognition system developed in previous stage was tested and

installed at the real meter to observe its real-world performance.

4

1.6 Scope and Limitation of the Study

This project predominantly focuses on detecting and extracting the Region of

Interest (ROI), i.e. the analogue meter’s readings, recognizing and converting

the numerical information to digital format using deep learning, image

processing technique and optical character recognition engine.

The limitation of the study is on the diversity of the meters being

recognized. Due to the constraint in various parameters involving the image

processing, computer vision and character recognition, the system developed is

only applicable to detect and convert the numerical reading. Thus, the image

recognition system is not universal.

1.7 Contribution of the Study

This project demonstrates the method of digitizing an analogue meter’s reading

using deep learning, image processing and optical character recognition.

Besides, the solution proposed is cost effective and easy to be implemented

which eventually enhances the digitization and adoption of IR 4.0 in a factory.

1.8 Outline of the Report

The project report consists of 5 main chapters, namely introduction, literature

review, methodology, results and discussion and conclusion.

The first chapter, introduction, mainly focuses on providing the details

and benefits of digitization, problem statement, aim and objectives as well as

overview of the project.

The second chapter is literature review. This chapter provides technical

reviews and interpretations on the topics related to image recognition. Besides,

in-depth reviews and explanations on the functions and working principles

involved in the deep learning and image processing are delivered.

Next, the third chapter, methodology, provides the details regarding the

configuration of the proposed system, the processes and flowchart of the system,

the software and hardware involved, as well as the list and cost of components.

In addition, the work plan, project milestones, schedule of each activity and the

Gantt Charts are illustrated.

The fourth chapter is results and discussion. This chapter mainly

illustrates and explains the outcomes of each sub-system as mentioned in the

5

methodology. In-depth analysis have been performed on the results, in terms of

software, hardware and accuracy evaluation, to verify and ensure that the

solutions provided and system developed are able to achieve the aim and

objectives of this project.

Lastly, the fifth chapter is conclusion. This chapter provides an overall

summary of the project as well as the conclusion to the work carried out and

results obtained during the research. Moreover, the recommendations for future

work is delivered.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter provides technical reviews and interpretations on the topics related

to image recognition. Firstly, the general concept, methods and algorithms of

the image recognition are introduced and elaborated. Subsequently, the tools

and software available for the image and character recognition are explored. An

in-depth reviews and explanations on the functions involved in the image

recognition processes and their working principles are investigated.

2.2 Image Recognition Concepts

2.2.1 General Concept

Image recognition refers to the ability of an electronic device in detecting and

identifying certain objects based on their features and properties. Its working

principles are analogous to that of how humans or animals’ brains identify and

recognize an object. The visual performance of humans is exceptional due to the

capability of our brain in features extraction, contours detection, classification,

contextual knowledge and paralleling processing (Mujtaba, 2020). A digital

image is represented in arrays of number, called pixels. Thus, the computer

analyses the characteristics of an image depending on the pattern and correlation

among the numerical data using mathematical function. Figure 2.1 shows an

image represented as arrays of number.

Figure 2.1: Image Represented as Arrays of Number (Mujtaba, 2020)

7

2.2.2 Digital Image Capturing

An image sensor is used to carry out the digital image capturing process. It is an

electronic device that consists of photosensitive elements which can convert the

analogue optical signal to digital signal. The operation of an image sensor is

based on a physics phenomenon known as photoelectric effect, which electrons

are emitted during the bombardment of photons on the surface of the

photosensitive material. The relationship of the magnitudes of light signal and

electrical signal is proportional. Nowadays, the photosensitive element is made

up of Complementary Metal Oxide Semiconductor (CMOS). Figure 2.2 shows

the block diagram of a CMOS sensor.

Figure 2.2: CMOS Sensor Block Diagram (University of Maine, n.d.)

A CMOS image sensor mainly consists of colour filter, pixel cell array,

2D array driver, control logic, analogue-to-digital converter (ADC) and output

data bus. Firstly, the environmental light is focused by an optical lens placed

above the sensor. Next, the light passes through the colour filter and illuminates

the pixel array in the CMOS. Only the light with similar colour to the colour

filter’s segment is able to penetrate through, thus the colour of the image is

represented by each respective pixel. The photodiode of each pixel performs the

conversion of light signal to electrical signal.

 Subsequently, the 2D array driver will scan the pixel array row by row

to extract the electrical signal and transmit the respective signal to the amplifier

to increase the signal-to-noise (SNR) ratio. Thereafter, the signal undergoes

digitization by the ADC and finally output as binary data. (Utmel Electronic,

2020)

8

2.2.3 Methods of Image Recognition

There are two major approaches for image recognition: image processing and

deep learning. The image processing method comprises of extracting key

features from an image via several mathematical functions and input parameters.

It is very effective in pixel-based recognition utilizations such as template

matching, colour-based detection, image segmentation, shape extraction and

blob analysis.

 On the other hand, deep learning incorporates the neural network, for

instance Convolutional Neural Network (CNN) to enable self-executive

learning and training process of a model based on a collection of images and

data set to such an extent that the features of an image can be automatically

identified with satisfactory accuracy (MathWorks, n.d.).

 Generally, the image processing technique will be implemented first to

determine whether the results and accuracy can fulfil the requirement as the

deep learning approach requires a huge number of data set (in terms of

thousands) and complicated framework to achieve decent accuracy.

2.2.4 General Algorithms

The basic procedures involve in image recognition and region detection are

shown in Figure 2.3. The algorithm starts with capturing the image of interest.

A camera module with high resolution, e.g. 5 MPs and above, is preferred to

ensure the readability of the image captured in different conditions and thus the

accuracy for character recognition is reliable.

Figure 2.3: General Algorithm for Image Recognition (Sajjad, 2012)

9

 Secondly, the image captured will undergo pre-processing. It comprises

a set of algorithms to remove unwanted noise and provide enhancement to the

quality of the image. Besides, it involves conversion of the image’s format, i.e.

from colourful to grayscale and to binary as the algorithms associated in the

subsequent procedure can only take in single channel formatted parameters and

arrays.

 Next, localization will be performed to detect and filter the contours or

borders of the components within the image. Generally, the contours of the

useful components will be in connected or grouped orientation; thus, connected

components analysis is implemented for identifying the region of interest (ROI).

After the ROI has been identified, segmentation process is executed for

extracting the ROI by cropping and the background or unwanted components

are eliminated (Sajjad, 2012).

 Finally, the character recognition is performed on the ROI which

contains the characters or numbers, to digitize them into ASCII format for

further usage, e.g. mathematical calculation. There are two different solutions

for character recognition. The first solution is the well-developed Optical

Character Recognition (OCR) engine such as Tesseract which was developed

by HP and Google. The second solution is via the self-develop deep learning

model using neural network such as Convolutional Neural Network (CNN) and

K Nearest Neighbour (KNN).

2.3 Deep Learning

2.3.1 Introduction

Deep Learning is a subtype of machine learning which provides the computers

with ability to mimic how human thinks, making decisions as well as

recognizing and classifying objects. The general structure of deep learning

algorithm is motivated by human’s brain and neurons. It consists of multiple

layers of neural networks, with each basic unit called Perceptron (Figure 2.4).

The perceptrons are connected to each other via mathematical method, as

analogous to the connections of brain’s neurons (Oppermann, 2019).

10

Figure 2.4: Structure of Perceptron (Taud and Mas, 2018)

 The deep learning algorithm for image recognition is generally classified

as supervised learning. It means both the input data and their labels are provided

to the learning algorithm. The labels act as referencing answers to the algorithm

which the prediction from the deep learning model is compared with the labels.

Subsequently, the error between the label and the prediction is calculated and

this value will be used to fine-tune the model for improving its accuracy, also

known as training process (IBM Cloud Education, 2020). Figure 2.5 illustrates

the idea of supervised learning.

Figure 2.5: Supervised Learning (Kumar, 2021)

2.3.2 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a neural network architecture under

deep learning. It has remarkable performance and accuracy on the tasks

involving image classification and object detection. Besides, it possesses the

ability of automatic feature extraction; meaning, the features of an object inside

an image are identified and extracted automatically via the convolution

operation based on the entire pixels of that image. Thus, the time-consuming

11

manual feature extraction procedure is eliminated and the image pre-processing

required is greatly reduced (IBM Cloud Education, 2020).

 The general structure of the CNN comprises of image input,

convolutional layers, pooling layers, fully-connected layers and predicted

outputs. Figure 2.6 illustrates the architecture and the components of CNN.

Figure 2.6: Architecture of CNN (MathWorks, n.d.)

 The convolutional layer mainly consists of feature extractor, made up of

two-dimensional (2D) kernel or filter which can be mathematically expressed

as matrix. The kernel is being convoluted with the input image pixels which

returns the feature map that contains the extracted features, such as edges, colour,

brightness, etc. In addition, each convolutional layer can identify one type of

features. Thus, for the model to detect various types of objects with different

characteristics, multiple layers, in terms of hundreds or thousands are required

(MathWorks, n.d.).

 The pooling layer performs downsampling on the convoluted feature

which reduces its dimension and number of parameters while retaining the

dorminant features. The benefits of downsampling include decreasing the

computational power required for model training and reducing the size of

memory required. The pooling techniques are categorized into two types,

namely max pooling and average pooling. In max pooling, the maximum value

of the pixels under the kernel is extracted whereas in average pooling, the

average value among the pixels is extracted (Saha, 2018).

 The fully-connected layer is the layer that learns and performs

classification based on the features extracted in the previous layers. In this layer,

each perceptron in one layer is fully connected with the perceptrons in both its

12

previous and next layers. In addition, weights are present between the

connections. They are values, typically real numbers, that will be multiplied

with the output of each perceptron before sending the outputs to next layer.

These weights are to be fine-tuned during the training process (IBM Cloud

Education, 2020).

2.3.3 Training Mechanism of CNN

The technique being implemented to perform training on a CNN deep learning

model is known as the backpropagation algorithm. This algorithm consists of

two processes, namely forward propagation and backward propagation.

During the forward propagation, the input parameters pass through all

the layers of the CNN architecture and a prediction in terms of probability will

be generated as output. Next, the predicted output is compared with the labels

provided and returns the error values.

Subsequently, the error values will be used to update and fine-tune the

weights of the neural network in the fully-connected layers. The

backpropagation algorithm is repeated for multiple times and when each time

the weights are updated, it is considered as one step. The training process will

be terminated when the pre-defined criteria are fulfilled, such as constant loss

function value (McGonagle, et al., n.d.). Ultimately, the accuracy of the model

is maximized whereas the error is minimized. Figure 2.7 illustrates the

backpropagation algorithm.

Figure 2.7: Backpropagation Algorithm (Johnson, 2022)

13

2.3.3.1 Forward Propagation

Forward propagation refers to the process of generating a prediction based on

the input parameters by passing through every layer in the neural network. In

the forward propagation, the input image will first undergo convolution

operation based on the kernel defined. The output of the convolution is the dot

product between the kernel and the input image’s region covered by the kernel

as shown in Figure 2.8. After this operation has been executed, one particular

feature of the image is extracted.

Figure 2.8: Convolution Operation (IBM Cloud Education, 2020)

Next, the pooling operation will be performed on the convoluted output

to reduce its spatial size. Generally, the max pooling technique is implemented,

which the maximum pixel value under the kernel is retained whereas the others

are eliminated as shown in Figure 2.9. In addition to reduce of size, the max

pooling technique provides noise suppressing to the image (Saha, 2018). The

convolution and pooling operations work in pair and multiple pairs are present

to extract different types of feature from the image.

Figure 2.9: Pooling Operation (Dertat, 2017)

 Subsequently, the 2D matrix is converted to a column vector which is

then fed into the fully-connected layers of neural network. The neural network,

14

comprises of perceptrons, will classify the image and generate the prediction

based on the weights and activation function such as ReLU. This mechanism of

generating the prediction with respect to probability is known as Softmax

Classification technique (Saha, 2018) .

2.3.3.2 Backward Propagation

The backward propagation is the mechanism to fine-tune the weights of the

neural network based on the error values. Error is defined as the difference

between the targeted value and the actual value. It is calculated by comparing

the value of the predicted output from the model with the value from the labels

or reference answers.

 After obtaining the error values, the gradient descent algorithm is

implemented to compute the amount of value change applied on the current

weights. The gradient descent algorithm is known as optimizer in machine

learning as it calculates the optimal values to the weights which maximize the

accuracy of the model’s prediction (Johnson, 2022).

 Ultimately, after consecutive steps of training on the deep learning

model, the difference between the predicted value and the reference value is

minimized and the model is capable to make reliable predictions based on the

input image.

2.4 Image Processing Techniques

2.4.1 OpenCV

Open Source Computer Vision Library, known as OpenCV, is a free and open

source library developed by Intel from the year 2000. It incorporates diverse

algorithms for computer vision and machine learning which are mainly used for

image processing and object identification. The OpenCV library comprises of

more than 2500 programming functions to perform various tasks such as colour

space conversion, edge detection, orientation and angle modification, contours

detection, etc.

Besides, the functions and algorithms of OpenCV library are written in

C++ and well optimized. It also provides various wrappers for multiple

programming languages such as Java, MATLAB and Python; thus, the coding

15

developed by the programmers can be executed on different platforms,

including low-processing power application, in a rapid manner with minimized

execution time and power consumption. (OpenCV Organisation, n.d.)

2.4.2 Grayscaling

An image captured by the CMOS image sensor is in RGB (Red, Green, Blue)

colour space due to the presence of colour filter as discussed in Section 2.3.1.

However, most of the OpenCV functions for image processing can only take in

the single channel image (Gray) instead of three channels image (RGB); thus,

the initial step will be the grayscaling.

Figure 2.10 shows that each pixel in grayscale is represented by single

digit which denotes the intensity. Contrarily, each pixel of a colour image

consists of 3 digits representing the intensity of the respective RGB colour

channels. Therefore, by implementing the equation (2.1), the colour space

conversion can be achieved (OpenCV Organisation, 2020).

 𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2.1)

Figure 2.10: Illustration of Grayscale vs RGB in Arrays (Rune, 2020)

2.4.3 Image Filtering

Filtering can be performed on an image via two-dimensional (2D) convolution

operation. When an image is filtered by a low pass filter (LPF), the noise within

the image can be eliminated and the image is smoothened; whereas when it is

filtered by a high pass filter (HPF), the edges in the image are sharpen. To

perform 2D convolution, a kernel is needed to represent the type of filter. It is

an 𝑛 × 𝑛 matrix as shown below.

16

 𝐾𝑒𝑟𝑛𝑒𝑙 = 𝐾

= [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

]
(2.2)

 The equation for the 2D convolution is

𝑔(𝑥, 𝑦) = ∑ ∑ 𝐾(𝑖, 𝑗)

𝑏

𝑗=−𝑏

𝑓(𝑥 + 𝑖, 𝑦 + 𝑗)

𝑎

𝑖=−𝑎

 (2.3)

where

𝑥 and 𝑦 are the coordinate of the pixel

𝑖 and 𝑗 are the row and column element of the kernel respectively

 Basically, the operation of convolution is to sum up the product of each

element of the kernel and the respective element of the image which is encircled

by the kernel. Next, the sum will be the value for the centre pixel as compounded

by the kernel for the filtered image. The process is illustrated in Figure 2.11.

Figure 2.11: Process of 2D Convolution (Stanford University, n.d.)

2.4.4 Thresholding

Thresholding is the process of binarizing a gray-scaled image, i.e. converting

the value of each pixel to either 0 or maximum depending on the threshold value

defined, as represented by the equation (2.4). The purpose of thresholding is to

fade out or remove unnecessary elements within the image such as background

17

and reflection. This can be achieved as there is a variation between the

background and object in terms of pixel intensity as illustrated by Figure 2.12.

𝑓(𝑥) = {

 255, 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑥 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (2.4)

Figure 2.12: Difference in Intensity between Background and Object

(Rogowska, 2009)

Besides, there are two types of thresholding, i.e. simple thresholding and

adaptive thresholding. In simple thresholding, a threshold with constant value

is defined and it is applied to every pixel of the image. However, the simple

thresholding’s result is inferior when the image lighting condition is fluctuating.

On the other hand, the adaptive thresholding uses an algorithm to vary the

threshold value for each pixel depends on its surrounding region. Thus, the

thresholding result is optimized for different illumination. The Otsu’s

binarization algorithm is utilized to determine the threshold value, t, that keeps

the weighted within-class variance in minimum (equation 2.5) (OpenCV

Organisation, n.d.).

 𝜎𝑤
2 (𝑡) = 𝑞1(𝑡)𝜎1

2(𝑡) + 𝑞2(𝑡)𝜎2
2(𝑡) (2.5)

where

𝜎 is the variance of each class

𝑞 is the probability of each class

18

2.4.5 Morphological Transformation

Morphological transformation is a set of algorithms to process an image based

on the shape of the components. It mainly consists of four operations which are

erosion, dilation, closing and opening. The algorithms perform comparison on

the pixel in the input image with its surrounding pixels to decide the value of

the corresponding pixel in the output image (Sreedhar, 2012).

 The erosion operation adjusts the pixel of the output image to zero (black)

if any of its surrounding pixels under the kernel is zero. Thus, the overall white

pixels in the image will be reduced and converted to black pixels as illustrated

in Figure 2.13. This operation is effective for the removal of white noises.

Figure 2.13: Erosion Operation

The dilation operation is opposite to the erosion. It sets the pixel of the

output image to one (white) if any of the adjacent pixels within the kernel is one.

Therefore, the white pixels in the image will be increased after dilation which

can be observed in Figure 2.14.

Figure 2.14: Dilation Operation

Closing and opening are the operations that combine both erosion and

dilation. Closing is erosion comes after dilation whereas opening is dilation

comes after erosion. These two operations are very effective and convenient for

extending the shape, fixing the broken lines and patching up small holes in the

19

image. The operation should be selected depending on the background of the

image (white or black).

2.4.6 Edge Detection

The Canny edge detector developed by John F. Canny is considered as one of

the most popular edge detectors used in image processing due to its accuracy

and flexibility. There are five stages in the detection algorithms, namely

smoothing, finding derivatives, calculating gradient magnitude and orientation,

non-maximum suppression and hysteresis.

 Smoothing is the first stage as the edge detection is vulnerable to noise

which can cause errors or inaccuracy. In the Canny’s algorithm, a Gaussian

kernel (in 𝑛 × 𝑛 matrix) is used to filter the noise (equation 2.6).

𝐾𝑖,𝑗 =

1

2𝜋𝜎2
𝑒

−
(𝑥2+𝑦2)

2𝜎2 (2.6)

where

𝑥 = 𝑖 − (𝑘 + 1), 1 ≤ 𝑖 ≤ 2𝑘 + 1

𝑦 = 𝑗 − (𝑘 + 1), 1 ≤ 𝑗 ≤ 2𝑘 + 1

𝑘 =
𝑛−1

2

 Next, the 1st derivatives for the edges are being calculated for the

horizontal direction and vertical direction, represented as Gx and Gy. From these

values, the edge gradient and direction can be calculated using the equations 2.7

and 2.8, respectively.

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = √𝐺𝑥 + 𝐺𝑦 (2.7)

𝜃 = tan−1 (

𝐺𝑦

𝐺𝑥
) (2.8)

Subsequently, every pixel is checked to determine whether it is a local

maximum within the adjacent pixels in the gradient direction. The pixel which

is local maximum will be examined next stage whereas the other will be

suppressed. Lastly, in the hysteresis stage, a maximum threshold and minimum

20

threshold value will be defined. If an edge with gradient larger than the

maximum threshold, it is classified as an edge, whereas if the gradient is smaller

than the minimum threshold, it is eliminated (Teli, 2019).

2.4.7 Contour Detection

Contours detection is used to detect the borders of a component or the outline

of a shape in the image. It is the fundamental for various applications including

object recognition, image classification and region of interest extraction. The

contour of a specific object is defined as the boundary pixels with identical

characteristics such as intensity and colour. Thus, by comparing a pixel with its

adjacent pixels based on their characteristics, the contour can be detected (Gong

et al., 2018).

 There are two different algorithms for contour detection, namely the

CHAIN_APPROX_SIMPLE algorithm and CHAIN_APPROX_NONE

algorithm. The CHAIN_APPROX_NONE will detect the contour of a shape

and store all the points of that particular contour; thus, the contour will be

indicated with line segments. On the other hand, the

CHAIN_APPROX_SIMPLE method will truncate the contour’s line segments

and preserve their vertices. Therefore, this method indicates the contour with

discrete points, utilizes less memory and executes faster (Mallick, n.d.). The

comparison of both methods is illustrated in Figure 2.15. The former method is

more suitable for irregular shape whereas the latter for regular shape.

Figure 2.15: CHAIN_APPROX_NONE vs CHAIN_APPROX_SIMPLE

2.4.8 Orientation Correction

The orientation of an image may not be upright and straight all the time due to

the misplacement of camera. With the image tilted or rotated in different

directions, the accuracy of the object detection or character recognition is

21

greatly affected. Thus, it is necessary to apply correction to the orientation of

that particular image. There are two elements involve in this process, namely

the angle detection and affine transformation.

 Firstly, a reference component such as rectangle or square in the image

is selected via the contour detection. Next, by implementing a shaping function

such as the minAreaRect, the characteristics of the rectangle such as the size,

tilted angle and position of centre can be obtained as illustrated in Figure 2.16

below.

Figure 2.16: Parameters Returned by minAreaRect

Subsequently, a rotation matrix (equation 2.9) is to be defined using the

parameters obtained from the previous step to perform the rotation. As in

programming aspect, the mathematical function is executed in matrix

calculation. Lastly, the warpAffine function performs matrix multiplication of

the rotation matrix and the vector of the initial point to complete the geometric

transformation (Mallick, n.d.).

𝑀 = [

𝛼 𝛽 (1 − 𝛼)𝑐𝑥 − 𝛽𝑐𝑦

−𝛽 𝛼 𝛽𝑐𝑥 + (1 − 𝛼)𝑐𝑦
] (2.9)

where

𝛼 = 𝑘𝑐𝑜𝑠(𝜃)

𝛽 = 𝑘𝑠𝑖𝑛(𝜃)

cx and cy are the coordinates of the centre

k is the scaling factor

22

2.4.9 ROI Extraction

Once the region of interest (ROI) has been identified, it is to be extracted and

cropped to appropriate size (depending on the application) for further operation

such as character recognition. A mask is required to perform the ROI extraction.

It is an image arrays with identical size to the original image and contains the

area of the ROI in white (255) and the external region in black (0) as shown in

Figure 2.17.

Figure 2.17: Mask for ROI Extraction

Next, the bitwise AND operation will be performed on the original

image with the mask. The bitwise AND operation returns the pixel value of the

original image if the pixel of the mask is not 0, else the output pixel will be 0

(black) as shown in the equation 2.10. Thus, the ROI in the original image is

retained and the external region is replaced with black pixel. The ROI is said to

be extracted.

𝑜𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑦) = {

𝑖𝑛𝑝𝑢𝑡(𝑥, 𝑦), 𝑖𝑓 𝑚𝑎𝑠𝑘(𝑥, 𝑦) ! = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.10)

where

x and y are the coordinates of the pixel

2.5 Character Recognition

Optical Character Recognition (OCR) is a technology being utilized for

converting the characters in an image to the machine language such as ASCII

format. This conversion is necessary for the digitization purpose and it enables

further operations to be performed on the characters, for examples mathematical

calculation, text manipulation and uploading to cloud.

23

 Tesseract is a free and open source OCR engine developed by Hewlett

Packet (HP) and Google using neural network. This engine can recognize more

than 100 languages. Moreover, it is written and compiled in C and C++, thus it

can be executed in various platforms such as Linux, Windows and MacOS (Patel

et al, 2012). Besides, to run the Tesseract engine in Python, a library wrapper

known as PyTesseract is required. It consists of the Tesseract class in Python

language and is able to deal with various type of images, for instance jpg, png,

etc as supported by the Pillow library.

2.6 Summary

In this chapter, the theories, concepts and working principles regarding the

image recognition have been discussed. There are many tools and functions

provided by the OpenCV library which can be utilized to determine and extract

the region of interest. Subsequently, the ROI can be processed by the optical

character recognition engine to obtain the digitized readings. The knowledge

and idea acquired from this chapter will be applied into the project subsequently.

24

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter provides the details regarding the configuration of the proposed

system, the processes and flowchart of the system, the software and hardware

involved, as well as the list and cost of components. Besides, the work plan,

project milestones, schedule of each activity and the Gantt Charts are illustrated

subsequent to the methodology. They deliver the information about the progress

and tasks that have been achieved during the execution of this project.

3.2 Methodology

This section describes the general procedures and tools utilized in developing

the meter’s reading detection system. The development process is illustrated by

a flowchat as shown in Figure 3.1.

Firstly, the images of various types of analogue meters had been

collected and labelled manually to form the dataset for the training of the deep

learning model. Next, the deep learning model, namely SSD MobileNet V2,

was trained using the TensorFlow architecture via Google Colab.

Subsequently, the software for the system, comprised of image

inferencing, region of interest (ROI) extraction, image processing, optical

character recognition and clouding was developed. Thereafter, the software was

transferred to the Raspberry Pi microcomputer for execution. It was installed on

the real meter for readings digitization and accuracy evaluation as real-world

application.

Figure 3.1: Flowchart of the System Development

25

3.3 Software

3.3.1 Overview

The software of meter’s reading detection system consisted of six major

operations as shown in Figure 3.2. Firstly, the self-trained deep learning model

was loaded into the system’s RAM. Next, the image of the meter can either be

captured directly using the camera integrated on the microcomputer or loaded

from the storage. The deep learning model loaded previously was used to

perform inference on the image to localize the meter reading’s area.

Subsequently, the region of interest (ROI) containing the readings was extracted.

Thereafter, the ROI underwent image processing for noise removal and quality

enhancement. Lastly, the optical character recognition (OCR), namely Tesseract,

was used to recognise the digits and convert them to ASCII format which would

then be uploaded to the cloud (Firebase).

Figure 3.2: Operations of the Meter’s Readings Detection System

3.3.2 Platforms

3.3.2.1 Python

The programming language used in this project is Python. It is a high-level

object-oriented programming language which offers user-friendly and high code

readability experience. Python supports multiple libraries, modules and

packages for various applications such as image processing, data analysis,

hardware integration, etc. Besides, the Python codes are standardized in

different platforms. Thus, the Python programme developed in the Windows

platform can be directly migrated and executed in the Raspberry Pi OS without

extra modifications.

26

3.3.2.2 Google Colab

The Google Colab is a Python development environment, provided freely by

Google Inc that runs entirely on the cloud which the programmer can access the

Colab notebook using internet browsers. Due to its cloud-based characteristic,

many benefits are available. Firstly, it enables auto-saving on cloud so that the

programme being developed are always up-to-date. Besides, it is integrated with

pre-installed libraries, especially for deep learning such as TensorFlow and

Keras. Morever, it provides high amount of RAM and powerful GPU which

enables accerelation and optimisation for the model training process (Nelson

and Hoover, 2020).

3.3.2.3 Spyder IDE

Spyder is an integrated development environment (IDE) specifically for Python

programming language. It is an open-source and cross-platform software which

provides comprehensive development tools and functionalities such as variable

explorer, auto error detection, keywords suggestion, codes documentation and

debugging console. The Spyder IDE user interface is shown in Figure 3.3.

Figure 3.3: Spyder IDE

3.3.2.4 LabelImg

LabelImg is a free image annotation software developed by Tzutalin in 2015. It

has a simple and user-friendly interface which enables quick image labelling

27

and class defining. Besides, it supports two different labelling formats, namely

PASCAL VOC and YOLO (Tzutalin, 2015). In this project, the TensorFlow

architecture used the PASCAL VOC format. Figure 3.4 shows the user interface

of the LabelImg software.

Figure 3.4: LabelImg Annotation Software

3.3.2.5 Firebase

Firebase is an online platform developed by Google, primarily for cloud services.

It provides various functions such as real-time database, web hosting, cloud

storage and users analytics (Moroney, 2017). The programme developed in this

project used the Firebase’s real-time database for uploading and storing the

digitized meter’s readings which enabled the real-time monitoring function.

Figure 3.5 shows the console of the Firebase platform.

Figure 3.5: Firebase Console

28

3.3.3 Deep Learning Model

The deep learning model used in the image recognition system was based on the

SSD MobileNet V2. This model was chosen because it required lesser

processing power and storage than other conventional models such as VGG,

ResNet, Inception and AlexNet (Howard et al., 2017). It was suitable to be

deployed in resource-limited devices, such as a low-cost mobile phone or

embedded system, e.g., Raspberry Pi.

3.3.3.1 Dataset

A dataset containing 750 meter images has been prepared and then labelled with

the labelImg software. A class of ‘readings’ has been defined. A portion of the

images are generated with augmentation techniques to increase the variability.

The dataset is divided with 8:2 ratio: 600 images for training and 150 images

for validation. Figure 3.6 shows the examples of meter images within the dataset.

Figure 3.6: Examples of Meter Images in the Dataset

3.3.3.2 Model Training

The deep learning model was trained using the TensorFlow library via Google

Colab with GPU accelerator. The GPU accelerator was activated as it provided

10 times faster training speed for each step of the model as compared to using

CPU only. Figure 3.7 shows the overall flowchart of the training procedures.

29

 Firstly, the dataset for the deep learning model had been prepared as

discussed in previous subsection. Each image being labelled with the labelImg

software came with a XML file which contained the information about the

image and the coordinate of the labelling box, as shown in Figure 3.8.

 Next, all the XML files of the images within the dataset were combined

into one file by converting them into CSV format. Subsequently, a tf.record file

was generated based on the CSV file created previously. The tf.record file is a

binary formatted file specialised for the TensorFlow architecture. It has been

optimised for the TensorFlow model’s training usage which improves the

training performance and reduces the dataset file size (Gamauf, 2018).

 Besides, a label map, the file used to define the name of classes in the

dataset, was created. In this project, the label map contained only one class,

namely “readings”.

 Next, the configuration file (pipeline.config) for the training process was

set up. It contained the model configuration and hyperparameters such as batch

size, learning rate, activation function, tf.record file location and training

checkpoint file location. In this project, the batch size considered was 32 due to

the size of RAM provided by Google Colab.

In addition, the transfer learning approach was implemented using the

pre-trained object detection model based on the COCO dataset to save the

training time, reduce the size of dataset and improve the performance of the

neural network, as it transfers the knowledges gained from previous trainings to

current task (Torrey and Shavlik, n.d.).

After all the requirements had been fulfilled, the training of the model

was started. During the training process, new checkpoint file which contained

the latest progress was created for every 1000 training steps. The TensorBoard

was used to convert the numerical information in the checkpoint file to graphical

information in terms of charts. Thus, the training parameters such as various

types of losses, learning rate and steps per second can be easily visualized.

When the total loss of the model had reached a constant value, i.e. 0.2 in

this case, the deep learning model was considered saturated and well-trained.

Thus, the training process was interrupted and the training steps were around

15000. The training was stopped at this moment to prevent the over-fitting issue.

30

Lastly, the latest checkpoint file was converted to the final model

(saved_model.pb) using the model exporter programme. The saved_model.pb

file can be used to perform inferencing on the meter images and thus localizing

the reading region.

Figure 3.7: Flowchart of Deep Learning Model Training via TensorFlow

31

Figure 3.8: XML file of the Labelled Image

3.3.4 Extraction of ROI

The region of interest (ROI) is the area within the detection box where the

meter’s reading located. It is necessary to extract the ROI by removing the area

outside the detection box while retaining the area within the box so that

unintended characters would not be recognized during the OCR process. This

was achieved using the contour detection functions of OpenCV. By setting the

skip_labels parameter to be true during the inference, the ‘readings’ labelling

can be removed.

First, the meter image that had been inferenced by the deep learning

model was converted to HSV format using the colour space conversion. As the

detection box was green, the lower and upper limits of the HSV values were

defined as (40,200,200) and (50,255,255) respectively. Next, the image was

compared with the limits defined using the inRange function to obtain a mask

containing only the box outline and position.

Thereafter, the findContours function was used to locate the box and a

new mask with the region of interest in white (255) was created using

drawContours. Next, the bitwise AND operation was performed on the meter

image with the new mask. Subsequently, the positions of vertices of the ROI

were obtained using the NumPy min and max functions. These vertices values

were essential for cropping out the ROI.

32

3.3.5 Image Processing

Image processing is to remove the noise and enhance the quality of the extracted

ROI. This step is crucial to improve the accuracy of the OCR. According to the

documentation (Tesseract, n.d.), the Tesseract OCR engine prefers the

characters in black and white, and the characters should be resized to at least

300 dpi of resolution.

The ROI was first enlarged to three times its original size using the resize

function in OpenCV. The superior interpolation method of INTER_CUBIC was

used to enlarge the image. It performed bicubic interpolation over a 4×4-pixel

neighbourhood (Asthana, 2014) and outputted a clear and large image as desired.

Next, the enlarged ROI was converted to grayscale using the cvtColor

function. It was then thresholded to binarize the grey-scaled image into black

and white only by converting the value of each pixel to either 0 or maximum.

Moreover, the sharpening process can be carried out using the filter2D

function if necessary, by defining an appropriate matrix utilizing the

numpy.array function.

3.3.6 Optical Character Recognition

Optical Character Recognition, OCR is a technology being utilized for

converting the characters in an image to the machine language such as ASCII

format. In this paper, a free version of OCR engine, known as Tesseract is used.

To run the Tesseract engine in Python, a library wrapper known as PyTesseract,

which consists of the Tesseract class in Python language is required.

The Tesseract engine can only operate with the image in PIL format.

However, the ROI as extracted and processed in previous steps was represented

in arrays form. Thus, it was mandatory to convert the ROI format using the

Image.fromarray function from the PIL library. Thereafter, the

pytesseract.image_to_string function was executed with the ROI in PIL format

as an input parameter and the function would return the recognized characters

as a string.

There were various configurations that can be defined for the

pytesseract.image_to_string function to achieve better performance depending

on the usage and character orientation. First was the lang parameter which refers

to the Tesseract dataset being used for the recognition process. Officially, there

33

are three types of datasets (.traindata file) with different sizes, accuracy and

execution speed (Tesseract, 2017). Thus, the user can choose to use either type

according to the requirements. Next was the segmentation mode which depends

on the orientation of the characters (Tesseract, n.d.), in this case the psm 7 was

used, meaning the characters were in the format of single line of text.

Furthermore, for recognizing digits only as in the meter’s readings, the

outputbase digits config was employed. In addition, the re.sub function was

used to eliminate unnecessary spacing and symbols recognized.

3.3.7 Uploading Data to Cloud

The meter’s reading after being digitized, would be uploaded to the Firebase’s

real-time database for real-time monitoring. In Python, an additional library

namely python-firebase, was installed to perform the Firebase cloud accessing.

The data being uploaded to the cloud were in the following format:

Date: DD-MM-YYYY, Time: hh:mm:ss, Reading: XXXX

where

DD is day; MM is month; YYYY is year

hh is hours; mm is minutes; ss is second

XXXX is the digitized meter’s reading

3.3.8 Additional Libraries

3.3.8.1 Imutils

Imutils is the supplemental package that aids the operation of OpenCV. It

provides various functions to deal with the output from OpenCV such as contour

grabbing, contour sorting and transformation.

3.3.8.2 Numpy

Numpy is a library that handles arrays and matrices with multiple dimensions.

It provides algorithms for array creation, transposing, reshaping, obtaining min

and max values in an array, etc. This library is essential in image processing as

34

the images are represented by different dimensions of numeric arrays in Python

and OpenCV. (Numpy Organisation, 2021)

3.3.8.3 PIL

PIL stands for Python Imaging Library. It is the main image manipulation

library for Python which provides functions such as image opening, enhancing,

format conversion and exporting. The Tesseract character recognition engine

only supports the image in PIL format, thus this library is necessary to convert

the image array from OpenCV format.

3.3.8.4 re

Regular Expression (re) is a module that allows the user to define certain rules

or patterns for the string. It is mainly used to search, split or replace the

particular characters in a string with reference to the patterns defined. For

example, unnecessary spacing in a string can be eliminated using the re function.

3.3.8.5 Pytesseract

Pytesseract is a library wrapper for the Tesseract engine. It enables the execution

of Tesseract engine within the Python IDE using a sets of python coding and

simplifies the work of a developer.

3.4 Hardware

3.4.1 Configuration

The microcomputer employed in the image recognition system was the

Raspberry Pi 4 Model B. It was powered by a 240 V AC to 5 V DC Adapter

with 15 W power rating. A camera module was attached to the microcomputer

via the CSI port for capturing the image of the analogue meter. Besides, the

microcomputer was connected to WiFi and upload the digitized readings to the

cloud system, namely Firebase. Moreover, a monitor together with a pair of

keyboard and mouse were connected to the microcomputer during the set up

and debugging process to allow the developer interfacing with the

microcomputer. Figure 3.9 shows the overall block diagram of the system

proposed.

35

Figure 3.9: Block Diagram of the System

3.4.2 Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B is a microcomputer developed by the UK-based

Raspberry Pi Foundation. It was released in June 2019 and is currently the latest

version in the Pi series. This model is integrated with its own processor, memory

chip (RAM), connectivity modules, various I/O ports and camera peripheral. It

can offer computing performance comparable to a typical entry-level laptop and

supports Python programming. A micro SD card is used as a hard drive to store

the operating system, software and files of the microcomputer.

Besides, the Model B supports both Bluetooth and WiFi wireless

connections. The Bluetooth version supported is 5.0 and the WiFi is dual-band

2.4/5 GHz. Thus, it is very convenience for the online cloud access and internet-

of-thing (IoT) purposes. The power consumption of the Model B is 15 W and is

supplied by an AC to DC adapter with output of 5 V/3 A. To configure and

control the microcomputer, a set of USB keyboard and mouse are required.

Figure 3.10: Raspberry Pi 4 Model B

36

Table 3.1: Specifications of Raspberry Pi 4 Model B (RaspberryPi, 2020)

Components Details

Processor Broadcom BCM2711 (ARM v.8)

Memory LPDDR4 (1/2/4/8 GB)

Connectivity 2.4/5 GHz IEEE 802.11b/g/n/ac wireless

Bluetooth v5.0

4x USB ports

Gigabits Ethernet

40 GPIO pins

Video & Sound Micro HDMI, camera peripheral, audio port

Power supply 15 W, 5 V 3 A DC

Environment 0 – 50 °C

3.4.2.1 Operating System

The official operating system (OS) for Raspberry Pi 4 Model B is the Raspberry

Pi OS. It is a Debian-based OS developed by the Raspberry Pi Foundation and

is highly optimized for the ARM CPU. The OS has a built-in Package Manager

which consists of various applications such as web browser, document editor,

etc. The Python IDE such as Spyder is also supported on the Raspberry Pi OS.

The OS is to be downloaded into an SD Card using Windows and subsequently

installed on the microcomputer.

3.4.3 Camera Module

The Raspberry Pi Camera Module is a camera board officially released by the

Raspberry Pi Foundation. It consists of a 5 MP OV5647 CMOS sensor

developed by OmniVision. The module is weighted at 3 g and with a size of 6

cm2. Besides capturing a 5 MP image, it is also capable of recording a video

with 1080p30 and 720p60 resolutions. The camera module is connected to the

Raspberry Pi 4 Model B microcomputer via the high data rate CSI port

integrated on the board.

37

Figure 3.11: Raspberry Pi Camera Module

Figure 3.12: Camera Connection with CSI Port

3.5 Cost of Components

Table 3.2 shows the cost of each compenents for this project.

Table 3.2: Cost of Components

Component Quantity Price (RM)

Raspberry Pi 4 Model B

(4 GB RAM)

1 240.00

Power Adapter

(240 V AC to 5V 3A DC)

1 35.00

MicroSD card (32 GB) 1 28.90

Raspberry Pi Camera

Module

1 29.90

Total Price (RM) 333.80

38

3.6 Planning and Milestones

3.6.1 Project Milestones

There are 6 milestones for the project as shown in Table 3.3

Table 3.3: Project Milestones

Label Milestone

M1 Preliminary investigation for customer’s requirements and

problem statement

M2 Literature review and research

M3 Data collection

M4 Model Development

M5 Model Evaluation and Optimization

M6 Integration of Software and Hardware

3.6.2 Project Schedule and Gantt Chart

Table 3.4 shows the project schedule and activities for FYP part 1 and Figure

3.13 shows the Gantt Chart for Part 1.

Table 3.4: Project Schedule for FYP Part 1

Milestone Activities Duration

(weeks)

M1 A1 Discuss with supervisor and understand

the scope of project

1

M1 A2 Preliminary investigation and project

planning

1

M2 A3 Perform literature review and research on

related topics for image processing

6

M3 A4 Collect the required data and images 2

M4 A5 Develop the software model for image

recognition system

7

M5 A6 Initial model testing and obtaining

preliminary results

3

- A7 Documentation and report writing 2

39

Figure 3.13: Gantt Chart for FYP Part 1

Table 3.5 shows the project schedule and activities for FYP part 2 and Figure

3.14 shows the Gantt Chart for Part 2.

Table 3.5: Project Schedule for FYP Part 2

Milestone Activities Duration

(weeks)

M5 A8 Software model testing and optimization 8

M6 A9 Obtain the hardware components 3

M6 A10 Build the hardware prototype 2

M6 A11 Integrate the software with hardware 4

M6 A12 On-site testing and results collection 5

- A13 Documentation and final report writing 3

40

Figure 3.14: Gantt Chart for FYP Part 2

3.7 Summary

This chapter has elaborated the details of methodology involved in the project

such as the system configuration, execution procedures, flowchart, software,

hardware components and cost of materials. Besides, the workplan, milestones,

activities and their respective schedule and duration were listed out. The author

carried out the project based on the above information to ensure that it could be

successfully completed and all the objectives were able to be achieved.

41

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

This chapter mainly illustrates and explains the outcomes of each sub-system as

mentioned previously in the methodology section. In-depth analysis have been

performed on the results, in terms of software, hardware and accuracy

evaluation, to verify and ensure that the solutions provided and system

developed are able to achieve the aim and objectives of this project.

4.2 Software Simulation

4.2.1 Deep Learning Model

The deep learning model was based on the SSD MobileNet V2 achitecture. The

size of the model, with training steps of 15000, was about 10 MB. It was

appropriate for resource-limited applications due to small sized.

Figure 4.1 illustrates the on-going training process of the deep learning

model on Google Colab with TensorFlow. It can be observed that the time taken

for each training step was about 0.75 seconds as accelerated by the GPU.

Besides, the loss parameters were updated for every 100 training steps.

Moreover, Figure 4.2 shows the graphs of various loss functions for the

training process of the deep learning model. It can be observed that the curve of

the total loss function was decreasing and approaching constant as the training

steps increased. Thus, the training process had been stopped to avoid overfitting.

42

Figure 4.1: On-going Training Process of Deep Learning Model on Google

Colab

Figure 4.2: Graphs of various Loss Functions

Both the deep learning model and meter image were loaded into the

system memory. The meter image was then being inferenced and drawn with

detection box using the viz_utils.visualize_boxes_and_labels_on_image_array

function as shown in Figure 4.3. Figure 4.4 shows the inferencing of various

43

types of meters by the deep learning model. It can be observed that the meter’s

readings area had been framed with detection box and labelled as readings.

Figure 4.3: Detection Box Visualizing Function

Figure 4.4: Inferencing of various Types of Meters

4.2.2 Extraction of ROI

The Region of Interest (ROI), containing the meter’s reading, was extracted by

removing the area outside the detection box and retaining the area within the

box so that any unintended characters would not be recognized during the OCR.

This process was achieved using the contour detection and masking methods.

Figure 4.5 shows the meter image that had been inferenced using the

deep learning model where the “readings” labelling was hidden with the

skip_labels parameter in the visualization_utils function as it was unnecessary

for the ROI extraction.

44

Figure 4.5: Inferenced Meter Image with Label Hidden

Figure 4.6 shows the output of the inRange function with lower and

upper limits of HSV values of (40,200,200) and (50,255,255) respectively. It

can be observed that the outline of the detection box is extracted in white (bits

of 255) whereas the other region became black (bits of 0).

Figure 4.6: Output of inRange function

Figure 4.7 shows the mask created using the findContours and

drawContours functions. Firstly, the findContours detects the outline extracted.

Next, the drawContours makes the area within the box to be white. The mask is

essential for the extraction of ROI which will be implemented with the bitwise

AND operation.

45

Figure 4.7: Mask for ROI Extraction

Figure 4.8 shows the ROI containing the meter’s reading which is

obtained by applying the bitwise AND function on the mask as well as the meter

image. Figure 4.9 shows the excessive region in black was cropped using the

positions of vertices of the ROI, obtained from the NumPy min and max

functions.

Figure 4.8: Output of bitwise AND Function

Figure 4.9: ROI Extracted

46

4.2.3 Image Processing

The ROI extracted had undergone image processing to remove the noise and

enhance its quality. This step was essential as to improve the accuracy of the

optical character recognition.

 Firstly, the ROI was enlarged using the resize function of the OpenCV

with the INTER_CUBIC interpolation method as shown in Figure 4.10. It can

be observed that the quality of the image, in terms of clearness, can still be

retained after enlarging.

Figure 4.10: ROI being Enlarged

 Next, grey-scaling was performed on the ROI using the colour space

conversion function. This step was necessary as the thresholding function of

OpenCV in the next step can only take in a single-channel (Grey) image instead

of three-channels (RGB) image. Figure 4.11 shows the ROI in grey-scale.

Figure 4.11: Grey-scaled ROI

 Afterwards was the thresholding operation. Figure 4.12 illustrates the

thresholding of the ROI in which the image being represented in binary form,

which was black (0) and white (max). It can be observed that some of the noises

and unnecessary components are removed.

Figure 4.12: Thresholded ROI

47

4.2.4 Character Recognition

Finally, the ROI after being processed, was performed with optical character

recognition using the Tesseract OCR engine. The numerical characters in the

ROI are digitized and converted to string datatype as shown in Figure 4.13.

Furthur operations such as uploading to the cloud can be performed using this

string data.

Figure 4.13: Output of Tesseract OCR

4.3 Hardware Implementation

4.3.1 Setup

The Raspberri Pi microcomputer was setup with its operating system, namely

Raspberry Pi OS, as well as all the essential libraries as mentioned in the

methodology section. Next, the camera module was intalled on the CSI

peripheral and being activated.

Subsequently, the microcomputer with camera module was fixed on a

plastic holder with clipping function as shown in Figure 4.14. Morover, the

power of the hardware was supplied by a power bank to enable the its portability

as illustrated in Figure 4.15. The image recognition software developed in

previous steps is transferred to the Raspberry Pi microcomputer for execution

and validation.

48

Figure 4.14: Hardware Setup

Figure 4.15: Hardware Connected to Power Bank

49

4.3.2 Installation on Meter

After the Raspberry Pi microcomputer had been set up and the image

recognition software was successfully executed on the microcomputer, the

hardware was then installed on the water meter for practicallity testing and real-

time monitoring. The hardware installation on the water meter is shown in

Figure 4.16.

Figure 4.16: Hardware Installation on Water Meter

50

4.4 Cloud and Real-time Database

The digitized meter’s reading was uploaded to the Firebase Real-time Database

to enable the cloud storing and real-time monitoring functions. The interval of

data upload had been configured to two minutes; thus, the data in the Firebase

would be updated for every two minutes.

 The real-time database can be accessed using internet browser, by

logging in to the Firebase’s website with URL of console.firebase.google.com.

Figure 4.17 shows the data being collected and stored in the Firebase Real-time

Database. It can be observed that each data consists of information in date, time

and reading digitized.

Figure 4.17: Data Collected in Firebase

4.5 Accuracy Evaluation

The accuracy of the system was evaluated in terms of two criteria, namely the

accuracy of meter’s reading region localization by the deep learning model and

the average accuracy of optical character recognition on the meter’s reading.

Figure 4.18 shows the data being collected, tabulated and compared using

Microsoft Excel. In addition, Equation 4.1 was used to calculate the accuracy of

the optical character recognition. Besides, the overall results of the accuracy

evaluation are shown in Table 4.1.

51

Figure 4.18: Data Tabulated using Microsoft Excel

% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁𝑢𝑚 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐷𝑖𝑔𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚 𝑜𝑓 𝐷𝑖𝑔𝑖𝑡𝑠
× 100 (4.1)

Table 4.1: Results of Accuracy Evaluation

Aspects Values

Accuracy of meter’s readings region detection by

Deep Learning Model

95%

Average accuracy of character recognition by

Tesseract OCR

91%

From the evaluation process, it is noticed that the accuracy of the meter’s

readings region detection by deep learning model is affected by the size and

resolution of the meter images. When the meter faces are small, which is

occupying less than 30% of the whole image, there is higher chance that the

deep learning model detects the false area. Thus, it is recommended to place the

camera near and centred to the meter face.

 Besides, the Tesseract OCR engine is sensitive to the skewing of the

characters. Hence, it is suggested that during the capturing process of the image,

52

the camera should be placed correctly with respect to the meter-face orientation

to optimise the performance of the Tesseract.

 Moreover, the sharpness and quality of the image taken are affected by

the vibration caused by wind or movement of vehicles. When the vibration

occurs at the camera module, the photo capture is blurry and thus, the

performance and accuracy of the optical character recognition are greatly

reduced. In order to mitigate this issue, the camera module is suggested to be

installed on a stable and enduring platform.

4.6 Summary

The results obtained from each sub-module of the software, as well as the

hardware and accuracy evaluation have been presented in this chapter. In-depth

analysis had been performed and detailed explanations were provided along

with each result to ensure that the information on operating principles and

functions of each sub-system are clearly delivered.

53

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Digitization is one of the major components in IR 4.0. It provides a lot of

benefits to the industrial, such as increasing productivity, better data

visualisation, simplifying parameters control, etc. One of the important steps in

digital transformation is to make all the instrumental devices connected to the

cloud. However, replacing the existing analogue meters with the cloud-

connected digital meters can be very costly especially for industrial grade meters.

The aim of this research is to develop a cost-effective image recognition

system to capture and monitor the analogue meter’s readings and send the data

to the cloud system of the factory as a part of digitization and automation. The

objectives of this project, namely to investigate the feasibility of image

recognition system for analogue meter’s reading detection, to develop the image

recognition system and to evaluate the functions and performance of the system

have been achieved accordingly.

The system developed consists of a deep learning model based on SSD

MobileNet V2 and optical character recognition engine referring to the

Tesseract. The deep learning model was trained with a dataset of 750 meters’

images, and it is used to detect the region of interest where the meter’s readings

are located. The OCR is used to convert the readings to string datatype. Besides,

the image processing techniques via the OpenCV library are implemented for

enhancing the quality of the ROI.

The programme developed is executed on Raspberry Pi microcomputer

with camera module installed and its performance has been evaluated. The

results show that the deep learning model and OCR accuracies are 95% and 91%,

respectively. Moreover, the data were successfully uploaded to the cloud-based

service platform, namely Firebase.

54

5.2 Recommendations for future work

The limitation of this project is on the diversity of the meters being recognized.

Due to the constraint in various parameters involving the image processing,

computer vision and character recognition, the system developed is only

applicable to detect and convert the numerical reading (digits). Thus, the image

recognition system is not universal. In future, the deep learning model can be

further trained to recognize and digitize the analogue meter with arrows or

pointers so that the system is applicable to more variety of meters.

 Besides, the current hardware system uses WiFi connection for internet

access and uploading the data to cloud. Due to the absence of WiFi signal at

certain places, the cloud access will fail. Thus, mobile connectivity such as 3G

or 4G technology can be added to the system to address the problem.

55

REFERENCES

Asthana, S.R., 2014. Enhanced Camera Calibration for Machine Vision using

OpenCV. IAES International Journal of Artificial Intelligence (IJ-AI), 3(3),

p.136

Caylar, P. and Noterdaeme, O., 2016. Digital in industry: From buzzword to

value creation. (Exhibit 1), pp.1–9.

Copeland, B., 2020. Artificial intelligence. [Online]

Available at: <https://www.britannica.com/technology/artificial-intelligence>

[Accessed 10 July 2021].

Gong, X.Y., Su, H., Xu, D., Zhang, Z.T., Shen, F. and Yang, H. Bin, 2018. An

Overview of Contour Detection Approaches. International Journal of

Automation and Computing, 15(6), pp.656–672.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M. and Adam, H., 2017. MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications..

IBM Cloud Education, 2020. Convolutional Neural Networks. [Online]

Available at: <https://www.ibm.com/cloud/learn/convolutional-neural-

networks> [Accessed 17 Jan 2022].

IBM Cloud Education, 2020. Supervised Learning. [Online]

Available at: <https://www.ibm.com/cloud/learn/supervised-learning>

[Accessed 10 Jan 2022].

Idris, R., 2019. Industrial Revolution 4.0: An Overview of Readiness and

Potential Economic Effects in Malaysia from Millennial’s Perspective. World

Scientific News, 118(January), pp.273–280.

Johnson, D., 2022. Back Propagation Neural Network: What is

Backpropagation Algorithm in Machine Learning?. [Online]

Available at: <https://www.guru99.com/backpropogation-neural-network.html>

[Accessed 20 Jan 2022].

Kumar, R., 2021. Supervised, Unsupervised, And Semi-Supervised Learning.

[Online]

Available at: <https://medium.com/enjoy-algorithm/supervised-unsupervised-

and-semi-supervised-learning>

[Accessed 10 Jan 2022].

Mallick, S., n.d. Contour Detection using OpenCV. [Online]

Available at: <https://learnopencv.com/contour-detection-using-opencv-

python-c/> [Accessed 19 July 2021].

56

Mallick, S., n.d. Image Rotation and Translation Using OpenCV. [Online]

Available at: <https://learnopencv.com/image-rotation-and-translation-using-

opencv/> [Accessed 20 July 2021].

MathWorks, n.d. Convolutional Neural Network. [Online]

Available at: <https://www.mathworks.com/discovery/convolutional-neural-

network-matlab.html>

[Accessed 17 Jan 2022].

MathWorks, n.d. Image Recognition. [Online]

Available at: <https://www.mathworks.com/discovery/image-recognition-

matlab.html> [Accessed 7 July 2021].

McGonagle, J. et al., n.d. Backpropagation. [Online]

Available at: <https://brilliant.org/wiki/backpropagation/>

[Accessed 20 Jan 2022].

Mohamad, E., Sukarma, L., Mohamad, N.A., Salleh, M.R., Rahman, M.A.A.,

Rahman, A.A.A. and Sulaiman, M.A., 2018. Review on Implementation of

Industry 4.0 Globally and Preparing Malaysia for Fourth Industrial Revolution.

The Proceedings of Design & Systems Conference, 2018.28(0), p.2203.

Moroney, L., 2017. The firebase realtime database. In The Definitive Guide to

Firebase (pp. 51-71). Apress, Berkeley, CA.

Mujtaba, H., 2020. What is Image Recognition and How it is Used?. [Online]

Available at: <https://www.mygreatlearning.com/blog/image-recognition/>

[Accessed 17 July 2021].

Nelson, M.J. and Hoover, A.K., 2020. Notes on Using Google Colaboratory in

AI Education. Annual Conference on Innovation and Technology in Computer

Science Education, ITiCSE, pp.533–534.

Numpy Organisation, 2021. What is NumPy?. [Online]

Available at: <https://numpy.org/doc/stable/user/whatisnumpy.html>

[Accessed 2 August 2021].

OpenCV Organisation, 2020. Color conversions. [Online]

Available at: <https://docs.opencv.org/4.4.0/de/d25/imgproc_color_conversi

ons.html> [Accessed 15 July 2021].

OpenCV Organisation, n.d. About. [Online]

Available at: <https://opencv.org/about/> [Accessed 14 July 2021].

OpenCV Organisation, n.d. Image Thresholding. [Online]

Available at: <https://docs.opencv.org/4.5.2/d7/d4d/tutorial_py_thresholding.

html> [Accessed 16 July 2021].

57

Oppermann, A., 2019. What is Deep Learning and How does it work?. [Online]

Available at: <https://towardsdatascience.com/what-is-deep-learning-and-how-

does-it-work> [Accessed 10 Jan 2022].

Oracle, n.d. What is IoT?. [Online]

Available at: <https://www.oracle.com/internet-of-things/what-is-iot/>

[Accessed 9 July 2021].

Patel, C., Patel, A. and Patel, D., 2012. Optical Character Recognition by Open

source OCR Tool Tesseract: A Case Study. International Journal of Computer

Applications, 55(10), pp.50–56.

RaspberryPi, 2020. Raspberry Pi 4. Raspberry Pi Foundation, (May).

Rogowska, J., 2009. Overview and Fundamentals of Medical Image

Segmentation. In: I. N. Bankman, ed. Handbook of Medical Image Processing

and Analysis. s.l.:Academic Press.

Rune, 2020. Understand How Color to Gray Scale Works Using OpenCV.

[Online] Available at: <https://www.learnpythonwithrune.org/understand-how-

color-to-gray-scale-works-using-opencv/> [Accessed 15 July 2021].

Rymarczyk, J., 2020. Technologies, opportunities and challenges of the

industrial revolution 4.0: Theoretical considerations. Entrepreneurial Business

and Economics Review, 8(1), pp.185–198.

Saha, S., 2018. A Comprehensive Guide to Convolutional Neural Networks.

[Online]

Available at: <https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53>

[Accessed 20 Jan 2022].

Sajjad, K.M., 2012. Automatic License Plate Recognition using Python and

OpenCV. Department of Computer Science and Engineering MES College of

Engineering., pp.1–5.

Sreedhar, K., 2012. Enhancement of Images Using Morphological

Transformations. International Journal of Computer Science and Information

Technology, 4(1), pp.33–50.

Stanford University, n.d. Image Processing. [Online]

Available at: <https://ai.stanford.edu/~syyeung/cvweb/tutorial1.html>

[Accessed 17 July 2021].

Tableau, n.d. Big Data Analytics: What It Is, How It Works, Benefits, And

Challenges. [Online] Available at: <https://www.tableau.com/learn/articles/big

-data-analytics> [Accessed 9 July 2021].

Taud, H. and Mas, J.F., 2018. Multilayer perceptron (MLP). In Geomatic

approaches for modeling land change scenarios (pp. 451-455). Springer, Cham.

58

Teli, M. N., 2019. Canny Edge Detection. University of Marryland.

Tesseract, n.d. Improving the quality of the output. [Online] Available at:

<https://tesseract- ocr.github.io/tessdoc/ImproveQuality>

[Accessed 9 Jan 2022]

Tesseract, 2017. Traineddata Files for Version 4.00 +. [Online] Available at:

<https://tesseract-ocr.github.io/tessdoc/Data-Files.html>

[Accessed 9 Jan 2022]

Torrey, L. and Shavlik, J., n.d. Transfer learning. Handbook of research on

machine learning applications and trends: algorithms, methods, and techniques

(pp. 242-264). IGI global.

Tzutalin, 2015. LabelImg. Git code. Available at:

<https://github.com/tzutalin/labelImg>

University of Maine, n.d. CMOS Sensor. [Online] Available at:

<http://www.optique-ingenieur.org/en/courses/OPI_ang_M05_C06/co/Conten

u_20.html> [Accessed 15 July 2021].

Utmel Electronic, 2020. Image Sensor: How do CCD and CMOS Sensors work?.

[Online] Available at: <https://www.utmel.com/blog/categories/sensors/image-

sensor-how-do-ccd-and-cmos-sensors-work> [Accessed 15 July 2021].

Zhou, K., Liu, T. and Zhou, L., 2016. Industry 4.0: Towards future industrial

opportunities and challenges. 2015 12th International Conference on Fuzzy

Systems and Knowledge Discovery, FSKD 2015, pp.2147–2152.

59

APPENDICES

APPENDIX A: Acceptance of Conference Paper

Name of Conference:

12th IEEE Symposium on Computer Applications & Industrial Electronics

(ISCAIE 2022)

Date of Conference:

22 May 2022

Title of Conference Paper:

Deep Learning and Optical Character Recognition for Digitization of Meter

Reading

Notification of Acceptance:

60

APPENDIX B: Code of Deep Learning Model Training (Google Colab)

%cd /content/drive/MyDrive/Colab Notebooks/models/research

!protoc object_detection/protos/*.proto --python_out=.

!export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

!apt-get install -qq protobuf-compiler python-pil python-

lxml python-tk

!pip install -

qq Cython contextlib2 pillow lxml matplotlib pycocotools

cd /content/drive/MyDrive/Colab Notebooks/models

pip install --user -r official/requirements.txt

pip install tf_slim

pip install dataclasses

pip install tensorflow-addons

pip install tensorflow-text-nightly

pip install utils

pip install lvis

import os

os.environ['PYTHONPATH']+=":/content/drive/MyDrive/Colab Not

ebooks/models"

os.environ['PYTHONPATH']+=":/content/drive/MyDrive/Colab Not

ebooks/models/research"

!python generate_tfrecord.py --

csv_input=data/test_labels.csv --

output_path=tf_record/test.record --image_dir=test_images

!python model_main_tf2.py \

 --model_dir=trained-checkpoint --num_train_steps=50000 \

 --sample_1_of_n_eval_examples=1 \

 --pipeline_config_path=pipeline.config \

 --alsologtostderr

!python exporter_main_v2.py \

61

 --input_type image_tensor \

 --pipeline_config_path pipeline.config \

 --trained_checkpoint_dir trained-checkpoint \

 --output_directory exported-model

APPENDIX C: Code of TensorBoard

cd /content/drive/MyDrive/Colab Notebooks/models

import tensorflow as tf

import datetime, os

%load_ext tensorboard

%tensorboard --logdir trained-checkpoint

62

APPENDIX D: Code of Image Recognition Software Developed

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Suppress TensorFlow logging (1)

import pathlib

import tensorflow as tf

import cv2

import numpy

import numpy as np

from PIL import Image

tf.get_logger().setLevel('ERROR') # Suppress TensorFlow logging (2)

import re

import pytesseract

import imutils

from firebase import firebase

from datetime import datetime

from time import sleep

firebase = firebase.FirebaseApplication('https://yj-fyp-default-rtdb.firebaseio.com/', None)

Enable GPU dynamic memory allocation

gpus = tf.config.experimental.list_physical_devices('GPU')

for gpu in gpus:

 tf.config.experimental.set_memory_growth(gpu, True)

pytesseract.pytesseract.tesseract_cmd = r'D:\Program Files\Tesseract\tesseract.exe'

63

PATH_TO_LABELS = r'D:\User Files\Desktop\readings\label_map.pbtxt'

import time

from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as viz_utils

PATH_TO_SAVED_MODEL = r'D:\User Files\Desktop\readings\My model\exported-model_ver1\saved_model'

print('Loading model...', end='')

start_time = time.time()

Load saved model and build the detection function

detect_fn = tf.saved_model.load(PATH_TO_SAVED_MODEL)

end_time = time.time()

elapsed_time = end_time - start_time

print('Done! Took {} seconds'.format(elapsed_time))

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,use_display_name=True)

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings('ignore') # Suppress Matplotlib warnings

def load_image_into_numpy_array(path):

64

 return np.array(Image.open(path))

for i in range(100):

 image_path = r'D:\User Files\Desktop\{}.jpg'.format(i+1)

 print('Running inference for {}... '.format(image_path), end='')

 image_np = load_image_into_numpy_array(image_path)

 # Condition based:

 # Flip horizontally

 # image_np = np.fliplr(image_np).copy()

 # Convert image to grayscale

 # image_np = np.tile(

 # np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8)

 # The input needs to be a tensor, convert it using `tf.convert_to_tensor`.

 input_tensor = tf.convert_to_tensor(image_np)

 # The model expects a batch of images, so add an axis with `tf.newaxis`.

 input_tensor = input_tensor[tf.newaxis, ...]

 # input_tensor = np.expand_dims(image_np, 0)

 detections = detect_fn(input_tensor)

65

 num_detections = int(detections.pop('num_detections'))

 detections = {key: value[0, :num_detections].numpy()

 for key, value in detections.items()}

 detections['num_detections'] = num_detections

 detections['detection_classes'] = detections['detection_classes'].astype(np.int64)

 image_np_with_detections = image_np.copy()

 viz_utils.visualize_boxes_and_labels_on_image_array(

 image_np_with_detections,

 detections['detection_boxes'],

 detections['detection_classes'],

 detections['detection_scores'],

 category_index,

 skip_scores=True,

 skip_labels=True,

 use_normalized_coordinates=True,

 max_boxes_to_draw=1,

 min_score_thresh=0.2,

 agnostic_mode=False)

 print('Done')

 print(detections['detection_classes'])

 print(detections['detection_scores'])

 im_PIL = Image.fromarray(image_np_with_detections)

66

 im_cv = cv2.cvtColor(numpy.array(im_PIL), cv2.COLOR_RGB2BGR)

 inferenced = im_cv

 inferenced_copy = inferenced.copy()

 inferenced_HSV = cv2.cvtColor(inferenced, cv2.COLOR_BGR2HSV)

 lower_green = np.array([40,200,200])

 upper_green = np.array([50,255,255])

 green_box_detect = cv2.inRange(inferenced_HSV, lower_green, upper_green)

 contours = cv2.findContours(green_box_detect, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

 contours = imutils.grab_contours(contours)

 contours = sorted(contours, key = cv2.contourArea, reverse = True)[:10]

 screenCnt = None

 for c in contours:

 peri = cv2.arcLength(c, True)

 approx = cv2.approxPolyDP(c, 0.018 * peri, True)

 if len(approx) >= 4 and len(approx) <=6:

 screenCnt = approx

 break

 if screenCnt is None:

 detected = 0

 print ("No contour detected")

 else:

67

 detected = 1

 mask = np.zeros(green_box_detect.shape,np.uint8)

 mask = cv2.drawContours(mask,[screenCnt],0,255,-1,)

 extracted = cv2.bitwise_and(inferenced,inferenced,mask=mask)

 (x, y) = np.where(mask == 255)

 (topx, topy) = (np.min(x), np.min(y))

 (bottomx, bottomy) = (np.max(x), np.max(y))

 readings_ROI = inferenced[topx+5:bottomx-5, topy:bottomy]

 scale_percent = 300 # percent of original size

 width = int(readings_ROI.shape[1] * scale_percent / 100)

 height = int(readings_ROI.shape[0] * scale_percent / 100)

 dim = (width, height)

 readings_ROI_resized = cv2.resize(readings_ROI, dim, interpolation = cv2.INTER_CUBIC)

 readings_ROI_resized_gray = cv2.cvtColor(readings_ROI_resized, cv2.COLOR_BGR2GRAY)

 ret, readings_ROI_resized_thresh = cv2.threshold(readings_ROI_resized_gray,128,255, cv2.THRESH_BINARY)

 ROI_PIL = Image.fromarray(readings_ROI_resized_thresh)

 text = pytesseract.image_to_string(ROI_PIL,lang = 'eng',config = '--psm 7 outputbase digits')

 converted = re.sub('[^0-9]','', text)

 now_time = (datetime.now()).strftime("%d-%m-%Y, %H:%M:%S")

 data = {'Reading': converted}

 name = "Date：{}, Time：{}, Reading：{}".format(now_time[0:10], now_time[12:], converted)

 result = firebase.patch(name,data)

68

 sleep(5)

	FYP_Report Cover page
	FYP_Chong Yue Jiet_1702386_3E_amended (1)

