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ABSTRACT 

 

Hot rolled steels are among the highest-demand steels in the construction and 

manufacturing industry. The manufactured steel inevitably comes with some defects 

from the production line. Hence, it is essential to conduct a quality control process to 

ensure the produced hot rolled steels meet the customer’s requirements. Currently, 

most industries rely on human visual inspection systems for quality control. However, 

this inspection is not efficient and time-consuming. Furthermore, the quality of 

inspection may differ because different inspectors may have their own judgement on 

the quality. An image recognition system can improve the quality of hot roll steels 

and work efficiency. In this project, an image recognition system for steel defects 

detection has been developed to detect three types of hot rolled steel defects: rusting, 

edge, and loose wrap. For the rusting detection algorithm, a deep learning model, 

Single Shot Detector (SSD), was trained to detect and crop the hot rolled steel from 

the input image for colour detection. The colour detection was implemented to 

determine the rusting area on the hot rolled steel based on the orange-brown colour 

that appeared on the hot rolled steel. The system can decide whether to release or 

hold the hot rolled steel based on the percentage of the rusting area on the hot rolled 

steel. Meanwhile, the system carries out the model inference by utilizing the trained 

SSD model to find and crop the Region of Interest (ROI) from the input image 

regarding edge defects and loose wrap detection. Then, the system conducts Canny 

Edge Detection to find out the irregular edge lines caused by the defects. The system 

can determine whether to release or hold the hot rolled steel based on the generated 

edge lines that indicate its severity. Based on the experimental result, the rusting 

detection has more than 90% accuracy with less than 50 ms processing time. Besides, 

the edge defects detection has an average of 69% accuracy with an average 63 ms 

processing time. Last but not least, the loose wrap detection achieved an average of 

84.9 % accuracy with 51.3ms inference time. The detection errors are due to the 

variety of input images in terms of angle and brightness.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Steel production is an important industry that has a significant impact on the global 

economy. Steel is available in various categories, standards, and forms. Based on the 

World Steel Association lists, there are over 3,500 distinct classes of steel, each with 

its own set of attributes. Steel's numerous kinds allow it to be widely utilized in 

construction, products, automobiles, power plants, and other uses (Reliance Foundry 

Co. Ltd, 2021). Hot rolled steel is one of the categories of steel that is rolled in shape. 

It has been roll-pressed at a temperature above 1,700 degrees Fahrenheit, well above 

the recrystallization temperature of most steels. It ensures the steel is simpler to 

shape, resulting in easier-to-work-with items. 

Hot rolled steels always come with some common defects from the 

manufacturing process. These defects can be classified into plate shape defects, 

surface defects, appearance defects of the entire coil, geometric dimensions, and 

composition properties (Metallic Steel, 2020). Defect detection is necessary for 

maintaining high-quality products for the steel manufacturing industry. However, 

most factories are still relying on manual defect inspection and data recording. This 

kind of process is inefficient in terms of time and cost. 

Machine vision has become one of the most famous applications of AI for the 

manufacturing industries. Machine vision systems are a set of interconnected 

components that are designed to autonomously direct manufacturing and production 

procedures such as go/no testing and quality control utilising data produced from 

digital images (Edwards, n.d.). In this project, image recognition is proposed as the 

solution for hot rolled steel defects detection. 

 

1.2 Importance of the Study 

As machine vision is a trend among the manufacturing industries, image processing 

has become the core technique for this technology. Image processing allows the 

computer or machine to detect and recognize pre-defined defects without human 

interference. In IR 4.0, the technology of deep learning enhanced image processing 

performance by implementing the Convolutional Neural Network (CNN) 
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architecture. Besides, all the data can be recorded and uploaded to the cloud database 

automatically. Eventually, it can boost the efficiency of quality-checking during the 

manufacturing process. 

 

1.3 Problem Statement 

The typical defects of hot rolled steel identified during the quality inspection process 

are rusty, edge dented, edge folded, edge crack, telescoping, loose wrap, etc. As 

mentioned in the previous section, most defect inspections are done by the workers 

based on the standard guideline. For example, the industry needs to hold the hot 

rolled with the telescoping exceed 50mm. Hence, it is necessary to measure the 

dimension of every hot rolled steel. In addition, there are much more criteria that 

need to be examined. Therefore, it is a time-consuming process to carry out the 

quality inspection manually. Moreover, all the data recording process is done 

manually before transferring it to digital format. Eventually, it requires another extra 

effort to digitalize the data. 

 

1.4 Aims and Objectives 

The project aims to improve the efficiency of hot-rolled steel quality inspection with 

the image processing technique. The objectives of this project are: 

• To investigate the feasibility of the image recognition system for steel defects 

detection 

• To develop an image recognition system for steel defects detection 

• To evaluate the performance of the image recognition system 

 

1.5 Scope and Limitation of the Study 

This project focuses on the feasible image processing approach to carry out the hot 

rolled steel defects detection. A prototype of the image recognition system is hoped 

to be developed at the end of the project. 

One of the limitations of the project is the insufficient amount of collected 

image datasets for the deep learning training purpose. Besides, the processing speed 

of the image processing system may not achieve the real-time inspection requirement 

due to the lack of computation resources.  
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1.6 Contribution of the Study 

This project aims to develop an automated steel defects detection system by applying 

the image processing technique and the deep learning approach. This system can help 

the steel manufacturing industries to save cost and time on the steel defects 

identification process because the inspection system generates many outcomes within 

a few seconds. Besides, this study presented the feasibility of the developed system 

by discussing the experimental result of the system performance. It can help the 

future research to improve the system based on information shared by this study.  

 

1.7 Outline of the Report 

This report includes five chapters. Chapter 1 has briefed about the hot rolled 

production and its defects. Chapter 2 provides details about the background of image 

processing and deep learning approaches. Chapter 3 describes the methodology and 

work plan for developing the steel defects detection system. Chapter 4 discusses the 

experimental result for the performance of the developed system. Chapter 5 

concludes and provides recommendations for the whole project. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction to Image Processing 

In the late 1960s, NASA's Jet Propulsion Laboratory pioneered digital image 

processing by converting analogue signals from the Ranger spacecraft to digital 

pictures enhanced by computers. It is widely used in various applications, including 

Computed Aided Tomography (CAT) scanning and ultrasounds (Sagar, 2020). Image 

processing is the implementation of several procedures to an image and enhancing it 

or extracting useful information from it. Video clips or images act as the input for the 

image processing technique. The output is the part of the image that matches the 

information that the user wants to extract (Yolcu, 2020). 

Image Processing is primarily concerned with applying and using 

mathematical functions and transformations to pictures, regardless of whether any 

intelligent inference is performed on the image. This implies that an algorithm does 

picture modifications such as sharpening, smoothing, stretching, and contrasting. 

Figure 2.1 illustrates the operation of sharpening an image. The computing system 

treats the image as a matrix, and it performs the matrix addition operation between 

the input image and a predefined detail filter to enhance its edges. 

 

Figure 2.1 Matrix Addition for Image Sharpening (Yeung, n.d.) 

 

These matrices-based modifications are very common in machine learning 

techniques such as convolutional neural networks (CNN). The CNN convolutes a 

filter across a picture (another matrix of pixel values) in order to identify edges or 

colour intensities. Computer vision is a popular topic under image processing in 

terms of machine learning techniques. 
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2.1.1 Colour Detection 

In image processing, colour detection is detecting and identifying the name of any 

colour based on the colour model values of the image pixels (Bansal, 2021). A colour 

model is a mathematical abstraction illustrating how colours might be represented as 

a collection of integers (Dynamsoft, 2019). Colour models are defined using a 

coordinate system, with a single point in the coordinate space to represent each 

colour. There are different colour models, such as the RGB (Red Green Blue) model 

and the HSV (hue, saturation, value) model. 

           RGB colour model is the most commonly used colour model that stores values 

for red, green, and blue layers. These three primary colours can create completely 

black to white colours by adding their value. For instance, Figure 2.2 shows a hot 

rolled steel image and RGB model values of part of the pixels. There are three 

channels which are red, green, and blue that added up together and resulted in a 

group of grey colour pixels as the grey colour has the RGB values (128,128,128). 

 

Figure 2.2: RGB model example 

 

HSV, sometimes known as HSB (hue, saturation, brightness), is frequently 

used by artists because thinking about a colour in terms of hue and saturation is more 

natural than thinking about additive or subtractive colour components. The system is 

more similar to people's colour perception and experience than RGB. Colour, 

shading, and toning are used to communicate hue, saturation, and values in painting. 

Figure 2.3 shows an example of an image in the HSV colour model. 
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Figure 2.3 : HSV colour model image 

 

 The algorithm of colour detection is finding and determining the pixels in an 

image, whether that is the same colour or colour range as a specified colour. For 

example, the system needs to detect orange pixels in an image. Hence, it needs to 

find all the pixels with HSV values around (27,5,96). The HSV colour model is the 

most commonly used for colour detection as it is more equivalent to human colour 

perception. 

 

2.1.2 Canny Edge Detection 

Edge detection is one of the most fundamental images processing and recognition 

techniques. An image is an information system, and the edge of its contour provides 

much information (Zhang, 2010). In the field of computer vision, edge detection is 

crucial. Edges help in segmentation and object recognition by defining the 

boundaries between sections in a picture. Multiple operators have been introduced to 

conduct edge detection in various fields of images. However, not every operator 

performs well; it depends on image quality factors like lighting, similar-intensity 

objects, the density of edges in the scene, and noise (Suwanmanee et al., 2013). 

 There are different types of edge detector and Canny operator, Gaussian 

Laplacian, Kirsch operator and so on. Canny edge detector is a multi-stage operator 

for detecting a wide range of edges in images. The Canny edge detection algorithm 

includes five steps which are noise reduction, gradient calculation, non-maximum 

suppression, and hysteresis thresholding. Firstly, noise reduction is minimizing the 

noise on the image. It helps to enhance the performance of edge detection by 

removing unnecessary information. The Gaussian blur method is the most common 

noise reduction technique for edge detection. The equation of the Gaussian filter 

kernel can be written as following where the kernel size is (2k+1) ×(2k+1). 
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𝐻𝑖𝑗 =
1

2𝜋𝜎2
exp (−

(𝑖−(𝑘+1))
2

+(𝑗−(𝑘+1))
2

2𝜎2
) ; 1 ≤ 𝑖, 𝑗 ≤ (2𝑘 + 1)       (2.1) 

 

 Figure 2.4 below shows an example output from the Gaussian blur process. 

The structure of the output image looks blurry compared to its original input, but the 

significant edges line has remained. 

 

 

Figure 2.4: Example of Gaussian Blur image 

 

 Furthermore, the gradient calculation phase uses edge detection operators to 

identify the direction and edge intensity by calculating the image's gradient. The 

edges in a picture are formed by the changes in the intensity of pixels. The most 

straightforward technique to detect it is to use filters that highlight the intensity shift 

in both horizontal (x) and vertical (y) directions. The derivatives Ix and Iy w.r.t. x 

and y can be calculated to yield the gradient magnitude along the dimensions. It can 

be realized by using the formula below: 

∇𝑆 =  ∇(𝑔 ∗ 𝐼) = (∇g) ∗ 𝐼      (2.2) 

∇𝑆 = [ 
g𝑥

g𝑦
] ∗ 𝐼 = [ 

g𝑥 ∗ 𝐼
g𝑦 ∗ 𝐼]     (2.3) 

∇𝑔 = [ 

∂g

∂x
∂g

∂y

] = [ 
g𝑥

g𝑦
]      (2.4) 

g or g(x,y) = Gaussian filter or kernel 

I = Image 

 Figure 2.5 illustrates an example of the Gaussian derivative, which is applied 

on the Gaussian blurred image from the previous step for X-derivative, Y-derivative, 

and gradient magnitude. 
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Figure 2.5 : Example of Gaussian Derivative 

 

 

 Generally, few spots along an edge improve the visibility of the edge. As a 

result, the edge points that do not significantly contribute to feature visibility can be 

discarded. The Non-Maximum Suppression (NMS) approach is used to achieve the 

same goal. The technique traverses the gradient intensity matrix in all directions and 

finds the pixels with the highest value in the edge directions. For example, Figure 2.6 

shows the edge with three edge points. Assume that point (x,y) has the most 

significant edge gradient. Examine the edge points perpendicular to the edge and 

determine whether their gradient is less than (x,y). If the values are less than the (x,y) 

gradient, the non-maxima locations along the curve can be suppressed. 

 

 

Figure 2.6 : Illustration of NMS 
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 Lastly, hysteresis thresholding is the process of identifying three types of 

pixels which includes robust, weak, and non-relevant, then carrying out the threshold 

process. Strong pixels are those with an intensity high enough to be sure they 

contribute to the final edge. Weak pixels have an intensity value that is not high 

enough to be called strong, but it still needs to be considered.  Other pixels are 

ignored since they are irrelevant to the edge. There are two thresholds which are the 

high threshold and the low threshold. The strong pixels are identified using a high 

threshold. The non-relevant pixels are specified using a low threshold. Basically, any 

pixel with an intensity that falls between the two thresholds is classified as weak.. 

Then, the hysteresis mechanism assists in determining which pixels are potentially 

strong and which are considered irrelevant. 

 After the NMS and thresholding process, the output of the Canny edge 

detection is shown in Figure 2.7 below which is the right-side image. The edge lines 

are more precise and significant than the gaussian derivative output. 

 

Figure 2.7 : Final Output of Canny Edge Detection 

 

 

2.2 Computer Vision 

Computer vision is derived from the modelling of image processing through machine 

learning methods. Computer vision makes use of machine learning to recognize 

patterns in pictures in order to understand them. Similar to the visual reasoning 

process in human eyesight, human can differentiate between things, categorize them, 

and arrange them based on their size. Also, computer vision is similar to the image 

processing as it accepts pictures as input and outputs information about their size, 

colour intensity, and other characteristics (Sagar, 2020). 

One of the most popular applications regarding to the computer vision is self-

driving vehicles. Automobile-mounted cameras capture footage from a range of 

viewpoints from around the vehicle, which is then fed into the image processing 
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application, which analyses the image data to determine road boundaries and traffic 

signs, as well as identify other vehicles and objects in the vicinity and, as well as 

human beings. It can be feasible for the self-driving car to navigate streets and 

highways on its own, avoiding hazards and transporting its passengers to their 

destination in a safe and efficient manner (Dickson, 2019). 

Additionally, computer vision is vital for facial recognition applications, 

which utilize technology to recognize the identities of the people’s faces in the 

images. By using computer vision algorithms, algorithms for identifying and 

comparing facial features in images are identified and compared to databases of 

facial profiles. Face recognition technology is used in consumer gadgets to 

authenticate the identity of its owners, such as smartphones, smart locks etc. Also, 

social networking programs employ face recognition technique to recognize and tag 

persons in their feeds. Additionally, police enforcement organizations employ facial 

recognition technology to identify offenders in real-time video broadcasts of their 

operations (Dickson, 2019). 

As a result of augmented and mixed reality, which allows computing devices 

such as smartphones, and smart glasses to overlay and embed virtual things on real-

world pictures, computer vision is essential in many of these mentioned applications. 

Augmented reality gear identifies objects in the real world and uses computer vision 

to determine where a virtual object should be displayed on a device's display screen. 

When it comes to identifying planes such as tabletops, walls, and floors, computer 

vision algorithms may help augmented reality apps immensely. This is important 

because it allows them to build depth and dimension while also placing virtual 

objects in their actual surroundings (Dickson, 2019). 

 

2.2.1 Object Detection 

Object detection is one of the techniques under computer vision technology. It 

includes the process of detecting and identifying different types of objects in images 

as well as videos. The main operations of object detection are object classification 

and object localization. Object classification is a technique in which a computer 

system attempts to predict and determine an object in an image. Figure 2.8 shows a 

process of classifying cat-dog images. The input images, which is only consisting of 

a cat or dog, are randomly sent to a trained system in order to go through the process 

of feature extraction. The trained system sends out the outputs with a label for each 
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input image based on the extracted data. However, the output of the object 

classification is solely the class of object. It does not contain any information related 

to the location of the object. Hence, object detection needs to carry out another task 

which is object localization. 

 

Figure 2.8 : Cat-Dog Classification Process (S. Sharma, 2019) 

 

Object localization is the process of locating the detected object in the image 

with the bounding box as the indication. For instance, an image with a car is inputted 

into the system, which has been trained for car object detection tasks. Other than 

object classification, the system performs object localization to predict the height and 

width of the detected car in the image. Hence, the output of the object localization 

has four values which are pixel x-coordinate, pixel y-coordinate, height, and width. 

With these values, a bounding box can be drawn around the car in the image as 

shown in Figure 2.9. 

 

Figure 2.9 : Object Bounding Box (Halbe, 2021) 
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2.3 Deep Learning  

Deep learning is a field of machine learning that focuses on algorithms that are 

inspired by the structure and function of the brain. Deep learning is becoming 

increasingly popular. Artificial neural networks are the algorithms that are used to 

create these networks (Brownlee, 2020b). Deep learning is a technique that mimics 

the way the human brain processes data and generates patterns for use in decision-

making. Deep learning has been adopted in different fields of applications such as 

Natural Language Processing (NLP), Computer Vision (CV), voice recognition, 

predictive model, and etc. Deep learning models are sometimes referred to as deep 

neural networks due to the fact that most of the deep learning methodologies make 

use of topologies of neural networks. When describing the number of hidden layers 

in a neural network, the term "deep" is frequently employed. Unlike standard neural 

networks, which contain only a few hidden layers, deep neural networks can have up 

to 150 layers buried within them. In order to teach deep learning models, large 

volumes of labelled data are used in conjunction with the neural network, which 

automatically extracts information or features from the input data. 

           In the computer vision field, convolutional neural networks (CNN) are often 

used in deep neural networks. A CNN concatenates the studied features with input 

data and employs two-dimensional convolutional layers, making this architecture 

well-suited for two-dimensional processing data, such as pictures. In general, the 

CNN consists of three hidden layers, including Convolutional layers, Pooling layers, 

and fully connected layers (Gurucharan, 2021). Figure 2.10 shows a general 

architecture of the Convolutional Neural Network. 

 

 

Figure 2.10 : General Structure for CNN (D. J. Sharma et al., 

2020) 
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Convolutional layers use two input layers which are a portion of the original 

picture, and a filter of equal size called the kernel. This layer produces the dot 

product of its two inputs. Pooling is a technique for down sampling data. The 

Pooling Layer takes an input (a picture) and lowers its pixel count. This may be 

accomplished in two ways: via max pooling or through min pooling. Max pooling 

selects the highest value within the chosen area, while min pooling selects the lowest 

value within the selected region. As the name implies, fully connected layers connect 

all of one layer's outputs to the inputs of another layer. Eventually, these layers 

combined together to form a model which aids in data classification (Bansari, 2021). 

While CNN works well when evaluating a single picture, it lacks one critical 

property. It considers just spatial and visual data, disregarding temporal, and time 

characteristics, such as how a frame is linked to the preceding frame. This is where 

Recurrent Neural Networks, abbreviated RNN, enter the picture. The term 'recurrent' 

implies that the neural network performs the same tasks on a sequence-by-sequence 

basis. Additionally, RNNs may be utilized in Natural Language Processing. 

 

2.3.1 Loss Function 

Loss function can be treated as one of the main cores of deep learning algorithms. It 

is an approach to evaluate how good is the deep learning model has been trained. A 

high loss function output value is meaning that the deep learning model has low 

accuracy in terms of predictions. Hence, the loss function is the way to tell that how 

much more improvement is needed for the algorithm. When it comes to deep 

learning, one of the most important stages is the design of loss functions to solve the 

specific job. In fact, there is various type of loss function to study. However, for 

object detection, the loss function can be classified into two categories in general 

which are classification loss and regression loss. 

 

2.3.1.1 Classification Loss 

Classification loss is beneficial for any job that needs categorization. When given k 

categories, it must make certain that the model performs well in categorizing x 

number of samples over k categories, which is the task. In the ImageNet competition, 

for example, there are 3300 pictures divided into 500 distinct categories, and the goal 

is to categorize each picture as one of the distinct classes. 
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Cross-Entropy loss is a measure of the amount of information that has been 

lost. When referring to cross-entropy loss, the terms "logistic loss", "log loss”, and 

“cross-entropy" are often used interchangeably. Cross-entropy may be seen from two 

different perspectives. One is based on information theory, while the other is based 

on probabilistic view (Dudeperf3ct, 2019) 

Using the cross-entropy function, it measures the similarity between the 

prediction of the model with the real label, which represents the actual probability 

distribution. If the projected probability score for the real category is near 0, the 

cross-entropy will increase significantly. However, as the accuracy of the forecast 

increases, the value of the cross-entropy decreases. In the case of perfect prediction, 

i.e., in the case the projected distribution is identical to the actual distribution, this 

value becomes 0. 

 

2.3.1.2 Binary Classification 

Binary classification is a kind of classification that is binary in nature. In accordance 

with the name, there are only two classes of categories (Dudeperf3ct, 2019). If there 

are two classes that are needed to categorize the input pictures, it is suitable to utilize 

binary cross-entropy to do it. Those predictions that are confident yet incorrect are 

severely penalized by cross-entropy loss. Let 𝑦∗  as the anticipated output of the 

model, and y is the real value. For K example, the formula of the binary cross-

entropy is expressed in the form of, 

 

𝐿𝐵𝐶𝐸 = −
1

𝐾
∑ (𝑦𝑖𝑙𝑜𝑔𝑦𝑖

∗ + (1 − 𝑦𝑖)log (1 − 𝑦𝑖
∗))𝐾

𝑖=1    (2.5) 

 

2.3.1.3 Multi-class Classification 

For Multi-class classification, if the categories are above two classes which are 

needed to be recognized on the pictures, hence it should implement the multi-class 

classification cross-entropy function. The Softmax activation in the output layer of 

neural networks is utilized as a loss function in these networks. Softmax is a 

mathematical function that converts a vector of integers to a vector of probabilities. 

The value of the possibilities is proportional to the vector's relative scale. It can 

convert a vector of numbers into a vector of probabilities (Brownlee, 2020a). The 
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probability that an example belongs to each class is determined by the model. The 

multi class classification cross entropy can be written as following where C > 2. 

𝐿𝑀𝐶𝐸 = − ∑ (𝑦𝐶𝑙𝑛𝑦∗
𝑐
)𝐶

𝐶=1      (2.6) 

 

2.3.1.4 Regression Loss 

In regression, the model produces a numerical value. In order to get a measure of 

error, it must first compare the output number to the anticipated value. For example, 

the investors are interested in predicting the values of a factory in the surrounding 

area. As a result, they can provide the model with various characteristics (such as the 

number of production areas, the number of toilets, the area, and so on) and apply the 

model to estimate the cost of the factory. 

 

 

2.3.1.5 Mean Squared Error 

The mean squared error is a measure of how accurate a measurement is. It is easy to 

construct these error functions. For this error function, it will be using the square of 

error; then it gets the mean of these squared error functions to achieve the result 

(Grover, 2021). It is solely focused on the average volume of mistakes, regardless of 

the direction in which they occur. In contrast, predictions that are far off the mark in 

relation to actual values are severely punished as a result of the squaring procedure. 

This kind of mistake is referred to as L1 loss. Assume 𝑦∗ is the anticipated output 

from the model and that y is the actual value. For the K number of training, the 

formula of MSE loss can be written as follows: 

 

𝐿𝑀𝑆𝐸 =
1

𝐾
∑ (𝑦𝑖 − 𝑦∗)2𝐾

𝑖=0     (2.7) 

 

2.3.1.6 Mean Absolute Error 

Mean Absolute Error (MAE), which is similar to the one before, takes into account 

the relative error difference between the goal and projected output. In the same way 

as MSE does, this quantifies the number of mistakes without taking account of their 

direction. The distinction is that MAE is more resistant to outliers than square since it 

does not rely on the square function. This kind of mistake is referred to as L1 loss. 

𝐿𝑀𝐴𝐸 =
1

𝐾
∑ |𝑦𝑖 − 𝑦∗|𝐾

𝑖=0     (2.8) 
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2.3.1.7 Root Mean Square Error 

The root mean square error can be calculated by using the square root of the LMSE. 

The MSE penalises big mistakes more severely than small errors, and as a result, it is 

very sensitive to outliers. To prevent this, it is often to utilise the squared root version 

of the formula. 

𝐿𝑅𝑀𝑆𝐸 = √
1

𝐾
∑ (𝑦𝑖 − 𝑦∗)2𝐾

𝑖=0      (2.9) 

 

2.3.2 Faster r-CNN 

Faster Region-Based Convolutional Neural Networks, also known as Faster r-CNN, 

is one of the popular object detection architectures that applies convolution neural 

networks (Khazri, 2021).  It was introduced in 2015 by Ross Girshick, Shaoqing Ren, 

Kaiming He, and Jian Sun. The Faster r-CNN comprises three parts which are 

convolution layers, Region Proposal Network (RPN), and Classes and Bounding 

Boxes prediction. The convolution layers train the filters for feature extraction 

purposes by feeding the network a sufficient amount of image dataset. Besides, the 

Region Proposal Network (RPN) is a tiny neural network that slides over the final 

feature map of the convolution layers and predicts if an item exists or not, as well as 

its bounding box. Lastly, the Classes and Bounding Boxes prediction uses another 

Fully connected neural network to carry out classification of objects and regression 

by taking regions proposed by the RPN as inputs. 

Qirui Ren et. al (2019) had proposed a real-time detection of steel strip 

surface defects with Faster r-CNN architecture as the CNN model backbone. The 

proposed network is named Slighter Faster R-CNN because it can achieve 0.05s 

average processing time for one image with 98.32 % accuracy. Based on their 

experiment results, it is slightly faster than the original Faster r-CNN network, which 

has an average speed of 0.2s per image as shown in Table 2.1. The Slighter Faster R-

CNN was constructed by adding the depth wise separable convolution. It is a 

technique for significantly reducing computation time and model size by factorizing 

a conventional convolution into depth wise and pointwise convolutions. Depth wise 

convolution applies a single convolutional filter to each input channel, whereas 

pointwise convolution creates a linear combination of the depth wise convolution 
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output. As a result, the proposed network inference time is 0.15s or 75% faster than 

the original Faster R-CNN. However, the drawback of the constructed network is its 

mean Average Precision (mAP) is 1.19% lower than Faster R-CNN. 

 

Table 2.1 : Results from the Qirui Ren team research 

 mAP Recall Inference time per image 

Faster R-

CNN 

99.02 % 97.55 % 0.2 s 

Proposed 

Network 

97.83 % 96.67 % 0.05 s 

 

2.3.3 YOLO 

You Only Look Once (YOLO) is a famous algorithm used for real-time object 

detection by processing images or videos (Aggarwal, 2021). This algorithm is 

applying the convolutional neural networks (CNN) for real-time object detection. 

According to the term "You Only Look Once," when it comes to object identification, 

the approach only takes one forward propagation through a neural network. A single 

algorithm run is sufficient to predict the characteristics of an entire picture, indicating 

that the method is efficient. With the help of a CNN algorithm, it is possible to 

forecast several class probabilities and bounding boxes simultaneously. The YOLO 

algorithm comprises several different versions, such as Yolo tiny, Yolov3, Yolov4, 

and YOLOv5. 

The algorithm of the YOLO can be described into three parts: Residual 

blocks, Bounding box regression, and Intersection Over Union (IoU). Firstly, the 

YOLO algorithm begins by dividing an image or frame into a grid of squares with 

dimensions. Figure 2.11 illustrates how is the grid cells apply to an image. Objects 

that occur within a grid cell can be detected by every grid cell.  
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Figure 2.11 : Example of image with grid (Karimi, 2021) 

 

Suppose that an object centre occurs within a certain grid cell, and that cell is 

responsible for detecting the object. Then, some numbers of bounding boxes are 

predicted with its corresponding score of confidence. All the bounding boxes have 

attributes such as width, height, class (for example, car, cat, dog, etc.), and the centre 

of the box. Figure 2.12 shows the example of bounding box around a car which 

including the information for width, height, and centre point coordination. 

 

Figure 2.12 : Example of image with bounding box (Maj, 2018) 

 

Moreover, the phenomena in object detection describe how boxes overlap 

when they are intersected over union (IoU). Figure 2.13 shows an example of IoU 

condition on a cat detection image. YOLO takes advantage of IoU to create an output 

box that surrounds the items in the scene. As every grid cell can predict the bounding 

boxes and the confidence ratings associated with them, it allows YOLO to eliminate 

bounding boxes that are not identical in size to the actual bounding box based on the 

confidence score. There are two bounding boxes, one in blue and the other one in red. 
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The predicted box is represented in blue colour, while the red box is the actual box. 

YOLO need to make sure that both boxes are match. 

 

 

Figure 2.13 : Example of image with IoU (Rakshit, 2021) 

 

There is a proposed algorithm by Yu Zhang et. Al (2020) for using the 

YOLO-tiny network to build the hot rolled steel strip defect detection system. 

YOLO-tiny network is a compact or optimized version under the YOLO family, 

which has a shallow network layer compared to the other members of the series. The 

convolutional self-encoder, also known as CAE in short, is implemented in their 

solution to work as the compression pre-processing framework. It replaces 

undifferentiable quantization with smooth approximation, uses Gaussian scale 

mixture (GSM) to estimate entropy, and allows for rate control by changing the 

number of channels in the encoder's final convolution layer. The model is developed 

and trained using the defect data set of the hot rolled steel strip surface from 

Northeastern University (NEU), which comprises 1800 pictures categorized into six 

labels, each class including 300 images, divided into six categories. Their surface has 

crazing patches, pitted surfaces, rolled-in scale, and scratched surfaces. Figure 2.14 

shows the comparison result between the YOLO-tiny and the proposed model. The 

proposed model or RYOLO-tiny has lower fps than the YOLO-tiny, but its mAP is 

higher than YOLO-tiny mAP when the pixel depth is equal and more than 0.235. 
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Figure 2.14 : Research result from Yu Zhang research team on Yolo approach Source: 

Zhang et al., 2020 

 

2.3.4 Single Shot MultiBox Detector 

Single Shot MultiBox Detector (SSD) is an approach of the object detection that 

detects several objects in a single shot. It was released at the end of November 2016 

and set new benchmarks in terms of performance and precision. Its object detection 

tasks were performed at a high level of precision and performance, with more than 

74% of mean Average Precision (mAP) achieved at speeds of 59 frames per second 

(FPS) by processing the datasets such as PascalVOC and COCO (Dash, 2019). Table 

2.2 shows that SSD has higher speed and mAP than the Faster R-CNN because SSD 

accelerates the process by removing the requirement for a region proposal network, 

which is required in the Faster R-CNN algorithm (Hui, 2020). SSD implements 

several enhancements to make up for the loss inaccuracy, including multi-scale 

features and default boxes. It allows the SSD to match the accuracy of the Faster R-

CNN while working with lower quality pictures, significantly increasing the system's 

speed. 

 

Table 2.2 : Comparison on different CNN 

CNN 

architecture 

Mean Average 

Precision 

(mAP) 

FPS Number of Boxes Dimension 

of Input 

Faster R-CNN 

(VGG16) 

73.20 7.0 ~6000 ~1000 x 

600 

YOLO 

(customized) 

63.40 45.0 98 448 x 448 
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SSD300* 

(VGG16) 

77.20 46.0 8732 300 x 300 

SSD512* 

(VGG16) 

79.80 19.0 24564 512 x 512 

 

SSD object detection can be separated into two parts which are feature 

extraction and convolution filters. Figure 2.15 illustrates the simplified SSD Network 

Architecture which consists of the input image and also the convolutional neural 

network. In terms of extracting feature maps, SSD implements VGG16 which was a 

convolutional neural network model suggested by K. Simonyan and A. Zisserman 

from the University of Oxford in the publication "Very Deep Convolutional 

Networks for Large-Scale Image Recognition." Next, it uses the 38 × 38 Conv4_3 

layer to detect and predict objects.  

 

Figure 2.15 : Simplified SSD Network Architecture (Hui, 2020) 

 

Each prediction comprises a boundary box and 21 scores for each class, with 

the highest score determining which class the bounded item belongs to in each case. 

SSD reserves the class "0" to signify that it does not have any objects. As mentioned, 

the SSD does not apply to the region proposal network; instead, small convolution 

filters are used to compute the scores for both the location and the class. SSD makes 

predictions for each cell after extracting the feature maps and applying three-way 

convolution filters to each cell.  

SSD predictions are divided into two categories: positive matches and 

negative matches. When evaluating the cost of localization, SSD only considers 

positive matches. The match is positive whenever the default boundary box (as 

opposed to a projected boundary box) has an IoU greater than 0.5 with the ground 

truth. In all other cases, it is negative. It is crucial to highlight that the intersection 
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over the union (IoU), also known as the intersection over the intersection, is the ratio 

between intersected and linked areas between two regions. 

For the loss function, the mismatch between the ground truth box and the 

projected boundary box is called localization loss ( 𝐿𝑙𝑜𝑐 ). SSD only penalizes 

predictions that result in a successful match. Ideally, it would want the forecasts from 

the positive matches to get closer to the actual results. Negative matches may be 

disregarded if they are not significant. It can be assumed that the 𝑙 is the predicted 

box, 𝑔 as the ground truth box. Meanwhile, the cx,cy as the offset to the default 

bounding box 𝑑 of width w and height h. Eventually, the equation for localization 

loss can be expressed as below: 

𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔) = ∑ ∑ 𝑥𝑖𝑗
𝑘 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1 (𝑙𝑖

𝑚 − �̂�𝑗
𝑚)𝑁

𝑖∈𝑃𝑜𝑠 𝑚∈{𝑐𝑥,𝑐𝑦,𝑤,ℎ}   (2.10) 

�̂�𝑗
𝑐𝑥 = (𝑔𝑗

𝑐𝑥 − 𝑑𝑖
𝑐𝑥)/𝑑𝑖

𝑤  �̂�𝑗
𝑐𝑦

= (𝑔𝑗
𝑐𝑦

− 𝑑𝑖
𝑐𝑦

)/𝑑𝑖
ℎ 

�̂�𝑗
𝑤 = log (

𝑔𝑗
𝑤

𝑑𝑖
𝑤)  �̂�𝑗

ℎ = log (
𝑔𝑗

ℎ

𝑑𝑖
𝑤) 

𝑥𝑖𝑗
𝑝 = {

1 𝑖𝑓 𝐼𝑜𝑈 > 0.5 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑏𝑜𝑥 𝑖 𝑎𝑛𝑑 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑒 𝑏𝑜𝑥 𝑗 𝑜𝑛 𝑐𝑙𝑎𝑠𝑠 𝑝 
0 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 

 

Besides, the loss of confidence (𝐿𝑐𝑜𝑛𝑓) is the inability to make a class forecast 

correctly. For every good match prediction, it penalizes the loss based on the 

confidence score of the relevant class in the forecast. If there is no item identified by 

the confidence score of class "0," it punishes the loss based on the confidence score 

of class "0." Class "0" identifies no object as being detected. Let assume 𝑐 as the 

class score for multiple classes confidences. The formula for the loss of confidence 

can be written as below: 

 

𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐) = − ∑ 𝑥𝑖𝑗
𝑝 log(�̂�𝑖

𝑝) −  ∑ log(�̂�𝑖
0)𝑖∈𝑁𝑒𝑔  𝑤ℎ𝑒𝑟𝑒 𝑁

𝑖∈𝑃𝑜𝑠 �̂�𝑖
𝑝 =

exp (𝑐𝑖
𝑝

)

∑ exp (𝑐
𝑖
𝑝

)𝑝
   (2.11) 

 

Hence, the loss function after combined both 𝐿𝑐𝑜𝑛𝑓 and 𝐿𝑙𝑜𝑐 can be written as 

below: 

𝐿(𝑥, 𝑐, 𝑙, 𝑔) =
1

𝑛
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐)+ ∝ 𝐿𝑙𝑜𝑐(𝑥, 𝑙, 𝑔))       (2.12) 

 

The number of positive matches is denoted by n, while the weight for the 

localization loss is denoted by ∝.  
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2.4 Summary 

Image processing and deep learning convolutional neural network is the core of 

developing the automated defects detection system. Image processing can be used to 

extract important information from pictures. Hence, it can be utilized to detect some 

defects which are not complicated, such as the rusting defects, as they can be 

recognized based on colour. However, the other defects, such as the edge crack and 

folded, may not be detected easily with ordinary image processing techniques. So, 

deep learning can be the way to solve this issue. Based on the literature review, there 

are types of CNN architecture that can be implemented. For the defects detection 

system, optimum accuracy and processing speed is important to achieve a feasible 

real-time application. SSD is chosen as the main CNN model as it has high FPS and 

optimum mean average precision. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this project, three main types of defects have been addressed, namely rusting, edge 

defects, and loose wrap. The methodology for detecting the mentioned defects can be 

separated into two main parts, namely deep learning modelling and the development 

of the image processing system for defects detection. Deep learning modelling is a 

phase of data collection, training and evaluating the trained model. Single Shot 

Detector (SSD) is chosen as the framework for training the deep learning model. The 

development of detecting a defect image processing system consists of three 

approaches for different types of defects. Hence, the input images have to go through 

three sub-function blocks in evaluating each defects condition. The flow of the 

overall defect detection system is shown in Figure 3.1. 

 

 

 

Figure 3.1 : Overall defect detection system 

 

Figure 3.2 and Figure 3.3 show the project Gantt Chart for the first and 

second trimesters. Identifying the problem and understanding the user requirements 

have been done at the beginning phase of the project. Then, the in-depth literature 

review on the existing solutions was carried on for the first month. After that, it is 

required to collect and annotate a sufficient amount of dataset, which is needed for 

the deep learning model training in the further stage. After pre-processing the image 

data, the CNN architectures were prepared and trained with the image data. Lastly, 
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the trained model must be evaluated based on its performance, such as accuracy and 

processing speed.  

 

 

Figure 3.2 : Gantt Chart for first semester 

 

Since most of the technical tasks for the system development have been done 

during the first trimester, the second trimester will only focus on the report writing 

and the FYP poster design work. 

 

 

Figure 3.3 : Gantt Chart for second semester 

 

3.2 Requirements 

The primary programming language chosen for application development is Python 

for this project. Python is a general-purpose programming language interpreted at a 

high degree of abstraction. It is required to set up a software environment for 

developing the defect detection algorithm. The software requirements are the Spyder 

IDE, Google Colab, and the essential tools libraries. 
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The Spyder IDE is a free integrated development environment (IDE) that 

allows the users to develop Python algorithms such as data collection, data analysis, 

data visualization, image processing, etc. It offers a one-of-a-kind mix of a complete 

programming tool's sophisticated editing, research, debugging, and profiling skills 

with data exploration, interactive execution, and attractive visualization capabilities.  

Google Colab is a web-based IDE for Python that allows anybody to create 

and run unlimited python code using the browser. It is suitable for data analysis, 

machine learning, and deep learning. It is because Google Colab offers free hardware 

resources such as central processing unit (CPU), graphics processing unit (GPU) as 

well as Tensor Processing Unit (TPU) to execute the python code online. It benefits 

the deep learning developer to train the CNN network model, which is a process that 

requires high intensive usage of GPU or TPU.  

           The essential libraries include Tensorflow, OpenCV, and labelImg, which is 

used during the development process. Tensorflow is a free and open-source artificial 

intelligence library that constructs models using data flow graphs. Using this 

technique, programmers may create large-scale neural networks with many layers. 

Classes, perception, understanding, discovering, prediction, and creation are among 

the most common applications for TensorFlow. Besides, OpenCV is a library for 

computer vision and image processing applications. OpenCV can be downloaded for 

free from GitHub. It can be used to process pictures and videos for detecting items, 

faces, and even handwriting. In addition, LabelImg is an open-source image 

annotation tool. Image annotation is a vital process for data collection that needs to 

be done before training the deep learning object detection model. 

 

3.3 Deep Learning Modelling 

The basic workflow for developing the deep learning model is shown in Figure 3.4. 

Two deep learning models are required for different purposes in the defects detection 

system: hot rolled steel detection and edge defects detection.  

The hot rolled steel detection model only consists of 1 class of the object, 

"hot rolled steel." This model is implemented in the rusting detection and loose wrap 

detection. The purpose of doing this is to allow the system to find the Region of 

interest (ROI) from the image for further steps of image processing such as colour 

detection and Canny Edge detection.   
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Besides, the edge defects detection model is used in locating and classifying 

the types of edge defects. The included classes are edge crack, edge dented, and edge 

folded. Like hot rolled steel detection, this model can help the system determine the 

ROI of edge defects detection, which can be used for Canny Edge processing to 

evaluate its severity. It is explained more in the other sections. 

 

Figure 3.4 : Flow Chart of Deep Learning Modeling Process 

 

Firstly, a sufficient amount of image data has to be collected. The 

recommended amount of image data is about 1000 to 2000 images for each class. 

However, it is a challenge to collect such an amount of data from the industry in 

addition to the pandemic condition. Hence, data augmentation is necessary for 

increasing the current collected data amount. It is possible to expand the quantity of 

data by slightly modifying the original data or by creating new synthetic data from 

current data using some techniques. For example, data augmentation can be done by 

slightly adjusting its brightness and making another copy. Also, noises can be added 

to the images and create replicas. The purpose of doing these is to mimic that the 
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images are collected under different conditions. The techniques used for this project 

are adjusting the brightness, rotation, and adding noises to the pictures. A 

comparison example between the original image and its augmented image with 

noises is shown in Figure 3.5. 

 

Figure 3.5 : Comparison of original image(left) and augmented 

image (right) 

 

After getting enough data, the data annotation is the next step before training 

the model. Data annotation is the classification and labelling of data for artificial 

intelligence applications. Training data must be correctly classified and annotated to 

be useful in a particular use case. It is a way to prepare the learning material for the 

machine to learn how to recognize and detect objects. In this project, the data 

annotation tool which has been used is called labelImg. It is an open-source python 

GUI application capable of exporting the annotation files in COCO, XML, and 

YOLO format. A data annotation example by using labelImg is shown in Figure 3.6. 

It labels the edge dented defects on one of the collected image data.   
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Figure 3.6 : LabelImg GUI Annotation Example 

 

Next, it is required to prepare the software environment and tool to train the 

deep learning model with all the annotated images. Google Colab is chosen as the 

model training platform because it is accessible in terms of software and hardware. 

The GPU offered by the Google Colab platform is Tesla V4. It is good enough for 

the deep learning model training task. Besides, the model training library uses 

Tensorflow with SSD Mobilenet as the model framework. The trained model can be 

evaluated based on its mean average precision and loss function value. If the model's 

performance is not achieving the expected result, it may need to retrain by inserting 

more data.  
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3.4 Rusting Detection 

The designed workflow for rusting detection is shown in Figure 3.7. The mechanism 

can be separated into the three sections which are the hot rolled steel detection, 

rusting surface detection and hold/release decision making. 

 

Figure 3.7 : Flow Chart of Rusting Detection 

 

3.4.1 Hot rolled Steel Detection 

The object detection technique is applied for the hot rolled steel detection to remove 

the unrelated image data from the image, such as the background, before carrying out 

the colour detection and detected rust percentage calculation. It can improve the 

accuracy of the classification process for the hold and release classes. The trained 

SSD model is implemented in this step. 

Firstly, the program loads the trained model before the model inference. The 

model inference can be carried out after an input image is read from its directory path 

and converted into an appropriate data format. At this stage of the operation, an input 

image is fed into the detection algorithm using the OpenCV image read function. The 

input image is converted digitally into a width × height pixels of NumPy array data 

type with 3-channels representing the BGR (blue green red). This NumPy data is 
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used to carry out the further steps of image processing. Figure 3.8 illustrates one of 

the input images examples. 

 

 

Figure 3.8 : Sample Input Image of Rusty Hot Rolled Steel 

 

From the output of the model inference, information such as the number of 

instances, classes of detected instances and coordinates of the bounding box around 

the instances can be retrieved. This information allows the program to capture the 

detected hot rolled steel as the region of interest (ROI) for colour detection. Figure 

3.9 shows an example image where the hot rolled steel is detected by the trained SSD 

model. The detected hot rolled steel is cropped and serve as the input for the next 

step. 

 

Figure 3.9 : Detected Hot Rolled Steel 

 

3.4.2 Rust Surface Detection 

As rust is a type of corrosion that results in the orange-brown colour coats on the 

surface of the metal, it is more effective and less computational efforts by using the 

colour detection methodology. In the program, a range of colour spectrum for rusting 
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(reddish-brown colour) is pre-set. Wherever the pixel of the input image is within the 

range, it is considered as a part of the rust region. 

 In this part, the cropped hot rolled steel is the input data or ROI to carry out 

the colour detection. The program then carry out the colour conversion to convert the 

BGR-channel of the image data into HSV (Hue, Saturation, Value) by applying the 

colour conversion function from the OpenCV. In contrast to RGB or BGR, which 

utilizes primary colours, HSV is more closely related to how people see colour.  

Hue is representing the colour portion of the image in degrees from 0 to 360. 

For example, the hue value of the red colour is between 0 to 60 degrees, and the 

green colour is between 121 to 180 degrees. Besides, the saturation is about how 

much is the grey pixels introduced into the images. For instance, the lower the 

saturation, the more grey pixels are introduced, resulting in a faded image. Moreover, 

the Value is about the brightness of the colour, and its value is ranged from 0 to 100 

percent. The reason for using the HSV colour space is due to the fact that the R, G, 

and B components of an item's colour in a digital picture are all linked with the 

quantity of light that hits on the object, and therefore with each other, making image 

descriptions in terms of those components difficult to understand. Descriptions in 

terms of hue or saturation are often more appropriate than descriptions in terms of 

colour. Figure 3.10, it shows one of the example images after being converted to 

HSV colour space. 

 

Figure 3.10 : Converted HSV Image 

 

The converted HSV image data is then utilized to proceed with the colour 

detection by carrying out the thresholding operations for determining wherever the 

image pixel is within the range of HSV colour space that would like to be detected. 

For the orange-brown rust colour, the predefined range of HSV colour space is from 
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(0,36,23) to (33,255,255). This operation results in binary image data where the rusty 

part of the steel is white in colour while the rest are black. A sample output of the 

operation is shown in Figure 3.11. 

 

Figure 3.11 : Sample of Threshold Image 

 

3.4.3 Hold/Release Decision Making for Rusting Condition 

The hold/release decision-making operation determines whether the hot rolled steel 

can be released or need to be held. The hot rolled steel can be released if the rusty 

condition is not severe. This classification can be done by the calculation of the rust 

percentage on the hot rolled steel surface. If the calculated percentage value is above 

the preset threshold value, the hot rolled steel will be classified as the on hold 

category. Else, the hot rolled steel with less than 30% of the rusty surface will be 

released. 

Based on the outputted binary image data from the previous step, the 

percentage of the rust on a hot rolled steel surface can be calculated based on the 

number of white pixels. The percentage can be calculated with the formula: 

𝑅𝑢𝑠𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 

=  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 𝑝𝑖𝑥𝑒𝑙𝑠×𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 𝑝𝑖𝑥𝑒𝑙𝑠
   (3.1) 

 

It is important to know how severe the rusting corrosion on the steel surface 

is because it acts as the gauge to evaluate whether the rusty steel can be released for 

the production phase. According to the inspection operation of the hot rolled steel 

company, the inspectors are obligated to find out all the rusty steel and classify 

which steels should be on hold or release based on the rusting condition. Hence, by 

calculating the percentage of rust, it can automate this kind of inspection process. 
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3.5 Edge Defects Detection 

Edge defects on the hot rolled steel are shape defects where the edge sides of the hot 

rolled steel are deformed due to damages. It includes edge crack, edge dented, and 

edge folded. The flow chart for edge defects detection is shown in Figure 3.12. 

Similar as the rusting detection, the approach can be separated into the three sections 

which are the defects detection, Canny edge detection and hold/release decision 

making. 

 

Figure 3.12 : Edge Defects Detection Flow Chart 

 

3.5.1 Edge Defects Localization and Classification 

At the initial process, an input image with hot rolled steel is read and converted into 

NumPy array data format for image processing. Then, the program needs to load the 

trained SSD model capable of edge defects detection. The model is used to carry out 

the localization and classification process. For example, Figure 3.13 has shown a 

result in which the model locates the detected defect on the hot rolled steel with a 



49 

 

bounding box and classify it as the edge folded defect. This process is similar to hot 

rolled steel detection for rusting detection. It locates and categorises the classes of 

edge defects from the image and crop the ROI for Canny edge detection. 

 

Figure 3.13 : Sample of the Localization and Classification Result 

 

3.5.2 Canny Edge Detection for Edge Defects 

As the edge defects will form irregular edge lines on the hot rolled steel, the Canny 

edge detection can be applied to detect the edge lines from the image. Canny edge 

detection is one of the edge detection operator in OpenCV library. Figure 3.14 shows 

the output of the Canny edge detection after processed the cropped sample image 

from Figure 3.13. Based on the output, it is noticeable that the white pixels lines are 

appearing at the region where the edge folded is occurred. Meanwhile, the region 

without edge folded is showing black pixels in the output. Hence, the severity of the 

edge defects can be inspected by referring to the amount of the output white pixels 

from Canny edge detection. 

 

Figure 3.14 : Output of Canny Edge Detection for Edge Defect 
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3.5.3 Hold/Release Decision Making for Edge Defects Condition 

In the previous section, it is known that the the severity of the edge defects can be 

inspected by referring to the amount of the output white pixels from Canny edge 

detection. So, the program can decide wheher to hold or release the hot rolled steel 

with edge defects based on the percentage of the white pixels within the output 

image from the Canny edge detection:  

𝐸𝑑𝑔𝑒 𝐷𝑒𝑓𝑒𝑐𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
   (3.2) 

        

3.6 Loose Wrap Detection 

Loose wrap of the hot rolled steel is when the layers of steel sheets become loosely 

between each other, caused by the broken packaging belt. An example of the hot 

rolled steel with loose wrap issue is shown in Figure 3.15. It can be seen that the 

packing belt, which was initially used to tighten the hot rolled steel, is broken. Hence, 

the steel sheets are further from each other, and the hot rolled steel looks larger. 

 

Figure 3.15 : Hot rolled steel with Loose Wrap issue 

 

As the loose wrap issue will also produce irregular edge lines on the hot rolled steel, 

the loose wrap detection algorithm is similar to the edge defects detection. The only 

distinction between them is the method to extract the ROI image. In this loose wrap 

detection, the hot rolled steel detection is implemented. The flow chart for loose 

wrap detection is shown in Figure 3.16. The approach can be separated into three 

sections: hot rolled steel detection, Canny edge detection, and hold/release decision 

making. 
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Figure 3.16 : Loose Wrap Detection Flow Chart 

 

3.6.1 Hot rolled Steel Detection 

This is the same process in the rusting detection to extract the ROI from the image 

for further image processing step. In this loose wrap detection, the cropped ROI is 

used for Canny edge detection to find out the severity of the loose wrap issue of the 

hot rolled steel. Figure 3.17 shows the example of hot rolled steel detection. 
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Figure 3.17 : Output of Canny Edge Detection for Loose Wrap 

 

3.6.2 Canny Edge Detection for Loose Wrap 

Loose wrap issue will also form irregular edge lines on the hot rolled steel, so the 

Canny edge detection can be implemented. Figure 3.18 shows the output of the 

Canny edge detection. 

 

Figure 3.18 : Output of Canny Edge Detection for Loose Wrap 

 

3.6.3 Hold/Release Decision Making for Loose Wrap Condition 

Similar as the edge defect detection, the hold/release classification can based on the 

percentage of the white pixels :  

𝐿𝑜𝑜𝑠𝑒 𝑊𝑟𝑎𝑝 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
   (3.3) 
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3.7 Summary 

The workflow of the rusting defects of the hot rolled steel can be easily carried out 

since it does not require any training process. It can save a lot of computational 

requirements compared to the deep learning approach. However, the hot rolled steel 

does not only consist of the rusting issue, so the deep learning approach is required to 

tackle the rest of the defects, such as classifying the types of edge defects. 

Furthermore, the Canny edge detection is implemented in the detection process for 

the edge defects and loose wrap. It helps to evaluate the severity of the defects based 

on the extracted irregular edges created by the defects themselves. Hence, with this 

methodology, the system can decide to hold or release the hot rolled steel with 

defects. 
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CHAPTER 4 

 

4 RESULT AND DISCUSSION 

4.1 Introduction 

In this chapter, the result of the performance for three types of defects detections 

which are rusting detection, edge defects detection and the loose wrap detection is 

presented and discussed. For all types of detections, the final output of a process is to 

classify an image into the “hold” or “release” category. The performance is studied 

in terms of accuracy and average processing time. In the experiment, the accuracy is 

the quantity of the correctly classified images over the total input images in 

percentage. Besides, the average processing time is the average duration from 

inputting an image to the system until the system successfully classifies the image. 

The cause of the faulty detection is investigated and discussed in this chapter as well. 

 

4.2 Rusting Detection Performance 

To investigate the performance of the rusting detection algorithm, the collected 

image data and its augmented image data are used to conduct a test on classifying the 

“release” and “hold” categories. The “release” category means that the rusting 

condition of the hot rolled steel is acceptable and ready to be released for usage. 

Meanwhile, the “hold” category indicates that the rusting condition with higher 

severity, and the hot rolled steel shall behold. In the rusting detection algorithm, the 

rusting severity is based on the percentage of the total detected rusty area on the hot 

rolled steel. 

 In the experiment, the size of the input images are ranged from 119×139 

pixels to 651×408 pixels.The input images were fed into the written Python script 

that carry out the process as shown in the Figure 3.7. There were also output images 

with green colour layer on the detected rusting region exported by the script. It can 

help to identify the location as well as the area of the detected rusting region by the 

system. The system will classify a hot rolled steel with “hold” class if the rusty area 

exceeds 60%. The performance of this system is studied in terms of accuracy and 

processing time. 
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4.2.1 Rusting Detection Test Result 

In the test, 372 images have been fed into the system and generate the results in an 

excel file. Table 4.1 shows the result of the rust detection and the decision making 

for hold and release conditions. Based on the generated result, 228 images belong to 

the on-hold condition, while 144 images are good to be released. The accuracy for 

the hold and release are 96.05% and 97.92%, respectively. The average accuracy is 

calculated by using the formula below: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐼𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑚𝑎𝑔𝑒𝑠
 × 100  (4.1) 

 

Table 4.1: Performance of Rust Detection 
 Classification Accuracy Average 

Inference 

Time (ms) 

 Success Failure   

Hold 219 9 96.05%  

49.8 
Release 141 3 97.92% 

 

 Figure 4.1 and Figure 4.2 show the examples of input and output classified as 

the hold and release categories, respectively. The green layer on the output images 

acts as the indicator for the detected rusting region by the system. 

 

 

Figure 4.1: An example input (left) and its output (right) 

classified as hold category 
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Figure 4.2 : An example input (left) and its output (right) 

classified as release category 

 

 

4.2.2 Discussion for Rusting Detection Performance 

Based on the performance of rusting detection in Table 4.1, the detection accuracy is 

more than 90%, which can be considered highly accurate. However, there are still 

some wrongly classified images during the detection process. The remaining errors 

are due to the input images being taken from different angles, environment and 

brightness conditions. It will affect the accuracy of an image in presenting the 

colours. If the brightness value is too high in an image, some colours might not be 

noticeable by the system. In addition, if the background or the environment contains 

a similar colour as the rusting colour, the system might wrongly detect the 

background as one of the rusting regions on the hot rolled steel. Eventually, this can 

affect the accuracy of the colour detection to identify and calculate the percentage of 

rusting region. For example, Figure 4.3 shows one of the input images, which is 

wrongly classified as “hold” category.  
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Figure 4.3 : Example of wrongly classified input image 

 

Figure 4.4 presents the output image with a green layer on the detected rusting 

region for Figure 4.3. It can be observed that the background of the hot rolled steel 

(metal deck roof and wall) contains some green layer regions. This is because the 

HSV values of the background in the image is within the range of the predefined 

rusting HSV range from (0,36,23) to (33,255,255). In other words, the colour of the 

background is nearly close to the rusting colour. Hence, it was incorrectly identified 

as the rusting region of the hot rolled steel. 

 

Figure 4.4 : Example of wrongly classified output image 

 

 Furthermore, the result for the average inference time or average image 

processing time shows 49.8 ms. It also indicates that the system can process around 
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1

(49.8/1000)𝑠𝑒𝑐
= 20 images per second. Hence, the developed rusting detection system 

can help the steel factory inspect over 72000 hot rolled steel in one working hour for 

rusting defect. 

 

4.3 Edge Defects Detection 

The performance of the edge defects detection can be studied by carrying out the 

similar testing process in Section 4.2. In this edge defects detection algorithm, there 

are three types of edge defects that are needed to be tested which are edge dented, 

edge crack and edge folded. The collected image data for each type of the edge 

defects is tested on classifying “hold” and “release” categories. The classification is 

also based on the severity of the defects by evaluating the percentage of generated 

edge line from the Canny edge detection. Also, its average inference time is also 

recorded for each defect. 

 

4.3.1 Edge Defects Detection Test Results 

 

For this edge defects detection performance test, there are 885 images including edge 

crack, edge dented, and edge folded were used as the testing dataset. Table 4.2 shows 

the result of the edge defects detection and the decision making for hold and release 

conditions. The calculation of the accuracy is also using the formula (4.1) in the 

rusting detection test. According to the result, the accuracy for the edge crack is 

100 %. Meanwhile, the edge dented is having the 94.61% and 42.44% accuracy for 

hold and release category respectively. In terms of the edge folded, its accuracy for 

hold and release are 52.98% and 55.95% respectively. 

 

Table 4.2 : Performance of Edge Crack 

Edge Defects   Classification Accuracy Average 

Inference Time 

(ms) 

 
  Success Failure     

Edge Crack Hold 184 0 100% 74.4 

Edge Dented Hold 158 9 94.61%  50.0 
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Release 59 139 42.44% 

Edge Folded Hold 89 79 52.98% 64.5 

Release 94 74 55.95% 

 

4.3.2 Discussion for Edge Defects Detection Performance 

According to Table 4.2, all the edge crack images were successfully classified 

without error. Based on the inspection manual from the steel factory, the edge crack 

has only the “hold” category, which means the hot rolled steel is needed to behold if 

any edge crack defects are detected from the input image. The trained model has 

successfully detected all the input images with edge crack defects. For example, 

Figure 4.5 shows an output image in which the hot rolled steel consists of an edge 

crack defect. The output image contains a yellow bounding box that localizes the 

detected defect's position. 

 

 

Figure 4.5 : Example of an output image with edge crack defect 

 

 In addition, the release classification for edge dented defects is less than 50% 

in terms of accuracy. Also, the accuracies of hold and release classification for the 

edge folded is near to 50% as well. The errors are mainly due to the collected images 

for edge dented and edge folded cases being taken under different angles, brightness 

conditions, and distance. The Canny edge detection output depends on the detail and 

structure presented in an image. The variety of distance and angle of taking the 

photos can significantly impact the sharpness of the visible edge lines. For example, 
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Figure 4.6 presents the images of the edge folded defects taken from different 

distances and angles. It is noticeable that the edge lines of the image on the right side 

are much more visible than the left-side image. The right-side picture is taken nearer 

from the hot rolled steel; hence, it can capture more details than the left-side image. 

Eventually, the hold/release classification accuracies for the edge dented and edge 

folded were reduced. 

 

 

Figure 4.6 : Images of edge folded defects taken from different 

distances 

 

 Moreover, the average inference time for the edge defects detection is ranged 

from 50 ms to 74.4 ms for different types of defects. The inference time of an image 

is depending on the image size. The higher the image size, the larger the amount of 

the data pixels in an image. Hence, it requires more time to process an image. This 

developed edge defects detection system has the capability to process minimum 

1

(74.4/1000)𝑠𝑒𝑐
= 13 images per second with image size around 290×136 pixels. 

 

4.4 Loose Wrap Detection 

A similar performance test from the previous section is also conducted for the loose 

wrap detection. The input images were fed into the developed system for hot rolled 

steel detection using the trained SSD model. Then, the severity of the loose wrap 

detection is also evaluated by the percentage of generated edge line from the Canny 

edge detection of the detected hot rolled steel within the images. 
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4.4.1 Loose Wrap Detection Test Result 

In this performance test, the amount of the testing dataset images is 73. The range of 

the image size is from 280×151 to 612×323 pixels. Based on Table 4.3, it shows the 

result of the accuracy for the hold category is 69.81 % while the release category is 

100%.  

Table 4.3 : Performance of Loose Wrap Detection 
 Classification Accuracy Average 

Inference 

Time (ms) 

 Success Failure   

Hold 37 16 69.81%  

51.3 
Release 20 0 100% 

 

 

4.4.2 Discussion for Loose Wrap Detection Performance 

According to the result, the “hold” category contains 16 failed categorized images 

which caused the 69.81% accuracy. It is also because the input images have different 

angles, brightness, and background, which affect the accuracy of the Canny edge 

detection. The previous section shows that the distance and angle can affect the 

visibility of the edge lines in an image. For this loose wrap detection, the background 

also impacts the accuracy of the classification process. For example, Figure 4.7 

below shows the Canny edge detection output. It is noticed that some of the white 

pixels or detected edge lines from the background (red bounding boxes) do not 

belong to the hot rolled steel. However, the system mistakenly includes these edge 

lines into the severity evaluation for the loose wrap defect. Hence, it can affect the 

accuracy of the loose wrap severity calculation. 
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Figure 4.7 : Example of Canny Edge Detection with edge lines 

from background 

  

 For the average inference time, the system takes about 51.3 ms to process an 

image. It proved the system has the ability to carry out the inspection for about 

1

(51.3/1000)𝑠𝑒𝑐
= 19 images or hot rolled steels per second.  

 

 

4.5 Summary 

This chapter discussed about the performance of proposed solution for inspecting the 

three types of defects on the hot rolled steel. It is noticed that the rusting detection 

has the greatest performance in terms of the accuracy. It is because the rusting 

defects has a very significant appearance in terms of colour. Although the pictures 

are taken under various angle and brightness condition, it does not have a great 

impact on the accuracy of colour detection compared to the Canny edge detection.  

 Meanwhile, the edge defects detection and the loose wrap detection have 

lower accuracy compared to the rusting defects detection. This is because the Canny 

edge detection is more sensitive to the distance and angle of the taken input images. 

All these variations can affect the edge structure in the images and the output of 

Canny edge detection may not be consistent for each image. Thus, it is important to 

improve the way in collecting and inspecting the input images.  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, this project has studied and presented the feasible hot rolled steel 

defects detection system with image recognition technology. In this project, the 

rusting defect detection has the highest accuracy, which is more than 90% accurate. 

Meanwhile, the overall accuracy for edge defects detection and loose wrap detection 

is less than 70%. The issues that caused the errors were identified in the performance 

test. 

The problem encountered for rusting defects detection is that the collected 

images are taken at different brightness conditions and angles. It can affect the 

performance of the colour detection algorithm as the quality of the photos varies. For 

example, the image taken under high-intensity sunlight may cause false detection as 

the colours of the picture may not be precise.  

Furthermore, the edge defects detection and loose wrap detection system is 

also met a similar issue which is the variation of image quality in terms of the 

distance and angle. These factors will affect the output of the extracted edge lines 

from Canny edge detection. Eventually, the result of the defect severity evaluation 

might not be accurate. 

Besides, the amount of the collected image dataset is not sufficient to justify 

the performance of the detection system. Due to the pandemic, collecting the data is 

a challenge for this project. Also, the deep learning model does not have enough data 

for the training purpose due to this problem. 

 

5.2 Recommendations for future work 

The recommended solution to tackle the image quality issue for hot rolled steel 

defects detection is to standardize the input image method. It can be done by setting 

an indoor defects inspection environment where the camera is set at the fixed 

position. Then, the hot rolled steel can be sent into the inspection room for the 

detection process. It ensures that the light intensity, distance, angle and background 

are always constant when taking the images. 
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          One of the fastest ways to solve the insufficient data problem is data 

augmentation, which is a process to create a different version of the existing data. 

For example, a new image can be made by rotating a current picture by 90 degrees. 

Also, another new image can be generated by adding some noise to an existing image. 

Eventually, the number of data can be increased to a sufficient amount for training 

the deep learning model. 

           Although data augmentation can quickly increase the dataset's size, it might 

cause the trained model to overfit. The model becomes overfit when the model is 

used to the features of the training dataset and unable to work well with the new data. 

Hence, it would be better to collect more new data for training the model so that it 

can generalize well with all types of conditions. 
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APPENDICES 

 

APPENDIX A: Computer Specification 

 

  

   



 

APPENDIX B: Python Code for Rusting Detection 

import tensorflow as tf 

from object_detection.utils import label_map_util 

 

import os 

import cv2 

import time 

import numpy as np 

from PIL import Image 

import datetime 

import pandas as pd 

files = os.listdir("rust_data") 

 

PATH_TO_LABELS=r"E:\utar\Y4S2\FYP\project_folder\dataset\dataset2\hot_label

map.pbtxt" 

threshold=60 

 

category_index = 

label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, 

                                                                    use_display_name=True) 

 

data_frame = pd.DataFrame(columns=['image', 'release', 'hold']) 

gpus = tf.config.experimental.list_physical_devices('GPU') 

for gpu in gpus: 

    tf.config.experimental.set_memory_growth(gpu, True) 

     

     

PATH_TO_SAVED_MODEL = 

r"E:\utar\Y4S2\FYP\project_folder\ssd_hot_model\exported_model\saved_model" 

 

 

print('Loading model...', end='') 

start_time = time.time() 

 



 

# Load saved model and build the detection function 

detect_fn = tf.saved_model.load(PATH_TO_SAVED_MODEL) 

 

end_time = time.time() 

elapsed_time = end_time - start_time 

print('Done! Took {} seconds'.format(elapsed_time)) 

 

def load_image_into_numpy_array(path): 

    """Load an image from file into a numpy array. 

 

    Puts image into numpy array to feed into tensorflow graph. 

    Note that by convention we put it into a numpy array with shape 

    (height, width, channels), where channels=3 for RGB. 

 

    Args: 

      path: the file path to the image 

 

    Returns: 

      uint8 numpy array with shape (img_height, img_width, 3) 

    """ 

    return np.array(Image.open(path)) 

 

def rust_detection(img): 

    lower_rust=(0,31,23) 

    higher_rust=(33,255,255) 

     

    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) 

     

    mask = cv2.inRange(hsv, lower_rust , higher_rust) 

    #cv2.imwrite("mask.jpg",mask)  

    percentage = (mask==255).mean() * 100 

 

    mask_overlay=img.copy() 

    mask_overlay[np.where((mask==[255]))] = (0,255,0) 



 

    img = ((0.5 * img) + (0.5 * mask_overlay)).astype("uint8")   

     

     

    return percentage,img 

 

 

#('Running inference for {}... '.format(image_path), end='') 

for i in range(len( files)): 

    current_time=datetime.datetime.now() 

     

    image_np=cv2.imread("rust_data/"+files[i]) 

    img=cv2.imread("rust_data/"+files[i]) 

     

    #image_np = load_image_into_numpy_array("data/"+files[i]) 

    basename = os.path.basename("rust_data/"+files[i]) 

     

    ori_image = cv2.imread("rust_data/"+files[i]) 

     

 

     

    # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. 

    input_tensor = tf.convert_to_tensor(image_np) 

    # The model expects a batch of images, so add an axis with `tf.newaxis`. 

    input_tensor = input_tensor[tf.newaxis, ...] 

     

    # input_tensor = np.expand_dims(image_np, 0) 

     

    detections = detect_fn(input_tensor) 

     

    # All outputs are batches tensors. 

    # Convert to numpy arrays, and take index [0] to remove the batch dimension. 

    # We're only interested in the first num_detections. 

    num_detections = int(detections.pop('num_detections')) 

    detections = {key: value[0, :num_detections].numpy() 



 

                   for key, value in detections.items()} 

    detections['num_detections'] = num_detections 

     

    # detection_classes should be ints. 

    detections['detection_classes'] = detections['detection_classes'].astype(np.int64) 

     

    image_np_with_detections = image_np.copy() 

     

    filtered_detection=[i for i in range(len(detections['detection_scores'])) if 

detections['detection_scores'][i] >=0.3] 

     

     

    for item in filtered_detection: 

 

        

minX,minY=int(detections['detection_boxes'][item][1]*image_np.shape[1]),int(detec

tions['detection_boxes'][item][0]*image_np.shape[0]) 

        

maxX,maxY=int(detections['detection_boxes'][item][3]*image_np.shape[1]),int(dete

ctions['detection_boxes'][item][2]*image_np.shape[0]) 

         

        defect_type=category_index[detections['detection_classes'][item]]["name"] 

         

        

percentage,ori_image[minY:maxY,minX:maxX]=rust_detection(ori_image[minY:m

axY,minX:maxX]) 

        processed_time=(datetime.datetime.now()-current_time).microseconds / 1000 

        if percentage >threshold: 

     

            true = 1 

            if "release" in files[i]: 

                true = 0 

                 



 

            new_data = pd.DataFrame([{'image': files[i], 'release': 

"","hold":"Yes","True":true,"Process Duration":processed_time,"Image 

Resolution":(img.shape[1],img.shape[0]),"Number of 

Pixels":img.shape[1]*img.shape[0],"Rust Percentage":percentage}], 

                               columns =['image', 'release', 'hold',"True","Process 

Duration","Image Resolution","Number of Pixels","Rust Percentage"]) 

             

            data_frame=data_frame.append(new_data, ignore_index = True) 

             

            cv2.imwrite("rust_hold/"+str(files[i]).split(".")[0]+".jpg",ori_image) 

        else: 

            true = 1 

            if "hold" in files[i]: 

                true = 0         

            cv2.imwrite("rust_release/"+str(files[i]).split(".")[0]+".jpg",ori_image) 

            new_data = pd.DataFrame([{'image': files[i], 'release': 

"Yes","hold":"","True":true,"Process Duration":processed_time,"Image 

Resolution":(img.shape[1],img.shape[0]),"Number of 

Pixels":img.shape[1]*img.shape[0],"Rust Percentage":percentage}], 

                               columns =['image', 'release', 'hold',"True","Process 

Duration","Image Resolution","Number of Pixels","Rust Percentage"]) 

     

            data_frame=data_frame.append(new_data, ignore_index = True) 

         

        break 

         

percentage_accuracy = len(data_frame[(data_frame['True']==1)])/len(data_frame) * 

100 

 

print("Accuracy:"+str(percentage_accuracy)) 

data_frame.to_excel("output_rust.xlsx")   

 

 

 



 

APPENDIX C: Python Code for Edge Defects Detection 

import tensorflow as tf 

from object_detection.utils import label_map_util 

from object_detection.utils import visualization_utils as viz_utils 

import glob 

import os 

import cv2 

import pandas as pd 

import datetime 

data_frame = pd.DataFrame(columns=['image', 'release', 'hold']) 

 

def getListOfFiles(dirName): 

    # create a list of file and sub directories  

    # names in the given directory  

    listOfFile = os.listdir(dirName) 

    allFiles = list() 

    # Iterate over all the entries 

    for entry in listOfFile: 

        # Create full path 

        fullPath = os.path.join(dirName, entry) 

        # If entry is a directory then get the list of files in this directory  

        if os.path.isdir(fullPath): 

            allFiles = allFiles + getListOfFiles(fullPath) 

        else: 

            allFiles.append(fullPath) 

                 

    return allFiles   

 

PATH_TO_LABELS=r"E:\utar\Y4S2\FYP\project_folder\dataset\dataset\defects_la

belmap.pbtxt" 

 

category_index = 

label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, 

                                                                    use_display_name=True) 



 

 

gpus = tf.config.experimental.list_physical_devices('GPU') 

for gpu in gpus: 

    tf.config.experimental.set_memory_growth(gpu, True) 

 

import time 

from object_detection.utils import label_map_util 

from object_detection.utils import visualization_utils as viz_utils 

 

PATH_TO_SAVED_MODEL = 

r"E:\utar\Y4S2\FYP\project_folder\ssd_defects_model\exported_model\saved_mode

l" 

 

print('Loading model...', end='') 

start_time = time.time() 

 

# Load saved model and build the detection function 

detect_fn = tf.saved_model.load(PATH_TO_SAVED_MODEL) 

 

end_time = time.time() 

elapsed_time = end_time - start_time 

print('Done! Took {} seconds'.format(elapsed_time)) 

 

 

import numpy as np 

from PIL import Image 

import matplotlib.pyplot as plt 

import warnings 

warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings 

 

def load_image_into_numpy_array(path): 

    """Load an image from file into a numpy array. 

 

    Puts image into numpy array to feed into tensorflow graph. 



 

    Note that by convention we put it into a numpy array with shape 

    (height, width, channels), where channels=3 for RGB. 

 

    Args: 

      path: the file path to the image 

 

    Returns: 

      uint8 numpy array with shape (img_height, img_width, 3) 

    """ 

    return np.array(Image.open(path)) 

 

IMAGE_PATHS=getListOfFiles(r"edge_data") 

 

def edge_folded_check(img): 

 

    # Convert to graycsale 

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    # Blur the image for better edge detection 

    img_blur = cv2.GaussianBlur(img_gray, (9,9), 0)  

     

     

    # Canny Edge Detection 

    edges = cv2.Canny(image=img_blur, threshold1=30, threshold2=100) # Canny 

Edge Detection 

 

     

    total_white=np.sum(edges == 255) 

    total_pixels=edges.shape[0]*edges.shape[1] 

     

    white_pixel_percentage=total_white/total_pixels*100 

     

    if white_pixel_percentage>=6: 

        return True 

    else: 



 

         

        return False 

     

def edge_dented_check(img): 

 

    # Convert to graycsale 

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    # Blur the image for better edge detection 

    img_blur = cv2.GaussianBlur(img_gray, (9,9), 0)  

     

     

    # Canny Edge Detection 

    edges = cv2.Canny(image=img_blur, threshold1=30, threshold2=100) # Canny 

Edge Detection 

     

     

     

    total_white=np.sum(edges == 255) 

    total_pixels=edges.shape[0]*edges.shape[1] 

     

    white_pixel_percentage=total_white/total_pixels*100 

     

    if white_pixel_percentage>=4: 

        return True 

    else: 

         

        return False 

 

 

for image_path in IMAGE_PATHS: 

    current_time=datetime.datetime.now() 

    print('Running inference for {}... '.format(image_path), end='') 

 

    image_np = load_image_into_numpy_array(image_path) 



 

    basename = os.path.basename(image_path) 

     

    ori_image = cv2.imread(image_path) 

 

    # Things to try: 

    # Flip horizontally 

    # image_np = np.fliplr(image_np).copy() 

 

    # Convert image to grayscale 

    # image_np = np.tile( 

    #     np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8) 

 

    # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. 

    input_tensor = tf.convert_to_tensor(image_np) 

    # The model expects a batch of images, so add an axis with `tf.newaxis`. 

    input_tensor = input_tensor[tf.newaxis, ...] 

 

    # input_tensor = np.expand_dims(image_np, 0) 

    try: 

        detections = detect_fn(input_tensor) 

     

        # All outputs are batches tensors. 

        # Convert to numpy arrays, and take index [0] to remove the batch dimension. 

        # We're only interested in the first num_detections. 

        num_detections = int(detections.pop('num_detections')) 

        detections = {key: value[0, :num_detections].numpy() 

                       for key, value in detections.items()} 

        detections['num_detections'] = num_detections 

     

        # detection_classes should be ints. 

        detections['detection_classes'] = detections['detection_classes'].astype(np.int64) 

     

        image_np_with_detections = image_np.copy() 

         



 

        filtered_detection=[i for i in range(len(detections['detection_scores'])) if 

detections['detection_scores'][i] >=0.3] 

 

        for item in filtered_detection: 

            

minX,minY=int(detections['detection_boxes'][item][1]*image_np.shape[1]),int(detec

tions['detection_boxes'][item][0]*image_np.shape[0]) 

            

maxX,maxY=int(detections['detection_boxes'][item][3]*image_np.shape[1]),int(dete

ctions['detection_boxes'][item][2]*image_np.shape[0]) 

             

            defect_type=category_index[detections['detection_classes'][item]]["name"] 

             

            release=0 

            hold=0 

            true=0 

             

            

#cv2.imwrite("cropped/"+basename.split(".")[0]+str(item)+".jpg",ori_image[minY:m

axY,minX:maxX]) 

             

            if defect_type=="edge_folded": 

                hold_item=edge_folded_check(ori_image[minY:maxY,minX:maxX]) 

                if hold_item: 

                    defect_type=defect_type+"_hold" 

                    hold=1 

                else: 

                    defect_type=defect_type+"_release" 

                    release=1 

 

            elif defect_type=="edge_dented": 

                hold_item=edge_dented_check(ori_image[minY:maxY,minX:maxX]) 

                if hold_item: 

                    defect_type=defect_type+"_hold" 



 

                    hold=1 

                else: 

                    defect_type=defect_type+"_release"       

                    release=1 

             

            elif defect_type=="edge_crack": 

                hold=1 

                     

            if "release" in image_path and release==1: 

                true=1 

             

            if "hold" in image_path and hold==1: 

                true=1 

 

             

            processed_time=(datetime.datetime.now()-current_time).microseconds / 1000 

            new_data = pd.DataFrame([{'image': image_path.split("\\")[-1], 'release': 

release,"hold":hold,"True":true,"Process Time":processed_time}], 

                               columns =['image', 'release', 'hold',"True","Process Time"]) 

     

            data_frame=data_frame.append(new_data, ignore_index = True) 

 

             

            cv2.rectangle(ori_image, (minX,minY), (maxX,maxY), (0,255,0), 2) 

            cv2.putText(ori_image, str(defect_type), (minX,minY), 

cv2.FONT_HERSHEY_SIMPLEX,1, (0, 255, 255), 4)  

 

 

         

        cv2.imwrite("edge_output/"+basename,ori_image) 

             

         

        viz_utils.visualize_boxes_and_labels_on_image_array( 

              image_np_with_detections, 



 

              detections['detection_boxes'], 

              detections['detection_classes'], 

              detections['detection_scores'], 

              category_index, 

              use_normalized_coordinates=True, 

              max_boxes_to_draw=200, 

              min_score_thresh=.30, 

              agnostic_mode=False) 

     

        plt.figure() 

        plt.imshow(image_np_with_detections) 

        print('Done') 

        #cv2.imwrite("output/"+basename,image_np_with_detections) 

         

    except: 

        None 

     

plt.show() 

data_frame.to_excel("edge_output.xlsx")   

percentage_accuracy = len(data_frame[(data_frame['True']==1)])/len(data_frame) * 

100 

 

print("Accuracy:"+str(percentage_accuracy)) 

# sphinx_gallery_thumbnail_number = 2 

 

 

 

 

 

 

 

 

 



 

APPENDIX D: Python Code for Loose Wrap Detection 

 

import tensorflow as tf 

from object_detection.utils import label_map_util 

from object_detection.utils import visualization_utils as viz_utils 

import glob 

import os 

import cv2 

import pandas as pd 

import datetime 

data_frame = pd.DataFrame(columns=['image', 'release', 'hold']) 

def getListOfFiles(dirName): 

    # create a list of file and sub directories  

    # names in the given directory  

    listOfFile = os.listdir(dirName) 

    allFiles = list() 

    # Iterate over all the entries 

    for entry in listOfFile: 

        # Create full path 

        fullPath = os.path.join(dirName, entry) 

        # If entry is a directory then get the list of files in this directory  

        if os.path.isdir(fullPath): 

            allFiles = allFiles + getListOfFiles(fullPath) 

        else: 

            allFiles.append(fullPath) 

                 

    return allFiles   

 

PATH_TO_LABELS=r"E:\utar\Y4S2\FYP\project_folder\dataset\dataset2\hot_label

map.pbtxt" 

 

category_index = 

label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, 

                                                                    use_display_name=True) 



 

 

gpus = tf.config.experimental.list_physical_devices('GPU') 

for gpu in gpus: 

    tf.config.experimental.set_memory_growth(gpu, True) 

 

import time 

from object_detection.utils import label_map_util 

from object_detection.utils import visualization_utils as viz_utils 

 

PATH_TO_SAVED_MODEL = 

r"E:\utar\Y4S2\FYP\project_folder\ssd_hot_model\exported_model\saved_model" 

 

print('Loading model...', end='') 

start_time = time.time() 

 

# Load saved model and build the detection function 

detect_fn = tf.saved_model.load(PATH_TO_SAVED_MODEL) 

 

end_time = time.time() 

elapsed_time = end_time - start_time 

print('Done! Took {} seconds'.format(elapsed_time)) 

 

 

import numpy as np 

from PIL import Image 

import matplotlib.pyplot as plt 

import warnings 

warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings 

 

def load_image_into_numpy_array(path): 

    """Load an image from file into a numpy array. 

 

    Puts image into numpy array to feed into tensorflow graph. 

    Note that by convention we put it into a numpy array with shape 



 

    (height, width, channels), where channels=3 for RGB. 

 

    Args: 

      path: the file path to the image 

 

    Returns: 

      uint8 numpy array with shape (img_height, img_width, 3) 

    """ 

    return np.array(Image.open(path)) 

 

IMAGE_PATHS=getListOfFiles(r"loose_data") 

 

 

     

def loose_wrap_check(img): 

 

    # Convert to graycsale 

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    # Blur the image for better edge detection 

    img_blur = cv2.GaussianBlur(img_gray, (9,9), 0)  

     

     

    # Canny Edge Detection 

    edges = cv2.Canny(image=img_blur, threshold1=100, threshold2=100) # Canny 

Edge Detection 

     

     

    total_white=np.sum(edges == 255) 

    total_pixels=edges.shape[0]*edges.shape[1] 

     

    white_pixel_percentage=total_white/total_pixels*100 

     

    if white_pixel_percentage>=3: 

        return True 



 

    else: 

         

        return False 

 

 

for image_path in IMAGE_PATHS: 

    current_time=datetime.datetime.now() 

    print('Running inference for {}... '.format(image_path), end='') 

 

    image_np = load_image_into_numpy_array(image_path) 

    basename = os.path.basename(image_path) 

     

    ori_image = cv2.imread(image_path) 

 

    # Things to try: 

    # Flip horizontally 

    # image_np = np.fliplr(image_np).copy() 

 

    # Convert image to grayscale 

    # image_np = np.tile( 

    #     np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8) 

 

    # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. 

    input_tensor = tf.convert_to_tensor(image_np) 

    # The model expects a batch of images, so add an axis with `tf.newaxis`. 

    input_tensor = input_tensor[tf.newaxis, ...] 

 

    # input_tensor = np.expand_dims(image_np, 0) 

    try: 

        detections = detect_fn(input_tensor) 

     

        # All outputs are batches tensors. 

        # Convert to numpy arrays, and take index [0] to remove the batch dimension. 

        # We're only interested in the first num_detections. 



 

        num_detections = int(detections.pop('num_detections')) 

        detections = {key: value[0, :num_detections].numpy() 

                       for key, value in detections.items()} 

        detections['num_detections'] = num_detections 

     

        # detection_classes should be ints. 

        detections['detection_classes'] = detections['detection_classes'].astype(np.int64) 

     

        image_np_with_detections = image_np.copy() 

         

        filtered_detection=[i for i in range(len(detections['detection_scores'])) if 

detections['detection_scores'][i] >=0.3] 

 

        for item in filtered_detection: 

            

minX,minY=int(detections['detection_boxes'][item][1]*image_np.shape[1]),int(detec

tions['detection_boxes'][item][0]*image_np.shape[0]) 

            

maxX,maxY=int(detections['detection_boxes'][item][3]*image_np.shape[1]),int(dete

ctions['detection_boxes'][item][2]*image_np.shape[0]) 

             

            defect_type=category_index[detections['detection_classes'][item]]["name"] 

             

            release=0 

            hold=0 

            true=0          

 

            release=0 

            hold=0 

            true=0 

             

  

            hold_item=loose_wrap_check(ori_image[minY:maxY,minX:maxX]) 

            if hold_item: 



 

                defect_type=defect_type+"_hold" 

                hold=1 

            else: 

                defect_type=defect_type+"_release" 

                release=1 

 

            if "release" in image_path and release==1: 

                true=1 

             

            if "hold" in image_path and hold==1: 

                true=1 

            processed_time=(datetime.datetime.now()-current_time).microseconds / 1000 

            new_data = pd.DataFrame([{'image': image_path.split("\\")[-1], 'release': 

release,"hold":hold,"True":true,"Process Time":processed_time}], 

                               columns =['image', 'release', 'hold',"True","Process Time"]) 

             

            data_frame=data_frame.append(new_data, ignore_index = True) 

             

            cv2.rectangle(ori_image, (minX,minY), (maxX,maxY), (0,255,0), 2) 

            cv2.putText(ori_image, str(defect_type), (minX,minY), 

cv2.FONT_HERSHEY_SIMPLEX,1, (0, 255, 255), 4)  

         

        cv2.imwrite("loose_output/"+basename,ori_image) 

             

         

        viz_utils.visualize_boxes_and_labels_on_image_array( 

              image_np_with_detections, 

              detections['detection_boxes'], 

              detections['detection_classes'], 

              detections['detection_scores'], 

              category_index, 

              use_normalized_coordinates=True, 

              max_boxes_to_draw=200, 

              min_score_thresh=.30, 



 

              agnostic_mode=False) 

     

        plt.figure() 

        plt.imshow(image_np_with_detections) 

        print('Done') 

        #cv2.imwrite("output3/"+basename,image_np_with_detections) 

         

    except: 

        None 

     

plt.show() 

data_frame.to_excel("loose_output.xlsx")  

percentage_accuracy = len(data_frame[(data_frame['True']==1)])/len(data_frame) * 

100 

 

print("Accuracy:"+str(percentage_accuracy)) 

# sphinx_gallery_thumbnail_number = 2 


