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ABSTRACT 

 

 

When a natural disaster event happens, it could cause regional cellular network 

outages and hence disable network communication within the affected area. If 

a resilient network is implemented, alert messages with sufficient information 

can be sent over the Internet to provide a nationwide response. Japan National 

Institute of Information and Communication Technology has invented a 

resilient network framework called NerveNet, it supports mesh network where 

each node will approach other nodes in range if the current peer no longer 

responds. Using their technology, disaster nodes could be installed at disaster 

hotspots to send out disaster information or even provide light internet services. 

NerveNet does support data communication using Wi-Fi and LoRa. NerveNet 

Wi-Fi-Mesh links are used to provide wide bandwidth but low range data 

transmission, while NerveNet LoRa-Mesh supports narrow bandwidth data 

transmission in coverage of kilometers, which is suitable for crucial or 

emergency disaster data updates.
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Malaysia is a Southeast Asia country bordered by Thailand, Indonesia, and 

Brunei, located outside of major typhoon paths and the Pacific Ring of Fire. 

Despite lies in a geographically stable region, Malaysia is still facing the risk of 

floods, landslides, and other human-made disasters. According to Lee and 

Noorazurah Mohamad of Universiti Teknologi MARA (2013), floods in 

Malaysia cause RM242 million of economic losses per average annually. 

Another study in the year 2019 by Center for Excellence in Disaster 

Management and Humanitarian Assistance (CFE-DMHA) stated that Malaysia 

had experienced 51 natural disaster events from the year 1998 to 2018, causing 

281 people to die and more than 3 million people were affected, which caused 

around RM8 billion in damages. 

The main warning system for disaster events in Malaysia is using SMS 

to alert residents of impending disaster risks. This method is highly dependent 

to the availability of a cellular network due to its tree topology property. If the 

disaster destroys the cellular network base station, communities are said to be 

isolated from internet services. Not only failed or delayed receiving the 

emergency alert, but it also increases the difficulty for rescue squad to obtain 

the lastest information using cellular communication service. Japan, a country 

with a high natural disaster rate, has been using a resilient mesh network named 

NerveNet to overcome this challenge. NerveNet has been developed by the 

National Institute of Information and Communications Technology (NICT) in 

Japan since the year 2006. According to Inoue and Owada (2017), NerveNet is 

conducted at a large scale of testbed with 30 base stations constructed within 

Tohoku University in Sendai at the year 2011. Then in the year 2014, NICT 

started operating NerveNet that deployed in real environments for disaster 

prevention purposes. NerveNet end devices do not rely on the availability of 

each other. One node goes inactive does not affect the overall service provided 

as other nodes will self-configure a new pathway to transfer data. Logically, any 
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node can peer with any other nodes if they are under NerveNet network, which 

gives it fault-tolerance property during disaster events. 

 

1.2 Importance of the Study 

The risk of flooding in Malaysia is increasing year by year due to sea-

level rise, and some studies point out that several seaside cities will be 

underwater by the year 2050. In addition, climate change also increased extreme 

weather events, such as heat waves that lead to wildfire, heavy rainfalls, and 

inland flooding. Severe floods could cause more drowning deaths and will lead 

to serious economic losses. Natural Disaster Command Centre (NDCC) is a 

center for disaster operation control in Malaysia. Figure 1.1 shows disaster 

information presented on their website. 

 

Figure 1.1: NDCC Disaster Map. 

 

As shown in the figure, NDCC posts the information based on location, 

DateTime, victims, and disaster type. To ensure the collected information can 

be sent over Internet during disaster event, the data synchronization feature is 

another necessary component for a resilient mesh network. This feature allows 

all wirelessly connected base stations to share their database in such a way that 
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any nodes could send information to the gateway if the detection node is 

destroyed. If the end stations could also send regional disaster data to the 

gateway from kilometers away wirelessly, the network is said to be perfect for 

a disaster management system. 

 

1.3 Problem Statement 

The resilient regional network is not populated in Malaysia, residents are 

vulnerable as disaster management and response are not guaranteed. With a 

resilient network implemented, alert messages with sufficient information can 

be sent over the Internet to provide a nationwide response. The database 

synchronization feature is also crucial for storing disaster sensors data over the 

network, and it also allows applications to pull data from nodes to the cloud. 

Cellular networks in Malaysia are usually vulnerable to disasters and using Wi-

Fi transmission on disaster nodes could be one of the solutions. However, the 

range of Wi-Fi transmissions is short, and the cost of implementing a resilient 

disaster monitoring network system in a wide coverage range could be very high. 

Hence, LoRa is a better solution in this case, it supports wireless data 

transmission protocol and signal coverage in kilometers, which requires lesser 

cost to construct disaster nodes at a given range as compared to Wi-Fi. 

 

1.4 Aim and Objectives 

This study aims to develop a disaster response application using NerveNet LoRa 

mesh network. The objectives of this study are: 

i. To establish a NerveNet Wi-Fi mesh network testbed with data 

synchronization. 

ii. To establish a NerveNet LoRa mesh network testbed. 

iii. To generate Python codes that handle the NerveNet LoRa and Wi-Fi 

mesh network data exchange. 

iv. To evaluate the network performance of the NerveNet LoRa and Wi-

Fi mesh. 

 

1.5 Scope and Limitation of the Study 

The scope of this project is to set up a testbed that could be used in natural disaster 

hotspots. The testbed should be resilient and able to transmit import disaster 
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information so that the respective agency could take action immediately. NerveNet 

framework is designed and owned by Japan, the resources and references are 

regarding NerveNet structure are not disclosed to the public, this may increase the 

difficulty of investigation and research. Therefore, the project's progress was 

dependent on the sufficiency of documentation provided by NICT. Apart from that, 

some of the documentation may be written in Japanese, and language translation 

may not reveal the exact meaning of words.
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

To design a disaster-resilient mesh network, one of the considerations is fault 

tolerance. Most of the communication service provided in Malaysia is tree 

topology based, low-level network nodes or devices are highly dependent on the 

availability of upper hierarchical level devices. When the service is down or 

congested, the end devices are not able to self-select or self-configure a new 

pathway because most of them are statically or point-to-point routed. In other 

words, the number of peers is relatively limited and fixed. Hence, the network 

connection between nodes should be as dynamic as possible to maximize the 

number of peer connections, which can be done using mesh protocols.  

 For disaster detection nodes, the power consumption and wireless data 

transmission range are one of the concerns. Usually, the power consumption of 

sensors and actuators itself is low, a power-saving wireless networking 

technology supporting wide range coverage is most suitable for disaster nodes. 

In this case, LoRa technology fits the requirement as it supports a range of 

transmission in kilometers, where LoRa sensors can operate for years with just 

an alkaline battery. 

 

2.2 Resilient Network 

Resilience in terms of computer networking refers to the flexibility and 

elasticity of faults or errors.  A resilient service is said to be reliable as the 

system is adaptable to extreme circumstances such as natural disasters or 

malicious network attacks by adopting data synchronization, which is often 

achieved by the architecture of star, ring, or mesh network topology. Therefore, 

the need for resiliency certainly applies to critical services and infrastructure, 

especially if the functionality of the system is automated. 

 Generally, resilience cuts through several thematic areas, such as 

information and network security against attack, fault-tolerance, dependability, 

performability, and network survivability (Hutchison and Sterbenz, 2018). 
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When it comes to the requirement for disaster warning systems, secured data 

transmission from nodes to receivers is one of the crucial properties that need to 

be integrated into the system, which disaster-resilient communication network 

shall be considered. 

As of today, the ability of a network system to provide acceptable and 

fault-tolerance service is more important than ever before. Information in terms 

of data is treated as an asset, where resilience is the key to design to maintain 

data persistence and connectivity when developing a reliable system. A resilient 

network was designed to aim to provide reliable network service to applications. 

These services shall include distributed processing, network storage, 

communication service, and access information. 

 

2.2.1 Distributed Processing 

According to IBM Documentation (2014), distributed processing or distributed 

computing is the use of multiple processors, computers, or software components 

but run as a single system, which is called distributed computer system. The 

components can be connected within LAN or WAN, which makes the entire 

network structure itself works as a single computer to offer benefits such as 

scalability and redundancy. In other words, the system can be expanded easily, 

while the same services can be provided by several components to ensure 

service continuity when one of the machines is unavailable. 

 

2.2.2 Network Storage 

Network storage is also known as Cloud storage. The service is said to be 

“Cloud” because it allows saving data in an off-site location that can be accessed 

through the Internet or a dedicated private network connection (IBM Cloud 

Education, 2019). Network storage is a server that stores the centralized data, it 

responds to the request from networked clients, which is usually in HTTP or 

WebSocket protocols. In a resilient network, the data pool is ready in network 

storage to be shared among other components or even accessed externally if 

needed. Not only update data, but network storage also provides backup for 

clients revived from death, this allows clients to attempt to recover their states 

by requesting real-time data from network storage. 
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2.2.3 Communication Service 

Communication shall include computer-supported collaboration, video 

conferencing, and instant messaging. For distributed disaster warning system, 

the communication between nodes and gateway is significant to seek for latest 

data, then establish a data transfer or exchange process. This is the prerequisite 

for the data synchronization process in both local database and network storage. 

 

2.2.4 Access Information 

To make use of synchronized information in database effectively, the resilient 

network should provide access to the database as needed. Usually, the access 

feature is built into an application that directly communicates with network 

storage. This model separates endpoints by dedicating network storage as the 

middleman between the user end and sensor nodes or data collectors. 

 

2.3 Mesh Network 

Mesh in a network system refers to the network topology in which the nodes are 

fully or partially interconnected as many as possible to form a redundancy 

connection. In mesh networks, the infrastructure nodes are equipped with self-

configure and self-routing protocols, such as BATMAN-adv, Zigbee, Wireless 

Ad-Hoc, OLSR, and NerveNet.  

 

Figure 2.1: Full and Partial Mesh Network Topology. 
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Mesh networks are getting popular recently due to their efficiency and 

reliability in data transfer. Since the nodes are interconnected, there is no central 

point to rely on, which means data packets transfer is lesser dependent on each 

node. Redundancy connections are the key to achieving fault-tolerance because 

each node can self-define alternative paths and distribute the workloads based 

on availability. Moreover, the speed of message transfer also generally 

increased due to the shortest hop count or route cost of routing path is defined 

by nodes itself.  

 

2.3.1 Mesh and P2P Network 

A P2P network is where each node act as both client and server, they request or 

respond services to from each other for resource sharing purpose. This concept 

is quite similar to mesh networks. However, they are different. Usually, P2P 

nodes store their own data, each node exclusively communicates with another 

node, which makes the network topology still tree-alike. In most conditions, the 

purpose of implementing a P2P network is to optimize the usage of bandwidth 

and also reduce the route traffic between clients and servers. In contrast, adding 

new mesh nodes does increase the bandwidth usage, but it provides resiliency 

to the network, which P2P could not. 

 

2.3.2 Wireless Mesh Network 

Wireless Mesh Network (WMN) is a mesh network where all the nodes 

communicate using radio waves instead of Ethernet, the nodes are also known 

as radio nodes (Rong et al., 2013). In the WMN network, each radio node works 

as both router and host, they calculate the shortest path distance to forward the 

packets to the destination when necessary. Usually, a WMN network will 

consist of a mesh client, mesh router, and mesh gateway, where clients will 

simply forward packets to the mesh router without computing the path, while 

mesh router will further send packets mesh gateway so that they can be 

forwarded to the external network. Thanks to its resiliency and frequent 

intercommunications, WMN is one of the considerations for developing IoT 

applications using Wi-Fi or LoRa protocols. However, it is yet to support high 
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mobility nodes such as smart cars because the mesh network connection breaks 

frequently will cause performance to be reduced. 

 

2.4 LoRa 

LoRa (Long Range) is an LPWAN modulation technique patented by LoRa 

Alliance, which is derived from Chirp Spread Spectrum (CSS) technology (The 

Things Network, 2021). LoRa is ideal for long-range transmission with 

relatively low bit rates, data can be transmitted at a wider range as compared to 

Wi-Fi and Bluetooth, which makes it suites for low-power remote applications 

such as sensors and actuators (The Things Network, 2021).  

Referring to the international agreement, LoRa bandwidth is restricted 

to 125 kHz, 250 kHz, and 500 kHz, while only 125 kHz and 250 kHz bandwidth 

are used in Europe countries. The data bit rate is not only dependent on restricted 

bandwidth but also manipulated by another factor called Spreading Factor (SF), 

which controls the chirp rate (The Things Network, 2021). The Nth number of 

SF is inversely proportional to the data transmission rate. For example, reducing 

the SF by one will double the chirp sweep rate, hence double up the data 

transmission speed too. Higher SF reduces the chirp sweep rate, which is easier 

to accurately decode the signal, thus increasing the range of LoRa transmission. 

As a trade-off, a slower sweep carries lesser information. LoRa modulation 

provides six SF in total, which is from SF6 to SF12. Apart from LoRa 

transmission rate, end devices that send or receive signals modulated from 

different SF will not interfere with each other even though they operate at the 

same frequency channel. 

 

2.4.1 LoRa Standards 

LoRa operates on license-free sub-GHz ISM bands, such as 433 MHz, 868 MHz, 

915 MHz, or even 2.4 GHz, for higher data transmission rate with the cost of 

range (The Things Network, 2021). Since the LoRa could transmit data at a high 

range, regional parameters were set over countries according to their restrictions. 

As in Malaysia, the frequency plan used is called AS1 (used in Malaysia, 

Singapore, and Japan), while the range of frequencies is named AS920-923 

(Asia 920-923 MHz). 
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2.5 LoRaWAN 

LoRaWAN (Long Range Wide Area Network) is a media access control (MAC) 

protocol based on LoRa modulation, which is categorized as OSI model layer 2 

(data link layer) protocol, or network interface layer in terms of TCP/IP model. 

LoRaWAN network uses ALOHA based protocol, the messages are transmitted 

to the transmission channel without acknowledging its availability, thus LoRa 

end devices do not peer with specific gateways, every gateway within the valid 

range of transmission channel could receive the message (The Things Network, 

2021). The architecture of LoRaWAN network is shown in Figure 2.2 below. 

 

Figure 2.2: LoRaWAN Architecture. 

  

LoRaWAN end nodes are usually small appliances such as sensors or 

actuators, they are often wireless because just a battery could support their 

operation for years. LoRaWAN gateway is simply just a relay to forward LoRa 

messages from end nodes to Network Server via Wi-Fi, Ethernet, fiber optic, 

cellular, or 2.4 GHz radio links. There is no fixed connection between end 

devices and LoRaWAN gateway, any gateway can receive LoRa message from 

any node, as long as within the range. LoRaWAN network server controls the 

entire network as it receives packets from the gateway, the data communication 

between gateway and network server is using network layer protocols. Not only 

routing the messages, but network server also responsible to also eliminates 

duplicated LoRa messages forwarded by multiple gateways, then eventually 

forwarding data to the application server. Join server does not participate in data 

communication if the end node is connected to the LoRaWAN network, it only 
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involves at the over-the-air-activation process. When application server receives 

a processed message from network server, it provides ready data to the client 

interface, such as presenting feedback from nodes. Moreover, it also can 

generate a downlink payload that will be sent back to end nodes, such as 

shutdown or adjusting parameters of nodes. 

 

2.5.1 LoRaWAN Activation Process  

In LoRaWAN activation process, join server is important to manage the over-

the-air activation (OTAA) process. It is an authentication process for end nodes 

to participate in the network, which is always initiated by end nodes only (The 

Things Network, 2021). Generally, the message from end node to network 

server is called as uplink message, while the message from network server to 

end node is called as downlink message. 

For LoRaWAN 1.0.x version, OTAA is done between network server 

and end nodes. Secret key (AppKey or known as root key) and public keys 

(AppEUI, DevEUI) are stored in end devices before activation process begins. 

However, AppKey is not included in the Join-request message, it is just used to 

ensure data integrity. End device is always the one initiate activation process, it 

sends unencrypted Join-request message to network server. If the Join-request 

is permitted by network server, it will response an AppKey-encrypted Join-

accept message including a DevAddr to identify the end device address within 

current LoRaWAN network, and then sends a AppSKey to application server. 

The end device will use the AppKey to derive two more secret key, namely 

NwkSKey and AppSKey. After activation process, NwkSKey is used between 

the end device and network server to verify data integrity and payload 

encryption/decryption if contains MAC command. While AppSKey is used 

encrypt application payload so that the end-to-end communication between end 

device and application server is secured. 

In lastest LoRaWAN 1.1 version, the OTAA process is done between 

end nodes and join server. Secret keys (AppKey, NwkKey, known as root keys) 

and public keys (JoinEUI, DevEUI) are stored in end devices before activation 

process begins. Same as LoRaWAN 1.0.x , secret keys are not included in the 

Join-request message. The Join-request message is sent unencryted to network 
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server, the frame contains Join-request message is known as PHYPayload. Then, 

network server will use the JoinEUI key in received request to DNS lookup the 

ip address of join server, further sends JoinReq message which contains Join-

request to join server if successful of DNS lookup. After join server received 

the JoinReq message, it will response network server with JoinAns message, 

which contains Join-accept message, network session keys, SNwkSIntKey, 

FNwkSIntKey, NwkSEncKey, and AppSKey. Upon received the JoinAns 

message, network server will generate a Join-accept message using the keys 

received, then encrypt it using NwkKey and send to the end device. The end 

device will use its NwkKey to derive SNwkSIntKey, FNwkSIntKey, and 

NwkSEncKey. On the other side, network server will send an encrypted 

AppSKey and application payload to the application server. Application server 

will first decrypt AppSKey using another secret key shared by join server, then 

decrypt the application payload using AppSKey. If the AppSKey is not available 

from network server, application server will directly request AppSKey from join 

server using AppSKeyReq message, then join server will response an 

AppSKeyAns message with encrypted AppSKey. After activation process, 

NwkSEnKey is used between the end device and network server to encrypt or 

decrypt payload on port 0 or FOpt field which contains MAC command. 

SNwkSIntKey and FNwkSIntKey are used to ensure data integrity of uplink and 

downlink data message respectively. 

There is one alternative of activation process called Activation By 

Personalization (ABP). ABP will bypass the authentication of join procedure 

and join server is not used, connection between network server and end node is 

binded and pre-selected. Hence, ABP is not secure as compared with OTTA. 

End nodes activated by ABP can only connect with one static network and keeps 

the same security session for its entire lifetime, while switching of network 

requires manual change of keys stored in end node. 

 

2.5.2 LoRaWAN Message Types 

Generally, there are four data message types used by LoRaWAN as shown in 

Figure 2.3. These data message types are used to transport MAC commands and 

application data which can be combined in a single message. Data messages can 
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be classified as confirmed or unconfirmed, where confirmed data message 

require acknowledgement by the receiver, while unconfirmed data message 

does not require. 

 

Figure 2.3: LoRaWAN Data Message in Fields. 

 

 The first three most significant bits of MHDR field is the identifier of 

message types, which is also known as MType field (Prajzler, 2019). 

LoRaWAN 1.0.x version uses 7 kinds of MType, while LoRaWAN 1.1 version 

have one additional type called Rejoin-request. Similar with Join-request, 

Rejoin-request is also initiated by end nodes to initialize a new session context. 

Once network server permitted this request, it will response with a Join-accept 

message. The MType variations and its description is tabulated as Table 2.2 

below. 

 

Table 2.1: MType Variations and Descriptions. 

MType 

Binary 

LoRaWAN 

1.0.x 

LoRaWAN 

1.1 

Description 

000 Join-request Join-request Uplink OTAA Join-request. 

001 Join-accept Join-accept Downlink OTAA Join-accept. 

010 Unconfirmed 

Data up 

Unconfirmed 

Data up 

Uplink data frame 

(confirmation not required). 

011 Unconfirmed 

Data down 

Unconfirmed 

Data down 

Downlink data frame 

(confirmation not required). 
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100 Confirmed 

Data up 

Confirmed 

Data up 

Uplink data frame 

(confirmation requested). 

101 Confirmed 

Data down 

Confirmed 

Data down 

Downlink data frame 

(confirmation requested). 

110 (Reserved for 

future use) 

Rejoin-request Uplink OTAA Rejoin-request. 

111 Propietary Propietary Implementation of non-

standard message formats. 

 

2.6 NerveNet 

NerveNet is a resilient network developed by National Institute of Information 

and Communications Technology (NICT) in Japan. NerveNet is a regional-area 

network to provide reliable Internet access and sharing resilient information 

platform in emergency situations such that when network from internet service 

provider no longer persists. NerveNet base stations are interconnected by 

Ethernet-based wired or wireless transmission systems such as optical/metal 

Ethernet, Wi-Fi, FWA, satellite, and Unmanned Aerial Vehicle (UAV), which 

sums up a mesh-topological network (Inoue, et al., 2014). As compared with 

most common network infrastructures nowadays, such as fixed-line networks 

and cellular networks, they are both tree topology based, NerveNet is much 

more fault-tolerant to disconnections and node failures because of its mesh 

topology. Not only that, NerveNet can continuously provide connectivity 

services to applications such as mobile phones without the Internet, because 

each base station supports basic services like DHCP, DNS, SIP proxy, and 

mobility management (Chanakitkarnchok, et al., 2019).  

 In NerveNet architecture, databases are distributed among all the base 

stations over a mesh network. NerveNet databases handle data synchronization 

automatically, which stores routing informations and application data 

respectively. The synchronization process is performed by the NerveNet OS, 

external application servers can also join NerveNet mesh network by using a 

custom API to update data in the nearest database of a base station. 

NerveNet database uses hearsay daemon to synchronize tables in 

different databases within the network, each node compares the hash of other 
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databases with its own database. Hearsay daemon synchronizes MySQL 

database with insert and update queries only, delete actions will not be 

synchronized. When a NerveNet end node is disconnected or shut down, it will 

drop the data in synchronization tables. Once it is back in operation, it initiates 

the synchronization process by seeking the difference of table with other nodes, 

then updates the database with the latest data. If all nodes in the network go 

down at the same time, they are unable to relieve data using hearsay daemon 

synchronization after alive because existing databases are all empty.  

 

2.7 MQTT 

MQTT (MQ Telemetry Transport) is an OASIS standard messaging protocol 

that is designed to serve IoT applications (MQTT.org, 2022). It suits the best 

when encountering extremely lightweight messaging transport that is ideal for 

connecting remote devices with a minimal code footprint and network 

bandwidth. The devices that use MQTT protocol to send or receive data are 

called MQTT clients, they connect to a common MQTT broker to perform data 

exchange between each other. An example of MQTT bi-directional 

communication is shown in Figure 2.4. 

 

Figure 2.4: MQTT Data Transmission Fow. 

 

Whenever the MQTT client wants to subscribe or publish data, it will need to 

connect to an MQTT broker using IP address. By default, MQTT listens to port 

1883, message that is sent in this port is in plain text. If secure messaging is 
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preferred, MQTT also uses port 8883 to transmit data over SSL/TLS. The broker 

is a framework that acts as the middleman between subscriber and publisher, it 

can reside in a dedicated device or any MQTT client. To filter out messaging 

sessions, the broker uses a topic, which is a UTF-8 encoded string, to identify 

messages for each client. The topic is defined by clients, subscribe/publish to 

the same topic allowing them to exchange data. MQTT topic uses “/” symbol as 

level delimiter, “+” as single-level wildcard, and “#” as multi-level wildcard. 

For example, a client subscribed to “house/#” topic could receive messages 

published from both “house/lamp” and “house/door/3” topics as well. The 

message published over MQTT topic is called payload, which is prepared as 

plain text, then transmitted as binary bytes. According to the MQTT 

specifications, the length at most for MQTT topic and payload is 65536 bytes 

and 268,435,456 bytes respectively. By default, the maximum size of each 

MQTT packet size is 256 MB, while the maximum buffer size in each 

subscription from either client or broker is 5000 messages. The MQTT packet’s 

protocol data units are shown in Figure 2.5. 

 

 

Figure 2.5: MQTT Packet PDU. 

 

The control header and packet length are fixed headers, which are always 

present in MQTT packet. In contrast, variable length header and payload are not 

always present. The 4 bits packet type is the value of connection operation, such 

as 0011 represents PUBLISH packet, and 1000 represents PUBLISH packet. 

The DUP flag is “1” when the QoS level bit is greater than 0, it indicates that 

this is a duplicated message due to resent. QoS is the agreement between 

publisher and subscriber in terms of guarantee for delivery of a message. QoS 

level holds 2 bits of binary data, which indicates three different qualities of 

service. When QoS = 0, the message is sent at most once, and the subscriber 



17 

 

will not acknowledge the publisher whether the message is received. If QoS = 

1, the publisher will send the message at least once, it keeps the message and 

retransmits after a certain time until the subscriber reply a PUBACK 

acknowledgment packet. If QoS = 2, the message is sent exactly once, they 

perform a 4-way-handshake process to guarantee it is received by the subscriber. 

Due to the request and response flows, this QoS is the safest and also the slowest. 

The last PDU in the control header is called RETAIN. When the publisher sets 

RETAIN = 1 in MQTT packet, the broker will store the last message sent by the 

publisher, then forward it to each subscriber immediately when clients initiate 

subscribing to that topic. With this feature, the receiver client could pick up the 

retained message if it reconnects to the broker. 

 

2.8 Docker 

In this project, most of the applications are executed based on Docker container 

images, including the NerveNet applications and NerveDash monitoring system. 

Docker is software that allows developer to build and deploy applications easily. 

In terms of working environment, Docker act as an operating system for 

container images, this is similar to virtual machines that allow different guest 

OS images to run in one host (AWS Docker, 2022). Container image is a 

package that wraps up all necessary programming code modules, source files, 

and dependencies for an application to run (Docker Container, 2022). The 

container image can be run at any host that uses the same OS and installed with 

Docker, therefore it is very convenient for deployment. When deploying 

applications on-site, there are bundles of issues needed for troubleshooting, such 

as driver incompatibility, outdated software, configuration or setting issue, and 

many other possibilities. Therefore, the Docker container image is getting 

important nowadays because it allows applications to run without excessive 

installation, developer could also include every single dependency into the 

container image so that the application could be run without any problem related 

to the hosting machine’s software availability. Not only that, since the Docker 

handles container images the same way the virtual machine does, each container 

is isolated from the host machine’s environment and also between containers, 

only configured communication allows them to interact, such as using 



18 

 

TCP/UDP port numbers and UNIX socket. These characteristic makes Docker 

perfect to be adopted by cloud computing service provider, such as Amazon 

Web Services and Microsoft Azure. 

 

2.9 Deployed NerveNet Monitoring System 

This project is currently in the second stage, the main objective is to deploy a 

NerveNet testbed with LoRa and Wi-Fi connectivity with MQTT response. The 

first stage has been done by senior Lim Wei Sean, his service architecture is 

shown in Figure 2.4 below. 

 

Figure 2.6: NerveNet System Deployment (Lim, 2021). 

 

2.9.1 NerveNet Architecture 

A simple three base station NerveNet testbed using Raspberry Pi is constructed, 

and its network connectivity is shown in Figure 2.5 below. 
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Figure 2.7: NerveNet Base Stations (Lim, 2021). 

 

This network is designed to have one gateway node and two base station nodes. 

Using the ERB configuration of NerveNet, ERB link is established (wireless 

link) between two nodes. Two endpoints of each link are access point and client 

wireless interface respectively. In ERB wireless access points can only accept 

one connection from a specific client. For each node, wlm1 is the access point 

interface while wlu3 is the client interface, enu11 interface in the gateway node 

is the Ethernet port. By default, NerveNet is configured within the 172.16.n.0/16 

network, where n is the node id defined during the installation of the network. 

 

2.9.2 NerveNet Web Application: NerveDash 

NerveDash is the name of a web application designed by Sean. The main 

components to support NerveDash are Neo4j (cloud server), MQTT service, 

HTTP server, REST API, Websocket API, and Nginx server. 

When NerveNet gateway sends a message, it will first be handled by 

MQTT client for JSON encodable data. If the data is media (image, video), it 

will be sent to HTTP server instead of MQTT broker. When the media storage 
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has exceeded its limit, the oldest stored media will be replaced by the latest 

media data. Both MQTT and HTTP service point towards Neo4j server, a 

graphical-based NoSQL database server. By default, MQTT broker will set a 

count-down timer to receive a “heartbeat” message from NerveNet gateway 

(publisher). If the message is not received in 20 seconds interval, an inactive 

message will be sent to Neo4j (subscriber) to record that the respective node is 

down until a new “heartbeat” message is received.  

The data in Neo4j can then be retrieved via a RESTful API or a 

WebSocket API. The RESTful API is used for simple text retrieval, while 

WebSocket API is used for file streaming. Finally, the Nginx static file hosting 

feature is used to serve the frontend static files of the web application. The 

Nginx server can also be configured to provide load balancing for all HTTP 

endpoints if needed. 

 

2.10 Summary 

To design a disaster resilient network, mesh network is the best topology to 

achieve fault-tolerance during emergency situations. The basic requirement of 

a resilient network, such as distributed processing, network storage, and 

communication service, can be met using NerveNet framework, it supports 

wireless mesh connection and data synchronization to fulfill those requirements. 

Lastly, LoRaWAN device is suitable for NerveNet nodes as it supports wide 

range of connectivity coverage using mesh topology. LoRa-based end devices 

also have the advantage of low power consumption to support long-lasting such 

as years with just a battery. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This project aims to develop a disaster-resilient mesh network with NerveNet 

LoRa connection NerveNet Wi-Fi connection with data synchronization in both 

x86 and armhf machines. To build the planned prototype, case studies and 

literature reviews on NerveNet, LoRa, Raspberry Pi, MQTT, HTTP, and 

database are necessary. 

 

3.2 Work Plan 

In part one of Final Year Project, the main task is to study and acknowledge 

technics required to build the entire system. For the literature review and case 

study, the targeted topics are the concept of resilient network, mesh network, 

NerveNet, LoRa communication, and basic Linux commands. Since this 

project’s first stage has been carried out by Lim, knowledge transfer and system 

replication are also needed, and important notes and procedures regarding 

system deployment are made into documentation. 

 Next, the preparation and testing of replicates NerveNet testbed design 

by Lim also has been done, such as NerveNet installation, mesh links 

establishment, MQTT & HTTP responses, and the server host application. At 

the end, Final Year Project progress report and presentation are also made. The 

project activities are shown in the Gantt chart in Figure 3.1. 

 

Figure 3.1: Gantt Chart of FYP Part 1. 
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 In FYP part 2, the scope is to set up the NerveNet Wi-Fi and LoRa mesh 

testbed using x86 and armhf machines. The feature of NerveNet database 

synchronization via Wi-Fi mesh is also implemented. After all testbed setup is 

done, the performance tests are carried to identify the reliability of data 

transmission among NerveNet nodes. Lastly, several Python programs are 

written to ease of LoRa MQTT data exchange and read/write database. The 

Gantt chart of FYP part 2 is shown in Figure 3.2. 

  

 

Figure 3.2: Gantt-chart of FYP Part 2. 

 

3.3 Eclipse Paho – MQTT and Python 

MQTT is a lightweight IoT messaging protocol based on the publisher and 

subscriber model, it provides reliable messaging service and real-time data 

transfer using TCP/IP protocols. It is suitable for NerveNet devices to forward 

disaster application data over destination.  

Paho is a MQTT implementation developed by Eclipse. In the first stage 

of the project done by Lim, the MQTT subscriber is implemented at the hosting 

server. MQTT publisher/subscriber program at each NerveNet LoRa node is 

constructed using Paho Python Client to send/receive LoRa packets. Moreover, 

a Python program to read/write NerveNet database is also constructed. At the 

end, the program also sends all collected disaster information to NerveDash via 

MQTT and HTTP POST request.  

 



23 

 

3.4 Architecture of Planned NerveNet LoRa Network 

The hardware chosen for deploying NerveNet LoRa network is listed as below. 

i. 2 units of Raspberry Pi 3. 

ii. 1 unit of Raspberry Pi 4. 

iii. 3 units of Intel NUC Mini PC 

iv. 6 units of TP-Link AC1300 Archer T4U High Gain Wireless MU-

MIMO USB Adapter. 

v. 4 units of RFlink LoRa RM-92A. 

vi. 2 units of Clealink LoRa Pi Hat. 

vii. 2 units of Pi Hat GPS. 

viii. 1 unit of  Global SAT BU-353S4 USB GPS 

ix. 1 unit of DFRobot TEL0138 USB GPS 

x. 2 units of RFlink USB-LoRa 

xi. 4 units of USB Lora Antenna. 

The planned network structure is designed as Figure 3.3 below. 

 

 

Figure 3.3: NerveNet Testbed using Wi-Fi and LoRa. 

 

3.5 NerveNet Wireless Mesh Network 

Usually, a mesh network is simply adding a redundant connection for each 

device within the network topology, then the device will look up for an 

alternative pathway to reach its destination if its primary peer is down. NerveNet 
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Wi-Fi mesh network framework not only provides the function to look up every 

single mesh node in the network, it also add-in database synchronization to share 

common data within the mesh network. The lookup feature is built by using a 

service daemon called PTMGR (Path Tree Management Generation), it needs 

to be installed in the essential node within the mesh network. PTMGR 

continuously seeks for peers’ network status to identify if any node is down or 

new node has joined the network. If the connection between nodes is steadily 

maintained by PTMGR, the nodes could directly connect or access to each other 

and perform NerveNet SQL database synchronization. The nodes will compare 

the data rows within each other to update with the latest data. 

 Not only Wi-Fi mesh, NerveNet also supports LoRa mesh network with 

the use of specific LoRa equipment. NerveNet LoRa uses a frequency band of 

920 MHz for all LoRa node, if each node transmits data at the same time, the 

signal radio waves will collide, and the listener will receive a corrupted signal. 

Hence, NerveNet LoRa uses a time slot to overcome this issue. Each node 

synchronizes the time from the GPS receiver to other nodes, then the node will 

transmit LoRa data within the period of the preset time slot. For example, 10 

seconds are divided into five slots to form a cycle, the time slots are allocated 

to five nodes, thus each node will transmit LoRa signal during its time slot only. 

With properly configured time slots and channels to reduce disturbance, 

NerveNet LoRa nodes are possible to communicate at the speed of 100 Bytes 

per second over several kilometers distance with a power consumption of only 

tens of milliWatt. 

 

3.5.1 Wi-Fi Mesh Network 

To establish NerveNet Wi-Fi mesh connection as network testbed architecture 

which is shown in Figure 3.2, each device is the first set up with NerveNet IP 

address, AP interface and WPA client interface, where x86 machines and 

Raspberry Pi OS uses the same way configure. These interfaces are then linked 

to NerveNet VLAN interface to use the ERB tunnel link, which is used by the 

PTMGR to enable each node to communicate. Then, the Wi-Fi connection is 

configured using the Hostapd and WPA supplicant services provided by 

NerveNet Docker container instead of those original packages with Linux 
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Ubuntu, this is to avoid incompatibility with the packages’ environment. The 

Network Manager service is also masked to avoid interference, because it tends 

to bring up USB Wi-Fi interface as client mode from AP mode. After these 

settings are configured, all nodes in x86 NerveNet Wi-Fi domain are now able 

to ping each other and synchronize their NerveNet database. This is also the 

same as in armhf NerveNet Wi-Fi domain. 

 

3.5.2 NerveNet LoRa Mesh Network 

NerveNet LoRa mesh configuration is set based on using RFlink-RM92A as the 

LoRa module, the parameters that could be altered are radio frequency channel, 

bandwidth, and spreading factor. In this testbed, all LoRa node RF-channel of 

41, RF-bandwidth of 500 kHz, and spreading factor of SF12. While the time 

slot cycle in this testbed is set to be four slots per minute, which means each 

LoRa node (BS203, BS206, BS207, and BS208) is allocated with a 12 seconds 

duration to transmit LoRa signal at each minute. To communicate with plain 

text data, NerveNet LoRa node uses MQTT service to buffer published data, 

then sends out the LoRa data within the allocated time slot with its best effort. 

The LoRa data will remain in the MQTT buffer and waits for the next cycle if 

the attempt to transmit fails. However, NerveNet LoRa MQTT communication 

uses QoS level zero, LoRa packet loss is still possible. 

 

3.5.2.1 LoRa IoT Pi HAT 

For Raspberry Pi 3, LoRa IoT Pi HAT is installed to facilitate RFlink-RM92A 

LoRa module and GPS receiver. By default, Raspberry OS identify Pi HAT as 

serial port, therefore it is enabled in raspi-config. After the serial port is enabled, 

the OS may occupy the serial device as serial login connection interface, 

therefore serial login is disabled in raspi-config. Then, the serial device name 

and GPS baud rate (9600 bits per second) are added in NerveNet LoRa 

configuration. 

 

3.5.2.2 USB-LoRa and USB-GPS Receiver 

Since Raspberry Pi 4 and Intel NUC mini PC are incompatible with LoRa HAT, 

USB-GPS receiver and USB-LoRa adapter are used. The Global SAT GPS with 
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baud rate of 4800 bps is equipped in Raspberry Pi 4, while DFRobot TEL0138 

GPS with baud rate of 9600 bps is equipped in Intel NUC mini PC. Since both 

equipments are USB serial devices, the name of device in terms of “/dev/tty” 

might differ every time the machine boot or equipment is replugged in. Thus, 

symbolic links in terms of product ID and vendor ID are created in Udev rules, 

so that the name of “/dev/ttyUSB-gps” is always referring to the GPS receiver, 

while “/dev/ttyUSB-RF” is always referring to the USB-LoRa adapter. As the 

same in discussed above, the device name and GPS baud rate are then added in 

NerveNet LoRa module. 

 

3.6 Image Transfer using NerveNet LoRa Mesh 

Since NerveNet LoRa mesh MQTT uses QoS level zero, the delivery of LoRa 

messages is not guaranteed. The higher the payload size or the number of 

messages, the higher the rate of packet loss. Since the maximum payload size 

for NerveNet LoRa MQTT packet is 152 Bytes, it is impossible to send an image 

in a single packet. To overcome this issue, the image file is first encoded to 

base64 string, then it is fragmented to 80 Bytes per row, with a row index and 

comma symbol at the leading position of each row. Then, a Python program is 

made to handle the MQTT LoRa message with acknowledgment. The algorithm 

is illustrated in Figure 3.4. 

 

 

Figure 3.4: Algorithm to Send and Received Fragmented Image using 

NerveNet LoRa MQTT. 
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3.7 Performance Evaluation 

After the NerveNet testbed is constructed, the network performance within x86 

and armhf Wi-Fi domain is benchmarked in terms of latency, throughput, jitter, 

and image synchronization. Moreover, the average time taken to receive a LoRa 

message and image is also evaluated. In this project, the performance is 

evaluated where each NerveNet node is separated 10 cm apart. 

 

3.7.1 Latency 

The network latency within NerveNet Wi-Fi domain is benchmarked using the 

ping command in the terminal. Ping uses the Internet Control Message protocol, 

by pinging peer’s NerveNet IP address, the minimum, maximum, and average 

latency in milliseconds is returned. There are two conditions to evaluate the 

latency, the first condition is when one out of three base stations is down, then 

the network latency in P2P connection is recorded. The second condition is 

when all three base stations are available, the network latency is evaluated based 

on the mesh link. 

 

3.7.2 TCP/UDP Throughput 

Iperf3 is used to evaluate the TCP and UDP throughput in NerveNet Wi-Fi 

domain. For TCP throughput, 100 packets are sent to the receiver, 

retransmission of lost packets will increase the time taken to receive all packets. 

The total data size received at the receiver side divided by the time taken is so-

called throughput, which is in milliseconds. For UDP throughput, the sender 

bandwidth is set at 50 MBps, duration to send dummy data is 10 seconds by 

default, which means 500 MB of data to send in total. Since UDP packet 

receiver will not acknowledge the sender if the packet is lost, the received data 

size divided by 10 seconds is the UDP throughput. The throughput in NerveNet 

x86 and armhf Wi-Fi domain based on P2P and mesh link are both evaluated.  

 

3.7.3 Jitter 

In real-life applications, there will be a certain delay between continuous 

packets caused by slow network connections, congestions, and queuing. The 

delay between packets is called jitter. High jitter will cause reduced application 
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performance and user experience. When measuring UDP throughput using 

Iperf3 tool, the jitter in milliseconds is also returned. The jitter in NerveNet x86 

and armhf Wi-Fi domain based on P2P and mesh link are both plotted. 

 

3.7.4 NerveNet Database Image Synchronization 

NerveNet database supports updating images as data rows, the image file can 

also be synchronized to other nodes within NerveNet domain. The average time 

taken to synchronize different-sized images is recorded. Since different node as 

updater may lead to a different result, the average time taken to synchronize 

image file from all nodes are measured. The image size is tabulated in Table 3.1. 

 

Table 3.1: Image Resolution and Size for Database Synchronization Test. 

 Image resolution Image size 

1 960 x 540 264.8 kB 

2 1920 x 1080 909.7 kB 

3 3554 x 1999 2.5 MB 

4 9600 x 6800 10.9 MB 

 

3.7.5 LoRa Message 

To measure the efficiency of NerveNet LoRa data transmission, the LoRa 

message with 30 Bytes and 90 Bytes payload size is sent 10, 20, 40, 60 times at 

once respectively, then the number LoRa packets received, and packets lost in 

each case is recorded. Finally, the time taken to receive the different-sized image 

via NerveNet LoRa transmission is also recorded. 

 

3.8 Summary 

Using NerveNet Wi-Fi mesh network, mesh links between Linux devices enable 

them to communicate with each other and share common database. Essential 

data could be shared among each node within NerveNet Wi-Fi domain in just 

seconds. However, data transmission over Wi-Fi is limited to hundreds of 

meters, this could be expensive to deploy sufficient nodes that collect data in a 

wide area. NerveNet LoRa mesh is therefore applied in IoT device, which is 

Raspberry Pi in this project, to send or receive small-sized data over kilometers. 
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The data transmission performance of NerveNet Wi-Fi and LoRa mesh are 

discussed in the next chapter. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

The NerveNet Wi-Fi mesh network performance within x86 (BS203, BS204, 

BS205) and armhf (BS206, BS207, BS208) are evaluated. Figure 4.1 and Figure 

4.2 show the Wi-Fi links between each device. 

 

 

Figure 4.1: NerveNet Triangular Wi-Fi Mesh using x86 Intel NUC Mini PC. 

 

 

Figure 4.2: NerveNet Triangular Wi-Fi Mesh using Armhf Raspberry Pi.  
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In this NerveNet LoRa mesh testbed, any device within the LoRa 

network could perform LoRa MQTT data exchange with each other. The 

NerveNet LoRa mesh MQTT messaging performance is carried out between 

BS203 and BS207. Additionally, image file transfer with fragmented base64 

string using NerveNet LoRa is also tested to identify if it is suitable for image 

file transfer. Figure 4.3 shows the LoRa link between the devices. 

 

 

Figure 4.3: NerveNet LoRa Mesh Network using one x86 Intel NUC Mini PC 

and three Armhf Raspberry Pi. 

 

4.2 NerveNet x86 Wi-Fi Mesh Benchmark 

There are two methods to evaluate TCP/UDP throughput, latency, and jitter. 

The first method is shutdown one out of three NerveNet nodes within the Wi-Fi 

domain to record network performance in P2P link. The second method is turn 

on all three NerveNet nodes within the Wi-Fi domain to record network 

performance in mesh-link. The result of TCP and UDP throughput using Iperf3 

tool are recorded and shown in Figure 4.4 and Figure 4.5. 
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Figure 4.4: NerveNet x86 Wi-Fi TCP Throughput. 

 

 

Figure 4.5: NerveNet x86 Wi-Fi UDP Throughput. 

 

 Based on Figure 4.4 and Figure 4.5, P2P link has generally higher TCP 

and UDP throughput as compared with mesh-link, this is because the sender 

does not need to calculate a pathway to transfer the data. Also, when the route 

direction is from Wi-Fi client interface to Wi-Fi AP interface of peer device, the 

TCP throughput is also higher as compared with the reverse ordered route 

direction. 
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Figure 4.6: NerveNet x86 Wi-Fi UDP Jitter. 

 

 As referring to Figure 4.6, the jitter of NerveNet Wi-Fi within x86 

domain in the cases of P2P and mesh links are more or less similar. The 

difference between the highest and lowest jitter is less than two milliseconds. 

According to Khalifeh, Gholamhosseinian, and Hajibagher, the QoS 

requirements of jitter for video conferencing is less than 30 ms. Therefore, 

NerveNet Wi-Fi within triangular x86 nodes has good fundamentals to handle 

applications that require low jitter, such as providing VoIP services. 

 

 

Figure 4.7: NerveNet x86 Wi-Fi Latency. 
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 According to the Figure 4.7, there is no big difference in terms of P2P 

and mesh links within NerveNet x86 Wi-Fi domain. However, the latency is less 

than 10 ms when the route direction is from Wi-Fi client interface to Wi-Fi AP 

interface, while the latency is five times greater if the route direction is reversed. 

This can be explained by NerveNet Wi-Fi in x86 machines having a lower route 

cost when the target’s AP interface is the next hop of its own client interface. 

Therefore, even if the target is just located at the next hop of its AP interface, 

the sender would still seek for target from its client interface’s next hop, causing 

the packet return time to increase. 

  

4.3 NerveNet Armhf Wi-Fi Mesh Benchmark 

As the same with NerveNet x86 Wi-Fi domain, P2P and mesh links are also 

used to evaluate the TCP/UDP throughput, jitter, and latency in NerveNet armhf 

Wi-Fi domain. The result of TCP and UDP throughput using Iperf3 tool are 

recorded and shown in Figure 4.8 and Figure 4.9. 

 

 

Figure 4.8: NerveNet Armhf Wi-Fi TCP Throughput. 
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Figure 4.9: NerveNet Armhf Wi-Fi UDP Throughput. 

 

 According to Figure 4.8 and Figure 4.9, P2P link generally has a higher 

throughput as compared with mesh link. Unlike x86 machines, the relationship 

between throughput and route direction in NerveNet armhf Wi-Fi domain is not 

obvious. The highest throughput (BS207 to BS206) and lowest throughput 

(BS206 to BS208) via mesh link are both obtained when the target is located at 

the next hop of the sender’s AP interface.  

 

 

Figure 4.10: NerveNet Armhf Wi-Fi UDP Jitter. 
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 Figure 4.10 shows the average jitter of P2P and mesh links within 

NerveNet armhf Wi-Fi domain. The variance of jitter at each link and route 

directions is as tiny as ignorable. However, even the highest jitter is just between 

0.5 to 0.6 ms, which is at least three times lesser than the jitter in NerveNet x86 

Wi-Fi domain. 

 

 

Figure 4.11: NerveNet Armhf Wi-Fi Latency. 
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Figure 4.12: Time Taken for x86 Image Synchronization. 
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pathways. 
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Figure 4.13: Time Taken for Armhf Image Synchronization. 

 

 From Figure 4.13, the characteristics of time taken to receive a 
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Time taken to synchronize an image file is not linear to file size, while the image 
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Figure 4.14: Time Taken for 30 Bytes Payload Transmission. 

 

 

Figure 4.15: Time Taken for 90 Bytes Payload Transmission. 
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to be LoRa MQTT payload size because the bandwidth is fixed, higher payload 

size means a higher bit rate, therefore increasing the risk of LoRa signals being 

interfered or corrupted. 

 

 

Figure 4.16: Number of LoRa MQTT Packet Lost. 
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as the delimiter. The time taken to receive all base64 encoded strings from a 

particular image file is tabulated in Table 4.1. 

 

Table 4.1: Time Taken to Receive Different Sized Image File. 

 2.8 kB 5.0 kB 9.2 kB 

70 Bytes 7 minutes 58 

seconds 

30 minutes 9 

seconds 

1 hour 30 minutes 

13 seconds 

80 Bytes 8 minutes 57 

seconds 

25 minutes 32 

seconds 

1 hour 4 minutes 

50 seconds 

90 Bytes 11 minutes 39 

seconds 

21 minutes 50 

seconds 

1 hour 1 minute  

15 seconds 

 

 Form Table 4.1 shows that the best MQTT payload size to transfer an 

image file is 90 Bytes of base64 encoded strings per LoRa message. When the 

number of total LoRa messages increase, the risk of packet being lost also 

increase. Thus, even though 70 Bytes and 80 Bytes of MQTT payload size could 

be received faster than the 90 Bytes payload size if the image size is 2.8 kB, but 

their performance is reduced if image size increases. However, the image files 

used in this experiment are considered low-resolution, they are blur images, and 

the useful information that could be extracted may be limited. In this experiment, 

sending base64 encoded strings with 100 Bytes payload size is also tested, but 

none of the LoRa message is received. A 19.0 kB image file is also tested in all 

cases of payload size, but none of the cases could receive all LoRa messages 

within 4 hours duration. There are also many variables that are out of control 

and may affect the time taken to transfer the whole image file, such as weather 

conditions, air humidity, and surrounding signal interference. Hence, there are 

cases where both NerveNet LoRa mesh MQTT subscriber does not receive any 

message for hours of duration. 

 

4.8 Summary 

Based on the results obtained, NerveNet Wi-Fi mesh network using both x86 

and armhf machines is reliable. The TCP/UDP throughput, jitter, and latency 

within triangular topology are able to fulfill most of the requirements of various 
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IoT applications. If properly planned and configured, the NerveNet x86 Wi-Fi 

mesh devices are even able to handle simple Internet services during natural 

disaster event. For NerveNet LoRa mesh, the LoRa message could be received 

in a few seconds if the MQTT payload size is small. It is suitable to be 

implemented in IoT devices where the information to be transmitted is in short 

plain text. Since LoRa is not designed to transfer large-sized data, the time taken 

to transfer base64 encoded image is long as it is said to be not efficient or reliable 

to doing so. However, the results of sending fragmented base64 encoded image 

show that NerveNet LoRa mesh MQTT is able to transmit long messages if 

properly planned.  
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CHAPTER 5  

 

5 PROBLEMS AND RECOMMENDED SOLUTIONS 

 

5.1 Problems encountered 

While using NerveNet LoRa mesh MQTT to send base64 encoded image file, 

there are many factors that could affect the sensitivity of subscribers to receive 

the original LoRa signal, such as weather conditions, air humidity, and 

surrounding signal interference. Sometimes, if the message amount is huge, the 

trailing messages may not be received for hours, even if the existing LoRa 

MQTT connection has no issue. This could be due to a certain reason that the 

LoRa messages are kept dropped by MQTT broker or not handled by NerveNet 

LoRa mesh framework. 

 

5.2 Recommended Solutions 

To ensure that all LoRa packets published could be received at subscriber side, 

more testing cases are required using different testbed environments, the 

distance between sender and receiver, and payload size per packet. Keep follow 

up with NICT to obtain the lastest NerveNet software is also recommended to 

deal with existing bugs.
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APPENDICES 

 

APPENDIX A: NerveNet System Deployment (Lim, 2021). 
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APPENDIX B: NerveNet Base Stations (Lim, 2021). 
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APPENDIX C: GlobalSat BU-353S4 Specifications 
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APPENDIX D: DFRobot TEL0138 USB GPS Receiver Specifications 

 

 


