

DISASTER RESILIENT MESH NETWORK USING LORA AND

NERVENET

LEAN CHEE HONG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electronics (Computer Networking) Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2022

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Lean Chee Hong

ID No. : 1702976

Date : 13/05/2022

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DISASTER RESILIENT MESH

NETWORK USING LORA AND NERVENET” was prepared by LEAN

CHEE HONG has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering

(Honours) Electronics (Computer Networking) at Universiti Tunku Abdul

Rahman.

Approved by,

Signature :

Supervisor : Tham Mau Luen

Date : 12 May 2022

Signature :

Co-Supervisor :

Date :

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2022, Lean Chee Hong. All right reserved.

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Dr. Tham Mau Luen for his invaluable advice, guidance and his enormous

patience throughout the development of the project

In addition, I would also like to express my appreciation to Dr. Yasunori

Owada from NICT, Japan. He patiently provided assistance whenever there

were bottlenecks or technical issues throughout the entire project.

ABSTRACT

When a natural disaster event happens, it could cause regional cellular network

outages and hence disable network communication within the affected area. If

a resilient network is implemented, alert messages with sufficient information

can be sent over the Internet to provide a nationwide response. Japan National

Institute of Information and Communication Technology has invented a

resilient network framework called NerveNet, it supports mesh network where

each node will approach other nodes in range if the current peer no longer

responds. Using their technology, disaster nodes could be installed at disaster

hotspots to send out disaster information or even provide light internet services.

NerveNet does support data communication using Wi-Fi and LoRa. NerveNet

Wi-Fi-Mesh links are used to provide wide bandwidth but low range data

transmission, while NerveNet LoRa-Mesh supports narrow bandwidth data

transmission in coverage of kilometers, which is suitable for crucial or

emergency disaster data updates.

i

TABLE OF CONTENTS

DECLARATION 2

APPROVAL FOR SUBMISSION 3

ACKNOWLEDGEMENTS 5

ABSTRACT 6

TABLE OF CONTENTS i

LIST OF TABLES iii

LIST OF FIGURES iv

LIST OF SYMBOLS / ABBREVIATIONS vi

LIST OF APPENDICES viii

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Resilient Network 5

2.3 Mesh Network 7

2.4 LoRa 9

2.5 LoRaWAN 10

2.6 NerveNet 14

2.7 MQTT 15

2.8 Docker 17

2.9 Deployed NerveNet Monitoring System 18

2.10 Summary 20

ii

3 METHODOLOGY AND WORK PLAN 21

3.1 Introduction 21

3.2 Work Plan 21

3.3 Eclipse Paho – MQTT and Python 22

3.4 Architecture of Planned NerveNet LoRa Network 23

3.5 NerveNet Wireless Mesh Network 23

3.6 Image Transfer using NerveNet LoRa Mesh 26

3.7 Performance Evaluation 27

3.8 Summary 28

4 RESULTS AND DISCUSSION 30

4.1 Introduction 30

4.2 NerveNet x86 Wi-Fi Mesh Benchmark 31

4.3 NerveNet Armhf Wi-Fi Mesh Benchmark 34

4.4 Image Synchronization using NerveNet x86 Wi-Fi Mesh

 36

4.5 Image Synchronization using NerveNet Armhf Wi-Fi

Mesh 37

4.6 NerveNet LoRa Mesh Messaging Performance 38

4.7 Image File Transfer using NerveNet LoRa Mesh 40

4.8 Summary 41

5 PROBLEMS AND RECOMMENDED SOLUTIONS 43

5.1 Problems encountered 43

5.2 Recommended Solutions 43

REFERENCES 44

APPENDICES 46

iii

LIST OF TABLES

Table 2.1: MType Variations and Descriptions. 13

Table 3.1: Image Resolution and Size for Database

Synchronization Test. 28

Table 4.1: Time Taken to Receive Different Sized Image

File. 41

iv

LIST OF FIGURES

Figure 1.1: NDCC Disaster Map. 2

Figure 2.1: Full and Partial Mesh Network Topology. 7

Figure 2.2: LoRaWAN Architecture. 10

Figure 2.3: LoRaWAN Data Message in Fields. 13

Figure 2.4: MQTT Data Transmission Fow. 15

Figure 2.5: MQTT Packet PDU. 16

Figure 2.6: NerveNet System Deployment (Lim, 2021). 18

Figure 2.7: NerveNet Base Stations (Lim, 2021). 19

Figure 3.1: Gantt Chart of FYP Part 1. 21

Figure 3.2: Gantt-chart of FYP Part 2. 22

Figure 3.3: NerveNet Testbed using Wi-Fi and LoRa. 23

Figure 3.4: Algorithm to Send and Received Fragmented

Image using NerveNet LoRa MQTT. 26

Figure 4.1: NerveNet Triangular Wi-Fi Mesh using x86 Intel

NUC Mini PC. 30

Figure 4.2: NerveNet Triangular Wi-Fi Mesh using Armhf

Raspberry Pi. 30

Figure 4.3: NerveNet LoRa Mesh Network using one x86

Intel NUC Mini PC and three Armhf

Raspberry Pi. 31

Figure 4.4: NerveNet x86 Wi-Fi TCP Throughput. 32

Figure 4.5: NerveNet x86 Wi-Fi UDP Throughput. 32

Figure 4.6: NerveNet x86 Wi-Fi UDP Jitter. 33

Figure 4.7: NerveNet x86 Wi-Fi Latency. 33

Figure 4.8: NerveNet Armhf Wi-Fi TCP Throughput. 34

Figure 4.9: NerveNet Armhf Wi-Fi UDP Throughput. 35

v

Figure 4.10: NerveNet Armhf Wi-Fi UDP Jitter. 35

Figure 4.11: NerveNet Armhf Wi-Fi Latency. 36

Figure 4.12: Time Taken for x86 Image Synchronization.

 37

Figure 4.13: Time Taken for Armhf Image Synchronization.

 38

Figure 4.14: Time Taken for 30 Bytes Payload Transmission.

 39

Figure 4.15: Time Taken for 90 Bytes Payload Transmission.

 39

Figure 4.16: Number of LoRa MQTT Packet Lost. 40

vi

LIST OF SYMBOLS / ABBREVIATIONS

ABP Activation By Personalization

AP Access Point

API Application Programming Interface

BS Base Station

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

IBM International Business Machines Corporation

IP Internet Protocol

IoT Internet of Things

ISM Industrial, Scientific, and Medical

JSON JavaScript Object Notation

LAN Local Area Network

LoRa Long-Range

LoRaWAN Long-Range Wide Area Network

LPWAN Low-Power Wide Area Network

MAC Media Access Control

MHDR Media Access Control Header

MQTT MQ Telemetry Transport

MType Message Type

NDCC Natural Disaster Command Centre

NICT National Institute of Information and Communications

Technology

P2P Peer-to-Peer

OLSR Optimized Link State Routing

OS Operating System

OSI Open Systems Interconnection

OTAA Over-the-Air-Activation

PDU Protocol Data Unit

REST Representational State Transfer

SF Spreading Factor

SIP Session Initiation Protocol

vii

SSL Secure Sockets Layer

TCP Transport Control Protocol

TLS Transport Layer Security

VLAN Virtual Local Area Network

WAN Wide Area Network

WMN Wireless Mesh Network

viii

LIST OF APPENDICES

APPENDIX A: NerveNet System Deployment (Lim, 2021).

 46

APPENDIX B: NerveNet Base Stations (Lim, 2021). 47

APPENDIX C: GlobalSat BU-353S4 Specifications 48

APPENDIX D: DFRobot TEL0138 USB GPS Receiver

Specifications 49

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Malaysia is a Southeast Asia country bordered by Thailand, Indonesia, and

Brunei, located outside of major typhoon paths and the Pacific Ring of Fire.

Despite lies in a geographically stable region, Malaysia is still facing the risk of

floods, landslides, and other human-made disasters. According to Lee and

Noorazurah Mohamad of Universiti Teknologi MARA (2013), floods in

Malaysia cause RM242 million of economic losses per average annually.

Another study in the year 2019 by Center for Excellence in Disaster

Management and Humanitarian Assistance (CFE-DMHA) stated that Malaysia

had experienced 51 natural disaster events from the year 1998 to 2018, causing

281 people to die and more than 3 million people were affected, which caused

around RM8 billion in damages.

The main warning system for disaster events in Malaysia is using SMS

to alert residents of impending disaster risks. This method is highly dependent

to the availability of a cellular network due to its tree topology property. If the

disaster destroys the cellular network base station, communities are said to be

isolated from internet services. Not only failed or delayed receiving the

emergency alert, but it also increases the difficulty for rescue squad to obtain

the lastest information using cellular communication service. Japan, a country

with a high natural disaster rate, has been using a resilient mesh network named

NerveNet to overcome this challenge. NerveNet has been developed by the

National Institute of Information and Communications Technology (NICT) in

Japan since the year 2006. According to Inoue and Owada (2017), NerveNet is

conducted at a large scale of testbed with 30 base stations constructed within

Tohoku University in Sendai at the year 2011. Then in the year 2014, NICT

started operating NerveNet that deployed in real environments for disaster

prevention purposes. NerveNet end devices do not rely on the availability of

each other. One node goes inactive does not affect the overall service provided

as other nodes will self-configure a new pathway to transfer data. Logically, any

2

node can peer with any other nodes if they are under NerveNet network, which

gives it fault-tolerance property during disaster events.

1.2 Importance of the Study

The risk of flooding in Malaysia is increasing year by year due to sea-

level rise, and some studies point out that several seaside cities will be

underwater by the year 2050. In addition, climate change also increased extreme

weather events, such as heat waves that lead to wildfire, heavy rainfalls, and

inland flooding. Severe floods could cause more drowning deaths and will lead

to serious economic losses. Natural Disaster Command Centre (NDCC) is a

center for disaster operation control in Malaysia. Figure 1.1 shows disaster

information presented on their website.

Figure 1.1: NDCC Disaster Map.

As shown in the figure, NDCC posts the information based on location,

DateTime, victims, and disaster type. To ensure the collected information can

be sent over Internet during disaster event, the data synchronization feature is

another necessary component for a resilient mesh network. This feature allows

all wirelessly connected base stations to share their database in such a way that

3

any nodes could send information to the gateway if the detection node is

destroyed. If the end stations could also send regional disaster data to the

gateway from kilometers away wirelessly, the network is said to be perfect for

a disaster management system.

1.3 Problem Statement

The resilient regional network is not populated in Malaysia, residents are

vulnerable as disaster management and response are not guaranteed. With a

resilient network implemented, alert messages with sufficient information can

be sent over the Internet to provide a nationwide response. The database

synchronization feature is also crucial for storing disaster sensors data over the

network, and it also allows applications to pull data from nodes to the cloud.

Cellular networks in Malaysia are usually vulnerable to disasters and using Wi-

Fi transmission on disaster nodes could be one of the solutions. However, the

range of Wi-Fi transmissions is short, and the cost of implementing a resilient

disaster monitoring network system in a wide coverage range could be very high.

Hence, LoRa is a better solution in this case, it supports wireless data

transmission protocol and signal coverage in kilometers, which requires lesser

cost to construct disaster nodes at a given range as compared to Wi-Fi.

1.4 Aim and Objectives

This study aims to develop a disaster response application using NerveNet LoRa

mesh network. The objectives of this study are:

i. To establish a NerveNet Wi-Fi mesh network testbed with data

synchronization.

ii. To establish a NerveNet LoRa mesh network testbed.

iii. To generate Python codes that handle the NerveNet LoRa and Wi-Fi

mesh network data exchange.

iv. To evaluate the network performance of the NerveNet LoRa and Wi-

Fi mesh.

1.5 Scope and Limitation of the Study

The scope of this project is to set up a testbed that could be used in natural disaster

hotspots. The testbed should be resilient and able to transmit import disaster

4

information so that the respective agency could take action immediately. NerveNet

framework is designed and owned by Japan, the resources and references are

regarding NerveNet structure are not disclosed to the public, this may increase the

difficulty of investigation and research. Therefore, the project's progress was

dependent on the sufficiency of documentation provided by NICT. Apart from that,

some of the documentation may be written in Japanese, and language translation

may not reveal the exact meaning of words.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

To design a disaster-resilient mesh network, one of the considerations is fault

tolerance. Most of the communication service provided in Malaysia is tree

topology based, low-level network nodes or devices are highly dependent on the

availability of upper hierarchical level devices. When the service is down or

congested, the end devices are not able to self-select or self-configure a new

pathway because most of them are statically or point-to-point routed. In other

words, the number of peers is relatively limited and fixed. Hence, the network

connection between nodes should be as dynamic as possible to maximize the

number of peer connections, which can be done using mesh protocols.

 For disaster detection nodes, the power consumption and wireless data

transmission range are one of the concerns. Usually, the power consumption of

sensors and actuators itself is low, a power-saving wireless networking

technology supporting wide range coverage is most suitable for disaster nodes.

In this case, LoRa technology fits the requirement as it supports a range of

transmission in kilometers, where LoRa sensors can operate for years with just

an alkaline battery.

2.2 Resilient Network

Resilience in terms of computer networking refers to the flexibility and

elasticity of faults or errors. A resilient service is said to be reliable as the

system is adaptable to extreme circumstances such as natural disasters or

malicious network attacks by adopting data synchronization, which is often

achieved by the architecture of star, ring, or mesh network topology. Therefore,

the need for resiliency certainly applies to critical services and infrastructure,

especially if the functionality of the system is automated.

 Generally, resilience cuts through several thematic areas, such as

information and network security against attack, fault-tolerance, dependability,

performability, and network survivability (Hutchison and Sterbenz, 2018).

6

When it comes to the requirement for disaster warning systems, secured data

transmission from nodes to receivers is one of the crucial properties that need to

be integrated into the system, which disaster-resilient communication network

shall be considered.

As of today, the ability of a network system to provide acceptable and

fault-tolerance service is more important than ever before. Information in terms

of data is treated as an asset, where resilience is the key to design to maintain

data persistence and connectivity when developing a reliable system. A resilient

network was designed to aim to provide reliable network service to applications.

These services shall include distributed processing, network storage,

communication service, and access information.

2.2.1 Distributed Processing

According to IBM Documentation (2014), distributed processing or distributed

computing is the use of multiple processors, computers, or software components

but run as a single system, which is called distributed computer system. The

components can be connected within LAN or WAN, which makes the entire

network structure itself works as a single computer to offer benefits such as

scalability and redundancy. In other words, the system can be expanded easily,

while the same services can be provided by several components to ensure

service continuity when one of the machines is unavailable.

2.2.2 Network Storage

Network storage is also known as Cloud storage. The service is said to be

“Cloud” because it allows saving data in an off-site location that can be accessed

through the Internet or a dedicated private network connection (IBM Cloud

Education, 2019). Network storage is a server that stores the centralized data, it

responds to the request from networked clients, which is usually in HTTP or

WebSocket protocols. In a resilient network, the data pool is ready in network

storage to be shared among other components or even accessed externally if

needed. Not only update data, but network storage also provides backup for

clients revived from death, this allows clients to attempt to recover their states

by requesting real-time data from network storage.

7

2.2.3 Communication Service

Communication shall include computer-supported collaboration, video

conferencing, and instant messaging. For distributed disaster warning system,

the communication between nodes and gateway is significant to seek for latest

data, then establish a data transfer or exchange process. This is the prerequisite

for the data synchronization process in both local database and network storage.

2.2.4 Access Information

To make use of synchronized information in database effectively, the resilient

network should provide access to the database as needed. Usually, the access

feature is built into an application that directly communicates with network

storage. This model separates endpoints by dedicating network storage as the

middleman between the user end and sensor nodes or data collectors.

2.3 Mesh Network

Mesh in a network system refers to the network topology in which the nodes are

fully or partially interconnected as many as possible to form a redundancy

connection. In mesh networks, the infrastructure nodes are equipped with self-

configure and self-routing protocols, such as BATMAN-adv, Zigbee, Wireless

Ad-Hoc, OLSR, and NerveNet.

Figure 2.1: Full and Partial Mesh Network Topology.

8

Mesh networks are getting popular recently due to their efficiency and

reliability in data transfer. Since the nodes are interconnected, there is no central

point to rely on, which means data packets transfer is lesser dependent on each

node. Redundancy connections are the key to achieving fault-tolerance because

each node can self-define alternative paths and distribute the workloads based

on availability. Moreover, the speed of message transfer also generally

increased due to the shortest hop count or route cost of routing path is defined

by nodes itself.

2.3.1 Mesh and P2P Network

A P2P network is where each node act as both client and server, they request or

respond services to from each other for resource sharing purpose. This concept

is quite similar to mesh networks. However, they are different. Usually, P2P

nodes store their own data, each node exclusively communicates with another

node, which makes the network topology still tree-alike. In most conditions, the

purpose of implementing a P2P network is to optimize the usage of bandwidth

and also reduce the route traffic between clients and servers. In contrast, adding

new mesh nodes does increase the bandwidth usage, but it provides resiliency

to the network, which P2P could not.

2.3.2 Wireless Mesh Network

Wireless Mesh Network (WMN) is a mesh network where all the nodes

communicate using radio waves instead of Ethernet, the nodes are also known

as radio nodes (Rong et al., 2013). In the WMN network, each radio node works

as both router and host, they calculate the shortest path distance to forward the

packets to the destination when necessary. Usually, a WMN network will

consist of a mesh client, mesh router, and mesh gateway, where clients will

simply forward packets to the mesh router without computing the path, while

mesh router will further send packets mesh gateway so that they can be

forwarded to the external network. Thanks to its resiliency and frequent

intercommunications, WMN is one of the considerations for developing IoT

applications using Wi-Fi or LoRa protocols. However, it is yet to support high

9

mobility nodes such as smart cars because the mesh network connection breaks

frequently will cause performance to be reduced.

2.4 LoRa

LoRa (Long Range) is an LPWAN modulation technique patented by LoRa

Alliance, which is derived from Chirp Spread Spectrum (CSS) technology (The

Things Network, 2021). LoRa is ideal for long-range transmission with

relatively low bit rates, data can be transmitted at a wider range as compared to

Wi-Fi and Bluetooth, which makes it suites for low-power remote applications

such as sensors and actuators (The Things Network, 2021).

Referring to the international agreement, LoRa bandwidth is restricted

to 125 kHz, 250 kHz, and 500 kHz, while only 125 kHz and 250 kHz bandwidth

are used in Europe countries. The data bit rate is not only dependent on restricted

bandwidth but also manipulated by another factor called Spreading Factor (SF),

which controls the chirp rate (The Things Network, 2021). The Nth number of

SF is inversely proportional to the data transmission rate. For example, reducing

the SF by one will double the chirp sweep rate, hence double up the data

transmission speed too. Higher SF reduces the chirp sweep rate, which is easier

to accurately decode the signal, thus increasing the range of LoRa transmission.

As a trade-off, a slower sweep carries lesser information. LoRa modulation

provides six SF in total, which is from SF6 to SF12. Apart from LoRa

transmission rate, end devices that send or receive signals modulated from

different SF will not interfere with each other even though they operate at the

same frequency channel.

2.4.1 LoRa Standards

LoRa operates on license-free sub-GHz ISM bands, such as 433 MHz, 868 MHz,

915 MHz, or even 2.4 GHz, for higher data transmission rate with the cost of

range (The Things Network, 2021). Since the LoRa could transmit data at a high

range, regional parameters were set over countries according to their restrictions.

As in Malaysia, the frequency plan used is called AS1 (used in Malaysia,

Singapore, and Japan), while the range of frequencies is named AS920-923

(Asia 920-923 MHz).

10

2.5 LoRaWAN

LoRaWAN (Long Range Wide Area Network) is a media access control (MAC)

protocol based on LoRa modulation, which is categorized as OSI model layer 2

(data link layer) protocol, or network interface layer in terms of TCP/IP model.

LoRaWAN network uses ALOHA based protocol, the messages are transmitted

to the transmission channel without acknowledging its availability, thus LoRa

end devices do not peer with specific gateways, every gateway within the valid

range of transmission channel could receive the message (The Things Network,

2021). The architecture of LoRaWAN network is shown in Figure 2.2 below.

Figure 2.2: LoRaWAN Architecture.

LoRaWAN end nodes are usually small appliances such as sensors or

actuators, they are often wireless because just a battery could support their

operation for years. LoRaWAN gateway is simply just a relay to forward LoRa

messages from end nodes to Network Server via Wi-Fi, Ethernet, fiber optic,

cellular, or 2.4 GHz radio links. There is no fixed connection between end

devices and LoRaWAN gateway, any gateway can receive LoRa message from

any node, as long as within the range. LoRaWAN network server controls the

entire network as it receives packets from the gateway, the data communication

between gateway and network server is using network layer protocols. Not only

routing the messages, but network server also responsible to also eliminates

duplicated LoRa messages forwarded by multiple gateways, then eventually

forwarding data to the application server. Join server does not participate in data

communication if the end node is connected to the LoRaWAN network, it only

11

involves at the over-the-air-activation process. When application server receives

a processed message from network server, it provides ready data to the client

interface, such as presenting feedback from nodes. Moreover, it also can

generate a downlink payload that will be sent back to end nodes, such as

shutdown or adjusting parameters of nodes.

2.5.1 LoRaWAN Activation Process

In LoRaWAN activation process, join server is important to manage the over-

the-air activation (OTAA) process. It is an authentication process for end nodes

to participate in the network, which is always initiated by end nodes only (The

Things Network, 2021). Generally, the message from end node to network

server is called as uplink message, while the message from network server to

end node is called as downlink message.

For LoRaWAN 1.0.x version, OTAA is done between network server

and end nodes. Secret key (AppKey or known as root key) and public keys

(AppEUI, DevEUI) are stored in end devices before activation process begins.

However, AppKey is not included in the Join-request message, it is just used to

ensure data integrity. End device is always the one initiate activation process, it

sends unencrypted Join-request message to network server. If the Join-request

is permitted by network server, it will response an AppKey-encrypted Join-

accept message including a DevAddr to identify the end device address within

current LoRaWAN network, and then sends a AppSKey to application server.

The end device will use the AppKey to derive two more secret key, namely

NwkSKey and AppSKey. After activation process, NwkSKey is used between

the end device and network server to verify data integrity and payload

encryption/decryption if contains MAC command. While AppSKey is used

encrypt application payload so that the end-to-end communication between end

device and application server is secured.

In lastest LoRaWAN 1.1 version, the OTAA process is done between

end nodes and join server. Secret keys (AppKey, NwkKey, known as root keys)

and public keys (JoinEUI, DevEUI) are stored in end devices before activation

process begins. Same as LoRaWAN 1.0.x , secret keys are not included in the

Join-request message. The Join-request message is sent unencryted to network

12

server, the frame contains Join-request message is known as PHYPayload. Then,

network server will use the JoinEUI key in received request to DNS lookup the

ip address of join server, further sends JoinReq message which contains Join-

request to join server if successful of DNS lookup. After join server received

the JoinReq message, it will response network server with JoinAns message,

which contains Join-accept message, network session keys, SNwkSIntKey,

FNwkSIntKey, NwkSEncKey, and AppSKey. Upon received the JoinAns

message, network server will generate a Join-accept message using the keys

received, then encrypt it using NwkKey and send to the end device. The end

device will use its NwkKey to derive SNwkSIntKey, FNwkSIntKey, and

NwkSEncKey. On the other side, network server will send an encrypted

AppSKey and application payload to the application server. Application server

will first decrypt AppSKey using another secret key shared by join server, then

decrypt the application payload using AppSKey. If the AppSKey is not available

from network server, application server will directly request AppSKey from join

server using AppSKeyReq message, then join server will response an

AppSKeyAns message with encrypted AppSKey. After activation process,

NwkSEnKey is used between the end device and network server to encrypt or

decrypt payload on port 0 or FOpt field which contains MAC command.

SNwkSIntKey and FNwkSIntKey are used to ensure data integrity of uplink and

downlink data message respectively.

There is one alternative of activation process called Activation By

Personalization (ABP). ABP will bypass the authentication of join procedure

and join server is not used, connection between network server and end node is

binded and pre-selected. Hence, ABP is not secure as compared with OTTA.

End nodes activated by ABP can only connect with one static network and keeps

the same security session for its entire lifetime, while switching of network

requires manual change of keys stored in end node.

2.5.2 LoRaWAN Message Types

Generally, there are four data message types used by LoRaWAN as shown in

Figure 2.3. These data message types are used to transport MAC commands and

application data which can be combined in a single message. Data messages can

13

be classified as confirmed or unconfirmed, where confirmed data message

require acknowledgement by the receiver, while unconfirmed data message

does not require.

Figure 2.3: LoRaWAN Data Message in Fields.

 The first three most significant bits of MHDR field is the identifier of

message types, which is also known as MType field (Prajzler, 2019).

LoRaWAN 1.0.x version uses 7 kinds of MType, while LoRaWAN 1.1 version

have one additional type called Rejoin-request. Similar with Join-request,

Rejoin-request is also initiated by end nodes to initialize a new session context.

Once network server permitted this request, it will response with a Join-accept

message. The MType variations and its description is tabulated as Table 2.2

below.

Table 2.1: MType Variations and Descriptions.

MType

Binary

LoRaWAN

1.0.x

LoRaWAN

1.1

Description

000 Join-request Join-request Uplink OTAA Join-request.

001 Join-accept Join-accept Downlink OTAA Join-accept.

010 Unconfirmed

Data up

Unconfirmed

Data up

Uplink data frame

(confirmation not required).

011 Unconfirmed

Data down

Unconfirmed

Data down

Downlink data frame

(confirmation not required).

14

100 Confirmed

Data up

Confirmed

Data up

Uplink data frame

(confirmation requested).

101 Confirmed

Data down

Confirmed

Data down

Downlink data frame

(confirmation requested).

110 (Reserved for

future use)

Rejoin-request Uplink OTAA Rejoin-request.

111 Propietary Propietary Implementation of non-

standard message formats.

2.6 NerveNet

NerveNet is a resilient network developed by National Institute of Information

and Communications Technology (NICT) in Japan. NerveNet is a regional-area

network to provide reliable Internet access and sharing resilient information

platform in emergency situations such that when network from internet service

provider no longer persists. NerveNet base stations are interconnected by

Ethernet-based wired or wireless transmission systems such as optical/metal

Ethernet, Wi-Fi, FWA, satellite, and Unmanned Aerial Vehicle (UAV), which

sums up a mesh-topological network (Inoue, et al., 2014). As compared with

most common network infrastructures nowadays, such as fixed-line networks

and cellular networks, they are both tree topology based, NerveNet is much

more fault-tolerant to disconnections and node failures because of its mesh

topology. Not only that, NerveNet can continuously provide connectivity

services to applications such as mobile phones without the Internet, because

each base station supports basic services like DHCP, DNS, SIP proxy, and

mobility management (Chanakitkarnchok, et al., 2019).

 In NerveNet architecture, databases are distributed among all the base

stations over a mesh network. NerveNet databases handle data synchronization

automatically, which stores routing informations and application data

respectively. The synchronization process is performed by the NerveNet OS,

external application servers can also join NerveNet mesh network by using a

custom API to update data in the nearest database of a base station.

NerveNet database uses hearsay daemon to synchronize tables in

different databases within the network, each node compares the hash of other

15

databases with its own database. Hearsay daemon synchronizes MySQL

database with insert and update queries only, delete actions will not be

synchronized. When a NerveNet end node is disconnected or shut down, it will

drop the data in synchronization tables. Once it is back in operation, it initiates

the synchronization process by seeking the difference of table with other nodes,

then updates the database with the latest data. If all nodes in the network go

down at the same time, they are unable to relieve data using hearsay daemon

synchronization after alive because existing databases are all empty.

2.7 MQTT

MQTT (MQ Telemetry Transport) is an OASIS standard messaging protocol

that is designed to serve IoT applications (MQTT.org, 2022). It suits the best

when encountering extremely lightweight messaging transport that is ideal for

connecting remote devices with a minimal code footprint and network

bandwidth. The devices that use MQTT protocol to send or receive data are

called MQTT clients, they connect to a common MQTT broker to perform data

exchange between each other. An example of MQTT bi-directional

communication is shown in Figure 2.4.

Figure 2.4: MQTT Data Transmission Fow.

Whenever the MQTT client wants to subscribe or publish data, it will need to

connect to an MQTT broker using IP address. By default, MQTT listens to port

1883, message that is sent in this port is in plain text. If secure messaging is

16

preferred, MQTT also uses port 8883 to transmit data over SSL/TLS. The broker

is a framework that acts as the middleman between subscriber and publisher, it

can reside in a dedicated device or any MQTT client. To filter out messaging

sessions, the broker uses a topic, which is a UTF-8 encoded string, to identify

messages for each client. The topic is defined by clients, subscribe/publish to

the same topic allowing them to exchange data. MQTT topic uses “/” symbol as

level delimiter, “+” as single-level wildcard, and “#” as multi-level wildcard.

For example, a client subscribed to “house/#” topic could receive messages

published from both “house/lamp” and “house/door/3” topics as well. The

message published over MQTT topic is called payload, which is prepared as

plain text, then transmitted as binary bytes. According to the MQTT

specifications, the length at most for MQTT topic and payload is 65536 bytes

and 268,435,456 bytes respectively. By default, the maximum size of each

MQTT packet size is 256 MB, while the maximum buffer size in each

subscription from either client or broker is 5000 messages. The MQTT packet’s

protocol data units are shown in Figure 2.5.

Figure 2.5: MQTT Packet PDU.

The control header and packet length are fixed headers, which are always

present in MQTT packet. In contrast, variable length header and payload are not

always present. The 4 bits packet type is the value of connection operation, such

as 0011 represents PUBLISH packet, and 1000 represents PUBLISH packet.

The DUP flag is “1” when the QoS level bit is greater than 0, it indicates that

this is a duplicated message due to resent. QoS is the agreement between

publisher and subscriber in terms of guarantee for delivery of a message. QoS

level holds 2 bits of binary data, which indicates three different qualities of

service. When QoS = 0, the message is sent at most once, and the subscriber

17

will not acknowledge the publisher whether the message is received. If QoS =

1, the publisher will send the message at least once, it keeps the message and

retransmits after a certain time until the subscriber reply a PUBACK

acknowledgment packet. If QoS = 2, the message is sent exactly once, they

perform a 4-way-handshake process to guarantee it is received by the subscriber.

Due to the request and response flows, this QoS is the safest and also the slowest.

The last PDU in the control header is called RETAIN. When the publisher sets

RETAIN = 1 in MQTT packet, the broker will store the last message sent by the

publisher, then forward it to each subscriber immediately when clients initiate

subscribing to that topic. With this feature, the receiver client could pick up the

retained message if it reconnects to the broker.

2.8 Docker

In this project, most of the applications are executed based on Docker container

images, including the NerveNet applications and NerveDash monitoring system.

Docker is software that allows developer to build and deploy applications easily.

In terms of working environment, Docker act as an operating system for

container images, this is similar to virtual machines that allow different guest

OS images to run in one host (AWS Docker, 2022). Container image is a

package that wraps up all necessary programming code modules, source files,

and dependencies for an application to run (Docker Container, 2022). The

container image can be run at any host that uses the same OS and installed with

Docker, therefore it is very convenient for deployment. When deploying

applications on-site, there are bundles of issues needed for troubleshooting, such

as driver incompatibility, outdated software, configuration or setting issue, and

many other possibilities. Therefore, the Docker container image is getting

important nowadays because it allows applications to run without excessive

installation, developer could also include every single dependency into the

container image so that the application could be run without any problem related

to the hosting machine’s software availability. Not only that, since the Docker

handles container images the same way the virtual machine does, each container

is isolated from the host machine’s environment and also between containers,

only configured communication allows them to interact, such as using

18

TCP/UDP port numbers and UNIX socket. These characteristic makes Docker

perfect to be adopted by cloud computing service provider, such as Amazon

Web Services and Microsoft Azure.

2.9 Deployed NerveNet Monitoring System

This project is currently in the second stage, the main objective is to deploy a

NerveNet testbed with LoRa and Wi-Fi connectivity with MQTT response. The

first stage has been done by senior Lim Wei Sean, his service architecture is

shown in Figure 2.4 below.

Figure 2.6: NerveNet System Deployment (Lim, 2021).

2.9.1 NerveNet Architecture

A simple three base station NerveNet testbed using Raspberry Pi is constructed,

and its network connectivity is shown in Figure 2.5 below.

19

Figure 2.7: NerveNet Base Stations (Lim, 2021).

This network is designed to have one gateway node and two base station nodes.

Using the ERB configuration of NerveNet, ERB link is established (wireless

link) between two nodes. Two endpoints of each link are access point and client

wireless interface respectively. In ERB wireless access points can only accept

one connection from a specific client. For each node, wlm1 is the access point

interface while wlu3 is the client interface, enu11 interface in the gateway node

is the Ethernet port. By default, NerveNet is configured within the 172.16.n.0/16

network, where n is the node id defined during the installation of the network.

2.9.2 NerveNet Web Application: NerveDash

NerveDash is the name of a web application designed by Sean. The main

components to support NerveDash are Neo4j (cloud server), MQTT service,

HTTP server, REST API, Websocket API, and Nginx server.

When NerveNet gateway sends a message, it will first be handled by

MQTT client for JSON encodable data. If the data is media (image, video), it

will be sent to HTTP server instead of MQTT broker. When the media storage

20

has exceeded its limit, the oldest stored media will be replaced by the latest

media data. Both MQTT and HTTP service point towards Neo4j server, a

graphical-based NoSQL database server. By default, MQTT broker will set a

count-down timer to receive a “heartbeat” message from NerveNet gateway

(publisher). If the message is not received in 20 seconds interval, an inactive

message will be sent to Neo4j (subscriber) to record that the respective node is

down until a new “heartbeat” message is received.

The data in Neo4j can then be retrieved via a RESTful API or a

WebSocket API. The RESTful API is used for simple text retrieval, while

WebSocket API is used for file streaming. Finally, the Nginx static file hosting

feature is used to serve the frontend static files of the web application. The

Nginx server can also be configured to provide load balancing for all HTTP

endpoints if needed.

2.10 Summary

To design a disaster resilient network, mesh network is the best topology to

achieve fault-tolerance during emergency situations. The basic requirement of

a resilient network, such as distributed processing, network storage, and

communication service, can be met using NerveNet framework, it supports

wireless mesh connection and data synchronization to fulfill those requirements.

Lastly, LoRaWAN device is suitable for NerveNet nodes as it supports wide

range of connectivity coverage using mesh topology. LoRa-based end devices

also have the advantage of low power consumption to support long-lasting such

as years with just a battery.

21

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This project aims to develop a disaster-resilient mesh network with NerveNet

LoRa connection NerveNet Wi-Fi connection with data synchronization in both

x86 and armhf machines. To build the planned prototype, case studies and

literature reviews on NerveNet, LoRa, Raspberry Pi, MQTT, HTTP, and

database are necessary.

3.2 Work Plan

In part one of Final Year Project, the main task is to study and acknowledge

technics required to build the entire system. For the literature review and case

study, the targeted topics are the concept of resilient network, mesh network,

NerveNet, LoRa communication, and basic Linux commands. Since this

project’s first stage has been carried out by Lim, knowledge transfer and system

replication are also needed, and important notes and procedures regarding

system deployment are made into documentation.

 Next, the preparation and testing of replicates NerveNet testbed design

by Lim also has been done, such as NerveNet installation, mesh links

establishment, MQTT & HTTP responses, and the server host application. At

the end, Final Year Project progress report and presentation are also made. The

project activities are shown in the Gantt chart in Figure 3.1.

Figure 3.1: Gantt Chart of FYP Part 1.

22

 In FYP part 2, the scope is to set up the NerveNet Wi-Fi and LoRa mesh

testbed using x86 and armhf machines. The feature of NerveNet database

synchronization via Wi-Fi mesh is also implemented. After all testbed setup is

done, the performance tests are carried to identify the reliability of data

transmission among NerveNet nodes. Lastly, several Python programs are

written to ease of LoRa MQTT data exchange and read/write database. The

Gantt chart of FYP part 2 is shown in Figure 3.2.

Figure 3.2: Gantt-chart of FYP Part 2.

3.3 Eclipse Paho – MQTT and Python

MQTT is a lightweight IoT messaging protocol based on the publisher and

subscriber model, it provides reliable messaging service and real-time data

transfer using TCP/IP protocols. It is suitable for NerveNet devices to forward

disaster application data over destination.

Paho is a MQTT implementation developed by Eclipse. In the first stage

of the project done by Lim, the MQTT subscriber is implemented at the hosting

server. MQTT publisher/subscriber program at each NerveNet LoRa node is

constructed using Paho Python Client to send/receive LoRa packets. Moreover,

a Python program to read/write NerveNet database is also constructed. At the

end, the program also sends all collected disaster information to NerveDash via

MQTT and HTTP POST request.

23

3.4 Architecture of Planned NerveNet LoRa Network

The hardware chosen for deploying NerveNet LoRa network is listed as below.

i. 2 units of Raspberry Pi 3.

ii. 1 unit of Raspberry Pi 4.

iii. 3 units of Intel NUC Mini PC

iv. 6 units of TP-Link AC1300 Archer T4U High Gain Wireless MU-

MIMO USB Adapter.

v. 4 units of RFlink LoRa RM-92A.

vi. 2 units of Clealink LoRa Pi Hat.

vii. 2 units of Pi Hat GPS.

viii. 1 unit of Global SAT BU-353S4 USB GPS

ix. 1 unit of DFRobot TEL0138 USB GPS

x. 2 units of RFlink USB-LoRa

xi. 4 units of USB Lora Antenna.

The planned network structure is designed as Figure 3.3 below.

Figure 3.3: NerveNet Testbed using Wi-Fi and LoRa.

3.5 NerveNet Wireless Mesh Network

Usually, a mesh network is simply adding a redundant connection for each

device within the network topology, then the device will look up for an

alternative pathway to reach its destination if its primary peer is down. NerveNet

24

Wi-Fi mesh network framework not only provides the function to look up every

single mesh node in the network, it also add-in database synchronization to share

common data within the mesh network. The lookup feature is built by using a

service daemon called PTMGR (Path Tree Management Generation), it needs

to be installed in the essential node within the mesh network. PTMGR

continuously seeks for peers’ network status to identify if any node is down or

new node has joined the network. If the connection between nodes is steadily

maintained by PTMGR, the nodes could directly connect or access to each other

and perform NerveNet SQL database synchronization. The nodes will compare

the data rows within each other to update with the latest data.

 Not only Wi-Fi mesh, NerveNet also supports LoRa mesh network with

the use of specific LoRa equipment. NerveNet LoRa uses a frequency band of

920 MHz for all LoRa node, if each node transmits data at the same time, the

signal radio waves will collide, and the listener will receive a corrupted signal.

Hence, NerveNet LoRa uses a time slot to overcome this issue. Each node

synchronizes the time from the GPS receiver to other nodes, then the node will

transmit LoRa data within the period of the preset time slot. For example, 10

seconds are divided into five slots to form a cycle, the time slots are allocated

to five nodes, thus each node will transmit LoRa signal during its time slot only.

With properly configured time slots and channels to reduce disturbance,

NerveNet LoRa nodes are possible to communicate at the speed of 100 Bytes

per second over several kilometers distance with a power consumption of only

tens of milliWatt.

3.5.1 Wi-Fi Mesh Network

To establish NerveNet Wi-Fi mesh connection as network testbed architecture

which is shown in Figure 3.2, each device is the first set up with NerveNet IP

address, AP interface and WPA client interface, where x86 machines and

Raspberry Pi OS uses the same way configure. These interfaces are then linked

to NerveNet VLAN interface to use the ERB tunnel link, which is used by the

PTMGR to enable each node to communicate. Then, the Wi-Fi connection is

configured using the Hostapd and WPA supplicant services provided by

NerveNet Docker container instead of those original packages with Linux

25

Ubuntu, this is to avoid incompatibility with the packages’ environment. The

Network Manager service is also masked to avoid interference, because it tends

to bring up USB Wi-Fi interface as client mode from AP mode. After these

settings are configured, all nodes in x86 NerveNet Wi-Fi domain are now able

to ping each other and synchronize their NerveNet database. This is also the

same as in armhf NerveNet Wi-Fi domain.

3.5.2 NerveNet LoRa Mesh Network

NerveNet LoRa mesh configuration is set based on using RFlink-RM92A as the

LoRa module, the parameters that could be altered are radio frequency channel,

bandwidth, and spreading factor. In this testbed, all LoRa node RF-channel of

41, RF-bandwidth of 500 kHz, and spreading factor of SF12. While the time

slot cycle in this testbed is set to be four slots per minute, which means each

LoRa node (BS203, BS206, BS207, and BS208) is allocated with a 12 seconds

duration to transmit LoRa signal at each minute. To communicate with plain

text data, NerveNet LoRa node uses MQTT service to buffer published data,

then sends out the LoRa data within the allocated time slot with its best effort.

The LoRa data will remain in the MQTT buffer and waits for the next cycle if

the attempt to transmit fails. However, NerveNet LoRa MQTT communication

uses QoS level zero, LoRa packet loss is still possible.

3.5.2.1 LoRa IoT Pi HAT

For Raspberry Pi 3, LoRa IoT Pi HAT is installed to facilitate RFlink-RM92A

LoRa module and GPS receiver. By default, Raspberry OS identify Pi HAT as

serial port, therefore it is enabled in raspi-config. After the serial port is enabled,

the OS may occupy the serial device as serial login connection interface,

therefore serial login is disabled in raspi-config. Then, the serial device name

and GPS baud rate (9600 bits per second) are added in NerveNet LoRa

configuration.

3.5.2.2 USB-LoRa and USB-GPS Receiver

Since Raspberry Pi 4 and Intel NUC mini PC are incompatible with LoRa HAT,

USB-GPS receiver and USB-LoRa adapter are used. The Global SAT GPS with

26

baud rate of 4800 bps is equipped in Raspberry Pi 4, while DFRobot TEL0138

GPS with baud rate of 9600 bps is equipped in Intel NUC mini PC. Since both

equipments are USB serial devices, the name of device in terms of “/dev/tty”

might differ every time the machine boot or equipment is replugged in. Thus,

symbolic links in terms of product ID and vendor ID are created in Udev rules,

so that the name of “/dev/ttyUSB-gps” is always referring to the GPS receiver,

while “/dev/ttyUSB-RF” is always referring to the USB-LoRa adapter. As the

same in discussed above, the device name and GPS baud rate are then added in

NerveNet LoRa module.

3.6 Image Transfer using NerveNet LoRa Mesh

Since NerveNet LoRa mesh MQTT uses QoS level zero, the delivery of LoRa

messages is not guaranteed. The higher the payload size or the number of

messages, the higher the rate of packet loss. Since the maximum payload size

for NerveNet LoRa MQTT packet is 152 Bytes, it is impossible to send an image

in a single packet. To overcome this issue, the image file is first encoded to

base64 string, then it is fragmented to 80 Bytes per row, with a row index and

comma symbol at the leading position of each row. Then, a Python program is

made to handle the MQTT LoRa message with acknowledgment. The algorithm

is illustrated in Figure 3.4.

Figure 3.4: Algorithm to Send and Received Fragmented Image using

NerveNet LoRa MQTT.

27

3.7 Performance Evaluation

After the NerveNet testbed is constructed, the network performance within x86

and armhf Wi-Fi domain is benchmarked in terms of latency, throughput, jitter,

and image synchronization. Moreover, the average time taken to receive a LoRa

message and image is also evaluated. In this project, the performance is

evaluated where each NerveNet node is separated 10 cm apart.

3.7.1 Latency

The network latency within NerveNet Wi-Fi domain is benchmarked using the

ping command in the terminal. Ping uses the Internet Control Message protocol,

by pinging peer’s NerveNet IP address, the minimum, maximum, and average

latency in milliseconds is returned. There are two conditions to evaluate the

latency, the first condition is when one out of three base stations is down, then

the network latency in P2P connection is recorded. The second condition is

when all three base stations are available, the network latency is evaluated based

on the mesh link.

3.7.2 TCP/UDP Throughput

Iperf3 is used to evaluate the TCP and UDP throughput in NerveNet Wi-Fi

domain. For TCP throughput, 100 packets are sent to the receiver,

retransmission of lost packets will increase the time taken to receive all packets.

The total data size received at the receiver side divided by the time taken is so-

called throughput, which is in milliseconds. For UDP throughput, the sender

bandwidth is set at 50 MBps, duration to send dummy data is 10 seconds by

default, which means 500 MB of data to send in total. Since UDP packet

receiver will not acknowledge the sender if the packet is lost, the received data

size divided by 10 seconds is the UDP throughput. The throughput in NerveNet

x86 and armhf Wi-Fi domain based on P2P and mesh link are both evaluated.

3.7.3 Jitter

In real-life applications, there will be a certain delay between continuous

packets caused by slow network connections, congestions, and queuing. The

delay between packets is called jitter. High jitter will cause reduced application

28

performance and user experience. When measuring UDP throughput using

Iperf3 tool, the jitter in milliseconds is also returned. The jitter in NerveNet x86

and armhf Wi-Fi domain based on P2P and mesh link are both plotted.

3.7.4 NerveNet Database Image Synchronization

NerveNet database supports updating images as data rows, the image file can

also be synchronized to other nodes within NerveNet domain. The average time

taken to synchronize different-sized images is recorded. Since different node as

updater may lead to a different result, the average time taken to synchronize

image file from all nodes are measured. The image size is tabulated in Table 3.1.

Table 3.1: Image Resolution and Size for Database Synchronization Test.

 Image resolution Image size

1 960 x 540 264.8 kB

2 1920 x 1080 909.7 kB

3 3554 x 1999 2.5 MB

4 9600 x 6800 10.9 MB

3.7.5 LoRa Message

To measure the efficiency of NerveNet LoRa data transmission, the LoRa

message with 30 Bytes and 90 Bytes payload size is sent 10, 20, 40, 60 times at

once respectively, then the number LoRa packets received, and packets lost in

each case is recorded. Finally, the time taken to receive the different-sized image

via NerveNet LoRa transmission is also recorded.

3.8 Summary

Using NerveNet Wi-Fi mesh network, mesh links between Linux devices enable

them to communicate with each other and share common database. Essential

data could be shared among each node within NerveNet Wi-Fi domain in just

seconds. However, data transmission over Wi-Fi is limited to hundreds of

meters, this could be expensive to deploy sufficient nodes that collect data in a

wide area. NerveNet LoRa mesh is therefore applied in IoT device, which is

Raspberry Pi in this project, to send or receive small-sized data over kilometers.

29

The data transmission performance of NerveNet Wi-Fi and LoRa mesh are

discussed in the next chapter.

30

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

The NerveNet Wi-Fi mesh network performance within x86 (BS203, BS204,

BS205) and armhf (BS206, BS207, BS208) are evaluated. Figure 4.1 and Figure

4.2 show the Wi-Fi links between each device.

Figure 4.1: NerveNet Triangular Wi-Fi Mesh using x86 Intel NUC Mini PC.

Figure 4.2: NerveNet Triangular Wi-Fi Mesh using Armhf Raspberry Pi.

31

In this NerveNet LoRa mesh testbed, any device within the LoRa

network could perform LoRa MQTT data exchange with each other. The

NerveNet LoRa mesh MQTT messaging performance is carried out between

BS203 and BS207. Additionally, image file transfer with fragmented base64

string using NerveNet LoRa is also tested to identify if it is suitable for image

file transfer. Figure 4.3 shows the LoRa link between the devices.

Figure 4.3: NerveNet LoRa Mesh Network using one x86 Intel NUC Mini PC

and three Armhf Raspberry Pi.

4.2 NerveNet x86 Wi-Fi Mesh Benchmark

There are two methods to evaluate TCP/UDP throughput, latency, and jitter.

The first method is shutdown one out of three NerveNet nodes within the Wi-Fi

domain to record network performance in P2P link. The second method is turn

on all three NerveNet nodes within the Wi-Fi domain to record network

performance in mesh-link. The result of TCP and UDP throughput using Iperf3

tool are recorded and shown in Figure 4.4 and Figure 4.5.

32

Figure 4.4: NerveNet x86 Wi-Fi TCP Throughput.

Figure 4.5: NerveNet x86 Wi-Fi UDP Throughput.

 Based on Figure 4.4 and Figure 4.5, P2P link has generally higher TCP

and UDP throughput as compared with mesh-link, this is because the sender

does not need to calculate a pathway to transfer the data. Also, when the route

direction is from Wi-Fi client interface to Wi-Fi AP interface of peer device, the

TCP throughput is also higher as compared with the reverse ordered route

direction.

0

10

20

30

40

50

60

70

80

203 to 204 204 to 203 203 to 205 205 to 203 204 to 205 205 to 204

Th
ro

u
gh

p
u

t
(M

b
it

/s
)

Route direction

NerveNet x86 Wi-Fi TCP Throughput

P2P link Mesh link

0

5

10

15

20

25

30

35

204 to 203 203 to 205 205 to 203 204 to 205 205 to 204

Th
ro

u
gh

p
u

t
(M

b
it

/s
)

Route direction

NerveNet x86 Wi-Fi UDP Throughput

P2P link Mesh link

33

Figure 4.6: NerveNet x86 Wi-Fi UDP Jitter.

 As referring to Figure 4.6, the jitter of NerveNet Wi-Fi within x86

domain in the cases of P2P and mesh links are more or less similar. The

difference between the highest and lowest jitter is less than two milliseconds.

According to Khalifeh, Gholamhosseinian, and Hajibagher, the QoS

requirements of jitter for video conferencing is less than 30 ms. Therefore,

NerveNet Wi-Fi within triangular x86 nodes has good fundamentals to handle

applications that require low jitter, such as providing VoIP services.

Figure 4.7: NerveNet x86 Wi-Fi Latency.

0

0.5

1

1.5

2

2.5

3

3.5

4

203 to 204 204 to 203 203 to 205 205 to 203 204 to 205 205 to 204

Ji
tt

er
 (

m
s)

Route direction

NerveNet x86 Wi-Fi UDP Jitter

P2P link Mesh link

0

10

20

30

40

50

60

70

203 to 204 204 to 203 203 to 205 205 to 203 204 to 205 205 to 204

La
te

n
cy

 (
m

s)

Route direction

NerveNet x86 Wi-Fi Latency

P2P link Mesh link

34

 According to the Figure 4.7, there is no big difference in terms of P2P

and mesh links within NerveNet x86 Wi-Fi domain. However, the latency is less

than 10 ms when the route direction is from Wi-Fi client interface to Wi-Fi AP

interface, while the latency is five times greater if the route direction is reversed.

This can be explained by NerveNet Wi-Fi in x86 machines having a lower route

cost when the target’s AP interface is the next hop of its own client interface.

Therefore, even if the target is just located at the next hop of its AP interface,

the sender would still seek for target from its client interface’s next hop, causing

the packet return time to increase.

4.3 NerveNet Armhf Wi-Fi Mesh Benchmark

As the same with NerveNet x86 Wi-Fi domain, P2P and mesh links are also

used to evaluate the TCP/UDP throughput, jitter, and latency in NerveNet armhf

Wi-Fi domain. The result of TCP and UDP throughput using Iperf3 tool are

recorded and shown in Figure 4.8 and Figure 4.9.

Figure 4.8: NerveNet Armhf Wi-Fi TCP Throughput.

0

5

10

15

20

25

206 to 207 207 to 206 206 to 208 208 to 206 207 to 208 208 to 207

Th
ro

u
gh

p
u

t
(M

b
it

/s
)

Route direction

NerveNet armhf Wi-Fi TCP Throughput

P2P link Mesh link

35

Figure 4.9: NerveNet Armhf Wi-Fi UDP Throughput.

 According to Figure 4.8 and Figure 4.9, P2P link generally has a higher

throughput as compared with mesh link. Unlike x86 machines, the relationship

between throughput and route direction in NerveNet armhf Wi-Fi domain is not

obvious. The highest throughput (BS207 to BS206) and lowest throughput

(BS206 to BS208) via mesh link are both obtained when the target is located at

the next hop of the sender’s AP interface.

Figure 4.10: NerveNet Armhf Wi-Fi UDP Jitter.

0

5

10

15

20

25

30

35

206 to 207 207 to 206 206 to 208 208 to 206 207 to 208 208 to 207

Th
ro

u
gh

p
u

t
(M

b
it

/s
)

Route direction

NerveNet armhf Wi-Fi UDP Throughput

P2P link Mesh link

0

0.1

0.2

0.3

0.4

0.5

0.6

206 to 207 207 to 206 206 to 208 208 to 206 207 to 208 208 to 207

Ji
tt

er
 (

m
s)

Route direction

NerveNet armhf Wi-Fi UDP Jitter

P2P link Mesh link

36

 Figure 4.10 shows the average jitter of P2P and mesh links within

NerveNet armhf Wi-Fi domain. The variance of jitter at each link and route

directions is as tiny as ignorable. However, even the highest jitter is just between

0.5 to 0.6 ms, which is at least three times lesser than the jitter in NerveNet x86

Wi-Fi domain.

Figure 4.11: NerveNet Armhf Wi-Fi Latency.

 From Figure 4.11, it can be concluded that P2P link generally has lower

latency as compared with mesh link in NerveNet armhf Wi-Fi domain. The route

direction from the sender’s client interface to AP also has lower latency as

compared with reversed route direction. However, the overall latency is still low,

the difference is also not as big as of NerveNet x86 Wi-Fi domain.

4.4 Image Synchronization using NerveNet x86 Wi-Fi Mesh

To evaluate the time taken from an image file to be synchronized in all NerveNet

x86 base station databases via Wi-Fi mesh, the cases of all nodes as image

senders are tested. The corresponding time taken for the other two peers to

receive the synchronized image file is recorded in Figure 4.12.

0

2

4

6

8

10

206 to 207 207 to 206 206 to 208 208 to 206 207 to 208 208 to 207

La
te

n
cy

 (
m

s)

Route direction

NerveNet armhf Wi-Fi Latency

P2P link Mesh link

37

Figure 4.12: Time Taken for x86 Image Synchronization.

 From Figure 4.12, it is clearly stated that as the image file size increased,

the time taken for the peers to receive the synchronized file also increased.

However, the time taken is not linear. For example, Node 203 takes 50 seconds

to receive a 2.5 MB image file from BS205. However, it only takes 86 seconds

to receive a 10.9 MB image file, which is at least four times greater than the 2.5

MB image file. The figure also shows that the image sent by BS203 takes least

time to be synchronized in the peers’ database, this could be due to the PTMGR

daemon running at BS203, therefore it takes the least time to calculate Wi-Fi

pathways.

4.5 Image Synchronization using NerveNet Armhf Wi-Fi Mesh

To evaluate the time taken from an image file to be synchronized in all NerveNet

armhf nodes’ database via Wi-Fi mesh, the test cases are similar to cases in

NerveNet x86 Wi-Fi mesh. The result is shown in Figure 4.13.

0

10

20

30

40

50

60

70

80

90

100

204 205 203 205 203 204

Ti
m

e
ta

ke
n

 (
s)

Receiver

Time Taken for x86 Image Synchronization

264.8kB, 960x540 909.7kB, 1920x1080 2.5MB, 3554x1999 10.9MB, 9600x6800

38

Figure 4.13: Time Taken for Armhf Image Synchronization.

 From Figure 4.13, the characteristics of time taken to receive a

synchronized image are also similar to the result in NerveNet x86 Wi-Fi mesh.

Time taken to synchronize an image file is not linear to file size, while the image

file sent from the node running PTMGR daemon, which is BS206, generally

takes the least time to synchronize an image file.

4.6 NerveNet LoRa Mesh Messaging Performance

Since NerveNet LoRa mesh MQTT uses QoS level zero, the percentage of lost

LoRa packets is interested. To test the NerveNet LoRa mesh MQTT messaging

performance, the number of packets lost with MQTT payload size of 30 Bytes

and 90 Bytes are recorded accordingly. Not only that, the number of LoRa

packets sent at once could affect the ratio of lost packets, hence the number of

LoRa messages published at once is varied at 10, 20, 40, and 60 messages. After

the LoRa MQTT subscriber has not received any message for 20 minutes, the

remaining LoRa packets are considered lost. The test is carried out using BS203

as LoRa MQTT subscriber while BS206 as the LoRa MQTT publisher.

0

5

10

15

20

25

30

35

40

45

207 208 206 208 206 207

Ti
m

e
ta

ke
n

 (
s)

Receiver

Time Taken for armhf Image Synchronization

264.8kB, 960x540 909.7kB, 1920x1080 2.5MB, 3554x1999 10.9MB, 9600x6800

39

Figure 4.14: Time Taken for 30 Bytes Payload Transmission.

Figure 4.15: Time Taken for 90 Bytes Payload Transmission.

Based on Figure 4.14 and Figure 4.15, the number of received LoRa

MQTT messages is almost linear with time. Which means the rate of LoRa

MQTT message to be received is almost constant. However, the time taken to

receive LoRa MQTT message is not a manipulated variable on the subscriber

side. Instead, the published LoRa message is queued and buffered in MQTT

broker to wait for transmission, once the published message is transmitted over

NerveNet LoRa mesh, the over-the-air duration is short, thus it is almost

immediately received by the subscriber side. The manipulating variable is said

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

R
ec

ei
ve

d
 p

ac
ke

ts

Time (minute)

Time Taken for 30 Bytes Payload Transmission

10 messages 20 messages 40 messages 60 messages

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

R
ec

ei
ve

d
 P

ac
ke

ts

Time (minute)

Time Taken for 90 Bytes Payload Transmission

10 messages 20 messages 40 messages 60 messages

40

to be LoRa MQTT payload size because the bandwidth is fixed, higher payload

size means a higher bit rate, therefore increasing the risk of LoRa signals being

interfered or corrupted.

Figure 4.16: Number of LoRa MQTT Packet Lost.

 The number of NerveNet MQTT LoRa messages lost is shown in Figure

4.16. By dividing the total message sent by the number of packets lost, the

percentages of lost packets with 30 Bytes payload size in 10, 20, 40, and 60

messages are 10%, 10%, 5%, and 11.67% respectively. On the other hand, with

the payload size of 90 Bytes, the percentage of lost packets in 10, 20, 40, and

60 messages are 20%, 15%, 12.5%, and 13.33% respectively. Hence, it is

concluded that the larger the LoRa MQTT payload size, the slower the LoRa

packet transmission, and the higher the risk of LoRa packet being lost.

4.7 Image File Transfer using NerveNet LoRa Mesh

LoRa is designed to send small data using IoT applications. In this project, the

ability of NerveNet LoRa mesh to send and receive the whole image file is

interested. To test with the image file transfer, the image file size of 2.8 kB, 5.0

kB, 9.2 kB, and 19.0 kB are used, with cases of fragmenting base64 encoded

string into 70 Bytes, 80 Byes, 90 Bytes, and 100 Bytes per LoRa MQTT

message, while each contains preceding row index number and a comma symbol

0

1

2

3

4

5

6

7

8

9

10 messages 20 messages 40 messages 60 messages

N
u

m
b

er
 o

f
p

ac
ke

t
Lo

st

LoRa MQTT Packet Lost

30 bytes payload 90 bytes payload

41

as the delimiter. The time taken to receive all base64 encoded strings from a

particular image file is tabulated in Table 4.1.

Table 4.1: Time Taken to Receive Different Sized Image File.

 2.8 kB 5.0 kB 9.2 kB

70 Bytes 7 minutes 58

seconds

30 minutes 9

seconds

1 hour 30 minutes

13 seconds

80 Bytes 8 minutes 57

seconds

25 minutes 32

seconds

1 hour 4 minutes

50 seconds

90 Bytes 11 minutes 39

seconds

21 minutes 50

seconds

1 hour 1 minute

15 seconds

 Form Table 4.1 shows that the best MQTT payload size to transfer an

image file is 90 Bytes of base64 encoded strings per LoRa message. When the

number of total LoRa messages increase, the risk of packet being lost also

increase. Thus, even though 70 Bytes and 80 Bytes of MQTT payload size could

be received faster than the 90 Bytes payload size if the image size is 2.8 kB, but

their performance is reduced if image size increases. However, the image files

used in this experiment are considered low-resolution, they are blur images, and

the useful information that could be extracted may be limited. In this experiment,

sending base64 encoded strings with 100 Bytes payload size is also tested, but

none of the LoRa message is received. A 19.0 kB image file is also tested in all

cases of payload size, but none of the cases could receive all LoRa messages

within 4 hours duration. There are also many variables that are out of control

and may affect the time taken to transfer the whole image file, such as weather

conditions, air humidity, and surrounding signal interference. Hence, there are

cases where both NerveNet LoRa mesh MQTT subscriber does not receive any

message for hours of duration.

4.8 Summary

Based on the results obtained, NerveNet Wi-Fi mesh network using both x86

and armhf machines is reliable. The TCP/UDP throughput, jitter, and latency

within triangular topology are able to fulfill most of the requirements of various

42

IoT applications. If properly planned and configured, the NerveNet x86 Wi-Fi

mesh devices are even able to handle simple Internet services during natural

disaster event. For NerveNet LoRa mesh, the LoRa message could be received

in a few seconds if the MQTT payload size is small. It is suitable to be

implemented in IoT devices where the information to be transmitted is in short

plain text. Since LoRa is not designed to transfer large-sized data, the time taken

to transfer base64 encoded image is long as it is said to be not efficient or reliable

to doing so. However, the results of sending fragmented base64 encoded image

show that NerveNet LoRa mesh MQTT is able to transmit long messages if

properly planned.

43

CHAPTER 5

5 PROBLEMS AND RECOMMENDED SOLUTIONS

5.1 Problems encountered

While using NerveNet LoRa mesh MQTT to send base64 encoded image file,

there are many factors that could affect the sensitivity of subscribers to receive

the original LoRa signal, such as weather conditions, air humidity, and

surrounding signal interference. Sometimes, if the message amount is huge, the

trailing messages may not be received for hours, even if the existing LoRa

MQTT connection has no issue. This could be due to a certain reason that the

LoRa messages are kept dropped by MQTT broker or not handled by NerveNet

LoRa mesh framework.

5.2 Recommended Solutions

To ensure that all LoRa packets published could be received at subscriber side,

more testing cases are required using different testbed environments, the

distance between sender and receiver, and payload size per packet. Keep follow

up with NICT to obtain the lastest NerveNet software is also recommended to

deal with existing bugs.

44

REFERENCES

AWS Docker, 2022. What is Docker? Available through: Amazon Web

Services website: < https://aws.amazon.com/docker/ > [Accessed 5 April

2022]

CFE-DMHA, 2019. Malaysia Disaster Management Reference Handbooks.

Available through: United States, Center For Excellence in Disaster

Management & Humanitarian Assistance website: <https://www.cfe-

dmha.org/LinkClick.aspx?fileticket=he2xmI8xZFQ%3d&portalid=0>

[Accessed 30 July 2021].

Chanakitkarnchok, A., Kawila, K., Sato, G., Owada, Y. and Rojviboonchai,

K., 2019. Disaster-Resilient Communication Framework for Heterogeneous

Vehicular Networks, 2019 IEEE 30th Annual International Symposium on

Personal, Indoor and Mobile Radio Communications (PIMRC), 2019, pp. 1-6,

doi: 10.1109/PIMRC.2019.8904211.

Docker Container, 2022. What is a Container? Available through: Docker

website: < https://www.docker.com/resources/what-container/ > [Accessed 6

April 2022]

Hutchison, D. and Sterbenz, J., 2018. Architecture and design for resilient

networked systems, Computer Communications, Volume 131, Pages 13-21,

ISSN 0140-3664, doi: 10.1016/j.comcom.2018.07.028.

IBM Cloud Education, 2019. What is Cloud Storage? Available at:

<https://www.ibm.com/my-en/cloud/learn/cloud-storage> [Accessed 1 August

2021].

IBM Documentations, 2014. What is distributed computing. Available at:

<https://www.ibm.com/docs/en/txseries/8.1.0?topic=overview-what-is-

distributed-computing> [Accessed 1 August 2021].

Inoue, M. and Owada, Y., 2017. NerveNet Architecture and Its Pilot Test in

Shirahama for Resilient Social Infrastructure. IEICE Transactions on

Communications. E100.B. 10.1587/transcom.2016PFI0006.

Inoue, M., Ohnishi, M., Peng, C., Li, R. and Owada, Y., 2011. NerveNet: A

Regional Platform Network for Context-Aware Services with Sensors and

Actuators. IEICE Transactions. 94-B. 618-629. 10.1587/transcom.E94.B.618.

Khalifeh, A., Gholamhosseinian, A., and Hajibagher, N. Z., 2011. QOS For

Multimedia Applications with Emphasize on Video Conferencing. Available at:

< http://www.diva-portal.org/smash/get/diva2:504299/FULLTEXT01.pdf >

[Accessed 10 April 2022]

https://www.ibm.com/my-en/cloud/learn/cloud-storage

45

Lee, W. K. and Mohamad, I. N., 2013. Flood Economy Appraisal: An

Overview of the Malaysian Scenario. 10.1007/978-981-4585-02-6_23.

Lim, W. S., 2021. Disaster Resilient Mesh Network With Data

Synchronization Using Nervenet. Available through: UTAR Malaysia, Final

Year Project website: <http://eprints.utar.edu.my/4057/> [Accessed 18 August

2021].

Prajzler, V., 2019. LoRaWAN Comfirmations and ACKs. Available at:

<https://medium.com/@prajzler/lorawan-confirmations-and-acks-

ba784a56d2d7> [Accessed 6 August 2021].

Rong, C., Zhao, G., Yan, L., Cayirci, E. and Cheng, H., 2013. Wireless

Network Security, Editor: John, R. V., Network and System Security (Second

Edition), Syngress, 2014, Pages 291-317, ISBN 9780124166899, doi:

10.1016/B978-0-12-416689-9.00010-1.

The Things Network, 2021. End Device Activation. Available at:

<https://www.thethingsnetwork.org/docs/lorawan/end-device-activation/>

[Accessed: 13 August 2021].

The Things Network, 2021. Frequency Plans by Country. Available at:

<https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country/>

[Accessed: 13 August 2021].

The Things Network, 2021. LoRaWAN Architecture. Available at:

<https://www.thethingsnetwork.org/docs/lorawan/architecture/> [Accessed: 14

August 2021].

The Things Network, 2021. Message Types. Available at:

<https://www.thethingsnetwork.org/docs/lorawan/message-types/> [Accessed:

14 August 2021].

The Things Network, 2021. Spreading Factors. Available at:

<https://www.thethingsnetwork.org/docs/lorawan/spreading-factors/>

[Accessed: 15 August 2021].

The Things Network, 2021. What are LoRa and LoRaWAN? Available at:

<https://www.thethingsnetwork.org/docs/lorawan/what-is-lorawan/>

[Accessed: 15 August 2021].

http://eprints.utar.edu.my/4057/
https://medium.com/@prajzler/lorawan-confirmations-and-acks-ba784a56d2d7
https://medium.com/@prajzler/lorawan-confirmations-and-acks-ba784a56d2d7

46

APPENDICES

APPENDIX A: NerveNet System Deployment (Lim, 2021).

47

APPENDIX B: NerveNet Base Stations (Lim, 2021).

48

APPENDIX C: GlobalSat BU-353S4 Specifications

49

APPENDIX D: DFRobot TEL0138 USB GPS Receiver Specifications

