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ABSTRACT  

 

 

 

 

 

Five step block hybrid collocation method consist of two off-step points was proposed 

in this project for direct solution of third order initial value problems of ordinary 

differential equations. Collocation and interpolation approaches was used to derive the 

main and additional methods and combine all methods into block form to approximate 

the solution at the main points and the off-step points simultaneously. The order and 

stability properties of the method were analysed. Some test problems were used to test 

the performance of accuracy of the method by compared to existing methods. The 

method applied to solve the thin film flow problem and compare the result with the 

existing methods. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Refer to Waeleh and Majid (2016), there are many real-world problems or natural 

processes can be expressed into the language of mathematics such as differential 

equation. Differential equation can be classified into various type, for example, partial 

differential equation (PDE) and ordinary differential equation (ODE). Many problems 

in science can be solved by ODE which show the important of ODE in the 

mathematical research. Usually, precise solution may not be available, or the answer 

may not be given in a convenient form. Hence, many researchers proved the reliability 

of numerical approximation techniques which used as numerical methods to solve the 

engineering problems. The problems formulated in the form of higher-order ODE with 

initial or boundary conditions which are initial value problems (IVPs) andboundary 

value problems (BVPs) (Modebei, Jator and Ramos, 2020). 

  

1.2 Aims and Objectives 

The main purpose of this project is to design a new block hybrid collocation method 

to solve the third order IVPs directly. The general third order ODEs are defined as: 

𝑦′′′ =  𝑓 (𝑥, 𝑦, 𝑦′ , 𝑦′′),    (1) 

with the initial conditions 

𝑦(𝑎) =  𝑦0, 𝑦′(𝑎) =  𝑦0
′ , 𝑦′′(𝑎) =  𝑦0

′′, 𝑥 ∈ [𝑎, 𝑏].       (2) 

The objectives of this project are 

• Investigate the zero stability and consistency of the newly proposed 

method to ensure the convergence. 

• Analyse the performance of the new method by solving some test 

problems and compare the results with the methods from literature.  

• Apply the new method to solve the thin film flow problem. 
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1.3 Problem Statement 

According to Mohammed and Adeniyi (2014), the mathematical formulation of 

science and engineering problems were often leads to initial value problems (IVPs). 

Adeyeye and Omar (2019) also stated that the modelling cases for complex motion 

such as fluid flow normally result in higher order ordinary differential equations 

(ODEs). Yap et al. (2014) mentioned that many problems in physical science and 

engineering can be formulated in third order ODEs such as gravity driven flows, 

electromagnetic waves and thin film flow. Many numerical and theoretical studies 

dealing with third order ODEs can be found in literatures. However, the exact solutions 

may not be found for some third order ODEs with initial conditions. Thus, numerical 

method is required to solve the third order IVPs to generate the approximate solutions. 

The conventional approach for direct solution of third order IVPs requires the 

complicated execution work to obtain starting values. Besides that, it generates only 

one approximate value at each iteration and lead to longer execution time. Here, we 

propose the self-starting block method with the features that give as set of numerical 

approximation simultaneously. The proposed method should be effective in reducing 

execution time and provide good approximations for third order ODEs. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Reduction of Order Method 

Normally, higher-order ODEs with initial conditions can be solved by reducing it to 

the system of first order ODEs also known as the reduction of order method (Anake at 

el.  2012). But the reduction of order method requires longer computational time and 

heavier computation work to solve the higher order ODEs. Abdelrahim and Omar 

(2017) stated that the fourth order initial value problems (IVPs) could be solved by 

reduction of order method which reduced into a system with four equations of first 

order IVPs and solved by suitable numerical methods. As a consequence, the number 

of equations needed to be solved also increased. 

 

2.2 Direct Method 

The initial values problems (IVPs) were solved directly without reduction of order 

method in order to overcome the limitation of reduction of order method. Direct 

method was an alternative approach of the reduction of order method which could be 

used to solve the IVPs directly with the advantages in speed and accuracy. Refer to 

Jator (2010), there were various type of direct methods had been proposed such as 

linear multistep method (LMMs), multistep collocation methods, Runge-Kutta-

Nyström methods (RKN), multiderivative methods, exponentially-fitting and 

trigonometrically fitted methods. Most of the method were implemented in the 

predictor-corrector mode. In addition, direct method also could be implemented in the 

block mode. 

 The linear multistep method was a direct method that usually used to 

approximate the direct solution of higher order ODEs. Awoyemi (2003) proposed a p-

stable linear multistep method for solving the general third order IVPs. The method 

was implemented in predictor-corrector mode and required the starting values from 

Runge-Kutta methods. The implementation in predictor-corrector mode was 

complicated. It was also costly in human effort for developing the predictors. 

Consequently, it leaded in longer computation time and heavy computational work in 

the part that incorporating subroutines to get the starting values. The implementation 

in Runge-Kutta methods to supply the starting values increased the computation time 
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because it involved several function evaluations for every step. Adeyeye and Omar 

(2019) mentioned that the linear multistep method was convergent when it was 

consistent and zero stable. 

 

2.3 Hybrid Method 

According to Dahlquist (1978), the Dahlquist’s barrier condition was the basic 

condition required to implement those direct methods. It highlighted that the zero 

stable method was better with the order P = k + 1 and P = k + 2 for odd and even 

number of steps respectively. The hybrid methods were proposed to circumvent the 

Dahlquist’s barrier conditions in order to reduce the number of steps and function 

evaluations while maintained a high level of accuracy and zero stability at the same 

time. Anake at el. (2012) stated that the hybrid methods had the advantage that easy 

change in the step size which similar to the Runge-Kutta methods and evaluated the 

data at off-step points. The design of the algorithms for hybrid method was tedious 

because it incorporated the off-step points and the present of non-step function 

increased the number of predictors required to implement the methods.  

 Awoyemi and Idowu (2005) recommended the hybrid collocation method for 

solving general third order ODEs which was quite similar to Awoyemi (2003) but with 

the additional off-grid point xn+3/2. The numerical results showed that the inclusion of 

off-grid point in hybrid collocation method helped to improve the accuracy. 

 

2.4 Block Hybrid Method 

Block hybrid method was the method that group the hybrid formulas into a single block 

and used for the direct solution of IVPs. The block hybrid method that used to solve 

higher order IVPs directly computed the numerical approximation at a few points at 

the same time. Abdelrahim and Omar (2017) remarked that the block hybrid method 

also could avoid the computational burden and zero stability barrier. Based on Yap et 

al. (2014), the 𝑚-point block method was derived by dividing the interval of 

integration to a series of blocks with 𝑚-points to generate a block of new solutions 

simultaneously. Adeyeye and Omar (2019) stated that the zero-stability of block 

method ensured that the approximation of the solution converge as the step size tends 

to zero. In other words, the numerical result will converge to the analytical result when 

step size tends to zero. The block method which is consistent shows that the local 
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truncation error (LTE) tends to zero before the step size tends to zero. Thus, the method 

is convergent if the method is consistent and zero-stable. 

 

2.4.1 Block Method 

The Block method had the features of getting the set of solutions concurrently. Waeleh 

and Majid (2016) proposed the four-point block method to solve the fifth order IVPs 

directly by implementing a variable step size strategy. The interval was divided into 

series of blocks with four equal subintervals and four solutions were computed 

concurrently. Thus, it was more cost-effective because of the characteristic of the block 

method that generated a set of solution simultaneously in each iteration. The 4-point 

block method had better performance in implementing with direct integration approach 

as less storage required than reduction method with an acceptable accuracy. 

 

2.4.2 Second Order Ordinary Differential Equation 

Some authors focused on different block hybrid methods to estimate the solution for 

the second order IVPs. Jator (2010) proposed a three-step hybrid linear multistep 

method (HLMM) of order seven to find the approximate solution of the second order 

IVPs. The proposed method consisted of three non-step points which were xn+1/2, xn+3/2 

and xn+5/2. It was a self-starting method that implemented by combining the HLMM as 

simultaneous integrators for IVPs. The self-starting method solved the issue of 

conventional method that required a few starting values and predictors to proceed. The 

approach was derived through interpolation and collocation. The main hybrid method 

was applied together with these additional methods as a block method to solve IVPs 

simultaneously. 

 Anake at el. (2012) developed a continuous one-step implicit block hybrid 

method to approximate the solution of second order IVPs. The proposed method was 

improved by included off-grid points to enable the multistep procedure. This ensured 

the zero stability and the consistency of the method. To derive a zero stable method, 

the off-step points were carefully chosen as xn+1/3, xn+2/3. The proposed method was 

highly accurate with very low error terms. 

2.4.3 Third Order Ordinary Differential Equation 

Several researchers conducted studies on block hybrid method to approximate the 

solution for third order ODEs. Mohammed and Adeniyi (2014) derived the hybrid 
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linear multistep method (HLMM) with the off-step point at xn+8/3. The method was 

convergent and zero stable. 

Yap et al. (2014) suggested the three-point block hybrid collocation method 

with two off-step points (xn+1/2 and xn+3/2) for solving third order IVPs directly. The 

method obtained the approximated solution of y at three main points and two off-grid 

points at once for every iteration. As a consequence, this approach required a smaller 

number of total steps to approximate the solution and provided precise approximation 

as the step size decreased.  

Yap and Ismail (2018) extended the idea to generate a four-point block hybrid 

collocation method that consist of two off-grid points (xn+1/2 and xn+3/2) for the solution 

of third order ODEs with initial condition. It showed the accuracy of the method 

increased when the step size decreased. The block hybrid collocation method was 

applicable to solve the physical problem of thin film flow. 

 

2.4.4 Fourth Order Ordinary Differential Equation 

Yap and Ismail (2015) recommended a block hybrid collocation method that consists 

of three off-grid points to approximate the solution of general fourth order initial value 

problems (IVPs). The proposed method was implemented in the block form of the 

main and additional methods. The method was self-starting and generated the 

approximate solution of 𝑦 at the four main points and off-grid points xn+1/2, xn+3/2,  

xn+5/2 simultaneously.  

 Abdelrahim and Omar (2017) proposed the four-step block method consist of 

generalized three off-step points to approximate the solution of fourth order IVPs of 

ODEs. The strategy used to derive the method was interpolation for the function at 

selected points and collocation for the function of fourth derivative that cover all points. 

The proposed approach was implemented in self-starting method which without the 

predictors that reduced the efficiency of the method. Thus the proposed method 

worked for chosen off-grid points, it was more robust and flexible. The approaches 

suggested by Yap and Ismail (2015) and Abderlrahim and Omar (2017) demonstrated 

that the inclusion of off-step points improved the accuracy when solving higher order 

ODEs. 

 Sometimes the block methods were derived with specific points or off-step 

points to solve the fourth order ODEs. Adeyeye and Omar (2019) suggested a block 

method to approximate the solution of the fourth order IVPs with five main points with 
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various equally step size. The block method showed faster convergence and better 

accuracy when the step size decreased. 

 

2.4.5 Boundary Value Problems (BVPs) 

According to Ramos and Rufai (2021), the reduction of the order method also could 

be used to solve the BVPs of ODEs. Similar to initial value problems (IVPs), this 

method required a lot of human efforts and computational time. Modebei, Jator and 

Ramos (2020) derived the linear multistep hybrid method consist of four off-step 

points to approximate the solution of fourth order BVPs in ODEs. The collocation 

approach was used to obtain the continuous linear multistep formulas and group to an 

unique block to structure the block hybrid method (BHM). They considered various 

type of fourth order BVPs with the advantages of flexibility and demonstrated good 

performance in terms of high accuracy. 

 Ramos and Rufai (2021) recommended an implicit two step block hybrid 

method with two off-grid points and two fourth derivatives to solve the linear and non-

linear type of third order BVPs. This proposed method also derived by using 

collocation and interpolation techniques. They applied to solve the problems of 

sandwich beam and the Falkner-Skan equations. The numerical approximations of the 

method converged rapidly. 

 

2.5 Summary on Literature Review 

The studies on block hybrid methods to approximate the solution of higher order initial 

differential equations (IVPs) demonstrated its advantage in accuracy and reduced 

execution time. Therefore, the block hybrid method is chosen to resolve the IVPs in 

third order ODEs here. In additional, the reasons to select this approach are self-

starting with good accuracy as proven in literature and its simplicity in derivation. 

More points and closer interval of off-step points are considered in the proposed 

method with the aim for better performance in accuracy. 
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CHAPTER 3 

 

3 METHODOLOGY 

 

3.1 Development of the Five Step Block Hybrid Collocation Method 

The five step block hybrid collocation method that results in estimations of y, y' and 

y'' for the general form of third order ordinary differential equations (ODEs) is defined 

as below 

∑ 𝛼𝑗𝑦𝑛+𝑗

𝑘

𝑗=0

+ ∑𝛼𝜃𝑗
𝑦𝑛+𝜃𝑗

2

𝑗=1

= ℎ3 (∑𝛽𝑗𝑓𝑛+𝑗

𝑘

𝑗=0

+ ∑𝛽𝜃𝑗
𝑓𝑛+𝜃𝑗

2

𝑗=1

)              (3) 

 

On every interval [𝑥𝑛, 𝑥𝑛 + 5h], n = 0, 5, ..., N - 5, we determined the formula 

by interpolating Y(x) as follows 

𝑌(𝑥) = ∑ 𝜔𝑗𝑥
𝑗

𝑟+𝑠−1

𝑗=0

                                                        (4) 

 

where 𝑥 in the interval of [𝑎, 𝑏], 𝜔𝑗  are the coefficients, 𝑟 and 𝑠 are the number of 

interpolation and collocation points, respectively. The positive integer 𝑘 denotes the 

step number of the method. The continuous approximations are obtained by imposing 

the following conditions 

𝑌(𝑥𝑛+𝑗) = 𝑦𝑛+𝑗, 𝑗 = 0, 1, 2, … , 𝑘         (5) 

 

𝑌′′′(𝑥𝑛+𝜏) = 𝑓𝑛+𝜏, 𝜏 = {𝑗, 𝜃1, 𝜃2}, 𝑗 = 0, 1, 2, … , 𝑘          (6) 

 

where 𝜃1 and 𝜃2 are rational numbers. The parameters to develop the method are set 

as 𝜃1 = 1/3, 𝜃2 = 2/3, 𝑟 = 3, 𝑠 = 8, 𝑘 = 5. Via apply the interpolation for three 

points 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2 with condition (5) and the collocation for eight points 

𝑥𝑛, 𝑥𝑛+1/3, 𝑥𝑛+2/3, 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3, 𝑥𝑛+4, 𝑥𝑛+5 with condition (6), produce a system 

of eleven equations. The Cramer's rule is applied to solve the equations and obtain the 

coefficients 𝜔𝑗 . Next, we substitute the value of 𝜔𝑗  into (4) to get the hybrid 

collocation methods as below: 
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Main method: 

𝑦𝑛+5 = 6𝑦𝑛 − 15𝑦𝑛+1 + 10𝑦𝑛+2 + ℎ3 (−
397

3360
𝑓𝑛 +

40581

43120
𝑓

𝑛+
1

3

−
194157

101920
𝑓

𝑛+
2

3

+

1417

336
𝑓𝑛+1 +

697

160
𝑓𝑛+2 +

4741

2352
𝑓𝑛+3 +

17911

36960
𝑓𝑛+4 +

417

50960
𝑓𝑛+5)  (7) 

 

Additional methods: 

𝑦𝑛+4 = 3𝑦𝑛 − 8𝑦𝑛+1 + 6𝑦𝑛+2

+ ℎ3 (−
191

3360
𝑓𝑛 +

39609

86240
𝑓

𝑛+
1

3

−
95013

101920
𝑓

𝑛+
2

3

+
1171

560
𝑓𝑛+1

+
187

96
𝑓𝑛+2 +

11327

23520
𝑓𝑛+3 +

23

2464
𝑓𝑛+4 −

19

152880
𝑓𝑛+5) 

𝑦𝑛+3 = 𝑦𝑛 − 3𝑦𝑛+1 + 3𝑦𝑛+2

+ ℎ3 (−
15

448
𝑓𝑛 +

80433

344960
𝑓

𝑛+
1

3

−
19197

40768
𝑓

𝑛+
2

3

+
5473

6720
𝑓𝑛+1

+
431

960
𝑓𝑛+2 +

229

31360
𝑓𝑛+3 +

43

73920
𝑓𝑛+4 −

47

611520
𝑓𝑛+5) 

𝑦
𝑛+

2

3

=
2

9
𝑦𝑛 +

8

9
𝑦𝑛+1 −

1

9
𝑦𝑛+2

+ ℎ3 (−
176529353

198603044640
𝑓𝑛 +

69247

6985440
𝑓

𝑛+
1

3

+
41959

24766560
𝑓

𝑛+
2

3

+
3597607

99202320
𝑓𝑛+1 +

75641

28343520
𝑓𝑛+2 −

436127

1388832480
𝑓𝑛+3

+
105863

2182451040
𝑓𝑛+4 −

38029

9027411120
𝑓𝑛+5) 

𝑦
𝑛+

1

3

=
5

9
𝑦𝑛 +

5

9
𝑦𝑛+1 −

1

9
𝑦𝑛+2

+ ℎ3 (−
325421

396809280
𝑓𝑛 +

265127

16765056
𝑓

𝑛+
1

3

+
136187

16511040
𝑓

𝑛+
2

3

+
2862509

79361856
𝑓𝑛+1 +

30503

11337408
𝑓𝑛+2 −

353989

1111065984
𝑓𝑛+3

+
215311

4364902080
𝑓𝑛+4 −

154879

36109644480
𝑓𝑛+5) 

(8) 
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In order to generate the formulas for the method of first and second derivatives, the 

values for 𝜔𝑗 are substituted into 

𝑌′(𝑥) = ∑ 𝑗𝜔𝑗𝑥
𝑗−1

𝑟+𝑠−1

𝑗=0

 

𝑌′′(𝑥) = ∑ 𝑗(𝑗 − 1)𝜔𝑗𝑥
𝑗−2

𝑟+𝑠−1

𝑗=0

 

(9) 

Hence, we obtain the formula for the derivatives as follows: 

ℎ𝑦𝑛
′ = −

3

2
𝑦𝑛 + 2𝑦𝑛+1 −

1

2
𝑦𝑛+2

+ ℎ3 (
187

67200
𝑓𝑛 +

201123

1724800
𝑓

𝑛+
1

3

+
75897

2038400
𝑓

𝑛+
2

3

+
3349

20160
𝑓𝑛+1

+
2369

201600
𝑓𝑛+2 −

127

94080
𝑓𝑛+3 +

457

2217600
𝑓𝑛+4 −

163

9172800
𝑓𝑛+5) 

ℎ𝑦
𝑛+

1

3

′ = −
7

6
𝑦𝑛 +

4

3
𝑦𝑛+1 −

1

6
𝑦𝑛+2

+ ℎ3 (−
2847683

1322697600
𝑓𝑛 −

31181

13970880
𝑓

𝑛+
1

3

+
371503

165110400
𝑓

𝑛+
2

3

+
7150051

132269760
𝑓𝑛+1 +

1070663

264539520
𝑓𝑛+2 −

446143

925888320
𝑓𝑛+3

+
1088953

14549673600
𝑓𝑛+4 −

392471

60182740800
𝑓𝑛+5) 

ℎ𝑦
𝑛+

2

3

′ = −
5

6
𝑦𝑛 +

2

3
𝑦𝑛+1 +

1

6
𝑦𝑛+2

+ ℎ3 (
1689563

1322697600
𝑓𝑛 −

3467983

139708800
𝑓

𝑛+
1

3

−
4756861

165110400
𝑓

𝑛+
2

3

−
7292953

132269760
𝑓𝑛+1 −

5327989

1322697600
𝑓𝑛+2 +

176749

370355328
𝑓𝑛+3

−
1075741

14549673600
𝑓𝑛+4 +

387071

60182740800
𝑓𝑛+5) 

ℎ𝑦𝑛+1
′ = −

1

2
𝑦𝑛 +

1

2
𝑦𝑛+2

+ ℎ3 (
869

201600
𝑓𝑛 −

5751

156800
𝑓

𝑛+
1

3

+
2511

81536
𝑓

𝑛+
2

3

−
37

240
𝑓𝑛+1

−
2453

201600
𝑓𝑛+2 +

407

282240
𝑓𝑛+3 −

1

4480
𝑓𝑛+4 +

89

4586400
𝑓𝑛+5) 
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ℎ𝑦𝑛+2
′ =

1

2
𝑦𝑛 − 2𝑦𝑛+1 +

3

2
𝑦𝑛+2

+ ℎ3 (−
3953

201600
𝑓𝑛 +

6399

49280
𝑓

𝑛+
1

3

−
73791

291200
𝑓

𝑛+
2

3

+
8171

20160
𝑓𝑛+1

+
347

4480
𝑓𝑛+2 −

293

40320
𝑓𝑛+3 +

2423

2217600
𝑓𝑛+4 −

41

436800
𝑓𝑛+5) 

ℎ𝑦𝑛+3
′ =

3

2
𝑦𝑛 − 4𝑦𝑛+1 +

5

2
𝑦𝑛+2

+ ℎ3 (−
269

13440
𝑓𝑛 +

161433

862400
𝑓

𝑛+
1

3

−
794529

2038400
𝑓

𝑛+
2

3

+
20071

20160
𝑓𝑛+1

+
196643

201600
𝑓𝑛+2 +

279

3136
𝑓𝑛+3 −

9479

2217600
𝑓𝑛+4 +

457

1834560
𝑓𝑛+5) 

ℎ𝑦𝑛+4
′ =

5

2
𝑦𝑛 − 6𝑦𝑛+1 +

7

2
𝑦𝑛+2

+ ℎ3 (−
2581

28800
𝑓𝑛 +

1024407

1724800
𝑓

𝑛+
1

3

−
2353131

2038400
𝑓

𝑛+
2

3

+
639

320
𝑓𝑛+1

+
54043

28800
𝑓𝑛+2 +

58315

56448
𝑓𝑛+3 +

58423

739200
𝑓𝑛+4 −

18839

9172800
𝑓𝑛+5) 

ℎ𝑦𝑛+5
′ =

7

2
𝑦𝑛 − 8𝑦𝑛+1 +

9

2
𝑦𝑛+2

+ ℎ3 (
48661

201600
𝑓𝑛 −

161757

156800
𝑓

𝑛+
1

3

+
3635847

2038400
𝑓

𝑛+
2

3

+
5017

10080
𝑓𝑛+1

+
230473

67200
𝑓𝑛+2 +

492949

282240
𝑓𝑛+3 +

222787

201600
𝑓𝑛+4 +

23263

382200
𝑓𝑛+5) 

ℎ2𝑦𝑛
′′ = 𝑦𝑛 − 2𝑦𝑛+1 + 𝑦𝑛+2

+ ℎ3 (−
3901

40320
𝑓𝑛 −

170343

344960
𝑓

𝑛+
1

3

−
729

31360
𝑓

𝑛+
2

3

−
353

960
𝑓𝑛+1

−
271

13440
𝑓𝑛+2 +

541

282240
𝑓𝑛+3 −

13

49280
𝑓𝑛+4 +

1

47040
𝑓𝑛+5) 

ℎ2𝑦
𝑛+

1

3

′′ = 𝑦𝑛 − 2𝑦𝑛+1 + 𝑦𝑛+2

+ ℎ3 (
104311

7348320
𝑓𝑛 −

1553

8960
𝑓

𝑛+
1

3

−
217

1248
𝑓

𝑛+
2

3

−
9140141

29393280
𝑓𝑛+1

−
186461

7348320
𝑓𝑛+2 +

36749

11757312
𝑓𝑛+3 −

3613

7348320
𝑓𝑛+4

+
16481

382112640
𝑓𝑛+5) 
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ℎ2𝑦
𝑛+

2

3

′′ = 𝑦𝑛 − 2𝑦𝑛+1 + 𝑦𝑛+2

+ ℎ3 (
211819

29393280
𝑓𝑛 −

20789

1034880
𝑓

𝑛+
1

3

+
283

6272
𝑓

𝑛+
2

3

−
5066029

14696640
𝑓𝑛+1 −

680261

29393280
𝑓𝑛+2 +

544661

205752960
𝑓𝑛+3

−
130829

323326080
𝑓𝑛+4 +

719

20575296
𝑓𝑛+5) 

ℎ2𝑦𝑛+1
′′ = 𝑦𝑛 − 2𝑦𝑛+1 + 𝑦𝑛+2

+ ℎ3 (
37

3360
𝑓𝑛 −

3159

62720
𝑓

𝑛+
1

3

+
26001

101920
𝑓

𝑛+
2

3

−
1553

8064
𝑓𝑛+1

−
29

1120
𝑓𝑛+2 +

199

62720
𝑓𝑛+3 −

1

2016
𝑓𝑛+4 +

53

1223040
𝑓𝑛+5) 

ℎ2𝑦𝑛+2
′′ = 𝑦𝑛 − 2𝑦𝑛+1 + 𝑦𝑛+2

+ ℎ3 (−
863

13440
𝑓𝑛 +

140697

344960
𝑓

𝑛+
1

3

−
68769

81536
𝑓

𝑛+
2

3

+
2547

2240
𝑓𝑛+1

+
15539

40320
𝑓𝑛+2 −

493

18816
𝑓𝑛+3 +

569

147840
𝑓𝑛+4 −

601

1834560
𝑓𝑛+5) 

ℎ2𝑦𝑛+3
′′ = 𝑦𝑛 − 2𝑦𝑛+1 + 𝑦𝑛+2

+ ℎ3 (
719

10080
𝑓𝑛 −

229149

689920
𝑓

𝑛+
1

3

+
64881

101920
𝑓

𝑛+
2

3

+
89

13440
𝑓𝑛+1

+
4169

3360
𝑓𝑛+2 +

222239

564480
𝑓𝑛+3 −

223

12320
𝑓𝑛+4 +

1493

1223040
𝑓𝑛+5) 

ℎ2𝑦𝑛+4
′′ = 𝑦𝑛 − 2𝑦𝑛+1 + 𝑦𝑛+2

+ ℎ3 (−
3263

13440
𝑓𝑛 +

41067

31360
𝑓

𝑛+
1

3

−
200961

81536
𝑓

𝑛+
2

3

+
44299

20160
𝑓𝑛+1

+
2299

4480
𝑓𝑛+2 +

42101

31360
𝑓𝑛+3 +

14209

40320
𝑓𝑛+4 −

919

122304
𝑓𝑛+5) 

ℎ2𝑦𝑛+5
′′ = 𝑦𝑛 − 2𝑦𝑛+1 + 𝑦𝑛+2

+ ℎ3 (
3877

3360
𝑓𝑛 −

573723

98560
𝑓

𝑛+
1

3

+
1701

160
𝑓

𝑛+
2

3

−
30189

4480
𝑓𝑛+1

+
30203

10080
𝑓𝑛+2 −

3133

26880
𝑓𝑛+3 +

59459

36960
𝑓𝑛+4 +

11533

40320
𝑓𝑛+5) 

(10) 

We group all the hybrid collocation methods (7), (8) and (10) as block method and 

then use it to obtain the approximation of 𝑦 , 𝑦′  and 𝑦′′  at five main points 

( 𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+3, 𝑥𝑛+4, 𝑥𝑛+5 ) and two off-step points ( 𝑥𝑛+1/3, 𝑥𝑛+2/3 ) 
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simultaneously. We name this new method as five step block hybrid collocation 

method (FVBHCM). 

 

3.2 Order of Method 

According to Jator (2010), the difference operator related to (3) is represented as 

𝐿[𝑦(𝑥); ℎ] = ∑[𝛼𝑗𝑦(𝑥 + 𝑗ℎ) − ℎ3𝛽𝑗𝑦
′′′(𝑥 + 𝑗ℎ)]

𝑘

𝑗=0

+ ∑[𝛼𝜃𝑗
𝑦(𝑥 + 𝜃𝑗ℎ) − ℎ3𝛽𝜃𝑗

𝑦′′′(𝑥 + 𝜃𝑗ℎ)]

2

𝑗=1

 

(11) 

where 𝑦(𝑥) is sufficiently differentiable. The tested functions 𝑦(𝑥 + 𝑗ℎ) and 𝑦′′′(𝑥 +

𝑗ℎ) about 𝑥 are expanding and rearrange to get  

 

𝐿[𝑦(𝑥); ℎ] = 𝐶0𝑦(𝑥) + 𝐶1ℎ𝑦′(𝑥) + ⋯+ 𝐶𝑞ℎ
𝑞𝑦(𝑞)(𝑥) + ⋯  (12) 

 

with the coefficients 𝐶𝑞  for 𝑞 = 0,1,2⋯  are constants. The matrix of differential 

equation for the method is defined as 

𝛼𝑌𝑚 = ℎ𝛽𝑌𝑚
′ + ℎ2𝛾𝑌𝑚

′′ + ℎ3𝛿𝐹𝑚    (13) 

 

where 𝛼, 𝛽, 𝛾 and 𝛿 are the unknown coefficients for the method. The order of the 

method can be found by using the formula as follow: 

𝐶0 = ∑𝛼𝑗

𝑘

𝑗=0

+ ∑𝛼𝜃𝑗

2

𝑗=1

 

𝐶1 = ∑𝑗𝛼𝑗

𝑘

𝑗=1

+ ∑ 𝜃𝑗𝛼𝜃𝑗

2

𝑗=1

− [∑𝛽𝑗

𝑘

𝑗=0

+ ∑𝛽𝜃𝑗

2

𝑗=1

] 

𝐶2 =
1

2!
[∑𝑗2𝛼𝑗

𝑘

𝑗=1

+ ∑𝜃𝑗
2𝛼𝜃𝑗

2

𝑗=1

] − [∑𝑗𝛽𝑗

𝑘

𝑗=1

+ ∑𝜃𝑗𝛽𝜃𝑗

2

𝑗=1

] − [∑𝛾𝑗

𝑘

𝑗=0

+ ∑𝛾𝜃𝑗

2

𝑗=1

] 

⋮ 
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𝐶𝑞 =
1

𝑞!
[∑𝑗𝑞𝛼𝑗

𝑘

𝑗=1

+ ∑𝜃𝑗
𝑞𝛼𝜃𝑗

2

𝑗=1

] −
1

(𝑞 − 1)!
[∑𝑗𝑞−1𝛽𝑗

𝑘

𝑗=1

+ ∑𝜃𝑗
𝑞−1𝛽𝜃𝑗

2

𝑗=1

]

−
1

(𝑞 − 2)!
[∑𝑗𝑞−2𝛾𝑗

𝑘

𝑗=1

+ ∑𝜃𝑗
𝑞−2𝛾𝜃𝑗

2

𝑗=1

]

−
1

(𝑞 − 3)!
[∑𝑗𝑞−3𝛿𝑗

𝑘

𝑗=1

+ ∑𝜃𝑗
𝑞−3𝛿𝜃𝑗

2

𝑗=1

] 

(14) 

With reference to Henrici (1962), the linear multistep method is classified as an order 

𝑃 method when 

𝐶0 = 𝐶1 = 𝐶2 = ⋯ = 𝐶𝑃+2 = 0, 𝐶𝑃+3 ≠ 0         (15) 

 

The five step block hybrid collocation method has order 𝑃 = 8  with the error 

constants;  𝐶11  are 
113

7620480
, 

151

9525600
, 

1877

76204800
, 

56401

62497461600
, 

30743

33331979520
, 

4649

1257379200
, 

46699573

32998659724800
, −

11430989

8249664931200
, −

20971

5029516800
,  

503

25660800
, −

80107

5029516800
, 

182981

1257379200
, 

−
4908139

5029516800
, −

121

38102400
, −

42719

4464104400
, −

1837097

249989846400
, −

1

105840
, 

2551

38102400
, −

761

4762800
, 

2447

4233600
, −

2491

680400
 respectively. According to Fatunla (1991), the method is consistent 

as it has order 𝑃 > 1. 
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3.3 Zero Stability 

The hybrid collocation methods (7), (8) and (10) are combined into block form to 

analyse its zero stability. The matrix finite difference equation to test the zero stability 

is presented as follows: 

𝐴[0]𝑌𝑀+1 = 𝐴[1]𝑌𝑀 + ℎ3(𝐵[0]𝐹𝑀+1 + 𝐵[1]𝐹𝑀) + ℎ2𝐶[1]𝑌𝑀
′′ + ℎ𝐷[1]𝑌𝑀

′    (16) 

 

where 

𝑌𝑀+1 = [𝑦𝑛+1/3, 𝑦𝑛+2/3, 𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+3, 𝑦𝑛+4, 𝑦𝑛+5]
𝑇
 

𝑌𝑀 = [𝑦𝑛−4, 𝑦𝑛−3, 𝑦𝑛−2, 𝑦𝑛−1, 𝑦𝑛−2/3, 𝑦𝑛−1/3, 𝑦𝑛]
𝑇
 

𝐹𝑀+1 = [𝑓𝑛+1/3, 𝑓𝑛+2/3, 𝑓𝑛+1, 𝑓𝑛+2, 𝑓𝑛+3, 𝑓𝑛+4, 𝑓𝑛+5]
𝑇
 

𝐹𝑀 = [𝑓𝑛−4, 𝑓𝑛−3, 𝑓𝑛−2, 𝑓𝑛−1, 𝑓𝑛−2/3, 𝑓𝑛−1/3, 𝑓𝑛]
𝑇
 

𝑌𝑀
′′ = [𝑦𝑛−4

′′ , 𝑦𝑛−3
′′ , 𝑦𝑛−2

′′ , 𝑦𝑛−1
′′ , 𝑦𝑛−2/3

′′ , 𝑦𝑛−1/3
′′ , 𝑦𝑛

′′]
𝑇
 

𝑌𝑀
′ = [𝑦𝑛−4

′ , 𝑦𝑛−3
′ , 𝑦𝑛−2

′ , 𝑦𝑛−1
′ , 𝑦𝑛−2/3

′ , 𝑦𝑛−1/3
′ , 𝑦𝑛

′ ]
𝑇
 

(17) 

The first characteristic polynomial is obtained as follows:  

𝑝(𝑧) = 𝐷𝑒𝑡[𝑧𝐴0 − 𝐴1] = 𝑧6(𝑧 − 1)    (18) 

where 

𝐴0 = [𝐴[0]]
−1

𝐴[0] =

[
 
 
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1]

 
 
 
 
 
 

, 𝐴1 = [𝐴[0]]
−1

𝐴[1]

=

[
 
 
 
 
 
 
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1]

 
 
 
 
 
 

 

Based on Fatunla (1991), while the roots for first characteristic polynomial are not 

more than one, the five step block hybrid collocation method is considered as zero 

stable. 
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CHAPTER 4 

 

4 RESULTS AND DICUSSION 

 

4.1 Numerical Examples 

To express the performance of the newly proposed method, we consider nine tested 

problems as follows: 

 

Problem 1. Consider the linear nonhomogeneous problem 

𝑦′′′ − 2𝑦′′ − 3𝑦′ + 10𝑦 = 34𝑥𝑒−2𝑥 − 16𝑒−2𝑥 − 10𝑥2 + 6𝑥 + 34 

𝑦(0) = 3, 𝑦′(0) = 0, 𝑦′′(0) = 0, 𝑥 ∈ [0,1]. 

Exact Solution: 𝑦(𝑥) = 𝑥2𝑒−2𝑥 − 𝑥2 + 3 

Source: Majid et al. [16] 

 

Problem 2. Consider the linear homogeneous problem 

𝑦′′′ + 𝑦′ = 0 

𝑦(0) = 0, 𝑦′(0) = 1, 𝑦′′(0) = 2, 𝑥 ∈ [0,20]. 

Exact Solution: 𝑦(𝑥) = 2(1 − cos 𝑥) + sin 𝑥 

Source: Majid et al. [16] 

 

Problem 3. Consider the linear nonhomogeneous problem 

𝑦′′′ = 3 sin 𝑥 

𝑦(0) = 1, 𝑦′(0) = 0, 𝑦′′(0) = −2, 𝑥 ∈ [0,1]. 

Exact Solution: 𝑦(𝑥) = 3 cos 𝑥 + 
𝑥2

2
− 2 

Source: Adesanya et al. [17] 

 

Problem 4. Consider the linear homogeneous problem 

𝑦′′′ = −6𝑦′′ − 11𝑦′ − 6𝑦 

𝑦(0) = 1, 𝑦′(0) = 0, 𝑦′′(0) = 0, 𝑥 ∈ [0,10]. 

Exact Solution: 𝑦(𝑥) = 3𝑒−𝑥 − 3𝑒−2𝑥 + 𝑒−3𝑥 

Source: Hochstadt [18] 
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Problem 5. Consider the linear nonhomogeneous problem 

𝑦′′′ = 𝑥 − 4𝑦′ 

𝑦(0) = 0, 𝑦′(0) = 0, 𝑦′′(0) = 1, 𝑥 ∈ [0,20]. 

Exact Solution: 𝑦(𝑥) =
3

16
(1 − cos 2𝑥) +

1

8
𝑥2 

Source: Majid et al. [16] 

 

Problem 6. Consider the nonlinear nonhomogeneous problem 

𝑦′′′ = 4(1 + 𝑥)−3 − 2𝑒−3𝑦 

𝑦(0) = 0, 𝑦′(0) = 1, 𝑦′′(0) = −1, 𝑥 ∈ [0,4]. 

Exact Solution: 𝑦(𝑥) = 𝑥2𝑒−2𝑥 − 𝑥2 + 3 

Source: Mehrkanoon [20] 

 

Problem 7. Consider the linear nonhomogeneous problem 

𝑦′′′ = 𝑦2 + (cos 𝑥)2 − cos 𝑥 − 1 

𝑦(0) = 0, 𝑦′(0) = 1, 𝑦′′(0) = 0, 𝑥 ∈ [0,10]. 

Exact Solution: 𝑦(𝑥) = sin 𝑥 

Source: Mechee et al. [19] 

 

Problem 8. Consider the linear nonhomogeneous problem 

𝑦′′′ = 𝑦′′ − 𝑦′ + 𝑦 + 𝑒𝑥 

𝑦(0) = 1, 𝑦′(0) = 1, 𝑦′′(0) = 0, 𝑥 ∈ [0,2]. 

Exact Solution: 𝑦(𝑥) =
1

2
𝑥𝑒𝑥 + cos 𝑥 +

1

2
sin 𝑥 

Source: Lee et al. [21] 
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Problem 9. Consider the nonlinear nonhomogeneous system 

𝑦1
′′′ =

1

2
𝑒4𝑥𝑦3𝑦2

′  

 𝑦2
′′′ =

8

3
𝑒2𝑥𝑦1𝑦3

′  

 𝑦3
′′′ = 27𝑦2𝑦1

′  

𝑦1(0) = 1, 𝑦1
′(0) = −1, 𝑦1

′′(0) = 1, 

𝑦2(0) = 1, 𝑦2
′(0) = −2, 𝑦2

′′(0) = 4, 

𝑦3(0) = 1, 𝑦3
′ (0) = −3, 𝑦3

′′(0) = 9, 𝑥 ∈ [0,1]. 

Exact Solution: 𝑦1(𝑥) = 𝑒−𝑥, 𝑦2(𝑥) = 𝑒−2𝑥, 𝑦3(𝑥) = 𝑒−3𝑥 

Source: Fawzi et al. [22] 

 

4.2 Numerical Result and Discussion 

We apply our five step block hybrid collocation method (FVBHCM) to solve the nine 

tested problems in Section 4.1. The results are compared with existing methods in 

literature. The numerical approximations for the newly proposed method and the 

existing methods are computed by using Python. The following numerical methods are 

used to be compared: 

• BHCM: Block hybrid collocation method in Yap et al. (2014) 

• FBHCM: Four-point block hybrid collocation method in Yap and Ismail (2018) 

• HLMM: Hybrid linear multistep method in Mohammed and Adeniyi (2014) 

• HCM: Hybrid collocation method in Awoyemi and Idowu (2005) 

 

The Maxe is defined as maximum error between the actual value and numerical 

result of the methods. Tables 4.1 – 4.11 demonstrate the numerical results of the 

methods for Problems 1 – 9.  Figures 4.1 - 4.11 display the comparison on the 

performance between our method and the existing methods for Problems 1 - 9.  

 

Table 4.1: Numerical findings for Problem 1. 

 

 

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 7.73E-14 1.13E-15 1.91E-17 2.19E-11 7.98E-07

0.0125 4.83E-12 1.50E-13 4.63E-15 7.24E-10 7.26E-06

0.025 3.34E-10 1.46E-11 1.05E-12 2.78E-08 8.15E-05

0.05 1.91E-08 1.48E-09 2.03E-10 9.87E-07 8.94E-04

0.1 1.58E-06 2.26E-07 2.36E-08 5.78E-05 1.69E-02
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Table 4.2: Numerical findings for Problem 2. 

 

 

Table 4.3: Numerical findings for Problem 3. 

 

 

Table 4.4: Numerical findings for Problem 4. 

 

 

Table 4.5: Numerical findings for Problem 5. 

 

 

Table 4.6: Numerical findings for Problem 6. 

 

 

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 8.49E-16 4.76E-18 3.62E-20 5.87E-13 1.48E-07

0.0125 5.43E-14 6.09E-16 9.28E-18 1.88E-11 1.18E-06

0.025 3.48E-12 7.79E-14 2.38E-15 6.01E-10 9.45E-06

0.05 2.22E-10 9.97E-12 6.08E-13 1.92E-08 7.51E-05

0.1 1.42E-08 1.28E-09 1.56E-10 6.15E-07 5.89E-04

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 4.95E-18 1.11E-19 1.94E-22 1.41E-14 3.52E-09

0.0125 3.09E-16 1.48E-17 4.68E-20 4.61E-13 2.88E-08

0.025 2.19E-14 1.52E-15 1.06E-17 1.71E-11 2.65E-07

0.05 1.28E-12 1.67E-13 2.15E-15 5.96E-10 2.27E-06

0.1 1.23E-10 2.84E-11 3.45E-13 3.14E-08 2.96E-05

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 1.60E-14 2.83E-16 6.61E-18 3.44E-12 5.02E-08

0.0125 1.03E-12 3.66E-14 1.72E-15 1.09E-10 1.89E-07

0.025 6.67E-11 4.77E-12 4.52E-13 3.43E-09 2.26E-06

0.05 4.36E-09 6.32E-10 1.22E-10 1.05E-07 8.94E-05

0.1 2.89E-07 8.55E-08 3.35E-08 3.11E-06 2.24E-03

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 9.13E-15 1.02E-16 1.56E-18 3.15E-12 1.98E-07

0.0125 5.85E-13 1.30E-14 3.99E-16 1.01E-10 1.58E-06

0.025 3.74E-11 1.67E-12 1.02E-13 3.22E-09 1.26E-05

0.05 2.39E-09 2.14E-10 2.61E-11 1.03E-07 9.88E-05

0.1 1.52E-07 2.73E-08 6.67E-09 3.33E-06 7.39E-04

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 7.93E-14 3.55E-15 2.48E-16 7.87E-12 1.63E-06

0.0125 4.98E-12 4.91E-13 6.12E-14 2.56E-10 1.37E-05

0.025 3.31E-10 6.42E-11 1.40E-11 9.16E-09 1.22E-04

0.05 1.87E-08 5.01E-09 2.52E-09 3.01E-07 1.14E-03

0.1 1.19E-06 5.18E-07 2.16E-07 1.24E-05 1.29E-02
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Table 4.7: Numerical findings for Problem 7. 

 

 

Table 4.8: Numerical findings for Problem 8. 

 

 

Table 4.9: Numerical findings of 𝑦1 for Problem 9. 

 

 

Table 4.10: Numerical findings of 𝑦2 for Problem 9. 

 

 

Table 4.11: Numerical findings of 𝑦3 for Problem 9. 

 

 

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 7.66E-14 3.84E-16 5.77E-19 4.95E-11 1.24E-05

0.0125 4.87E-12 5.12E-14 8.10E-16 1.60E-09 9.87E-05

0.025 3.17E-10 6.66E-12 2.01E-13 5.39E-08 8.12E-04

0.05 1.97E-08 7.47E-10 4.84E-11 1.79E-06 6.45E-03

0.1 1.34E-06 8.71E-08 1.09E-08 6.98E-05 5.69E-02

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 6.70E-16 3.60E-18 3.34E-20 4.92E-13 7.09E-08

0.0125 4.39E-14 4.98E-16 8.28E-18 1.66E-11 6.22E-07

0.025 2.74E-12 6.71E-14 1.99E-15 5.52E-10 5.44E-06

0.05 1.93E-10 6.27E-12 4.46E-13 2.19E-08 5.85E-05

0.1 1.11E-08 6.42E-10 8.70E-11 8.04E-07 5.56E-04

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 2.01E-15 2.87E-17 3.03E-18 4.82E-13 1.13E-08

0.0125 1.24E-13 5.23E-15 1.71E-16 1.60E-11 9.55E-08

0.025 9.58E-12 8.24E-13 3.67E-14 7.01E-10 1.09E-06

0.05 5.30E-10 3.86E-11 6.25E-12 2.51E-08 1.01E-05

0.1 6.53E-08 9.41E-09 4.13E-10 2.22E-06 2.58E-04

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 2.15E-14 3.71E-16 4.01E-17 5.56E-12 1.86E-07

0.0125 1.34E-12 5.05E-14 1.67E-15 1.84E-10 1.55E-06

0.025 9.73E-11 7.40E-12 3.84E-13 7.37E-09 1.59E-05

0.05 5.52E-09 4.41E-10 7.00E-11 2.60E-07 1.51E-04

0.1 5.44E-07 8.48E-08 6.14E-09 1.73E-05 2.89E-03

Step size Maxe of BHCM Maxe of FBHCM Maxe of FVBHCM Maxe of HLMM Maxe of HCM

0.00625 7.11E-14 1.15E-15 3.32E-17 1.71E-11 4.82E-07

0.0125 4.47E-12 1.62E-13 6.47E-15 5.57E-10 4.00E-06

0.025 3.03E-10 2.19E-11 1.53E-12 2.01E-08 3.73E-05

0.05 1.80E-08 1.87E-09 3.22E-10 6.83E-07 3.39E-04

0.1 1.37E-06 2.79E-07 4.54E-08 3.13E-05 4.47E-03
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Figure 4.1: Comparison of maximum error for different step sizes in Problem 1. 

 

 

Figure 4.2: Comparison of maximum error for different step sizes in Problem 2. 
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Figure 4.3: Comparison of maximum error for different step sizes in Problem 3. 

 

 

Figure 4.4: Comparison of maximum error for different step sizes in Problem 4. 
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Figure 4.5: Comparison of maximum error for different step sizes in Problem 5. 

 

 

Figure 4.6: Comparison of maximum error for different step sizes in Problem 6. 

 



35 

 

Figure 4.7: Comparison of maximum error for different step sizes in Problem 7. 

 

 

Figure 4.8: Comparison of maximum error for different step sizes in Problem 8. 
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Figure 4.9: Maximum error for 𝑦1 versus step size for Problem 9. 

 

 

Figure 4.10: Maximum error for 𝑦2 versus step size for Problem 9. 
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Figure 4.11: Maximum error for 𝑦3 versus step size for Problem 9. 

 

 Our five step block hybrid collocation method (FVBHCM) is an eighth order 

method with five main points and two off-step points (xn+1/3, xn+2/3). The four point 

block hybrid collocation method (FBHCM) is the seventh order method that consists 

of four main points and two off-step points (xn+1/2, xn+3/2). Block hybrid collocation 

method (BHCM) is the sixth order method that has three main points and two off-step 

points similar to FBHCM. Hybrid linear multistep method (HLMM) is the fifth order 

method with three main points and an off-step point (xn+8/3). Hybrid collocation 

method (HCM) is a predictor-corrector method which requires starting values with 

three main points and an off-step point (xn+3/2). All the methods are the self-starting 

methods except HCM. 

 Problems 1,3,5,7 and 8 are the linear nonhomogeneous problems and the 

results are presented in Tables 4.1, 4.3, 4.5, 4.7 and 4.8 respectively. Based on the 

numerical findings in Table 4.1, FVBHCM outperforms FBHCM, BHCM, HLMM 

and HCM since it has the smallest maximum error for every step size. For each step 

size, the maximum error of FVBHCM is smaller than other four methods as shown in 

Tables 4.3, 4.5, 4.7 and 4.8. The numerical results in Tables 4.1, 4.3, 4.5, 4.7 and 4.8 

demonstrated the similar pattern that the FVBHCM has the smallest maximum error 

and the HCM has the biggest maximum error for each step size. It is clearly shown in 

the Figures 4.1, 4.3, 4.5, 4.7 and 4.8 that the order of the maximum error increases 

linearly as the step size decreases.  
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 Next, we discuss the linear homogeneous problems which are Problems 2 and 

4. According to the results in Table 4.2, FVBHCM still have the smallest maximum 

error at each step size. The BHCM demonstrates the better performance than HLMM 

and HCM for each step size. From the results in Table 4.4, we notice that FVBHCM 

has the same order of maximum error as FBHCM at step sizes 0.1 and 0.05, but the 

maximum error of FVBHCM still smaller than FBHCM. The Figure 4.4 clearly shows 

that the difference of maximum error of FVBHCM and FBHCM becomes bigger as 

the step size decreases. 

 Lastly, we discuss the nonlinear nonhomogeneous problem as presented in 

Problems 6 and 9. Problem 9 is a system of third order ODEs. Based on the findings 

in Table 4.6, the FVBHCM and FBHCM have same order of maximum error that 

smaller than other methods at step sizes 0.1, 0.05 and 0.025. But the maximum error 

of FVBHCM still smaller than FBHCM for each step size. According to the numerical 

results in Tables 4.9, 4.10 and 4.11, FVBHCM has the best performance in each step 

size which similar to other problems. FBHCM has the second smaller maximum error 

and BHCM has the third smaller maximum error at each step size. The maximum error 

of HLMM and HCM are bigger than others and HCM has the biggest maximum error. 

This result clearly shown in the Figures 4.9, 4.10 and 4.11 and similar to the other 

problems. 

 As conclusion, FVBHCM has shown the better approximation for all the test 

problems compared to other methods. The numerical results demonstrate the pattern, 

we can conclude that the smaller the step size, the smaller the maximum error for every 

method which mean the greater accuracy. FVBHCM always have the best performance 

in accuracy compared to FBHCM, BHCM, HLMM and HCM. 
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4.3 Application to Solve the Physical Problem 

In fluid dynamics, Tuck and Schwartz (1990) stated that the movement of the fluid on 

plane surface and viscous forces in the fluid layer without the present of gravity can 

be represented by third order ODEs. Our five step block hybrid collocation method is 

applied to approximate the solution of the problem that explains the thin film flow of 

liquid. The thin film flow equation can be formulated into 

𝑦′′′ = 𝑓(𝑦),                (19) 

where 

𝑓(𝑦) = −1 + 𝑦−2, 

𝑓(𝑦) = −1 + (1 + 𝛿 + 𝛿2)𝑦−2 − (𝛿 + 𝛿2)𝑦−3, 

𝑓(𝑦) = 𝑦−2 − 𝑦−3, 

𝑓(𝑦) = 𝑦−2.      (20) 

 

 Mechee et al. (2013) and Yap et al. (2014) solved the thin film flow problem 

by considering the special third order IVPs as follows 

𝑦′′′ = 𝑦−𝑘                (21) 

 

where the initial conditions are 𝑦(0) = 1, 𝑦′(0) = 1, 𝑦′′(0) = 1 for the cases 𝑘 = 2 

and 𝑘 = 3. 

 Yap et al. (2014) applied the BHCM to approximate the solution of the third 

order IVPs (21). For the comparison of the performance between the methods, the 

numerical solution of the Problem (21) is obtained by our FVBHCM, the existing 

FBHCM, BHCM, HLMM and HCM. 

 Tables 4.12 - 4.15 show the numerical results for the cases 𝑘 = 2 and 𝑘 = 3 

with step lengths of 0.1 and 0.01, respectively. According to the numerical results in 

Table 4.12, FVBHCM has the similar order of accuracy to FBHCM while it is slightly 

greater than the BHCM, HLMM and HCM. FVBHCM has similar performance of 

accuracy to BHCM, FBHCM and HLMM in the case 𝑘 = 2  with step size of 0.01. 

The HCM have the worst performance compared to other methods.  

There is no analytical solution for the case 𝑘 = 3. Tables 4.16 and 4.17 show 

the number of decimal places of numerical results agreed with FVBHCM compared to 

BHCM, FBHCM, HLMM and HCM in Tables 4.14 and 4.15 respectively. FVBHCM 

obtained the numerical result that correct to nine decimal places while compared to 
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FBHCM. The similarity of the decimal places between both methods is the highest in 

Table 4.14. For the case 𝑘 = 3 with step size 0.01, the numerical results of our method 

have the same fourteen decimal places as the numerical results for FBHCM. The 

results in Tables 4.16 and 4.17 are presented graphically in Figures 4.12 and 4.13 

respectively for better illustration. Refer to the Figures 4.12 and 4.13, the similarity of 

decimal places for numerical results between FVBHCM and the existing methods can 

be arranged in order as FBHCM, BHCM, HLMM and HCM. As a whole, FVBHCM 

can be applied to solve the thin film flow problem (21) with good performance in 

accuracy. 

 

Table 4.12: Numerical findings for Problem (21) with step size of 0.1 for the case 

𝑘 = 2 

 

 

Table 4.13: Numerical findings for Problem (21) with step size of 0.01 for the case 

𝑘 = 2 

 

 

x FVBHCM BHCM FBHCM HLMM HCM

0.2 1.03E-06 1.03E-06 1.03E-06 1.02E-06 3.65E-07

0.4 1.13E-07 1.12E-07 1.13E-07 8.64E-08 3.78E-06

0.6 6.00E-09 2.07E-09 7.22E-09 5.83E-08 1.07E-05

0.8 2.20E-09 1.02E-08 3.89E-09 1.20E-07 2.18E-05

1 9.48E-07 9.35E-07 9.63E-07 7.59E-07 3.66E-05

x FVBHCM BHCM FBHCM HLMM HCM

0.2 1.03E-06 1.03E-06 1.03E-06 1.03E-06 1.03E-06

0.4 1.13E-07 1.13E-07 1.13E-07 1.13E-07 1.11E-07

0.6 6.32E-09 6.32E-09 6.32E-09 6.32E-09 2.58E-10

0.8 7.94E-11 7.94E-11 7.94E-11 7.82E-11 1.42E-08

1 9.54E-07 9.54E-07 9.54E-07 9.54E-07 9.29E-07
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Table 4.14: Numerical findings for Problem (21) with step size of 0.1 for the case 

𝑘 = 3 

 

 

Table 4.15: Numerical findings for Problem (21) with step size of 0.01 for the case 

𝑘 = 3 

 

 

Table 4.16:Number of decimal places which agreed with numerical result of our 

method in Table 4.14. 

 

 

x BHCM FBHCM HLMM HCM

0.2 9 9 7 5

0.4 8 9 6 4

0.6 7 8 6 4

0.8 7 6 5 4

1 6 7 5 2
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Table 4.17:Number of decimal places which agreed with numerical result of our 

method in Table 4.15. 

 

 

 

Figure 4.12: Graphical Illustration for the Table 4.16. 

 

 

Figure 4.13: Graphical Illustration for the Table 4.17.

x BHCM FBHCM HLMM HCM

0.2 13 14 12 8

0.4 13 14 12 7

0.6 13 14 11 7

0.8 13 12 10 6

1 12 13 10 6
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CHAPTER 5 

 

5 CONCLUSION 

 

5.1 Conclusion 

The five step block hybrid collocation method (FVBHCM) consist of two off-step 

points (xn+1/3, xn+2/3) has been proposed for solving third order initial value problem 

(IVPs) of ordinary differential equations (ODEs) directly in our project. Our newly 

proposed approach is an eighth order self-starting approach that is consistent and zero 

stable. The approach is applicable to solve the nonlinear and linear third order ODEs 

and also the system of the nonlinear third order ODEs. Furthermore, it also can be 

applied to solve the thin film flow problem. The results show that the smaller the step 

size, the greater the accuracy of the method. The numerical results for Problems 1 - 9 

and the problem of thin film flow (21) draw the same conclusion that our method have 

the greatest performance in term of accuracy compared to four-point block hybrid 

collocation method (FBHCM) (Yap and Ismail, 2018), block hybrid collocation 

method (BHCM) (Yap et al., 2014), hybrid linear multistep method (HLMM) 

(Mohammed and Adeniyi, 2014) and hybrid collocation method (HCM) (Awoyemi 

and Idowu, 2005).  

 

5.2 Future Work 

Five step block hybrid collocation method (FVBHCM) is proposed to solve the third 

order ODEs in this project. The idea to include these five main points and two off-step 

points in derivation can be extended to obtain the numerical methods dealing withs 

fourth and fifth order IVPs. Besides that, we can develop the method that consist of 

more main points and considering other off-grid points. Furthermore, we can 

investigate the effect of the number of main points and off-grid points on the accuracy 

for the approach. 
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