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ABSTRACT 

One of the common e-commerce problems is the low purchase conversion rate. Data mining 

techniques can help tackle the problem by analysing and predicting the customer purchase 

intention to give better service and better recommendations to customers. In this project, the real-

time online shoppers purchasing intention data set from Sakar et al. (2018) was used. The data set 

is unbalanced as it consists of 15.5% of the positive class and 84.5% of the negative class. Weka, 

a data mining tool, provides the facility to classify the data set with different machine learning 

algorithms. Six machine learning algorithms were applied and compared based on the 

classification evaluation methods. The algorithms involved were K-Nearest Neighbor (KNN), 

Naïve Bayers, J48, Support Vector Machine (SVM), Sequential Minimal Optimization (SMO) and 

Multilayer Perceptron (MLP). Data pre-processing on the data set may improve the classification 

results. The methods used were over-sampling, under-sampling and hybrid sampling, which 

modified the data set class distribution to achieve a better result. The hybrid sampling method gave 

comparable classification results compared with Sakar et al. (2018). Ensemble learning methods 

AdaBoost and Bagging were tested but showed no improvement on this online shoppers 

purchasing intention data set. 
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CHAPTER 1 

1. INTRODUCTION 

Online shopping, also known as e-commerce, is a very popular trend in this era and is expected to 

continue to grow and expand in the future. There was a pandemic outbreak of Covid-19 worldwide 

in the early of the year 2020. People were therefore encouraged to stay at home during the 

lockdown. During the lockdown period, most people chose online shopping to get the necessary 

product, and some of them had never tried buying online before. This has boosted up the online 

shopping trend worldwide. In April 2020, the global e-commerce retail sales had grown by 207 % 

compared to last year’s same month (ACI Worldwide, 2020). 

1.1 Research Background 

The common issue in e-commerce is the low conversion rate which the number of customers who 

completed transactions in online shops is lower than the number of customers who visit the shop. 

The purchase conversion rate is often dealers’ concern as the resources had already invested in the 

online shop and need to manage it frequently. The study by Chaffey (2020) had stated that the 

average conversion rate for e-commerce is only 3.3% that could be viewed by the conversion rate 

funnel.  

 
Figure 1.1: E-commerce conversion funnel. (Chaffey, 2020) 
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The resources and expertise in an SME sector are usually limited. Therefore, efficiency and cost-

effectiveness are important when managing an online shop (Cronin-Gilmore, 2012; Grandón et al., 

2011). Di Fatta, Patton and Viglia (2018) investigated how e-commerce websites can positively 

affect the conversion rates based on the management of promotions and quality. Manipulated with 

promotions and quality are the good starting points for improving the conversion rate. 

Unlike physical retail shops and the traditional commercial way in which the promotions usually 

can be provided by experienced salespersons to different customers based on the observation, these 

experiences can improve the sales figure and purchase conversion rate in online shops (Moe, 2003). 

Some e-commerce and IT companies are creating such experiences by acting like a salesperson in 

online shops via early detection and behaviour predicting systems (Rajamma et al., 2009; Albert 

and Hartford, 2004). At the same time, researchers also studied this issue from a different 

perspective with machine learning, according to the navigation pattern or predicting the real-time 

customer behaviour by taking a corresponding action to minimise the abandonment rate of 

purchase by customers.  

Sakar et al. (2018) developed an analysis system based on real-time user behaviour for online 

shopping. The system could detect the visitors who have purchasing intentions but may leave the 

site. It will take corresponding actions to improve the online shopping abandon rate and the 

purchase conversion rates. The data set used in this research was pre-processed with over-sampling 

and feature selection methods. The best prediction of customer behaviour is achieved by using a 

multilayer perceptron network with an accuracy of 87.24% and a true positive rate of 84%; the 

result was better than the decision tree algorithm or support vector machines.  

In short, the online shopping customers’ buying decision predicting system is very important to 

improve the low purchase conversion rate problem, with the combination of corresponding actions 

taken based on the outcomes from the predicting system.  

 

1.2 Project Overview 

In this project, data set from Sakar et al. (2018) was used. Since the data set consists of only 15.5% 

of the positive class (Buy), the predicting results on the positive class are weak. Therefore, methods 

such as modifying the unbalanced class distribution data will be carried out to obtain better 
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predicting results. The pre-processing methods applied in this project are over- sampling and 

under-sampling. 

Six machine learning algorithms were evaluated in this project to compare their performance in 

predicting buying decisions. They are K-Nearest Neighbor (KNN), Naïve Bayers, J48, Support 

Vector Machine (SVM), Sequential Minimal Optimization (SMO) and Multilayer Perceptron 

(MLP). 

The results from each algorithm will be visualised in a table to determine the most suitable 

algorithms for customers’ buying decision predicting system. 

This project used Weka - a tool for data mining, analysis and visualisation. Weka stands for 

Waikato Environment for Knowledge Analysis; it contains various visualisation tools and 

algorithms which can be used for data mining and machine learning. The tool is used in this project 

to increase the efficiency of applying machine learning and data visualisation. With the Weka tool, 

the unbalanced data set solution can be visualised to obtain better results and then compare the 

machine learning algorithms. Finally, the best combination of learning algorithms and the 

sampling pre-processing method on the unbalanced data set can be determined for predicting 

customers’ buying decisions. 

 

1.3 Problem Statement 

The most common problem of online shops is the low purchase conversion rate, which means 

fewer buyers than the total number of visitors. If the customers’ behaviour can be detected and 

predicted earlier, further actions can be carried out to increase the chances for customers to buy 

products. 

The data set for online customers are usually unbalanced – the majority is the negative class (Not 

Buy), and the minority is the important positive class (Buy). Such unbalanced class distribution in 

the data set will greatly affect the prediction for the positive class, as the machine learning 

algorithms tend to favour the majority class. 
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1.4 Objectives 

To predict the customers’ buying decisions by applying various machine learning algorithms.  

To improve the predicting performance of the algorithms for the minority yet important class 

(BUY) in the data set using sampling techniques, ensemble method and multiple classifiers. 

 

1.5 Scope 

This project is a data mining project, and it is to study the predictive capability of the selected 

machine learning algorithms using the online shoppers purchasing intention data set provided by 

Sakar et al. (2018). The experiments are conducted using Weka, the data mining and analysis tool. 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Online Purchasing Portal  

There are many existing online shopping portals in the current information age, including giants 

in this e-commerce field such as Amazon, eBay and Alibaba. Amazon was started as a bookseller 

since the year 1994 and continues growing until now, with over 500 million products sold. The 

success of Amazon has become a role model for the newly started online business portals. 

Meanwhile, eBay is another e-commerce portal that includes an auction site. eBay has had over 

147 million registered users in over 30 countries since the year 2005, and continue to grow until 

now. Alibaba was founded in the year 1999, now the biggest e-market portal in China. While in 

Malaysia, there are also a few famous online shopping portals such as Shopee and Lazada. 

More and more competitors are joining to share the pie of this e-commerce world. The world has 

changed since e-commerce became so popular and affects our lives from the social and economic 

aspects. Converting physical business to online business may be fraught with challenges like the 

expensive cost for Internet development and fulfillment, but the problem solves if one joins the 

existing portals. The existing portals generally allow online presence development and favourable 

business proposition for retailers (Kennedy and Coughlan, 2006). To compete and stand among 

all the e-commerce shops, the shop’s owner must consider e-commerce strategies. For example, a 

new perspective of seeing the product with augmented reality or visual reality technology, learning 

about customer behaviour with artificial intelligence/machine learning, or implementing a mobile 

shopping portal application. Therefore, the machine learning strategies will be focused to tackle 

the e-commerce problem as stated in this project.   
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2.2 Existing Research 

Online shopping has brought convenience, but it has some issues that the online shop owner is 

always concerned about, such as the low purchase conversion rate. There are two categories of 

research for this issue: (i) to study the navigation path of visitors or (ii) to predict the users’ 

behaviour in real-time. Hu et al. (2020) studied the online shopping customer purchase behaviour 

by analysing the customer online purchase data with a deep forest algorithm and developing a 

predicting system for online customer purchase intention. This data set used in the study is the 

behavioural data collected from information from Alibaba's online shopping portal in 2017. The 

data consists of 16,880 users and 393,798 products. The data attributes include user id, product id, 

product category id, type of user behaviour on the product and the time of the behaviour. Since the 

data set has an unbalanced class distribution in which the number of “not purchase” is higher than 

the “purchase”, therefore it is not suitable to use the accuracy to measure the predicting 

performance of the machine learning algorithms. In the study, they measure the performance by 

using the F1 value. F1 value is the weighted harmonic average of the recall and accuracy for 

evaluating the predicted results from the system. The performance of the algorithms is as shown 

in Table 2.1, and the result showed that the deep forest algorithm achieved a higher F1 value than 

the other algorithms.  

Table 2.1: Comparison of algorithm performance in the study Hu et al. (2020). 

 Training Time (s) F1 Result (%) 

SVM 37 7.21 

random forest 18 9.01 

Xgboost 29 6.78 

deep neural network 1021 8.09 

deep forest 41 9.51 

 

Another literature study used the unbalanced data of an e-commerce portal and analyses with cat-

boost model to predict whether a customer will purchase a specific product (Dou, 2020). In the 

study, the accuracy and precision of the model were used to evaluate the predictive performance. 

The Cat-boost model is good in auto-processing the variables, which decreases the steps of 

processing the previous data and decreases the loss of information when dealing with unbalanced 
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data sets. The original data set’s information can be fully mined and prevent the problem of over-

fitting. The data set analysed consists of 12,316 records. 10,303 records are negative class (no buy), 

and 1,889 are positive class (end up buy). Due to the unbalanced data, AUC-ROC and F1 were 

chosen to measure the performance of the model. The result obtained an accuracy of 88.51% and 

a recall rate of 84.48%. 

Mohammed et al. (2018) built models to predict potential customers of a POS machine in a bank 

system using J48 and Naïve Bayes learning algorithms. In this study, the data set collected from 

the UK-Bank data repository consist of 5000 users’ data. They had compared J48 and Naïve Bayes 

algorithms. The result showed that J48 had 89.72% classification accuracy, better than Naïve 

Bayes, which had 89.58% classification accuracy.  

In Rusmee and Chumuang (2019) study, they built a prediction system for the consumers’ buying 

decision on the personal car by applying the SMO learning algorithm. The data set was collected 

from the Toyota center and consisted of 1,110 data. The result obtained from the model created 

with SMO showed an accuracy of 95.13% and an error rate of 0.05. 

Nayyar (2019) had built a predicting model for customers’ purchase behaviour based on customers’ 

gender, age and salary data. The author had compared Logistic Regression, KNN, SVM, Decision 

Tree and Random Forest for the predicting models. The result evaluation in this study was based 

on the confusion matrix. The result showed that SVM with non-linear kernel support had the best 

performance among all with an accuracy of 93.0%, a true positive rate of 95.5% and a true negative 

rate of 87.8% 

Xu et al. (2020) proposed a model of analysing customer behaviour data to improve customer 

satisfaction by utilising the collect and deliver (CDP) location for an online shop. This model 

predicted the purchase probability to optimise the CDP location. Real customer behaviour data 

consisting of 257,685 records were used for this study. The records are unbalanced data set and 

five machine learning algorithms include naïve Bayes, gradient boosting tree, random forest, 

logistic regression and multilayer perceptron was applied for the model. The results were 

compared and showed that the gradient boosting trees algorithms had the best performance.  

Meanwhile, in the study by Moe (2003), the classification model for buy and no buy classes by 

visit behaviours was developed and tested. In the study, page-to-page clickstream data from an 

online store was collected and analysed; the data are categorised as buying, browsing or searching 
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based on the study from the clickstream data patterns, such as the pages viewed of the product. 

Each type of visit has represented different purchasing likelihood from customers. Shop owners 

are also driven by different motivations and would act corresponding to various marketing 

messages. The data collection was done by a market research firm, NetConversions, which was 

employed by the store site. NetConversions used cookies downloaded onto the visitor’s computer 

so that the store site can track and record the shopper’s behaviour at that webpage. The real-time 

clickstream data was evaluated and updated with the result of purchasing rate, abandon rate, and 

promotional response rate of a customer when that customer visited the online shop. 

In the study by Mînăstireanu and Meșniță (2020), they analysed the bank user data from fraud 

detection system with machine learning algorithms. The data set is highly unbalanced because the 

non-fraudulent case classes are the majority and dominate the fraudulent case class. In the study, 

they had stated three ways for handling unbalanced data sets. The first way is resampling methods 

such as under-sampling and over-sampling; the second way is cost-sensitive training and the third 

way is using tree algorithms such as decision tree and random forest. The best result was obtained 

using SMOTE, an over-sampling method. The performance of the classification models was 

evaluated with the AUC PR curve, and high precision of 94% was obtained with a random forest 

classifier. 

C and Ravikumar (2019) studied the suitable model to predict the customers who will do more 

purchasing in the online shop and take the corresponding action to improve the sales. In this study, 

the data set was collected from various online shopping portals. Data Mining tools and techniques 

were implemented to analyse the huge data set. The data mining techniques such as data pre-

processing and feature selection was applied. In conclusion, they found the best result was obtained 

with features selection PCA algorithm, with an accuracy of 89%. The result can be further 

improved with features extraction techniques which finally obtained an accuracy of 92.18%. 

Another research from Dang et al. (2020) had studied and analysed online purchase behaviour for 

young generations. They proposed a structured model that analysed the effects of four attributes, 

such as information adoption, personalised service, perceived switching risk and habitual 

behaviour on the buying intention in online shopping. The data set analysed in this paper was 

collected from 407 users on Taobao who are in the 90s generation. A structural equation modeling 

was applied and the result showed that information adoption, personalised service and perceived 
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switching risk are the key factors that affect the online purchase intention in young generations, 

while habitual behaviour had a negative influence on online purchase intention. The correlation 

coefficient was used in the structured model to analyse the influence of each attribute on online 

purchase intention. 

From the literature review above, it can be concluded that the problem of conversion rate existing 

in e-commerce is always studied to overcome the issue with data mining data techniques. However, 

when dealing with the issue, the problem of unbalanced data will rise as in reality, the variance of 

the number of people who buy and the number of people who window shopping is big. Each of 

the literature papers above used different approaches, and the common learning algorithms applied 

are decision tree, SVM, KNN, and MLP to obtain better classification results. Hence, machine 

learning can effectively solve the problem of the e-commerce state in this project. In this project, 

six common learning algorithms will be applied which include K-Nearest Neighbor (KNN), Naïve 

Bayers, J48, Support Vector Machine (SVM), Sequential Minimal Optimization (SMO) and 

Multilayer Perceptron (MLP) as a comparison to deal with the problems in this project. With the 

aid of the Weka tool, the data set can be processed efficiently without coding the selected 

algorithms. With this, different combinations of data pre-processing solutions can be experimented 

to obtain the best solution to the problems.  

 

2.3 Unbalanced Data Set and Its Solutions 

With the continuous growth of data mining and machine learning, unbalanced data learning has 

become a concern. Data-level and algorithm-level methods are continuously being improved to 

overcome the unbalanced data issue. Recent trends show not only the disproportion between 

classes but other difficulties that exist in the real-time data. These problems have motivated data 

researchers to focus more on the efficient, adaptive and real-time data mining method. 

In Krawczyk (2016), his research focuses on handling the unbalanced data as real-life data set 

distribution is usually skewed since classes always appear more frequently compared to others. 

This has caused difficulty for machine learning algorithms because they will always bias towards 

the majority group, while the minority class may contain more useful and important knowledge 

and become more important for the data mining research. When facing the skewed distribution in 
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the data, an intelligent system that can overcome the bias has to be designed. Meanwhile, in an 

unbalanced binary classification, the unbalance ratio may not be the only factor of learning 

difficulties. For example, the classes with high disproportion are well represented and come from 

non-overlapping distributions. Good classification results can still be obtained using canonical 

classifiers. Most contemporary works in class unbalanced data concentrate on unbalanced ratios 

ranging from 1:4 up to 1:100. But in real-life applications, the data sets may have unbalanced ratios 

ranging from 1:1000 up to 1:5000. This may cause new difficulties to data pre-processing and 

machine learning algorithms. The algorithms must be prepared for such extreme scenarios. Three 

general methods were introduced in the study: (i) modifying the train set and making it suit for any 

standard machine learning algorithm, (ii) modifying existing learners to ease their bias towards 

majority class or (iii) combining the two to focus their strengths and reduce their weaknesses. 

Combining data-level solutions with ensemble algorithms results in more efficient and robust 

learners. 

In a study by Lee and Kim (2018), overlapped and unbalanced data sets were studied. Class overlap 

occurs if the region in the class consists of the same value of data for another class. When class 

overlapping occurs in an unbalanced data set, the classification process will become harder. If the 

overlapping issue does not exist in unbalanced data, the classifier rate will be more accurate. Most 

previous methods considered only the class unbalance problem, but their study aims to improve 

classification results with data sets that have both unbalanced and overlapped class problems. The 

study proposed a method based on OSM margin, which allows the user to separate the unbalanced 

and overlapping data set into soft and hard overlap regions to improve the classification process.  

 
Figure 2.1: Example of unbalanced and overlapped data set adopted from Lee and Kim (2018). 
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Jacobusse and Veenman (2016) researched unbalanced data from law enforcement and medical 

screening. In their study, they showed how to resolve the selection bias issue when dealing with 

unbalanced data. The data sets analysed in the study was a synthetic data set and a real-world law 

enforcement data set. In their study, they found that applying Positive and Unlabelled (PU) 

learning to the data sets will improve the final classification performance. This method leaves out 

the labeled non-targets (negative class) and uses only the positive data and unlabeled data to obtain 

the best results. They considered class unbalanced with a ratio of 1 in 100 for positive class and 

negative class. 

From the above literature studies, the unbalanced data set has become a more concerning issue. 

However, not only unbalanced data influent the performance of classification, but the overlapping 

of classes is also one of the reasons that affect the classification performance. To overcome the 

issues, researchers implemented modifications on the data set or the algorithms need to be 

implemented. According to the research papers, some researchers focus on pre-processing the data 

set with sampling methods to balance the class distribution and make the machine learning 

algorithms easy to understand. They also attempt to improve the classification performance with 

ensemble algorithms by combining two algorithms to enhance each strong point and overcome 

weaknesses.  

 

2.3.1 Sampling Methods 

Knowing that unbalanced and overlapped classes will affect the performance of the customer 

predicting model, one of the objectives in this project is to handle the unbalanced data set and 

overcome the weak predicting performance caused by the data set. In Ganganwar (2012) paper, 

the necessity of balancing unbalanced data was elaborated. They had reviewed the different 

unbalanced data handling solutions in this study, such as random over-sampling, Synthetic 

Minority Over-sampling Technique(SMOTE), random majority under-sampling, one-sided 

selection under-sampling and cost-sensitive boosting learning.  

The study of Arafat et al. (2019) stated that unbalanced data classification is the most challenging 

research issue for supervised learning in data mining. Even though there are many data sampling 

methods introduced by past researchers to handle unbalanced data, learning with unbalanced data 

is a challenging task and still a focused research interest. Hence, the authors introduced a new 
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under-sampling model with the support vectors algorithm to balance the unbalanced data sets. The 

support vector will select instances from the majority class which is equal to the number of 

minority classes in the data set and form a balanced data set. The result obtained was compared 

with C4.5, Naïve Bayes, Random Forest and AdaBoost. In conclusion, the proposed model with 

under-sampling and Support Vector algorithms gave the best result. 

Choirunnisa and Lianto (2017) used a combination of under-sampling and over-sampling to solve 

the unbalanced data problem. Five data sets were collected and each data set was pre-processed 

with the under-sampling method followed by the over-sampling method. Then, they carried out 

classification using random forest and decision tree C4.5. The result showed that with the 

combination of two sampling methods, the accuracy and ROC values had increased around 0.1% 

- 4.0% as compared to only handling the unbalanced data set with only one of the sampling 

methods. 

Furthermore, McLean and Weaver (2018) stated that the impact of unbalanced data had caused 

high-cost losses in computing for the important classes. They introduced a new approach for 

handling an unbalanced data set, which is a hybrid classification method that combines algorithmic 

adaptations and multi-modal data formats. The evaluation metrics used in the study include 

accuracy, precision and specificity. The solution they designed is an ensemble learning algorithm 

that uses a custom over-sampling technique together with K-means and combined with a random 

under-sampling technique to counter any overfitting issue. The classification result has shown the 

effectiveness of the new algorithm in dealing with unbalanced commerce data. 

Meanwhile, in Li and Zhou (2019) research, they introduced an improved over-sampling method 

from SMOTE known as TDSMOTE to solve the problem of classification effect on unbalanced 

data set. TDSMOTE divided minority samples into three regions and applied different over-

sampling approaches at each region. In this study, 6 data sets from UCI data sets were selected. 

The data sets had an unbalanced ratio of 0.064 to 0.428. The over-sampling method SMOTE, 

BSMOTE, SVM-SMOTE and TDSMOTE were used to pre-process each data set and 

classification by random forest. The results were compared and the TDSMOTE approach had a 

better result than others based on G-mean, F-value and AUC.  The average G-mean obtained with 

TDSMOTE on 6 data sets in the study is 0.8456, the average F-value is 0.8622 and the average 

AUC obtained is 0.8858. 
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From the studies of handling methods for unbalanced data sets above, sampling techniques for pre-

processing unbalanced data sets showed effective outcomes on improving classification 

performance. In my project, the sampling methods will be utilised to improve the classification 

performance for the data set used and the result of each sampling method will be compared. The 

summary of each research was compiled and shown in Table 2.2: 

Table 2.2: Summary of Literature Review on Unbalanced Data Set Solution (Sampling) 

Authors Research Title Problem Application Result 

Arafat et al. 

(2019) 

An Undersampling 

Method with Support 

Vectors in Multi-

class Imbalanced 

Data Classification 

13 data sets 

with 

unbalanced 

ratios in 

between 5.55 

and 853. 

Under-

sampling with 

support vector. 

Most of the results 

with the proposed 

model are better 

than the other four 

algorithms. 

Choirunnisa 

and Lianto 

(2017) 

Hybrid Method of 

Undersampling and 

Oversampling for 

Handling Imbalanced 

Data 

5 data sets from 

Keel with an 

unbalanced 

ratio in 

between 3.25 

and 8.79 

Hybrid with 

Under-

sampling and 

Over-

sampling. 

The evaluation 

metric ROC shows 

an increase of 0.1 – 

4 % with the hybrid 

method. 

McLean and 

Weaver 

(2018) 

Classification of 

Imbalanced Data in 

E-Commerce 

5 data sets with 

minority class 

at 7.4 ~ 8.7%. 

Over-sampling 

with K-mean 

and Under 

sampling 

The solution shows 

better results 

compared to another 

common algorithm. 

Mînăstireanu 

and Meșniță 

(2020) 

Methods of Handling 

Unbalanced Datasets 

in Credit Card Fraud 

Detection 

Kaggle credit 

card data set 

with minority 

class at 0.172% 

Over-sampling 

and Under-

sampling 

The Best result was 

obtained by using 

SMOTE with a 

random forest 

classifier. 
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Li and Zhou 

(2019) 

Research on 

Improving SMOTE 

Algorithms for 

Unbalanced Data Set 

Classification 

6 UCI data sets 

with minority 

class at 6.4% ~ 

42.8% 

Over-sampling 

SMOTE, 

BSMOTE, 

SVM-SMOTE 

and 

TDSMOTE 

TDSMOTE showed 

effective 

improvement in the 

classification 

performance for the 

unbalanced data set. 

 

2.3.2 Ensemble Learning 

Another study from Malhotra and Jain (2020) suggested handling unbalanced data sets with 

ensemble learning in predicting software defects. They had provided an experimental comparison 

of software defect prediction models with various boosting-based ensemble methods. Seven 

ensemble methods with re-sampling techniques were applied, and their performances were 

evaluated using stable metrics, such as Balance, G-Mean and AUC. The results showed that using 

re-sampling techniques before ensemble methods had significantly improved the model prediction 

performance. RUSBoost is the most suitable method among the seven methods, followed by 

MSMOTEBoost and SMOTEBoost. 

Next, in Zhang et al. (2019) paper, an evolutionary-based ensemble under-sampling (EEU) 

algorithm was proposed to solve the problem of unbalanced data set classification. The EEU 

algorithm ensemble the under-sampling method with multiple based classifiers to improve the 

classification of the minority class in the unbalanced data set. In their study, 5 UCI data sets were 

selected, which had minority class percentages at 0.86% to 9.35%. The evaluation metrics used in 

this study are sensitivity, Matthews Correlation Coefficient (MCC), AUC and G-Mean. The 

authors had experimented with the EEU, RUS and KNN algorithms, the results showed EEU had 

the best result among the selected algorithms. 

Xiao et al. (2020) used the ensemble cost-sensitive model with unbalanced customer credit data. 

Cost-sensitive learning allocates different costs to each wrong classification result and builds a 

classification model based on the principle of minimising the total wrong classification costs. The 

results obtained from the six data sets showed that the proposed model has a better classification 
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performance than the other models used in the study, such as Subagging, Semi-Bagging, CoBag, 

and Tri-training models. 

Jiang and Hu (2014) introduced multiple classifiers known as the Dempster-Shafer fusion model 

by combining two different classification methods with Dempster-Shafer's rule. The combined 

classifier fully used the strengths between each classifier, purposed to obtain better classification 

performance for consumers’ credit scoring. In the study, the two combined classification methods 

used are traditional linear Logistic Regression and nonlinear BP neural network. From the result 

obtained with the DS fusion model on the test sample, the accuracy is higher than applying each 

classification method separately. Therefore, using the DS theory of fusion can improve the 

classification accuracy of personal credit scoring. The second type error rate obtained from the test 

sample was slightly higher than the two single classification models, but overall the DS fusion 

model showed the advantage of classifying the personal credit score for the commercial banks.  

Ahmed et al. (2018) introduced multiple classifier systems (MCS) by combining the boosting and 

stacking techniques. In this paper, two data sets were used. The first data set was telecom industries 

churn data from UCI data set that has 5000 data samples with minority class percentage at 14.3%. 

The second data set used was data gathered from a telecom operator in South Asia. Pre-processing 

method such as feature selection and sampling techniques was applied to the two data sets. They 

compared a few classifiers include K Nearest Neighbor, Artificial Neural Network, Decision Tree, 

Naïve Bayesian and Logistic Regression. From the result,  MCS achieved 97.2% accuracy on the 

first data set and 86.3% accuracy on the second data set which is the best performance among other 

selected classifiers.  

From the studies of handling methods for unbalanced data sets above, ensemble learning improved 

the classification performance for unbalanced data sets. The common ensemble learning applied 

was boosting and bagging, which will be used in this project. The summary of each research was 

compiled and shown in Table 2.3: 
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Table 2.3: Summary of Literature Review on Unbalanced Data Set Solution (Ensemble) 

Authors Research Title Problem Application Result 

Malhotra 

and Jain 

(2020) 

Handling Imbalanced 

Data using Ensemble 

Learning in Software 

Defect Prediction 

3 Java Software 

project data 

sets with 

minority class 

less than 22%. 

Ensemble 

AdaBoost 

AdaBoostNC 

RUSBoost 

MSMOTEB 

RUSBoost model 

showed better 

results compared to 

others. 

Zhang et 

al. (2019) 

Evolutionary-Based 

Ensemble Under-

Sampling for 

Imbalanced Data 

5 UCI data sets 

with minority 

class at 0.86% 

~ 9.35% 

Evolutionary-

Based Ensemble 

Under-Sampling 

method 

EEU algorithm 

improved the 

classification result 

compared to RUS 

and KNN 

Xiao et al. 

(2020) 

Cost-sensitive semi-

supervised selective 

ensemble model for 

customer credit 

scoring 

5 data sets with 

an unbalanced 

ratio between 

1.2 and 13.3. 

Ensemble cost-

sensitive with 

Semi-supervised 

learning. 

GMDH-based cost-

sensitive semi-

supervised selective 

ensemble model 

gave better results. 

Jiang and 

Hu (2014) 

Combining multiple 

classifiers based on 

Dempster-Shafer 

theory for personal 

credit scoring 

Consumer 

credit data from 

Shenzhen bank 

Fusion model with 

logistic regression, 

BP neural network 

The combined 

model had higher 

accuracy and lower 

error than the single 

classifiers. 

Ahmed et 

al. (2018) 

MCS: Multiple 

classifier systems to 

predict the churners in 

the telecom industry 

UCI data sets 

with minority 

class at 14.3% 

MCS with 

combining the 

boosting and 

stacking 

techniques. 

The proposed MCS 

was more accurate 

than the individual 

classifier. 
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2.4 Data Set Overview 

The data set analysed in this project is the online shoppers purchasing intention data set from Sakar 

et al. (2018). The authors C. Okan Sakar and Yomi Kastro. From this data set, each session 

represents different user data in one year. The data set had avoided any specific campaign or 

promotion day, and user profile information which may disrupt the result. 

This data set consists of 12,330 sessions, with 10,422 rows as the negative class (Not Buy) and 

1,908 rows as the positive class (Buy). The percentage of the data distribution is 84.5% for the 

negative class and only 15.5% for the positive class. Thus, the ratio of the data set for the positive 

class to the negative class is 1:6, which is unbalanced distribution. The attributes in the data consist 

of Administrative, Administrative duration, Informational, Informational duration, product related, 

Product related duration, Bounce rate, Exit rate, Page value, Special day, Month, Operating 

Systems, Browser, Region, Traffic Type, Visitor Type, Weekend and Revenue. Each attribute is 

described in Table 3. 

Table 2.4: Data Set Attribute Description Adopted from Sakar et al. (2018) 

Attribute Name Description 

Administrative Represent the number of pages view on user account related page 

Administrative_Duration Represent the time user spent on view the account related page 

Informational Represent the number of pages view on webpage and shop detail 

Informational_Duration Represent the time user spent on view the shop details related page 

ProductRelated Represent the number of pages view on product detail page 

ProductRelated_Duration Represent the time user spent on view the product detail page 

BounceRates Represent the rate of user leave without further view on the website 

ExitRates Represent the rate of user leave after view the website 

PageValues Represent the page visited by user before completed the transaction 

SpecialDay Represent the day when visited website was on holiday or not 

Month Represent the month when visited the website 

OperatingSystems Represent user’s operating system 

Browser Represent user’s browser 

Region Represent user’s location 

TrafficType Represent the sources of user reached the website  

VisitorType Represent the type of user whether first visit or returning visit.  

Weekend Represent the day when visited website was on weekend or not 

Revenue The class, positive (Buy) and negative (Not Buy) 
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From the data set, the descriptive statistic for each attribute with numeric data was measured, and 

the overlapping graph was generated using the Weka tool. The detailed information is shown in 

Table 4. 

Table 2.5: Descriptive Statistic for each attribute in the data set. (Sakar et al., 2018) 

Attribute Name Minimum Q1 median Q3 Maximum Mean 
Std 

Deviation 

Administrative 0 0 1 4 27 2.315 3.322 

Administrative_Duration 0 0 7.5 93.2563 3398.75 80.819 176.779 

Informational 0 0 0 0 24 0.504 1.27 

Informational_Duration 0 0 0 0 2549.375 34.472 140.749 

ProductRelated 0 7 18 38 705 31.731 44.476 

ProductRelated_Duration 0 184.138 598.937 1464.16 63973.52 1194.75 1913.669 

BounceRates 0 0 0.00311 0.01681 0.2 0.022 0.048 

ExitRates 0 0.01429 0.02516 0.05 0.2 0.043 0.049 

PageValues 0 0 0 0 361.764 5.889 18.568 

SpecialDay 0 0 0 0 1 0.061 0.199 

OperatingSystems 1 2 2 3 8 2.124 0.911 

Browser 1 2 2 2 13 2.357 1.717 

Region 1 1 3 4 9 3.147 2.402 

TrafficType 1 2 2 4 20 4.07 4.025 

 

 

         
       (a) Administrative Duration vs Page Values                      (b) Administrative vs Product Related Duration 
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           (c) Administrative vs Product Related                                      (d) Bounces Rates vs Exits Rates 

                 

        (e) Exits Rates vs Administrative Duration                            (f) Exits Rates vs Informational Duration 

         
(g) Informational Duration vs Administrative Duration               (h) Page Values vs Product Related Duration 

         
         (i) Page Values vs Product Related                                      (j) Product Related vs Bounces Rates 

Figure 2.2: Relationship between two attributes with Weka. 
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The graphs above show the relationship between each attribute in the data set. From the result 

shown that the data set is highly overlapped and having unbalanced data distribution as the 

unbalanced ratio is 1:6. Hence, this highly overlapped and unbalanced data set was selected to be 

applied in this project to further resolve the problem of the low true positive rate for the positive 

class. 

2.5 Evaluation Methods 

In this project, the six classification models will be applied and the classification model evaluation 

methods were used for evaluated the performance of the classification models. 

The Cross-validation method can estimate the generalisation performance of a predictive model. 

In k-fold cross-validation, the data was sampled into k equal size subsets and each of the subsets 

will become either the training set or the validation set. All data will be used as the training and 

validation set and the performance of the predicting model will be evaluated from the average 

performance from the number of folds created for this cross-validation method. The 10-folds cross-

validation is the most common use in machine learning, which splits the data into ten subsets and 

proceeds with the training and testing for ten iterations.  

The holdout method separates the data into two sets, one for training and one for validation, based 

on a defined ratio, such as 80% to be the training set and 20% for the validation set. This method 

needs a short time to compute, but the evaluation has high variances, depending on how the data 

is being separated. 

A confusion matrix evaluation method visualise the performance for the classification by 

separating the result into two groups, the positive and negative groups that include the true positive, 

true negative, false positive and false negative. A confusion matrix or error matrix is shown in 

Figure 4. The confusion matrix consists of the actual classification result and the predicted 

classification result. The true positive and true negative is the correct classification, while the other 

two are incorrect classification.  
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Figure 2.3: Format of a confusion matrix. (Kaur, 2013) 

The formula for accuracy, precision and true positive rate (recall) are defined as below. 

Accuracy  =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            

Precision  = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                

True positive rate (Recall) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

False Positive Rate = 
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

F1 Score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Receiver Operating Curves (ROC) is a two-dimension graph that visually depicts the performance 

of the classification model. This is due to the confusion matrix may have poor summary when 

deploying a non-parametric model such as the neural networks or decision trees. Besides that, 

some of the performance derived using confusion matrix is sensitive to data anomalies such as 

unbalanced class distribution. ROC shows the same information as a confusion matrix but in a 

much more robust way. ROC curves were designed to determine the optimal operating points in 

the first place. There are two new metrics introduced in ROC, which are the true positive rate and 

the false positive rate. 
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ROC graphs are plotted by the true positive rate against the false positive rate. The number of 

regions of interest can be determined from the graph. Random performance is the middle line 

whereby the model produces the same true positive responses as the false positive response. A 

conservative performance is the regions with less false positive error. For liberal performance 

regions, a classifier model has a good true positive response. The bottom right region is the worst 

performing region as it will have a high false positive, which means a fail classification. Figure 5 

shows the example of a ROC graph. (Kaur, 2013) 

 
Figure 2.4: ROC graph regions. (Kaur, 2013) 

 

From Kaur (2013) paper, the measurable performance metrics for evaluating a classification model 

include accuracy, precision, recall, F1 score, confusion matrix and AUC ROC. Accuracy is 

calculated based on the overall true positive and true negative for the model’s predicting outcome. 

Thus, with the unbalanced data that skew to the negative class, the predicting result will tend to 

predict more negative class correctly and this may lead to high accuracy. However, the accuracy 

result is not favourable to the users as the most important is to predict the positive class correctly. 

The next evaluation metrics is precision. The rate of true positive among the positive result 

predicted from the system can be measured. But precision is not suitable for this predicting model 

with unbalanced data, as precision only measures the model’s positive results but fails to look at 



24 
 

the false negative prediction by the model. In the case of predicting customers’ buying decisions 

in the online shop, the false negative will cause loss to the users.  

For recall or true positive rate, it measures the overall correct positive class prediction from the 

model. Recall performance is very important in my experimental study because correctly 

predicting positive class (Buy) is the priority in this work. Next, the F1 score is the combination 

of both precision and recall evaluating the performance. For Area under the curve (AUC), it is the 

probability of the system to choose the positive class than the negative class. The higher the value, 

the better the performance. The curve is the receiver operating curve (ROC) plotted by true positive 

against the false positive. With ROC, evaluation of results is clearer to be seen on the overall 

system performance as compared to accuracy or precision.  

Therefore, in this work, the recall/true positive rate for the customers’ buying decision predicting 

model will be emphasised. The favourable outcome is to obtain a more correct prediction of the 

‘Buy’ class. This is because the loss from misclassifying the ‘Not Buy’ class is much lower than 

misclassifying the ‘Buy’ class that may potentially increase the sales in an online shop. Hence, the 

evaluation with recall is better than precision for this work. 
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CHAPTER 3 

3. RESEARCH METHODOLOGY 

3.1 Research Methodology  

Based on this project objectives, better performance of online customers’ buying decision 

predicting model needs to be achieved using the secondary data from Sakar et al. (2018). The 

authors achieved an overall accuracy of 87.94% and a true positive rate of 0.84 for the ‘buy’ class 

using the data set. Therefore, the data set was explored to achieve similar performance with Sakar 

et al. (2018) results by applying common machine learning algorithms 

The knowledge discovery (KDD) process is the process that transfers the raw data set into 

information and knowledge.  This project implemented the KDD process to convert the behaviours 

data set into a customer predicting model to allow online shop owners to prepare for strategies and 

decision making. There are five steps in the KDD process: data selection, data pre-processing, data 

transformation, data mining and result evaluation. 

For the data selection part, this project used the online shoppers purchasing intention data set from 

Sakar et al. (2018). 

The data set was then pre-processed to handle missing values and unwanted data. Since the data 

set in this project had complete data value and was in CSV format, the data set need not be 

transformed. During this stage, the data set was split into a train set and a test set (70% and 30%). 

The train set was pre-processed by sampling methods to balance the unbalanced class distribution 

of the ‘buy’ class and ‘no buy’ class in the data set.  

The data mining step involves the classification process. In this stage, the data is analysed by a 

machine learning algorithm to find any relationship and pattern within the data set. Six algorithms 

were selected for this project. The algorithms are K-Nearest Neighbor (KNN), Naïve Bayers, J48, 

Support Vector Machine (SVM), Sequential Minimal Optimization (SMO) and Multilayer 

Perceptron (MLP). 

Lastly, the data mining results are evaluated. In this project, the evaluation focuses on using true 

positive rate and accuracy so that it can be compared with the Sakar et al. (2018) results. 
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Figure 3.1: Flowchart of the Experiment. 

To deal with the average performance of the learning algorithms caused by the unbalanced data 

set, data pre-processing method was applied as the solution. The data pre-processing techniques 

used were the sampling technique. Changes in the class distribution will make the data set balanced, 

and when input into each learning algorithm, its performance is expected to improve.  

 

3.1.1 Data Pre-processing 

In this project, the data set was split into 70% train set and 30% test set. The train set was pre-

processed by sampling techniques, including over and under-sampling. The over-sampling was 

applied to the data set to increase the minority class size. The over-sampling technique applied 

was Synthetic Minority Over-sampling Technique (SMOTE). SMOTE uses the KNN method by 

selecting k number of nearest neighbours from sample data and joining them to generate synthetic 

samples in the data set. It takes the difference between the minority class sample and its nearest 

neighbours. Then it takes a random number between 0 and 1 to multiply with the difference to 

generate the synthetic samples. Since SMOTE is based only on minority class observation, it may 

cause the class boundary between the majority and minority class to become differentiable.  

Under-sampling will also be applied by removing some of the data in the majority class. A specific 

percentage of the majority class data will be removed to balance the distribution in a data set. 

However, removing too much data may cause the predicting model to train with insufficient data 

and the performances to become weak. 

Therefore, in this project, the pre-processing for the unbalanced data set shall be experimented by  

- Over-sampling started  from 10% to 150% for the minority class  

- Under-sampling started from 10% to 80% for the majority class.  

- A hybrid method with over-sampling started from 10% plus under-sampling started from 10%, 

and continuously to increase until over-sampling 100% and under-sampling 80%.  

Data 

Selection 
Data 

Mining 
Result 

Evaluation 

Data Pre-process 
Over-Sampling 

Under-Sampling 
 

 

Data 

Transform 
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The results for each were recorded and visualised to compare and decide the best data pre-

processing with selected machine learning algorithms. 

 

3.1.2 Classification 

In this research study, six machine learning algorithms are compared. The algorithms selected 

include K-Nearest Neighbor (KNN), Naïve Bayers, J48, Support Vector Machine (SVM), 

Sequential Minimal Optimization (SMO) and Multilayer Perceptron (MLP). 

Besides the single learning algorithms, the ensemble learning method was also applied to further 

improve the classification performance. Ensemble learning combined several base classifiers in 

the same group to optimise the classification output while multiple classifiers combined several 

different classifiers to improve the classification output. The ensemble learning methods selected 

are AdaBoost and Bagging. Adaptive boosting (AdaBoost) is a boosting algorithm that combines 

weak learners and concludes the result based on the weight of each classifier so that the 

classification performances can be boosted. Boosting algorithm built the first model by randomly 

selecting data from supplied data set and test with other non-select data. During the process, those 

data classified wrongly by the first model will be collected and used to train the next model. The 

process continues several times to improve the classification performance and reduce the wrong 

classification result. The weight of misclassified samples is increased in each round and more 

samples were classified correctly. Bagging is also known as the bootstrap aggregating method. 

Like its name, bagging placed random and repeated data from the original train set into different 

“bags” to create multiple training subsets. Each subset will be used to generate multiple learning 

models with the based learning algorithm. The classification results obtained from each learning 

model will be voted to obtain the final decision. It improves the classification performance with 

multiple learning models to reduce the variance and enhance the steadiness of the supplied data 

set. (Taser, 2021) 

The classification results were compiled and visualised into a table for better comparison of each 

algorithm capability to decide the suitable algorithms for the online shopping customers’ buying 

decision predicting model. 
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3.1.3 Evaluation 

The classification performance was evaluated with Accuracy, True Positive rate and True Negative 

rate to compare the performance of the algorithms based on the correct prediction for the positive 

and minor classes in the data set. The best result will then compare with the previous result from 

Sakar et al. (2018) based on accuracy and true positive rate.  

However, in this project, the true positive rate was more focused than the accuracy rate as accuracy 

may not be appropriate for judging the performance for an unbalanced data set. Based on the 

formula of true positive rate, 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 takes the correct guess positive class (buy) and is divided by 

the total number of positive class data from the classification output. The higher the true positive 

rate, the better the prediction on the minority class. While accuracy is the overall prediction for 

both positive and negative classes in the classification output. In this project, the rate of getting a 

good prediction on the positive class (buy) is more important than getting a good prediction for 

the negative class (no buy). There is no point if the system predicts all the majority negative classes 

correctly and obtains high accuracy. 
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3.1.4 Project Plan 

Table 3.1: Project Plan 

TASK NAME DURATION 

(DAYS) 

START DATE 

(MM/DD/YY) 

FINISH DATE 

(MM/DD/YY) 

1. Initiation 15 days Mon 5/17/21 Mon 5/31/21 

1.1 Project Title Register 7 days Mon 5/17/21 Sun 5/23/21 

1.2 Obtain Data Set 4 days Mon 5/24/21 Thu 5/27/21 

1.3 Install WEKA Data Mining Tool 4 days Fri 5/28/21 Mon 5/31/21 

2. Planning 49 days Tue 6/1/21 Sat 7/17/21 

2.1 Project Problem Statement 7 days Tue 6/1/21 Mon 6/7/21 

2.2 Project Objective  7 days Tue 6/8/21 Mon 6/14/21 

2.3 Project Scope 7 days Tue 6/15/21 Mon 6/21/21 

2.4 Selection of Machine Learning 

Algorithms 

14 days Tue 6/22/21 Sun 7/4/21 

2.5 Preliminary Report 14 days Mon 7/5/21 Sat 7/17/21 

3. Execution 151 days Sun 7/18/21 Sat 12/4/21 

3.1 Split Raw Data Set into Train Set 

and Test Set 

4 days Sun 7/18/21 Wed 7/21/21 

3.2 Classification with selected 

algorithms (KNN, Naïve Bayes, J48, 

SVM, SMO and MLP) 

7 days Thu 7/22/21 Wed 7/28/21 

3.3 Evaluate Result  7 days Thu 7/29/21 Wed 8/4/21 

3.4 Optimize Algorithms with CV 

Parameter Selection 

14 days Thu 8/5/21 Tue 8/17/21 
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3.5 Classification with Optimize 

Algorithms 

7 days Sat 8/14/21 Fri 8/20/21 

3.6 Evaluate Result 7 days Sat 8/21/21 Fri 8/27/21 

3.7 Pre-process Train Set with SMOTE 

Over-Sampling Method 

14 days Sat 8/28/21 Thu 9/9/21 

3.8 Classify the Pre-process Data Set 7 days Fri 9/10/21 Thu 9/16/21 

3.9 Pre-process Original Train Set with 

Under-Sampling Method 

14 days Fri 9/17/21 Wed 9/29/21 

3.10 Classify the Pre-process Data Set 7 days Thu 9/30/21 Wed 10/6/21 

3.11 Pre-process Original Train Set 

with Combine Under-Sampling and 

Over-Sampling Method 

28 days Thu 10/7/21 Sun 10/31/21 

3.12 Classify the Pre-process Data Set 7 days Mon 11/1/21 Sun 11/7/21 

3.13 Classify with ensemble learning 

method (AdaBoost and Bagging) 

14 days Mon 11/8/21 Sun 11/21/21 

3.14 Evaluate Result 7 days Mon 11/21/21 Sun 11/27/21 

3.15 Make Conclusion 7 days Sun 11/28/21 Sat 12/4/21 

4. Monitoring 14 days Sun 12/5/21 Sat 12/18/21 

4.1 Project Limitation 7 days Sun 12/5/21 Sat 12/11/21 

4.2 Project Recommendation 7 days Sun 12/12/21 Sat 12/18/21 

5. Closing 13 days Sun 12/19/21 Fri 12/31/21 

5.1 Project Submission 7 days Sun 12/19/21 Sat 12/25/21 

5.2 Presentation 6 days Sun 12/26/21 Fri 12/31/21 
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3.1.5 Project Gantt Chart 

 

Figure 3.2: Project Gantt Chart. 
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CHAPTER 4 

4. RESULT  

4.1  Without Any Sampling 

Firstly, the data set without sampling was classified by the selected learning algorithms in this 

project. The performance of each learning algorithm was evaluated using true positive rate (TPR), 

true negative rate (TNR) and accuracy. The results were compared with the best result from Sakar 

et al. (2018) as shown in the table below. The authors’ results are highlighted in Table 4.1. 

Table 4.1: Classification Results Obtained without Any Pre-Processing and Compared with 

Sakar et al. (2018) 

Algorithm Approach TPR/TNR 

(Buy / No Buy)  

Accuracy Pre-processing method 

MLP (Sakar et al., 2018) 84.0% / 92.0% 87.9% Feature selection 

KNN 36.3% / 89.5% 81.2% - 

Naïve Bayes 67.6% / 85.1% 82.4% - 

J48 58.7% / 95.2% 89.6% - 

LibSVM 99.5% / 0.3% 15.6% - 

SMO 35.6% / 98.2% 88.5% - 

MLP 52.1% / 95.0% 88.4% - 

 

As shown in Table 4.1, average classification rates were obtained using the selected learning 

algorithms, and they were uncompetitive with the past result obtained by Sakar et al. (2018). Even 

though satisfactory accuracy was obtained, the algorithms either performed weakly in the Buy 

class or the No Buy class. Hence, further experiments need to be conducted to achieve a result 

better than Sakar et al. (2018). 

From the perspective of true positive rate and accuracy, the Naïve Bayes and J48 algorithms gave 

more balanced classification results in both the Buy and No Buy classes. Therefore, these two 
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learning algorithms were selected for the later experiments. Before pre-processing the data set in 

the next phase of experiments, the learning algorithms' parameters of J48 were fine-tuned with CV 

parameter selection. The confidence factor (c) and minimum object per leaf (m) for J48 had been 

set to 0.05 and 2, respectively. The small value of the confidence factor means more branches for 

the classification model built. The fine-tuned parameters are as shown in Table 4.2.  The Naïve 

Bayes did not have any parameters to adjust. 

Table 4.2: The fine-tuned Parameters of J48  

Algorithm Approach  Parameter TPR/TNR 

(Buy / No Buy) 

Accuracy 

J48 c: 0.25 m:2 58.7% / 95.2% 89.6% 

J48 c: 0.05 m:2 61.5% / 95.1% 89.9% 

4.2 With Over-Sampling (SMOTE) 

Next, data pre-processing with the over-sampling method - SMOTE was applied to the minority 

class (Buy) of the train data set and the model built was evaluated using the test set. The 

classification results are detailed tabulated in the Appendix. The results were summarised and 

plotted in the figures below. 

 

Figure 4.1: The classification results obtained using J48 after applying SMOTE. 
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Figure 4.2: The classification results obtained using Naïve Bayer after applying SMOTE. 

As shown in Figure 4.1 and Figure 4.2, the TPR of both classification models had improved with 

SMOTE (over-sampling). With J48, the max TPR achieved with SMOTE was 73.2% (120% over-

sampling) and the result stagnated after 120% over-sampling on the train set. For Naïve Bayes, the 

TPR increased continuously when increasing the over-sampling percentage but the TNR and 

accuracy drop accordingly. Therefore, the overall performance of Naïve Bayes was unsatisfactory 

with the application of SMOTE. 

4.3 With Under-Sampling 

Besides, under-sampling was done with the SpreadSubsample of Weka to reduce the size of the 

majority class (No Buy). The classification results are detailed tabulated in the Appendix. The 

results were summarised and plotted in the figures below. 
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Figure 4.3:  The classification results obtained using J48 after applying under-sampling. 

 

 

Figure 4.4:  The classification results obtained using Naïve Bayes after applying under-

sampling. 
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As shown in Figure 4.3, the under-sampling method achieved a better result than over-sampling 

with J48 by under sampling 80% of the majority class (No Buy). The TPR was 84.2%, TNR was 

87.0% and the accuracy was 86.6%. From Figure 4.4, Naïve Bayes with under-sampling suffered 

from the same problem as in SMOTE.  

4.4 With Hybrid Sampling 

For the hybrid sampling method obtained the results as below. 

 

Figure 4.5: The TPR obtained using J48 after applying hybrid sampling. 

 

Figure 4.6: The TNR obtained using J48 after applying hybrid sampling. 
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Figure 4.7: The accuracy obtained using J48 after applying hybrid sampling. 

 

 

 

Figure 4.8: The TPR obtained using NB after applying hybrid sampling. 
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Figure 4.9: The TNR obtained using NB after applying hybrid sampling. 

 

 

 

Figure 4.10: The accuracy obtained using NB after applying hybrid sampling. 

As shown in the graph from Figure 4.5 to Figure 4.7, the overall performance with J48 using hybrid 

sampling had slightly improved compared with just applying under-sampling. The best result was 

obtained with the hybrid method (60% oversampling + 80% under sampling) among the three data 

pre-processing method. The TPR was 84.2%, TNR was 87.5% and accuracy was 87.0%. 
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4.5 Ensemble Learning Method 

Two ensemble learning methods, AdaBoost and Bagging were implemented. The base learning 

algorithms applied were J48 and Naïve Bayes. Classification results are shown below. 

Table 4.3: Result Obtained with Ensemble Method AdaBoost 

Ensemble Learning  Algorithm Approach TPR/TNR 

(Buy / No Buy) 

Accuracy 

AdaBoost J48 58.5% / 94.3% 88.8% 

AdaBoost Naïve Bayes 50.6% / 94.2% 87.5% 

 

Table 4.4: Result Obtained with Ensemble Method Bagging 

Ensemble Learning  Algorithm Approach TPR/TNR 

(Buy / No Buy) 

Accuracy 

Bagging J48 59.9% / 95.4% 89.9% 

Bagging Naïve Bayes 68.0% / 85.0% 82.4% 

 

From the result above, average classification performance was obtained using AdaBoost and 

Bagging. Since there is no significant improvement with the ensemble methods applied, further 

experiments were conducted by combining ensemble learning with the sampling method.  
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4.5.1 Ensemble Learning with Over Sampling 

 

Figure 4.11: The classification results obtained using AdaBoost (J48) after applying SMOTE  

 

 

Figure 4.12: The classification results obtained using AdaBoost (Naïve Bayes) after applying 

SMOTE  
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Figure 4.13: The classification results obtained using Bagging (J48) after applying SMOTE  

 

 

Figure 4.14: The classification results obtained using Bagging (Naïve Bayes) after applying 

SMOTE  

For the ensemble method with over-sampling, the best was bagging with J48 by 80% over-

sampling. The TPR was 68.7%, TNR was 93.9% and accuracy was 90.0%. 
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4.5.2 Ensemble Learning with Under Sampling 

 

Figure 4.15: The classification results obtained using AdaBoost (J48) after applying under-

sampling. 

 

 

Figure 4.16: The classification results were obtained using AdaBoost (Naïve Bayes) after 

applying under-sampling. 
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Figure 4.17: The classification results obtained using Bagging (J48) after applying under-

sampling. 

 

 

Figure 4.18: The classification results obtained using Bagging (Naïve Bayes) after applying 

under-sampling. 

For the ensemble method with under-sampling, the best was bagging with J48 by 70% under-

sampling. The TPR was 80.9%, TNR was 87.7% and accuracy was 86.6%. 
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4.5.3 Ensemble Learning with Hybrid Sampling 

  

  

Figure 4.19: The TPR obtained using the ensemble method after applying hybrid sampling. 

 

  

  

Figure 4.20: The TNR obtained using the ensemble method after applying hybrid sampling. 
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Figure 4.21: The Accuracy obtained using the ensemble method after applying hybrid sampling. 

For the ensemble method with hybrid sampling, the best was bagging with J48 by 60% under-

sampling and 80% over-sampling. The TPR was 80.6%, TNR was 88.7% and accuracy was 

87.5%. 
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4.6 Comparing Results  

Table 4.5: Summary Result Between Different Sampling Method and Sakar et al. (2018) 

Pre-processing method Algorithm 

approach 

TPR/TNR 

(Buy / No Buy)  

Accuracy 

Sakar et al. (2018) MLP 84.0% / 92.0% 87.9% 

SMOTE (120%)  J48 73.2% / 92.5% 89.5% 

Under Sampling (80%) J48 84.2% / 87.0% 86.6% 

Hybrid Sampling (SMOTE 60% 

+ Under Sampling 80%) 

J48 84.2% / 87.5% 87.0% 

SMOTE (0%)  Bagging (J48) 68.7% / 93.9% 90.0% 

Under Sampling (70%) Bagging (J48) 80.9% / 87.7%  86.6% 

Hybrid Sampling (SMOTE 80% 

+ Under Sampling 60%) 

Bagging (J48) 80.6% / 88.7% 87.5% 

 

Based on the table above, the best result obtained from the sampling method was hybrid with 60% 

over-sampling (SMOTE) plus 80% under-sampling; the learning algorithm applied is J48. By 

comparing Sakar's best result, the TPR was 84.2% from the hybrid method and 84.0% from Sakar 

et al. (2018).  TNR was 87.5% from the hybrid method and 92.0% from Sakar et al. (2018). 

Accuracy was 87.0% from the hybrid method and 97.9% from Sakar et al. (2018). The result 

showed that the hybrid sampling with J48 can achieve comparable performance as Sakar et al. 

(2018). As shown in Table 4.6, there was no improvement achieved using the ensemble learning 

method. 
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CHAPTER 5 

5. CONCLUSION 

In this project, the data set provided by Sakar et al. (2018) was used. The data set consists of 15.5% 

of the positive class (Buy) and 84.5% of the negative class (No Buy). This project is to modify the 

unbalanced class distribution data to obtain better predicting results. Weka - a tool for data mining, 

analysis and visualisation was used. The results obtained with different unbalanced data set yielded 

by the sampling methods and different machine learning algorithms were visualised and compared 

with the tool.  

The data set was split into a train set (70%) and test set (30%) and models were built using the 

unsampled data set, sampled data sets and ensemble learning. The best result was obtained by the 

hybrid sampling method with 60% over-sampling + 80% under-sampling and applied with single 

learning algorithms J48. The TPR, TNR and accuracy were 84.2%, 87.5% and 87.0%, respectively. 

The result is comparable to Sakar et al. (2018).  However, the learning algorithm J48 is faster than 

Multilayer Perceptron used in Sakar et al. (2018). 

The best model built in this project only achieved comparable performance with Sakar et al. (2018). 

The ensemble learning AdaBoost and Bagging, with base learner Naïve Bayes and J48 showed no 

improvement. Therefore, to obtain a classification result better than Sakar et al. (2018), the other 

ensemble learning methods, such as voting and stacking, will be considered for future experiments. 
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APPENDICES 

Result for applying Single Classifiers Without Any Data Pre-Processing 

10 fold cross validate with 70% train set and verify result with 30% test set. 

J48 

Parameter 

True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

C0.25 M2 0.57 0.587 0.951 0.952 0.892 0.896 0.767 0.773 

C0.05 M2 0.587 0.615 0.952 0.951 0.895 0.899 0.82 0.835 

C0.25 M7 0.589 0.553 0.955 0.962 0.898 0.899 0.846 0.868 

C0.10 M9 0.595 0.573 0.955 0.958 0.899 0.899 0.851 0.869 

         

KNN 

Parameter 

True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

K1 0.312 0.363 0.898 0.895 0.807 0.812 0.608 0.632 

K6 0.123 0.135 0.986 0.986 0.852 0.854 0.722 0.717 

         

SMO 

Parameter 

True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Polykernel 0.335 0.356 0.981 0.982 0.881 0.885 0.658 0.669 

normalized 0.22 0.233 0.992 0.99 0.872 0.873 0.606 0.611 

Puk 0.162 0.193 0.992 0.993 0.863 0.87 0.577 0.593 

         

LibSVM 

Parameter 

True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

polynomial 0.409 0.995 0.599 0.003 0.57 0.156 0.504 0.499 

linear 0.473 0.636 0.694 0.231 0.66 0.294 0.583 0.433 

         

NaïveBayes 

Parameter 

True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

  0.68 0.676 0.844 0.851 0.819 0.824 0.841 0.842 
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Result with Data Pre-Processing 

Over Sampling 

o10% (total 8,764 , positive 1,470 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.598 0.599 0.95 0.951 0.891 0.896 0.837 0.841 

Naïve 

Bayes 0.704 0.694 0.832 0.837 0.811 0.815 0.842 0.84 

         
o20% (total 8,898 , positive 1,604 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.652 0.669 0.939 0.937 0.887 0.896 0.834 0.861 

Naïve 

Bayes 0.729 0.715 0.816 0.82 0.8 0.804 0.842 0.84 

         
o30% (total 9,032 , positive 1,738 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.677 0.697 0.942 0.933 0.891 0.897 0.854 0.85 

Naïve 

Bayes 0.747 0.723 0.81 0.81 0.797 0.796 0.845 0.84 

         
o40% (total 9,165 , positive 1,871 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.709 0.641 0.936 0.943 0.89 0.897 0.846 0.829 

Naïve 

Bayes 0.763 0.739 0.793 0.794 0.787 0.785 0.842 0.84 

         
o50% (total 9,299 , positive 2,005 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.719 0.665 0.937 0.938 0.89 0.896 0.854 0.85 

Naïve 

Bayes 0.77 0.743 0.789 0.788 0.785 0.781 0.845 0.84 
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o60% (total 9,433 , positive 2,139 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.727 0.653 0.934 0.936 0.887 0.892 0.859 0.833 

Naïve 

Bayes 0.783 0.753 0.774 0.777 0.776 0.773 0.843 0.84 

         
o70% (total 9,566 , positive 2,272 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.746 0.688 0.934 0.934 0.889 0.896 0.858 0.85 

Naïve 

Bayes 0.798 0.783 0.754 0.756 0.764 0.76 0.843 0.838 

         
o80% (total 9,700 , positive 2,406 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.753 0.68 0.935 0.934 0.89 0.895 0.866 0.811 

Naïve 

Bayes 0.806 0.781 0.753 0.757 0.766 0.76 0.845 0.837 

         
o90% (total 9,834 , positive 2,540 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.774 0.679 0.934 0.937 0.893 0.897 0.865 0.83 

Naïve 

Bayes 0.82 0.795 0.74 0.746 0.76 0.753 0.848 0.837 

         
o100% (total 9,968 , positive 2,674 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.776 0.692 0.933 0.927 0.891 0.891 0.874 0.816 

Naïve 

Bayes 0.837 0.816 0.717 0.719 0.749 0.734 0.847 0.835 
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o110% (total 10,101 , positive 2,807 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.785 0.708 0.932 0.929 0.891 0.895 0.873 0.838 

Naïve 

Bayes 0.836 0.795 0.726 0.727 0.756 0.738 0.849 0.835 

         
o120% (total 10,235 , positive 2,941 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.798 0.732 0.924 0.925 0.887 0.895 0.875 0.827 

Naïve 

Bayes 0.846 0.814 0.706 0.706 0.746 0.722 0.847 0.835 

         
o130% (total 10,369 , positive 3075 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.805 0.711 0.926 0.926 0.89 0.892 0.88 0.821 

Naïve 

Bayes 0.846 0.811 0.706 0.709 0.748 0.725 0.851 0.834 

         
o140% (total 10,502 , positive 3208 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.81 0.685 0.933 0.937 0.895 0.898 0.88 0.837 

Naïve 

Bayes 0.858 0.821 0.692 0.693 0.742 0.713 0.85 0.835 

         
o150% (total 10,636 , positive 3,342 ; negative 7,294)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.811 0.681 0.929 0.934 0.892 0.895 0.888 0.835 

Naïve 

Bayes 0.877 0.837 0.665 0.674 0.731 0.699 0.855 0.833 
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Under Sampling 

u10% (total 7,900, positive 1,337 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.61 0.602 0.94 0.95 0.884 0.896 0.835 0.855 

Naïve Bayes 0.684 0.692 0.836 0.843 0.81 0.819 0.84 0.841 

         
u20% (total 7,171, positive 1,337 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.624 0.664 0.943 0.945 0.884 0.902 0.82 0.855 

Naïve Bayes 0.704 0.711 0.828 0.832 0.805 0.814 0.84 0.841 

         
u30% (total 6,441, positive 1,337 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.619 0.709 0.936 0.928 0.87 0.894 0.816 0.844 

Naïve Bayes 0.723 0.722 0.811 0.813 0.793 0.799 0.838 0.839 

         
u40% (total 5,713, positive 1,337 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.699 0.701 0.924 0.937 0.871 0.9 0.829 0.847 

Naïve Bayes 0.755 0.748 0.792 0.786 0.784 0.78 0.839 0.84 

         
u50% (total 4,984, positive 1,337 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.716 0.737 0.923 0.925 0.867 0.896 0.835 0.855 

Naïve Bayes 0.8 0.793 0.758 0.75 0.769 0.757 0.842 0.844 
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u60% (total 4,254, positive 1,337 ; negative 2,917)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.729 0.764 0.917 0.916 0.858 0.892 0.836 0.849 

Naïve Bayes 0.79 0.797 0.748 0.741 0.761 0.75 0.833 0.837 

         
u70% (total 3,525, positive 1,337 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.8 0.818 0.875 0.89 0.846 0.879 0.827 0.854 

Naïve Bayes 0.814 0.82 0.718 0.711 0.754 0.728 0.83 0.833 

         
u80% (total 2,795, positive 1,337 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.846 0.842 0.855 0.87 0.85 0.866 0.837 0.85 

Naïve Bayes 0.857 0.865 0.634 0.627 0.741 0.664 0.827 0.829 

 

 

 

Hybrid Sampling (Over Sampling + Under Sampling) 

o10% u10% (total 8,033 , positive 1,470 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.633 0.643 0.94 0.945 0.884 0.898 0.83 0.848 

Naïve Bayes 0.715 0.713 0.819 0.82 0.8 0.803 0.838 0.84 

         
o20% u10% (total 8,167 , positive 1,604 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.686 0.625 0.931 0.948 0.883 0.898 0.841 0.863 

Naïve Bayes 0.728 0.725 0.812 0.814 0.795 0.8 0.839 0.84 
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o30% u10% (total 8,301 , positive 1,738 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.693 0.681 0.935 0.936 0.884 0.896 0.848 0.851 

Naïve Bayes 0.751 0.744 0.794 0.794 0.785 0.786 0.84 0.839 

         
o40% u10% (total 8,434 , positive 1,871 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.71 0.708 0.931 0.935 0.882 0.9 0.844 0.848 

Naïve Bayes 0.769 0.76 0.777 0.778 0.775 0.775 0.84 0.839 

         
o50% u10% (total 8,568 , positive 2,005 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.732 0.695 0.932 0.932 0.885 0.896 0.845 0.843 

Naïve Bayes 0.799 0.776 0.757 0.763 0.767 0.765 0.843 0.838 

         
o60% u10% (total 8,702 , positive 2,139 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.744 0.658 0.93 0.943 0.884 0.899 0.856 0.825 

Naïve Bayes 0.792 0.769 0.759 0.764 0.767 0.765 0.841 0.838 

         
o70% u10% (total 8,835 , positive 2,272 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.751 0.695 0.927 0.935 0.882 0.898 0.848 0.824 

Naïve Bayes 0.817 0.804 0.737 0.738 0.758 0.748 0.844 0.837 
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o80% u10% (total 8,969 , positive 2,406 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.793 0.704 0.915 0.927 0.882 0.893 0.865 0.838 

Naïve Bayes 0.824 0.795 0.739 0.745 0.762 0.753 0.849 0.837 

         
o90% u10% (total 9,103 , positive 2,540 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.785 0.718 0.922 0.928 0.884 0.896 0.862 0.85 

Naïve Bayes 0.834 0.814 0.71 0.718 0.745 0.733 0.844 0.836 

         
o100% 

u10% (total 9,237 , positive 2,674 ; negative 6,563)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.798 0.723 0.923 0.926 0.887 0.895 0.868 0.856 

Naïve Bayes 0.845 0.823 0.705 0.71 0.745 0.727 0.847 0.835 

 

o10% 

u20% (total 7,304 , positive 1,470 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.654 0.65 0.938 0.946 0.88 0.901 0.828 0.855 

Naïve 

Bayes 0.734 0.73 0.806 0.808 0.792 0.796 0.839 0.84 

         
o20% 

u20% (total 7,438 , positive 1,604 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.683 0.695 0.933 0.94 0.879 0.902 0.839 0.853 

Naïve 

Bayes 0.747 0.746 0.796 0.795 0.785 0.788 0.839 0.84 
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o30% 

u20% (total 7,572 , positive 1,738 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.717 0.685 0.931 0.94 0.882 0.901 0.847 0.847 

Naïve 

Bayes 0.773 0.769 0.774 0.771 0.774 0.771 0.84 0.839 

         
o40% 

u20% (total 7,705 , positive 1,871 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.729 0.73 0.93 0.931 0.881 0.9 0.855 0.855 

Naïve 

Bayes 0.794 0.783 0.758 0.756 0.767 0.76 0.841 0.838 

         
o50% 

u20% (total 7,839 , positive 2,005 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.745 0.674 0.93 0.943 0.883 0.901 0.862 0.863 

Naïve 

Bayes 0.795 0.776 0.763 0.764 0.771 0.766 0.845 0.838 

         
o60% 

u20% (total 7,973 , positive 2,139 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.777 0.755 0.92 0.919 0.882 0.894 0.854 0.851 

Naïve 

Bayes 0.814 0.802 0.736 0.737 0.757 0.747 0.843 0.838 
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o70% 

u20% (total 8,106 , positive 2,272 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.793 0.758 0.916 0.919 0.882 0.894 0.861 0.847 

Naïve 

Bayes 0.824 0.809 0.73 0.734 0.756 0.746 0.845 0.837 

         
o80% 

u20% (total 8,240 , positive 2,406 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.799 0.769 0.916 0.917 0.882 0.894 0.867 0.842 

Naïve 

Bayes 0.847 0.821 0.711 0.718 0.751 0.734 0.849 0.838 

         
o90% 

u20% (total 8,374 , positive 2,540 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.794 0.739 0.921 0.926 0.883 0.897 0.869 0.859 

Naïve 

Bayes 0.845 0.834 0.695 0.698 0.74 0.719 0.846 0.837 

         
o100% 

u20% (total 8,508 , positive 2,674 ; negative 5,834)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.83 0.783 0.911 0.91 0.885 0.89 0.869 0.847 

Naïve 

Bayes 0.855 0.841 0.682 0.687 0.736 0.71 0.846 0.835 
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o10% 

u30% (total 6,574 , positive 1,470 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.678 0.694 0.928 0.933 0.872 0.896 0.824 0.846 

Naïve 

Bayes 0.746 0.741 0.792 0.793 0.782 0.785 0.836 0.837 

         
o20% 

u30% (total 6,708 , positive 1,604 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.717 0.706 0.927 0.935 0.877 0.899 0.849 0.852 

Naïve 

Bayes 0.778 0.776 0.768 0.759 0.77 0.762 0.835 0.836 

         
o30% 

u30% (total 6,842 , positive 1,738 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.743 0.711 0.924 0.93 0.878 0.896 0.854 0.851 

Naïve 

Bayes 0.793 0.793 0.752 0.746 0.763 0.753 0.837 0.837 

         
o40% 

u30% (total 6,975 , positive 1,871 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.749 0.688 0.924 0.934 0.877 0.896 0.854 0.841 

Naïve 

Bayes 0.797 0.79 0.754 0.75 0.765 0.756 0.836 0.837 
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o50% 

u30% (total 7,109 , positive 2,005 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.769 0.72 0.919 0.93 0.876 0.898 0.852 0.85 

Naïve 

Bayes 0.812 0.802 0.737 0.737 0.758 0.747 0.84 0.836 

         
o60% 

u30% (total 7,243 , positive 2,139 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.788 0.783 0.914 0.911 0.877 0.891 0.861 0.85 

Naïve 

Bayes 0.813 0.806 0.732 0.729 0.756 0.741 0.839 0.835 

         
o70% 

u30% (total 7,376 , positive 2,272 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.791 0.699 0.918 0.936 0.879 0.9 0.867 0.859 

Naïve 

Bayes 0.833 0.821 0.711 0.712 0.749 0.729 0.841 0.835 

         
o80% 

u30% (total 7,510 , positive 2,406 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.814 0.772 0.904 0.918 0.875 0.895 0.863 0.849 

Naïve 

Bayes 0.847 0.841 0.679 0.676 0.733 0.702 0.842 0.834 
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o90% 

u30% (total 7,644 , positive 2,540 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.808 0.706 0.912 0.932 0.878 0.897 0.866 0.854 

Naïve 

Bayes 0.863 0.844 0.662 0.67 0.729 0.697 0.844 0.834 

         
o100% 

u30% (total 7,778 , positive 2,674 ; negative 5,104)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.823 0.781 0.907 0.913 0.878 0.892 0.87 0.844 

Naïve 

Bayes 0.864 0.849 0.653 0.659 0.726 0.689 0.843 0.834 

 

o10% 

u40% (total 5,846 , positive 1,470 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.713 0.746 0.923 0.924 0.87 0.896 0.84 0.836 

Naïve 

Bayes 0.779 0.781 0.764 0.757 0.768 0.761 0.836 0.839 

         
o20% 

u40% (total 5,980 , positive 1,604 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.733 0.73 0.92 0.922 0.87 0.893 0.843 0.856 

Naïve 

Bayes 0.813 0.813 0.738 0.727 0.758 0.74 0.839 0.839 

 

 

 

 

 

 

 

 

         



65 
 

o30% 

u40% (total 6,114 , positive 1,738 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.751 0.713 0.923 0.93 0.874 0.897 0.856 0.819 

Naïve 

Bayes 0.823 0.821 0.717 0.717 0.747 0.733 0.838 0.838 

          
o40% 

u40% (total 6,247 , positive 1,871 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.757 0.709 0.922 0.928 0.873 0.895 0.853 0.842 

Naïve 

Bayes 0.842 0.828 0.709 0.709 0.749 0.727 0.842 0.837 

         
o50% 

u40% (total 6,381 , positive 2,005 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.783 0.727 0.916 0.928 0.874 0.897 0.861 0.82 

Naïve 

Bayes 0.848 0.839 0.676 0.679 0.73 0.703 0.842 0.837 

         
o60% 

u40% (total 6,515 , positive 2,139 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.792 0.718 0.917 0.93 0.876 0.897 0.86 0.848 

Naïve 

Bayes 0.849 0.841 0.683 0.685 0.738 0.709 0.841 0.838 

 

 

 

 

 

 

 

 

          



66 
 

o70% 

u40% (total 6,648 , positive 2,272 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.801 0.748 0.915 0.918 0.876 0.892 0.864 0.853 

Naïve 

Bayes 0.861 0.849 0.658 0.66 0.727 0.69 0.841 0.836 

          
o80% 

u40% (total 6,782 , positive 2,406 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.806 0.709 0.917 0.928 0.878 0.895 0.869 0.835 

Naïve 

Bayes 0.869 0.849 0.639 0.639 0.721 0.672 0.844 0.836 

         
o90% 

u40% (total 6,916 , positive 2,540 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.827 0.8 0.902 0.9 0.874 0.885 0.866 0.852 

Naïve 

Bayes 0.881 0.855 0.62 0.624 0.716 0.66 0.845 0.835 

         
o100% 

u40% (total 7,050 , positive 2,674 ; negative 4,376)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.837 0.744 0.899 0.924 0.876 0.896 0.873 0.84 

Naïve 

Bayes 0.881 0.86 0.604 0.607 0.709 0.646 0.844 0.834 

 

 

 

 

 

 



67 
 

o10% 

u50% (total 5,117 , positive 1,470 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.735 0.753 0.921 0.92 0.867 0.895 0.847 0.861 

Naïve 

Bayes 0.831 0.828 0.717 0.711 0.75 0.729 0.842 0.843 

          
o20% 

u50% (total 5,251 , positive 1,604 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.751 0.737 0.921 0.923 0.869 0.894 0.852 0.854 

Naïve 

Bayes 0.856 0.841 0.675 0.677 0.73 0.703 0.843 0.843 

         
o30% 

u50% (total 5,385 , positive 1,738 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.765 0.783 0.919 0.912 0.869 0.892 0.848 0.861 

Naïve 

Bayes 0.869 0.86 0.639 0.635 0.713 0.67 0.843 0.843 

         
o40% 

u50% (total 5,518 , positive 1,871 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.784 0.751 0.912 0.914 0.868 0.889 0.859 0.843 

Naïve 

Bayes 0.877 0.867 0.618 0.622 0.706 0.66 0.844 0.843 

 

 

 

 

 

 

 

 

 

          



68 
 

o50% 

u50% (total 5,652 , positive 2,005 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.796 0.786 0.91 0.905 0.87 0.887 0.858 0.855 

Naïve 

Bayes 0.886 0.867 0.604 0.606 0.704 0.646 0.842 0.843 

          
o60% 

u50% (total 5,786 , positive 2,139 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.798 0.757 0.908 0.918 0.867 0.893 0.858 0.856 

Naïve 

Bayes 0.904 0.87 0.582 0.581 0.701 0.626 0.849 0.842 

         
o70% 

u50% (total 5,919 , positive 2,272 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.814 0.75 0.909 0.92 0.873 0.894 0.861 0.849 

Naïve 

Bayes 0.895 0.87 0.58 0.576 0.701 0.622 0.846 0.839 

         
o80% 

u50% (total 6,053 , positive 2,406 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.838 0.8 0.897 0.893 0.874 0.878 0.878 0.861 

Naïve 

Bayes 0.891 0.87 0.59 0.586 0.709 0.63 0.847 0.841 

 

 

 

 

 

 

 

 

          



69 
 

o90% 

u50% (total 6,187 , positive 2,540 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.83 0.79 0.897 0.905 0.87 0.887 0.868 0.857 

Naïve 

Bayes 0.904 0.869 0.567 0.564 0.705 0.611 0.85 0.839 

          
o100% 

u50% (total 6,321 , positive 2,674 ; negative 3,647)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.827 0.755 0.902 0.918 0.87 0.893 0.863 0.85 

Naïve 

Bayes 0.9 0.877 0.539 0.535 0.692 0.588 0.847 0.838 

 

o10% 

u60% (total 4,387 , positive 1,470 ; negative 2,917)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.755 0.764 0.912 0.916 0.859 0.892 0.831 0.839 

Naïve 

Bayes 0.818 0.814 0.715 0.715 0.749 0.73 0.83 0.837 

         
o20% 

u60% (total 4,521 , positive 1,604 ; negative 2,917)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.774 0.748 0.909 0.924 0.862 0.897 0.848 0.844 

Naïve 

Bayes 0.835 0.834 0.693 0.696 0.743 0.717 0.832 0.836 

 

 

 

 

 

 

 

          



70 
 

o30% 

u60% (total 4,655 , positive 1,738 ; negative 2,917)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.784 0.755 0.905 0.914 0.86 0.889 0.845 0.85 

Naïve 

Bayes 0.854 0.844 0.663 0.668 0.734 0.695 0.832 0.835 

          
o40% 

u60% (total 4,788 , positive 1,871 ; negative 2,917)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.807 0.769 0.893 0.916 0.859 0.893 0.853 0.863 

Naïve 

Bayes 0.849 0.844 0.658 0.664 0.732 0.692 0.831 0.833 

         
o50% 

u60% (total 4,922 , positive 2,005 ; negative 2,917)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.819 0.771 0.89 0.913 0.861 0.891 0.851 0.861 

Naïve 

Bayes 0.864 0.858 0.637 0.64 0.73 0.674 0.832 0.833 

         
o60% 

u60% (total 5,056 , positive 2,139 ; negative 2,917)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.827 0.8 0.889 0.899 0.863 0.884 0.858 0.851 

Naïve 

Bayes 0.882 0.869 0.605 0.606 0.723 0.647 0.834 0.833 

 

 

 

 

 

 

 

 

          



71 
 

o70% 

u60% (total 5,189 , positive 2,272 ; negative 2,917)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.847 0.814 0.878 0.894 0.864 0.881 0.858 0.853 

Naïve 

Bayes 0.879 0.87 0.588 0.59 0.716 0.633 0.833 0.833 

          
o80% 

u60% (total 5,323 , positive 2,406 ; negative 2,917)    

Algorithm 
True Positive True Negative 

Accurac

y   

ROC 

Area   

  
70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.854 0.802 0.88 0.9 0.868 0.885 0.864 0.853 

Naïve 

Bayes 0.892 0.874 0.569 0.571 0.715 0.617 0.836 0.833 

         
o90% 

u60% (total 5,457 , positive 2,540 ; negative 2,917)    

Algorithm 
True 

Positive   

True 

Negative   

Accurac

y   

ROC 

Area   

  
70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.856 0.8 0.874 0.899 0.865 0.884 0.873 0.85 

Naïve 

Bayes 0.886 0.87 0.578 0.576 0.721 0.621 0.835 0.832 

         
o100% 

u60% (total 5,591 , positive 2,674 ; negative 2,917)    

Algorithm 
True 

Positive   

True 

Negative   

Accurac

y   

ROC 

Area   

  
70% train 

30% 

test 70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.862 0.818 0.875 0.89 0.869 0.879 0.864 0.854 

Naïve 

Bayes 0.901 0.876 0.545 0.542 0.715 0.593 0.84 0.83 

 

 

 

 

 



72 
 

o10% 

u70% (total 3,658 , positive 1,470 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.825 0.841 0.867 0.87 0.85 0.865 0.845 0.857 

Naïve 

Bayes 0.838 0.844 0.685 0.679 0.747 0.705 0.83 0.831 

          
o20% 

u70% (total 3,792 , positive 1,604 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.832 0.837 0.867 0.864 0.852 0.86 0.843 0.859 

Naïve 

Bayes 0.857 0.858 0.652 0.648 0.738 0.681 0.829 0.832 

         
o30% 

u70% (total 3,926 , positive 1,738 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.854 0.837 0.86 0.864 0.858 0.86 0.86 0.859 

Naïve 

Bayes 0.873 0.865 0.627 0.619 0.736 0.657 0.831 0.831 

         
o40% 

u70% (total 4,059 , positive 1,871 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.856 0.842 0.863 0.871 0.86 0.867 0.858 0.86 

Naïve 

Bayes 0.881 0.874 0.599 0.602 0.729 0.644 0.83 0.831 

 

 

 

  

 

 

 

 

 

 

 

 

         



73 
 

o50% 

u70% (total 4,193 , positive 2,005 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.866 0.835 0.863 0.875 0.865 0.869 0.861 0.857 

Naïve 

Bayes 0.876 0.867 0.614 0.617 0.739 0.655 0.83 0.831 

          
o60% 

u70% (total 4,327 , positive 2,139 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.866 0.835 0.861 0.874 0.863 0.868 0.864 0.854 

Naïve 

Bayes 0.891 0.874 0.587 0.585 0.737 0.629 0.834 0.83 

         
o70% 

u70% (total 4,460 , positive 2,272 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.875 0.837 0.859 0.866 0.867 0.861 0.868 0.853 

Naïve 

Bayes 0.898 0.877 0.565 0.56 0.735 0.609 0.833 0.828 

         
o80% 

u70% (total 4,594 , positive 2,406 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.894 0.842 0.841 0.871 0.869 0.866 0.886 0.895 

Naïve 

Bayes 0.893 0.877 0.553 0.548 0.731 0.599 0.832 0.828 

 

 

 

 

 

 

 

 

 

         



74 
 

o90% 

u70% (total 4,728 , positive 2,540 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.893 0.862 0.839 0.853 0.868 0.854 0.887 0.887 

Naïve 

Bayes 0.91 0.881 0.519 0.516 0.729 0.572 0.835 0.827 

         
o100% 

u70% (total 4,862 , positive 2,674 ; negative 2,188)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.906 0.853 0.831 0.859 0.872 0.858 0.897 0.894 

Naïve 

Bayes 0.9 0.877 0.529 0.522 0.733 0.577 0.834 0.824 

 

o10% 

u80% (total 2,928 , positive 1,470 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.854 0.842 0.85 0.869 0.852 0.865 0.85 0.859 

Naïve 

Bayes 0.882 0.874 0.603 0.592 0.743 0.636 0.829 0.827 

         
o20% 

u80% (total 3,062 , positive 1,604 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.858 0.844 0.848 0.869 0.853 0.865 0.85 0.861 

Naïve 

Bayes 0.887 0.877 0.593 0.582 0.747 0.628 0.831 0.826 

 

 

 

 

 

 

 

          



75 
 

o30% 

u80% (total 3,196 , positive 1,738 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.864 0.842 0.852 0.872 0.858 0.867 0.85 0.862 

Naïve 

Bayes 0.89 0.877 0.586 0.582 0.752 0.627 0.829 0.826 

         
o40% 

u80% (total 3,329 , positive 1,871 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.881 0.842 0.838 0.87 0.862 0.865 0.871 0.86 

Naïve 

Bayes 0.899 0.89 0.547 0.536 0.745 0.591 0.827 0.826 

         
o50% 

u80% (total 3,463 , positive 2,005 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.887 0.842 0.838 0.87 0.866 0.865 0.866 0.86 

Naïve 

Bayes 0.904 0.893 0.527 0.512 0.745 0.571 0.826 0.825 

         
o60% 

u80% (total 3,597 , positive 2,139 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.891 0.842 0.831 0.875 0.867 0.87 0.876 0.865 

Naïve 

Bayes 0.907 0.89 0.527 0.522 0.753 0.579 0.829 0.825 

 

 

 

 

 

 

 

 

          



76 
 

o70% 

u80% (total 3,730 , positive 2,272 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.919 0.879 0.799 0.816 0.872 0.826 0.885 0.892 

Naïve 

Bayes 0.917 0.897 0.489 0.475 0.75 0.54 0.83 0.825 

         
o80% 

u80% (total 3,864 , positive 2,406 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.929 0.879 0.798 0.796 0.879 0.809 0.887 0.875 

Naïve 

Bayes 0.916 0.897 0.756 0.465 0.491 0.532 0.831 0.825 

         
o90% 

u80% (total 3,998 , positive 2,540 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.932 0.891 0.799 0.809 0.884 0.822 0.893 0.885 

Naïve 

Bayes 0.916 0.898 0.478 0.46 0.756 0.528 0.832 0.825 

         
o100% 

u80% (total 4,132 , positive 2,674 ; negative 1,458)    

Algorithm 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.05 

M2 0.937 0.884 0.775 0.79 0.88 0.805 0.882 0.872 

Naïve 

Bayes 0.923 0.898 0.479 0.457 0.766 0.525 0.834 0.823 
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Result with Ensemble Learning: AdaBoost 

based learner 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.25 

M2 0.57 0.585 0.941 0.943 0.883 0.888 0.892 0.902 

J48 C0.05 

M2 0.563 0.571 0.943 0.948 0.884 0.89 0.895 0.897 

J48 C0.25 

M7 0.564 0.557 0.937 0.94 0.879 0.881 0.888 0.89 

J48 C0.10 

M9 0.578 0.546 0.945 0.949 0.888 0.887 0.894 0.902 

J48 C0.35 

M2 0.577 0.602 0.941 0.941 0.885 0.889 0.897 0.902 

J48 C0.35 

M1 0.576 0.609 0.939 0.942 0.883 0.891 0.894 0.905 

Naïve Bayes 0.521 0.506 0.932 0.942 0.868 0.875 0.832 0.829 

Decision S. 0.583 0.59 0.949 0.955 0.893 0.899 0.909 0.916 

REP tree 0.568 0.587 0.943 0.946 0.885 0.891 0.899 0.899 

 

 

Result with Ensemble Learning: Bagging 

based learner 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

J48 C0.25 

M2 0.592 0.599 0.954 0.954 0.898 0.899 0.92 0.925 

J48 C0.05 

M2 0.587 0.595 0.957 0.957 0.9 0.901 0.855 0.874 

J48 C0.25 

M7 0.603 0.583 0.956 0.959 0.901 0.901 0.916 0.924 

J48 C0.10 

M9 0.596 0.601 0.956 0.958 0.9 0.903 0.857 0.876 

J48 C0.35 

M1 0.58 0.618 0.953 0.951 0.895 0.9 0.918 0.921 

Naïve Bayes 0.684 0.68 0.843 0.85 0.818 0.824 0.843 0.847 

REP tree 0.591 0.608 0.955 0.961 0.899 0.906 0.924 0.927 

Decision S. 0.789 0.797 0.89 0.895 0.875 0.88 0.833 0.855 
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Result with Ensemble Learning Plus Under Sampling 

Undersampling 10%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost J48 0.58 0.608 0.937 0.939 0.876 0.888 0.895 0.899 

Boost NB 0.542 0.55 0.922 0.931 0.857 0.872 0.832 0.833 

Bag J48 0.604 0.623 0.948 0.946 0.889 0.896 0.918 0.922 

Bag NB 0.685 0.687 0.835 0.844 0.81 0.82 0.843 0.844 

         
Undersampling 20%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost J48 0.601 0.622 0.931 0.934 0.87 0.886 0.895 0.903 

Boost NB 0.568 0.585 0.914 0.914 0.85 0.863 0.838 0.835 

Bag J48 0.614 0.63 0.942 0.948 0.881 0.899 0.92 0.921 

Bag NB 0.697 0.713 0.825 0.82 0.801 0.803 0.841 0.845 

         
Undersampling 30%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost J48 0.633 0.636 0.922 0.929 0.862 0.884 0.895 0.899 

Boost NB 0.585 0.618 0.895 0.893 0.83 0.851 0.836 0.834 

Bag J48 0.655 0.676 0.931 0.937 0.874 0.897 0.918 0.925 

Bag NB 0.726 0.73 0.807 0.809 0.79 0.797 0.841 0.844 

         
Undersampling 40%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost J48 0.644 0.667 0.91 0.919 0.847 0.881 0.893 0.901 

Boost NB 0.601 0.553 0.886 0.905 0.82 0.851 0.841 0.831 

Bag J48 0.675 0.697 0.919 0.927 0.862 0.891 0.916 0.921 

Bag NB 0.761 0.736 0.79 0.801 0.783 0.791 0.841 0.845 
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Undersampling 50%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost J48 0.68 0.671 0.903 0.899 0.843 0.863 0.901 0.906 

Boost NB 0.696 0.743 0.834 0.814 0.797 0.803 0.849 0.844 

Bag J48 0.722 0.739 0.91 0.916 0.859 0.889 0.92 0.921 

Bag NB 0.792 0.778 0.758 0.769 0.767 0.77 0.844 0.85 

         
Undersampling 60%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost J48 0.705 0.73 0.872 0.887 0.82 0.863 0.893 0.908 

Boost NB 0.678 0.667 0.834 0.837 0.785 0.811 0.838 0.836 

Bag J48 0.749 0.748 0.894 0.902 0.848 0.878 0.918 0.92 

Bag NB 0.787 0.806 0.751 0.735 0.762 0.746 0.838 0.84 

         
Undersampling 70%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost J48 0.758 0.76 0.859 0.869 0.82 0.852 0.898 0.906 

Boost NB 0.758 0.769 0.777 0.766 0.77 0.767 0.843 0.843 

Bag J48 0.797 0.809 0.872 0.877 0.843 0.866 0.919 0.921 

Bag NB 0.815 0.82 0.712 0.711 0.751 0.728 0.832 0.834 

         
Undersampling 80%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost J48 0.805 0.82 0.82 0.825 0.813 0.824 0.899 0.903 

Boost NB 0.826 0.825 0.703 0.717 0.762 0.733 0.839 0.847 

Bag J48 0.843 0.842 0.822 0.827 0.832 0.829 0.913 0.915 

Bag NB 0.85 0.867 0.644 0.624 0.743 0.662 0.83 0.832 
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Result with Ensemble Learning Plus Over Sampling 

Oversampling 20%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost 

J48 0.629 0.592 0.938 0.941 0.882 0.887 0.91 0.903 

Boost 

NB 0.552 0.52 0.92 0.915 0.853 0.854 0.841 0.82 

Bag J48 0.658 0.648 0.945 0.946 0.893 0.9 0.928 0.924 

Bag NB 0.724 0.725 0.812 0.812 0.796 0.798 0.844 0.841 

         
Oversampling 40%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost 

J48 0.681 0.623 0.937 0.932 0.885 0.885 0.917 0.901 

Boost 

NB 0.623 0.611 0.896 0.908 0.84 0.862 0.849 0.834 

Bag J48 0.711 0.636 0.942 0.946 0.895 0.898 0.937 0.924 

Bag NB 0.768 0.73 0.791 0.804 0.786 0.793 0.845 0.843 

         
Oversampling 60%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost 

J48 0.736 0.606 0.93 0.94 0.886 0.888 0.931 0.901 

Boost 

NB 0.68 0.727 0.855 0.818 0.816 0.804 0.851 0.832 

Bag J48 0.752 0.66 0.937 0.943 0.895 0.899 0.942 0.923 

Bag NB 0.787 0.751 0.772 0.776 0.776 0.772 0.845 0.842 

         
Oversampling 80%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost 

J48 0.756 0.625 0.929 0.934 0.886 0.887 0.937 0.905 

Boost 

NB 0.682 0.644 0.849 0.859 0.807 0.826 0.847 0.83 

Bag J48 0.775 0.687 0.938 0.939 0.897 0.9 0.947 0.921 

Bag NB 0.804 0.76 0.752 0.77 0.765 0.769 0.848 0.837 
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Oversampling 100%        

Ensemble 
True Positive True Negative Accuracy ROC Area 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

70% 

train 

30% 

test 

Boost 

J48 0.789 0.618 0.93 0.938 0.892 0.888 0.943 0.9 

Boost 

NB 0.748 0.709 0.826 0.829 0.805 0.81 0.852 0.838 

Bag J48 0.805 0.669 0.936 0.935 0.901 0.894 0.951 0.923 

Bag NB 0.838 0.828 0.717 0.701 0.749 0.721 0.851 0.84 

 


