# THE COST ANALYSIS OF IMPLEMENTING SOLAR PHOTOVOLTAIC SYSTEM FOR CONSUMERS IN PENINSULAR MALAYSIA BASED ON CURRENT AVAILABLE SCHEMES

**CHONG WEI HOU** 

A project report submitted in partial fulfilment of the requirements for the award of Master of Engineering (Electrical)

Lee Kong Chian Faculty of Engineering and Science Universiti Tunku Abdul Rahman

April 2020

## DECLARATION

I hereby declare that this project report is based on my original work except for citations and quotations which have been duly acknowledged. I also declare that it has not been previously and concurrently submitted for any other degree or award at UTAR or other institutions.

| Signature | : |               |
|-----------|---|---------------|
| Name      | : | Chong Wei Hou |
| ID No.    | : | 1904328       |
| Date      | : | 3 May 2020    |

## APPROVAL FOR SUBMISSION

I certify that this project report entitled THE COST ANALYSIS OF IMPLEMENTING SOLAR PHOTOVOLTAIC SYSTEM FOR CONSUMERS IN PENINSULAR MALAYSIA BASED ON CURRENT AVAILABLE SCHEMES was prepared by CHONG WEI HOU has met the required standard for submission in partial fulfilment of the requirements for the award of Master of Engineering (Electrical) at Universiti Tunku Abdul Rahman.

Approved by,

| Signature     | : | <u>LIM-B. H.</u> |
|---------------|---|------------------|
| Supervisor    | : | Dr. Lim Boon Han |
| Date          | : | 23 May 2020      |
|               |   |                  |
|               |   |                  |
| Signature     | : |                  |
| Co-Supervisor | : |                  |
| Date          | : |                  |

The copyright of this report belongs to the author under the terms of the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made of the use of any material contained in, or derived from, this report.

© 2020, Chong Wei Hou. All right reserved.

#### ABSTRACT

With introduction of Net Energy Metering (NEM) and Self-consumption (SELCO) scheme, consumer able to generate own electricity for own usage by promoting renewable energy while reduces the electricity bill. However, it is difficult to determine the benefits it can offered without having promising outcome restraining the public especially the household residential to participate the scheme. In this project, the cost analysis of both schemes integrated into the imitation energy load profile obtained from five sample household are studied. Energy load profile of the household residential are determined and simulation done by using PVSYST to study the effects of integration of NEM and SELCO scheme with photovoltaic system. Energy analysis was done to determine the overall energy consumption from the photovoltaic system and the energy required from the grid after implementing both NEM and SELCO scheme to maintain the household load. The result obtained is the reduction of energy consumption from the grid is highly reduced by using NEM scheme. Levelized cost of electricity (LCOE) is used to determine the cost of electricity after implementing NEM and SELCO schemes. The comparison of the levelized cost of electricity among the schemes with the residential tariff cost to determine the cost benefits of the introduced schemes. One of the results obtained is that the levelized cost of electricity for NEM and SELCO scheme able to achieve at RM 0.20 / kWh and RM 0.44 / kWh. Besides that, from the results obtained, the cost spends on the electricity on the 20<sup>th</sup> year able to achieve 27% to 51% savings for NEM implemented compare with non-PV user. The PV system with NEM have shorter payback period of 6.5 to 7.5 years with conditional requirement of minimum monthly energy consumption of 830 kWh onwards.

## TABLE OF CONTENTS

| DECLARATION                     | ii   |
|---------------------------------|------|
| APPROVAL FOR SUBMISSION         | iii  |
| ABSTRACT                        | v    |
| TABLE OF CONTENTS               | vi   |
| LIST OF TABLES                  | viii |
| LIST OF FIGURES                 | ix   |
| LIST OF SYMBOLS / ABBREVIATIONS | xi   |
| LIST OF APPENDICES              | xii  |

## CHAPTER

| 1 | INTR | RODUCTION                              | 1 |
|---|------|----------------------------------------|---|
|   | 1.1  | General Introduction                   | 1 |
|   | 1.2  | Importance of the Study                | 1 |
|   | 1.3  | Problem Statement                      | 2 |
|   | 1.4  | Aims and Objectives                    | 2 |
|   | 1.5  | Scope and Limitation of the Study      | 2 |
|   | 1.6  | Contribution of the Study              | 3 |
|   | 1.7  | Outline of the Report                  | 3 |
| 2 | LITE | CRATURE REVIEW                         | 4 |
|   | 2.1  | Introduction                           | 4 |
|   | 2.2  | Household energy consumption behaviour | 4 |
|   | 2.3  | NEM scheme                             | 5 |
|   | 2.4  | Optimum battery depth of discharge     | 5 |
|   | 2.5  | Levelized cost of electricity          | 6 |
|   |      |                                        |   |

## 3 METHODOLOGY AND WORK PLAN

8

|     | 3.1    | Introduction                    | 8  |
|-----|--------|---------------------------------|----|
|     | 3.2    | Energy Load Profile             | 9  |
|     | 3.3    | System Design                   | 9  |
|     | 3.4    | PVSYST Simulation               | 11 |
|     | 3.5    | Energy Analysis                 | 12 |
|     | 3.6    | Cost Analysis                   | 14 |
| 4   | RESU   | ULTS AND DISCUSSIONS            | 16 |
|     | 4.1    | Energy Load Profile             | 16 |
|     | 4.2    | Load Details                    | 19 |
|     | 4.3    | Energy Analysis                 | 26 |
|     | 4.4    | Cost Analysis                   | 33 |
| 5   | CON    | CLUSIONS AND RECOMMENDATIONS    | 40 |
|     | 5.1    | Conclusions                     | 40 |
|     | 5.2    | Recommendations for future work | 41 |
| REF | ERENCE | S                               | 43 |
|     |        |                                 |    |

44

## LIST OF TABLES

| 3.1  | Household Size                                           | 9  |
|------|----------------------------------------------------------|----|
| 3.2  | PV System Cost                                           | 14 |
| 3.3  | Electricity Tariff A – Domestic (From TNB)               | 14 |
| 4.1  | Weekday Hourly Energy Consumption                        | 16 |
| 4.2  | Weekend Hourly Energy Consumption                        | 17 |
| 4.3  | Household Load                                           | 19 |
| 4.4  | Results from PVSYST with 6 kW PV System for NEM scheme   | 27 |
| 4.5  | Monthly Energy Analysis with NEM scheme                  | 28 |
| 4.6  | Results from PVSYST with 9 kW PV System for NEM scheme   | 28 |
| 4.7  | Monthly Energy Analysis with NEM scheme                  | 28 |
| 4.8  | Results from PVSYST with 6 kW PV System for SELCO scheme | 29 |
| 4.9  | Monthly Energy Analysis of SELCO Scheme                  | 30 |
| 4.10 | Results from PVSYST with 9 kW PV System for SELCO Scheme | 30 |
| 4.11 | Monthly Energy Analysis of SELCO Scheme                  | 31 |
| 4.12 | Electricity Bill Comparison Among Scheme                 | 33 |
| 4.13 | NPV Cost for 20 years                                    | 34 |
| 4.14 | Total Energy Production with NEM scheme for 20 years     | 34 |
| 4.15 | Total Energy Production with SELCO scheme for 20 years   | 34 |
| 4.16 | Levelized Cost of Electricity                            | 35 |
| 4.17 | Comparison of The Cost on Specific Month                 | 37 |
| 4.18 | ROI and Payback Period                                   | 38 |

## LIST OF FIGURES

| Figure 1  | Flow chart of the project                  | 8  |
|-----------|--------------------------------------------|----|
| Figure 2  | Orientation of the PV module               | 10 |
| Figure 3  | Parameters set for 6 kW rated power system | 10 |
| Figure 4  | Module layout for 6 kW rated power system  | 11 |
| Figure 5  | Weekday Energy Load Profile                | 18 |
| Figure 6  | Weekend Energy Load Profile                | 18 |
| Figure 7  | House A Weekday Consumption                | 20 |
| Figure 8  | House A Weekday Hourly Load Profile        | 20 |
| Figure 9  | House A Weekend Load Consumption           | 20 |
| Figure 10 | House A Weekend Hourly Load Profile        | 21 |
| Figure 11 | House B Weekday Load Consumption           | 21 |
| Figure 12 | House B Weekday Hourly Load Profile        | 21 |
| Figure 13 | House B Weekend Load Consumption           | 22 |
| Figure 14 | House B Weekend Hourly Load Profile        | 22 |
| Figure 15 | House C Weekday Load Consumption           | 22 |
| Figure 16 | House C Weekday Hourly Load Profile        | 23 |
| Figure 17 | House C Weekend Load Consumption           | 23 |
| Figure 18 | House C Weekend Hourly Load Profile        | 23 |
| Figure 19 | House D Weekday Load Consumption           | 24 |
| Figure 20 | House D Weekday Hourly Load Profile        | 24 |
| Figure 21 | House D Weekend Load Consumption           | 24 |
| Figure 22 | House D Weekend Hourly Load Profile        | 25 |
| Figure 23 | House E Weekday Load Consumption           | 25 |

| Figure 24 | House E Weekday Hourly Load Profile                             | 25 |
|-----------|-----------------------------------------------------------------|----|
| Figure 25 | House E Weekend Load Consumption                                | 26 |
| Figure 26 | House E Weekend Hourly Load Profile                             | 26 |
| Figure 27 | Comparison among the schemes and non-PV system with 6 kW system | 31 |
| Figure 28 | Comparison among the schemes and non-PV system with 9 kW system | 32 |
| Figure 29 | Electricity Bill Comparison Chart                               | 33 |
| Figure 30 | LCOE Comparison Chart                                           | 35 |
| Figure 31 | Comparison of Total Cost                                        | 37 |

## LIST OF SYMBOLS / ABBREVIATIONS

| kWh   | Kilowatt-hour                            |
|-------|------------------------------------------|
| MWh   | Megawatt-hour                            |
| m     | Meter                                    |
| $m^2$ | Area square meter                        |
| kW    | Kilowatt                                 |
| V     | Voltage                                  |
| AH    | Ampere hour                              |
|       |                                          |
| COE   | Cost of energy                           |
| NEM   | Net Energy Metering scheme               |
| SELCO | Self-consumption scheme                  |
| PV    | Photovoltaic                             |
| SEDA  | Sustainable Energy Development Authority |
| DOD   | Depth of discharge                       |
| LCOE  | Levelized cost of electricity            |
| NPV   | Net present value                        |
| ROI   | Return of investment                     |

А

44

## **CHAPTER 1**

#### **INTRODUCTION**

## 1.1 General Introduction

Solar photovoltaic system is a system that uses solar panel to capture and convert sunlight energy into electrical energy. As the world is moving towards eco-friendly environment, the demand of opting solar photovoltaic (PV) system for energy production is gained as well. In 2019, Malaysia reintroduce Self-Consumption (SELCO) and Net Energy Metering (NEM) scheme to promote renewable energy growth in the country.

SELCO scheme is a scheme, where the electricity generated from solar photovoltaic system is purely for own consumption only. Main criterion for SELCO scheme is that, the electricity generated is not permissible to be exported into the grid.

NEM scheme is a scheme similar to SELCO scheme, which electricity generated from photovoltaic system can sustain own load system. The difference between NEM and SELCO scheme is the excessive electricity is permissible to export into the grid after sustaining own load system. The consumer that taken part into the scheme is identified as prosumer, which a person that produce and consume the electricity at the same time.

## **1.2** Importance of the Study

Electricity consumers are always seeking cheaper cost method to maintain cheaper electricity usage for their load consumption. With the study of cost analysis of implementing PV system for the consumers based on current available schemes, it can be beneficial for consumers, who are concerned of opting for eco-friendly solution that may bring no benefits after investments made. With the study conducted, the consumers can have sufficient information to decide whether the schemes introduced are beneficial.

### **1.3 Problem Statement**

With the promotion of renewable energy schemes by Sustainable Energy Development Authority (SEDA), it is target to cope with nationwide electricity power demand while able to help consumers to reduce electricity bill. However, without proper information and analysis being exposed to the public, it is difficult to judge whether it is benefits the consumer.

Different habits of electricity usage would have impact on the electricity bill being imposed. Energy planning is needed, so that the wastage electricity can be avoided hence the cost of electricity usage can be reduced. However, with the possibility of electricity tariff increases in the future, would directly impact the electricity bill of the consumers.

With vast of different sizes of PV system in the market, studies about household energy load are required to determine suitable PV system size that are available for residential usage. Economical PV system size is difficult to determine without sufficient household energy load profile.

## 1.4 Aims and Objectives

The aim of the study is to get cost analysis of implementing solar photovoltaic system for the residential consumers in Peninsula Malaysia based on current available schemes. The objectives of the study are per listed:

- > To investigate household energy consumption behaviour.
- To benchmark household energy load profile by obtain meter reading from household owner.
- To perform the cost analysis of current market solar photovoltaic system based on the customer demand and solar PV generation characteristic under current schemes.

## **1.5** Scope and Limitation of the Study

The study is mainly focus on residential consumer that consume electricity exceed 300 kwh per month. The meter reading data is logged manually and not using data logger devices due to device safety concern. The energy load profile created by PVSYST is to emulate similar sample as close as possible and the solar irradiance data used is based on available data from PVSYST software. Two sizes of the PV system are determined in the study based on the current available market for residential load.

## **1.6** Contribution of the Study

With the study of the cost analysis of implementing PV system for residential consumers, it can give clear picture of how much of savings can be achieve thru the new schemes introduced by SEDA. With more information that exposed to the public, the consumers can have sufficient information to decide whether to participate in the new schemes introduced by SEDA.

## **1.7** Outline of the Report

In the next chapter two literature review, the works done by different researchers in the relevant field will be discussed and determine the similarity or differences in the study. The methodology how the study being carried out will be listed under chapter three. The results obtained from the works will be discuss in chapter four. In the last part of the report chapter five, conclusion for the whole study and recommendation of future works will be made.

## **CHAPTER 2**

#### LITERATURE REVIEW

## 2.1 Introduction

Several factors that can affect the cost of the energy consumed in a residential home is being discussed in this chapter. One of the factors is the household energy consumption behaviour, which can affect overall total energy consumption. Besides that, other researcher paper related to the reintroduced NEM scheme, optimum battery depth of discharge and levelized cost of electricity are discussed too.

## 2.2 Household energy consumption behaviour

According to (Zhou & Yang, 2016), the behaviour on household energy usage can directly affect the total energy consumption of the household. In the paper written, the author discussed that the consumption behaviour can be influenced by various factors. The internal factor such as habit and environmental awareness influenced the decision on the energy consumption behaviour. The external factor such as demographic and luxurious lifestyle can affect the total assumption as well.

From the paper written by the author, it is agreed that there is high variance of energy consumption behavioural patterns that can lead to different total energy consumption. With the same kind of household appliances in two different houses, can have different total energy consumption because of the different behaviour of energy usage. Therefore, the study on the energy consumption behaviour on each household is crucial to determine the household total energy consumption.

According to survey done by (Aris et al., 2019), the air conditioners and water heaters are the main contributor to the household overall electricity consumption despite with the lower ownership rate. With the high electricity consumption by the two appliances, the usage duration of the appliances is significantly affecting the total electricity consumption. The impact on the household electricity consumption can be affected with the occupant behaviour such as setting the air conditioner timer.

In this project study, the total consumption of the household may have direct impact on the cost analysis of implementing PV system. Therefore, this behaviour factor will be one of the elements to determine the household load energy profile hence affecting total energy consumption.

## 2.3 NEM scheme

According to SEDA (*NEM – Renewable Energy Malaysia*, n.d.), the NEM scheme allows excessive energy generated by the consumer's solar PV to export to the grid after consumed by the consumer's load. The excessive energy exported to the grid would be given credit to offset with the energy taken from the grid on "one on one" basis. The "one on one" offset basis, would offset one unit of kWh of energy exported to the grid with one unit of kWh energy consumed from the grid. However, the credit obtained from energy exported to the grid, can only retained for 24 months and the credits obtained required to be offset within 24 months to avoid being forfeited after the duration.

With the latest NEM scheme being introduced, the medium and large residential household electricity consumer would be able to save more compared with low usage and non PV system user according to the paper written by (Razali et al., 2019). In the paper written by (Razali et al., 2019), direct comparison between initial NEM introduced in 2016 and the latest NEM scheme reintroduced, the latest NEM shows better results for large resident especially with 6 kW and 8 kW PV system.

However, the cost saving percentage shown in the paper written is based on the results tested from the Skudai, Johor state. It did not state whether the cost saving percentage are applicable to other states of Malaysia. With one same scheme, it may or may not have the same outcome for different parts of the Malaysia. Therefore, it can be study in this project whether similar results can be achieved throughout the study.

Besides that, the PV system price is getting cheaper, it can be assumed that the capital installation cost is reducing as well. Therefore, the cost saving percentage may be even higher and eventually benefits the small electricity user as well.

## 2.4 Optimum battery depth of discharge

Battery is one of the components that may or may not present in a PV system. In a stand-alone system, battery is one of the essential components but with grid connected system, it may not. In a modern world, battery technology comes with high cost. Depth of discharge is one of the factors that can affect the lifespan of a battery.

According to (Hlal et al., 2019), depth of discharge (DOD) is determined based on battery life cost. With high cost of a battery, it is required to determined optimum DOD to prolong the battery lifespan. In the paper written by the author, the DOD determined is 70% with the lowest cost of energy (COE) produced. With the 70% of DOD, it is cost effective with lead acid technology. In the paper written, the lowest COE able to be produced with 70% DOD is 0.20594 USD/kWh.

From the paper written by (Gomez-gonzalez et al., 2020), battery depth of discharge values affects the battery number of cycles, sizing capacity and the cost savings. With lower depth of discharge value, the number of cycles of the battery are higher, which translates to longer lifetime. However, the author stated that with lower depth of discharge, the sizing capacity of battery is smaller hence leads to smaller PV system size.

In this study, battery depth of discharge of 50% is being used. The reason is because to avoid stressing the battery with the maximum depth of discharge to prolong the battery lifespan. With battery depth of discharge lower than 50%, would require higher number of batteries need to be used in the PV system and leading to higher costing. Therefore, battery depth of discharge of 50% would be optimum choice of selection for the study.

## 2.5 Levelized cost of electricity

Levelized cost of electricity is a cost measurement of the electricity generated from the source. According to (Branker et al., 2011), declination of PV installation cost, and increases of grid electricity price, makes PV system become better economic benefits source of electricity. In the paper written by the author, it is stated that the summation of the present value of levelized cost of electricity multiplied with the energy generated is equivalent to present value net costs.

According to (Branker et al., 2011), the inputs for levelized cost of electricity need to be accurate as possible to achieve accurate outcome. With the lack of clear assumptions, the outcome of levelized cost of electricity can lead to higher outcome. The important inputs stated are system costs, financing, lifetime and loan term.

$$LCOE = \frac{\sum_{t=0}^{T} C_t / (1+r)^t}{\sum_{t=0}^{T} E_t / (1+r)^t}$$
(2.1)

Where,

Ct is present net value cost

E<sub>t</sub> is the rated energy output per year

r is discount rate t is time period

According to (Gan et al., 2014), the essential parameter to be considered in levelized cost of electricity are the system cost, inflation rate and degradation rate. It is stated that improvements in the annual energy output, extended system lifetime, lower inflation rate and operation maintenance cost could drive to lower levelized cost of electricity. With the lower levelized cost of electricity, the payback period would be reduced.

In this project study, the levelized cost of electricity would be used to determine the cost for both NEM and SELCO schemes to be compare with current residential electricity tariff. With the levelized cost of electricity calculation, alternative energy source can be taken into consideration.

## **CHAPTER 3**

## METHODOLOGY AND WORK PLAN

## 3.1 Introduction

The chapter explain the method to obtain energy load profile, simulation using PVSYST to emulate household load, and the analysis of the data obtained to compare cost beneficial based on the available scheme. Using causal-comparative method, the outcome of the cost analysis to be determined.



Figure 1: Flow chart of the project

### **3.2 Energy Load Profile**

In this study, meter reading records with the interval time of one hour is recorded for five numbers of household for a duration of one week. Five different household energy consumption can be used to study whether different pattern of energy consumption would have different outcome of the cost analysis for the schemes.

With the meter reading records, the hourly energy consumption can be obtained for the weekday and weekend load profile. The average value of the five days from Monday to Friday is obtained for weekday load profile and average value of Saturday and Sunday for the weekend profile.

Total numbers of people staying in all houses are different. With more people staying in a house, the energy consumption assumed to be higher than lesser people staying in the house. Besides that, simple interview is conducted to gain more information about the type and the usage duration of loads in a household to study and understand the behaviour of the household usage for simulating the household energy consumption.

|         | Number of persons stay in a house |
|---------|-----------------------------------|
| House A | 2                                 |
| House B | 4                                 |
| House C | 5                                 |
| House D | 8                                 |
| House E | 7                                 |

Table 3.1: Household Size

#### 3.3 System Design

Suitable PV system capacity that is available in the market, is obtained and use to simulate with the household load information collected. The area of PV module to be installed needed to be determined. The area size for the rooftop of the sample house is 59.5 m<sup>2</sup> with 8.5 m length (L) and 7 m wide (W) for one facet. The PV module used in this simulation is JA SOLAR JAM6-72-320/SI, and the inverter used are SUN2000L-5KTL and SUN2000L-8KTL by HUAWEI TECHNOLOGIES.

Two different sizes of PV system capacity, which are 6 KWp and 9 KWp used to simulate the effect of the NEM and SELCO scheme on the household load. For the PV system of 6 kW, twenty numbers of PV modules are used and for the PV system of 9 kW, twenty-eight numbers of PV modules are used.

For the PV design for SELCO scheme, the battery size of 24 V 784 AH is used for 6 kW system capacity and battery size of 36 V 784 AH is used for 9 kW system capacity. The reason 784 AH battery is chosen because it is the nearest value to 800 AH available in PVSYST. The battery depth of discharge is set at 50% for the simulation. This is to prolong the lifecycle of the battery by not fully discharge the battery. However, assumption made is that battery optimization is not conducted. The figures shown below are the parameters set in the PVSYST for simulation.

| 🎯 Orientation, Variant "Own house"                                                                                            |                                                                     |                                      | -                         |      | ×    |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------|---------------------------|------|------|
| Field type Fixed T                                                                                                            | ilted Plane                                                         | •                                    |                           |      |      |
| Field parameters           Plane Tilt         5.0         -1         [°]           Azimuth         0.0         -1         [°] | Tilt 5°                                                             | West                                 | Azimuth 0                 | )°   | Faet |
|                                                                                                                               | •                                                                   | West 1                               | South                     |      | Lusi |
|                                                                                                                               | Yearly meteo yiel                                                   | d                                    |                           |      |      |
| Coptimization by respect to     Yearly irradiation yield     Summer (Apr-Sep)     Winter (Oct-Mar)                            | Transposition Factor<br>Loss By Respect To<br>Global on collector p | or FT<br>Optimum<br>plane <b>160</b> | 1.00<br>0.0%<br>00 kWh/m² |      |      |
|                                                                                                                               | Show                                                                | v Optimization                       |                           |      |      |
|                                                                                                                               |                                                                     | X Cance                              |                           | ок 🗸 |      |

Figure 2: Orientation of the PV module

| lobal System configuration           |                       | Global system s      | summary            |                                   |               |
|--------------------------------------|-----------------------|----------------------|--------------------|-----------------------------------|---------------|
| Number of kinds of sub-arrays        |                       | Nb. of modules       | 20                 | Nominal PV Power                  | 6.4 kWp       |
|                                      | 1                     | Module area          | 39 m²              | Maximum PV Power                  | 6.2 kWa       |
| Simplified Schema                    |                       | ND. of inverters     | 1                  | Nominal AC Power                  | 5.0 KW2       |
| / Array                              |                       |                      |                    |                                   |               |
| Sub-array name and Orientation       |                       | Presizing Help       |                    |                                   |               |
| Name PV Array                        |                       | O No sizing          | Enter plar         | ned power 💿 6.0 k                 | Wp            |
| Orient. Fixed Tilted Plane           | Tilt 5<br>Azimuth 0   | Resize               | or available are   | a(modules) C 37 m                 | 12            |
| Select the PV module                 |                       |                      |                    |                                   |               |
| Available Now 🔽 Filter All PV m      | nodules 💌             |                      | Appr               | ox. needed modules 19             |               |
| JA Solar                             | Si-mono JAM           | 6-72-320/SI          | Since 2012         | Manufacturer 2014 💌               | 👌 Open        |
|                                      |                       |                      |                    |                                   |               |
| Sizing                               | y voltages : Vmpp (60 | °C) 31.9 V           |                    |                                   |               |
| J Use Optimizer                      | VOC (-10              | -() 31.3 V           |                    |                                   |               |
| Select the inverter                  |                       |                      |                    |                                   | ▼ 50 Hz       |
| Available Now   Output voltage       | 230 V Mono 50Hz       |                      |                    |                                   | 🔽 60 Hz       |
| Huawei Technologies 💌 5.0 kW 90 ·    | 500 V TL 50/60        | Hz SUN2000L-5KTL     |                    | Since 2017 🔹                      | 🐴 Open        |
| Nb of MPPT inputs 2                  | Operating Voltage:    | 90-500 V             | Inverter power use | d <b>5.0</b> kWac                 |               |
| Use multi MDDT feature               | Input maximum voltac  | e: 600 V             | inverter with 2    | мррт                              |               |
| ose multi-rippi feature              |                       |                      | inverter men z     |                                   |               |
| Design the array                     |                       |                      |                    |                                   |               |
| Number of modules and strings        |                       | Operating conditions |                    |                                   |               |
|                                      | ??                    | Vmpp (60°C) 319      | v                  |                                   |               |
|                                      | 1                     | Vmpp (20°C) 385      | V                  |                                   |               |
| Mod. in series 10 . I between 3 ar   | nd 11                 | Voc (-10°C) 513      | V                  |                                   |               |
| Nbre strings 2 - I 🔽 only possibilit | y 2                   | tooo                 |                    | Catholic Index                    | ere .         |
| , .                                  |                       | mane irradiance 1000 | W/m²<br>May        | operating power                   | 57 100        |
| Overload loss 0.0 % Show s           | izing                 | mpp (STC) 17.1 A     | Mdx                | t 1000 W/m <sup>2</sup> and 50°C) | <b>3.7</b> KW |
| Pnom ratio 1.28                      | <u> </u>              | 30 (310) 10/0 M      |                    | and bo by                         |               |
| who and the second second            | 20                    |                      | A                  | Deven (CTC)                       | C . A 1444-   |

Figure 3: Parameters set for 6 kW rated power system



Figure 4: Module layout for 6 kW rated power system

## 3.4 **PVSYST Simulation**

The PVSYST software tool is used to simulate the five different household load consumption with NEM and SELCO scheme. The household load consumption is set for weekday and weekend load profile. Two separate simulation data will be simulated for each PV system according to two different load profile from weekday and weekend.

For the NEM scheme simulation, no battery parameter is included in the simulation. This is because NEM scheme is based on "one on one" offset basis. The NEM scheme simulation with the household load allows the remaining excessive energy after consumed by the household load to be export to the grid.

For the SELCO scheme simulation, battery parameter is needed to include in the simulation. This is because SELCO scheme is based on own load self-consumption basis. The SELCO scheme simulation with the household load set at not allowable produced energy transfer to the grid. The simulation results data such as annual energy production, energy consumption by the user from the solar and the grid are used to perform cost analysis based on the schemes.

### 3.5 Energy Analysis

For the energy analysis, simulation results obtained from PVSYST are analysed. Few information obtained from PVSYST such as annual energy production, energy consumption from PV and energy consumption from the grid are taking into analysis. The results obtained from the PVSYST are in annual basis and the analysis needs to be break into monthly basis because for the NEM and SELCO scheme able to compare directly with the cost of electricity bills, which obtained by monthly basis.

Few assumptions are made in this analysis to ease the studies to be carried out. For the first assumption, the irradiance data used in the PVSYST are assumed to be the same for the whole year. With this assumption made, the irradiance received on the PV module are the same for every month. Another assumption made for the analysis, is the monthly energy load consumption by the household are fixed constant. The assumption is made because it is to assume the difference on the changes of the monthly energy load consumption are not very high. Few information needed to be analysed and calculate from the results obtained from the PVSYST. Information that needed to be calculated are:

- i. Household monthly energy consumption.
- ii. Household monthly energy production.
- iii. Remaining monthly energy required from the grid.

The household total energy consumption for the month is calculated by using the information from the results obtained from PVSYST. The equation (3.1) shows the equation to determine household monthly energy consumption.

$$E_M = \frac{E_{CPV} + E_{CG}}{12} \times 1000 \tag{3.1}$$

Where,

 $E_M$  is household monthly energy consumption (kWh)  $E_{CPV}$  is annual energy consumption from PV (MWh)  $E_{CG}$  is annual energy consumption from the grid (MWh)

The equation to calculate household monthly energy production for NEM and SELCO scheme are different. For NEM scheme, the total annual energy that produced by the PV system can be taken into monthly average value because of NEM scheme allows the excessive energy after consumed by the load to be export to the grid. From the results obtained from PVSYST, the energy consumed from the grid can be taken

into consideration as some of the energy from the grid are exported from the PV system. Household monthly energy production for NEM scheme is shown as equation (3.2).

$$E_{MP\_NEM} = \frac{E_{AP}}{12} \times 1000 \tag{3.2}$$

Where,

 $E_{MP\_NEM}$  is monthly energy production (kWh)

E<sub>AP</sub> is annual energy production (MWh)

For SELCO scheme, the total energy production for the household is calculated solely based on the total energy consumption from the PV. Unlike NEM scheme, SELCO scheme does not allow any excessive energy after household consumption to be export to the grid. The energy produced from the PV system solely consumed by the household load and to charge up the battery storage if there is low demand energy usage from the load. Therefore, monthly energy production is equally to the monthly energy consumption as shown at equation (3.3).

$$E_{MP\_SELCO} = \frac{\sum E_{AC}}{12} \times 1000 \tag{3.3}$$

Where,

E<sub>MP\_SELCO</sub> is monthly energy production (kWh)E<sub>AC</sub> is annual energy consumption from the PV system and battery (MWh)

For the remaining monthly energy required from the grid, the calculated household monthly energy consumption deduct with the household energy production. The remaining monthly energy required from the grid, is the energy that is still required from the grid to help sustaining the household load after implementing PV system for both NEM and SELCO scheme. The equation (3.4) shows the equation for determine the remaining monthly energy required from the grid.

$$E_{RG} = E_M - E_{MP} \tag{3.4}$$

Where,

 $E_{RG}$  is remaining monthly energy required from grid (kWh)  $E_{M}$  is monthly energy consumption (kWh)  $E_{MP}$  is monthly energy production (kWh)

### 3.6 Cost Analysis

The analysis results obtained from Section 3.5 is used to perform cost analysis. The effects on the electricity bills can be compared between non-PV system user and the available schemes. Net present value (NPV) and levelized cost of electricity are being performed using the data obtained from the simulation and market research. The results of the levelized of cost electricity will be compared with the grid electricity cost for the residential to justify the outcome of the study.

Net present value method is a method to determine the value invested into an investment with the present value. Net present value is inclusive of the initial setup cost for PV system and the lifetime operating and maintenance cost. The discount rate in net present value is set at 3%. Return of investment is benefits that can receive by a certain period of time after investment being made. The monthly saving electrical bill would be the return of the investment in this study. With the information of net present value and return of investment, the payback period for implementing PV system with current scheme can be determined.

Table 3.2: PV System Cost

| System Size                          | System Cost  | Maintenance Cost |
|--------------------------------------|--------------|------------------|
| 6 kW system without battery          | RM 30 000.00 | RM 100 / year    |
| 9 kW system without battery          | RM 41 000.00 | RM 100 / year    |
| 6 kW system with battery 24 V 786 AH | RM 46 000.00 | RM 100 / year    |
| 9 kW system with battery 36 V 786 AH | RM 65 000.00 | RM 100 / year    |

Table 3.3: Electricity Tariff A – Domestic (From TNB)

| For the first 200 kWh $(1 - 200 \text{ kWh})$ per month | RM 0.218 / kWh |
|---------------------------------------------------------|----------------|
| For the first 100 kWh (201 – 300 kWh) per month         | RM 0.334 / kWh |
| For the first 300 kWh (301 – 600 kWh) per month         | RM 0.516 / kWh |
| For the first 300 kWh ( $601 - 900$ kWh) per month      | RM 0.546 / kWh |
| For the next kWh (901 kWh onwards) per month            | RM 0.571 / kWh |
| Minimum monthly charge                                  | RM 3.00        |

$$NPV = \sum_{y=0}^{n} \frac{R_p}{(1+D)^y}$$
(3.5)

Where,

R<sub>p</sub> is savings or returns during single period, p

D is discount rate

y is number of periods

Levelized cost of electricity can be determined by using net present total cost over with total energy production for the lifetime of the PV system. The total energy production for the lifetime of the PV system requires to consider for the energy production degradation over the lifetime of the PV system. With the annual energy degradation of 1% for the PV system is considered, the total energy production for 20 years is determined. From a part of the cost analysis, a comparison of the monthly cost spends for non-PV user and PV user with the schemes to determine the overall cost benefits of the schemes.

$$LCOE = \frac{\sum_{t=0}^{T} NPV}{\sum_{t=0}^{T} E_t}$$
(3.5)

Where,

NPV is total net present value cost E<sub>t</sub> is total energy produced over PV system lifespan

Payback period (years) = 
$$\frac{\sum_{t=0}^{T} NPV}{ROI}$$
 (3.6)

## **CHAPTER 4**

## **RESULTS AND DISCUSSIONS**

#### 4.1 **Energy Load Profile**

The obtained hourly energy consumption for weekdays and weekend as shown below:

| Table 4. | 1: Weekday Hourly Energy Consumption |
|----------|--------------------------------------|
| kdav     | Energy usage (kWh)                   |

| Weekday      | Energy usage (kWh) |         |         |         |         |  |
|--------------|--------------------|---------|---------|---------|---------|--|
| Time         | House A            | House B | House C | House D | House E |  |
| 12am to 1am  | 1                  | 1       | 1       | 2       | 2       |  |
| 1am to 2am   | 1                  | 1       | 1       | 2       | 2       |  |
| 2am to 3am   | 1                  | 1       | 1       | 2       | 2       |  |
| 3am to 4am   | 1                  | 1       | 1       | 2       | 2       |  |
| 4am to 5am   | 1                  | 1       | 1       | 2       | 2       |  |
| 5am to 6am   | 1                  | 1       | 1       | 2       | 2       |  |
| 6am to 7am   | 1                  | 3       | 1       | 2       | 2       |  |
| 7am to 8am   | 1                  | 0       | 3       | 2       | 1       |  |
| 8am to 9am   | 0                  | 0       | 2       | 2       | 0       |  |
| 9am to 10am  | 0                  | 0       | 1       | 0       | 0       |  |
| 10am to 11am | 0                  | 1       | 0       | 0       | 1       |  |
| 11am to 12pm | 0                  | 0       | 1       | 1       | 0       |  |
| 12pm to 1pm  | 0                  | 0       | 0       | 0       | 0       |  |
| 1pm to 2pm   | 0                  | 1       | 1       | 1       | 1       |  |
| 2pm to 3pm   | 0                  | 0       | 0       | 1       | 0       |  |
| 3pm to 4pm   | 0                  | 0       | 0       | 0       | 0       |  |
| 4pm to 5pm   | 0                  | 1       | 1       | 1       | 1       |  |
| 5pm to 6pm   | 0                  | 0       | 1       | 1       | 1       |  |
| 6pm to 7pm   | 1                  | 1       | 3       | 2       | 2       |  |
| 7pm to 8pm   | 2                  | 3       | 4       | 6       | 6       |  |
| 8pm to 9pm   | 1                  | 3       | 5       | 6       | 5       |  |
| 9pm to 10pm  | 1                  | 3       | 3       | 4       | 6       |  |
| 10pm to 11pm | 2                  | 2       | 2       | 3       | 3       |  |
| 11pm to 12am | 1                  | 1       | 1       | 2       | 2       |  |

| Weekday      | Energy usage (kWh) |         |         |         |         |  |
|--------------|--------------------|---------|---------|---------|---------|--|
| Time         | House A            | House B | House C | House D | House E |  |
| 12am to 1am  | 1                  | 1       | 1       | 2       | 2       |  |
| 1am to 2am   | 1                  | 1       | 1       | 2       | 2       |  |
| 2am to 3am   | 1                  | 1       | 1       | 2       | 2       |  |
| 3am to 4am   | 1                  | 1       | 1       | 2       | 2       |  |
| 4am to 5am   | 1                  | 1       | 1       | 2       | 2       |  |
| 5am to 6am   | 1                  | 1       | 1       | 2       | 2       |  |
| 6am to 7am   | 1                  | 3       | 3       | 2       | 2       |  |
| 7am to 8am   | 1                  | 2       | 3       | 1       | 1       |  |
| 8am to 9am   | 0                  | 1       | 3       | 2       | 0       |  |
| 9am to 10am  | 1                  | 1       | 1       | 2       | 1       |  |
| 10am to 11am | 1                  | 1       | 1       | 2       | 0       |  |
| 11am to 12pm | 0                  | 1       | 1       | 1       | 1       |  |
| 12pm to 1pm  | 1                  | 1       | 1       | 1       | 0       |  |
| 1pm to 2pm   | 1                  | 1       | 1       | 1       | 1       |  |
| 2pm to 3pm   | 1                  | 1       | 1       | 1       | 0       |  |
| 3pm to 4pm   | 0                  | 1       | 1       | 2       | 1       |  |
| 4pm to 5pm   | 1                  | 1       | 1       | 2       | 1       |  |
| 5pm to 6pm   | 1                  | 1       | 1       | 2       | 1       |  |
| 6pm to 7pm   | 1                  | 1       | 2       | 2       | 2       |  |
| 7pm to 8pm   | 2                  | 3       | 3       | 6       | 6       |  |
| 8pm to 9pm   | 2                  | 3       | 3       | 6       | 5       |  |
| 9pm to 10pm  | 1                  | 3       | 3       | 4       | 5       |  |
| 10pm to 11pm | 2                  | 3       | 3       | 4       | 4       |  |
| 11pm to 12am | 1                  | 1       | 1       | 2       | 2       |  |

Table 4.2: Weekend Hourly Energy Consumption



Figure 5: Weekday Energy Load Profile



Figure 6: Weekend Energy Load Profile

From the figure shown, the energy demand is higher during morning hour starting 6 am and after 6 pm in both weekday and weekend energy load profile. The higher energy consumption house appliances likely to operate frequently during this hour compared to other hours. Higher energy consumption on house D and E are because the numbers of house occupant are higher and the tendency to switch on more electrical appliances is higher, hence contribute to higher energy consumption especially in the between 6 pm to 10 pm period.

From the figure, it shows that the energy consumption during daytime between 8 am to 6 pm is lower compare to other time is because most of the house occupant is working and not in the house. With lesser occupant in the house, the tendency of the household appliance running is lower, which leads to the lower energy consumption at that period time as well.

## 4.2 Load Details

Table 4.3 shows the household load, which can have different energy consumption at one periodic time. Figure 7 to Figure 26 shows the load details and the hourly profile set at the PVSYST software to simulate the household load based on the energy load profile obtained on Section 4.1. However, it is unable to imitate the household load energy profile exactly 100%, there is minimal differences around 10% between the household load energy profile obtained from Section 4.1 and the imitation of the energy profile in PVSYST.

|                      |         | Numł    | per of Owne | rships  |         |
|----------------------|---------|---------|-------------|---------|---------|
| Load                 | House A | House B | House C     | House D | House E |
| Lights               | 20      | 26      | 28          | 30      | 30      |
| TV / PC              | 1       | 2       | 2           | 3       | 3       |
| Iron                 | 1       | 1       | 1           | 1       | 1       |
| Refrigerator         | 1       | 1       | 1           | 1       | 1       |
| Washing machine      | 1       | 1       | 1           | 1       | 1       |
| Instant water heater | 1       | 1       | 2           | 2       | 1       |
| Air conditioner      | 2       | 3       | 3           | 6       | 6       |

Table 4.3: Household Load

| Daily cons                        | sumptions             |                             |                                             |                       |          |                |          |           |
|-----------------------------------|-----------------------|-----------------------------|---------------------------------------------|-----------------------|----------|----------------|----------|-----------|
| Number                            | Appliance             | Power                       |                                             | Daily us              | e        | Hourly distrib | Daily en | ergy      |
| 20 -                              | Lamps (LED or fluo)   | 18                          | W/lamp                                      | 6.5                   | h/day    | ОК             | 2340     | Wh        |
| 1 :                               | TV / PC / Mobile      | 70                          | W/app.                                      | 6.0                   | h/day    | OK             | 420      | Wh        |
| 1 .                               | Iron                  | 1200                        | W/app.                                      | 0.5                   | h/day    | ОК             | 600      | Wh        |
| 1 :                               | Fridge / Deep-freeze  | 3.00                        | kWh/day                                     | 24.0                  | h/day    | OK             | 3000     | Wh        |
| 1 .                               | Dish- & Cloth-washers | 500.0                       | W aver.                                     | 1.0                   | h/day    | ОК             | 500      | Wh        |
| 1 .                               | Instant water heater  | 2000                        | W/app.                                      | 1.0                   | h/day    | ОК             | 2000     | Wh        |
| 2 :                               | Aircond               | 750                         | W/app.                                      | 4.5                   | h/day    | OK             | 6750     | Wh        |
|                                   | Stand-by consumers    | 1                           | W tot                                       | 24 h/d                | ay 🔽     | 7 days/7       | 24       | Wh        |
| 2 Appl                            | iances info           |                             |                                             | Total o               | laily en | ergy           | 15634    | Wh/day    |
|                                   |                       |                             |                                             | Total ı               | nonthly  | / energy       | 335.0    | kWh/month |
| Consump<br>Year<br>Seaso<br>Month | ns                    | Veek-end<br>✓ Use or<br>5 ÷ | <b>i or Week</b><br>hly during<br>days in a | <b>ly use</b><br>week |          |                |          |           |

Figure 7: House A Weekday Consumption



Figure 8: House A Weekday Hourly Load Profile

| umb  | er Appliance          | Power |         | Daily us | se       | Hourly distrib | Daily en | ergy     |
|------|-----------------------|-------|---------|----------|----------|----------------|----------|----------|
| 20 - | Lamps (LED or fluo)   | 18    | W/lamp  | 5.0      | h/day    | OK             | 1800     | Wh       |
| 1 -  | TV / PC / Mobile      | 70    | W/app.  | 14.0     | h/day    | OK             | 980      | Wh       |
| 1    | · Iron                | 1200  | W/app.  | 0.5      | h/day    | OK             | 600      | Wh       |
| 1    | Fridge / Deep-freeze  | 3.00  | kWh/day | 24.0     | h/day    | OK             | 3000     | Wh       |
| 1    | Dish- & Cloth-washers | 500.0 | W aver. | 1.0      | h/day    | OK             | 500      | Wh       |
| 1    | Instant water heater  | 2000  | W/app.  | 1.0      | h/day    | OK             | 2000     | Wh       |
| 2    | Aircond               | 750   | W/app.  | 10.0     | h/day    | OK             | 15000    | Wh       |
|      | Stand-by consumers    | 1     | W tot   | 24 h/d   | ay 🗆     | 7 days/7       | 24       | Wh       |
| 2 4  | opliances info        |       |         | Total    | daily en | ergy           | 23904    | Wh/day   |
| • •  | ppidrices into        |       |         | Total    | monthly  | energy         | 204.9    | kWh/mont |

Figure 9: House A Weekend Load Consumption



Figure 10: House A Weekend Hourly Load Profile

| Consumptions Hourly                           | distribution                        |           |                        |                    |                |                |                     |
|-----------------------------------------------|-------------------------------------|-----------|------------------------|--------------------|----------------|----------------|---------------------|
| Daily consumption                             | s                                   |           |                        |                    |                |                |                     |
| Number Appliar                                | nce Power                           |           | Daily us               | e                  | Hourly distrib | Daily en       | ergy                |
| ZG ÷ Lamps (L                                 | ED or fluo) 18                      | W/lamp    | 5.0                    | h/day              | ОК             | 2340           | Wh                  |
| 2 ÷ TV / PC /                                 | Mobile 70                           | W/app.    | 9.0                    | h/day              | OK             | 1260           | Wh                  |
| 1 · Iron                                      | 1200                                | W/app.    | 1.0                    | h/day              | OK             | 1200           | Wh                  |
| 1 + Fridge / C                                | Deep-freeze 3.00                    | kWh/day   | 24.0                   | h/day              | ОК             | 3000           | Wh                  |
| 1 - Dish- & C                                 | loth-washers 500.0                  | W aver.   | 1.0                    | h/day              | ОК             | 500            | Wh                  |
| 1 i Instant v                                 | vater heater 2000                   | W/app.    | 1.5                    | h/day              | ОК             | 3000           | Wh                  |
| 3 Aircond                                     | 750                                 | W/app.    | 7.0                    | h/day              | ОК             | 15750          | Wh                  |
| Stand-by                                      | consumers 1                         | W tot     | 24 h/da                | y 🗆                | 7 days/7       | 24             | Wh                  |
| ? Appliances info                             | ,                                   |           | Total d<br>Total n     | aily en<br>nonthly | ergy<br>energy | 27074<br>580.2 | Wh/day<br>kWh/month |
| Consumption defi<br>Year<br>Seasons<br>Months | Week-en       ?     Week-en       5 | d or Week | <b>:ly use</b><br>week |                    |                |                |                     |

Figure 11: House B Weekday Load Consumption



Figure 12: House B Weekday Hourly Load Profile

| Nun | nber  | Appliance             | Power |         | Daily us | e        | Hourly distrib | Daily en | ergy    |
|-----|-------|-----------------------|-------|---------|----------|----------|----------------|----------|---------|
| 26  | ÷     | Lamps (LED or fluo)   | 18    | W/lamp  | 5.0      | h/day    | OK             | 2340     | Wh      |
| 2   | ÷     | TV / PC / Mobile      | 70    | W/app.  | 14.0     | h/day    | OK             | 1960     | Wh      |
| 1   | -<br> | Iron                  | 1200  | W/app.  | 1.0      | h/day    | OK             | 1200     | Wh      |
| 1   | ÷     | Fridge / Deep-freeze  | 3.00  | kWh/day | 24.0     | h/day    | OK             | 3000     | Wh      |
| 1   | ÷     | Dish- & Cloth-washers | 500.0 | W aver. | 1.0      | h/day    | OK             | 500      | Wh      |
| 1   | ÷     | Instant water heater  | 2000  | W/app.  | 1.5      | h/day    | OK             | 3000     | Wh      |
| 3   | ÷     | Aircond               | 750   | W/app.  | 10.0     | h/day    | OK             | 22500    | Wh      |
|     |       | Stand-by consumers    | 1     | W tot   | 24 h/d   | ay 🗆     | 7 days/7       | 24       | Wh      |
| 2   | Anoli | iances info           |       |         | Total    | laily en | ergy           | 34524    | Wh/day  |
|     | OPPI  | ances into            |       |         | Total    | nonthly  | energy         | 295.9    | kWh/mon |

Figure 13: House B Weekend Load Consumption



Figure 14: House B Weekend Hourly Load Profile

|           | amps (LED or fluo)<br>/ / PC / Mobile | 18    | W/lamp  | 6.0    | h/day    | OK       | 3024  | Wh        |
|-----------|---------------------------------------|-------|---------|--------|----------|----------|-------|-----------|
|           | / / PC / Mobile                       | 70    | Milana  | _      |          |          |       |           |
| 1 - In    |                                       |       | w/app.  | 10.0   | h/day    | OK       | 1400  | Wh        |
| •         | on                                    | 1200  | W/app.  | 1.0    | h/day    | ок       | 1200  | Wh        |
| 1 ÷ Fr    | idge / Deep-freeze                    | 3.00  | kWh/day | 24.0   | h/day    | OK       | 3000  | Wh        |
|           | ish- & Cloth-washers                  | 500.0 | W aver. | 1.0    | h/day    | OK       | 500   | Wh        |
| 2 ÷ In    | stant water heater                    | 2000  | W/app.  | 2.0    | h/day    | OK       | 8000  | Wh        |
| 3 ÷ Ai    | rcond                                 | 750   | W/app.  | 8.0    | h/day    | OK       | 18000 | Wh        |
| St        | tand-by consumers                     | 1     | W tot   | 24 h/d | ay 🗂     | 7 days/7 | 24    | Wh        |
| 2 Applian | res info                              |       |         | Total  | daily en | ergy     | 35148 | Wh/day    |
| : Applian | Ces into                              |       |         | Total  | monthly  | energy   | 753.2 | kWh/month |

Figure 15: House C Weekday Load Consumption





|                   | 1 |                       | -     | 141.0                | -      |       | OV       | 2024      | LAIL. |
|-------------------|---|-----------------------|-------|----------------------|--------|-------|----------|-----------|-------|
| 28                |   | Lamps (LED or fluo)   | 18    | vv/iamp              | 6.0    | n/day | UK       | 3024      | wn    |
| 2                 | ÷ | TV / PC / Mobile      | 70    | W/app.               | 10.0   | h/day | OK       | 1400      | Wh    |
| 1                 | ÷ | Iron                  | 1200  | W/app.               | 1.0    | h/day | OK       | 1200      | Wh    |
| 1                 | ÷ | Fridge / Deep-freeze  | 3.00  | kWh/day              | 24.0   | h/day | OK       | 3000      | Wh    |
| 1                 | - | Dish- & Cloth-washers | 500.0 | W aver.              | 1.0    | h/day | OK       | 500       | Wh    |
| 2                 | ÷ | Instant water heater  | 2000  | W/app.               | 2.0    | h/day | OK       | 8000      | Wh    |
| 3                 | ÷ | Aircond               | 750   | W/app.               | 9.5    | h/day | OK       | 21375     | Wh    |
|                   |   | Stand-by consumers    | 1     | W tot                | 24 h/d | ay 🗆  | 7 days/7 | 24        | Wh    |
| 2 Appliances info |   |                       |       | Total daily energy   |        |       | 38523    | Wh/day    |       |
| Appliances into   |   |                       |       | Total monthly energy |        |       | 330.2    | kWh/month |       |





Figure 18: House C Weekend Hourly Load Profile

| Num                       | iber | Appliance             | Power |                     | Daily u | se      | Hourly distrib | Daily en | ergy     |
|---------------------------|------|-----------------------|-------|---------------------|---------|---------|----------------|----------|----------|
| 30                        | ÷    | Lamps (LED or fluo)   | 18    | W/lamp              | 5.0     | h/day   | OK             | 2700     | Wh       |
| 3                         | ÷    | TV / PC / Mobile      | 70    | W/app.              | 14.0    | h/day   | OK             | 2940     | Wh       |
| 1                         | ÷    | Iron                  | 1200  | W/app.              | 1.0     | h/day   | ОК             | 1200     | Wh       |
| 1                         | ÷    | Fridge / Deep-freeze  | 3.00  | kWh/day             | 24.0    | h/day   | ОК             | 3000     | Wh       |
| 1                         | ÷    | Dish- & Cloth-washers | 500.0 | W aver.             | 1.5     | h/day   | ОК             | 750      | Wh       |
| 2                         | ÷    | Instant water heater  | 2000  | W/app.              | 2.0     | h/day   | ОК             | 8000     | Wh       |
| 6                         | ÷    | Aircond               | 750   | W/app.              | 6.0     | h/day   | OK             | 27000    | Wh       |
| Stand-by consumers 1 W to |      |                       | W tot | 24 h/day 🦳 7 days/7 |         |         | 24             | Wh       |          |
| 2 Appliances info         |      |                       |       | Total daily energy  |         |         | 45614          | Wh/day   |          |
|                           |      |                       |       |                     | Total   | monthly | energy         | 977.4    | kWh/mont |

Figure 19: House D Weekday Load Consumption



Figure 20: House D Weekday Hourly Load Profile

| unit              | er Appliance          | Power |                      | Daily us | se    | Hourly distrib | Daily en  | ergy |
|-------------------|-----------------------|-------|----------------------|----------|-------|----------------|-----------|------|
| 30                | Lamps (LED or fluo)   | 18    | W/lamp               | 5.0      | h/day | OK             | 2700      | Wh   |
| 3 -               | TV / PC / Mobile      | 70    | W/app.               | 14.0     | h/day | OK             | 2940      | Wh   |
| 1                 | · Iron                | 1200  | W/app.               | 1.0      | h/day | OK             | 1200      | Wh   |
| 1                 | Fridge / Deep-freeze  | 3.00  | kWh/day              | 24.0     | h/day | OK             | 3000      | Wh   |
| 1                 | Dish- & Cloth-washers | 500.0 | W aver.              | 1.5      | h/day | OK             | 750       | Wh   |
| 2 -               | Instant water heater  | 2000  | W/app.               | 2.0      | h/day | OK             | 8000      | Wh   |
| 6                 | Aircond               | 750   | W/app.               | 8.0      | h/day | OK             | 36000     | Wh   |
|                   | Stand-by consumers    | 1     | W tot                | 24 h/d   | lay 🔽 | 7 days/7       | 24        | Wh   |
| 2 Appliances info |                       |       | Total daily energy   |          |       | 54614          | Wh/day    |      |
| Appliances into   |                       |       | Total monthly energy |          |       | 468.1          | kWh/month |      |

Figure 21: House D Weekend Load Consumption


Figure 22: House D Weekend Hourly Load Profile

| unite | er Appliance          | Power |         | Daily us | se       | Hourly distrib | Daily en | ergy     |
|-------|-----------------------|-------|---------|----------|----------|----------------|----------|----------|
| 30    | Lamps (LED or fluo)   | 18    | W/lamp  | 5.5      | h/day    | OK             | 2970     | Wh       |
| 3     | TV / PC / Mobile      | 70    | W/app.  | 4.0      | h/day    | OK             | 840      | Wh       |
| 1     | Iron                  | 1200  | W/app.  | 1.0      | h/day    | OK             | 1200     | Wh       |
| 1     | Fridge / Deep-freeze  | 3.00  | kWh/day | 24.0     | h/day    | OK             | 3000     | Wh       |
| 1     | Dish- & Cloth-washers | 500.0 | W aver. | 2.0      | h/day    | OK             | 1000     | Wh       |
| 1     | Instant water heater  | 2000  | W/app.  | 1.0      | h/day    | OK             | 2000     | Wh       |
| 6     | Aircond               | 750   | W/app.  | 7.0      | h/day    | OK             | 31500    | Wh       |
|       | Stand-by consumers    | 1     | W tot   | 24 h/d   | lay 🗆    | 7 days/7       | 24       | Wh       |
| 2 An  | nliances info         |       |         | Total    | daily en | ergy           | 42534    | Wh/day   |
| : -+  | pierices into         |       |         | Total    | monthly  | energy         | 911.4    | kWh/mont |

Figure 23: House E Weekday Load Consumption



Figure 24: House E Weekday Hourly Load Profile

| wun | nber | Appliance             | Power |         | Daily us | se       | Hourly distrib | Daily en | ergy     |
|-----|------|-----------------------|-------|---------|----------|----------|----------------|----------|----------|
| 30  | ÷    | Lamps (LED or fluo)   | 18    | W/lamp  | 5.5      | h/day    | OK             | 2970     | Wh       |
| 3   |      | TV / PC / Mobile      | 70    | W/app.  | 14.0     | h/day    | OK             | 2940     | Wh       |
| 1   | ÷    | Iron                  | 1200  | W/app.  | 1.0      | h/day    | OK             | 1200     | Wh       |
| 1   |      | Fridge / Deep-freeze  | 3.00  | kWh/day | 24.0     | h/day    | ОК             | 3000     | Wh       |
| 1   | ÷    | Dish- & Cloth-washers | 500.0 | W aver. | 2.0      | h/day    | OK             | 1000     | Wh       |
| 1   | ÷    | Instant water heater  | 2000  | W/app.  | 1.0      | h/day    | OK             | 2000     | Wh       |
| 6   | ÷    | Aircond               | 750   | W/app.  | 7.0      | h/day    | OK             | 31500    | Wh       |
|     |      | Stand-by consumers    | 1     | W tot   | 24 h/d   | ay 🔽     | 7 days/7       | 24       | Wh       |
| 2   | Anol | iances info           |       |         | Total    | daily en | ergy           | 44634    | Wh/day   |
| •   | npp  |                       |       |         | Total    | monthly  | energy         | 382.6    | kWh/mont |

Figure 25: House E Weekend Load Consumption



Figure 26: House E Weekend Hourly Load Profile

# 4.3 Energy Analysis

Energy analysis is required to analyse each information obtained to determine the total energy required from PV system and the grid to sustain the load consumption. In the energy analysis, the results obtained from the PVSYST tool are analysed and discussed.

| Description         | Simulation Result (MWh) over the |         |         |         | ar      |
|---------------------|----------------------------------|---------|---------|---------|---------|
|                     | House A                          | House B | House C | House D | House E |
| Annual energy       | 8.41                             | 8.41    | 8.41    | 8.41    | 8.41    |
| production          |                                  |         |         |         |         |
| Energy consumption  | 0.42                             | 0.59    | 0.86    | 1.19    | 0.59    |
| from PV (weekday)   |                                  |         |         |         |         |
| Energy consumption  | 3.66                             | 6.47    | 8.32    | 10.72   | 10.51   |
| from grid (weekday) |                                  |         |         |         |         |
| Energy consumption  | 0.82                             | 0.91    | 0.96    | 1.03    | 0.44    |
| from PV (weekend)   |                                  |         |         |         |         |
| Energy consumption  | 1.69                             | 2.71    | 3.09    | 4.71    | 4.25    |
| from grid (weekend) |                                  |         |         |         |         |

Table 4.4: Results from PVSYST with 6 kW PV System for NEM scheme

From Table 4.4, it shows that with 6 kW PV system able to produce 8.41 MWh over the whole year. Monthly average energy consumption can be calculated for each house to be able to integrate with NEM scheme. Based on the NEM policy, the excessive energy produced after consumed by the house load can be export to the grid to be offset "one on one" basis with the energy consumed from the grid.

For house A, the total energy consumption for a whole year is 6.59 MWh. With the total energy production of 8.41 MWh, there is excessive of 1.82 MWh for a whole year. With monthly average energy production of 700 kWh and the monthly average consumption around 549 kWh. There are remaining of 151 kWh to export to the grid every month to be offset with the energy required from the grid. The result shows that the PV system of 6 kW capable of fully supply energy to the house A.

For the house B to house E, the energy consumption is higher than annual energy production. After deduct with NEM scheme "one on one" offset basis, remaining energy consumed from the grid is still charged by the utility company at a lower rate. Table 4.5 shows the remaining monthly energy required from the grid after offset with NEM scheme.

| Description          | House A     | House B | House C | House D | House E |
|----------------------|-------------|---------|---------|---------|---------|
| Annual energy        | 8.41        | 8.41    | 8.41    | 8.41    | 8.41    |
| production (MWh)     |             |         |         |         |         |
| Annual energy        | 6.59        | 10.68   | 13.23   | 17.65   | 15.79   |
| consumption (MWh)    |             |         |         |         |         |
| Monthly energy       | 700         | 700     | 700     | 700     | 700     |
| production (kWh)     |             |         |         |         |         |
| Monthly load         | 549         | 890     | 1103    | 1470    | 1316    |
| consumption (kWh)    |             |         |         |         |         |
| Remaining monthly    | -152        | 189     | 402     | 770     | 615     |
| energy required from | (excessive) |         |         |         |         |
| grid (kWh)           |             |         |         |         |         |

Table 4.5: Monthly Energy Analysis with NEM scheme

Table 4.6: Results from PVSYST with 9 kW PV System for NEM scheme

| Description         | Simulation Result (MWh) over the year |         |         |         |  |
|---------------------|---------------------------------------|---------|---------|---------|--|
|                     | House B                               | House C | House D | House E |  |
| Annual energy       | 11.78                                 | 11.78   | 11.78   | 11.78   |  |
| production          |                                       |         |         |         |  |
| Energy consumption  | 0.64                                  | 0.99    | 1.29    | 0.61    |  |
| from PV (weekday)   |                                       |         |         |         |  |
| Energy consumption  | 6.43                                  | 8.19    | 10.62   | 10.49   |  |
| from grid (weekday) |                                       |         |         |         |  |
| Energy consumption  | 0.97                                  | 1.05    | 1.05    | 0.45    |  |
| from PV (weekend)   |                                       |         |         |         |  |
| Energy consumption  | 2.66                                  | 3.0     | 4.69    | 4.24    |  |
| from grid (weekend) |                                       |         |         |         |  |

Table 4.7: Monthly Energy Analysis with NEM scheme

| Description          | House B     | House C | House D | House E |
|----------------------|-------------|---------|---------|---------|
| Annual energy        | 11.78       | 11.78   | 11.78   | 11.78   |
| production (MWh)     |             |         |         |         |
| Annual energy        | 10.67       | 13.23   | 17.65   | 15.79   |
| consumption (MWh)    |             |         |         |         |
| Monthly energy       | 983         | 983     | 983     | 983     |
| production (kWh)     |             |         |         |         |
| Monthly load         | 890         | 1103    | 1471    | 1316    |
| consumption (kWh)    |             |         |         |         |
| Remaining monthly    | -93         | 120     | 488     | 333     |
| energy required from | (excessive) |         |         |         |
| grid (kWh)           |             |         |         |         |

Table 4.6 show the energy production with 9 kW PV system for house B to house E. House A is not included for 9 kW PV system because from Table 4.5, it can see that the energy production from 6 kW PV system is supply excessive energy to the grid. It can see that the annual energy consumption for the house B is lesser than annual energy production, meanwhile the annual energy consumption for house C to house E are higher than their annual energy production. The study case for house B is similar with house A, where the energy produced by the PV system able to cope the total energy needed by the household load.

Table 4.7 shows the remaining of the energy required from the grid after NEM scheme offset to sustain the household load consumption. The result show that house B is oversupply 93 kWh monthly after NEM "one on one" offset with 9 kW PV system. Remaining energy consumption that required by house C to house E greatly reduced compared with the results shown on table 4.5. From the results shown, it can see that with higher capacity PV system with NEM scheme, the reduction of energy required from the grid is greatly reduced.

| Description         | Simulation Result (MWh) over the year |         |         |         |         |
|---------------------|---------------------------------------|---------|---------|---------|---------|
|                     | House A                               | House B | House C | House D | House E |
| Maximum annual      | 8.41                                  | 8.41    | 8.41    | 8.41    | 8.41    |
| energy production   |                                       |         |         |         |         |
| (MWh)               |                                       |         |         |         |         |
| Energy consumption  | 3.04                                  | 3.27    | 3.45    | 3.69    | 3.12    |
| from PV (weekday)   |                                       |         |         |         |         |
| Energy consumption  | 1.04                                  | 3.80    | 5.72    | 8.22    | 7.98    |
| from grid (weekday) |                                       |         |         |         |         |
| Energy consumption  | 1.99                                  | 2.17    | 2.2     | 2.18    | 1.71    |
| from PV (weekend)   |                                       |         |         |         |         |
| Energy consumption  | 0.52                                  | 1.45    | 1.85    | 3.56    | 2.98    |
| from grid (weekend) |                                       |         |         |         |         |

Table 4.8: Results from PVSYST with 6 kW PV System for SELCO scheme

Table 4.8 shows that the energy consumption directly from the PV system is higher compare with the results from Table 4.4. This is because of integration of battery system that required for SELCO scheme. In the event of no energy production occur, the battery system able to continue to supply to the house load until the depth of discharge reaches at 50% and switch into grid energy to be consume for house load.

| Description          | House A | House B | House C | House D | House E |
|----------------------|---------|---------|---------|---------|---------|
| Annual energy        | 5.03    | 5.44    | 5.65    | 5.87    | 4.83    |
| produced based on    |         |         |         |         |         |
| load (MWh)           |         |         |         |         |         |
| Annual energy        | 5.03    | 5.44    | 5.65    | 5.87    | 4.83    |
| consumption from PV  |         |         |         |         |         |
| (MWh)                |         |         |         |         |         |
| Monthly energy       | 419     | 453     | 470     | 489     | 402     |
| production (kWh)     |         |         |         |         |         |
| Monthly load         | 549     | 890     | 1102    | 1470    | 1316    |
| consumption (kWh)    |         |         |         |         |         |
| Remaining monthly    | 130     | 437     | 632     | 981     | 914     |
| energy required from |         |         |         |         |         |
| grid (kWh)           |         |         |         |         |         |

Table 4.9: Monthly Energy Analysis of SELCO Scheme

Table 4.10: Results from PVSYST with 9 kW PV System for SELCO Scheme

| Description         | Simulation Result (MWh) over the year |         |         |         |  |  |
|---------------------|---------------------------------------|---------|---------|---------|--|--|
|                     | House B                               | House C | House D | House E |  |  |
| Maximum annual      | 11.78                                 | 11.78   | 11.78   | 11.78   |  |  |
| energy production   |                                       |         |         |         |  |  |
| (MWh)               |                                       |         |         |         |  |  |
| Energy consumption  | 4.64                                  | 4.91    | 5.18    | 4.53    |  |  |
| from PV (weekday)   |                                       |         |         |         |  |  |
| Energy consumption  | 2.43                                  | 4.26    | 6.72    | 6.58    |  |  |
| from grid (weekday) |                                       |         |         |         |  |  |
| Energy consumption  | 2.83                                  | 2.94    | 3.01    | 2.43    |  |  |
| from PV (weekend)   |                                       |         |         |         |  |  |
| Energy consumption  | 0.8                                   | 1.11    | 2.73    | 2.26    |  |  |
| from grid (weekend) |                                       |         |         |         |  |  |

| Description          | House B | House C | House D | House E |
|----------------------|---------|---------|---------|---------|
| Annual energy        | 7.47    | 7.85    | 8.19    | 6.96    |
| produced based on    |         |         |         |         |
| load (MWh)           |         |         |         |         |
| Annual energy        | 7.47    | 7.85    | 8.19    | 6.96    |
| consumption from PV  |         |         |         |         |
| (MWh)                |         |         |         |         |
| Monthly energy       | 622     | 654     | 682     | 580     |
| production (kWh)     |         |         |         |         |
| Monthly load         | 890     | 1102    | 1470    | 1316    |
| consumption (kWh)    |         |         |         |         |
| Remaining monthly    | 268     | 448     | 788     | 736     |
| energy required from |         |         |         |         |
| grid (kWh)           |         |         |         |         |

Table 4.11: Monthly Energy Analysis of SELCO Scheme



Figure 27: Comparison among the schemes and non-PV system with 6 kW system



Figure 28: Comparison among the schemes and non-PV system with 9 kW system

From Figure 27 and Figure 28, it shows that with PV system running with NEM and SELCO schemes reduces the energy required from the grid to support the house load usage. Each house show reduction more than 50% on energy required from the grid for NEM scheme except house D on using 6 kW system shows 47% reduction on energy required from the grid. For NEM scheme case, there is a point where the energy produced are higher than the monthly consumption leads to zero energy require from the grid and supply the extra energy produced to the grid. This result can be seen on house A using 6 kW system and house B using 9 kW system. The excessive energy produced by the PV system can be export to the grid considering as energy storage and offset "one on one" energy consumed from the grid. This exchange enables the total energy generated by the PV system to be fully utilized.

For SELCO scheme, the reduction energy consumption from the grid shown on Figure 27 varies between 33% to 77% and Figure 28 varies between 45% to 70% among the houses. The variation of the reduction percentage is affected by the differences on the usage load during daytime, where the energy produced directly use for the house load usage. On the daytime where there is high energy consumption by the load, is beneficial because the energy produced can directly use for the load. On the contrast, during the daytime, where the energy consumption is low, the produced energy will charge the battery until full and stop produce the energy. The energy stored in the battery will be consumed once the PV module gain no sunlight to produce energy.

### 4.4 Cost Analysis

Cost analysis being carried out using the data obtained from the Section 4.3. The data of remaining energy required from the grid is used to calculate the electricity bill based on the residential electricity tariff.

|                   | Electricity Bill Comparison (RM) |         |         |         |         |  |
|-------------------|----------------------------------|---------|---------|---------|---------|--|
|                   | House A                          | House B | House C | House D | House E |  |
| Without PV system | 205.48                           | 390.14  | 511.51  | 721.07  | 633.14  |  |
| NEM (6 kW)        | 3.00                             | 41.20   | 129.63  | 324.62  | 239.99  |  |
| NEM (9 kW)        | NA                               | 3.00    | 26.16   | 174.52  | 94.54   |  |
| SELCO (6 kW)      | 28.34                            | 147.70  | 249.27  | 441.85  | 403.59  |  |
| SELCO (9 kW)      | NA                               | 66.31   | 153.37  | 334.45  | 306.60  |  |

Table 4.12: Electricity Bill Comparison Among Scheme



Figure 29: Electricity Bill Comparison Chart

Figure 29 shows the comparison electricity bill among the scheme with non-PV system installed. From the comparison, it shows that the highest reduction charges on the electricity bill is on NEM scheme with 9 kW system. Higher reduction effects on 9 kW system compared with 6 kW system is because of the higher energy produced by the larger capacity system. From the results shown, NEM scheme able to bring higher reduction on the electricity bill compared with SELCO scheme. Overall, both NEM and SELCO scheme capable to lower the electricity bill.

| System Size                          | NPV Total Cost (RM) |
|--------------------------------------|---------------------|
| 6 kW system without battery          | 31 520.69           |
| 6 kW system with 24 V 784 AH battery | 47 520.69           |
| 9 kW system without battery          | 42 520.69           |
| 9 kW system with 36 V 784 AH battery | 66 520.69           |

Table 4.13: NPV Cost for 20 years

Table 4.14: Total Energy Production with NEM scheme for 20 years

| System Size                 | Total Energy Production (KWh) |
|-----------------------------|-------------------------------|
| 6 kW system without battery | 153 140                       |
| 9 kW system without battery | 214 506                       |

Table 4.15: Total Energy Production with SELCO scheme for 20 years

| Sample House Load | Total Energy Production (kWh) |                          |  |  |  |  |  |
|-------------------|-------------------------------|--------------------------|--|--|--|--|--|
|                   | 6 kW with battery system      | 9 kW with battery system |  |  |  |  |  |
| House A           | 91 593                        | -                        |  |  |  |  |  |
| House B           | 99 059                        | 136 024                  |  |  |  |  |  |
| House C           | 102 700                       | 142 907                  |  |  |  |  |  |
| House D           | 106 889                       | 149 134                  |  |  |  |  |  |
| House E           | 87 951                        | 126 737                  |  |  |  |  |  |

From Table 4.14 and 4.15, it shows that the total energy produced for 20 years from both different schemes are different. For NEM scheme, the total energy production for 20 years entirely depends on the maximum energy that able to produce by the PV system. This is because the excessive energy produced after consumed by the house load, will directly feed into the grid and be offset "one on one" basis if the house load usage requires any additional energy from the grid.

For SELCO scheme, the total energy production for 20 years entirely depends the energy load profile. This can be seen on the results obtained in the table 4.15, the total energy production for house D is higher than house E, regardless the total energy consumption for house D is higher than house E. This is because the daytime energy consumption for house E is lower compared to house D, therefore the excessive energy produced will be stored on the battery storage sooner. At the period, where there is very low energy consumption during daytime, the PV system inverter will terminate the energy production to the house load when the battery storage is fully charge. In contrast with the house D, the scenario where the energy consumption during daytime is higher, the excessive energy produced after consumed by the higher house load will be stored at the battery storage with slower rate. This overall can fully utilized the maximum energy production of the PV system.

| PV system with type of | Levelized Cost of Electricity (RM / kWh) |      |      |      |      |
|------------------------|------------------------------------------|------|------|------|------|
| scheme                 | А                                        | В    | С    | D    | Е    |
| 6 kW system (NEM)      | 0.21                                     | 0.21 | 0.21 | 0.21 | 0.21 |
| 9 kW system (NEM)      | -                                        | 0.20 | 0.20 | 0.20 | 0.20 |
| 6 kW system (SELCO)    | 0.52                                     | 0.48 | 0.46 | 0.44 | 0.54 |
| 9 kW system (SELCO)    | -                                        | 0.49 | 0.47 | 0.45 | 0.52 |

Table 4.16: Levelized Cost of Electricity



Figure 30: LCOE Comparison Chart

From the Table 4.16 and Figure 30, it shows each levelized cost of electricity for the both schemes comparing with the conventional grid user tariff. The comparison results shown that the levelized cost of electricity for NEM scheme is consistent for all five houses at RM 0.21 / kWh for 6 kW PV system and RM 0.20 / kWh for 9 kW PV system, which are lower than the cheapest block charges offer by the utility provider. This shows that with NEM scheme, the levelized cost of electricity is entirely depends on the PV system capacity size installed. As long as the PV system capacity size determined, the total amount of energy production able to predicted, the system able to fully produce the energy to be consume by the load and export the excess energy to the grid to be offset "one on one" basis if any energy usage taken from the grid.

The levelized cost of electricity for SELCO scheme is not consistent for all five houses. The results shown the levelized cost of electricity obtained for five houses in the range between RM 0.44 / kWh and RM 0.54 / kWh. The levelized cost of electricity obtained for SELCO scheme, is higher compared to the first block charges by the utility provider at the rate of RM 0.218 / kWh but is lower compared to the fourth block charges by the utility provider at the rate of RM 0.546 / kWh. The reason of this inconsistency of levelized cost of electricity is because of the differences of total energy consumption for different house load during daytime leading to the amount of excessive energy that able to store in the battery system. At the period, where battery is fully charged and no excessive energy allowable to export to the grid, the PV system will cut off the energy production, leading to total energy production is lesser as shown in Table 4.15.

| PV system with scheme      |        | Mont   | hly costing | (RM)   |        |
|----------------------------|--------|--------|-------------|--------|--------|
| on a specific month        | А      | В      | С           | D      | Е      |
| Without PV system          | 205.48 | 390.14 | 511.51      | 721.07 | 633.14 |
| 6 kW system (NEM) on       | 136.33 | 174.53 | 262.96      | 457.95 | 373.32 |
| 1 <sup>st</sup> month      |        |        |             |        |        |
| 6 kW system (NEM) on       | 136.33 | 216.01 | 325.40      | 524.02 | 439.93 |
| 240 <sup>th</sup> month    |        |        |             |        |        |
| 9 kW system (NEM) on       | -      | 182.16 | 205.32      | 353.68 | 273.70 |
| 1 <sup>st</sup> month      |        |        |             |        |        |
| 9 kW system (NEM) on       | -      | 196.38 | 253.16      | 443.17 | 361.94 |
| 240 <sup>th</sup> month    |        |        |             |        |        |
| 6 kW system (SELCO)        | 228.34 | 347.70 | 449.27      | 641.85 | 603.59 |
| on 1 <sup>st</sup> month   |        |        |             |        |        |
| 6 kW system (SELCO)        | 244.60 | 388.46 | 494.04      | 690.39 | 643.56 |
| on 240 <sup>th</sup> month |        |        |             |        |        |
| 9 kW system (SELCO)        | -      | 345.47 | 432.53      | 613.61 | 585.76 |
| on 1 <sup>st</sup> month   |        |        |             |        |        |
| 9 kW system (SELCO)        | -      | 395.38 | 491.35      | 678.19 | 640.36 |
| on 240 <sup>th</sup> month |        |        |             |        |        |

Table 4.17: Comparison of The Cost on Specific Month



Figure 31: Comparison of Total Cost

The comparison of different month cost is needed because of energy degradation would affect the overall energy production over long time period. From results obtained at Table 4.17 and Figure 31, it shows that PV system with available

schemes able to reduce the cost spend on electricity for the first month after implementing PV system. It is noticeable that the cost spends on the 240<sup>th</sup> month, which equal to 20 years after implementing the PV system, the 240<sup>th</sup> month cost is higher compare to the first month of implementing the PV system.

For the NEM scheme, the cost of the 240<sup>th</sup> month is still lower compare with the non-PV system user. Overall reduction of the cost on the 240<sup>th</sup> month able to achieve in the between 27% to 51% for NEM scheme depending on the household load comparing with the non-PV system user. The reduction of the cost for the first month is expected to be higher because of the highest energy efficiency without any degradation.

For the SELCO scheme, the cost on the 240<sup>th</sup> month is varying depending on the household load. It is noticeable that the cost on the 240<sup>th</sup> month for household B and E are higher than the non-PV system user. With the energy degradation happens over long time period, the cost to operate PV system with SELCO scheme getting higher which may bring cost losses to the user.

| Sample  | Scheme              | Monthly | Annual ROI | Payback |
|---------|---------------------|---------|------------|---------|
| house   |                     | Savings | (RM)       | period  |
| load    |                     |         |            | (Years) |
| House A | 6 kW system (NEM)   | 98.54%  | 2 429.76   | 13      |
|         | 6 kW system (SELCO) | 86.21%  | 2 125.68   | 22.4    |
| House B | 6 kW system (NEM)   | 89.44%  | 4 187.28   | 7.5     |
|         | 9 kW system (NEM)   | 99.23%  | 4 645.68   | 9.2     |
|         | 6 kW system (SELCO) | 62.14%  | 2 909.28   | 16.3    |
|         | 9 kW system (SELCO) | 83.00%  | 3 885.96   | 17.1    |
| House C | 6 kW system (NEM)   | 74.66%  | 4 582.56   | 6.9     |
|         | 9 kW system (NEM)   | 94.89%  | 5 824.20   | 7.3     |
|         | 6 kW system (SELCO) | 51.27%  | 3 146.88   | 15.1    |
|         | 9 kW system (SELCO) | 70.02%  | 4 297.68   | 15.5    |
| House D | 6 kW system (NEM)   | 54.98%  | 4 757.40   | 6.6     |
|         | 9 kW system (NEM)   | 75.80%  | 6 558.60   | 6.5     |
|         | 6 kW system (SELCO) | 38.72%  | 3 350.64   | 14.2    |
|         | 9 kW system (SELCO) | 53.62%  | 4 693.44   | 14.3    |
| House E | 6 kW system (NEM)   | 62.10%  | 4 717.80   | 6.7     |
|         | 9 kW system (NEM)   | 85.07%  | 6 463.20   | 6.6     |
|         | 6 kW system (SELCO) | 36.26%  | 2 754.60   | 17.3    |
|         | 9 kW system (SELCO) | 51.57%  | 3 918.48   | 17      |

Table 4.18: ROI and Payback Period

Table 4.18 shows the return of investment and payback period for the five houses with both NEM and SELCO scheme. From the results obtained, it can see that investment of PV system with NEM scheme able to have payback period in the range of 6.5 years to 7.5 years for the monthly load consumption from 830 kWh onwards. However, for the monthly load consumption of 549 kWh for house A have a longer payback period of 13 years regardless the monthly saving achieved 98.54%. This shows that for NEM scheme, there is a minimum limit of monthly energy consumption in order to have cost beneficial to the investment made. If the minimum limit of monthly energy consumption is not meet, the investment made will have longer payback period even with high monthly reduction electricity bill achieved.

From the table 4.18, it shows that PV system with SELCO scheme have a payback period between 14.2 years to 22.4 years. This is mainly because of the investment amount for the PV with battery system is very high while having a lower rate on total energy that can be consumed by the load. With the long duration payback period, the investment for the PV with battery system for SELCO unlikely brings any cost benefits.

#### **CHAPTER 5**

#### CONCLUSIONS AND RECOMMENDATIONS

#### 5.1 Conclusions

Energy household behaviour affects the total energy consumption for the household. Total energy consumption for a household can be affected by household appliances usage duration, total number of household appliances running at a time and total number of occupants in the house. As the time usage of the appliances increases, the total energy consumed increases as well. The total number of appliances running at the same time, increases the demand of the energy required to run multiple loads at the same. The total number of occupants in the house leads to higher tendency to use any household appliances at any time, which leads to possibility of energy consumption.

The energy load profile is important to study the overall energy consumption of the load. The assumption made from this study is that the energy load profile on the monthly basis are assumed to be the same to ease the study, where in the real-world scenario the monthly energy load profile shall be slightly varies. The information of high and low energy demand at specific time can be obtained and analysed to ensure energy production of the PV system able to cope with the overall energy demand of the load. The energy load profile on weekday and weekend are different due to the different routine of household appliances usage. The energy consumption during the weekend tends to be higher due to the duration hour of the house occupant staying in the house is longer compared during the weekday.

NEM scheme allows the remaining excessive energy after consumed by the household can be export to the grid and offset "one on one" with the energy consumed from the grid. This exchange enables the total energy generated by the PV system belongs to the household to be fully utilized. With the PV system that is sufficient to supply the energy required for the load, it can reduce the energy consumption from the grid. It is noticeable that high reduction on the energy consumption required for the grid greatly reduce by integrate NEM scheme, hence leading to lower electricity bill charges.

SELCO scheme mainly for the household to fully consume own energy production without export any energy to the grid. SELCO scheme relies heavily on the battery size to store high capacity of energy to be consumed by the household load. During the daytime where there is household load consuming energy, the energy produced from the PV system can cater for the household load. During this operation, any remaining excessive energy after consumed by the household load, will be stored into the battery system until fully charged. At the period of time, where there is very low energy demand by the load and the battery storage is fully charged, the inverter of the PV system will cut off the energy production due to the regulation of no energy allowable to export to the grid. This leads to the reduction of the potential total amount of energy able to produce by the PV system. Overall, the reduction of energy consumption from the grid is lesser compared to the NEM scheme due to the limitation from the battery capacity.

For the cost analysis, it is noticeable that NEM scheme able to bring lower levelized cost of electricity compared to the tariff offered by the utility provider. This is greatly beneficial to the household as this can helps in reducing electricity bill charges. Meanwhile for SELCO scheme, the levelized cost of electricity is not as low as compared to NEM scheme, it can achieve at RM 0.44 / kWh depending on the household load consumption is in the range of the tariff charges by the utility provider, starting from RM 0.218 / kWh to RM 0.571 / kWh depending on the block. Overall, investment made for PV system with NEM scheme have shorter payback period from 6.5years to 7.5 years compared to SELCO scheme, it is needed to have minimum limit of monthly energy consumption in order to achieve short payback period.

## 5.2 **Recommendations for future work**

For the recommendations, the data of energy load profile and the irradiance data can be obtained for a twelve month to gain the overall changes of the household load that can bring closer results to the study. Besides that, the monthly energy production from the twelve-month information of irradiance data can be simulated using PVSYST software to have accurate monthly energy production. Another recommendation that is worth to consider is to simulate PV system with different capacity from 2 kW to 12 kW with 1 kW interval for NEM scheme to determine whether the levelized cost of electricity able to remain at low cost. Theoretically, with higher power rated PV system, higher reduction of energy consumption from the grid can be achieve, which can lead to low electricity bill charges. However, study on different power rated PV system is needed to determine whether the levelized cost of electricity can be remain low.

Another recommendation is that the battery depth of discharge for SELCO scheme can be increase to higher value to see the effect on the reduction energy from the grid. Theoretically, with higher battery depth of discharge, the energy that can be supply to the load from the battery is higher as well, which lead to reduction of energy consumption from the grid. However, study on this is required to determine whether the levelized cost of electricity for SELCO scheme can be further reduced.

#### REFERENCES

- Aris, H., Dollah, R., & Jamalludin, K. N. (2019). An Analysis on the Effect of Consumers Behaviour Towards Household Electricity Consumption. 2018 IEEE Conference on Big Data and Analytics, ICBDA 2018, 16–22. https://doi.org/10.1109/ICBDAA.2018.8629738
- Branker, K., Pathak, M. J. M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. *Renewable and Sustainable Energy Reviews*, 15(9), 4470–4482. https://doi.org/10.1016/j.rser.2011.07.104
- Gan, C., Lau, C., & Tan, P. (2014). Evaluation Of Solar Photovoltaic Levelized Cost Of Energy For PV Grid Parity Analysis In Malaysia. *International Journal of Renewable Energy Resources*, 4(1), 28–34.
- Gomez-gonzalez, M., Hernandez, J. C., Vera, D., & Jurado, F. (2020). Optimal sizing and power schedule in PV household-prosumers for improving PV selfconsumption and providing frequency containment reserve. *Energy*, 191, 116554. https://doi.org/10.1016/j.energy.2019.116554
- Hlal, M. I., Ramachandaramurthy, V. K., Sarhan, A., Pouryekta, A., & Subramaniam,
  U. (2019). Optimum battery depth of discharge for off-grid solar PV/battery
  system. *Journal of Energy Storage*, 26(June), 100999.
  https://doi.org/10.1016/j.est.2019.100999
- NEM Renewable Energy Malaysia. (n.d.). Retrieved May 3, 2020, from http://www.seda.gov.my/reportal/nem/
- Razali, A. H., Abdullah, M. P., Hassan, M. Y., & Hussin, F. (2019). Comparison of New and Previous Net Energy Metering (NEM) Scheme in Malaysia. *ELEKTRIKA- Journal of Electrical Engineering*, 18(1), 36–42. https://doi.org/10.11113/elektrika.v18n1.141
- Zhou, K., & Yang, S. (2016). Understanding household energy consumption behavior: The contribution of energy big data analytics. *Renewable and Sustainable Energy Reviews*, 56, 810–819. https://doi.org/10.1016/j.rser.2015.12.001

# APPENDICES

APPENDIX A: PVSYST Simulation Reports

| PVSYST V6.86                                                                                                                                                                                      |                                                                         |                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                  | 21/04/20                                                                                                                                                               | Page 1/7                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                                                                                                                                                   | Grid-C                                                                  | connected System                                                                                                                                                        | n: Simulation p                                                                                                                                                              | arameters                                                                                                                        |                                                                                                                                                                        |                                     |
| Project :                                                                                                                                                                                         | Tama                                                                    | n Midah (NEM)                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                        |                                     |
| Geographical Si                                                                                                                                                                                   | te k                                                                    | (uala Lumpur/Subang                                                                                                                                                     |                                                                                                                                                                              | Country                                                                                                                          | / Malays                                                                                                                                                               | ia                                  |
| Situation                                                                                                                                                                                         |                                                                         | Latitude                                                                                                                                                                | 3.12° N                                                                                                                                                                      | Longitude                                                                                                                        | ۔<br>101.55°                                                                                                                                                           | E                                   |
| Time defined a                                                                                                                                                                                    | as                                                                      | Legal Time                                                                                                                                                              | Time zone UT+8 Altitude 17 m                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                                        |                                     |
| Meteo data:                                                                                                                                                                                       | k                                                                       | Albedo<br>(uala Lumpur/Subang                                                                                                                                           | 0.20<br>MeteoNorm 7.2 sta                                                                                                                                                    | tion - Synthetic                                                                                                                 |                                                                                                                                                                        |                                     |
| Simulation vari                                                                                                                                                                                   | ant : workii                                                            | n <mark>g couple (6kw)</mark>                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                        |                                     |
|                                                                                                                                                                                                   |                                                                         | Simulation date                                                                                                                                                         | 21/04/20 17h34                                                                                                                                                               |                                                                                                                                  |                                                                                                                                                                        |                                     |
| Simulation para                                                                                                                                                                                   | meters                                                                  | System type                                                                                                                                                             | Sheds on ground                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                        |                                     |
| <b>Collector Plane</b>                                                                                                                                                                            | Orientation                                                             | Tilt                                                                                                                                                                    | 5°                                                                                                                                                                           | Azimuth                                                                                                                          | n 0°                                                                                                                                                                   |                                     |
| Models used                                                                                                                                                                                       |                                                                         | Transposition                                                                                                                                                           | Perez                                                                                                                                                                        | Diffuse                                                                                                                          | e Perez, I                                                                                                                                                             | Vleteonorm                          |
| Horizon                                                                                                                                                                                           |                                                                         | Free Horizon                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                        |                                     |
| Near Shadings                                                                                                                                                                                     |                                                                         | Linear shadings                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                        |                                     |
| User's needs :                                                                                                                                                                                    | Dail                                                                    | y household consumers<br>average                                                                                                                                        | Constant over the y<br>11.2 kWh/Day                                                                                                                                          | ear                                                                                                                              |                                                                                                                                                                        |                                     |
| PV Array Charac<br>PV module<br>Original PVsyst<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics | teristics<br>database<br>dules<br>V modules<br>r<br>haracteristics (50° | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>C) U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 U<br>6.40 kWp At<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologi<br>90-500 V U<br>Max.<br>2 * MPPT 50 % | In parallel<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>Init Nom. Power<br>power (=>40°C)<br>Total Power | <ul> <li>2 string:</li> <li>320 Wp</li> <li>5.75 kW</li> <li>17 A</li> <li>34.4 m<sup>2</sup></li> <li>34.4 m<sup>2</sup></li> <li>5.50 kW</li> <li>5.50 kW</li> </ul> | s<br>/p (50°C)<br>Vac<br>Vac<br>Vac |
|                                                                                                                                                                                                   |                                                                         |                                                                                                                                                                         |                                                                                                                                                                              | Pnom ratio                                                                                                                       | 0 1.28                                                                                                                                                                 |                                     |
| PV Array loss fac                                                                                                                                                                                 | ctors                                                                   |                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                        |                                     |
| Thermal Loss fact                                                                                                                                                                                 | or                                                                      | Uc (const)                                                                                                                                                              | 20.0 W/m²K                                                                                                                                                                   | Uv (wind)                                                                                                                        | ) 0.0 W/n                                                                                                                                                              | n²K / m/s                           |
| Wiring Ohmic Los<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                                                               | ss<br>Losses<br>loss<br>ASHRAE paramet                                  | Global array res.<br>rization IAM =                                                                                                                                     | 332 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                             | Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param.                                                    | n 1.5 % a<br>n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>. 0.05                                                                                                               | t STC<br>tt MPP                     |
|                                                                                                                                                                                                   |                                                                         |                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                                        |                                     |



| PVSYST V6.86            |                       |               |                      |           | 21/04/20          | Page 3/7                 |
|-------------------------|-----------------------|---------------|----------------------|-----------|-------------------|--------------------------|
| C                       | rid-Connected 9       | Svetor        | n: Detailed Lise     | r's poods |                   |                          |
|                         |                       | by stori      | i. Detailed 030      |           |                   |                          |
| Project :               | Taman Midah (NEN      | /1)           |                      |           |                   |                          |
| Simulation variant :    | working couple (6k    | w)            |                      |           |                   |                          |
| Main system parameters  | Syste                 | em type       | Sheds on ground      |           |                   |                          |
| Near Shadings           | Linear s              | hadings       |                      |           |                   |                          |
| PV Field Orientation    |                       | tilt<br>Modol | 5°<br>IAM6-72-320/SI | azimuti   | n 0°<br>n 320.Wn  |                          |
| PV Arrav                | Nb. of r              | nodules       | 20                   | Pnom tota | al <b>6.40 kV</b> | qV                       |
| Inverter                |                       | Model         | SUN2000L-5KTL        | Pnon      | n 5.00 kV         | √ ac                     |
| User's needs            | Daily household cor   | sumers        | Constant over the ye | ear Globa | al 4080 k\        | Wh/year                  |
| Daily household consume | rs, Constant over the | e year, av    | verage = 11.2 kWh/d  | lay       |                   |                          |
|                         |                       | Annua         | l values             |           |                   |                          |
|                         | Use 5 days a week     | Number        | Power                | Use       |                   | Energy                   |
| Lamps (LED or fluo)     |                       | 20            | 18 W/lamp            | 7 h/      | /day 2            | 2340 Wh/day              |
| TV / PC / Mobile        |                       | 1             | 70 W/app             | 6 h/      | /day              | 420 Wh/day               |
| Iron                    |                       | 1             | 1200 W/app           | 1 h/      | /day              | 600 Wh/day               |
| Fridge / Deep-freeze    |                       | 1             |                      | 24 Wh     | /day 3            | 3000 Wh/day              |
| Dish- & Cloth-washers   |                       | 1             |                      | 1 Wh/     | /day              | 500 Wh/day               |
| Instant water neater    |                       |               | 2000 W tot           | I N/      | /day 2            |                          |
| Stand-by consumers      |                       | Ζ             | 750 W 101            | 24 h      | /uay c<br>/day    | $\frac{3750}{24}$ Wh/day |
| Total daily energy      |                       |               | ļ                    | 2711/     | 15                | 5634 Wh/day              |
|                         |                       |               |                      |           |                   |                          |
|                         | Laction of daily endo | Hourly        | r profile            | 1 24      |                   |                          |

| VSYST V6.86            |                    |                    |                                   |                                |                       |                     |                          |                     | 21/04/2                    | 0 Pa             | ge 4/  |
|------------------------|--------------------|--------------------|-----------------------------------|--------------------------------|-----------------------|---------------------|--------------------------|---------------------|----------------------------|------------------|--------|
|                        |                    | Grid               | -Conn                             | ected S                        | Svster                | n: Mair             | n resu                   | lts                 |                            |                  |        |
| roject :               | Т                  | aman Mi            | idah (NE                          | =M)                            | ,                     |                     |                          |                     |                            |                  |        |
|                        | 10                 |                    |                                   | _1V1 <i>)</i>                  |                       |                     |                          |                     |                            |                  |        |
| imulation varian       | t: w               | orking c           | ouple (6                          | ókw)                           |                       |                     |                          |                     |                            |                  |        |
| lain system param      | neters             |                    | Sy                                | stem type                      | Shed                  | s on grou           | und                      |                     |                            |                  |        |
| ear Shadings           |                    |                    | Linea                             | r shadings                     | 5                     |                     |                          |                     |                            |                  |        |
| V Field Orientation    |                    |                    |                                   | tilt                           | t 5°                  | 70.000/0            |                          | azimut              | h 0°                       | N/               |        |
| V modules<br>V Array   |                    |                    | Nh c                              | IVIODE<br>IVIODE               | I JAIVI6<br>20        | -72-320/5           | )I                       | Phon<br>Phom tot:   | m 320 V<br>al <b>640</b> I | vp<br>kWn        |        |
| verter                 |                    |                    | 140.0                             | Mode                           | , 20<br>I SUN2        | 000L-5KT            | Ľ                        | Pnor                | m 5.00 l                   | kW ac            |        |
| ser's needs            |                    | Daily ho           | usehold c                         | onsumers                       | Const                 | ant over t          | he year                  | Globa               | al 4080                    | kWh/yea          | ar     |
| ain simulation res     | sults              | Per                | <b>Produce</b><br>formance        | <b>ed Energy</b><br>e Ratio PR | <b>8.41</b>           | <b>MWh/yea</b><br>% | i <b>r</b> Sp<br>Solar F | ecific proc         | d. 1314<br>F 10.23         | kWh/kW<br>%      | 'p/yea |
| Normalized productions | (per installed     | d kWp): No         | ominal powe                       | er 6.40 kWp                    |                       |                     | Pe                       | rformance R         | atio PR                    |                  |        |
|                        |                    | (2022              |                                   |                                | 1                     |                     | Performance F            | Antio (Yf / Yr) · 0 | 823                        | 1 1              | 1      |
| Ls : System Los        | ss (inverter,)     | erter output)      | 0.07 kWh/kWp/da<br>3.6 kWh/kWp/da | ay<br>v                        | 0                     | .9                  |                          |                     |                            |                  |        |
| [day]                  |                    |                    |                                   |                                | 0                     | .8                  |                          |                     |                            |                  |        |
| /d// 4 -               |                    |                    |                                   | <b>_</b>                       | 원<br>전                | .7                  |                          |                     |                            |                  |        |
| EXMP                   |                    |                    |                                   |                                | 0 0                   | .6                  |                          |                     |                            |                  |        |
| Energy 2               |                    |                    |                                   |                                | 0 uance               | .5                  |                          |                     |                            |                  |        |
|                        |                    |                    |                                   |                                | erforr                | .4                  |                          |                     |                            |                  |        |
|                        |                    |                    |                                   |                                | 0                     | .3                  |                          |                     |                            |                  |        |
| ž<br>1-                |                    |                    |                                   |                                | 0                     | .2                  |                          |                     |                            |                  |        |
|                        |                    |                    |                                   |                                | 0                     | .1                  |                          |                     |                            |                  |        |
| Jan Feb Mar A          | Apr May Jur        | Jul Aug            | Sep Oct                           | Nov Dec                        | 0                     | .0 <b>E</b> Jan Feb | Mar Apr                  | May Jun             | Jul Aug S                  | L L<br>Sep Oct N | ov De  |
|                        |                    |                    |                                   |                                |                       |                     |                          |                     |                            |                  |        |
|                        |                    |                    |                                   |                                |                       |                     |                          |                     |                            |                  |        |
|                        |                    |                    |                                   |                                |                       |                     |                          |                     |                            |                  |        |
|                        |                    |                    |                                   | working                        | couple (6             | okw)                |                          |                     |                            |                  |        |
|                        |                    |                    | Ba                                | alances ar                     | nd main               | results             |                          |                     |                            |                  |        |
|                        | GlobHor            | DiffHor            | T_Amb                             | GlobInc                        | GlobEff               | EArray              | E_User                   | E_Solar             | E_Grid                     | EFrGrid          | ]      |
|                        | kWh/m <sup>2</sup> | KWh/m <sup>2</sup> | О°С                               | KWh/m <sup>2</sup>             | KWh/m <sup>2</sup>    | MWh                 | MWh                      | MWh                 | MWh                        | MWh              | -      |
| January                | 133.0              | 82.20              | 28.10                             | 136.3<br>127 4                 | 131.2<br>122.9        | 0.726               | 0.360                    | 0.039               | 0.673                      | 0.321            |        |
| March                  | 134.0              | 88.20              | 27.70                             | 150.3                          | 13∠.ŏ<br>144 9        | 0.737               | 0.344                    | 0.033               | 0.751                      | 0.279            |        |
| April                  | 140.3              | 70.50              | 27.70                             | 138.8                          | 133.9                 | 0.742               | 0.328                    | 0.035               | 0.693                      | 0.294            |        |
| May                    | 140.3              | 78.60              | 28.60                             | 136.9                          | 131.7                 | 0.734               | 0.360                    | 0.039               | 0.680                      | 0.320            |        |
| June                   | 132.0              | 77.80              | 27.80                             | 128.3                          | 123.5                 | 0.691               | 0.328                    | 0.034               | 0.643                      | 0.295            |        |
| July                   | 134.4              | 87.20              | 27.80                             | 131.1                          | 125.8                 | 0.710               | 0.344                    | 0.037               | 0.660                      | 0.307            |        |
| August                 | 132.2              | 87.20              | 27.80                             | 130.1                          | 125.2                 | 0.700               | 0.360                    | 0.038               | 0.649                      | 0.322            |        |
| September              | 129.2              | /9.00              | 27.10                             | 128.8                          | 124.0                 | 0.691               | 0.313                    | 0.033               | 0.645                      | 0.280            |        |
| November               | 117.6              | 02.00<br>79.20     | 27.40<br>26.70                    | 140.4<br>119.8                 | 135.5<br>115 <i>1</i> | 0.754               | 0.300                    | 0.033               | 0.700                      | 0.320            |        |
| December               | 115.0              | 73.20              | 26.29                             | 118.1                          | 113.6                 | 0.640               | 0.328                    | 0.030               | 0.597                      | 0.298            |        |
| Year                   | 1597.2             | 953.59             | 27.58                             | 1596.2                         | 1537.5                | 8.575               | 4.080                    | 0.417               | 7.992                      | 3.663            | 1      |
| <u> </u>               | +                  | I                  | l                                 | · · · · · · ·                  |                       | l                   | ļ                        | ļ                   | ı – – I                    | ļ                | 4      |
| Legends: Glob          | oHor H             | Horizontal g       | lobal irradia                     | ation                          |                       | GlobEff             | Effect                   | ive Global,         | corr. for IAN              | M and shad       | dings  |
| Diffl                  | Hor H              | Horizontal d       | iffuse irradi                     | iation                         |                       | EArray              | Effect                   | ive energy a        | at the outpu               | ut of the a      | rray   |
| T_A                    | mb 1               | Гamb.              |                                   |                                |                       | E_User              | Energ                    | y supplied t        | o the user                 |                  |        |
| Glob                   | oinc (             | Jobal incide       | ent in coll. p                    | biane                          |                       | E_Solar             | Energ                    | y from the s        | sun<br>ato grid            |                  |        |
|                        |                    |                    |                                   |                                |                       | E_GHU<br>FFrGrid    | Energ                    | y injected If       | no griu<br>arid            |                  |        |
|                        |                    |                    |                                   |                                |                       |                     |                          |                     | 4.1.4                      |                  |        |



|                        | 1         |                                             |                         |                                     |             |                   |                 |  |  |
|------------------------|-----------|---------------------------------------------|-------------------------|-------------------------------------|-------------|-------------------|-----------------|--|--|
| PVSYST V6.86           |           |                                             |                         |                                     |             | 21/04/20          | Page 6/7        |  |  |
|                        |           | Grid-Co                                     | nnected Sv              | stem: Loss diagrar                  | m           |                   |                 |  |  |
| Project ·              |           | Taman Midał                                 |                         |                                     |             |                   |                 |  |  |
| Simulation var         | iant ·    | working cour                                | i (i¶⊏ini)<br>ole (6kw) |                                     |             |                   |                 |  |  |
| Main avatam na         | romotoro  |                                             |                         | Shada an around                     |             |                   |                 |  |  |
| Main system parameters |           |                                             | incor chodingo          | Sneas on ground                     |             |                   |                 |  |  |
| PV Field Orientat      | ion       | L                                           | tilt                    | 5°                                  | azimutł     | n 0°              |                 |  |  |
| PV modules             |           |                                             | Model                   | JAM6-72-320/SI                      | Pnon        | n 320 Wp          |                 |  |  |
| PV Array               |           |                                             | Nb. of modules          |                                     | nom tota    | al <b>6.40 kV</b> | Vp              |  |  |
| User's needs           |           | Dailv househ                                | old consumers           | Constant over the year              | Globa       | 1 5.00 kV         | V ac<br>Vh/vear |  |  |
|                        |           | ,                                           |                         | ,                                   |             |                   |                 |  |  |
|                        |           |                                             | Loss diagram ov         | ver the whole year                  |             |                   |                 |  |  |
|                        |           |                                             |                         |                                     |             |                   |                 |  |  |
| F                      |           | 1597 kWh/m²                                 |                         | Horizontal global irradiation       | I           |                   |                 |  |  |
|                        |           |                                             |                         | Clabel incident in call plans       |             |                   |                 |  |  |
|                        |           |                                             | -0.07%                  | Global incident below threshold     | •<br>       |                   |                 |  |  |
|                        |           |                                             | 0.00%                   | Near Shadings: irradiance loss      |             |                   |                 |  |  |
|                        |           |                                             | -3.67%                  | IAM factor on global                |             |                   |                 |  |  |
|                        | 1538 k\   | Nh/m <sup>2</sup> * 39 m <sup>2</sup> coll. |                         | Effective irradiation on collectors |             |                   |                 |  |  |
|                        | efficienc | y at STC = 16.53%                           | ,<br>D                  | PV conversion                       |             |                   |                 |  |  |
|                        |           | 9.85 MWh                                    |                         | Array nominal energy (at ST         | TC effic.)  |                   |                 |  |  |
|                        |           |                                             | 4-0.75%                 | PV loss due to irradiance level     |             |                   |                 |  |  |
|                        |           |                                             | -11.15%                 | PV loss due to temperature          |             |                   |                 |  |  |
|                        |           |                                             | +0.75%                  | Module quality loss                 |             |                   |                 |  |  |
|                        |           |                                             | 9-1.10%                 | Mismatch loss, modules and str      | rings       |                   |                 |  |  |
|                        |           | 50 N/14/                                    | 9-0.95%                 | Ohmic wiring loss                   |             |                   |                 |  |  |
|                        | 8.5       | 58 MWh                                      |                         | Array virtual energy at MPP         |             |                   |                 |  |  |
|                        |           |                                             | -1.88%                  | Inverter Loss during operation      | (efficiency | )                 |                 |  |  |
|                        |           |                                             | ₩0.00%                  | Inverter Loss over nominal inv.     | power       |                   |                 |  |  |
|                        |           |                                             | → 0.00%                 | Inverter Loss due to max. input     | t current   |                   |                 |  |  |
|                        |           |                                             | 90.00%                  | Inverter Loss over nominal inv.     | voltage     |                   |                 |  |  |
| arid                   |           |                                             | → 0.00%                 | Inverter Loss due to voltage thr    | reshold     |                   |                 |  |  |
| consumption            |           |                                             | →-0.05%                 | Night consumption                   |             |                   |                 |  |  |
|                        | 8.4       | I1 MWh                                      |                         | Available Energy at Inverter        | Output      |                   |                 |  |  |
|                        |           |                                             |                         |                                     |             |                   |                 |  |  |
| 3.66 MWh 0.42 N        | IWh 7.    | .99 MWh                                     |                         | Energy injected into grid           |             |                   |                 |  |  |
| to user to us          | ser       | to grid                                     |                         |                                     |             |                   |                 |  |  |
| from grid from s       | solar     | to grid                                     |                         |                                     |             |                   |                 |  |  |
|                        |           |                                             |                         |                                     |             |                   |                 |  |  |

| PVSYST V6.86                                                                              |                                          |                                                                                              |                                                                                                                           |                                                                         |                                                 | 21/04/20                                                         | Page 7/7                     |
|-------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                           |                                          | Grid-Con                                                                                     | nected Syster                                                                                                             | m <sup>.</sup> P50 - P90 ev                                             | valuation                                       |                                                                  |                              |
| Project ·                                                                                 |                                          | Taman Mi                                                                                     | dah (NEM)                                                                                                                 |                                                                         | laidation                                       |                                                                  |                              |
| Simulation vari                                                                           | ant :                                    | working co                                                                                   | ouple (6kw)                                                                                                               |                                                                         |                                                 |                                                                  |                              |
| Main system na                                                                            | rameters                                 | g =                                                                                          | System type                                                                                                               | Sheds on around                                                         |                                                 |                                                                  |                              |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                      | Daily hou                                                                                    | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>sehold consumers                                           | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the ye     | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>ar Globa | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kW<br>al 4080 kW | <b>/p</b><br>/ ac<br>Wh/year |
| Evaluation of the                                                                         | e Produc                                 | tion probabi                                                                                 | lity forecast                                                                                                             |                                                                         |                                                 |                                                                  |                              |
| The probability dis<br>on the meteo data                                                  | stribution<br>a used for                 | of the system<br>the simulatio                                                               | production forecast<br>n, and depends on t                                                                                | for different years is r<br>the following choices:                      | mainly depen                                    | dent                                                             |                              |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                | e<br>n<br>ıbility                        | Year c                                                                                       | Kind<br>leviation from aver.<br>Variance                                                                                  | MeteoNorm 7.2 station<br>Not defined<br>3 %<br>0.5 %                    | on<br>Yea                                       | ar 1995                                                          |                              |
| The probability dis<br>Specified Deviatio                                                 | stribution<br>on P<br>Soil<br>(meteo + s | variance is als<br>V module mo<br>Inverter eff<br>ling and mism<br>Degra<br>system)          | so depending on so<br>delling/parameters<br>iciency uncertainty<br>latch uncertainties<br>adation uncertainty<br>Variance | me system parameter<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (0     | s uncertaintie<br>quadratic sum                 | s<br>1)                                                          |                              |
| Annual productior                                                                         | n probabili                              | ity                                                                                          | Variability<br>P50<br>P90<br>P95                                                                                          | 0.15 MWh<br>7.99 MWh<br>7.80 MWh<br>7.75 MWh                            |                                                 |                                                                  |                              |
|                                                                                           |                                          |                                                                                              | Probability                                                                                                               | distribution                                                            |                                                 |                                                                  |                              |
|                                                                                           | Probability                              | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00<br>7400 | P5<br>P90 =<br>P95 = 774<br>7600 7800                                                                                     | 0 = 7992 kWh<br>E_Grid simul = 7992 k<br>7800 kWh<br>6 kWh<br>8000 8200 | Wh                                              |                                                                  |                              |

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                                          |                                                                         |                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                            | 21/04/20                                                                                                              | Page 1/7                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
|                                                                                                                                                                                                                       | Grid                                                                    | d-Connected System                                                                                                                                                          | n: Simulation p                                                                                                                                                                   | arameters                                                                                                                                  | ;                                                                                                                     |                                    |  |
| Project :                                                                                                                                                                                                             | Та                                                                      | man Midah (NEM)                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                            |                                                                                                                       |                                    |  |
| Geographical S                                                                                                                                                                                                        | ite                                                                     | Kuala Lumpur/Subang                                                                                                                                                         |                                                                                                                                                                                   | Country                                                                                                                                    | / Malays                                                                                                              | ia                                 |  |
| Situation                                                                                                                                                                                                             |                                                                         | Latitude                                                                                                                                                                    | 3.12° N                                                                                                                                                                           | Longitude 101.55° E                                                                                                                        |                                                                                                                       |                                    |  |
| Time defined                                                                                                                                                                                                          | as                                                                      | Legal Time<br>Albedo                                                                                                                                                        | Time zone UT+8 Altitude 17 m                                                                                                                                                      |                                                                                                                                            |                                                                                                                       |                                    |  |
| Meteo data:                                                                                                                                                                                                           |                                                                         | Kuala Lumpur/Subang                                                                                                                                                         | MeteoNorm 7.2 sta                                                                                                                                                                 | tion - Synthetic                                                                                                                           | :                                                                                                                     |                                    |  |
| Simulation var                                                                                                                                                                                                        | iant : wo                                                               | orking couple (6kw)                                                                                                                                                         |                                                                                                                                                                                   |                                                                                                                                            |                                                                                                                       |                                    |  |
|                                                                                                                                                                                                                       |                                                                         | Simulation date                                                                                                                                                             | 21/04/20 17h39                                                                                                                                                                    |                                                                                                                                            |                                                                                                                       |                                    |  |
| Simulation para                                                                                                                                                                                                       | ameters                                                                 | System type                                                                                                                                                                 | Sheds on ground                                                                                                                                                                   |                                                                                                                                            |                                                                                                                       |                                    |  |
| Collector Plane                                                                                                                                                                                                       | Orientation                                                             | Tilt                                                                                                                                                                        | 5°                                                                                                                                                                                | Azimuth                                                                                                                                    | 0° ו                                                                                                                  |                                    |  |
| Models used                                                                                                                                                                                                           |                                                                         | Transposition                                                                                                                                                               | Perez                                                                                                                                                                             | Diffuse                                                                                                                                    | e Perez, I                                                                                                            | Neteonorm                          |  |
| Horizon                                                                                                                                                                                                               |                                                                         | Free Horizon                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                            |                                                                                                                       |                                    |  |
| Near Shadings                                                                                                                                                                                                         |                                                                         | Linear shadings                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                            |                                                                                                                       |                                    |  |
| User's needs :                                                                                                                                                                                                        |                                                                         | Daily household consumers<br>average                                                                                                                                        | Constant over the y<br>6.9 kWh/Day                                                                                                                                                | ear                                                                                                                                        |                                                                                                                       |                                    |  |
| PV Array Charac<br>PV module<br>Original PVsys<br>Number of PV module<br>Total number of P<br>Array global power<br>Array operating c<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics<br>Inverter pack | cteristics<br>t database<br>odules<br>V modules<br>er<br>haracteristics | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>(50°C) U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 U<br>6.40 kWp At 0<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologie<br>90-500 V U<br>Max. 1<br>2 * MPPT 50 % | In paralle<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>Init Nom. Powe<br>power (=>40°C<br>Total Powe<br>Pnom ratic | I 2 strings<br>r 320 Wp<br>5.75 kW<br>0 17 A<br>a 34.4 m <sup>2</sup><br>r 5.00 kW<br>) 5.50 kW<br>r 5.0 kW<br>0 1.28 | s<br>/p (50°C)<br>/ac<br>/ac<br>ac |  |
| <b>PV Array loss fa</b><br>Thermal Loss fac<br>Wiring Ohmic Lo<br>Module Quality L<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect,                                                                        | ctors<br>tor<br>ss<br>oss<br>o Losses<br>o loss<br>ASHRAE para          | Uc (const)<br>Global array res.<br>umetrization IAM =                                                                                                                       | 20.0 W/m²K<br>332 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                    | Uv (wind)<br>Loss Fractior<br>Loss Fractior<br>Loss Fractior<br>Loss Fractior<br>bo Param                                                  | ) 0.0 W/n<br>n 1.5 % a<br>n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>. 0.05                                                 | n²K / m/s<br>t STC<br>t MPP        |  |



| PVSYST V6.86                                                                                |                                             |                                                         |                                                                    |                                                      | 21/04/20                                             | Page 3/7                        |
|---------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------|
| G                                                                                           | rid-Connected S                             | Sveton                                                  | n: Detailed Lls                                                    | er's needs                                           |                                                      |                                 |
|                                                                                             |                                             | Jysten                                                  | n. Detailed 03                                                     |                                                      |                                                      |                                 |
| Project :                                                                                   |                                             | /1)                                                     |                                                                    |                                                      |                                                      |                                 |
| Simulation variant :                                                                        | working couple (6k                          | w)                                                      |                                                                    |                                                      |                                                      |                                 |
| Main system parameters                                                                      | Syste                                       | em type                                                 | Sheds on ground                                                    |                                                      |                                                      |                                 |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear s<br>Nb. of r<br>Daily household cor | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the y | azimuth<br>Pnom<br>Pnom total<br>Pnom<br>/ear Global | 0°<br>320 Wp<br><b>6.40 kV</b><br>5.00 kV<br>2510 kV | <b>/p</b><br>/ ac<br>Wh/year    |
| Daily household consume                                                                     | ers, Constant over the                      | e year, av                                              | verage = 6.9 kWh/d                                                 | lay                                                  |                                                      |                                 |
|                                                                                             |                                             | Annua                                                   | l values                                                           |                                                      |                                                      |                                 |
|                                                                                             | Use 2 days a week                           | Number                                                  | Power                                                              | Use                                                  |                                                      | Energy                          |
| Lamps (LED or fluo)                                                                         |                                             | 20                                                      | 18 W/lamp                                                          | 5 h/o                                                | day 1                                                | 800 Wh/day                      |
| TV / PC / Mobile                                                                            |                                             | 1                                                       | 70 W/app                                                           | 14 h/o                                               | day                                                  | 980 Wh/day                      |
| Iron                                                                                        |                                             | 1                                                       | 1200 W/app                                                         | 1 h/o                                                | day                                                  | 600 Wh/day                      |
| Fridge / Deep-freeze                                                                        |                                             | 1                                                       |                                                                    | 24 Wh/o                                              | day 3                                                | 000 Wh/day                      |
| Dish- & Cloth-washers                                                                       |                                             | 1                                                       |                                                                    | 1 Wh/0                                               | day                                                  | 500 Wh/day                      |
| Instant water heater                                                                        |                                             |                                                         | 2000 W tot                                                         | 1 h/0                                                | day 2                                                | 2000 Wh/day                     |
| Aircona<br>Stand by consumers                                                               |                                             | 2                                                       | 750 W 101                                                          | 10 n/0                                               | day 15                                               | 24 Wb/day                       |
| Total daily energy                                                                          |                                             |                                                         |                                                                    | 2411/0                                               | 23<br>23                                             | <u>24 Wh/day</u><br>3904 Wh/day |
|                                                                                             | 2500<br>2000<br>1500<br>0<br>0<br>3         | Hourly<br>Hourly<br>Hourly                              | <b>/ profile</b>                                                   | 21 24                                                |                                                      |                                 |

| PVSYST V6.86                             |                                                                                         |                               |                                   |                               |                                                    |                             |                        |                     | 21/04/2            | ) Pag          | ge 4/7 |
|------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|-------------------------------|----------------------------------------------------|-----------------------------|------------------------|---------------------|--------------------|----------------|--------|
|                                          |                                                                                         | Grid                          | -Conn                             | ected \$                      | Syster                                             | n: Maiı                     | n resul                | ts                  |                    |                |        |
| Project :                                | Та                                                                                      | aman Mi                       | dah (NE                           | EM)                           | ,                                                  |                             |                        |                     |                    |                |        |
| Simulation variant                       | : w                                                                                     | orkina c                      | ouple (f                          | ,<br>6kw)                     |                                                    |                             |                        |                     |                    |                |        |
| Main system param                        | eters                                                                                   |                               | Sv:                               | stem type                     | Shed                                               | s on arou                   | Ind                    |                     |                    |                |        |
| Near Shadings                            |                                                                                         |                               | Linear                            | r shadings                    |                                                    | 5 en g.e.                   |                        |                     |                    |                |        |
| PV Field Orientation                     |                                                                                         |                               | Linea                             | til                           | t 5°                                               |                             |                        | azimut              | h 0°               |                |        |
| PV modules                               |                                                                                         |                               | NU                                | Mode                          | I JAM6                                             | -72-320/S                   | i -                    | Pnor                | n 320 V            | Vp             |        |
| PV Array<br>Inverter                     |                                                                                         |                               | IND. O                            | modules<br>Mode               | 5 20<br>I SUN2                                     | 000I -5KT                   | 1                      | Phom tota<br>Phor   | n 5.00             | kwp<br>«Wiac   |        |
| User's needs                             |                                                                                         | Daily hou                     | usehold c                         | onsumers                      | Const                                              | ant over t                  | he year                | Globa               | al 2510            | kWh/yea        | ır     |
| Main simulation res<br>System Production | ults                                                                                    | Per                           | <b>Produce</b><br>formance        | <b>d Energy</b><br>Ratio PF   | <b>8.41</b><br>8 82.32                             | <b>MWh/yea</b><br>%         | r Sp<br>Solar F        | ecific proc         | d. 1314<br>F 32.49 | kWh/kW<br>%    | p/year |
| Normalized productions (                 | Normalized productions (per installed kWp): Nominal power 6.40 kWp Performance Ratio PR |                               |                                   |                               |                                                    |                             |                        |                     |                    |                |        |
| 6 Lc : Collection Lc                     | I I<br>oss (PV-array los                                                                | I I<br>sses) (                | III<br>).7 kWh/kWp/day            | / -                           | 1                                                  |                             | I I<br>: Performance F | atio (Yf / Yr): 0.4 | 823                | 1 1            |        |
| 5 - Yf : Produced use                    | s (inverter,)<br>eful energy (inve                                                      | erter output)                 | ).07 kWh/kWp/da<br>3.6 kWh/kWp/da | y -                           | 0                                                  | .8                          |                        |                     |                    |                |        |
| (Wp/da)                                  |                                                                                         |                               |                                   | ]                             | 0                                                  | .7                          |                        |                     |                    |                |        |
|                                          |                                                                                         |                               |                                   |                               | Catio P                                            | .6                          |                        |                     |                    |                |        |
| 6 3 -                                    |                                                                                         |                               |                                   |                               | 0 guille                                           | .5                          |                        |                     |                    |                |        |
|                                          |                                                                                         |                               |                                   |                               | Perforr                                            | .4                          |                        |                     |                    |                |        |
| Norma                                    |                                                                                         |                               |                                   | -                             | 0                                                  | .3                          |                        |                     |                    |                |        |
| 1-                                       |                                                                                         |                               |                                   |                               | 0                                                  | .2                          |                        |                     |                    |                |        |
|                                          |                                                                                         |                               |                                   |                               | 0                                                  |                             | 1 1                    |                     |                    |                |        |
| Jan Feb Mar Ap                           | or May Jun                                                                              | n Jul Aug                     | Sep Oct                           | Nov Dec                       | Ū                                                  | Jan Feb                     | Mar Apr                | May Jun             | Jul Aug S          | ep Oct N       | ov Dec |
|                                          |                                                                                         |                               |                                   |                               |                                                    |                             |                        |                     |                    |                |        |
|                                          |                                                                                         |                               |                                   |                               |                                                    |                             |                        |                     |                    |                |        |
|                                          |                                                                                         |                               |                                   | working                       | couple (6                                          | bkw)                        |                        |                     |                    |                |        |
|                                          |                                                                                         |                               | Ba                                | alances ar                    | nd main                                            | results                     |                        |                     |                    |                |        |
|                                          | GlobHor                                                                                 | DiffHor<br>kWh/m <sup>2</sup> | T_Amb<br>°C                       | GlobInc<br>kWh/m <sup>2</sup> | GlobEff<br>kWh/m <sup>2</sup>                      | EArray<br>MWb               | E_User                 | E_Solar             | E_Grid<br>MWb      | EFrGrid<br>MWb |        |
| Januarv                                  | 133.0                                                                                   | 82.20                         | 28.10                             | 136.3                         | 131.2                                              | 0.726                       | 0.239                  | 0.080               | 0.632              | 0.159          | 1      |
| February                                 | 134.6                                                                                   | 67.90                         | 27.70                             | 137.4                         | 132.8                                              | 0.737                       | 0.191                  | 0.067               | 0.656              | 0.124          |        |
| March                                    | 149.8                                                                                   | 88.20                         | 28.00                             | 150.3                         | 144.9                                              | 0.804                       | 0.191                  | 0.066               | 0.723              | 0.125          |        |
| April                                    | 140.3                                                                                   | 70.50                         | 27.70                             | 138.8<br>126.0                | 133.9                                              | 0.742                       | 0.215                  | 0.072               | 0.656              | 0.143          |        |
| lune                                     | 140.3                                                                                   | 77.80                         | 20.00                             | 128.3                         | 123.5                                              | 0.734                       | 0.213                  | 0.007               | 0.031              | 0.140          |        |
| July                                     | 134.4                                                                                   | 87.20                         | 27.80                             | 131.1                         | 125.8                                              | 0.710                       | 0.239                  | 0.081               | 0.615              | 0.158          |        |
| August                                   | 132.2                                                                                   | 87.20                         | 27.80                             | 130.1                         | 125.2                                              | 0.700                       | 0.191                  | 0.056               | 0.630              | 0.136          |        |
| September                                | 129.2                                                                                   | 79.00                         | 27.10                             | 128.8                         | 124.0                                              | 0.691                       | 0.191                  | 0.061               | 0.616              | 0.130          |        |
| October                                  | 138.8                                                                                   | 82.60                         | 27.40                             | 140.4                         | 135.5                                              | 0.754                       | 0.239                  | 0.079               | 0.660              | 0.160          |        |
| November                                 | 117.6                                                                                   | 79.20                         | 26.70                             | 119.8                         | 115.4                                              | 0.648                       | 0.191                  | 0.058               | 0.577              | 0.134          |        |
| December                                 | 115.0                                                                                   | /3.20                         | 26.29                             | 118.1                         | 113.6                                              | 0.640                       | 0.215                  | 0.067               | 0.560              | 0.148          | ł      |
| Year                                     | 1597.2                                                                                  | 953.59                        | 27.58                             | 1596.2                        | 1537.5                                             | 8.575                       | 2.510                  | 0.816               | 7.593              | 1.694          | ļ      |
| Logondo, Clab                            | Hor '                                                                                   | Jorizoptal a                  | obal irradia                      | tion                          |                                                    | ClobEff                     | Effort                 | vo Clobal           | corr for M         | 1 and char     | linas  |
| DiffHor Horizontal diffuse irradiation   |                                                                                         |                               |                                   |                               | FArray Effective energy at the output of the array |                             |                        |                     | nnys<br>rav        |                |        |
| T_Amb T amb.                             |                                                                                         |                               |                                   |                               | E_User                                             | Energy supplied to the user |                        |                     |                    |                |        |
| Globi                                    | Inc C                                                                                   | Global incide                 | ent in coll. p                    | lane                          |                                                    | E_Solar                     | Energ                  | y from the s        | sun                |                |        |
|                                          |                                                                                         |                               |                                   |                               |                                                    | E_Grid                      | Energ                  | y injected ir       | nto grid           |                |        |
|                                          |                                                                                         |                               |                                   |                               |                                                    | EFrGrid                     | Energ                  | from the g          | grid               |                |        |



| PVSYST V6.86                                                                                |                                                                                                                                                              |                                                                                          |                |                                                                                                                                      |                                                                                                                                                                         |                                                           | 21/04/20 | Page 6/7 |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------|----------|--|--|
|                                                                                             |                                                                                                                                                              |                                                                                          |                |                                                                                                                                      |                                                                                                                                                                         |                                                           |          |          |  |  |
| Grid-Connected System: Loss diagram                                                         |                                                                                                                                                              |                                                                                          |                |                                                                                                                                      |                                                                                                                                                                         |                                                           |          |          |  |  |
| Project :                                                                                   | _                                                                                                                                                            | Taman Midah                                                                              | h (NEN         | <b>/</b> )                                                                                                                           |                                                                                                                                                                         |                                                           |          |          |  |  |
| Simulation variant : working couple (6kw)                                                   |                                                                                                                                                              |                                                                                          |                |                                                                                                                                      |                                                                                                                                                                         |                                                           |          |          |  |  |
| Main system parameters                                                                      |                                                                                                                                                              |                                                                                          | Syste          | em type                                                                                                                              | Sheds on ground                                                                                                                                                         |                                                           |          |          |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs |                                                                                                                                                              | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Daily household consumers |                | 5°azimuth0°JAM6-72-320/SIPnom320 Wp20Pnom total <b>6.40 kWp</b> SUN2000L-5KTLPnom5.00 kW acConstant over the yearGlobal2510 kWh/year |                                                                                                                                                                         |                                                           |          |          |  |  |
|                                                                                             |                                                                                                                                                              |                                                                                          | Loss d         | iagram ov                                                                                                                            | ver the whole year                                                                                                                                                      |                                                           |          |          |  |  |
|                                                                                             |                                                                                                                                                              |                                                                                          |                |                                                                                                                                      | ·                                                                                                                                                                       |                                                           |          |          |  |  |
| Γ                                                                                           |                                                                                                                                                              | 1597 kWh/m²                                                                              |                |                                                                                                                                      | Horizontal global irradiatior                                                                                                                                           | ı                                                         |          |          |  |  |
|                                                                                             |                                                                                                                                                              |                                                                                          |                | -0.07%<br>-0.07%<br>0.00%<br>-3.67%                                                                                                  | Global incident in coll. plane<br>Global incident below threshold<br>Near Shadings: irradiance loss<br>IAM factor on global                                             | e<br>d                                                    |          |          |  |  |
| 1538 kWh/m <sup>2</sup> * 39 m <sup>2</sup> coll.                                           |                                                                                                                                                              |                                                                                          |                |                                                                                                                                      | Effective irradiation on coll                                                                                                                                           | ectors                                                    |          |          |  |  |
| efficiency at STC = 16.53%                                                                  |                                                                                                                                                              | ,                                                                                        |                | PV conversion                                                                                                                        |                                                                                                                                                                         |                                                           |          |          |  |  |
|                                                                                             |                                                                                                                                                              | 9.85 MWh                                                                                 |                | )-0.75%<br>}-11.15%                                                                                                                  | Array nominal energy (at S<br>PV loss due to irradiance level<br>PV loss due to temperature                                                                             | TC effic.)                                                |          |          |  |  |
| 8                                                                                           |                                                                                                                                                              |                                                                                          | (+0.           | 75%                                                                                                                                  | Module quality loss                                                                                                                                                     |                                                           |          |          |  |  |
|                                                                                             |                                                                                                                                                              | .58 MWh                                                                                  | 9-1.1<br>9-0.9 | 0%<br>5%                                                                                                                             | Mismatch loss, modules and st<br>Ohmic wiring loss<br>Array virtual energy at MPP                                                                                       | rings                                                     |          |          |  |  |
|                                                                                             | )                                                                                                                                                            |                                                                                          |                | 8%<br>%<br>%<br>%                                                                                                                    | Inverter Loss during operation<br>Inverter Loss over nominal inv<br>Inverter Loss due to max. inpu<br>Inverter Loss over nominal inv.<br>Inverter Loss due to power thr | (efficiency)<br>. power<br>t current<br>voltage<br>eshold |          |          |  |  |
| grid<br>consumption                                                                         | on     > 0.00%     Inverter Loss due to voltage threshold       on     > -0.05%     Night consumption       8.41 MWh     Available Energy at Inverter Output |                                                                                          |                |                                                                                                                                      |                                                                                                                                                                         |                                                           |          |          |  |  |
| 1.69 MWh 0.82                                                                               | MWh                                                                                                                                                          | 7.59 MWh                                                                                 |                |                                                                                                                                      | Energy injected into grid                                                                                                                                               |                                                           |          |          |  |  |
| to user to u<br>from grid from                                                              | iser<br>solar                                                                                                                                                | to grid                                                                                  |                |                                                                                                                                      |                                                                                                                                                                         |                                                           |          |          |  |  |

| PVSYST V6.86             |             |                                 |                                         |                             |                  | 21/04/20                | Page 7/7      |  |  |  |  |
|--------------------------|-------------|---------------------------------|-----------------------------------------|-----------------------------|------------------|-------------------------|---------------|--|--|--|--|
|                          |             | Grid-Conr                       | nected Syster                           | m <sup>.</sup> P50 - P90 ev | valuation        |                         |               |  |  |  |  |
| Project ·                |             | Taman Mic                       | lab (NEM)                               |                             | aldation         |                         |               |  |  |  |  |
| Simulation varia         | ant ·       |                                 |                                         |                             |                  |                         |               |  |  |  |  |
|                          | ant .       | working co                      |                                         |                             |                  |                         |               |  |  |  |  |
| Main system par          | ameters     |                                 | System type                             | Sheds on ground             |                  |                         |               |  |  |  |  |
| Near Shadings            | on          |                                 | Linear shadings                         | ۶°                          | azimut           | h 0°                    |               |  |  |  |  |
| PV modules               | OIT         |                                 | Model                                   | JAM6-72-320/SI              | Pnor             | m 320 Wp                | )             |  |  |  |  |
| PV Array                 |             |                                 | Nb. of modules                          | 20                          | Pnom tota        | al <b>6.40 kV</b>       | Vp            |  |  |  |  |
| Inverter                 |             | Daily hour                      | Model                                   | SUN2000L-5KTL               | Pnor<br>Ar Globy | m 5.00 kV<br>al 2510 kV | √ac<br>Nb∿ear |  |  |  |  |
| Usel s fieeds            |             |                                 |                                         |                             |                  |                         |               |  |  |  |  |
| Evaluation of the        | e Produc    | tion probabil                   | ity forecast                            |                             |                  |                         |               |  |  |  |  |
| The probability dis      | stribution  | of the system                   | production forecast                     | t for different years is n  | nainly depen     | dent                    |               |  |  |  |  |
| on the meteo data        | used for    | the simulation                  | n, and depends on                       | the following choices:      |                  |                         |               |  |  |  |  |
| Meteo data source        | Э           |                                 |                                         | MeteoNorm 7.2 static        | on .             |                         |               |  |  |  |  |
| Meteo data               | n           | Vear d                          | Kind                                    | Not defined                 | Yea              | ar 1995                 |               |  |  |  |  |
| Year-to-year varial      | bility      | i cai u                         | Variance                                | 0.5 %                       |                  |                         |               |  |  |  |  |
| The probability dia      |             | verience in ele                 |                                         |                             |                  | -                       |               |  |  |  |  |
| Specified Deviation      | n P         | Variance is als<br>V module mod | o depending on so<br>lelling/parameters | 1.0 %                       | suncertaintie    | es .                    |               |  |  |  |  |
| opcomed Deviation        |             | Inverter effi                   | ciency uncertainty                      | 0.5 %                       |                  |                         |               |  |  |  |  |
|                          | Soi         | ling and mism                   | atch uncertainties                      | 1.0 %                       |                  |                         |               |  |  |  |  |
| Global variability (     | meteo +     | Degra                           | dation uncertainty                      | 1.0 %                       | uadratic sun     | <b>)</b>                |               |  |  |  |  |
| Giobal variability (     | ineleo + a  | system                          | vanance                                 | 1.9 /0 (Y                   | uauratic Suri    | 1)                      |               |  |  |  |  |
| Annual production        | n probabili | ity                             | Variability                             | 0.14 MWh                    |                  |                         |               |  |  |  |  |
|                          |             |                                 | P50<br>P90                              | 7.59 MWh<br>7.41 MWh        |                  |                         |               |  |  |  |  |
|                          |             |                                 | P95                                     | 7.36 MWh                    |                  |                         |               |  |  |  |  |
|                          |             |                                 |                                         |                             |                  |                         |               |  |  |  |  |
| Probability distribution |             |                                 |                                         |                             |                  |                         |               |  |  |  |  |
|                          |             | <sup>0.50</sup> F               |                                         |                             |                  | -                       |               |  |  |  |  |
|                          |             | 0.45                            |                                         | P50 - 7502 kWb              |                  |                         |               |  |  |  |  |
|                          |             | 0.40                            |                                         | $E_Grid simul = 75$         | 93 kWh           |                         |               |  |  |  |  |
|                          |             | 0.35                            |                                         | /                           |                  |                         |               |  |  |  |  |
|                          | ≥           | 0.30                            | /                                       | $^{\prime}$                 |                  |                         |               |  |  |  |  |
|                          | pbabili     | 0.25                            |                                         | $\backslash$                |                  |                         |               |  |  |  |  |
|                          | Pro         | 0.20                            | P90 =                                   | = 7411 kWh                  |                  |                         |               |  |  |  |  |
|                          |             | 0.15                            |                                         |                             | <b>\</b>         | 1                       |               |  |  |  |  |
|                          |             | 0.10                            | P95 = 736                               | 0 kWh                       | $\mathbf{i}$     | 1                       |               |  |  |  |  |
|                          |             | 0.05                            |                                         |                             |                  | 1                       |               |  |  |  |  |
|                          |             | 0.00<br>7100 7200               | 7300 7400 7                             | 500 7600 7700 780           | 00 7900          | <b>8</b> 000            |               |  |  |  |  |

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                      |                                                                                    |                                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                 | 21/04/20                                                                                                 | Page 1/7                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------|--|--|
| Grid-Connected System: Simulation parameters                                                                                                                                                      |                                                                                    |                                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                 |                                                                                                          |                                    |  |  |
| Project :                                                                                                                                                                                         | Tar                                                                                | nan Midah (NEM)                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                 |                                                                                                          |                                    |  |  |
| Geographical Si                                                                                                                                                                                   | te                                                                                 | Kuala Lumpur/Subang                                                                                                                                                        |                                                                                                                                                                              | Country                                                                                                                                         | / Malays                                                                                                 | ia                                 |  |  |
| Situation<br>Time defined a                                                                                                                                                                       | as                                                                                 | Latitude<br>Legal Time<br>Albedo                                                                                                                                           | 3.12° N<br>Time zone UT+8<br>0.20                                                                                                                                            | Longitude<br>Altitude                                                                                                                           | e 101.55°<br>e 17 m                                                                                      | E                                  |  |  |
|                                                                                                                                                                                                   |                                                                                    |                                                                                                                                                                            | Meteonorm 7.2 Sta                                                                                                                                                            | ation - Synthetic                                                                                                                               |                                                                                                          |                                    |  |  |
| Simulation vari                                                                                                                                                                                   | ant : Sm                                                                           | all family - 6kw                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                                 |                                                                                                          |                                    |  |  |
|                                                                                                                                                                                                   |                                                                                    | Simulation date                                                                                                                                                            | 21/04/20 17h17                                                                                                                                                               |                                                                                                                                                 |                                                                                                          |                                    |  |  |
| Simulation para                                                                                                                                                                                   | meters                                                                             | System type                                                                                                                                                                | Sheds on ground                                                                                                                                                              |                                                                                                                                                 |                                                                                                          |                                    |  |  |
| Collector Plane                                                                                                                                                                                   | Orientation                                                                        | Tilt                                                                                                                                                                       | 5°                                                                                                                                                                           | Azimuth                                                                                                                                         | n 0°                                                                                                     |                                    |  |  |
| Models used                                                                                                                                                                                       |                                                                                    | Transposition                                                                                                                                                              | Perez                                                                                                                                                                        | Diffuse                                                                                                                                         | e Perez, I                                                                                               | Veteonorm                          |  |  |
| Horizon                                                                                                                                                                                           |                                                                                    | Free Horizon                                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                 |                                                                                                          |                                    |  |  |
| Near Shadings                                                                                                                                                                                     |                                                                                    | Linear shadings                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                 |                                                                                                          |                                    |  |  |
| User's needs :                                                                                                                                                                                    | [                                                                                  | Daily household consumers average                                                                                                                                          | Constant over the y<br>19.4 kWh/Day                                                                                                                                          | vear                                                                                                                                            |                                                                                                          |                                    |  |  |
| PV Array Charac<br>PV module<br>Original PVsyst<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics | teristics<br>database<br>dules<br>V modules<br>r<br>naracteristics (<br>t database | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>50°C) U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 L<br>6.40 kWp At<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologi<br>90-500 V L<br>Max.<br>2 * MPPT 50 % | In parallel<br>Init Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>Jnit Nom. Power<br>power (=>40°C)<br>Total Power<br>Pnom ratic | I 2 string<br>320 Wp<br>5.75 kW<br>17 A<br>34.4 m <sup>2</sup><br>5.50 kW<br>5.50 kW<br>5.0 kW<br>0 1.28 | s<br>/p (50°C)<br>Vac<br>Vac<br>ac |  |  |
| PV Array loss fac                                                                                                                                                                                 | ctors                                                                              |                                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                 |                                                                                                          |                                    |  |  |
| Thermal Loss fact                                                                                                                                                                                 | or                                                                                 | Uc (const)                                                                                                                                                                 | 20.0 W/m <sup>2</sup> K                                                                                                                                                      | Uv (wind)                                                                                                                                       | ) 0.0 W/n                                                                                                | n²K / m/s                          |  |  |
| Wiring Ohmic Los<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                                                               | ss<br>Losses<br>loss<br>ASHRAE para                                                | Global array res.<br>metrization IAM =                                                                                                                                     | 332 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                             | Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param                                                                    | n 1.5 % a<br>-0.8 %<br>n 1.0 % a<br>n 0.10 %<br>. 0.05                                                   | t STC<br>It MPP                    |  |  |
|                                                                                                                                                                                                   |                                                                                    |                                                                                                                                                                            |                                                                                                                                                                              |                                                                                                                                                 |                                                                                                          |                                    |  |  |


| PVSYST V6.86                                                                                |                                                                            |                                                         |                                                                    | 21/                                                            | 04/20 Pag                                                      | e 3/7 |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-------|
| (                                                                                           | Grid-Connected S                                                           | System                                                  | n. Detailed I Is                                                   | er's needs                                                     | I                                                              |       |
| Destants                                                                                    |                                                                            |                                                         | i. Detailed 05                                                     |                                                                |                                                                |       |
| Project :                                                                                   | Taman Midan (NEN                                                           | /1)                                                     |                                                                    |                                                                |                                                                |       |
| Simulation variant :                                                                        | Small family - 6kw                                                         |                                                         |                                                                    |                                                                |                                                                |       |
| Main system parameters                                                                      | Syste                                                                      | em type                                                 | Sheds on ground                                                    |                                                                |                                                                |       |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear s<br>Nb. of r<br>Daily household cor                                | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the y | azimuth (<br>Pnom 3<br>Pnom total 6<br>Pnom 5<br>year Global 7 | )°<br>}20 Wp<br><b>5.40 kWp</b><br>5.00 kW ac<br>7066 kWh/year |       |
| Daily household consum                                                                      | ers Constant over the                                                      | vear av                                                 | verage = 19.4 kWb/                                                 | /dav                                                           |                                                                |       |
| Daily nousenoid consult                                                                     | iers, constant over the                                                    | e year, av                                              | verage = 15.4 KWII                                                 | lay                                                            |                                                                |       |
|                                                                                             |                                                                            | Annua                                                   | l values                                                           |                                                                |                                                                |       |
|                                                                                             | Use 5 days a week                                                          | Number                                                  | Power                                                              | Use                                                            | Energy                                                         |       |
| Lamps (LED or fluo)                                                                         |                                                                            | 26                                                      | 18 W/lamp                                                          | 5 h/day                                                        | 2340 Wh                                                        | /day  |
| TV / PC / Mobile                                                                            |                                                                            | 2                                                       | 70 W/app                                                           | 9 h/day                                                        | 1260 Wh                                                        | /day  |
| Iron                                                                                        |                                                                            | 1                                                       | 1200 W/app                                                         | 1 h/day                                                        | 1200 Wh                                                        | /day  |
| Fridge / Deep-freeze                                                                        |                                                                            | 1                                                       |                                                                    | 24 Wh/day                                                      | 3000 Wh                                                        | /day  |
| Dish- & Cloth-washers                                                                       |                                                                            | 1                                                       |                                                                    | 1 Wh/day                                                       | 500 Wh                                                         | /day  |
| Instant water heater                                                                        |                                                                            | 1                                                       | 2000 W tot                                                         | 2 h/day                                                        | 3000 Wh                                                        | /day  |
| Aircond                                                                                     |                                                                            | 3                                                       | 750 W tot                                                          | 7 h/day                                                        | 15750 Wh                                                       | /day  |
| Stand-by consumers                                                                          |                                                                            |                                                         |                                                                    | 24 h/day                                                       | 24 Wh                                                          | /day  |
| Total daily energy                                                                          |                                                                            |                                                         |                                                                    |                                                                | 27074 Wh                                                       | /day  |
|                                                                                             |                                                                            |                                                         |                                                                    |                                                                |                                                                |       |
|                                                                                             | 3500<br>2500<br>1500<br>0<br>0<br>3<br>3000<br>2500<br>1000<br>0<br>3<br>3 | Hourly<br>Hourly<br>6 9                                 | profile                                                            | 21 24                                                          |                                                                |       |

| PVSYST V6.86                         |                                     |                    |                                            |                      |                    |                   |                  |                          | 21/04/2                        | D Page 4/7        |
|--------------------------------------|-------------------------------------|--------------------|--------------------------------------------|----------------------|--------------------|-------------------|------------------|--------------------------|--------------------------------|-------------------|
|                                      |                                     | Grid               | -Conn                                      | ected \$             | Syster             | n: Maiı           | n resul          | ts                       |                                |                   |
| Project :                            | Та                                  | iman Mi            | dah (NE                                    | EM)                  | ,                  |                   |                  |                          |                                |                   |
| Simulation variant                   | t: Sr                               | nall fam           | ilv - 6kw                                  | , <b>,</b>           |                    |                   |                  |                          |                                |                   |
| Main system param                    | eters                               |                    | Sv                                         | stem type            | Shed               | s on grou         | und              |                          |                                |                   |
| Near Shadings                        |                                     |                    | Linear                                     | r shadings           | 3                  | U                 |                  |                          |                                |                   |
| PV Field Orientation                 |                                     |                    | Linda                                      | til                  | t 5°               |                   |                  | azimut                   | h 0°                           |                   |
| PV modules                           |                                     |                    |                                            | Mode                 | I JAM6             | -72-320/S         | il .             | Pnor                     | m 320 V                        | Vp                |
| PV Array                             |                                     |                    | Nb. o                                      | f modules            | 5 20<br>I SUND     |                   | -<br>1           | Pnom tota                | al <b>6.40</b> I               | kWp               |
| User's needs                         |                                     | Daily hou          | usehold c                                  | onsumers             | Const              | ant over t        | ∟<br>he year     | Globa                    | al 7066                        | kWh/year          |
| Main simulation res                  | ults                                |                    |                                            |                      |                    |                   | -                |                          |                                |                   |
| System Production                    |                                     | Per                | Produce<br>formance                        | d Energy<br>Ratio PF | <b>8.41</b>        | MWh/yea<br>%      | r Spe<br>Solar F | ecific prod<br>raction S | d. 1314<br>F 8.37 <sup>o</sup> | kWh/kWp/year<br>% |
|                                      |                                     |                    |                                            |                      |                    |                   |                  |                          |                                |                   |
| Normalized productions (             | per installed                       | i kWp): No         | minal powe                                 | r 6.40 kWp           | 1                  | 0                 | Per              | formance R               | atio PR                        |                   |
| Lc : Collection L<br>Ls : System Los | .oss (PV-array los<br>s (inverter,) | sses) (            | IIII<br>).7 kWh/kWp/day<br>).07 kWh/kWp/da | / -<br>ay            | 0                  | .9 E PR           | : Performance R  | atio (Yf / Yr): 0.       | 823                            |                   |
| 5 Yf : Produced us                   | seful energy (inve                  | erter output)      | 3.6 kWh/kWp/day                            | / -                  | 0                  | .8                |                  |                          |                                |                   |
|                                      |                                     |                    |                                            | <b>_</b>             | 전<br>전             | .7                |                  |                          |                                |                   |
|                                      |                                     |                    |                                            |                      | 0 0                | .6                |                  |                          |                                |                   |
| CE 3                                 |                                     |                    |                                            |                      | 0 mance            | .5                |                  |                          |                                |                   |
|                                      |                                     |                    |                                            |                      | Perfor             | .4                |                  |                          |                                |                   |
| Norma                                |                                     |                    |                                            |                      | 0                  | .3                |                  |                          |                                |                   |
| 1 -                                  |                                     |                    |                                            |                      | 0                  | .2                |                  |                          |                                |                   |
|                                      |                                     |                    |                                            |                      | 0                  | .1                |                  |                          |                                |                   |
| 0 Jan Feb Mar A                      | pr May Jun                          | Jul Aug            | Sep Oct                                    | Nov Dec              | 0                  | .0 Jan Feb        | Mar Apr          | May Jun                  | Jul Aug S                      | ep Oct Nov Dec    |
|                                      |                                     |                    |                                            |                      |                    |                   |                  |                          |                                |                   |
|                                      |                                     |                    |                                            |                      |                    |                   |                  |                          |                                |                   |
|                                      |                                     |                    |                                            | Small fa             | amily - 6          | kw                |                  |                          |                                |                   |
|                                      |                                     |                    | Ba                                         | alances ar           | nd main            | results           |                  |                          |                                |                   |
|                                      | GlobHor                             | DiffHor            | T_Amb                                      | GlobInc              | GlobEff            | EArray            | E_User           | E_Solar                  | E_Grid                         | EFrGrid           |
|                                      | kWh/m <sup>2</sup>                  | kWh/m <sup>2</sup> | °C                                         | kWh/m <sup>2</sup>   | kWh/m <sup>2</sup> | MWh               | MWh              | MWh                      | MWh                            | MWh               |
| January                              | 133.0                               | 82.20              | 28.10                                      | 136.3                | 131.2              | 0.726             | 0.623            | 0.055                    | 0.656                          | 0.567             |
| March                                | 134.0<br>149.8                      | 67.90<br>88.20     | 27.70                                      | 137.4                | 132.8<br>144 9     | 0.737             | 0.541            | 0.048                    | 0.675                          | 0.493             |
| April                                | 140.3                               | 70.50              | 20.00                                      | 138.8                | 133.9              | 0.742             | 0.569            | 0.049                    | 0.679                          | 0.520             |
| May                                  | 140.3                               | 78.60              | 28.60                                      | 136.9                | 131.7              | 0.734             | 0.623            | 0.054                    | 0.665                          | 0.569             |
| June                                 | 132.0                               | 77.80              | 27.80                                      | 128.3                | 123.5              | 0.691             | 0.569            | 0.047                    | 0.630                          | 0.522             |
| July                                 | 134.4                               | 87.20              | 27.80                                      | 131.1                | 125.8              | 0.710             | 0.596            | 0.051                    | 0.645                          | 0.544             |
| August                               | 132.2                               | 87.20              | 27.80                                      | 130.1                | 125.2              | 0.700             | 0.623            | 0.053                    | 0.634                          | 0.570             |
| September                            | 129.2                               | 79.00              | 27.10                                      | 128.8                | 124.0              | 0.691             | 0.541            | 0.046                    | 0.632                          | 0.496             |
| October                              | 138.8                               | 82.60              | 27.40                                      | 140.4                | 135.5              | 0.754             | 0.623            | 0.048                    | 0.692                          | 0.575             |
| November                             | 117.6                               | 79.20              | 26.70                                      | 119.8                | 115.4              | 0.648             | 0.596            | 0.043                    | 0.591                          | 0.552             |
| December                             | 115.0                               | 73.20              | 26.29                                      | 118.1                | 113.6              | 0.640             | 0.569            | 0.043                    | 0.584                          | 0.525             |
| Year                                 | 1597.2                              | 953.59             | 27.58                                      | 1596.2               | 1537.5             | 8.575             | 7.066            | 0.592                    | 7.817                          | 6.475             |
|                                      |                                     |                    |                                            |                      |                    | 01 1 5 5          |                  |                          |                                |                   |
| Legends: Glob                        | Hor H                               | iorizontal gl      | iobal irradia                              | tion                 |                    | GIODEff           | Effecti          | ve Global,               | corr. tor IAI                  | vi and shadings   |
|                                      | יטר F<br>mb ד                       | iurizontal d       | muse irradi                                | ลแบก                 |                    | EAFray            | Effecti          | ve energy a              | at the uppr                    | at of the array   |
|                                      | lino (                              | dIIID.             | nt in coll n                               | lano                 |                    | E_USEr            | Energy           | y supplied t             | u the user                     |                   |
| GIOD                                 | unic G                              |                    | ан на сон. р                               | ndrie                |                    | E_Suiar<br>F Grid | Energy           | / injected in            | suu<br>nto arid                |                   |
|                                      |                                     |                    |                                            |                      |                    | L_0110            | Linergy          | , injected li            | no griu                        |                   |

EFrGrid

Energy from the grid



| PVSYST V6.86           |           |                                             |                         |                                                                                   | 21/04/20                         | Page 6/7 |
|------------------------|-----------|---------------------------------------------|-------------------------|-----------------------------------------------------------------------------------|----------------------------------|----------|
|                        |           | Grid-Co                                     | nnected Sv              | vstem: Loss diagram                                                               |                                  |          |
| Project ·              |           | Taman Midal                                 | n (NFM)                 | ,                                                                                 |                                  |          |
| Simulation val         | riant :   | Small family -                              | 6kw                     |                                                                                   |                                  |          |
| Main system na         | arameters | <u> </u>                                    | System type             | Sheds on around                                                                   |                                  |          |
| Near Shadings          | arameters | 1                                           | inear shadings          | oneus on ground                                                                   |                                  |          |
| PV Field Orienta       | tion      |                                             | tilt                    | 5° azim                                                                           | uth 0°                           |          |
| PV modules<br>PV Arrav |           |                                             | Model<br>Nb. of modules | JAM6-72-320/SI Pn<br>20 Pnom to                                                   | om 320 Wp<br>otal <b>6.40 kV</b> | )<br>Vp  |
| Inverter               |           |                                             | Model                   | SUN2000L-5KTL Pn                                                                  | om 5.00 kV                       | Vac      |
| User's needs           |           | Daily house                                 | old consumers           | Constant over the year Glo                                                        | bal 7066 k                       | /Vh/year |
|                        |           |                                             | Loss diagram o          | over the whole year                                                               |                                  |          |
|                        |           |                                             |                         |                                                                                   |                                  |          |
| Γ                      |           | 1597 kWh/m <sup>2</sup>                     |                         | Horizontal global irradiation                                                     |                                  |          |
|                        |           |                                             | →-0.07%                 | Global incident in coll. plane                                                    |                                  |          |
|                        |           |                                             | → -0.07%                | 6 Global incident below threshold<br>Near Shadings: irradiance loss               |                                  |          |
|                        |           |                                             | -3.67%                  | 6 IAM factor on global                                                            |                                  |          |
|                        | 1538 k    | Wh/m <sup>2</sup> * 39 m <sup>2</sup> coll. |                         | Effective irradiation on collectors                                               |                                  |          |
| F                      | efficien  | cy at STC = 16.53%                          | ,<br>                   | PV conversion                                                                     |                                  |          |
|                        |           | 9.85 MWh                                    | -0.75%                  | Array nominal energy (at STC effic<br>PV loss due to irradiance level             | .)                               |          |
|                        |           |                                             | -11.15%                 | 6 PV loss due to temperature                                                      |                                  |          |
|                        |           |                                             | +0.75%                  | Module quality loss                                                               |                                  |          |
|                        |           |                                             | 9-1.10%                 | Mismatch loss, modules and strings                                                |                                  |          |
|                        | 8         | .58 MWh                                     | 9-0.95%                 | Ohmic wiring loss<br>Array virtual energy at MPP                                  |                                  |          |
|                        | -         |                                             |                         |                                                                                   |                                  |          |
|                        |           |                                             | →-1.88%<br>→0.00%       | Inverter Loss during operation (efficien<br>Inverter Loss over nominal inv. power | cy)                              |          |
|                        |           |                                             | → 0.00%                 | Inverter Loss due to max. input current                                           |                                  |          |
|                        |           |                                             | →-0.01%                 | Inverter Loss due to power threshold                                              |                                  |          |
| grid<br>consumption    |           |                                             | → 0.00%<br>→ -0.05%     | Inverter Loss due to voltage threshold                                            |                                  |          |
| concumption            | 8         | .41 MWh                                     |                         | Available Energy at Inverter Output                                               | t –                              |          |
|                        | 1         |                                             |                         |                                                                                   |                                  |          |
| 6.47 MWh 0.59          | NWh       | 7.82 MWh                                    | J                       | Energy injected into grid                                                         |                                  |          |
| to user to u           | iser      | to grid                                     |                         |                                                                                   |                                  |          |
| from grid from         | solar     |                                             |                         |                                                                                   |                                  |          |
|                        |           |                                             |                         |                                                                                   |                                  |          |

| PVSYST V6.86                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              | 21/04/20                                                                            | Page 7/7                     |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|
|                                                                                             | Grid-Connected Syster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m: P50 - P90 evaluation                                                                      | า                                                                                   |                              |
| Project ·                                                                                   | Taman Midah (NFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                     |                              |
| Simulation variant :                                                                        | Small family - 6kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                                     |                              |
| Main system parameters                                                                      | System type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sheds on ground                                                                              |                                                                                     |                              |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Daily household consumers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5° azim<br>JAM6-72-320/SI Pn<br>20 Pnom to<br>SUN2000L-5KTL Pn<br>Constant over the year Glo | uth 0°<br>om 320 Wp<br>otal <b>6.40 kV</b><br>om 5.00 kV<br>bal 7066 k <sup>1</sup> | V <b>p</b><br>Vac<br>№h/year |
| Evaluation of the Produc                                                                    | tion probability forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                              |                                                                                     |                              |
| The probability distribution                                                                | of the system production forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for different vears is mainly depe                                                           | ndent                                                                               |                              |
| on the meteo data used for                                                                  | the simulation, and depends on t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the following choices:                                                                       |                                                                                     |                              |
| Meteo data source<br>Meteo data<br>Specified Deviation<br>Year-to-year variability          | Kind<br>Year deviation from aver.<br>Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MeteoNorm 7.2 station<br>Not defined Y<br>3 %<br>0.5 %                                       | ∋ar 1995                                                                            |                              |
| The probability distribution<br>Specified Deviation F<br>So<br>Global variability (meteo +  | variance is also depending on so<br>V module modelling/parameters<br>Inverter efficiency uncertainty<br>ling and mismatch uncertainties<br>Degradation uncertainty<br>system) Variance                                                                                                                                                                                                                                                                                                                                                                                                          | me system parameters uncertaint<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (quadratic su   | ies<br>Im)                                                                          |                              |
| Annual production probabil                                                                  | ity Variability<br>P50<br>P90<br>P95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15 MWh<br>7.82 MWh<br>7.63 MWh<br>7.58 MWh                                                 | ,                                                                                   |                              |
|                                                                                             | Probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | distribution                                                                                 |                                                                                     |                              |
| Probability                                                                                 | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>P50 = 781<br>P50 = 7630 kWh | 7 kWh<br>E_Grid simul = 7817 kWh                                                             |                                                                                     |                              |

7800 8000

0.00 7400

7600

E\_Grid system production kWh

8200

8400

| Grid-Connected System: Simulation parameters:         Projec:       Taman Midah (NEM)         Secographical Site       Kuala Lumpur/Subang       Country       Malaysia         Situation       Latitude       3.12* N       Longitude       101.55* E         Time defined as       Lagal Time       Time zone UT+8       Altitude       101.55* E         Situation       Kuala Lumpur/Subang       MeteoNorm 7.2 station - Synthetic       17       Time         Simulation parameters       System type       Sheds on ground       Collector Plane Orientation       Tit       5*       Azimuth       0*         Models used       Transposition       Perez       Diffuse       Perez, Meteonorm         Ner's Shedings       Linear shadings       User's needs:       JAM6-72-320/SI       James         Original PVsyst database       Manufacturer       JA Solar       In parallel       2 strings         Total number of PV modules       Ns. modules       Ja Solar       Unit Nom. Power       200 Wp         Array operating characteristics       Gore of PV modules       Ns. modules       Strings       306 V       Imp         Original PVsyst databases       Manufacturer       Module area       38.8 m²       Cell area       34.4 m²         I                                                                                                                                                                                                 | PVSYST V6.86                                                                                                                                                                                      |                                                                                       |                                                                                                                                                         |                                                                                                                                                              |                                                                                                                  | 21/04/20                                                                                       | Page 1/7                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------|
| Project:       Taman Midah (NEM)         Geographical Site       Kuala Lumpur/Subang       Country       Malaysia         Situation       Legitude       3.12" N       Longitude       101.55" E         Time defined as       Legat Time       Maleo data       11.8"       11.8"         Meteo data:       Kuala Lumpur/Subang       MeteoNorr 7.2 station - Synthetic       17.8"         Simulation variant:       Small family - 6kw       Simulation data       21.04/20 17h21       1         Simulation parameters       System type       Sheds on ground       0"       Perez, Meteonorm         Collector Plane Orientation       Titt       5"       Azimuth       0"         Models used       Transposition       Perez       Diffuse       Perez, Meteonorm         Near's needs:       Daily household consumers       Consumers       Content over the year       32.9"         Y Array Characteristics       Namodules       In series       10 modules       In parailel       2. strings         Original PVsyst database       Manufacturer       Module area       38.8 m²       Cellarea       5.00 KWac         Array operating characteristics       OPerating Voltage       Marufacturer       38.8 m²       Cellarea       5.00 KWac         Arr                                                                                                                                                                                              |                                                                                                                                                                                                   | Gric                                                                                  | d-Connected System                                                                                                                                      | n: Simulation p                                                                                                                                              | arameters                                                                                                        | 5                                                                                              |                              |
| Geographical Site       Kuala Lumpur/Subang       Country       Malaysia         Situation       Latitude       3.12 ° N       Longlitude       101.55° E         Time defined as       Kuala Lumpur/Subang       Meteo data:       17 m         Meteo data:       Kuala Lumpur/Subang       MeteoNorm 7.2 station - Synthetic         Simulation variant:       Small family - 6kw       21/04/20 17h21         Simulation parameters       System type       Sheds on ground       0°         Collector Plane Orientation       Titl       5°       Azimuth       0°         Models used       Transposition       Perez       Diffuse       Perez, Meteonorm         Horizon       Free Horizon       Constant over the year       9.9 kWh/Day       9.9 kWh/Day         Veray Characteristics       Si-mono       Model       JAM6-72-320/SI       JA With 20 y       3.0 Wp         Original PVsyst database       Nb. models       Nb. models       JA With 20 y       Inmp 17 A       3.20 Wp         Array operating characteristics (50°C)       U mp 236° Ump 20 y       Jame 72-320/SI       Jame 72-320/SI       Jame 72-320/SI       Jame 72-320/SI         Inverter       Module area       Si-mono Model       JAM6-72-320/SI       Ja Solar       Ja Wp       Solar       Ja                                                                                                                                                                             | Project :                                                                                                                                                                                         | Та                                                                                    | man Midah (NEM)                                                                                                                                         |                                                                                                                                                              |                                                                                                                  |                                                                                                |                              |
| Situation       Latitude       3.12° N       Longitude       101.55° E         Time defined as       Lagal Time       Time zone UT+8       Altitude       17 m         Meteo data:       Kuala Lumpur/Subang       MeteoNorr 7.2 station - Synthetic         Simulation variant:       Small family - 6kw       Simulation date       21/04/20 17h21         Simulation parameters       System type       Sheds on ground       0°         Collector Plane Orientation       Titt       5°       Azimuth       0°         Models used       Transposition       Perez       Diffuse       Perez, Meteonorm         Horizon       Free Horizon       Near Shadings       Linear shadings       Constant over the year       9.9 kWh/Day         Verray Characteristics       Daily household consumers average       9.9 kWh/Day       9.9 kWh/Day       2.0 tims         PV Array Characteristics       Monimal (STC)       6.40 kWp       At operating cond.       5.50 kWp (GrC)         Array operating characteristics (50°C)       Ump       Model       SUN2000L-5KTL       House To Nominal (STC)       6.40 kWp       At operating cond.       5.50 kWac         Inverter       Model       Nb. of inverters       2* MPPT 50 %       Total area       3.0 kWn       Inverter       0.0 W/mPK / m/s                                                                                                                                                             | -<br>Geographical Si                                                                                                                                                                              | ite                                                                                   | Kuala Lumpur/Subang                                                                                                                                     |                                                                                                                                                              | Country                                                                                                          | / Malays                                                                                       | ia                           |
| Time defined as       Legal Time       Time zone UT+8       Altitude       17 m         Meteo data:       Kuala Lumpur/Subang       MeteoNorm 7.2 station - Synthetic         Simulation variant :       Small family - 6kw       21/04/20 17h21         Simulation parameters       System type       Sheds on ground         Collector Plane Orientation       Titl       5*       Azimuth       0*         Models used       Transposition       Perez       Diffuse       Perez, Meteonorm         Horizon       Fire Horizon       Fire Horizon       Name Prez       Diffuse       Perez, Meteonorm         Varay Characteristics       Daily household consumes       Constant over the year       9.9 kWh/Day       PV         PV module       Si-mono       Model       JAM6-72-320/SI       Ja Solar       Ja Solar         Nominal (STO)       Manifacturer       JA Solar       Ja Solar       Ja Solar       Ja Solar         Normizel prover       Nominal (STO)       G40 kWp       At toperating cond.       5.5 KWp (GrC)       Ja Solar         Array operating characteristics (50°C)       Um pp       17 A       38.6 m²       Cell area       3.4 m²         Inverter       Model       SUN2000L-SKTL       Hower (=>40, SV KWac       Max. power (=>40, C)                                                                                                                                                                                        | Situation                                                                                                                                                                                         |                                                                                       | Latitude                                                                                                                                                | 3.12° N                                                                                                                                                      | Longitude                                                                                                        | e 101.55°                                                                                      | E                            |
| Meteo data:       Kuala Lumpur/Subarg       MeteoNorm 7.2 station - Synthetic         Simulation variant:       Small family - 6kw       Simulation date       21/04/20 17h21         Simulation parameters       System type       Sheds on ground       Collector Plane Orientation       Tit         Models used       Transposition       Fire Horizon       Perez       Diffuse       Perez, Meteonorm         Models used       Transposition       Fire Horizon       Constant over the year       3.9 kWh/Day         Vers's needs:       Daily household consumers average       Solar       JAM6-72-320/SI       Jame         PV module       Si-mono       Model       JAM6-72-320/SI       Jame       Jame         Number of PV modules       Nb. modules       Jame       Jame       320 Wp       320 Wp       320 Wp         Array operating characteristics (50°C)       U mpp       10 module area       364 V       I mpp       17 A       336 V       I mpp       17 A         Total number of PV modules       Nb. finverters       Solo       Vulit Nom. Power S.00 Wac       5.0 kWac         Inverter       Module       Sumulatione       Sumulatione       2.1 MPPT 50 %       Total Power S.00 kWac       1.28         PV Array loss factors       Nb. of inverters       2                                                                                                                                                                     | Time defined                                                                                                                                                                                      | as                                                                                    | Legal Time                                                                                                                                              | Time zone UT+8                                                                                                                                               | Altitude                                                                                                         | e 17 m                                                                                         |                              |
| Simulation variant: Small family - 6kw         Simulation parameters       System type       Sheds on ground         Collector Plane Orientation       Tit       5°       Azimuth       0°         Models used       Transposition       Perez       Diffuse       Perez, Meteonorm         Horizon       Free Horizon       Constant over the year       9.9 KWh/Day       Perez, Meteonorm         Vers's needs:       Daily household consumers average       Constant over the year       9.9 KWh/Day       Perez, Meteonorm         PV module       Si-mono       Model       Manfacturer       JAM6-72-320/SI       James       James         Number of PV modules       Nb. modules       In series       20       Uit Nom. Power       320 Wp         Array operating characteristics (50°C)       U mpp       36.8 m²       Cell area       34.4 m²         Inverter       Module area       Sis8 m²       Cell area       34.4 m²         Inverter pack       Nb. of inverters       2°.00 V       Sio0 V       Marea       1.28         PV Array loss factors       Coss Fraction       1.5% at STC       Module Mismatch Loss       1.5% at STC         Module Mismatch Losses       Global array res       320 Mm       Loss Fraction       1.5% at STC      <                                                                                                                                                                                              | Meteo data:                                                                                                                                                                                       |                                                                                       | Kuala Lumpur/Subang                                                                                                                                     | MeteoNorm 7.2 sta                                                                                                                                            | ition - Synthetic                                                                                                | ;                                                                                              |                              |
| Simulation parameters       System type       Sheds on ground         Collector Plane Orientation       Titl       5°       Azimuth       0°         Models used       Transposition       Perez       Diffuse       Perez, Meteonorm         Horizon       Free Horizon       Constant over the year       9.9 kWh/Day       Perez       Diffuse       Perez, Meteonorm         Version       Daily household consumers average       0.9 kWh/Day       9.9 kWh/Day       Perez                                                                                                                                                                                                                                         | Simulation vari                                                                                                                                                                                   | iant : Sm                                                                             | nall family - 6kw                                                                                                                                       |                                                                                                                                                              |                                                                                                                  |                                                                                                |                              |
| Simulation parametersSystem typeSheds on groundCollector Plane OrientationTranspositionPerezDiffusePerez, MeteonormModels usedTranspositionPerezDiffusePerez, MeteonormHorizonFree HorizonConstant over the yearPerezNear ShadingsLinear shadingsUser's needs :Daily household consumersConstant over the year9.9 kWh/DayPV Array CharacteristicsSi-monoModelJAM6-72-320/SIPV moduleSi-monoModelSolarNumber of PV modulesNb. modulesIn parallel2 stringsTotal number of PV modulesNb. modules10 modulesIn parallel2 stringsArray gobal powerNominal (STC)GowJAM6-72-320/SI320 WpArray operating characteristics (50°C)U mp17 A33.8 m²Cell areaInverterModelSUN2000L-SKTLHuawei Technologies5.00 kWacCharacteristicsOperating VoltageSUN2000L-SKTLVianor (back of the string)Inverter packNb. of inverters2.1 MPPT 50 %Total Power5.00 kWacNotif operating VoltageGlobal array res322 mOhmLoss Fraction1.5 % at STCModule Quality LossGlobal array resJaveLoss Fraction0.0 %Nodule Wismatch LossGlobal array res322 mOhmLoss Fraction0.0 %Notal Power Strings Mismatch LossLoss Fraction1.0 % at MPPLoss Fraction0.0 %Module Wismatch LossLoss F                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                       | Simulation date                                                                                                                                         | 21/04/20 17h21                                                                                                                                               |                                                                                                                  |                                                                                                |                              |
| Collector Plane OrientationTitl5°Azimuth0°Models usedTranspositionPerezDiffusePerez, MeteonormHorizonFree HorizonPerezDiffusePerez, MeteonormNear ShadingsLinear shadingsConstant over the year9.1User's needs :Daily household consumers<br>averageConstant over the year9.1PV Array CharacteristicsSi-monoModel<br>MondulesJAM6-72-320/SI<br>JA SolarJame-72-320/SI<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Simulation para                                                                                                                                                                                   | meters                                                                                | System type                                                                                                                                             | Sheds on ground                                                                                                                                              |                                                                                                                  |                                                                                                |                              |
| Models usedTranspositionPerezDiffusePerez, MeteonormHorizonFree HorizonNear ShadingsLinear shadingsUser's needs :Daily household consumers<br>averageConstant over the year<br>9.9 kWh/DayPV Array CharacteristicsSi-monoModel<br>MonufacturerNumber of PV modulesNb. modulesIn series<br>10 modulesArray global powerNb. module<br>Nominal (STC)JAM6-72-320/SI<br>JA SolarArray operating characteristicsNb. module<br>Nominal (STC)10 modulesArray operating characteristicsManufacturer<br>Nominal (STC)6.40 kWp<br>38.6 m²At operating cond.Array operating characteristicsOperating Volte<br>38.6 m²Solar<br>2.00 U int Nom. Power32.0 Wp<br>36.0 VInverterModule area<br>ManufacturerSUN2000L-SKTL<br>Huawei TechnologiesSola KWac<br>2.50 kWacInverter packNb. of inverters2.* MPPT 50 %<br>2.00 VTotal Power5.00 kWac<br>5.00 kWacInverter packNb. of inverters2.* MPPT 50 %<br>2.00 V/m²KLoss Fraction<br>1.28PV Array loss factorsUc (const)<br>Using Ohmic Loss2.0.0 W/m²K / m/s<br>Sizeron2.5% km2<br>2.0.0 K/m²KThermal Loss factorUc (sonst)<br>Loss Fraction1.0 % at STC<br>Loss Fraction0.0 % int<br>0.0 %Module Quality LossGlobal array res<br>Loss Fraction3.32 mOhm<br>Loss Fraction1.0 % at STC<br>0.0 %Module Quality LossLoss Fraction<br>Loss Fraction0.0 %1.0 % at STC<br>Loss Fraction0.0 %Module Quality Loss<                                                                                                                                | <b>Collector Plane</b>                                                                                                                                                                            | Orientation                                                                           | Tilt                                                                                                                                                    | 5°                                                                                                                                                           | Azimuth                                                                                                          | 0° ו                                                                                           |                              |
| HorizonFree HorizonNear ShadingsLinear shadingsUser's needs :Daily household consumers<br>averageConstant over the year<br>3.9 kWh/DayPV Array Characteristics<br>PV moduleSi-monoModel<br>ManufacturerPV Array Characteristics<br>PV modulesSi-monoModel<br>ManufacturerArray global powerSi-monoModel<br>ManufacturerJAM6-72-320/SIVarray oberating condSi-monoModel<br>ManufacturerJAM6-72-320/SIPV moduleSi-monoModel<br>ManufacturerJAM6-72-320/SIArray global powerNo. modulesIn parallel2 stringsTotal areaModule area38.9 m²Cell area34.4 m²Inverter<br>CharacteristicsModule areaSUN2000L-SKTL<br>Module areaImage in the parallelStringsInverter<br>CharacteristicsModule areaSUN2000L-SKTL<br>Maueri TechnologiesStol KWacInverter packNb. of inverter2.1 MPPT 50 %Total areaStol KWacPV Array loss factors<br>Module Quily LossGlobal array res<br>Loss Fraction2.0 W/m²K / m/s332 mOhmLoss Fraction0.0 W/m²K / m/sModule Mismatch Losses<br>Indidence effect, ASHRAE parametrizationIAM1 - bo (1/cos i - 1)bo Param.0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | Models used                                                                                                                                                                                       |                                                                                       | Transposition                                                                                                                                           | Perez                                                                                                                                                        | Diffuse                                                                                                          | e Perez, I                                                                                     | Veteonorm                    |
| Near Shadings       Linear shadings         User's needs:       Daily household consumers average       Constant over the year average       Sumon Survey average       Constant over the year average       Survey average | Horizon                                                                                                                                                                                           |                                                                                       | Free Horizon                                                                                                                                            |                                                                                                                                                              |                                                                                                                  |                                                                                                |                              |
| User's needs :       Daily household consumers average       Constant over the year 9.9 kWh/Day         PV Array Characteristics       Si-mono       Model         PV module       Si-mono       Model         Original PVsyst database       Manufacturer       JAM6-72-320/SI         Total number of PV modules       Nb series       10 modules       In parallel       2 strings         Array operating characteristics (50°C)       U mpp       A00 kWp       At paraling cond. 5.75 kWp (50°C)       5.75 kWp (50°C)         Array operating characteristics (50°C)       U mpp       38.8 m²       Cell area       34.4 m²         Inverter       Module area       Module area       88.8 m²       Coll area       34.4 m²         Inverter       Module area       Module area       90-500 V       Unit Nom. Power       5.00 kWac         Characteristics       Operating Voltage       90-500 V       Unit Nom. Power       5.00 kWac         Inverter pack       Nb. of inverters       2 * MPPT 50 %       Total Power       5.0 kWac         Inverter pack       Nb. of inverters       2 * MPPT 50 %       Total Power       5.0 kWac         Phormatic Loss       Global array res.       322 mOhm       Loss Fraction       1.5 % at STC         Module Quality Loss       Loss Fr                                                                                                                                                                   | Near Shadings                                                                                                                                                                                     |                                                                                       | Linear shadings                                                                                                                                         |                                                                                                                                                              |                                                                                                                  |                                                                                                |                              |
| PV Array Characteristics<br>PV module       Si-mono       Model<br>Manufacturer       JAM6-72-320/SI         Original PVsyst database       Manufacturer       JA Solar       In parallel       2 strings         Number of PV modules       In series       10 modules       In parallel       2 strings         Array global power       Nominal (STC)       6.40 kWp       At operating cond.       5.75 kWp (50°C)         Array operating characteristics (50°C)       U mpp       336 V       I mpp       17 A         Total area       Module area       88 m²       Cell area       34.4 m²         Inverter       Modula area       SUN2000L-SKL       Huawei Technologies       5.00 kWac         Characteristics       Operating Voltage       90-500 V       Unit Nom. Power       5.00 kWac         Characteristics       Operating Voltage       90-500 V       Unit Nom. Power       5.00 kWac         Inverter pack       Nb. of inverters       2 * MPPT 50 %       Total Power       5.00 kWac         Inverter pack       Nb. of inverters       20.0 W/m²K       Wo (wind)       0.0 W/m²K / m/s         Yiring Ohmic Loss       Global array res       332 mOhm       Loss Fraction       1.5 % at STC         Module Quality Loss       Loss Fraction       1.0 % at MPP       Loss                                                                                                                                                                | User's needs :                                                                                                                                                                                    |                                                                                       | Daily household consumers<br>average                                                                                                                    | Constant over the y<br>9.9 kWh/Day                                                                                                                           | rear                                                                                                             |                                                                                                |                              |
| PV Array loss factors         Thermal Loss factor         Uc (const)       20.0 W/m²K         Uv (wind)       0.0 W/m²K / m/s         Wiring Ohmic Loss       Global array res.         332 mOhm       Loss Fraction         1.5 % at STC         Module Quality Loss         Module Mismatch Losses         Strings Mismatch loss         Incidence effect, ASHRAE parametrization         IAM =         1 - bo (1/cos i - 1)         bo Param.         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PV Array Charac<br>PV module<br>Original PVsyst<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics | eteristics<br>t database<br>odules<br>V modules<br>er<br>maracteristics<br>t database | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>(50°C) U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 U<br>6.40 kWp At<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologie<br>90-500 V U<br>Max. | In paralle<br>Init Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>Init Nom. Power<br>power (=>40°C | I 2 string<br>r 320 Wp<br>5.75 kW<br>o 17 A<br>a 34.4 m <sup>2</sup><br>r 5.00 kV<br>) 5.50 kW | s<br>/p (50°C)<br>Vac<br>Vac |
| PV Array loss factors         Thermal Loss factor       Uc (const)       20.0 W/m²K       Uv (wind)       0.0 W/m²K / m/s         Wiring Ohmic Loss       Global array res.       332 mOhm       Loss Fraction       1.5 % at STC         Module Quality Loss       Loss Fraction       -0.8 %         Module Mismatch Losses       Loss Fraction       1.0 % at MPP         Strings Mismatch loss       Loss Fraction       0.10 %         Incidence effect, ASHRAE parametrization       IAM =       1 - bo (1/cos i - 1)       bo Param.       0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inverter pack                                                                                                                                                                                     |                                                                                       | Nb. of inverters                                                                                                                                        | 2 * MPP1 50 %                                                                                                                                                | Pnom ratio                                                                                                       | r 5.0 kW<br>b 1.28                                                                             | ac                           |
| Module Quality LossLoss Fraction-0.8 %Module Mismatch LossesLoss Fraction1.0 % at MPPStrings Mismatch lossLoss Fraction0.10 %Incidence effect, ASHRAE parametrizationIAM = 1 - bo (1/cos i - 1)bo Param.0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PV Array loss fac<br>Thermal Loss fac<br>Wiring Ohmic Los                                                                                                                                         | ctors<br>tor<br>SS                                                                    | Uc (const)<br>Global array res.                                                                                                                         | 20.0 W/m²K<br>332 mOhm                                                                                                                                       | Uv (wind)<br>Loss Fractior                                                                                       | ) 0.0 W/r<br>n 1.5 % a                                                                         | n²K / m/s<br>t STC           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                                                                                   | oss<br>Losses<br>Ioss<br>ASHRAE para                                                  | ametrization IAM =                                                                                                                                      | 1 - bo (1/cos i - 1)                                                                                                                                         | Loss Fractior<br>Loss Fractior<br>Loss Fractior<br>bo Param                                                      | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>. 0.05                                                    | ıt MPP                       |



| Grid-Connected System: Detailed User's needs Project : Taman Midah (NEM) Simulation variant : Small family - 6kw Main system parameters System type Sheds on ground Near Shadings PV Field Orientation PV modules Nodel JAM6-72-320/SI Promodules PV Array Nb. of modules 20 Promotal 6.40 kWp Promotal 6.40                                                                                                                                                                                                                                     | PVSYST V6.86            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                     | 21/                | 04/20          | Page 3/7   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|--------------------|----------------|------------|
| Project : Taman Midah (NEM)<br>Simulation variant : Small family - 6kw<br>Main system parameters System type Sheds on ground<br>Near Shadings Linear shadings<br>PV Field Orientation Model JAM6-72-320/Si Prom 320 Wp<br>PV modules Daily household consumers SUN2000L-5KTL Prom 5.00 kW ac<br>User's needs Daily household consumers Constant over the year Global 3625 kWh/year<br>Daily household consumers, Constant over the year, average = 9.9 kWh/day<br>Total Guo r fluo) 26 18 W/lamp 5 h/day 2340 Wh/day<br>Prom 1 1200 W/ap 14 h/day 1960 Wh/day<br>Prom 1 1200 W/ap 14 h/day 1960 Wh/day<br>Prom 1 1200 W/ap 24 Wh/day 3000 Wh/day<br>Dish. & Cloth-washers 1 200 W tot 2 h/day 3000 Wh/day<br>Stand-by consumers 2 Source 1 24 h/day 24 Wh/day<br>Total daily energy 34524 Wh/day<br>Total daily energy 34524 Wh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                       | Srid-Connected 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Svetor     | n. Detailed Lls     | er's needs         | I              |            |
| Project : I aman Midan (NEW)<br>Simulation variant : Small family - 6kw<br>Main system parameters System type Sheds on ground<br>Near Shadings Linear shadings<br>PV Field Orientation tilt 5° azimuth 0°<br>PV modules JAM6-72-320/SI Pnom 320 Wp<br>PV Array Nb. of modules 20 Promot tail 6.40 KWp<br>Inverter Model JUN2000L-5KTL Pnom 5.00 KW ac<br>User's needs Daily household consumers Constant over the year Global 3625 KWh/year<br>Daily household consumers, Constant over the year, average = 9.9 kWh/day<br>Annual values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ducient                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a)         | i. Detailed 03      | ci s necus         |                |            |
| Simulation variant : Small family - 6kw         Main system parameters       System type       Sheds on ground         Near Shadings       Linear shadings       azimuth       0°         PV Field Orientation       till       5°       azimuth       0°         PV modules       Model       JAM6-72-320/SI       Pnom       320 Wp         PV array       Nb. of modules       20       Pnom       5.00 kW ac         User's needs       Daily household consumers       Constant over the year       Global       3625 kWh/year         Daily household consumers, Constant over the year       Constant over the year       Global       3625 kWh/year         Lamps (LED or fluo)       26       18 W/lamp       5 h/day       2340 Wh/day         Tr/       PC / Mobile       2       70 W/app       1 h/day       1960 Wh/day         Iron       1       1200 W/app       1 h/day       3000 Wh/day         Priore       2       70 W/app       1 h/day       3000 Wh/day         Instant water heater       1       2000 W tot       2 h/day       3000 Wh/day         Instant water heater       1       2000 W tot       2 h/day       34524 Wh/day         Jamp       10 h/day       22500 Wh/day <td< th=""><td>Project :</td><td>Taman Midan (NEN</td><td>/1)</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project :               | Taman Midan (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /1)        |                     |                    |                |            |
| Main system parametersSystem typeSheds on groundNear Shadings<br>PV Field OrientationLinear shadings<br>Modelazimuth0°<br>PnomPV Field OrientationModelJAM6-72-320/SI<br>SUN2000L-5KTLPnom320 Wp<br>PnomPV Array<br>InverterNb. of modules20<br>Point total6.40 kWp<br>Pnom5.00 kW ac<br>GlobalBaily household consumers, Constant over the year, average = 9.9 kWh/dayDaily household consumers, Constant over the year, average = 9.9 kWh/dayDaily household consumers, Constant over the year, average = 9.9 kWh/dayConstant over the year, average = 9.9 kWh/dayArnual valuesLamps (LED or fluo)<br>TV / PC / MobileTV / PC / Mobile26<br>1Iron1<br>1200 W/app14 h/day<br>1200 Wh/daySitand-by consumers1<br>200 Wh/dayDish- & Cloth-washers1<br>1<br>200 W totStand-by consumers2<br>200 Wh/dayTotal daily energy34524 Wh/dayAverage parametersAverage parametersAverage parametersAverage parametersPowerUseEnergy<br>1 b/day1<br>1 200 W/app1<br>1 200 W/app1 h/day24 Wh/day3000 Wh/day25 Wh/day3000 Wh/day26 Tab daily energy34524 Wh/day27 O Wapp1 h/day28 Option29 Option29 Option20 Option29 Option <t< th=""><td>Simulation variant :</td><td>Small family - 6kw</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Simulation variant :    | Small family - 6kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                     |                    |                |            |
| Near Shadings<br>PV Field OrientationLinear shadings<br>tiltazimuth<br>0°<br>Pnom<br>320 Wp<br>Pnom<br>S20 Wp<br>Pnom<br>to 320 Wp<br>Pnom<br>to 4.40 kWp<br>Pnom total0°<br>e<br>Aray<br>6.40 kWp<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Main system parameters  | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | em type    | Sheds on ground     |                    |                |            |
| PV Field Orientation tilt 5° azimuth 0°<br>PV modules Model JAM6-72-320/SI Pnom 320 Wp<br>Pnom total 6.40 kWp<br>Inverter Model SUN2000L-5KTL Constant over the year Constant over the year<br>Daily household consumers, Constant over the year, average = 9.9 kWh/day<br>Annual values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Near Shadings           | Linear s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hadings    |                     |                    |                |            |
| PV modules       Model       JAM6-72-320/SI       Pnom       320 V/p         PV Array       Nb. of modules       20       Pnom total       6.40 kWp         Inverter       Model       SUN2000L-5KTL       Pnom       5.00 kW ac         User's needs       Daily household consumers       Constant over the year       Global       3625 kWh/year         Daily household consumers, Constant over the year, average = 9.9 kWh/day         Annual values         Use 2 days a week       Number       Power       Use       Energy         Lamps (LED or fluo)       26       18 W/lamp       5 h/day       2340 Wh/day         Iron       1       1200 W/app       1 h/day       1960 Wh/day         Jish- & Cloth-washers       1       2000 W tot       2 h/day       3000 Wh/day         Jish- & Cloth-washers       1       2000 W tot       2 h/day       22500 Wh/day         Stand-by consumers       1       2000 W tot       2 4 h/day       24 Wh/day         Model       Jish       3       750 W tot       10 h/day       22500 Wh/day         Jistant water heater       1       2000 W tot       2 4 h/day       24 Wh/day         Jistand-by consumers       1       10 model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PV Field Orientation    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tilt       | 5°                  | azimuth            | 0°             |            |
| PY Array<br>Inverter       No. or inductes       20       Phom total       6.40 kWp         Inverter       Daily household consumers       Constant over the year       Global       3625 kWh/year         Daily household consumers, Constant over the year, average = 9.9 kWh/day         Annual values         Lamps (LED or fluo)       26       18 W/lamp       5 h/day       2340 Wh/day         TV / PC / Mobile       2       70 W/app       14 h/day       1960 Wh/day         Iron       1       1200 W/app       1 h/day       1960 Wh/day         Dish- & Cloth-washers       1       2000 W tot       2 h/day       3000 Wh/day         Instant water heater       1       2000 W tot       2 h/day       22500 Wh/day         Total daily energy       3       750 W tot       10 h/day       22500 Wh/day         Mourly profile         Mourly profile         1       10       10 h/day       24 Wh/day         Mourly profile         1       10       10 h/day       24 Wh/day         3       750 W tot       10 h/day       24 Wh/day         Mourly profile         1       10       10 h/day       24 Wh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PV modules              | Nih of i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Model      | JAM6-72-320/SI      | Pnom .             | 320 Wp         | 1          |
| Indicision       Daily household consumers       Constant over the year       Finding       Sub KW due         Daily household consumers, Constant over the year, average = 9.9 kWh/day       Annual values       Annual values         Image: LED or fluo)       Use 2 days a week       Number       Power       Use       Energy         TV / PC / Mobile       26       18 W/lamp       5 h/day       2340 Wh/day         Iron       1       1200 W/app       14 h/day       1960 Wh/day         Iron       1       1200 W/app       1 h/day       1200 Wh/day         Instant water heater       1       2000 W tot       2 h/day       3000 Wh/day         Aircond       3       750 W tot       10 h/day       22500 Wh/day         Stand-by consumers       36000       10 h/day       24 Wh/day       34524 Wh/day         30000       10000       100000       1000000       1000000000       10000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PV Array                | IND. OF I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Model      | 20<br>SUN20001-5KTI | Phom total<br>Phom | 5.40 KV        | /p<br>/ ac |
| Daily household consumers, Constant over the year, average = 9.9 kWh/day<br>Annual values<br>Use 2 days a week Number Power Use Energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile 2 70 W/app 14 h/day 1960 Wh/day<br>Iron 1 1200 W/app 1 h/day 3000 Wh/day<br>Stand-by consumers 1 2000 W tot 2 h/day 3000 Wh/day<br>Stand-by consumers 2 1 2000 W tot 2 h/day 3000 Wh/day<br>Total daily energy 34524 Wh/day<br>Multiplane 1 2000 W tot 2 h/day 22500 Wh/day<br>Dish- & Cloth-washers 1 2000 W tot 2 h/day 3000 Wh/day<br>Stand-by consumers 2 34524 Wh/day<br>Multiplane 1 2000 W tot 2 h/day 24 Wh/day<br>Multiplane 2 34524 Wh/day<br>Multiplane 2 34524 Wh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | User's needs            | Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sumers     | Constant over the y | /ear Global        | 3625 kV        | Vh/year    |
| Annual values<br>Use 2 days a week Number Power Use Energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile 2<br>Iron 1<br>Fridge / Deep-freeze 1<br>Dish- & Cloth-washers 1<br>Instant water heater 1<br>Aircond 2<br>Stand-by consumers 1<br>Total daily energy 3<br>Total d                                           | Daily household consume | ers, Constant over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e year, av | verage = 9.9 kWh/d  | lay                |                |            |
| Use 2 days a weekNumberPowerUseEnergyLamps (LED or fluo)2618 W/lamp5 h/day2340 Wh/dayTV / PC / Mobile270 W/app14 h/day1960 Wh/dayIron11200 W/app1 h/day1200 Wh/dayShridge / Deep-freeze124 Wh/day3000 Wh/dayDish- & Cloth-washers11 Wh/day500 Wh/dayInstant water heater12000 W tot2 h/dayAircond3750 W tot10 h/day22500 Wh/dayStand-by consumers224 Wh/day34524 Wh/dayTotal daily energy30009 12 15 18 21 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Annua      | l values            |                    |                |            |
| Lamps (LED or fluo)<br>TV / PC / Mobile<br>Iron<br>Fridge / Deep-freeze<br>Dish- & Cloth-washers<br>Instant water heater<br>Aircond<br>Stand-by consumers<br>Total daily energy<br>Total daily energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile<br>2<br>Total daily energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile<br>2<br>Total daily energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile<br>2<br>Total daily energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile<br>2<br>Total daily energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile<br>2<br>Total daily energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile<br>2<br>Total daily energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile<br>2<br>Total daily energy<br>Lamps (LED or fluo)<br>TV / PC / Mobile<br>2<br>Total daily energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | Use 2 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number     | Power               | Use                |                | Energy     |
| TV / PC / Mobile270 W/app14 h/day1960 Wh/dayIron11200 W/app1 h/day1200 Wh/dayFridge / Deep-freeze124 Wh/day3000 Wh/dayDish- & Cloth-washers11 Wh/day500 Wh/dayInstant water heater12000 W tot2 h/dayAircond3750 W tot10 h/dayStand-by consumers224 Wh/dayTotal daily energy34524 Wh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lamps (LED or fluo)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26         | 18 W/lamp           | 5 h/day            | <sup>,</sup> 2 | 340 Wh/day |
| Iron11200 W/app1 h/day1200 Wh/dayFridge / Deep-freeze1124 Wh/day3000 Wh/dayDish- & Cloth-washers112000 W tot2 h/day3000 Wh/dayInstant water heater12000 W tot2 h/day3000 Wh/dayAircond3750 W tot10 h/day22500 Wh/dayStand-by consumers124 h/day24 Wh/dayTotal daily energy34524 Wh/day34524 Wh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TV / PC / Mobile        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2          | 70 W/app            | 14 h/day           | r 1            | 960 Wh/day |
| Fridge / Deep-freeze124 Wh/day3000 Wh/dayDish- & Cloth-washers112000 W tot2 h/day500 Wh/dayInstant water heater12000 W tot2 h/day3000 Wh/dayAircond3750 W tot10 h/day22500 Wh/dayStand-by consumers24 h/day24 Wh/dayTotal daily energy34524 Wh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Iron                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          | 1200 W/app          | 1 h/day            | ' 1            | 200 Wh/day |
| Dish- & Cloth-washers111Wh/day500 Wh/dayInstant water heater12000 W tot2 h/day3000 Wh/dayAircond3750 W tot10 h/day22500 Wh/dayStand-by consumers24 h/day24 Wh/dayTotal daily energy34524 Wh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fridge / Deep-freeze    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          |                     | 24 Wh/day          | / 3            | 000 Wh/day |
| Instant water heater<br>Aircond<br>Stand-by consumers<br>Total daily energy<br>Hourly profile<br>Instant water heater<br>Instant water<br>Instant water | Dish- & Cloth-washers   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          |                     | 1 Wh/day           | '              | 500 Wh/day |
| Aircond 3 750 W tot 10 h/day 22500 Wh/day<br>Stand-by consumers 24 h/day 24 Wh/day<br>Total daily energy 34524 Wh/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Instant water heater    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          | 2000 W tot          | 2 h/day            | ' 3            | 000 Wh/day |
| Total daily energy 34524 Wh/day<br>34524 Wh/day<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aircond                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3          | 750 W tot           | 10 h/day           | 22             | 500 Wh/day |
| Hourly profile<br>Hourly profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stand-by consumers      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                     | 24 h/day           | 24             | 24 Wh/day  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | Hraction of daily energy of the first state of the | Hourly     | 12 15 18            | 21 24              |                |            |

| PVSYST V6.86                                  |                                           |                                                                  |                                        |                                 |                          |                                                          |                                             |                                                                         | 21/04/2                                                             | 0 Pag                                        | je 4/7      |
|-----------------------------------------------|-------------------------------------------|------------------------------------------------------------------|----------------------------------------|---------------------------------|--------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|-------------|
|                                               |                                           | Grid                                                             | -Conn                                  | ected S                         | Svsten                   | n: Mair                                                  | n resu                                      | lts                                                                     |                                                                     |                                              |             |
| Project :                                     | Та                                        | man Mi                                                           | dah (NE                                | с с с с с<br>= NЛ \             |                          |                                                          |                                             |                                                                         |                                                                     |                                              |             |
|                                               | 1a<br>4. Cm                               |                                                                  |                                        | _ 111)                          |                          |                                                          |                                             |                                                                         |                                                                     |                                              |             |
| Simulation varian                             | t: Sn                                     | nall fam                                                         | ily - 6kw                              |                                 |                          |                                                          |                                             |                                                                         |                                                                     |                                              |             |
| Main system param                             | eters                                     |                                                                  | Sys                                    | stem type                       | Sheds                    | s on grou                                                | und                                         |                                                                         |                                                                     |                                              |             |
| Near Shadings                                 |                                           |                                                                  | Linear                                 | shadings                        | 5                        |                                                          |                                             |                                                                         |                                                                     |                                              |             |
| PV Field Orientation                          |                                           |                                                                  |                                        | tili                            | t 5°                     | 70.000/0                                                 |                                             | azimut                                                                  | h 0°                                                                |                                              |             |
| PV modules<br>PV Array                        |                                           |                                                                  | Nh o                                   | MODE<br>f modules               | I JAM6-                  | -72-320/5                                                | )I                                          | Phor<br>Pnom tot:                                                       | n 320 v<br>al <b>6 40</b>                                           | vp<br>kWn                                    |             |
| Inverter                                      |                                           |                                                                  | NO. U                                  | Mode                            | SUN2                     | 000L-5KT                                                 | Ľ                                           | Pnor                                                                    | n 5.00                                                              | kW ac                                        |             |
| Jser's needs                                  |                                           | Daily hou                                                        | usehold c                              | onsumers                        | Const                    | ant over t                                               | he year                                     | Globa                                                                   | al 3625                                                             | kWh/yea                                      | r           |
| Main simulation res<br>System Production      | sults                                     | Per                                                              | <b>Produce</b><br>formance             | <b>d Energy</b><br>Ratio PR     | <b>8.41  </b><br>8 82.32 | <b>MWh/yea</b><br>%                                      | ı <b>r</b> Sp<br>Solar F                    | ecific proc                                                             | d. 1314<br>F 25.20                                                  | kWh/kWj<br>9 %                               | o/year      |
| Normalized productions                        | (per installed                            | i kWp): No                                                       | minal powe                             | r 6.40 kWp                      |                          |                                                          | Pei                                         | rformance Ra                                                            | atio PR                                                             |                                              |             |
| 6 Lc : Collection L                           | I I<br>Loss (PV-array los                 | II<br>sses) (                                                    | ).7 kWh/kWp/day                        | , ' ]                           | 1                        |                                                          | I I<br>: Performance F                      | 1 I I<br>Ratio (Yf / Yr): 0.4                                           | 823                                                                 | - 1 - 1 -                                    |             |
| Ls : System Los<br>5 - Yf : Produced u        | ss (inverter,)<br>seful energy (inve      | (<br>erter output)                                               | ).07 kWh/kWp/da<br>3.6 kWh/kWp/day     | y –                             | 0                        |                                                          |                                             | _                                                                       | _                                                                   |                                              |             |
| /p/day]                                       |                                           |                                                                  | _ 8                                    | -                               | 0                        | .7                                                       |                                             |                                                                         |                                                                     |                                              |             |
| 4-<br>                                        |                                           |                                                                  |                                        |                                 | 2 O                      | 6                                                        |                                             |                                                                         |                                                                     |                                              |             |
| ± -<br>6 3-                                   |                                           |                                                                  |                                        |                                 | e Kati                   | .5                                                       |                                             |                                                                         |                                                                     |                                              |             |
| E                                             |                                           |                                                                  |                                        |                                 | o prmano                 | 4                                                        |                                             |                                                                         |                                                                     |                                              |             |
| 2 -                                           |                                           |                                                                  |                                        |                                 | Derte                    | 3                                                        |                                             |                                                                         |                                                                     |                                              |             |
|                                               |                                           |                                                                  |                                        | -                               | 0                        |                                                          |                                             |                                                                         |                                                                     |                                              |             |
| 1 -                                           |                                           |                                                                  |                                        |                                 | 0                        | .2                                                       |                                             |                                                                         |                                                                     |                                              |             |
|                                               |                                           |                                                                  |                                        | -                               | 0                        | .1                                                       |                                             |                                                                         |                                                                     |                                              |             |
| Jan Feb Mar A                                 | Apr May Jun                               | Jul Aug                                                          | Sep Oct                                | Nov Dec                         | 0                        | .0 Jan Feb                                               | Mar Apr                                     | May Jun                                                                 | Jul Aug S                                                           | Sep Oct No                                   | v Dec       |
|                                               |                                           |                                                                  |                                        |                                 |                          |                                                          |                                             |                                                                         |                                                                     |                                              |             |
|                                               |                                           |                                                                  |                                        |                                 |                          |                                                          |                                             |                                                                         |                                                                     |                                              |             |
|                                               |                                           |                                                                  |                                        | Small fa                        | amily - 6                | kw                                                       |                                             |                                                                         |                                                                     |                                              |             |
|                                               |                                           |                                                                  | Ba                                     | lances ar                       | nd main i                | results                                                  |                                             |                                                                         |                                                                     |                                              |             |
|                                               | GlobHor                                   | DiffHor                                                          | T_Amb                                  | GlobInc                         | GlobEff                  | EArray                                                   | E_User                                      | E_Solar                                                                 | E_Grid                                                              | EFrGrid                                      |             |
|                                               | kWh/m <sup>2</sup>                        | kWh/m <sup>2</sup>                                               | °C                                     | kWh/m²                          | kWh/m²                   | MWh                                                      | MWh                                         | MWh                                                                     | MWh                                                                 | MWh                                          |             |
| January                                       | 133.0                                     | 82.20                                                            | 28.10                                  | 136.3                           | 131.2                    | 0.726                                                    | 0.345                                       | 0.090                                                                   | 0.622                                                               | 0.255                                        |             |
| February                                      | 134.6                                     | 67.90                                                            | 27.70                                  | 137.4                           | 132.8                    | 0.737                                                    | 0.276                                       | 0.078                                                                   | 0.645                                                               | 0.198                                        |             |
| March                                         | 149.8                                     | 88.20                                                            | 28.00                                  | 150.3                           | 144.9                    | 0.804                                                    | 0.276                                       | 0.076                                                                   | 0.712                                                               | 0.200                                        |             |
| April                                         | 140.3                                     | 70.50                                                            | 27.70                                  | 138.8                           | 133.9                    | 0.742                                                    | 0.311                                       | 0.080                                                                   | 0.648                                                               | 0.231                                        |             |
| lune                                          | 140.3                                     | 78.60<br>77 90                                                   | 28.6U<br>27.80                         | 130.9<br>128.2                  | 131./<br>122 F           | 0.734<br>0.601                                           | 0.311                                       | 0.075                                                                   | 0.644                                                               | 0.236                                        |             |
| July                                          | 134.4                                     | 87.20                                                            | 27.80<br>27.80                         | 120.3<br>131.1                  | 125.5                    | 0.710                                                    | 0.270                                       | 0.000                                                                   | 0.604                                                               | 0.210                                        |             |
| August                                        | 132.2                                     | 87.20                                                            | 27.80                                  | 130.1                           | 125.2                    | 0.700                                                    | 0.276                                       | 0.062                                                                   | 0.624                                                               | 0.214                                        |             |
| September                                     | 129.2                                     | 79.00                                                            | 27.10                                  | 128.8                           | 124.0                    | 0.691                                                    | 0.276                                       | 0.067                                                                   | 0.610                                                               | 0.209                                        |             |
| October                                       | 138.8                                     | 82.60                                                            | 27.40                                  | 140.4                           | 135.5                    | 0.754                                                    | 0.345                                       | 0.091                                                                   | 0.649                                                               | 0.255                                        |             |
| November                                      | 117.6                                     | 79.20                                                            | 26.70                                  | 119.8                           | 115.4                    | 0.648                                                    | 0.276                                       | 0.062                                                                   | 0.572                                                               | 0.214                                        |             |
| December                                      | 1150                                      | 73 20                                                            | 26.29                                  | 118 1                           | 112 6                    | 0.640                                                    | 0.311                                       | L 0 073                                                                 |                                                                     |                                              |             |
|                                               | 115.0                                     | 73.20                                                            | 20.27                                  |                                 | 113.0                    | 0.040                                                    |                                             | 0.073                                                                   | 0.554                                                               | 0.237                                        |             |
| Year                                          | 1597.2                                    | 953.59                                                           | 27.58                                  | 1596.2                          | 1537.5                   | 8.575                                                    | 3.625                                       | 0.914                                                                   | 0.554<br>7.495                                                      | 2.712                                        |             |
| Year                                          | 1597.2                                    | 953.59                                                           | 27.58                                  | 1596.2                          | 1537.5                   | 8.575                                                    | 3.625                                       | 0.914                                                                   | 0.554<br>7.495                                                      | 2.712                                        |             |
| Year<br>Legends: Glob                         | 1597.2<br>Hor H                           | 953.59<br>lorizontal gl                                          | 27.58                                  | 1596.2                          | 1537.5                   | 8.575<br>GlobEff                                         | 3.625<br>Effect                             | 0.914<br>ive Global, d                                                  | 0.554<br>7.495<br>corr. for IAI                                     | 0.237<br>2.712<br>M and shad                 | ings        |
| Year<br>Legends: Glob<br>Diffl                | Hor Hor H                                 | 953.59<br>lorizontal gl                                          | 27.58<br>lobal irradia                 | tion<br>tion                    | 1537.5                   | GlobEff<br>EArray                                        | 3.625<br>Effect<br>Effect                   | 0.914<br>ive Global, (<br>ive energy a                                  | 7.495<br>7.495<br>corr. for IAI                                     | 2.712<br>2.712<br>W and shad<br>ut of the ar | ings<br>ray |
| Year<br>Legends: Glob<br>Diffl<br>T_A         | HIS.U<br>1597.2<br>Hor H<br>Hor H<br>mb T | 953.59<br>lorizontal gl<br>lorizontal d                          | 27.58<br>obal irradia<br>iffuse irradi | tion<br>tion                    | 1537.5                   | 6.040<br>8.575<br>GlobEff<br>EArray<br>E_User<br>E_Solar | 3.625<br>Effect<br>Effect<br>Energ          | 0.914<br>ive Global, o<br>ive energy a<br>y supplied to                 | 7.495<br>7.495<br>corr. for IAI<br>at the output<br>o the user      | 2.712<br>2.712<br>M and shad<br>ut of the ar | ings<br>ray |
| Year<br>Legends: Glob<br>Diffl<br>T_A<br>Glob | Hor H<br>Hor H<br>mb T<br>Dinc G          | 953.59<br>Iorizontal gl<br>Iorizontal d<br>amb.<br>Global incide | 27.58<br>obal irradia<br>iffuse irradi | 1596.2<br>tion<br>ation<br>lane | 1537.5                   | GlobEff<br>EArray<br>E_User<br>E_Solar<br>E_Grid         | 3.625<br>Effect<br>Effect<br>Energ<br>Energ | 0.914<br>ive Global, o<br>ive energy a<br>y supplied to<br>y from the s | 0.554<br>7.495<br>corr. for IAI<br>at the output<br>the user<br>sun | 2.712<br>M and shad<br>ut of the ar          | ings<br>ray |



| PVSYST V6.86                                                                            | ;             |                                             |                                                                              |                                                                                                                                                                                                                   | 21/04/20                                                            | Page 6/7                     |
|-----------------------------------------------------------------------------------------|---------------|---------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------|
|                                                                                         |               |                                             |                                                                              |                                                                                                                                                                                                                   |                                                                     |                              |
|                                                                                         |               | Grid-Co                                     | nnected Sy                                                                   | /stem: Loss diagram                                                                                                                                                                                               |                                                                     |                              |
| Project :                                                                               |               | Taman Midah                                 | ı (NEM)                                                                      |                                                                                                                                                                                                                   |                                                                     |                              |
| Simulation va                                                                           | riant :       | Small family -                              | 6kw                                                                          |                                                                                                                                                                                                                   |                                                                     |                              |
| Main system pa                                                                          | arameters     |                                             | System type                                                                  | Sheds on ground                                                                                                                                                                                                   |                                                                     |                              |
| Near Shadings<br>PV Field Orienta<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ation         | L<br>Daily househ                           | inear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>iold consumers | 5° azimu<br>JAM6-72-320/SI Proc<br>20 Pnom to<br>SUN2000L-5KTL Proc<br>Constant over the year Glob                                                                                                                | th 0°<br>m 320 Wp<br>tal <b>6.40 kW</b><br>m 5.00 kW<br>pal 3625 kW | <b>/p</b><br>/ ac<br>Vh/year |
|                                                                                         |               |                                             | Loss diagram o                                                               | ver the whole year                                                                                                                                                                                                |                                                                     |                              |
|                                                                                         |               |                                             | -                                                                            |                                                                                                                                                                                                                   |                                                                     |                              |
| Γ                                                                                       |               | 1597 kWh/m²                                 |                                                                              | Horizontal global irradiation                                                                                                                                                                                     |                                                                     |                              |
|                                                                                         |               |                                             | -0.07%<br>-0.07%<br>0.00%<br>-3.67%                                          | Global incident in coll. plane<br>Global incident below threshold<br>Near Shadings: irradiance loss<br>IAM factor on global                                                                                       |                                                                     |                              |
|                                                                                         | 1538 k        | Wh/m <sup>2</sup> * 39 m <sup>2</sup> coll. |                                                                              | Effective irradiation on collectors                                                                                                                                                                               |                                                                     |                              |
| _                                                                                       | efficienc     | y at STC = 16.53%                           |                                                                              | PV conversion                                                                                                                                                                                                     |                                                                     |                              |
|                                                                                         |               | 9.85 MWh                                    | -11.15%                                                                      | Array nominal energy (at STC effic.)<br>PV loss due to irradiance level<br>PV loss due to temperature                                                                                                             |                                                                     |                              |
|                                                                                         |               |                                             | +0.75%                                                                       | Module quality loss                                                                                                                                                                                               |                                                                     |                              |
|                                                                                         | 8.            | 58 MWh                                      | -1.10%<br>-0.95%                                                             | Mismatch loss, modules and strings<br>Ohmic wiring loss<br>Array virtual energy at MPP                                                                                                                            |                                                                     |                              |
|                                                                                         |               |                                             | ) -1.88%<br>) 0.00%<br>) 0.00%<br>) 0.00%<br>) -0.01%                        | Inverter Loss during operation (efficiency<br>Inverter Loss over nominal inv. power<br>Inverter Loss due to max. input current<br>Inverter Loss over nominal inv. voltage<br>Inverter Loss due to power threshold | )                                                                   |                              |
| grid<br>consumption                                                                     | 8.4           | 41 MWh                                      | → 0.00%<br>→ -0.05%                                                          | Inverter Loss due to voltage threshold<br>Night consumption<br>Available Energy at Inverter Output                                                                                                                |                                                                     |                              |
| 2.71 MWh 0.91                                                                           | MWh           | 7.50 MWh                                    |                                                                              | Energy injected into grid                                                                                                                                                                                         |                                                                     |                              |
| to user to u<br>from grid from                                                          | user<br>solar | to grid                                     |                                                                              |                                                                                                                                                                                                                   |                                                                     |                              |

| PVSYST V6.86                                                                              |                           |                                                                                    |                                                                                                  |                                                                       |                                              | 21/04/20                                                         | Page 7/7                     |
|-------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                           |                           | Crid Conn                                                                          | acted System                                                                                     |                                                                       | aluation                                     |                                                                  |                              |
|                                                                                           |                           | Gna-Conne                                                                          | ected Syster                                                                                     | m: P50 - P90 eva                                                      | aluation                                     |                                                                  |                              |
| Project :                                                                                 |                           | Taman Mida                                                                         | h (NEM)                                                                                          |                                                                       |                                              |                                                                  |                              |
| Simulation vari                                                                           | ant :                     | Small family                                                                       | - 6kw                                                                                            |                                                                       |                                              |                                                                  |                              |
| Main system par                                                                           | rameters                  |                                                                                    | System type                                                                                      | Sheds on ground                                                       |                                              |                                                                  |                              |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                       | Daily house                                                                        | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>hold consumers                    | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the year | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>Globa | n 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kV<br>al 3625 kV | <b>Vp</b><br>√ ac<br>Wh/year |
| Evaluation of the                                                                         | e Produc                  | tion probability                                                                   | y forecast                                                                                       |                                                                       |                                              |                                                                  |                              |
| The probability dis<br>on the meteo data                                                  | stribution<br>a used for  | of the system pr<br>the simulation,                                                | roduction forecast<br>and depends on t                                                           | t for different years is mather<br>the following choices:             | ainly depend                                 | dent                                                             |                              |
| Meteo data source<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia               | e<br>n<br>ıbility         | Year dev                                                                           | Kind<br>viation from aver.<br>Variance                                                           | MeteoNorm 7.2 station<br>Not defined<br>3 %<br>0.5 %                  | n<br>Yea                                     | ır 1995                                                          |                              |
| The probability dis<br>Specified Deviatio                                                 | stribution<br>on P<br>Soi | variance is also<br>V module mode<br>Inverter effici<br>ling and mismat<br>Degrada | depending on so<br>lling/parameters<br>ency uncertainty<br>ch uncertainties<br>ation uncertainty | me system parameters<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.0 %     | uncertaintie                                 | S                                                                |                              |
| Global variability (                                                                      | (meteo +                  | system)                                                                            | variance                                                                                         | 1.9 % (qu                                                             | ladratic sur                                 | )                                                                |                              |
| Annual productior                                                                         | n probabil                | ity                                                                                | Variability<br>P50<br>P90<br>P95                                                                 | 0.14 MWh<br>7.50 MWh<br>7.32 MWh<br>7.27 MWh                          |                                              |                                                                  |                              |
|                                                                                           |                           |                                                                                    | Probability                                                                                      | distribution                                                          |                                              |                                                                  |                              |
|                                                                                           | Probability               | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05       | P50<br>P90 = 7316<br>P95 = 7265 kWh                                                              | 0 = 7495 kWh<br>E Grid simul = 7495 kWl<br>kWh                        | • • • •                                      |                                                                  |                              |

0.00 7100

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                                    |                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                               | 21/04/20                                                                                                      | Page 1/7                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                                 | Grid-Con                                                                                                  | nected System                                                                                                                                                                                        | n: Simulation p                                                                                                                                                                      | arameters                                                                                                                                     | i                                                                                                             |                                    |
| Project :                                                                                                                                                                                                       | Taman M                                                                                                   | idah (NEM)                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                               |                                    |
| Geographical S                                                                                                                                                                                                  | ite Kual                                                                                                  | a Lumpur/Subang                                                                                                                                                                                      |                                                                                                                                                                                      | Country                                                                                                                                       | / Malays                                                                                                      | ia                                 |
| Situation<br>Time defined                                                                                                                                                                                       | as                                                                                                        | Latitude<br>Legal Time<br>Albedo                                                                                                                                                                     | 3.12° N<br>Time zone UT+8<br>0.20                                                                                                                                                    | Longitude<br>Altitude                                                                                                                         | e 101.55°<br>e 17 m                                                                                           | E                                  |
| Meteo data:                                                                                                                                                                                                     | Kual                                                                                                      | a Lumpur/Subang                                                                                                                                                                                      | MeteoNorm 7.2 stat                                                                                                                                                                   | tion - Synthetic                                                                                                                              |                                                                                                               |                                    |
| Simulation var                                                                                                                                                                                                  | ant : small fam                                                                                           | ily - 9kw                                                                                                                                                                                            |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                               |                                    |
|                                                                                                                                                                                                                 |                                                                                                           | Simulation date                                                                                                                                                                                      | 21/04/20 17h22                                                                                                                                                                       |                                                                                                                                               |                                                                                                               |                                    |
| Simulation para                                                                                                                                                                                                 | meters                                                                                                    | System type                                                                                                                                                                                          | Sheds on ground                                                                                                                                                                      |                                                                                                                                               |                                                                                                               |                                    |
| Collector Plane                                                                                                                                                                                                 | Orientation                                                                                               | Tilt                                                                                                                                                                                                 | 5°                                                                                                                                                                                   | Azimuth                                                                                                                                       | n 0°                                                                                                          |                                    |
| Models used                                                                                                                                                                                                     |                                                                                                           | Transposition                                                                                                                                                                                        | Perez                                                                                                                                                                                | Diffuse                                                                                                                                       | e Perez, I                                                                                                    | Veteonorm                          |
| Horizon                                                                                                                                                                                                         |                                                                                                           | Free Horizon                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                               |                                    |
| Near Shadings                                                                                                                                                                                                   |                                                                                                           | Linear shadings                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                               |                                    |
| User's needs :                                                                                                                                                                                                  | Daily ho                                                                                                  | usehold consumers<br>average                                                                                                                                                                         | Constant over the year 19.4 kWh/Day                                                                                                                                                  | ear                                                                                                                                           |                                                                                                               |                                    |
| PV Array Charac<br>PV module<br>Original PVsys<br>Number of PV mo<br>Total number of F<br>Array global powe<br>Array operating cl<br>Total area<br>Inverter<br>Custom param<br>Characteristics<br>Inverter pack | eteristics<br>Si-<br>t database<br>odules<br>V modules<br>er<br>naracteristics (50°C)<br>eters definition | <ul> <li>Model<br/>Manufacturer<br/>In series<br/>Nb. modules<br/>Nominal (STC)<br/>U mpp<br/>Module area</li> <li>Model<br/>Manufacturer<br/>Operating Voltage</li> <li>Nb. of inverters</li> </ul> | JAM6-72-320/SI<br>JA Solar<br>14 modules<br>28 Ur<br>8.96 kWp At o<br>470 V<br>54.3 m <sup>2</sup><br>SUN2000L-8KTL<br>Huawei Technologie<br>200-850 V Ur<br>Max. p<br>2 * MPPT 50 % | In parallel<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>nit Nom. Power<br>oower (=>40°C)<br>Total Power<br>Pnom ratic | I 2 string:<br>320 Wp<br>8.05 kW<br>17 A<br>48.2 m <sup>2</sup><br>r 8.00 kV<br>8.80 kV<br>r 8.0 kW<br>5 1.12 | s<br>/p (50°C)<br>Vac<br>Vac<br>ac |
| <b>PV Array loss fa</b><br>Thermal Loss fac<br>Wiring Ohmic Los<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                              | ctors<br>tor<br>ss<br>oss<br>Losses<br>loss<br>ASHRAE parametriza                                         | Uc (const)<br>Global array res.<br>tion IAM =                                                                                                                                                        | 20.0 W/m²K<br>465 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                       | Uv (wind)<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param                                                     | ) 0.0 W/n<br>1.5 % a<br>0.8 %<br>1.0 % a<br>0.10 %<br>0.05                                                    | n²K / m/s<br>t STC<br>ıt MPP       |



| PVSYST V6.86            |                                                                                           |                           |                                | 21/         | 04/20   | Page 3/7   |
|-------------------------|-------------------------------------------------------------------------------------------|---------------------------|--------------------------------|-------------|---------|------------|
|                         | Srid-Connected 9                                                                          | Sveton                    | n: Detailed Lls                | er's needs  |         |            |
| Dura in a f             |                                                                                           | a)                        | i. Detailed 03                 |             |         |            |
| Project :               | Taman Midan (NEN                                                                          | /1)                       |                                |             |         |            |
| Simulation variant :    | small family - 9kw                                                                        |                           |                                |             |         |            |
| Main system parameters  | Syste                                                                                     | em type                   | Sheds on ground                |             |         |            |
| Near Shadings           | Linear s                                                                                  | hadings                   |                                |             |         |            |
| PV Field Orientation    |                                                                                           | tilt                      | 5°                             | azimuth     | 0°      |            |
| PV modules              | Nb of r                                                                                   |                           | JAM6-72-320/SI                 | Pnom S      | 320 wp  | In         |
| Inverter                |                                                                                           | Model                     | SUN2000L-8KTL                  | Pnom        | 8.00 kW | ac         |
| User's needs            | Daily household cor                                                                       | nsumers                   | Constant over the y            | year Global | 7066 kV | Vh/year    |
| Daily household consume | ers, Constant over the                                                                    | <b>year, a</b> v<br>Annua | verage = 19.4 kWh/<br>I values | /day        |         |            |
|                         | Use 5 davs a week                                                                         | Number                    | Power                          | Use         | F       |            |
| Lamps (LED or fluo)     |                                                                                           | 26                        | 18 W/lamp                      | 5 h/day     | , 2     | 340 Wh/day |
| TV / PC / Mobile        |                                                                                           | 2                         | 70 W/app                       | 9 h/day     | 1       | 260 Wh/day |
| Iron                    |                                                                                           | 1                         | 1200 W/app                     | 1 h/day     | / 1     | 200 Wh/day |
| Fridge / Deep-freeze    |                                                                                           | 1                         |                                | 24 Wh/day   | 3       | 000 Wh/day |
| Dish- & Cloth-washers   |                                                                                           | 1                         |                                | 1 Wh/day    | ,       | 500 Wh/day |
| Instant water heater    |                                                                                           | 1                         | 2000 W tot                     | 2 h/day     | / 3     | 000 Wh/day |
| Aircond                 |                                                                                           | 3                         | 750 W tot                      | 7 h/day     | ı 15    | 750 Wh/day |
| Stand-by consumers      |                                                                                           |                           |                                | 24 h/day    | /       | 24 Wh/day  |
| Total daily energy      |                                                                                           |                           |                                |             | 27      | 074 Wh/day |
|                         | 1500<br>1000<br>500<br>0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | Hourly                    | <b>r profile</b>               | 21 24       |         |            |

| PVSYST V6.86                                                                                                                                           |                                |                               |                               |                           |                                                         |                                                               |               |                             | 21/04/2           | 0 Page 4/7                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------|---------------------------------------------------------|---------------------------------------------------------------|---------------|-----------------------------|-------------------|-----------------------------------|--|
|                                                                                                                                                        |                                | Grid                          | -Conn                         | ected                     | Syster                                                  | n: Maiı                                                       | n resul       | ts                          |                   |                                   |  |
| Project :                                                                                                                                              | Та                             | aman Mi                       | dah (NE                       | = MA)                     | 5                                                       |                                                               |               |                             |                   |                                   |  |
|                                                                                                                                                        |                                |                               |                               |                           |                                                         |                                                               |               |                             |                   |                                   |  |
| Simulation varian                                                                                                                                      | t: sn                          | nall fami                     | ly - 9kw                      |                           |                                                         |                                                               |               |                             |                   |                                   |  |
| Main system param                                                                                                                                      | eters                          |                               | Sy                            | stem type                 | Shed                                                    | s on grou                                                     | und           |                             |                   |                                   |  |
| Near Shadings<br>PV Field Orientation<br>PV modules                                                                                                    |                                |                               | Linea                         | r shadings<br>til<br>Mode | s<br>t 5°<br>I JAM6 <sup>,</sup>                        | -72-320/S                                                     | 51            | azimut<br>Pnor              | h 0°<br>n 320V    | Vp                                |  |
| PV Array                                                                                                                                               |                                |                               | Nb. c                         | of modules                | s 28                                                    |                                                               | -, F          | Pnom tota                   | al <b>8.96</b>    | kWp                               |  |
| Inverter<br>User's needs                                                                                                                               |                                | Daily hou                     | isehold c                     | Mode<br>onsumers          | SUN2                                                    | 000L-8KT<br>ant over t                                        | L<br>he vear  | Pnor<br>Globa               | n 8.00<br>al 7066 | <vv ac<br="">kWh/vear</vv>        |  |
|                                                                                                                                                        |                                | Dully not                     |                               |                           |                                                         |                                                               |               |                             | 1000              | kivii, you                        |  |
| Main simulation resultsSystem ProductionProduced Energy11.78 MWh/yearSpecific prod.1315 kWh/kWp/yearPerformance Ratio PR82.40 %Solar Fraction SF8.99 % |                                |                               |                               |                           |                                                         |                                                               |               |                             |                   |                                   |  |
| Normalized productions                                                                                                                                 | per installed                  | d kWp): No                    | minal powe                    | r 8.96 kWp                |                                                         |                                                               | Per           | formance Ra                 | atio PR           |                                   |  |
| 6<br>Lc : Collection L<br>Ls : System Los                                                                                                              | oss (PV-array loss (inverter,) | sses) (                       | ).7 kWh/kWp/day               | /<br>av                   | 1                                                       | .0 F PR                                                       | Performance R | II<br>atio (Yf / Yr):0.4    | 824               |                                   |  |
| 5 - Yf : Produced u<br>(fop/dw//uw)<br>60                                                                                                              | pr May Jur                     | Jul Aug                       | 3.6 kWh/kWp/da                | y                         | 0<br>Performance Ratio PR<br>0<br>0<br>0<br>0<br>0<br>0 | .8<br>.7<br>.6<br>.5<br>.4<br>.3<br>.2<br>.1<br>.0<br>Jan Feb | Mar Apr       | I I<br>May Jun              | Jul Aug S         | iep Oct Nov Dec                   |  |
|                                                                                                                                                        |                                |                               |                               | small f                   | amily - 9                                               | <\\/                                                          |               |                             |                   |                                   |  |
|                                                                                                                                                        |                                |                               | Ba                            | alances a                 | nd main                                                 | results                                                       |               |                             |                   |                                   |  |
|                                                                                                                                                        | GlobHor                        | DiffHor                       | T_Amb                         | GlobInc                   | GlobEff                                                 | EArray                                                        | E_User        | E_Solar                     | E_Grid            | EFrGrid                           |  |
|                                                                                                                                                        | kWh/m <sup>2</sup>             | kWh/m <sup>2</sup>            | °C                            | kWh/m <sup>2</sup>        | kWh/m <sup>2</sup>                                      | MWh                                                           | MWh           | MWh                         | MWh               | MWh                               |  |
| January                                                                                                                                                | 133.0                          | 82.20                         | 28.10                         | 136.3                     | 131.2                                                   | 1.016                                                         | 0.623         | 0.061                       | 0.937             | 0.562                             |  |
| February                                                                                                                                               | 134.6                          | 67.90                         | 27.70                         | 137.4                     | 132.8                                                   | 1.031                                                         | 0.541         | 0.053                       | 0.961             | 0.489                             |  |
| March                                                                                                                                                  | 149.8                          | 88.20                         | 28.00                         | 150.3                     | 144.9                                                   | 1.125                                                         | 0.596         | 0.060                       | 1.046             | 0.536                             |  |
| April                                                                                                                                                  | 140.3                          | /0.50                         | 27.70                         | 138.8                     | 133.9                                                   | 1.039                                                         | 0.569         | 0.053                       | 0.967             | 0.516                             |  |
| May                                                                                                                                                    | 140.3                          | /8.60                         | 28.60                         | 136.9                     | 131.7                                                   | 1.027                                                         | 0.623         | 0.058                       | 0.950             | 0.564                             |  |
| June                                                                                                                                                   | 132.0                          | 11.80                         | 27.80                         | 128.3                     | 123.5                                                   | 0.967                                                         | 0.569         | 0.050                       | 0.899             | 0.518                             |  |
| July                                                                                                                                                   | 134.4                          | 07.20<br>87.20                | 27.8U<br>27.00                | 131.1                     | 125.8<br>125.0                                          | 0.994                                                         | 0.570         |                             | 0.920             | 0.540                             |  |
| Sentomber                                                                                                                                              | 120.2                          | 70 00                         | 27.0U<br>27.10                | 120.1                     | 120.2                                                   | 0.900                                                         | 0.023         | 0.037                       | 0.905             | 0.000                             |  |
| October                                                                                                                                                | 138 R                          | 82.60                         | 27.10                         | 140.0                     | 124.0                                                   | 1 056                                                         | 0.541         | 0.050                       | 0.900             | 0.573                             |  |
| November                                                                                                                                               | 117.6                          | 79.20                         | 27.40<br>26.70                | 119.4                     | 115.4                                                   | 0.907                                                         | 0.596         | 0.030                       | 0.907             | 0.551                             |  |
| December                                                                                                                                               | 115.0                          | 73.20                         | 26.29                         | 118.1                     | 113.4                                                   | 0.896                                                         | 0.569         | 0.045                       | 0.834             | 0.523                             |  |
| Year                                                                                                                                                   | 1597.2                         | 953.59                        | 27.58                         | 1596.2                    | 1537.5                                                  | 12.005                                                        | 7.066         | 0.635                       | 11.149            | 6.431                             |  |
| Legends: Glob<br>Diffl                                                                                                                                 | Hor H                          | lorizontal gl<br>lorizontal d | obal irradia<br>iffuse irradi | ition                     | _                                                       | GlobEff<br>EArray                                             | Effecti       | ve Global, o<br>ve energy a | corr. for IAI     | M and shadings<br>ut of the array |  |

DiffHor T\_Amb GlobInc Horizontal diffuse irradiation T amb. Global incident in coll. plane Effective Global, corr. for IAM and shadings Effective energy at the output of the array Energy supplied to the user Energy from the sun Energy injected into grid Energy from the grid

E\_User

E\_Solar

E\_Grid

EFrGrid



|                            | -      |                                                      |                   |                    |                                                                |                          |                             |          |
|----------------------------|--------|------------------------------------------------------|-------------------|--------------------|----------------------------------------------------------------|--------------------------|-----------------------------|----------|
| PVSYST V6.86               |        |                                                      |                   |                    |                                                                |                          | 21/04/20                    | Page 6/7 |
|                            |        | Grid-Co                                              | nnec              | ted Sv             | stem: Loss diagra                                              | am                       |                             |          |
| Project :                  |        | Taman Midal                                          |                   |                    | etern. Leee alagre                                             |                          |                             |          |
| Simulation var             | iant · | small family -                                       | 9kw               | vi <i>)</i>        |                                                                |                          |                             |          |
| Main avatam na             |        |                                                      | Curet             |                    | Chada an anaund                                                |                          |                             |          |
| Main System parameters     |        |                                                      | Syst              | em type            | Sneas on ground                                                |                          |                             |          |
| PV Field Orientat          | tion   |                                                      |                   | tilt               | 5°                                                             | azimut                   | h O°                        |          |
| PV modules                 |        |                                                      | Model             |                    | JAM6-72-320/SI<br>28                                           | Pnor<br>Pnom tot:        | n 320 Wp<br>a <b>896 kv</b> | Vn       |
| Inverter                   |        |                                                      | ND. OI            | Model              | SUN2000L-8KTL                                                  | Pnor                     | n 8.00 kV                   | V ac     |
| User's needs               |        | Daily household consumers Constant over the year Glo |                   |                    |                                                                |                          | al 7066 k\                  | Nh/year  |
|                            |        |                                                      | Loss o            | liagram ov         | ver the whole year                                             |                          |                             |          |
|                            |        |                                                      |                   |                    |                                                                |                          |                             |          |
|                            |        |                                                      |                   |                    |                                                                |                          |                             |          |
| Γ                          |        | 1597 KVVh/m <sup>2</sup>                             |                   | 1                  | Horizontal global irradiatio                                   | on                       |                             |          |
|                            |        |                                                      |                   | →-0.07%<br>→-0.07% | Global incident in coll. plan<br>Global incident below thresho | n <b>e</b><br>Id         |                             |          |
|                            |        |                                                      | k                 | 0.00%              | Near Shadings: irradiance los                                  | S                        |                             |          |
|                            |        |                                                      |                   | ∕]-3.67%           | IAM factor on global                                           |                          |                             |          |
| 1538 kWh/m² * 54 m² coll.  |        |                                                      |                   |                    | Effective irradiation on co                                    | llectors                 |                             |          |
| efficiency at STC = 16.53% |        |                                                      | ~<br>             |                    | PV conversion                                                  | STC offic )              |                             |          |
|                            |        | 13.79 1010011                                        |                   | ≒ -0.75%           | PV loss due to irradiance leve                                 | el enic.)                |                             |          |
|                            |        |                                                      |                   | )-11.15%           | PV loss due to temperature                                     |                          |                             |          |
|                            |        |                                                      | +(                | ).75%              | Module quality loss                                            |                          |                             |          |
|                            |        |                                                      | <b>→</b> -1       | .10%               | Mismatch loss, modules and s                                   | strings                  |                             |          |
|                            | 1:     | 2.01 MWh                                             | \$ -0.            | 95%                | Ohmic wiring loss<br>Array virtual energy at MP                | Р                        |                             |          |
|                            |        |                                                      |                   | 000/               |                                                                |                          | ,                           |          |
|                            |        |                                                      | $\rightarrow 0.0$ | 80%<br>0%          | Inverter Loss during operation                                 | n (eπiciency<br>v. power | )                           |          |
|                            |        |                                                      | $\rightarrow 0.0$ | )%<br>)%           | Inverter Loss due to max. inp                                  | ut current               |                             |          |
|                            |        |                                                      | >0.0              | 0%                 | Inverter Loss due to power th                                  | reshold                  |                             |          |
| grid<br>consumption        |        |                                                      | >0.0              | 0%<br>)4%          | Inverter Loss due to voltage t<br>Night consumption            | hreshold                 |                             |          |
|                            | 11     | 1.78 MWh                                             |                   |                    | Available Energy at Inverte                                    | er Output                |                             |          |
|                            | 1      |                                                      |                   |                    |                                                                |                          |                             |          |
| 6.43 MWh 0.64 I            | 1Wh 1  | 1.15 MWh                                             |                   |                    | Energy injected into grid                                      |                          |                             |          |
| to user to u               | ser    | to grid                                              |                   |                    |                                                                |                          |                             |          |
| from grid from             | solar  |                                                      |                   |                    |                                                                |                          |                             |          |
|                            |        |                                                      |                   |                    |                                                                |                          |                             |          |

| PVSYST V6.86                                                                              |                                         |                                                                                                                                                                                        |                                                                           |                                               | 21/04/20                                                       | Page 7/7                     |  |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|------------------------------|--|--|--|
|                                                                                           |                                         |                                                                                                                                                                                        |                                                                           |                                               |                                                                |                              |  |  |  |
|                                                                                           |                                         | Grid-Connected Syste                                                                                                                                                                   | m: P50 - P90 eva                                                          | luation                                       |                                                                |                              |  |  |  |
| Project :                                                                                 |                                         | Taman Midah (NEM)                                                                                                                                                                      |                                                                           |                                               |                                                                |                              |  |  |  |
| Simulation vari                                                                           | iant :                                  | small family - 9kw                                                                                                                                                                     |                                                                           |                                               |                                                                |                              |  |  |  |
| Main system par                                                                           | rameters                                | System type                                                                                                                                                                            | Sheds on ground                                                           |                                               |                                                                |                              |  |  |  |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                     | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Daily household consumers                                                                                               | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the year     | azimutl<br>Pnor<br>Pnom tota<br>Pnor<br>Globa | n 0°<br>n 320 Wp<br>n <b>8.96 kV</b><br>n 8.00 kV<br>n 7066 kV | <b>Vp</b><br>√ ac<br>Nh/year |  |  |  |
| Evaluation of the                                                                         | e Produc                                | tion probability forecast                                                                                                                                                              |                                                                           |                                               |                                                                |                              |  |  |  |
| The probability dis                                                                       | stribution                              | of the system production forecas                                                                                                                                                       | t for different years is mai                                              | inly depend                                   | dent                                                           |                              |  |  |  |
| on the meteo data                                                                         | a used for                              | the simulation, and depends on                                                                                                                                                         | the following choices:                                                    | 5                                             |                                                                |                              |  |  |  |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                | e<br>on<br>ability                      | Kind<br>Year deviation from aver.<br>Variance                                                                                                                                          | MeteoNorm 7.2 station<br>Not defined<br>3 %<br>0.5 %                      | Yea                                           | r 1995                                                         |                              |  |  |  |
| The probability dia<br>Specified Deviatio                                                 | stribution<br>on P<br>Soi<br>(meteo + s | variance is also depending on so<br>V module modelling/parameters<br>Inverter efficiency uncertainty<br>ling and mismatch uncertainties<br>Degradation uncertainty<br>system) Variance | ome system parameters u<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (qua | ncertaintie<br>dratic sum                     | s<br>)                                                         |                              |  |  |  |
| Annual productior                                                                         | n probabil                              | ity Variability<br>P50<br>P90<br>P95                                                                                                                                                   | 0.21 MWh<br>11.15 MWh<br>10.88 MWh<br>10.81 MWh                           |                                               |                                                                |                              |  |  |  |
| Probability distribution                                                                  |                                         |                                                                                                                                                                                        |                                                                           |                                               |                                                                |                              |  |  |  |
|                                                                                           | Probability                             | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>P95 = 108                                                                                                      | P50 = 11149 kWh<br>E_Grid simul = 11149                                   | kWh                                           |                                                                |                              |  |  |  |

0.00 L

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                                     |                                                                                                       |                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                               | 21/04/20                                                                                                     | Page 1/7                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                                  | Grid-Conne                                                                                            | ected System                                                                                                                                                     | n: Simulation p                                                                                                                                                                      | arameters                                                                                                                                     | i                                                                                                            |                                    |
| Project :                                                                                                                                                                                                        | Taman Mid                                                                                             | ah (NEM)                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                              |                                    |
| Geographical Si                                                                                                                                                                                                  | te Kuala                                                                                              | Lumpur/Subang                                                                                                                                                    |                                                                                                                                                                                      | Country                                                                                                                                       | / Malays                                                                                                     | ia                                 |
| Situation<br>Time defined                                                                                                                                                                                        | as                                                                                                    | Latitude<br>Legal Time<br>Albedo                                                                                                                                 | 3.12° N<br>Time zone UT+8<br>0.20                                                                                                                                                    | Longitude<br>Altitude                                                                                                                         | e 101.55°<br>e 17 m                                                                                          | E                                  |
| Meteo data:                                                                                                                                                                                                      | Kuala                                                                                                 | Lumpur/Subang                                                                                                                                                    | MeteoNorm 7.2 stat                                                                                                                                                                   | tion - Synthetic                                                                                                                              |                                                                                                              |                                    |
| Simulation vari                                                                                                                                                                                                  | ant : small family                                                                                    | / <b>- 9kw</b>                                                                                                                                                   |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                              |                                    |
|                                                                                                                                                                                                                  |                                                                                                       | Simulation date                                                                                                                                                  | 21/04/20 17h24                                                                                                                                                                       |                                                                                                                                               |                                                                                                              |                                    |
| Simulation para                                                                                                                                                                                                  | meters                                                                                                | System type                                                                                                                                                      | Sheds on ground                                                                                                                                                                      |                                                                                                                                               |                                                                                                              |                                    |
| <b>Collector Plane</b>                                                                                                                                                                                           | Orientation                                                                                           | Tilt                                                                                                                                                             | 5°                                                                                                                                                                                   | Azimuth                                                                                                                                       | n 0°                                                                                                         |                                    |
| Models used                                                                                                                                                                                                      |                                                                                                       | Transposition                                                                                                                                                    | Perez                                                                                                                                                                                | Diffuse                                                                                                                                       | e Perez, I                                                                                                   | Veteonorm                          |
| Horizon                                                                                                                                                                                                          |                                                                                                       | Free Horizon                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                              |                                    |
| Near Shadings                                                                                                                                                                                                    |                                                                                                       | Linear shadings                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                              |                                    |
| User's needs :                                                                                                                                                                                                   | Daily hous                                                                                            | ehold consumers<br>average                                                                                                                                       | Constant over the ye<br>9.9 kWh/Day                                                                                                                                                  | ear                                                                                                                                           |                                                                                                              |                                    |
| PV Array Charac<br>PV module<br>Original PVsyst<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Custom param<br>Characteristics<br>Inverter pack | teristics<br>Si-m<br>database<br>dules<br>V modules<br>r<br>haracteristics (50°C)<br>eters definition | ono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>U mpp<br>Module area<br>Model<br>Manufacturer<br>Dperating Voltage<br>Nb. of inverters | JAM6-72-320/SI<br>JA Solar<br>14 modules<br>28 Ur<br>8.96 kWp At o<br>470 V<br>54.3 m <sup>2</sup><br>SUN2000L-8KTL<br>Huawei Technologie<br>200-850 V Ur<br>Max. p<br>2 * MPPT 50 % | In parallel<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>nit Nom. Power<br>oower (=>40°C)<br>Total Power<br>Pnom ratic | I 2 string<br>320 Wp<br>8.05 kW<br>17 A<br>48.2 m <sup>2</sup><br>r 8.00 kW<br>8.80 kW<br>r 8.0 kW<br>5 1.12 | s<br>/p (50°C)<br>Vac<br>Vac<br>ac |
| <b>PV Array loss fac</b><br>Thermal Loss fact<br>Wiring Ohmic Los<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                             | ctors<br>or<br>is<br>iss<br>Losses<br>loss<br>ASHRAE parametrization                                  | Uc (const)<br>Global array res.<br>n IAM =                                                                                                                       | 20.0 W/m²K<br>465 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                       | Uv (wind)<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param                                                     | ) 0.0 W/n<br>n 1.5 % a<br>n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>. 0.05                                        | n²K / m/s<br>t STC<br>tt MPP       |
|                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                               |                                                                                                              |                                    |



| PVSYST V6.86           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                              | 21/                                        | 04/20 Page                  | 9/7 |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------|--------------------------------------------|-----------------------------|-----|
|                        | Srid-Connected S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | System        | n <sup>.</sup> Detailed I Is | er's needs                                 | I                           |     |
| Droinot :              | Taman Midah (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>a</i> v    | n. Detailed 03               |                                            |                             |     |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>n</i> )    |                              |                                            |                             |     |
| Simulation variant :   | small family - 9kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                              |                                            |                             |     |
| Main system parameters | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | em type       | Sheds on ground              |                                            |                             |     |
| Near Shadings          | Linear s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hadings       |                              |                                            |                             |     |
| PV Field Orientation   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tilt          | 5°                           | azimuth (                                  | )°                          |     |
| PV modules<br>PV Array | Nb of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nodules       | JAM6-72-320/SI<br>28         | Pnom com com com com com com com com com c | 320 vvp<br>3 <b>.96 kWp</b> |     |
| Inverter               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model         | SUN2000L-8KTL                | Pnom 8                                     | 3.00 kW ac                  |     |
| User's needs           | Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsumers       | Constant over the y          | /ear Global 3                              | 3625 kWh/year               |     |
| Daily household consum | ers, Constant over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e year, av    | verage = 9.9 kWh/d           | lay                                        |                             |     |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annua         | l values                     |                                            |                             |     |
|                        | Use 2 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number        | Power                        | Use                                        | Energy                      |     |
| Lamps (LED or fluo)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26            | 18 W/lamp                    | 5 h/day                                    | 2340 Wh/                    | day |
| TV / PC / Mobile       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             | 70 W/app                     | 14 h/day                                   | 1960 Wh/                    | day |
| Iron                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             | 1200 W/app                   | 1 h/day                                    | 1200 Wh/                    | day |
| Fridge / Deep-freeze   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1             |                              | 24 Wh/day                                  | 3000 Wh/                    | day |
| Disn- & Cloth-Washers  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2000 W/ tot                  | I Wh/day                                   | 500 Wh/                     | day |
| Aircond                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3             | 750 W tot                    | 10 h/day                                   | 22500 Wh/                   | dav |
| Stand-by consumers     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             | 750 W lot                    | 24 h/day                                   | 22300 Wh/                   | dav |
| Total daily energy     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ             | ļ                            |                                            | 34524 Wh/                   | day |
|                        | Hadding of the second s | Hourly<br>6 9 | <b>y profile</b>             | 21 24                                      |                             |     |

| Grid-Connected System: Main resultsProject :Taman Midah (NEM)<br>isimulation variant :Taman Midah (NEM)<br>isimulation variant :Taman Midah (NEM)<br>isimulation variant :Main system parametersSystem (yp)Sheds on ground<br>the shadings<br>Develop United DrientationSystem (yp)Sheds on ground<br>it to sheds on ground<br>United States and the shadings<br>28PV modulesSystem (yp)Sheds on ground<br>States and the shadings<br>28Promotical<br>Pomotical<br>8.06 WW ac<br>8.06 WW ac<br>0.06 WW ac<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project :: Taman Midah (MEM)<br>Sinda or ana initial service in mail family - 9 km<br>Marcin Advance in the formation initial of the formation initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Project. Final mixed recently<br>Simulation variant : small family - 9kw<br>Main system parameters System type Sheds on ground<br>Linear shadings<br>EV Field Orientation User's needs Daily household consumers Constant over the year Global 3625 kWh/year<br>Derivative States Daily household consumers Constant over the year Global 3625 kWh/year<br>Model SUN2000L-8KTL Prior total 8.96 kWp<br>EV Array Nb. of modules 28 Produced Energy 11.78 MWh/year Specific prod. 1315 kWh/kWp/year<br>System Production Specific prod. 1315 kWh/kWp/year<br>System Production (per installed kWp): Nominal power 8.96 kWp<br>of the Constant over the year Origon Daily household consumers Constant over the year Origon Daily household                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Simulation variant :         small family - 9kw           Main system parameters         System type         Sheds on ground           Near Shadings         Linear shadings         Promodiles         Subscription         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Main system parameters         System type         Shels on ground           New Shadings<br>PV Field of instation         Linear shadings<br>Model         57         azimuth         0"           PV Field of instation         Nb. of modules         JAM6-72-320/SI         Pnom         320 Wp           PV Array         Nb. of modules         JAM6-72-320/SI         Pnom         320 Wp           PV Array         Nb. of modules         SUS200L-8KTL         Pnom         325 KWh/year           Main simulation results         Produced Energy         11.78 MWh/year         Specific prod.         1315 KWh/kWp/year           System Production         Forduced Energy         11.78 MWh/year         Specific prod.         1315 KWh/kWp/year           Ordunation results         Forduced Energy         11.78 MWh/year         Specific prod.         1315 KWh/kWp/year           Ordunation results         Forduced Energy         11.78 MWh/year         Specific prod.         1315 KWh/kWp/year           Ordunation results         Forduced Energy         11.78 MWh / Specific prod.         1315 KWh/kWp/year           Ordunation results         Fordunation results         Fordunation results         1315 KWh/kWp/year           State Productions for installed KMp: module         State Production for installed KMp: Tordunation results         Production foresult installe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| New Shadings<br>PV Field OrientationLinear shadings<br>the shadings<br>PV andulesLinear shadings<br>the shadings<br>ModelJAM6-72-320/SI<br>JAM6-72-320/SI<br>Pnom tailPnom tail<br>8.96 kWp<br>Pom tails<br>A8.96 kWp<br>Pom tailsMain imulation results<br>System ProductionProduced Energy<br>Performance Ratio PR11.78 MWh/year<br>Solar Fraction SFSpecific prod.<br>1315 kWh/kWp/yearMomilized productions (pri installed Wp):<br>Mom and power 8.96 kWp<br>Performance Ratio PR11.78 MWh/year<br>Bala 0 %Specific prod.<br>Solar Fraction SF1315 kWh/kWp/year<br>2.06.8 %Normalized productions (pri installed Wp):<br>Mom and power 8.96 kWp<br>Performance Ratio PR11.78 MWh/year<br>Bala 0 %Specific prod.<br>Bala 0 %1315 kWh/kWp/yearNormalized productions (pri installed Wp):<br>Mom and power 8.96 kWp<br>Performance Ratio PR11.78 MWh/year<br>Bala 0 %Specific pri installed Wp/interprint<br>Bala 0 %Performance Ratio PRNormalized productions (pri installed Wp):<br>Mom and power 8.96 kWp<br>Performance Ratio PRSpecific pri installed Wp/interprint<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{PV \ \text{relation}}{PV \ \text{modules}} = \frac{V \ \text{index}}{V \ \text{modules}} = \frac{V \ \text{index}}{V \ \text{modules}} = \frac{V \ \text{modules}}{V \ \text{modues}} = \frac{V \ \text{modules}}{V \ \text{modues}} = \frac{V \ \text{modues}}{V \ \text{modues}} = \frac{V \ \text{modues}}}{V \ \text{modues}} = V $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{1}{128 \text{ merter}} = \frac{1}{128 \text{ model}} = \frac{1}{128 \text{ model}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| User's needs         Daily household consumers         Constant over the year         Global         3625 kWh/year           Main simulation results<br>System Production         Produced Energy<br>Performance Ratio PR         11.78 MWh/year         Specific prod.         1315 kWh/kWp/year           Normaliced productions (per installed WP): Noninal power 8.95 kW         Image: Specific prod.         1315 kWh/kWp/year         Performance Ratio PR           Image: Specific prod.         Image: Specific prod.         Image: Specific prod.         Image: Specific prod.         1315 kWh/kWp/year           Image: Specific prod.         Image: Speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} \text{System Production} & \textbf{Produced Energy} \\ \text{Beformance Ratio PR} & \textbf{11.78} \ \textbf{My}/\text{year} & \textbf{Specific prod.} \\ \text{Solar Fraction SF} & \textbf{13.15} \ \textbf{KW}/\text{kW}/\text{Wy}/\text{year} \\ \textbf{26.68} \\ \end{array} \\ \hline \textbf{Momelized productions (per installed KWp): Noninal power 8.96 KWp \\ \hline \textbf{My} \hline \textbf{My} \\ \hline My$ |
| $ \frac{\text{Normalized productions (per installed kWp): Nominal power 8.96 kWp}}{\int \frac{1}{12} \int \frac{1}{12} \int$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{1}{10^{-1}  marked productions (private last) (private last)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\int_{a} \int_{a} \int_{a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\int_{a_{1}}^{a_{1}} \int_{a_{2}}^{a_{1}} \int_{a_{1}}^{a_{2}} \int_{a_{2}}^{a_{2}} \int_{a_{2}}^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{1}{9} \int_{\frac{1}{9}} \int_{\frac{1}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{1}{90} \int_{-\frac{1}{9}}^{0} \int_{-\frac{1}{9}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1}{999} \int_{-9}^{0} \int_{-9}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \frac{1}{9} \int_{-\frac{1}{9}}^{0} \int_{-\frac{1}{9}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\int_{a_{1}}^{b_{2}} \int_{a_{2}}^{a_{1}} \int_{a_{2}}^{a_{2}} \int_{a_{2}}^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\int_{a_{1}}^{a_{2}} \int_{a_{2}}^{a_{2}} \int_{a_{2}}^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{1}{2} \int_{0}^{2} \int_{an}^{a} Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec} \int_{0}^{2} \int_{an}^{0} \int_{0}^{2} \int_{an}^{a} Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec} \int_{0}^{2} \int_{an}^{0} \int_{an}^{2} Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec} \\ Small family - 9kw Balances and main results \\ \frac{1}{2} \int_{an}^{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Definition of the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Image: Constraint of the state of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec         Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec         small family - 9kw         Balances and main results         main fight of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| small family - 9kw         Balances and main results         matrix       GlobHor       DiffHor       T_Amb       GlobInc       GlobErf       EArray       E_User       E_Solar       E_Grid       EFrGrid         January       133.0       82.20       28.10       136.3       131.2       1.016       0.345       0.095       0.902       0.250         February       134.6       67.90       27.70       137.4       132.8       1.031       0.276       0.081       0.933       0.196         March       149.8       88.20       28.00       150.3       144.9       1.125       0.276       0.079       1.026       0.197         April       140.3       70.50       27.70       138.8       133.9       1.039       0.311       0.085       0.926       0.226         May       140.3       78.60       28.60       136.9       131.7       1.027       0.311       0.082       0.926       0.229         June       132.0       77.80       27.80       128.3       123.5       0.967       0.276       0.070       0.879       0.206         July       134.4       87.20       27.80       131.1       125.8<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| small family - 9kwBalances and main resultsImage: colspan="6">GlobHorDiffHorT_AmbGlobIncGlobEftEArrayE_UserE_SolarE_GridEFrGridFrGridJanuary133.082.2028.10136.3131.21.0160.3450.0950.9020.250February134.667.9027.70137.4132.81.0310.2760.0810.9330.196March149.888.2028.00150.3144.91.1250.2760.0791.0260.197April140.370.5027.70138.8133.91.0390.3110.0850.9350.226May140.378.6028.60136.9131.71.0270.3110.0820.9260.229June132.077.8027.80128.3123.50.9670.2760.0700.8790.206July134.487.2027.80130.1125.20.9800.2760.0660.8960.210September132.279.0027.10128.8124.00.9680.2760.0730.8770.203October138.882.6027.40140.4135.51.0560.3450.0940.9430.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| small family - 9kw         Balances and main results         matrix       GlobHor       DiffHor       T_Amb       GlobInc       GlobEff       EArray       E_User       E_Solar       E_Grid       EFrGrid         January       133.0       82.20       28.10       136.3       131.2       1.016       0.345       0.095       0.902       0.250         February       134.6       67.90       27.70       137.4       132.8       1.031       0.276       0.081       0.933       0.196         March       149.8       88.20       28.00       150.3       144.9       1.125       0.276       0.079       1.026       0.197         April       140.3       70.50       27.70       138.8       133.9       1.039       0.311       0.085       0.935       0.226         May       140.3       70.50       27.80       131.7       1.027       0.311       0.082       0.926       0.229         June       132.0       77.80       27.80       128.3       123.5       0.967       0.276       0.070       0.879       0.206         July       134.4       87.20       27.80       131.1       125.2       0.980<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Balances and main results           GlobHor         DiffHor         T_Amb         GlobInc         GlobEff         EArray         E_User         E_Solar         E_Grid         EFrGrid           January         133.0         82.20         28.10         136.3         131.2         1.016         0.345         0.095         0.902         0.250           February         134.6         67.90         27.70         137.4         132.8         1.031         0.276         0.081         0.933         0.196           March         149.8         88.20         28.00         150.3         144.9         1.125         0.276         0.079         1.026         0.197           April         140.3         70.50         27.70         138.8         133.9         1.039         0.311         0.085         0.926         0.229           June         132.0         77.80         27.80         131.7         1.027         0.311         0.085         0.935         0.226           July         134.4         87.20         27.80         131.1         125.8         0.967         0.276         0.070         0.879         0.206           July         134.4         87.20         27.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GlobHor<br>kWh/m2DiffHor<br>°CT_Amb<br>kWh/m2GlobInc<br>°CGlobEff<br>kWh/m2EArray<br>MWhE_User<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| kWh/m2kWh/m2°CkWh/m2kWh/m2MWhMWhMWhMWhMWhMWhJanuary133.082.2028.10136.3131.21.0160.3450.0950.9020.250February134.667.9027.70137.4132.81.0310.2760.0810.9330.196March149.888.2028.00150.3144.91.1250.2760.0791.0260.197April140.370.5027.70138.8133.91.0390.3110.0850.9350.226May140.378.6028.60136.9131.71.0270.3110.0820.9260.229June132.077.8027.80128.3123.50.9670.2760.0700.8790.206July134.487.2027.80131.1125.80.9940.3450.0970.8780.248August132.287.2027.80130.1125.20.9800.2760.0660.8960.210September129.279.0027.10128.8124.00.9680.2760.0730.8770.203October138.882.6027.40140.4135.51.0560.3450.0940.9430.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| January133.082.2028.10136.3131.21.0160.3450.0950.9020.250February134.667.9027.70137.4132.81.0310.2760.0810.9330.196March149.888.2028.00150.3144.91.1250.2760.0791.0260.197April140.370.5027.70138.8133.91.0390.3110.0850.9350.226May140.378.6028.60136.9131.71.0270.3110.0820.9260.229June132.077.8027.80128.3123.50.9670.2760.0700.8790.206July134.487.2027.80131.1125.80.9940.3450.0970.8780.248August132.287.2027.80130.1125.20.9800.2760.0660.8960.210September129.279.0027.10128.8124.00.9680.2760.0730.8770.203October138.882.6027.40140.4135.51.0560.3450.0940.9430.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| February134.667.9027.70137.4132.81.0310.2760.0810.9330.196March149.888.2028.00150.3144.91.1250.2760.0791.0260.197April140.370.5027.70138.8133.91.0390.3110.0850.9350.226May140.378.6028.60136.9131.71.0270.3110.0820.9260.229June132.077.8027.80128.3123.50.9670.2760.0700.8790.206July134.487.2027.80131.1125.80.9940.3450.0970.8780.248August132.287.2027.80130.1125.20.9800.2760.0660.8960.210September129.279.0027.10128.8124.00.9680.2760.0730.8770.203October138.882.6027.40140.4135.51.0560.3450.0940.9430.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IMarcn       149.8       88.20       28.00       150.3       144.9       1.125       0.2/6       0.0/9       1.026       0.197         April       140.3       70.50       27.70       138.8       133.9       1.039       0.311       0.085       0.935       0.226         May       140.3       78.60       28.60       136.9       131.7       1.027       0.311       0.082       0.926       0.229         June       132.0       77.80       27.80       128.3       123.5       0.967       0.276       0.070       0.879       0.206         July       134.4       87.20       27.80       131.1       125.8       0.994       0.345       0.097       0.878       0.248         August       132.2       87.20       27.80       130.1       125.2       0.980       0.276       0.066       0.896       0.210         September       129.2       79.00       27.10       128.8       124.0       0.968       0.276       0.073       0.877       0.203         October       138.8       82.60       27.40       140.4       135.5       1.056       0.345       0.094       0.943       0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| April       140.3       70.30       27.70       138.8       133.9       1.039       0.311       0.085       0.935       0.226         May       140.3       78.60       28.60       136.9       131.7       1.027       0.311       0.085       0.935       0.229         June       132.0       77.80       27.80       128.3       123.5       0.967       0.276       0.070       0.879       0.206         July       134.4       87.20       27.80       131.1       125.8       0.994       0.345       0.097       0.878       0.248         August       132.2       87.20       27.80       130.1       125.2       0.980       0.276       0.066       0.896       0.210         September       129.2       79.00       27.10       128.8       124.0       0.968       0.276       0.073       0.877       0.203         October       138.8       82.60       27.40       140.4       135.5       1.056       0.345       0.094       0.943       0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mdy       140.3       70.00       20.00       130.7       131.7       1.027       0.311       0.002       0.920       0.229         June       132.0       77.80       27.80       128.3       123.5       0.967       0.276       0.070       0.879       0.206         July       134.4       87.20       27.80       131.1       125.8       0.994       0.345       0.097       0.878       0.248         August       132.2       87.20       27.80       130.1       125.2       0.980       0.276       0.066       0.896       0.210         September       129.2       79.00       27.10       128.8       124.0       0.968       0.276       0.073       0.877       0.203         October       138.8       82.60       27.40       140.4       135.5       1.056       0.345       0.094       0.943       0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| July       134.4       87.20       27.80       131.1       125.8       0.994       0.345       0.097       0.878       0.248         August       132.2       87.20       27.80       130.1       125.2       0.980       0.276       0.066       0.896       0.210         September       129.2       79.00       27.10       128.8       124.0       0.968       0.276       0.066       0.896       0.210         October       138.8       82.60       27.40       140.4       135.5       1.056       0.345       0.094       0.943       0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| August         132.2         87.20         27.80         130.1         125.2         0.980         0.276         0.066         0.896         0.210           September         129.2         79.00         27.10         128.8         124.0         0.968         0.276         0.073         0.877         0.203           October         138.8         82.60         27.40         140.4         135.5         1.056         0.345         0.094         0.943         0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| September         129.2         79.00         27.10         128.8         124.0         0.968         0.276         0.073         0.877         0.203           October         138.8         82.60         27.40         140.4         135.5         1.056         0.345         0.094         0.943         0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| October   138.8   82.60   27.40   140.4   135.5   1.056   0.345   0.094   0.943   0.251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| November 117.6 79.20 26.70 119.8 115.4 0.907 0.276 0.067 0.822 0.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| December 115.0 73.20 26.29 118.1 113.6 0.896 0.311 0.078 0.801 0.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Year         1597.2         953.59         27.58         1596.2         1537.5         12.005         3.625         0.967         10.817         2.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Legends: GlobHor Horizontal global irradiation GlobEff Effective Global, corr. for IAM and shadings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Diffuse Instantial diffuse instantian Example Effective county of the start of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DiffHor Horizontal diffuse irradiation EArray Effective energy at the output of the array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

E\_Grid

EFrGrid

Energy injected into grid

Energy from the grid

Γ



| PVSYST V6.86                       |          |                      |                          |                                            | 21/04/20                | Page 6/7        |
|------------------------------------|----------|----------------------|--------------------------|--------------------------------------------|-------------------------|-----------------|
|                                    |          | Grid-Co              | nnected Sv               | /stem: Loss diagram                        |                         |                 |
| Draigat :                          |          | Taman Midak          |                          |                                            |                         |                 |
| Simulation var                     | iont ·   |                      |                          |                                            |                         |                 |
| Simulation var                     |          | Siliali lalliny -    | 9KW                      |                                            |                         |                 |
| Main system pa                     | rameters |                      | System type              | Sheds on ground                            |                         |                 |
| Near Shadings<br>PV Field Orientat | rion     | L                    | inear shadings.<br>tilt  | 5° azimu                                   | th 0°                   |                 |
| PV modules                         |          |                      | Model                    | JAM6-72-320/SI Pno                         | m 320 Wp                | 1               |
| PV Array                           |          | ļ                    | Nb. of modules           | 28 Pnom tot                                | al <b>8.96 kV</b>       | Vp              |
| Inverter<br>User's needs           |          | Dailv househ         | iviodei<br>old consumers | Constant over the year Glob                | т 8.00 км<br>al 3625 k\ | 7 ac<br>Nh∕vear |
|                                    |          |                      |                          | ,                                          |                         |                 |
|                                    |          |                      | Loss diagram ov          | ver the whole year                         |                         |                 |
|                                    |          |                      |                          |                                            |                         |                 |
| <b>—</b>                           | _        | 1597 kWh/m²          |                          | Horizontal global irradiation              |                         |                 |
|                                    |          |                      |                          |                                            |                         |                 |
|                                    |          |                      | →-0.07%                  | Global incident in coll. plane             |                         |                 |
|                                    |          |                      | 0.00%                    | Near Shadings: irradiance loss             |                         |                 |
|                                    |          |                      | -3.67%                   | IAM factor on global                       |                         |                 |
|                                    | 1538 k   | .Wh/m² * 54 m² coll. |                          | Effective irradiation on collectors        |                         |                 |
|                                    | efficien | cy at STC = 16.53%   |                          | PV conversion                              |                         |                 |
|                                    |          | 13.79 MWh            |                          | Array nominal energy (at STC effic.)       |                         |                 |
|                                    |          |                      | J -0.75%                 | PV loss due to irradiance level            |                         | Ì               |
|                                    |          |                      | -11.15%                  | PV loss due to temperature                 |                         |                 |
|                                    |          |                      | (+0.75%                  | Module quality loss                        |                         |                 |
|                                    |          |                      | 9-1.10%                  | Mismatch loss, modules and strings         |                         |                 |
|                                    | 10       |                      | 9-0.95%                  | Ohmic wiring loss                          |                         |                 |
|                                    | 12       |                      |                          | Allay viltual ellergy at MFF               |                         |                 |
|                                    |          |                      | →-1.80%                  | Inverter Loss during operation (efficiency | ')                      |                 |
|                                    |          |                      | → 0.00%<br>→ 0.00%       | Inverter Loss over nominal inv. power      |                         |                 |
|                                    |          |                      | → 0.00%                  | Inverter Loss over nominal inv. voltage    |                         |                 |
|                                    |          |                      | → 0.00%                  | Inverter Loss due to power threshold       |                         |                 |
| grid<br>consumption                |          |                      | →-0.04%                  | Night consumption                          |                         |                 |
|                                    | 11       | .78 MWh              |                          | Available Energy at Inverter Output        |                         |                 |
|                                    | 1        |                      |                          |                                            |                         |                 |
| 2.66 MWh 0.97 M                    | Wh 1     | 0.82 MWh             |                          | Energy injected into grid                  |                         |                 |
| to user to us                      | ser      | to grid              |                          |                                            |                         |                 |
| from grid from s                   | solar    |                      |                          |                                            |                         |                 |
|                                    |          |                      |                          |                                            |                         |                 |

| PVSYST V6.86                                                                              |                          |                                                                                   |                                                                                                    |                                                                      |                                                | 21/04/20                                                         | Page 7/7                      |  |  |
|-------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|-------------------------------|--|--|
|                                                                                           |                          |                                                                                   |                                                                                                    |                                                                      |                                                |                                                                  |                               |  |  |
|                                                                                           |                          | Grid-Conn                                                                         | ected Syster                                                                                       | m: P50 - P90 ev                                                      | aluation                                       |                                                                  |                               |  |  |
| Project :                                                                                 |                          | Taman Mida                                                                        | ah (NEM)                                                                                           |                                                                      |                                                |                                                                  |                               |  |  |
| Simulation vari                                                                           | ant :                    | small family                                                                      | - 9kw                                                                                              |                                                                      |                                                |                                                                  |                               |  |  |
| Main system par                                                                           | rameters                 |                                                                                   | System type                                                                                        | Sheds on ground                                                      |                                                |                                                                  |                               |  |  |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | on                       | Daily house                                                                       | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>shold consumers                     | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the yea | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>r Globa | h 0°<br>n 320 Wp<br>al <b>8.96 kV</b><br>n 8.00 kV<br>al 3625 kV | V <b>p</b><br>V ac<br>Wh/year |  |  |
| Evaluation of the                                                                         | e Produc                 | tion probabilit                                                                   | y forecast                                                                                         |                                                                      |                                                |                                                                  |                               |  |  |
| The probability dis<br>on the meteo data                                                  | stribution<br>a used for | of the system p<br>the simulation,                                                | roduction forecast<br>and depends on t                                                             | t for different years is m<br>the following choices:                 | ainly depen                                    | dent                                                             |                               |  |  |
| Meteo data source<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia               | e<br>n<br>bility         | Year dev                                                                          | Kind<br>viation from aver.<br>Variance                                                             | MeteoNorm 7.2 statio<br>Not defined<br>3 %<br>0.5 %                  | n<br>Yea                                       | ar 1995                                                          |                               |  |  |
| The probability dis<br>Specified Deviatio                                                 | stribution<br>n P<br>Soi | variance is also<br>V module mode<br>Inverter effici<br>ling and mismat<br>Degrad | depending on so<br>elling/parameters<br>ency uncertainty<br>cch uncertainties<br>ation uncertainty | me system parameters<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %             | uncertaintie                                   | S                                                                |                               |  |  |
| Global variability (                                                                      | (meteo + :               | system)                                                                           | Variance                                                                                           | 1.9 % (qi                                                            | uadratic sum                                   | 1)                                                               |                               |  |  |
| Annual productior                                                                         | n probabil               | ity                                                                               | Variability<br>P50<br>P90<br>P95                                                                   | 0.20 MWh<br>10.82 MWh<br>10.56 MWh<br>10.48 MWh                      |                                                |                                                                  |                               |  |  |
| Probability distribution                                                                  |                          |                                                                                   |                                                                                                    |                                                                      |                                                |                                                                  |                               |  |  |
|                                                                                           | Probability              | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05      | P90 = 105<br>P95 = 10485 kV                                                                        | 50 = 10817 kWh<br>E.Grid simul = 10817<br>558 kWh<br>Wh              | kWh                                            |                                                                  |                               |  |  |

0.00 **-**10200

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                      |                                                                                      |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                    | 21/04/20                                                                            | Page 1/7                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|
|                                                                                                                                                                                                   | Grid-0                                                                               | Connected Systen                                                                                                                                     | n: Simulation p                                                                                                                                              | arameters                                                                                                          |                                                                                     |                              |
| Project :                                                                                                                                                                                         | Tama                                                                                 | an Midah (NEM)                                                                                                                                       |                                                                                                                                                              |                                                                                                                    |                                                                                     |                              |
| Geographical Si                                                                                                                                                                                   | te                                                                                   | Kuala Lumpur/Subang                                                                                                                                  |                                                                                                                                                              | Country                                                                                                            | Malays                                                                              | ia                           |
| Situation                                                                                                                                                                                         |                                                                                      | Latitude                                                                                                                                             | 3.12° N                                                                                                                                                      | Longitude                                                                                                          | 101.55°                                                                             | E                            |
| Time defined a                                                                                                                                                                                    | as                                                                                   | Legal Time                                                                                                                                           | Time zone UT+8                                                                                                                                               | Altitude                                                                                                           | 17 m                                                                                |                              |
| Meteo data:                                                                                                                                                                                       |                                                                                      | Kuala Lumpur/Subang                                                                                                                                  | MeteoNorm 7.2 sta                                                                                                                                            | tion - Synthetic                                                                                                   |                                                                                     |                              |
| Simulation vari                                                                                                                                                                                   | ant : avera                                                                          | ige family - 6kw                                                                                                                                     |                                                                                                                                                              |                                                                                                                    |                                                                                     |                              |
|                                                                                                                                                                                                   |                                                                                      | Simulation date                                                                                                                                      | 21/04/20 15h58                                                                                                                                               |                                                                                                                    |                                                                                     |                              |
| Simulation para                                                                                                                                                                                   | meters                                                                               | System type                                                                                                                                          | Sheds on ground                                                                                                                                              |                                                                                                                    |                                                                                     |                              |
| <b>Collector Plane</b>                                                                                                                                                                            | Orientation                                                                          | Tilt                                                                                                                                                 | 5°                                                                                                                                                           | Azimuth                                                                                                            | 0°                                                                                  |                              |
| Models used                                                                                                                                                                                       |                                                                                      | Transposition                                                                                                                                        | Perez                                                                                                                                                        | Diffuse                                                                                                            | Perez, M                                                                            | Neteonorm                    |
| Horizon                                                                                                                                                                                           |                                                                                      | Free Horizon                                                                                                                                         |                                                                                                                                                              |                                                                                                                    |                                                                                     |                              |
| Near Shadings                                                                                                                                                                                     |                                                                                      | Linear shadings                                                                                                                                      |                                                                                                                                                              |                                                                                                                    |                                                                                     |                              |
| User's needs :                                                                                                                                                                                    | Dai                                                                                  | ly household consumers<br>average                                                                                                                    | Constant over the y<br>25.1 kWh/Day                                                                                                                          | ear                                                                                                                |                                                                                     |                              |
| PV Array Charac<br>PV module<br>Original PVsyst<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics | teristics<br>database<br>dules<br>V modules<br>r<br>naracteristics (50<br>t database | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>°C) U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 U<br>6.40 kWp At<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologie<br>90-500 V U<br>Max. | In parallel<br>Init Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>Init Nom. Power<br>power (=>40°C) | 2 strings<br>320 Wp<br>5.75 kW<br>17 A<br>34.4 m <sup>2</sup><br>5.00 kW<br>5.50 kW | s<br>'p (50°C)<br>/ac<br>/ac |
| Inverter pack                                                                                                                                                                                     |                                                                                      | Nb. of inverters                                                                                                                                     | 2 * MPPT 50 %                                                                                                                                                | Total Power<br>Pnom ratio                                                                                          | 5.0 kWa<br>1.28                                                                     | ac                           |
| PV Array loss fac                                                                                                                                                                                 | ctors                                                                                |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                    |                                                                                     |                              |
| Thermal Loss fact                                                                                                                                                                                 | or                                                                                   | Uc (const)                                                                                                                                           | 20.0 W/m²K                                                                                                                                                   | Uv (wind)                                                                                                          | 0.0 W/n                                                                             | n²K / m/s                    |
| Wiring Ohmic Los<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                                                               | ss<br>Losses<br>loss<br>ASHRAE parame                                                | Global array res.<br>etrization IAM =                                                                                                                | 332 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                             | Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param.                                      | 1.5 % a<br>-0.8 %<br>1.0 % a<br>0.10 %<br>0.05                                      | t STC<br>t MPP               |
|                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                      |                                                                                                                                                              |                                                                                                                    |                                                                                     |                              |



| PVSYST V6.86                                                                                |                                                                                                                                                                                        |            |                     | 21                | /04/20                                                         | Page 3/7    |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|-------------------|----------------------------------------------------------------|-------------|
|                                                                                             | Frid-Connected S                                                                                                                                                                       | System     | n. Detailed Lls     | er's needs        |                                                                |             |
| Drainat :                                                                                   | Tomon Midah (NEN                                                                                                                                                                       | <i>a</i> \ | I. Detailed 03      |                   |                                                                |             |
| Project :                                                                                   |                                                                                                                                                                                        | //)        |                     |                   |                                                                |             |
| Simulation variant :                                                                        | average family - 6k                                                                                                                                                                    | W          |                     |                   |                                                                |             |
| Main system parameters                                                                      | Syste                                                                                                                                                                                  | em type    | Sheds on ground     |                   |                                                                |             |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear shadings<br>tilt 5° azimuth<br>Model JAM6-72-320/SI Pnom<br>Nb. of modules 20 Pnom total<br>Model SUN2000L-5KTL Pnom<br>Daily household consumers Constant over the year Global |            |                     |                   | 0°<br>320 Wp<br><b>6.40 kWp</b><br>5.00 kW ac<br>9174 kWb/year |             |
| Daily household consum                                                                      | ers Constant over the                                                                                                                                                                  | vear av    | verage = 25.1 kWh/  | /dav              |                                                                |             |
|                                                                                             |                                                                                                                                                                                        | year, a    | verage = 25.1 kwii/ | uay               |                                                                |             |
|                                                                                             |                                                                                                                                                                                        | Annua      | l values            |                   |                                                                |             |
|                                                                                             | Use 5 days a week                                                                                                                                                                      | Number     | Power               | Use               |                                                                | Energy      |
| Lamps (LED or fluo)                                                                         |                                                                                                                                                                                        | 28         | 18 W/lamp           | 6 h/da            | y 3                                                            | 3024 Wh/day |
| TV / PC / Mobile                                                                            |                                                                                                                                                                                        | 2          | 70 W/app            | 10 h/da           | y 1                                                            | 400 Wh/day  |
| Iron                                                                                        |                                                                                                                                                                                        | 1          | 1200 W/app          | 1 h/da            | y 1                                                            | 200 Wh/day  |
| Fridge / Deep-freeze                                                                        |                                                                                                                                                                                        | 1          |                     | 24 Wh/da          | y 3                                                            | 3000 Wh/day |
| Dish- & Cloth-washers                                                                       |                                                                                                                                                                                        | 1          |                     | 1 Wh/da           | y _                                                            | 500 Wh/day  |
| Instant water heater                                                                        |                                                                                                                                                                                        | 2          | 2000 W tot          | 2 h/da            | y e                                                            | 3000 Wh/day |
| Aircond<br>Stand by consumers                                                               |                                                                                                                                                                                        | 3          | 750 W 101           | 8 n/ua<br>24 h/da |                                                                | 24 Wb/day   |
| Total daily energy                                                                          |                                                                                                                                                                                        |            |                     | 24 17 04          | <u>y</u> 35                                                    | 5148 Wh/day |
|                                                                                             |                                                                                                                                                                                        | Hourly     | <b>v profile</b>    |                   |                                                                |             |

| PVSYST V6.86           |                    |                    |                                    |                             |                        |                     |                          |               | 21/04/2                   | ) Pa        | ge 4/7  |
|------------------------|--------------------|--------------------|------------------------------------|-----------------------------|------------------------|---------------------|--------------------------|---------------|---------------------------|-------------|---------|
|                        |                    | Grid               | -Conne                             | ected \$                    | Syster                 | n: Maiı             | n resul                  | lts           |                           |             |         |
| Project :              | Та                 | man Mi             | dah (NE                            | - M )                       | 5                      |                     |                          |               |                           |             |         |
|                        | lc                 |                    |                                    |                             |                        |                     |                          |               |                           |             |         |
| Simulation varian      | t: av              | erage fa           | amily - 6                          | kw                          |                        |                     |                          |               |                           |             |         |
| Main system param      | eters              |                    | Sys                                | stem type                   | Shed                   | s on grou           | und                      |               |                           |             |         |
| Near Shadings          |                    |                    | Linear                             | shadings                    | 3                      |                     |                          |               |                           |             |         |
| PV Field Orientation   |                    |                    |                                    | til                         | t 5°                   | 70.000/0            |                          | azimut        | h 0°                      |             |         |
| PV modules             |                    |                    | Nh o                               | IVIODE<br>f modules         |                        | -72-320/8           | bl -                     | Phon tot      | n 3∠0∨<br>∍l <b>6∕0</b> I | vp<br>kWn   |         |
| Inverter               |                    |                    | 110.0                              | Mode                        | J SUN2                 | 000L-5KT            | L                        | Pnor          | n 5.00 l                  | kW ac       |         |
| User's needs           |                    | Daily hou          | usehold co                         | onsumers                    | S Const                | ant over t          | he year                  | Globa         | al 9174                   | kWh/yea     | ar      |
| Main simulation res    | sults              | Per                | <b>Produce</b><br>formance         | <b>d Energy</b><br>Ratio PF | <b>8.41</b><br>8 82.32 | <b>MWh/yea</b><br>% | i <b>r</b> Sp<br>Solar F | ecific proc   | d. 1314<br>F 9.34 °       | kWh/kW<br>% | /p/year |
| Normalized productions | (per installed     | lkWp): No          | minal power                        | 6.40 kWp                    |                        |                     | Pei                      | formance R    | atio PR                   |             |         |
| 6 Lc : Collection I    | III                | I I<br>sses) (     | -<br>TTTTT                         |                             | 1                      | .0                  | I I<br>: Performance F   | TTIT          | 823                       | - 1 - 1     | ]       |
| Ls : System Los        | s (inverter,)      | erter output)      | ).07 kWh/kWp/da<br>3.6 kWh/kWb/dav | у _                         | 0                      | .9                  |                          |               |                           |             |         |
| (day]                  |                    |                    |                                    |                             | 0                      | 0.8                 |                          |               |                           |             |         |
| dd 4 -                 |                    |                    |                                    |                             | 원<br>0                 | .7                  |                          |               |                           |             |         |
| Ekw                    |                    |                    |                                    |                             | Q                      | 0.6                 |                          |               |                           |             |         |
| Elector Elector        |                    |                    |                                    |                             | 0 mance                | .5                  |                          |               |                           |             |         |
| pez 2                  |                    |                    |                                    |                             | 0 Derfor               | 0.4                 |                          |               |                           |             |         |
|                        |                    |                    |                                    | -                           | 0                      | .3                  |                          |               |                           |             |         |
| 1-                     |                    |                    |                                    |                             | 0                      | .2                  |                          |               |                           |             |         |
|                        |                    |                    |                                    | -                           | 0                      | .1                  |                          |               |                           |             |         |
| 0 Jan Feb Mar A        | pr May Jur         | Jul Aug            | Sep Oct                            | Nov Dec                     | 0                      | 1.0 E 1<br>Jan Feb  | Mar Apr                  | May Jun       | Jul Aug S                 | ep Oct N    | lov Dec |
|                        |                    |                    |                                    |                             |                        |                     |                          |               |                           |             |         |
|                        |                    |                    |                                    |                             |                        |                     |                          |               |                           |             |         |
|                        |                    |                    |                                    |                             |                        |                     |                          |               |                           |             |         |
|                        |                    |                    | Ba                                 | average<br>lances ar        | family -<br>nd main    | 6kw<br>results      |                          |               |                           |             |         |
|                        | ClobHor            | DiffHor            | T Amb                              |                             |                        | EArroy              | E Licor                  | E Solar       | E Crid                    | EErCrid     | 1       |
|                        | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | 0°                                 | kWh/m <sup>2</sup>          | kWh/m <sup>2</sup>     | MWh                 | MWh                      | MWh           | MWh                       | MWh         |         |
| January                | 133.0              | 82.20              | 28.10                              | 136.3                       | 131.2                  | 0.726               | 0.808                    | 0.077         | 0.635                     | 0.732       | 1       |
| February               | 134.6              | 67.90              | 27.70                              | 137.4                       | 132.8                  | 0.737               | 0.703                    | 0.066         | 0.657                     | 0.636       |         |
| March                  | 149.8              | 88.20              | 28.00                              | 150.3                       | 144.9                  | 0.804               | 0.773                    | 0.075         | 0.713                     | 0.698       |         |
| April                  | 140.3              | 70.50              | 27.70                              | 138.8                       | 133.9                  | 0.742               | 0.738                    | 0.073         | 0.655                     | 0.666       |         |
| Мау                    | 140.3              | 78.60              | 28.60                              | 136.9                       | 131.7                  | 0.734               | 0.808                    | 0.078         | 0.641                     | 0.730       |         |
| June                   | 132.0              | 77.80              | 27.80                              | 128.3                       | 123.5                  | 0.691               | 0.738                    | 0.068         | 0.609                     | 0.670       |         |
| July                   | 134.4              | 87.20              | 27.80                              | 131.1                       | 125.8                  | 0.710               | 0.773                    |               | 0.625                     | 0.702       |         |
| Sentember              | 129.2              | 79 00              | 27.00<br>27.10                     | 128.8                       | 125.2<br>124 N         | 0.700               | 0.008                    | 0.075         | 0.012                     | 0.734       |         |
| October                | 138.8              | 82.60              | 27.40                              | 140.4                       | 135.5                  | 0.754               | 0.808                    | 0.077         | 0.662                     | 0.731       |         |
| November               | 117.6              | 79.20              | 26.70                              | 119.8                       | 115.4                  | 0.648               | 0.773                    | 0.067         | 0.568                     | 0.707       |         |
| December               | 115.0              | 73.20              | 26.29                              | 118.1                       | 113.6                  | 0.640               | 0.738                    | 0.061         | 0.566                     | 0.677       | 4       |
| Year                   | 1597.2             | 953.59             | 27.58                              | 1596.2                      | 1537.5                 | 8.575               | 9.174                    | 0.857         | 7.552                     | 8.317       |         |
| <u>н</u>               | •                  |                    | I                                  |                             |                        | •                   | •                        | •             |                           |             | -       |
| Legends: Glob          | Hor F              | lorizontal gl      | obal irradia                       | tion                        |                        | GlobEff             | Effect                   | ive Global, ( | corr. for IAN             | A and shad  | dings   |
| Diff                   | Hor H              | lorizontal d       | iffuse irradia                     | ation                       |                        | EArray              | Effect                   | ive energy a  | at the outpu              | ut of the a | rray    |
| [_A                    | mb T               | amb.               | nt in cell -                       | lano                        |                        | E_User              | Energ                    | y supplied t  | o the user                |             |         |
| GIOD                   |                    | BDDUI INCIDE       | ant in coll. pl                    | alle                        |                        | E_SUIAF<br>F Grid   | Energ                    | y injected in | suu<br>nto arid           |             |         |
|                        |                    |                    |                                    |                             |                        | EFrGrid             | Energ                    | y from the o  | grid                      |             |         |
|                        |                    |                    |                                    |                             |                        |                     | <u>9</u>                 | ,             | ,                         |             |         |



| PVSYST V6.86                                                                       |              |                     |                                                                              |                                                                                                                                                                                                                   | 21/04/20                                                               | Page 6/7                          |
|------------------------------------------------------------------------------------|--------------|---------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|
|                                                                                    |              |                     |                                                                              |                                                                                                                                                                                                                   | 21/01/20                                                               |                                   |
|                                                                                    |              | Grid-Co             | nnected Sy                                                                   | vstem: Loss diagram                                                                                                                                                                                               |                                                                        |                                   |
| Project :                                                                          |              | Taman Midal         | h (NEM)                                                                      |                                                                                                                                                                                                                   |                                                                        |                                   |
| Simulation var                                                                     | iant :       | average fami        | ly - 6kw                                                                     |                                                                                                                                                                                                                   |                                                                        |                                   |
| Main system parameters                                                             |              |                     | System type                                                                  | Sheds on ground                                                                                                                                                                                                   |                                                                        |                                   |
| Near ShadingsPV Field OrientationPV modulesPV ArrayInverterUser's needsDaily house |              |                     | inear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>nold consumers | 5° azimu<br>JAM6-72-320/SI Pro<br>20 Pnom to<br>SUN2000L-5KTL Pro<br>Constant over the year Glob                                                                                                                  | uth 0°<br>om 320 Wp<br>tal <b>6.40 kV</b><br>om 5.00 kV<br>oal 9174 k\ | y<br><b>Vp</b><br>V ac<br>Wh/year |
|                                                                                    |              |                     | Loss diagram o                                                               | ver the whole year                                                                                                                                                                                                |                                                                        |                                   |
|                                                                                    |              |                     |                                                                              |                                                                                                                                                                                                                   |                                                                        |                                   |
| Γ                                                                                  |              | 1597 kWh/m²         |                                                                              | Horizontal global irradiation                                                                                                                                                                                     |                                                                        |                                   |
|                                                                                    |              |                     | -0.07%<br>-0.07%<br>-0.00%<br>-3.67%                                         | Global incident in coll. plane<br>Global incident below threshold<br>Near Shadings: irradiance loss<br>IAM factor on global                                                                                       |                                                                        |                                   |
|                                                                                    | 1538 k       | Wh/m² * 39 m² coll. |                                                                              | Effective irradiation on collectors                                                                                                                                                                               |                                                                        |                                   |
| efficiency at STC = 16.53%                                                         |              |                     | •                                                                            | PV conversion                                                                                                                                                                                                     |                                                                        |                                   |
|                                                                                    |              | 9.85 MWh            | -11.15%                                                                      | Array nominal energy (at STC effic.)<br>PV loss due to irradiance level<br>PV loss due to temperature                                                                                                             |                                                                        |                                   |
|                                                                                    |              |                     | (+0.75%                                                                      | Module quality loss                                                                                                                                                                                               |                                                                        |                                   |
|                                                                                    |              |                     | →-1.10%<br>→-0.95%                                                           | Mismatch loss, modules and strings                                                                                                                                                                                |                                                                        |                                   |
|                                                                                    | 8.           | 58 MWh              |                                                                              | Array virtual energy at MPP                                                                                                                                                                                       |                                                                        |                                   |
|                                                                                    |              |                     | -1.88%<br>-0.00%<br>-0.00%<br>-0.00%<br>-0.01%                               | Inverter Loss during operation (efficiency<br>Inverter Loss over nominal inv. power<br>Inverter Loss due to max. input current<br>Inverter Loss over nominal inv. voltage<br>Inverter Loss due to power threshold | /)                                                                     |                                   |
| grid<br>consumption                                                                |              |                     | 40.00%<br>→-0.05%                                                            | Night consumption                                                                                                                                                                                                 |                                                                        |                                   |
|                                                                                    | 8.4          | 41 MWh              |                                                                              | Available Energy at Inverter Output                                                                                                                                                                               |                                                                        |                                   |
| 8.32 MWh 0.86 M                                                                    | Wh           | 7.55 MWh            |                                                                              | Energy injected into grid                                                                                                                                                                                         |                                                                        |                                   |
| to user to us<br>from grid from s                                                  | ser<br>solar | to grid             |                                                                              |                                                                                                                                                                                                                   |                                                                        |                                   |

| PVSYST V6.86                                                                              |                                         |                                                                                                              |                                                                                                |                                                                         |                                                  | 21/04/20                                                         | Page 7/7                     |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|------------------------------|--|--|
|                                                                                           |                                         | Grid-Connec                                                                                                  | ted Syster                                                                                     | n: P50 - P90 e                                                          | valuation                                        |                                                                  |                              |  |  |
| Proiect :                                                                                 |                                         | Taman Midah                                                                                                  | (NEM)                                                                                          |                                                                         |                                                  |                                                                  |                              |  |  |
| Simulation vari                                                                           | iant :                                  | average family                                                                                               | - 6kw                                                                                          |                                                                         |                                                  |                                                                  |                              |  |  |
| Main system pa                                                                            | rameters                                |                                                                                                              | System type                                                                                    | Sheds on ground                                                         |                                                  |                                                                  |                              |  |  |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                     | Lir<br>N<br>Daily househo                                                                                    | near shadings<br>tilt<br>Model<br>b. of modules<br>Model<br>Id consumers                       | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the ye     | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>ear Globa | h 0°<br>m 320 Wp<br>al <b>6.40 kV</b><br>m 5.00 kW<br>al 9174 kV | <b>/p</b><br>/ ac<br>Vh/year |  |  |
| Evaluation of the                                                                         | e Produc                                | tion probability for                                                                                         | orecast                                                                                        |                                                                         |                                                  |                                                                  |                              |  |  |
| The probability dia<br>on the meteo data                                                  | stribution<br>a used for                | of the system prod                                                                                           | uction forecast<br>d depends on t                                                              | for different years is he following choices:                            | mainly depen                                     | dent                                                             |                              |  |  |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                | e<br>on<br>ability                      | Year deviat                                                                                                  | Kind<br>ion from aver.<br>Variance                                                             | MeteoNorm 7.2 stat<br>Not defined<br>3 %<br>0.5 %                       | tion<br>Yea                                      | ar 1995                                                          |                              |  |  |
| The probability dia Specified Deviation                                                   | stribution<br>on P<br>Soi<br>(meteo + : | variance is also de<br>V module modellin<br>Inverter efficiend<br>ling and mismatch<br>Degradatio<br>system) | pending on so<br>g/parameters<br>cy uncertainty<br>uncertainties<br>on uncertainty<br>Variance | me system paramete<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 %         | rs uncertaintie<br>(quadratic sun                | us<br>n)                                                         |                              |  |  |
| Annual productior                                                                         | n probabil                              | ity                                                                                                          | Variability<br>P50<br>P90<br>P95                                                               | 0.14 MWh<br>7.55 MWh<br>7.37 MWh<br>7.32 MWh                            |                                                  |                                                                  |                              |  |  |
| Probability distribution                                                                  |                                         |                                                                                                              |                                                                                                |                                                                         |                                                  |                                                                  |                              |  |  |
|                                                                                           | Probability                             | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00<br>7100<br>7200<br>75   | P90 = 733<br>P95 = 7320 kW                                                                     | i0 = 7552 kWh<br>E_Grid simul = 7552<br>71 kWh<br>/h<br>500 7600 7700 7 | 2 kWh                                            | 8000                                                             |                              |  |  |

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                      |                                                                                      |                                                                                                                                                       |                                                                                                                                                              |                                                                                                                   | 21/04/20                                                                            | Page 1/7                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|--|
| Grid-Connected System: Simulation parameters                                                                                                                                                      |                                                                                      |                                                                                                                                                       |                                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |
| Project :                                                                                                                                                                                         | Tama                                                                                 | an Midah (NEM)                                                                                                                                        |                                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |
| Geographical Site Kuala Lumpur/Subang                                                                                                                                                             |                                                                                      | Country <b>Malaysia</b>                                                                                                                               |                                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |
| Situation                                                                                                                                                                                         |                                                                                      | Latitude                                                                                                                                              | 3.12° N                                                                                                                                                      | Longitude 101.55° E                                                                                               |                                                                                     | E                            |  |
| Time defined as                                                                                                                                                                                   |                                                                                      | Legal Time                                                                                                                                            | Time zone UT+8                                                                                                                                               | Altitude                                                                                                          | e 17 m                                                                              |                              |  |
| Alb<br>Meteo data: Kuala Lumpur/Sub                                                                                                                                                               |                                                                                      | Kuala Lumpur/Subang                                                                                                                                   | MeteoNorm 7.2 station - Synthetic                                                                                                                            |                                                                                                                   |                                                                                     |                              |  |
| Simulation vari                                                                                                                                                                                   | ant : avera                                                                          | age family - 6kw                                                                                                                                      |                                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |
|                                                                                                                                                                                                   |                                                                                      | Simulation date                                                                                                                                       | 21/04/20 16h02                                                                                                                                               |                                                                                                                   |                                                                                     |                              |  |
| Simulation parameters System type                                                                                                                                                                 |                                                                                      |                                                                                                                                                       | Sheds on ground                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |
| <b>Collector Plane</b>                                                                                                                                                                            | Orientation                                                                          | Tilt                                                                                                                                                  | 5°                                                                                                                                                           | Azimuth                                                                                                           | 0°                                                                                  |                              |  |
| Models used                                                                                                                                                                                       |                                                                                      | Transposition                                                                                                                                         | Perez                                                                                                                                                        | Diffuse                                                                                                           | e Perez, I                                                                          | Veteonorm                    |  |
| Horizon                                                                                                                                                                                           |                                                                                      | Free Horizon                                                                                                                                          |                                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |
| Near Shadings                                                                                                                                                                                     |                                                                                      | Linear shadings                                                                                                                                       |                                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |
| User's needs : Daily household consumers average                                                                                                                                                  |                                                                                      | Constant over the year<br>11.1 kWh/Day                                                                                                                |                                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |
| PV Array Charac<br>PV module<br>Original PVsyst<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics | teristics<br>database<br>dules<br>V modules<br>r<br>haracteristics (50<br>t database | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>J°C) U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 U<br>6.40 kWp At<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologie<br>90-500 V U<br>Max. | In parallel<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>Init Nom. Power<br>power (=>40°C) | 2 string:<br>320 Wp<br>5.75 kW<br>17 A<br>34.4 m <sup>2</sup><br>5.00 kV<br>5.50 kV | s<br>/p (50°C)<br>Vac<br>Vac |  |
| Inverter pack                                                                                                                                                                                     |                                                                                      | Nb. of inverters                                                                                                                                      | 2 * MPP1 50 %                                                                                                                                                | Pnom ratio                                                                                                        | r 5.0 kWa<br>9 1.28                                                                 | ac                           |  |
| PV Array loss fact<br>Thermal Loss fact<br>Wiring Ohmic Loss<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                   | ctors<br>for<br>ss<br>bss<br>Losses<br>loss<br>ASHRAE parame                         | Uc (const)<br>Global array res.<br>etrization IAM =                                                                                                   | 20.0 W/m²K<br>332 mOhm<br>1 - bo (1/cos i - 1)                                                                                                               | Uv (wind)<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param.                        | 0.0 W/n<br>1.5 % a<br>-0.8 %<br>1.0 % a<br>0.10 %<br>0.05                           | n²K / m/s<br>t STC<br>tt MPP |  |
|                                                                                                                                                                                                   |                                                                                      |                                                                                                                                                       |                                                                                                                                                              |                                                                                                                   |                                                                                     |                              |  |



| PVSYST V6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |                   |                                                                                                                                      | 21/        | 04/20 Page 3/7 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|--|--|--|--|--|
| (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rid-Connected S                                                                          | System            | n. Detailed Lls                                                                                                                      | er's needs | I              |  |  |  |  |  |
| Droioot :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tomon Midah (NEN                                                                         | <i>a</i> \        | i. Detailed 00                                                                                                                       |            |                |  |  |  |  |  |
| Project :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          | <i>n</i> )        |                                                                                                                                      |            |                |  |  |  |  |  |
| Simulation variant :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | average family - 6k                                                                      | W                 |                                                                                                                                      |            | _              |  |  |  |  |  |
| Main system parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Syste                                                                                    | em type           | Sheds on ground                                                                                                                      |            |                |  |  |  |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Daily household consumers |                   | 5°azimuth0°JAM6-72-320/SIPnom320 Wp20Pnom total <b>6.40 kWp</b> SUN2000L-5KTLPnom5.00 kW acConstant over the yearGlobal4045 kWh/year |            |                |  |  |  |  |  |
| Daily household consume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ers. Constant over the                                                                   | e vear. av        | verage = 11.1 kWh                                                                                                                    | /dav       |                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          | , <b>j</b> our, u |                                                                                                                                      | aug        |                |  |  |  |  |  |
| Annual values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                   |                                                                                                                                      |            |                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Use 2 days a week                                                                        | Number            | Power                                                                                                                                | Use        | Energy         |  |  |  |  |  |
| Lamps (LED or fluo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          | 28                | 18 W/lamp                                                                                                                            | 6 h/day    | 3024 Wh/day    |  |  |  |  |  |
| TV / PC / Mobile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          | 2                 | 70 W/app                                                                                                                             | 10 h/day   | 1400 Wh/day    |  |  |  |  |  |
| Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          | 1                 | 1200 W/app                                                                                                                           | 1 h/day    | 1200 Wh/day    |  |  |  |  |  |
| Fridge / Deep-freeze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          | 1                 |                                                                                                                                      | 24 Wh/day  | 3000 Wh/day    |  |  |  |  |  |
| Dish- & Cloth-washers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          | 1                 |                                                                                                                                      | 1 Wh/day   | 500 Wh/day     |  |  |  |  |  |
| Instant water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          | 2                 | 2000 W tot                                                                                                                           | 2 h/day    | 8000 Wh/day    |  |  |  |  |  |
| Aircond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          | 3                 | 750 W tot                                                                                                                            | 10 h/day   | 21375 Wh/day   |  |  |  |  |  |
| Stand-by consumers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                   |                                                                                                                                      | 24 h/day   | 24 Wh/day      |  |  |  |  |  |
| Total daily energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                   |                                                                                                                                      |            | 38523 Wh/day   |  |  |  |  |  |
| Hourly profile<br>Hourly profile |                                                                                          |                   |                                                                                                                                      |            |                |  |  |  |  |  |
| PVSYST V6.86          |                                              |                |                                    |                    |                    |             |                 |                      | 21/04/2         | D Page 4/7      |
|-----------------------|----------------------------------------------|----------------|------------------------------------|--------------------|--------------------|-------------|-----------------|----------------------|-----------------|-----------------|
|                       |                                              | Grid           | -Conn                              | ected \$           | Syster             | n: Mair     | n resu          | ts                   |                 |                 |
| Project ·             | Т                                            | aman Mi        | dah (NF                            | =M)                | 2                  |             |                 |                      |                 |                 |
|                       |                                              |                |                                    |                    |                    |             |                 |                      |                 |                 |
| Simulation varia      | ant: av                                      | /erage ta      | amily - 6                          | KW                 |                    |             |                 |                      |                 |                 |
| Main system para      | ameters                                      |                | Sys                                | stem type          | e Shed             | s on grou   | Ind             |                      |                 |                 |
| Near Shadings         |                                              |                | Linear                             | shadings           | 5 = -              |             |                 |                      |                 |                 |
| PV Field Orientatio   | on                                           |                |                                    | til<br>Modo        | t 5°<br>I IAME     | -72-320/9   | 1               | azimut               | h 0°<br>n 320.V | Vn              |
| PV Array              |                                              |                | Nh o                               | f modules          | $\sim 20$          | -12-320/3   | 1               | Pnom tot             | al <b>640</b> I | νp<br>kWn       |
| Inverter              |                                              |                | 1101 0                             | Mode               | SUN2               | 000L-5KT    | Ľ               | Pnor                 | n 5.00 l        | kW ac           |
| User's needs          |                                              | Daily hou      | usehold c                          | onsumers           | s Const            | ant over t  | he year         | Globa                | al 4045         | kWh/year        |
| Main simulation       | results                                      |                |                                    |                    |                    |             |                 |                      |                 |                 |
| System Production     | n                                            | _              | Produce                            | d Energy           | / 8.41             | MWh/yea     | r Sp            | ecific proc          | d. 1314         | kWh/kWp/year    |
|                       |                                              | Per            | formance                           | e Ratio PF         | 82.32              | %           | Solar F         | raction S            | F 23.69         | %               |
| Normalized production | ns (nor installo                             | d kWp). No     | minal nowe                         | r 6.40 kWp         |                    |             | Por             | formance P           | atio PP         |                 |
|                       |                                              |                |                                    |                    | 1                  | .0 <b>F</b> |                 |                      |                 |                 |
| Lc : Collect          | tion Loss (PV-array lo<br>n Loss (inverter,) | verter output) | ).7 kWh/kWp/day<br>).07 kWh/kWp/da |                    | 0                  | .9 E PR     | : Performance F | Ratio (Yf / Yr): 0.8 | 823             |                 |
|                       | ed userul energy (inv                        | ener output)   | 3.6 KVVI/KVVp/day                  | ′ ]                | 0                  | .8          |                 |                      |                 |                 |
| /dm 4 -               |                                              |                |                                    |                    | 0<br>光             | .7          |                 |                      |                 |                 |
| Extra Lange           |                                              |                |                                    |                    | 0 0                | .6          |                 |                      |                 |                 |
| 3-                    |                                              |                |                                    |                    | 0 guce             | .5          |                 |                      |                 |                 |
|                       |                                              |                |                                    | -                  | o un               | .4          |                 |                      |                 |                 |
| izi 2 -               |                                              |                |                                    |                    | <u>م</u>           | .3          |                 |                      |                 |                 |
| ē -                   |                                              |                |                                    | -                  | 0                  | .2          |                 |                      |                 |                 |
| 1-                    |                                              |                |                                    |                    | 0                  | 1           |                 |                      |                 |                 |
|                       |                                              |                |                                    |                    | 0                  |             | 1               |                      |                 |                 |
| Jan Feb Mar           | Apr May Jur                                  | n Jul Aug      | Sep Oct                            | Nov Dec            | U                  | Jan Feb     | Mar Apr         | May Jun              | Jul Aug S       | ep Oct Nov Dec  |
|                       |                                              |                |                                    |                    |                    |             |                 |                      |                 |                 |
|                       |                                              |                |                                    |                    |                    |             |                 |                      |                 |                 |
|                       |                                              |                |                                    | average            | family -           | 6kw         |                 |                      |                 |                 |
|                       |                                              |                | Ba                                 | lances a           | nd main            | results     |                 |                      |                 |                 |
|                       | GlobHor                                      | DiffHor        | T_Amb                              | GlobInc            | GlobEff            | EArray      | E_User          | E_Solar              | E_Grid          | EFrGrid         |
|                       | kWh/m <sup>2</sup>                           | kWh/m²         | °C                                 | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | MWh         | MWh             | MWh                  | MWh             | MWh             |
| January               | 133.0                                        | 82.20          | 28.10                              | 136.3              | 131.2              | 0.726       | 0.385           | 0.094                | 0.617           | 0.291           |
| February              | 134.6                                        | 67.90          | 27.70                              | 137.4              | 132.8              | 0.737       | 0.308           | 0.081                | 0.642           | 0.227           |
| March                 | 149.8                                        | 88.20          | 28.00                              | 150.3              | 144.9              | 0.804       | 0.308           | 0.079                | 0.709           | 0.229           |
| April                 | 140.3                                        | 70.50          | 27.70                              | 138.8              | 133.9              | 0.742       | 0.347           | 0.082                | 0.646           | 0.264           |
| May                   | 140.3                                        | 78.60          | 28.60                              | 136.9              | 131.7              | 0.734       | 0.347           | 0.078                | 0.641           | 0.268           |
| June                  | 132.0                                        | 77.80          | 27.80                              | 128.3              | 123.5              | 0.691       | 0.308           | 0.070                | 0.607           | 0.238           |
| July                  | 134.4                                        | 87.20          | 27.80                              | 131.1              | 125.8              | 0.710       | 0.385           | 0.095                | 0.601           | 0.290           |
| August                | 132.2                                        | 87.20          | 27.80                              | 130.1              | 125.2              | 0.700       | 0.308           | 0.065                | 0.622           | 0.244           |
| Octobor               | 129.2                                        | 19.00<br>82.60 | 27.10<br>27.40                     | 12ŏ.ŏ<br>14∩ 4     | 124.U<br>125.5     | 0.091       | 0.308           |                      | 0.605           | 0.235           |
| November              | r 117 6                                      | 79.20          | 27.40<br>26.70                     | 140.4<br>119 R     | 135.5<br>115 /     | 0.754       | 0.305           | 0.098                | 0.042           | 0.243           |
| December              | r 115.0                                      | 73.20          | 26.29                              | 118.1              | 113.6              | 0.640       | 0.347           | 0.077                | 0.551           | 0.270           |
| Year                  | 1597.2                                       | 953.59         | 27.58                              | 1596.2             | 1537.5             | 8.575       | 4.045           | 0.958                | 7.451           | 3.087           |
|                       |                                              | ļ              |                                    |                    |                    |             |                 | ļ                    |                 | I               |
| Legends: G            | GlobHor I                                    | Horizontal g   | obal irradia                       | tion               |                    | GlobEff     | Effect          | ive Global, d        | corr. for IAN   | A and shadings  |
| C                     | DiffHor I                                    | Horizontal d   | iffuse irradi                      | ation              |                    | EArray      | Effect          | ive energy a         | at the outpu    | ut of the array |
| T                     | [_Amb ]                                      | Гamb.          |                                    |                    |                    | E_User      | Energ           | y supplied to        | o the user      |                 |
| (                     |                                              | Jobal incide   | ent in coll. p                     | iane               |                    | E_Solar     | Energ           | y from the s         | sun             |                 |
|                       |                                              |                |                                    |                    |                    | E_Grid      | Energ           | y injected in        | no gria<br>rrid |                 |



| PVSYST V6.86                                                                            |               |                                             |                                                                               |                                                                                                                                                                                                            |                                          | 21/04/20                                                         | Page 6/7                     |
|-----------------------------------------------------------------------------------------|---------------|---------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                         |               | Grid-Co                                     | nnected Sv                                                                    | vstem: Loss diagram                                                                                                                                                                                        |                                          |                                                                  |                              |
|                                                                                         |               |                                             |                                                                               | Stem: LOSS diagram                                                                                                                                                                                         |                                          |                                                                  |                              |
| Project :                                                                               | riant .       |                                             | $1 (N \in W)$                                                                 |                                                                                                                                                                                                            |                                          |                                                                  |                              |
| Simulation val                                                                          | nant :        | average lann                                | ly - okw                                                                      |                                                                                                                                                                                                            |                                          |                                                                  |                              |
| Main system pa                                                                          | arameters     |                                             | System type                                                                   | Sheds on ground                                                                                                                                                                                            |                                          |                                                                  |                              |
| Near Shadings<br>PV Field Orienta<br>PV modules<br>PV Array<br>Inverter<br>User's needs | tion          | l<br>Daily houseł                           | inear shadings.<br>tilt<br>Model<br>Nb. of modules<br>Model<br>nold consumers | 5° az<br>JAM6-72-320/SI<br>20 Pnor<br>SUN2000L-5KTL<br>Constant over the year                                                                                                                              | zimut<br>Pnor<br>n tota<br>Pnor<br>Globa | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kW<br>al 4045 kV | <b>/p</b><br>/ ac<br>Vh/year |
|                                                                                         |               |                                             | Loss diagram o                                                                | ver the whole year                                                                                                                                                                                         |                                          |                                                                  |                              |
|                                                                                         |               |                                             | C C                                                                           |                                                                                                                                                                                                            |                                          |                                                                  |                              |
| Γ                                                                                       |               | 1597 kWh/m²                                 |                                                                               | Horizontal global irradiation                                                                                                                                                                              |                                          |                                                                  |                              |
|                                                                                         |               |                                             | -0.07%<br>-0.07%<br>-0.00%<br>-3.67%                                          | Global incident in coll. plane<br>Global incident below threshold<br>Near Shadings: irradiance loss<br>IAM factor on global                                                                                |                                          |                                                                  |                              |
|                                                                                         | 1538 k\       | Wh/m <sup>2</sup> * 39 m <sup>2</sup> coll. |                                                                               | Effective irradiation on collector                                                                                                                                                                         | s                                        |                                                                  |                              |
| F                                                                                       | efficienc     | y at STC = 16.53%                           |                                                                               | PV conversion                                                                                                                                                                                              |                                          |                                                                  |                              |
|                                                                                         |               | 9.85 MWh                                    | -11.15%                                                                       | Array nominal energy (at STC ef<br>PV loss due to irradiance level<br>PV loss due to temperature                                                                                                           | ffic.)                                   |                                                                  |                              |
|                                                                                         |               |                                             | +0.75%                                                                        | Module quality loss                                                                                                                                                                                        |                                          |                                                                  |                              |
|                                                                                         | 8.4           | 58 MWh                                      | → -1.10%<br>→ -0.95%                                                          | Mismatch loss, modules and strings<br>Ohmic wiring loss<br>Array virtual energy at MPP                                                                                                                     |                                          |                                                                  |                              |
|                                                                                         |               |                                             | 1.88%<br>0.00%<br>0.00%<br>0.00%<br>-0.01%                                    | Inverter Loss during operation (effici<br>Inverter Loss over nominal inv. power<br>Inverter Loss due to max. input currer<br>Inverter Loss over nominal inv. volta<br>Inverter Loss due to power threshold | iency)<br>er<br>ent<br>ge<br>d           |                                                                  |                              |
| grid<br>consumption                                                                     |               |                                             | →-0.05%                                                                       | Night consumption                                                                                                                                                                                          | nu                                       |                                                                  |                              |
|                                                                                         | 8.4           | 11 MWh                                      |                                                                               | Available Energy at Inverter Out                                                                                                                                                                           | put                                      |                                                                  |                              |
| 3.09 MWh 0.96                                                                           | MWh           | 7.45 MWh                                    |                                                                               | Energy injected into grid                                                                                                                                                                                  |                                          |                                                                  |                              |
| to user to u<br>from grid from                                                          | iser<br>solar | to grid                                     |                                                                               |                                                                                                                                                                                                            |                                          |                                                                  |                              |

| PVSYST V6.86                                                                              |                                         |                                                                                                              |                                                                                                  |                                                                      |                                                   | 21/04/20                                                         | Page 7/7                     |
|-------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                           |                                         | Grid-Connec                                                                                                  | ted Svster                                                                                       | m: P50 - P90                                                         | evaluation                                        |                                                                  |                              |
| Proiect :                                                                                 |                                         | Taman Midah                                                                                                  | (NEM)                                                                                            |                                                                      |                                                   |                                                                  |                              |
| Simulation vari                                                                           | iant :                                  | average family                                                                                               | v - 6kw                                                                                          |                                                                      |                                                   |                                                                  |                              |
| Main system pa                                                                            | rameters                                |                                                                                                              | System type                                                                                      | Sheds on ground                                                      |                                                   |                                                                  |                              |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                     | Lii<br>N<br>Daily househc                                                                                    | near shadings<br>tilt<br>Model<br>b. of modules<br>Model<br>Id consumers                         | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the s   | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>year Globa | h 0°<br>m 320 Wp<br>al <b>6.40 kV</b><br>m 5.00 kW<br>al 4045 kV | <b>/p</b><br>/ ac<br>Vh/year |
| Evaluation of the                                                                         | e Produc                                | tion probability f                                                                                           | orecast                                                                                          |                                                                      |                                                   |                                                                  |                              |
| The probability dia<br>on the meteo data                                                  | stribution<br>a used for                | of the system proc<br>the simulation, an                                                                     | luction forecast<br>d depends on t                                                               | for different years in the following choices                         | s mainly depen<br>s:                              | dent                                                             |                              |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                | e<br>on<br>ability                      | Year devia                                                                                                   | Kind<br>tion from aver.<br>Variance                                                              | MeteoNorm 7.2 sta<br>Not defined<br>3 %<br>0.5 %                     | ation<br>Yea                                      | ar 1995                                                          |                              |
| The probability dia Specified Deviation                                                   | stribution<br>on P<br>Soi<br>(meteo + s | variance is also de<br>V module modellir<br>Inverter efficien<br>ling and mismatch<br>Degradation<br>system) | epending on so<br>ng/parameters<br>cy uncertainty<br>uncertainties<br>on uncertainty<br>Variance | me system paramet<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 %       | ers uncertaintie<br>(quadratic sun                | us<br>n)                                                         |                              |
| Annual productior                                                                         | n probabil                              | ity                                                                                                          | Variability<br>P50<br>P90<br>P95                                                                 | 0.14 MWh<br>7.45 MWh<br>7.27 MWh<br>7.22 MWh                         |                                                   |                                                                  |                              |
|                                                                                           |                                         |                                                                                                              | Probability                                                                                      | distribution                                                         |                                                   |                                                                  |                              |
|                                                                                           | Probability                             | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00<br>7000<br>7100<br>7    | P90 = 72<br>P90 = 72<br>P95 = 7222 kV                                                            | i0 = 7451 kWh<br>E_Grid simul = 745<br>72 kWh<br>Vh<br>400 7500 7600 | 51 kWh                                            | 7900                                                             |                              |

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                   |                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                               | 21/04/20                                                                                                     | Page 1/7                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                | Grid-Co                                                                                            | nnected System                                                                                                                                                       | n: Simulation p                                                                                                                                                                     | arameters                                                                                                                                     | i                                                                                                            |                                    |
| Project :                                                                                                                                                                                      | Taman                                                                                              | Midah (NEM)                                                                                                                                                          |                                                                                                                                                                                     |                                                                                                                                               |                                                                                                              |                                    |
| Geographical S                                                                                                                                                                                 | ite Kua                                                                                            | ala Lumpur/Subang                                                                                                                                                    |                                                                                                                                                                                     | Country                                                                                                                                       | / Malays                                                                                                     | ia                                 |
| Situation<br>Time defined                                                                                                                                                                      | as                                                                                                 | Latitude<br>Legal Time<br>Albedo                                                                                                                                     | 3.12° N<br>Time zone UT+8<br>0.20                                                                                                                                                   | Longitude<br>Altitude                                                                                                                         | e 101.55°<br>e 17 m                                                                                          | E                                  |
| Meteo data:                                                                                                                                                                                    | Kua                                                                                                | ala Lumpur/Subang                                                                                                                                                    | MeteoNorm 7.2 stat                                                                                                                                                                  | tion - Synthetic                                                                                                                              |                                                                                                              |                                    |
| Simulation var                                                                                                                                                                                 | ant : average                                                                                      | family - 9kw                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                               |                                                                                                              |                                    |
|                                                                                                                                                                                                |                                                                                                    | Simulation date                                                                                                                                                      | 21/04/20 16h07                                                                                                                                                                      |                                                                                                                                               |                                                                                                              |                                    |
| Simulation para                                                                                                                                                                                | meters                                                                                             | System type                                                                                                                                                          | Sheds on ground                                                                                                                                                                     |                                                                                                                                               |                                                                                                              |                                    |
| Collector Plane                                                                                                                                                                                | Orientation                                                                                        | Tilt                                                                                                                                                                 | 5°                                                                                                                                                                                  | Azimuth                                                                                                                                       | n 0°                                                                                                         |                                    |
| Models used                                                                                                                                                                                    |                                                                                                    | Transposition                                                                                                                                                        | Perez                                                                                                                                                                               | Diffuse                                                                                                                                       | e Perez, I                                                                                                   | Veteonorm                          |
| Horizon                                                                                                                                                                                        |                                                                                                    | Free Horizon                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                               |                                                                                                              |                                    |
| Near Shadings                                                                                                                                                                                  |                                                                                                    | Linear shadings                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                               |                                                                                                              |                                    |
| User's needs :                                                                                                                                                                                 | Daily h                                                                                            | ousehold consumers<br>average                                                                                                                                        | Constant over the ye 25.1 kWh/Day                                                                                                                                                   | ear                                                                                                                                           |                                                                                                              |                                    |
| PV Array Charac<br>PV module<br>Original PVsys<br>Number of PV mo<br>Total number of F<br>Array global powe<br>Array operating cl<br>Total area<br>Inverter<br>Custom param<br>Characteristics | eteristics<br>t database<br>odules<br>V modules<br>er<br>naracteristics (50°C)<br>eters definition | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters | JAM6-72-320/SI<br>JA Solar<br>14 modules<br>28 Ur<br>8.96 kWp At o<br>470 V<br>54.3 m <sup>2</sup><br>SUN2000L-8KTL<br>Huawei Technologie<br>200-850 V U<br>Max. p<br>2 * MPPT 50 % | In parallel<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>nit Nom. Power<br>oower (=>40°C)<br>Total Power<br>Pnom ratic | I 2 string<br>320 Wp<br>8.05 kW<br>17 A<br>48.2 m <sup>2</sup><br>r 8.00 kV<br>8.80 kV<br>r 8.0 kW<br>5 1.12 | s<br>/p (50°C)<br>Vac<br>Vac<br>ac |
| <b>PV Array loss fa</b><br>Thermal Loss fac<br>Wiring Ohmic Los<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                             | ctors<br>tor<br>ss<br>oss<br>Losses<br>loss<br>ASHRAE parametriz                                   | Uc (const)<br>Global array res.<br>ation IAM =                                                                                                                       | 20.0 W/m²K<br>465 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                      | Uv (wind)<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param                                                                      | ) 0.0 W/n<br>1.5 % a<br>1.0 % a<br>0.10 %<br>. 0.05                                                          | n²K / m/s<br>t STC<br>tt MPP       |



| PVSYST V6.86                                                                                |                                              |                                                        |                                                                    | 21                                                   | /04/20                                               | Page 3/7                      |
|---------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------|
| Grid                                                                                        | d-Connected S                                | System                                                 | n. Detailed Lls                                                    | er's needs                                           |                                                      |                               |
|                                                                                             | men Mideh (NEN                               | •                                                      |                                                                    |                                                      |                                                      |                               |
|                                                                                             |                                              | 1)                                                     |                                                                    |                                                      |                                                      |                               |
| Simulation variant : av                                                                     | erage family - 9k                            | N                                                      |                                                                    |                                                      |                                                      |                               |
| Main system parameters                                                                      | Syste                                        | em type                                                | Sheds on ground                                                    |                                                      |                                                      |                               |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear sl<br>Nb. of n<br>Daily household con | hadings<br>tilt<br>Model<br>nodules<br>Model<br>sumers | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the y | azimuth<br>Pnom<br>Pnom total<br>Pnom<br>year Global | 0°<br>320 Wp<br><b>8.96 kV</b><br>8.00 kV<br>9174 kV | V <b>p</b><br>V ac<br>Vh/year |
| Daily household consumers,                                                                  | Constant over the                            | year, av                                               | /erage = 25.1 kWh/                                                 | /day                                                 |                                                      |                               |
|                                                                                             |                                              | Annua                                                  | l values                                                           |                                                      |                                                      |                               |
|                                                                                             | Use 5 days a week                            | Number                                                 | Power                                                              | Use                                                  |                                                      | Energy                        |
| Lamps (LED or fluo)                                                                         |                                              | 28                                                     | 18 W/lamp                                                          | 6 h/da                                               | iy 3                                                 | 3024 Wh/day                   |
| TV / PC / Mobile                                                                            |                                              | 2                                                      | 70 W/app                                                           | 10 h/da                                              | iy 1                                                 | 1400 Wh/day                   |
| Iron                                                                                        |                                              | 1                                                      | 1200 W/app                                                         | 1 h/da                                               | iy 1                                                 | 1200 Wh/day                   |
| Fridge / Deep-freeze                                                                        |                                              | 1                                                      |                                                                    | 24 Wh/da                                             | iy 3                                                 | 3000 Wh/day                   |
| Dish- & Cloth-washers                                                                       |                                              | 1                                                      |                                                                    | 1 Wh/da                                              | iy j                                                 | 500 Wh/day                    |
| Instant water heater                                                                        |                                              | 2                                                      | 2000 W tot                                                         | 2 h/da                                               | iy 8                                                 | 3000 Wh/day                   |
| Aircond<br>Stand by consumers                                                               |                                              | 3                                                      | 750 W 101                                                          | 8 n/da                                               |                                                      | 24 Wb/day                     |
| Total daily energy                                                                          |                                              |                                                        |                                                                    | 24 11/08                                             | 35                                                   | 5148 Wh/day                   |
|                                                                                             | 6000<br>5000<br>4000<br>1000<br>0<br>3       | Hourly                                                 | <b>profile</b>                                                     |                                                      |                                                      |                               |

| VSYST V6.86                                     |                     |                    |                            |                             |                       |                    |                         |                           | 21/04/2                  | 0 Page 4          |
|-------------------------------------------------|---------------------|--------------------|----------------------------|-----------------------------|-----------------------|--------------------|-------------------------|---------------------------|--------------------------|-------------------|
|                                                 |                     | Grid               | -Conn                      | ected \$                    | Systen                | n: Maiı            | n resu                  | lts                       |                          |                   |
| roject ·                                        | Ta                  | aman Mi            | idah (NF                   | =M)                         | -                     |                    |                         |                           |                          |                   |
|                                                 |                     |                    |                            | _ 1 ¥ 1 )                   |                       |                    |                         |                           |                          |                   |
| imulation variant                               | t: av               | erage fa           | amily - 9                  | kw                          |                       |                    |                         |                           |                          |                   |
| lain system param                               | eters               |                    | Sys                        | stem type                   | Shed                  | s on grou          | und                     |                           |                          |                   |
| lear Shadings                                   |                     |                    | Linear                     | shadings                    | 5                     |                    |                         |                           |                          |                   |
| V Field Orientation                             |                     |                    |                            | tili                        | $t 5^{\circ}$         | 70.000/0           |                         | azımut                    | h 0°<br>                 | A /               |
| V modules                                       |                     |                    | Nh o                       | f modules                   | 1 JAIVIO<br>28        | -12-320/3          |                         | Phom tot:                 | n 320 v<br>al <b>896</b> | νp<br><b>kWn</b>  |
| verter                                          |                     |                    |                            | Mode                        | I SUN2                | 000L-8KT           | Ľ                       | Pnor                      | n 8.00                   | kW ac             |
| ser's needs                                     |                     | Daily hou          | usehold c                  | onsumers                    | Const                 | ant over t         | he year                 | Globa                     | al 9174                  | kWh/year          |
| <b>lain simulation res</b><br>system Production | sults               | Per                | <b>Produce</b><br>formance | <b>d Energy</b><br>Ratio PR | <b>11.78</b><br>82.40 | <b>MWh/ye</b><br>% | <b>ar</b> Sp<br>Solar F | ecific proc<br>Fraction S | d. 1315<br>F 10.75       | kWh/kWp/ye<br>5 % |
| Normalized productions (                        | (per installed      | d kWp): No         | minal powe                 | r 8.96 kWp                  |                       |                    | Ре                      | rformance Ra              | atio PR                  |                   |
| 6 Lot Collection L                              | oss (PV-array lo    | sses) (            | ).7 kWh/kWh/day            | , – – – –                   | 1                     |                    | : Performance           | Ratio (Yf / Yr) : 0       | 824                      | 1 1 1             |
| Ls : System Los                                 | s (inverter,)       | ortor output)      | 0.07 kWh/kWp/day           | ay _                        | 0                     | .9                 |                         |                           |                          | _                 |
|                                                 | selui energy (inv   | enter output)      | 3.6 KVVN/KVVP/day          | ′ ]                         | 0                     | .8                 |                         |                           |                          |                   |
| /d/ 4-                                          |                     |                    |                            | <b>_</b> -                  | 0<br>문                | .7                 |                         |                           |                          |                   |
| KWH - EK                                        |                     |                    |                            |                             | 0 Catio               | .6                 |                         |                           |                          |                   |
| - S -                                           |                     |                    |                            |                             | - 0<br>2<br>0         | .5                 |                         |                           |                          |                   |
| <u> </u>                                        |                     |                    |                            | -                           | 0 gung                | .4                 |                         |                           |                          |                   |
| 2 -                                             |                     |                    |                            |                             | Pert                  |                    |                         |                           |                          |                   |
|                                                 |                     |                    |                            |                             | 0                     | .3                 |                         |                           |                          |                   |
| 1-                                              |                     |                    |                            |                             | 0                     | .2                 |                         |                           |                          |                   |
|                                                 |                     |                    |                            | -                           | 0                     | .1                 |                         |                           |                          |                   |
|                                                 |                     |                    |                            | Nev Dee                     | 0                     |                    | Mor Apr                 |                           |                          |                   |
|                                                 | inay Jur            | i Jui Aug          | Sep Oci                    | NOV DEC                     |                       | 5411 165           | iviai Api               | Way Juli                  | Jui Aug (                |                   |
|                                                 |                     |                    |                            |                             |                       |                    |                         |                           |                          |                   |
|                                                 |                     |                    |                            |                             |                       |                    |                         |                           |                          |                   |
|                                                 |                     |                    |                            | average                     | family -              | 9kw                |                         |                           |                          |                   |
|                                                 |                     |                    | Ba                         | lances ar                   | nd main i             | results            |                         |                           |                          |                   |
|                                                 | GlobHor             | DiffHor            | T_Amb                      | GlobInc                     | GlobEff               | EArray             | E_User                  | E_Solar                   | E_Grid                   | EFrGrid           |
|                                                 | KVVN/m <sup>2</sup> | KWN/M <sup>2</sup> | J <sup>°</sup>             | κwn/m²                      | KWN/M <sup>2</sup>    | IVIVVh             | IVIVI                   | IVIVVh                    | IVIVVh                   | IVIVN             |
| January                                         | 133.0               | 82.20              | 28.10                      | 136.3                       | 131.2                 | 1.016              | 0.808                   | 0.089                     | 0.909                    | 0.720             |
| Hebruary                                        | 134.0               | 07.90<br>80 20     | 21.10                      | 137.4                       | 132.8<br>144.0        | 1.031<br>1.125     | 0.703                   |                           | 0.937                    | 0.02/             |
| Anril                                           | 149.8<br>1/0 3      | 00.20<br>70.50     | 20.00<br>27.7∩             | 130.3<br>138.9              | 144.9<br>122 0        | 1.125              | 0.772                   | 0.08/                     | 1.018                    | 0.000             |
| May                                             | 140.3               | 78.60              | 28.60                      | 136.0                       | 133.9                 | 1 0 2 7            | 0.730                   | 0.004                     | 0.730                    | 0.034             |
| June                                            | 132.0               | 77 80              | 27.80                      | 128.3                       | 123.5                 | 0.967              | 0.738                   | 0.079                     | 0.870                    | 0.659             |
| Julv                                            | 134.4               | 87.20              | 27.80                      | 131.1                       | 125.8                 | 0.994              | 0.773                   | 0.082                     | 0.894                    | 0.692             |
| August                                          | 132.2               | 87.20              | 27.80                      | 130.1                       | 125.2                 | 0.980              | 0.808                   | 0.086                     | 0.875                    | 0.722             |
| September                                       | 129.2               | 79.00              | 27.10                      | 128.8                       | 124.0                 | 0.968              | 0.703                   | 0.079                     | 0.870                    | 0.624             |
| October                                         | 138.8               | 82.60              | 27.40                      | 140.4                       | 135.5                 | 1.056              | 0.808                   | 0.089                     | 0.948                    | 0.720             |
| November                                        | 117.6               | 79.20              | 26.70                      | 119.8                       | 115.4                 | 0.907              | 0.773                   | 0.076                     | 0.813                    | 0.698             |
| December                                        | 115.0               | 73.20              | 26.29                      | 118.1                       | 113.6                 | 0.896              | 0.738                   | 0.069                     | 0.810                    | 0.669             |
| Year                                            | 1597.2              | 953.59             | 27.58                      | 1596.2                      | 1537.5                | 12.005             | 9.174                   | 0.987                     | 10.798                   | 8.187             |
|                                                 | •                   | •                  |                            |                             |                       | •                  | •                       | +                         |                          | ·I                |
| Legends: Glob                                   | Hor H               | Horizontal g       | lobal irradia              | tion                        |                       | GlobEff            | Effect                  | ive Global, (             | corr. for IA             | M and shadings    |
| Diff                                            | Hor H               | Horizontal d       | iffuse irradi              | ation                       |                       | EArray             | Effect                  | ive energy a              | at the outp              | ut of the array   |

DiffHor T\_Amb GlobInc Horizontal diffuse irradiation T amb. Global incident in coll. plane Effective Global, corr. for IAM and shadings Effective energy at the output of the array Energy supplied to the user Energy from the sun Energy injected into grid Energy from the grid

E\_User

E\_Solar

E\_Grid

EFrGrid



|                                     | 1        |                         |                 |                |                                                                                | 1                  |          |
|-------------------------------------|----------|-------------------------|-----------------|----------------|--------------------------------------------------------------------------------|--------------------|----------|
| PVSYST V6.86                        |          |                         |                 |                |                                                                                | 21/04/20           | Page 6/7 |
|                                     |          | Grid-Co                 | nnecte          | ed Sv          | stem: Loss diagram                                                             |                    |          |
| Project :                           |          | Taman Midak             |                 |                |                                                                                |                    |          |
| Simulation vari                     | iant ·   |                         |                 |                |                                                                                |                    |          |
|                                     |          | average lann            | - 5KW           |                |                                                                                |                    |          |
| Main system pa                      | rameters |                         | System          | type           | Sheds on ground                                                                |                    |          |
| Near Shadings<br>PV Field Orientati | ion      | L                       | inear sha       | idings<br>tilt | 5° azimu                                                                       | th 0°              |          |
| PV modules                          |          |                         | Г               | Model          | JAM6-72-320/SI Pnc                                                             | m 320 Wp           | i        |
| PV Array                            |          |                         | Nb. of mo       | dules          | 28 Pnom to                                                                     | tal <b>8.96 kV</b> | Vp       |
| User's needs                        |          | Daily househ            | י<br>Iold consu | umers          | Constant over the year Glob                                                    | al 9174 k          | Vh/year  |
|                                     |          |                         | Loss diad       | aram ov        | ver the whole vear                                                             |                    |          |
|                                     |          |                         |                 |                |                                                                                |                    |          |
|                                     |          |                         |                 |                |                                                                                |                    |          |
|                                     |          | 1597 kWh/m <sup>2</sup> |                 |                | Horizontal global irradiation                                                  |                    |          |
|                                     |          |                         | $\succ$         | -0.07%         | Global incident in coll. plane                                                 |                    |          |
|                                     |          |                         |                 | -0.07%         | Global incident below threshold                                                |                    |          |
|                                     |          |                         | Ľ,              | -3.67%         | IAM factor on global                                                           |                    |          |
|                                     | 1538 k   | Wh/m² * 54 m² coll.     |                 |                | Effective irradiation on collectors                                            |                    |          |
|                                     | efficien | cy at STC = 16.53%      |                 |                | PV conversion                                                                  |                    |          |
| Г                                   |          | 13.79 MWh               | l.              |                | Array nominal energy (at STC effic.)                                           |                    |          |
|                                     |          |                         |                 | ).75%          | PV loss due to irradiance level                                                |                    |          |
|                                     |          |                         |                 | 11.15%         | PV loss due to temperature                                                     |                    |          |
|                                     |          |                         | (+0.75          | %              | Module quality loss                                                            |                    |          |
|                                     |          |                         | 9-1.10%         | %              | Mismatch loss, modules and strings                                             |                    |          |
|                                     | 12       | 2.01 MWh                | 9-0.95%         | 6              | Ohmic wiring loss<br>Array virtual energy at MPP                               |                    |          |
|                                     |          |                         | l               |                | ,                                                                              |                    |          |
|                                     |          |                         | →-1.80%         | 0              | Inverter Loss during operation (efficiency                                     | ()                 |          |
|                                     |          |                         | 0.00%           |                | Inverter Loss due to max. input current                                        |                    |          |
|                                     |          |                         | → 0.00%         |                | Inverter Loss over nominal inv. voltage                                        |                    |          |
| arid                                |          |                         | 70.00%          |                | Inverter Loss due to power threshold<br>Inverter Loss due to voltage threshold |                    |          |
| consumption                         |          |                         | →-0.04%         |                | Night consumption                                                              |                    |          |
|                                     | 11       | .78 MWh                 |                 |                | Available Energy at Inverter Output                                            |                    |          |
|                                     |          | 0.00 1.01               |                 |                | <b>_</b>                                                                       |                    |          |
| 8.19 MWh 0.99 M                     | /jvvn 1  | 10.80 MIVVN             | J               |                | Energy injected into grid                                                      |                    |          |
| to user to us                       | ser      | to grid                 |                 |                |                                                                                |                    |          |
| trom grid from s                    | solar    |                         |                 |                |                                                                                |                    |          |
|                                     |          |                         |                 |                |                                                                                |                    |          |

| PVSYST V6.86                                                                               |                             |                                                                               |                                                                                                          |                                                                       |                                               | 21/04/20                                                         | Page 7/7                     |
|--------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                            |                             | Grid-Conr                                                                     | ected Syster                                                                                             | m <sup>.</sup> P50 - P90 eva                                          | aluation                                      |                                                                  |                              |
| Project ·                                                                                  |                             | Taman Mid                                                                     | ah (NFM)                                                                                                 |                                                                       |                                               |                                                                  |                              |
| Simulation varia                                                                           | ant :                       | average far                                                                   | nilv - 9kw                                                                                               |                                                                       |                                               |                                                                  |                              |
| Main system para                                                                           | ameters                     |                                                                               | System type                                                                                              | Sheds on around                                                       |                                               |                                                                  |                              |
| Near Shadings<br>PV Field Orientatio<br>PV modules<br>PV Array<br>Inverter<br>User's needs | n                           | Daily hous                                                                    | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>ehold consumers                           | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the year | azimutl<br>Pnor<br>Pnom tota<br>Pnor<br>Globa | n 0°<br>n 320 Wp<br>al <b>8.96 kV</b><br>n 8.00 kW<br>al 9174 k\ | <b>Vp</b><br>√ ac<br>Vh/year |
| Evaluation of the                                                                          | Produc                      | tion probabili                                                                | ty forecast                                                                                              |                                                                       |                                               |                                                                  |                              |
| The probability dist on the meteo data                                                     | tribution of used for       | of the system p<br>the simulation                                             | production forecast<br>, and depends on t                                                                | t for different years is ma<br>the following choices:                 | ainly depend                                  | Jent                                                             |                              |
| Meteo data source<br>Meteo data<br>Specified Deviation<br>Year-to-year variab              | n<br>pility                 | Year de                                                                       | Kind<br>eviation from aver.<br>Variance                                                                  | MeteoNorm 7.2 station<br>Not defined<br>3 %<br>0.5 %                  | n<br>Yea                                      | ır 1995                                                          |                              |
| The probability dist<br>Specified Deviation                                                | tribution v<br>n P'<br>Soil | variance is also<br>V module mod<br>Inverter effic<br>ing and misma<br>Degrae | o depending on so<br>elling/parameters<br>ciency uncertainty<br>atch uncertainties<br>dation uncertainty | me system parameters (<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 %   | uncertaintie                                  | 5                                                                |                              |
| Annual production                                                                          | probabili                   | ty                                                                            | Variability<br>P50<br>P90<br>P95                                                                         | 0.20 MWh<br>10.80 MWh<br>10.54 MWh<br>10.47 MWh                       |                                               | )                                                                |                              |
|                                                                                            |                             |                                                                               | Probability                                                                                              | distribution                                                          |                                               |                                                                  |                              |
|                                                                                            | Probability                 | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05  | P50<br>P90 = 1053<br>P95 = 10466 kW                                                                      | 0 = 10798 kWh<br>E Grid simul = 10798 kW<br>19 kWh                    | Vh                                            | •••••••••••••••••••••••••••••••••••••••                          |                              |

0.00 **6** 

E\_Grid system production kWh

Ξ

| PVSYST V6.86                                                                                                                                                                                   |                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                               | 21/04/20                                                                                               | Page 1/7                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                | Grid-Con                                                                                                  | nected System                                                                                                                                                     | n: Simulation p                                                                                                                                                                     | arameters                                                                                                                                     |                                                                                                        |                                    |
| Project :                                                                                                                                                                                      | Taman M                                                                                                   | idah (NEM)                                                                                                                                                        |                                                                                                                                                                                     |                                                                                                                                               |                                                                                                        |                                    |
| Geographical S                                                                                                                                                                                 | ite Kuala                                                                                                 | a Lumpur/Subang                                                                                                                                                   |                                                                                                                                                                                     | Country                                                                                                                                       | Malays                                                                                                 | ia                                 |
| Situation<br>Time defined                                                                                                                                                                      | as                                                                                                        | Latitude<br>Legal Time<br>Albedo                                                                                                                                  | 3.12° N<br>Time zone UT+8<br>0.20                                                                                                                                                   | Longitude<br>Altitude                                                                                                                         | 101.55°<br>17 m                                                                                        | E                                  |
|                                                                                                                                                                                                | Kuala                                                                                                     |                                                                                                                                                                   | Meteonorm 7.2 sta                                                                                                                                                                   | tion - Synthetic                                                                                                                              |                                                                                                        |                                    |
| Simulation var                                                                                                                                                                                 | iant : average fa                                                                                         | amily - 9kw                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                                                               |                                                                                                        |                                    |
|                                                                                                                                                                                                |                                                                                                           | Simulation date                                                                                                                                                   | 21/04/20 16h08                                                                                                                                                                      |                                                                                                                                               |                                                                                                        |                                    |
| Simulation para                                                                                                                                                                                | imeters                                                                                                   | System type                                                                                                                                                       | Sheds on ground                                                                                                                                                                     |                                                                                                                                               |                                                                                                        |                                    |
| Collector Plane                                                                                                                                                                                | Orientation                                                                                               | Tilt                                                                                                                                                              | 5°                                                                                                                                                                                  | Azimuth                                                                                                                                       | 0°                                                                                                     |                                    |
| Models used                                                                                                                                                                                    |                                                                                                           | Transposition                                                                                                                                                     | Perez                                                                                                                                                                               | Diffuse                                                                                                                                       | Perez, N                                                                                               | Veteonorm                          |
| Horizon                                                                                                                                                                                        |                                                                                                           | Free Horizon                                                                                                                                                      |                                                                                                                                                                                     |                                                                                                                                               |                                                                                                        |                                    |
| Near Shadings                                                                                                                                                                                  |                                                                                                           | Linear shadings                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                               |                                                                                                        |                                    |
| User's needs :                                                                                                                                                                                 | Daily ho                                                                                                  | usehold consumers<br>average                                                                                                                                      | Constant over the ye 11.1 kWh/Day                                                                                                                                                   | ear                                                                                                                                           |                                                                                                        |                                    |
| PV Array Charac<br>PV module<br>Original PVsys<br>Number of PV mod<br>Total number of F<br>Array global powe<br>Array operating c<br>Total area<br>Inverter<br>Custom param<br>Characteristics | eteristics<br>Si-<br>t database<br>odules<br>V modules<br>er<br>naracteristics (50°C)<br>eters definition | mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters | JAM6-72-320/SI<br>JA Solar<br>14 modules<br>28 Ur<br>8.96 kWp At 0<br>470 V<br>54.3 m <sup>2</sup><br>SUN2000L-8KTL<br>Huawei Technologie<br>200-850 V U<br>Max. p<br>2 * MPPT 50 % | In parallel<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>nit Nom. Power<br>power (=>40°C)<br>Total Power<br>Pnom ratio | 2 strings<br>320 Wp<br>8.05 kW<br>17 A<br>48.2 m <sup>2</sup><br>8.00 kW<br>8.80 kW<br>8.80 kW<br>1.12 | s<br>/p (50°C)<br>Vac<br>Vac<br>ac |
| <b>PV Array loss fa</b><br>Thermal Loss fac                                                                                                                                                    | <b>ctors</b><br>tor                                                                                       | Uc (const)                                                                                                                                                        | 20.0 W/m²K                                                                                                                                                                          | Uv (wind)                                                                                                                                     | 0.0 W/n                                                                                                | n²K / m/s                          |
| Wiring Ohmic Lo<br>Module Quality L<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect,                                                                                                | ss<br>oss<br>Losses<br>Ioss<br>ASHRAE parametrizat                                                        | Global array res.                                                                                                                                                 | 465 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                                    | Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param.                                                                 | 1.5 % a<br>-0.8 %<br>1.0 % a<br>0.10 %<br>0.05                                                         | t STC<br>tt MPP                    |



| PVSYST V6.86           |                        |           |                       | 21/                  | 04/20 Page 3/7             |
|------------------------|------------------------|-----------|-----------------------|----------------------|----------------------------|
| (                      | Grid-Connected S       | System    | n: Detailed Lls       | er's needs           | I                          |
| Drainat                | Tomon Midah (NEN       |           |                       |                      |                            |
| Project :              |                        | vi)       |                       |                      |                            |
| Simulation variant :   | average family - 9k    | W         |                       |                      |                            |
| Main system parameters | Syste                  | em type   | Sheds on ground       |                      |                            |
| Near Shadings          | Linear s               | hadings   |                       |                      |                            |
| PV Field Orientation   |                        | tilt      | 5°                    | azimuth (            | )°                         |
| PV modules<br>PV Array | Nb of r                | modules   | JAN16-72-320/51<br>28 | Phom .<br>Pnom total | 320 wp<br>8 <b>.96 kWp</b> |
| Inverter               |                        | Model     | SUN2000L-8KTL         | Pnom 8               | 8.00 kW ac                 |
| User's needs           | Daily household cor    | nsumers   | Constant over the y   | year Global 4        | 4045 kWh/year              |
| Daily household consum | ers, Constant over the | e year, a | verage = 11.1 kWh/    | /day                 |                            |
|                        |                        | Annua     | l values              |                      |                            |
|                        | Use 2 days a week      | Number    | Power                 | Use                  | Energy                     |
| Lamps (LED or fluo)    |                        | 28        | 18 W/lamp             | 6 h/day              | 3024 Wh/day                |
| TV / PC / Mobile       |                        | 2         | 70 W/app              | 10 h/day             | 1400 Wh/day                |
| Iron                   |                        | 1         | 1200 W/app            | 1 h/day              | 1200 Wh/day                |
| Fridge / Deep-freeze   |                        | 1         |                       | 24 Wh/day            | 3000 Wh/day                |
| Dish- & Cloth-washers  |                        |           | 2000 W/ tot           | 1 Wh/day             | 500 Wh/day                 |
| Aircond                |                        |           | 2000 W tot            | 2 n/day<br>10 b/day  | 21375 Wb/day               |
| Stand-by consumers     |                        | 5         | 750 W tot             | 24 h/day             | 21375 Wh/day               |
| Total daily energy     |                        |           | . <b> </b>            |                      | 38523 Wh/day               |
|                        |                        |           |                       |                      | -                          |
|                        | - 5000                 | Hourly    | / profile             |                      |                            |
|                        | ° 4000 −               |           |                       | · · · ·              |                            |
|                        | ë<br>₩ -<br>> 3000 —   |           |                       |                      |                            |
|                        | 2000 -                 |           |                       |                      |                            |
|                        | ັ <sub>ວ</sub> 2000 -  |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        | 6 9       | 12 15 18              | 21 24                |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |
|                        |                        |           |                       |                      |                            |

| PVSYST V6.86         |                                       |                         |                 |                      |                |                     |                 |                     | 21/04/2         | 0 Page 4/7      |
|----------------------|---------------------------------------|-------------------------|-----------------|----------------------|----------------|---------------------|-----------------|---------------------|-----------------|-----------------|
| '                    |                                       | Grid                    | -Conn           | ected \$             | Svster         | n: Maiı             | n resul         | ts                  |                 |                 |
| Draigat :            | -                                     | Tomon Mi                | idah (NE        | = = = = = = =        |                |                     |                 |                     |                 |                 |
| Project :            |                                       |                         | idan (NE        | - IVI <i>)</i>       |                |                     |                 |                     |                 |                 |
| Simulation vari      | ant: a                                | average fa              | amily - 9       | kw                   |                |                     |                 |                     |                 |                 |
| Main system par      | rameters                              |                         | Sys             | stem type            | Shed           | s on grou           | und             |                     |                 |                 |
| Near Shadings        |                                       |                         | Linear          | shadings             | 5              |                     |                 | . ,                 |                 |                 |
| PV Field Orientati   | on                                    |                         |                 | tili<br>Mode         | t 5°<br>I IAME | -72-320/9           | 1               | azimut              | n 0°<br>n 320.V | Vn              |
| PV Arrav             |                                       |                         | Nb. o           | f modules            | s 28           | -12-520/6           | 1               | Pnom tota           | al <b>8.96</b>  | kWp             |
| Inverter             |                                       |                         |                 | Mode                 | I SUN2         | 000L-8KT            | Ľ               | Pnor                | n 8.00          | kW ac           |
| User's needs         |                                       | Daily ho                | usehold c       | onsumers             | Const          | ant over t          | he year         | Globa               | al 4045         | kWh/year        |
| Main simulation      | results                               |                         |                 |                      |                |                     |                 |                     |                 |                 |
| System Production    | on                                    |                         | Produce         | d Energy             | 11.78          | MWh/ye              | ar Spe          | ecific proc         | d. 1315         | kWh/kWp/year    |
|                      |                                       | Pei                     | rformance       | e Ratio PF           | 8 82.40        | %                   | Solar F         | raction S           | F 25.85         | %               |
| Normalized productio | ons (per instal                       | lled kWp): No           | ominal powe     | r 8.96 kWp           |                |                     | Per             | formance Ra         | atio PR         |                 |
| 6 Lc : Colleg        | tion Loss (PV-array                   | v losses)               | 0.7 kWh/kWp/day | ,                    | 1              | .0                  | : Performance R | atio (Yf / Yr) : 0. | 824             |                 |
| Ls : Syste           | m Loss (inverter,                     | .)<br>(inverter output) | 0.07 kWh/kWp/da | ay                   | 0              | .9                  |                 |                     |                 |                 |
| [/day]               | , , , , , , , , , , , , , , , , , , , |                         | ,               | ′ _                  | 0              | .8                  |                 |                     |                 |                 |
| dmy/c 4-             |                                       |                         |                 | <b>_</b>             | 8<br>전         | ).7                 |                 |                     |                 |                 |
| - Kw                 |                                       |                         |                 |                      | 0 0            | 1.6                 |                 |                     |                 |                 |
| Energy               |                                       |                         |                 |                      | 0 mance        | .5                  |                 |                     |                 |                 |
| p z zed              |                                       |                         |                 | -                    | Perforr        | .4                  |                 |                     |                 |                 |
|                      |                                       |                         |                 |                      | 0              | .3                  |                 |                     |                 |                 |
| 1-                   |                                       |                         |                 |                      | 0              | .2                  |                 |                     |                 |                 |
|                      |                                       |                         |                 | -                    | 0              | .1                  |                 |                     |                 |                 |
| 0 Jan Feb Mar        | r Apr May                             | Jun Jul Aug             | Sep Oct         | Nov Dec              | 0              | .0 <b>E</b> Jan Feb | Mar Apr         | May Jun             | Jul Aug S       | ep Oct Nov Dec  |
|                      |                                       |                         |                 |                      |                |                     |                 |                     |                 |                 |
|                      |                                       |                         |                 |                      |                |                     |                 |                     |                 |                 |
|                      |                                       |                         |                 | average              | fomily         | Okuv                |                 |                     |                 |                 |
|                      |                                       |                         | Ba              | average<br>dances ar | nd main        | results             |                 |                     |                 |                 |
|                      |                                       |                         |                 |                      |                |                     |                 |                     |                 |                 |
|                      | GlobHo                                | DiffHor                 | T_Amb           | GlobInc              | GlobEff        | EArray              | E_User          | E_Solar             | E_Grid          | EFrGrid         |
|                      | KVVN/M                                | ~ кwn/m²                |                 | кvvп/m²              | кууп/m²        |                     |                 |                     |                 |                 |
| January              | 133.0                                 | 82.20                   | 28.10           | 136.3<br>127 4       | 131.2<br>122 9 | 1.016               | 0.385           | 0.103               | 0.894<br>0.027  | 0.282           |
| March                | 134.0                                 | 88.20                   | 27.70           | 157.4                | 132.0          | 1.125               | 0.308           | 0.087               | 1.021           | 0.222           |
| April                | 140.3                                 | 70.50                   | 27.70           | 138.8                | 133.9          | 1.039               | 0.347           | 0.090               | 0.931           | 0.257           |
| May                  | 140.3                                 | 78.60                   | 28.60           | 136.9                | 131.7          | 1.027               | 0.347           | 0.088               | 0.920           | 0.259           |
| June                 | 132.0                                 | 77.80                   | 27.80           | 128.3                | 123.5          | 0.967               | 0.308           | 0.077               | 0.872           | 0.231           |
| July                 | 134.4                                 | 87.20                   | 27.80           | 131.1                | 125.8          | 0.994               | 0.385           | 0.103               | 0.872           | 0.282           |
| August               | 132.2                                 | 87.20                   | 27.80           | 130.1                | 125.2          | 0.980               | 0.308           | 0.071               | 0.891           | 0.238           |
| Septemb              | er 129.2                              | 79.00                   | 27.10           | 128.8                | 124.0          | 0.968               | 0.308           | 0.081               | 0.868           | 0.227           |
| October              | 138.8                                 | 82.60                   | 27.40           | 140.4                | 135.5          | 1.056               | 0.385           | 0.106               | 0.931           | 0.280           |
| Novembe              | er 117.6                              | 79.20                   | 26.70           | 119.8                | 115.4          | 0.907               | 0.308           | 0.072               | 0.817           | 0.236           |
| Decembe              | er 115.0                              | 73.20                   | 26.29           | 118.1                | 113.6          | 0.896               | 0.347           | 0.085               | 0.794           | 0.262           |
| Year                 | 1597.2                                | 2 953.59                | 27.58           | 1596.2               | 1537.5         | 12.005              | 4.045           | 1.046               | 10.738          | 2.999           |
|                      |                                       |                         |                 |                      |                |                     |                 |                     |                 | <br>            |
| Legends:             | GlobHor                               | Horizontal g            | Iobal irradia   | tion                 |                | GlobEff             | Effecti         | ve Global, o        | corr. for IAI   | VI and shadings |
|                      | UITTHOR                               | Horizontal d            | irtuse irradi   | ation                |                | EArray              | Effecti         | ve energy a         | at the outpu    | ut of the array |
|                      | i_Amb<br>Globlec                      | i amp.<br>Global incide | ant in coll in  | lane                 |                | E_USEr<br>E_Solar   | Energy          | y supplied to       | u ine user      |                 |
| I                    | JUDUIL                                |                         | μι τη con. ρ    |                      |                | L_SUIdI             | Linergy         | y nom the s         | oun             |                 |

E\_Grid

EFrGrid

Energy injected into grid

Energy from the grid

Γ



|                  | -         |                                                         |                        |                                 |                   |                                |                   |
|------------------|-----------|---------------------------------------------------------|------------------------|---------------------------------|-------------------|--------------------------------|-------------------|
| PVSYST V6.86     | 5         |                                                         |                        |                                 |                   | 21/04/20                       | Page 6/7          |
|                  |           | Grid-Co                                                 | nnected Sv             | /stem: Loss diagra              | am                |                                |                   |
| Project :        |           | Taman Midal                                             |                        |                                 |                   |                                |                   |
| Simulation va    | riant ·   | average fami                                            | i (i∎⊑ivi)<br>Iv - 9kw |                                 |                   |                                |                   |
| Main and an a    |           |                                                         |                        |                                 |                   |                                |                   |
| Main system pa   | arameters |                                                         | System type            | Sneds on ground                 |                   |                                |                   |
| PV Field Orienta | ation     | l                                                       | tilt                   | 5°                              | azimut            | h O°                           |                   |
| PV modules       |           |                                                         | Model                  | JAM6-72-320/SI                  | Pnor              | n 320 Wp                       |                   |
| PV Array         |           |                                                         | Nb. of modules         | 28<br>SUN20001-8KTI             | Pnom tota<br>Pnor | al <b>8.96 kV</b><br>n 8.00 kV | <b>vp</b><br>V ac |
| User's needs     |           | Daily house                                             | old consumers          | Constant over the year          | Globa             | al 4045 k\                     | Nh/year           |
|                  |           |                                                         | Loss diagram o         | ver the whole year              |                   |                                |                   |
|                  |           |                                                         | Ū                      |                                 |                   |                                |                   |
|                  |           |                                                         |                        |                                 |                   |                                |                   |
| Γ                |           | 1597 kWh/m <sup>2</sup>                                 |                        | Horizontal global irradiation   | n                 |                                |                   |
|                  |           |                                                         | <b>→</b> -0.07%        | Global incident in coll. plan   | ie                |                                |                   |
|                  |           |                                                         | -0.07%                 | Global incident below threshol  | ld                |                                |                   |
|                  |           |                                                         | -3 67%                 | Near Shadings: Irradiance loss  | 5                 |                                |                   |
|                  | 4500 1    | \\//- / 2 <b>* 5</b> 4 2 11                             |                        |                                 |                   |                                |                   |
| L                | 1538 K    | VVn/m <sup>2</sup> <sup>^</sup> 54 m <sup>2</sup> coll. |                        | Effective irradiation on col    | liectors          |                                |                   |
| Г                | efficien  | $\frac{12}{12}$ 70 MM/b                                 | ,<br>,                 | PV conversion                   |                   |                                |                   |
|                  |           | 13.79 1010011                                           | <b>→</b> -0.75%        | PV loss due to irradiance level |                   |                                |                   |
|                  |           |                                                         | -11.15%                | PV loss due to temperature      |                   |                                |                   |
|                  |           |                                                         | 4+0.75%                | Modulo quality loss             |                   |                                |                   |
|                  |           |                                                         | 1 10%                  | Mismatch loss modulos and s     | trings            |                                |                   |
|                  |           |                                                         | -0.95%                 | Ohmic wiring loss               | annys             |                                |                   |
|                  | 12        | 2.01 MWh                                                |                        | Array virtual energy at MPF     | P                 |                                |                   |
|                  |           |                                                         | -1 80%                 | Inverter Loss during operation  | (efficiency)      |                                |                   |
|                  |           |                                                         | → 0.00%                | Inverter Loss over nominal inv  | /. power          |                                |                   |
|                  |           |                                                         | → 0.00%                | Inverter Loss due to max. input | ut current        |                                |                   |
|                  |           |                                                         | 40.00%                 | Inverter Loss over nominal inv  | reshold           |                                |                   |
| grid             |           |                                                         | → 0.00%                | Inverter Loss due to voltage th | hreshold          |                                |                   |
| consumption      | 11        | 78 MW/b                                                 | →-0.04%                | Night consumption               | r Output          |                                |                   |
|                  |           |                                                         |                        | Available Energy at inverte     |                   |                                |                   |
| 2 00 1/1/1- 4 0  |           | 0 74 MM/h                                               |                        | Enormy injected into and        |                   |                                |                   |
| 3.00 MVVh 1.05   | ivjvvn 1  | 0.74 IVIVVN                                             | ]                      | Energy injected into grid       |                   |                                |                   |
| to user to u     | user      | to grid                                                 |                        |                                 |                   |                                |                   |
| from grid from   | solar     |                                                         |                        |                                 |                   |                                |                   |
|                  |           |                                                         |                        |                                 |                   |                                |                   |

| PVSYST V6.86        |            |                             |                                 |                        |                  | 21/04/20                      | Page 7/7 |
|---------------------|------------|-----------------------------|---------------------------------|------------------------|------------------|-------------------------------|----------|
|                     |            | Grid-Con                    | nected Syster                   | m: P50 - P90 e         | valuation        |                               |          |
| Project :           |            | Taman Mi                    | dah (NEM)                       |                        | raidation        |                               |          |
| Simulation vari     | iant :     | average fa                  | mily - 9kw                      |                        |                  |                               |          |
| Main system na      | ramotors   | avolugolu                   | Suctor turo                     | Shods on ground        |                  |                               |          |
| Near Shadings       | ameters    |                             | Linear shadings                 | Sheds on ground        |                  |                               |          |
| PV Field Orientat   | ion        |                             | tilt                            | 5°                     | azimut           | h 0°                          |          |
| PV modules          |            |                             | Model<br>Nb. of modules         | JAM6-72-320/SI<br>28   | Pnor<br>Pnom tot | m 320 Wp<br>al <b>896 k</b> V | ,<br>Vn  |
| Inverter            |            |                             | Model                           | SUN2000L-8KTL          | Pnor             | m 8.00 kV                     | V ac     |
| User's needs        |            | Daily hou                   | sehold consumers                | Constant over the ye   | ear Globa        | al 4045 k                     | Nh/year  |
| Evaluation of th    | e Produc   | tion probabi                | lity forecast                   |                        |                  |                               |          |
| The probability di  | stribution | of the system               | production forecast             | for different years is | mainly depen     | dent                          |          |
| on the meteo data   | a used for | the simulatio               | n, and depends on t             | the following choices: |                  |                               |          |
| Meteo data sourc    | e          |                             | Kind                            | Not defined            | Yea              | ar 1995                       |          |
| Specified Deviation | on<br>Link | Year                        | deviation from aver.            | 3 %                    |                  |                               |          |
| Year-to-year varia  | ability    |                             | Variance                        | 0.5 %                  |                  |                               |          |
| The probability di  | stribution | variance is al              | so depending on so              | me system paramete     | rs uncertaintie  | S                             |          |
| Specified Deviation | on P       | V module mo<br>Inverter eff | delling/parameters              | 1.0 %<br>0.5 %         |                  |                               |          |
|                     | Soi        | ling and mism               | natch uncertainties             | 1.0 %                  |                  |                               |          |
| Global variability  | (meteo +   | Degra<br>svstem)            | adation uncertainty<br>Variance | 1.0 %<br>1.9 % (       | 'quadratic sun   | n)                            |          |
|                     | (          |                             |                                 |                        | quadratic can    | ·)                            |          |
| Annual production   | n probabil | ity                         | Variability<br>P50              | 0.20 MWh<br>10.74 MWh  |                  |                               |          |
|                     |            |                             | P90                             | 10.48 MWh              |                  |                               |          |
|                     |            |                             | P95                             | 10.41 MWh              |                  |                               |          |
|                     |            |                             |                                 |                        |                  |                               |          |
|                     |            |                             | Probability                     | distribution           |                  |                               |          |
|                     |            | 0.50                        | <u> </u>                        | , , , ,                |                  |                               |          |
|                     |            | 0.45                        | F                               | P50 = 10738 kWh        | 738 kWh          | T                             |          |
|                     |            | 0.35                        |                                 |                        |                  |                               |          |
|                     |            | 0.30                        | /                               | $\langle \rangle$      |                  |                               |          |
|                     | bability   | 0.25                        |                                 | $\backslash$           |                  |                               |          |
|                     | Pro        | 0.20                        | P90 =                           | : 10481 kWh            |                  |                               |          |
|                     |            | 0.15                        |                                 |                        |                  | 1                             |          |
|                     |            | 0.10                        | P95 = 104                       |                        | $\backslash$     | T                             |          |
|                     |            | 0.00                        |                                 |                        |                  |                               |          |
|                     |            | 10000 10                    | 0200 10400 106                  | 00 10800 11000         | 11200            | 11400                         |          |

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                      |                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                   | 21/04/20                                                                                | Page 1/7                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------|
|                                                                                                                                                                                                   | Grid-                                                                               | Connected Syste                                                                                                                                   | m: Simulation p                                                                                                                                                                                                                                                   | parameters                                                                                                                        | i                                                                                       |                                     |
| Project :                                                                                                                                                                                         | Tam                                                                                 | an Midah (NEM)                                                                                                                                    |                                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                                                         |                                     |
| Geographical Si                                                                                                                                                                                   | te                                                                                  | Kuala Lumpur/Subanç                                                                                                                               | I                                                                                                                                                                                                                                                                 | Country                                                                                                                           | / Malays                                                                                | ia                                  |
| Situation<br>Time defined                                                                                                                                                                         | as                                                                                  | Latitude<br>Legal Time<br>Albede                                                                                                                  | e 3.12° N<br>e Time zone UT+8<br>o 0.20                                                                                                                                                                                                                           | Longitude<br>Altitude                                                                                                             | e 101.55°<br>e 17 m                                                                     | E                                   |
| Meteo data:                                                                                                                                                                                       |                                                                                     | Kuala Lumpur/Subang                                                                                                                               | MeteoNorm 7.2 sta                                                                                                                                                                                                                                                 | ation - Synthetic                                                                                                                 |                                                                                         |                                     |
| Simulation vari                                                                                                                                                                                   | ant : big f                                                                         | amily - 6kw                                                                                                                                       |                                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                                                         |                                     |
|                                                                                                                                                                                                   |                                                                                     | Simulation date                                                                                                                                   | e 21/04/20 15h29                                                                                                                                                                                                                                                  |                                                                                                                                   |                                                                                         |                                     |
| Simulation para                                                                                                                                                                                   | meters                                                                              | System type                                                                                                                                       | Sheds on ground                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                                                         |                                     |
| Collector Plane                                                                                                                                                                                   | Orientation                                                                         | Til                                                                                                                                               | t 5°                                                                                                                                                                                                                                                              | Azimuth                                                                                                                           | n 0°                                                                                    |                                     |
| Models used                                                                                                                                                                                       |                                                                                     | Transpositior                                                                                                                                     | Perez                                                                                                                                                                                                                                                             | Diffuse                                                                                                                           | e Perez, I                                                                              | Veteonorm                           |
| Horizon                                                                                                                                                                                           |                                                                                     | Free Horizor                                                                                                                                      | 1                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                         |                                     |
| Near Shadings                                                                                                                                                                                     |                                                                                     | Linear shadings                                                                                                                                   | 3                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                         |                                     |
| User's needs :                                                                                                                                                                                    | Da                                                                                  | aily household consumers<br>average                                                                                                               | Constant over the y<br>2.6 kWh/Day                                                                                                                                                                                                                                | /ear                                                                                                                              |                                                                                         |                                     |
| PV Array Charac<br>PV module<br>Original PVsyst<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics | teristics<br>database<br>dules<br>V modules<br>r<br>naracteristics (5<br>t database | Si-mono Mode<br>Manufacture<br>In series<br>Nb. modules<br>Nominal (STC)<br>0°C) U mpp<br>Module area<br>Mode<br>Manufacture<br>Operating Voltage | <ul> <li>JAM6-72-320/SI</li> <li>JA Solar</li> <li>10 modules</li> <li>20 L</li> <li>6.40 kWp At</li> <li>336 V</li> <li>38.8 m<sup>2</sup></li> <li>SUN2000L-5KTL</li> <li>Huawei Technologi</li> <li>90-500 V L</li> <li>Max.</li> <li>2 * MPPT 50 %</li> </ul> | In parallel<br>Jnit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>Jnit Nom. Power<br>power (=>40°C)<br>Total Power | I 2 strings<br>320 Wp<br>5.75 kW<br>17 A<br>34.4 m <sup>2</sup><br>r 5.00 kW<br>5.50 kW | s<br>/p (50°C)<br>Vac<br>Vac<br>Vac |
| inventer public                                                                                                                                                                                   |                                                                                     | No. of inverter                                                                                                                                   | 5 2 10111 00 /0                                                                                                                                                                                                                                                   | Pnom ratio                                                                                                                        | 0.0 km                                                                                  |                                     |
| <b>PV Array loss fac</b><br>Thermal Loss fact<br>Wiring Ohmic Los                                                                                                                                 | ctors<br>cor                                                                        | Uc (const<br>Global array res                                                                                                                     | ) 20.0 W/m²K<br>. 332 mOhm                                                                                                                                                                                                                                        | Uv (wind)<br>Loss Fraction                                                                                                        | ) 0.0 W/n<br>n 1.5 % a                                                                  | n²K / m/s<br>t STC                  |
| Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                                                                                   | oss<br>Losses<br>loss<br>ASHRAE param                                               | etrization IAM =                                                                                                                                  | = 1 - bo (1/cos i - 1)                                                                                                                                                                                                                                            | Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param                                                                       | -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>. 0.05                                               | It MPP                              |
|                                                                                                                                                                                                   |                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                                                         |                                     |



| PVSYST V6.86            |                              |                         |                                | 21/         | /04/20                   | Page 3/7   |
|-------------------------|------------------------------|-------------------------|--------------------------------|-------------|--------------------------|------------|
|                         | rid-Connected                | Svetan                  | n. Detailed Lle                | or's noods  |                          |            |
| Droiset :               |                              | av                      | I. Detailed 03                 | er s neeus  |                          |            |
| Project :               |                              | //)                     |                                |             |                          |            |
| Simulation variant :    | big family - 6kw             |                         |                                |             |                          |            |
| Main system parameters  | Syste                        | em type                 | Sheds on ground                |             |                          |            |
| Near Shadings           | Linear s                     | hadings                 |                                |             |                          |            |
| PV Field Orientation    |                              | tilt<br>Model           | 5°                             | azimuth     | 0°<br>220 Wp             |            |
| PV modules<br>PV Arrav  | Nb. of r                     | nodules                 | 20                             | Pnom total  | 320 wp<br><b>6.40 kW</b> | ďp         |
| Inverter                |                              | Model                   | SUN2000L-5KTL                  | Pnom        | 5.00 kW                  | ac         |
| User's needs            | Daily household cor          | sumers                  | Constant over the y            | /ear Global | 11.91 M                  | Wh/year    |
| Daily household consume | ers, Constant over the       | <b>year, a</b><br>Annua | verage = 32.6 kWh/<br>I values | /day        |                          |            |
|                         | Use 5 days a week            | Number                  | Power                          | Use         | E                        | Energy     |
| Lamps (LED or fluo)     | ,                            | 30                      | 18 W/lamp                      | 5 h/dav     | / 2                      | 700 Wh/dav |
| TV / PC / Mobile        |                              | 3                       | 70 W/app                       | 14 h/day    | 2                        | 940 Wh/day |
| Iron                    |                              | 1                       | 1200 W/app                     | 1 h/day     | / 1                      | 200 Wh/day |
| Fridge / Deep-freeze    |                              | 1                       |                                | 24 Wh/day   | / 3                      | 000 Wh/day |
| Dish- & Cloth-washers   |                              | 1                       |                                | 2 Wh/day    | /                        | 750 Wh/day |
| Instant water heater    |                              | 2                       | 2000 W tot                     | 2 h/day     | / 8                      | 000 Wh/day |
| Aircond                 |                              | 6                       | 750 W tot                      | 6 h/day     | / 27                     | 000 Wh/day |
| Stand-by consumers      |                              |                         |                                | 24 h/day    | /                        | 24 Wh/day  |
| rotal dally energy      |                              |                         |                                |             | 40                       | or4 wh/day |
|                         | Fraction of dally energy (1) | Hourly<br>Hourly<br>6 9 | <b>/ profile</b>               |             |                          |            |

| PVSYST V6.86              |                                    |               |                                    |                     |                      |                |                        |                    | 21/04/2          | D Page 4/7         |
|---------------------------|------------------------------------|---------------|------------------------------------|---------------------|----------------------|----------------|------------------------|--------------------|------------------|--------------------|
|                           |                                    | Grid          | -Conn                              | ected \$            | Syster               | n: Maiı        | n resul                | ts                 |                  |                    |
| Proiect :                 | Та                                 | iman Mi       | dah (NE                            | EM)                 |                      |                |                        |                    |                  |                    |
| Simulation variant        | : bio                              | a family      | - 6kw                              | ,                   |                      |                |                        |                    |                  |                    |
| Main system param         | eters                              | <u></u>       | Svs                                | stem type           | Shed                 | s on aroi      | und                    |                    |                  |                    |
| Near Shadings             |                                    |               | Linear                             | shading             | 2                    | <u>.</u>       |                        |                    |                  |                    |
| PV Field Orientation      |                                    |               | Linear                             | til                 | t 5°                 |                |                        | azimut             | h 0°             |                    |
| PV modules                |                                    |               |                                    | Mode                | I JAM6               | -72-320/S      | SI                     | Pnor               | m 320 V          | Vp                 |
| PV Array                  |                                    |               | Nb. o                              | f modules           | s 20                 |                | I                      | Pnom tota          | al <b>6.40</b> I | кWp                |
| nverter                   |                                    |               |                                    | Mode                | I SUN2               | 000L-5KT       | Ľ                      | Pnor               | m 5.00 l         | «W ac              |
| Jser's needs              |                                    | Daily hou     | usehold c                          | onsumers            | s Const              | ant over t     | he year                | Globa              | al 11.91         | MWh/year           |
| Main simulation res       | ults                               |               | Produco                            | d Enorm             | 7 Q / 1              | MWb/voa        | r Sn                   | ocific prov        | 4 131/           | k\//b/k\//p/voo    |
| system Floduction         |                                    | Per           | formance                           | e Ratio PF          | 82.32                | %              | Solar F                | raction S          | F 9.99 °         | %                  |
|                           |                                    |               |                                    |                     |                      |                |                        |                    |                  |                    |
| Normalized productions (p | per installed                      | i kWp): No    | minal power                        | r 6.40 kWp          |                      |                | Per                    | formance R         | atio PR          |                    |
| 6 Lc : Collection Lc      | I I<br>oss (PV-array los           | sses) (       | ).7 kWh/kWp/day                    | ,                   | 1                    | .0<br>.9<br>.9 | I I<br>: Performance R | atio (Yf / Yr): 0. | 823              |                    |
| 5 - Yf : Produced use     | s (inverter,)<br>eful energy (inve | erter output) | ).07 kWh/kWp/da<br>3.6 kWh/kWp/day | ny<br>/ -           | 0                    |                |                        | _                  | _                |                    |
| b/day]                    |                                    |               |                                    | -                   | 0                    | 7              |                        |                    |                  |                    |
| му 4-<br>Чч               |                                    |               |                                    |                     | H C                  |                |                        |                    |                  |                    |
| ≥ <b>.</b>                |                                    |               |                                    |                     | e Kati               | .0             |                        |                    |                  |                    |
|                           |                                    |               |                                    |                     | 0 mance              | .5             |                        |                    |                  |                    |
| p zeq                     |                                    |               |                                    |                     | Derfor               | .4             |                        |                    |                  |                    |
| - Yormal                  |                                    |               |                                    | -                   | 0                    | .3             |                        |                    |                  |                    |
| 1-                        |                                    |               |                                    |                     | 0                    | .2             |                        |                    |                  |                    |
|                           |                                    |               |                                    | -                   | 0                    | .1             |                        |                    |                  |                    |
| 0 lan Feb Mar An          | n May Jup                          |               | Sep Oct                            | Nov Dec             | 0                    |                | Mar Apr                | May Jup            |                  | ep. Oct. Nov. Dec. |
| our reb mai np            | in may burn                        | our Aug       | 000 000                            |                     |                      |                | indi 7tpi              | May our            | our nug c        |                    |
|                           |                                    |               |                                    |                     |                      |                |                        |                    |                  |                    |
|                           |                                    |               |                                    |                     |                      |                |                        |                    |                  |                    |
|                           |                                    |               | Ba                                 | big far             | mily - 6k<br>nd main | W              |                        |                    |                  |                    |
| T                         |                                    |               |                                    |                     |                      |                |                        |                    |                  |                    |
|                           | GlobHor                            | DiffHor       | T_Amb                              | GlobInc             | GlobEff              | EArray         | E_User                 | E_Solar            | E_Grid           | EFrGrid            |
| 1                         | кууп/m²                            | кууп/m²       |                                    | кууп/m <sup>2</sup> | κννπ/m²              |                |                        |                    |                  |                    |
| January                   | 133.U<br>124 4                     | 82.20         | 28.10<br>27.70                     | 136.3<br>127 /      | 131.2<br>122.9       | U./26          | 0.012                  | 0.103              | 0.608            | 0.946              |
| March                     | 134.0<br>149.8                     | 88.20         | 27.70<br>28.00                     | 157.4               | 132.0<br>144 Q       | 0.737          | 1 004                  | 0.090              | 0.033            | 0.022              |
| April                     | 140.3                              | 70.50         | 27.70                              | 138.8               | 133.9                | 0.742          | 0.958                  | 0.099              | 0.629            | 0.859              |
| May                       | 140.3                              | 78.60         | 28.60                              | 136.9               | 131.7                | 0.734          | 1.049                  | 0.108              | 0.611            | 0.941              |
| June                      | 132.0                              | 77.80         | 27.80                              | 128.3               | 123.5                | 0.691          | 0.958                  | 0.095              | 0.582            | 0.863              |
| July                      | 134.4                              | 87.20         | 27.80                              | 131.1               | 125.8                | 0.710          | 1.004                  | 0.100              | 0.597            | 0.904              |
| August                    | 132.2                              | 87.20         | 27.80                              | 130.1               | 125.2                | 0.700          | 1.049                  | 0.103              | 0.583            | 0.946              |
| September                 | 129.2                              | 79.00         | 27.10                              | 128.8               | 124.0                | 0.691          | 0.912                  | 0.093              | 0.585            | 0.819              |
| October                   | 138.8                              | 82.60         | 27.40                              | 140.4               | 135.5                | 0.754          | 1.049                  | 0.110              | 0.630            | 0.939              |
| November                  | 117.6                              | 79.20         | 26.70                              | 119.8               | 115.4                | 0.648          | 1.004                  | 0.097              | 0.537            | 0.906              |
| December                  | 115.0                              | /3.20         | 26.29                              | 118.1               | 113.6                | 0.640          | 0.958                  | 0.090              | 0.537            | 0.868              |
| Year                      | 1597.2                             | 953.59        | 27.58                              | 1596.2              | 1537.5               | 8.575          | 11.905                 | 1.189              | 7.220            | 10.716             |
| Leaends Glob              | Hor H                              | lorizontal d  | obal irradia                       | tion                |                      | GlobFff        | Fffecti                | ve Global          | corr. for IAM    | A and shadings     |
| DiffH                     | lor H                              | lorizontal d  | iffuse irradi                      | ation               |                      | EArrav         | Effecti                | ve enerav          | at the outpu     | it of the arrav    |
| T_ An                     | nb T                               | amb.          |                                    |                     |                      | E_User         | Energy                 | supplied t         | o the user       |                    |
| GlobI                     | Inc G                              | Global incide | ent in coll. p                     | lane                |                      | E_Solar        | Energy                 | from the           | sun              |                    |
|                           |                                    |               |                                    |                     |                      | E_Grid         | Energy                 | y injected ir      | nto grid         |                    |

EFrGrid

Energy from the grid



| PVSYST V6.86                                                                            | 6                   |                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                 | 21/04/20                                                          | Page 6/7                      |
|-----------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|
|                                                                                         |                     | Grid-Co                                               | nnected Sy                                                                  | /stem: Loss diagram                                                                                                                                                                                                                                                                                                             |                                                                   |                               |
| Project :                                                                               |                     | Taman Midał                                           | n (NEM)                                                                     |                                                                                                                                                                                                                                                                                                                                 |                                                                   |                               |
| Simulation va                                                                           | riant :             | big family - 6ł                                       | w                                                                           |                                                                                                                                                                                                                                                                                                                                 |                                                                   |                               |
| Main system p                                                                           | arameters           |                                                       | System type                                                                 | Sheds on ground                                                                                                                                                                                                                                                                                                                 |                                                                   |                               |
| Near Shadings<br>PV Field Orienta<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ation               | L<br>Daily househ                                     | inear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>old consumers | 5° azimu<br>JAM6-72-320/SI Pno<br>20 Pnom tot<br>SUN2000L-5KTL Pno<br>Constant over the year Glob                                                                                                                                                                                                                               | th 0°<br>m 320 Wp<br>al <b>6.40 kV</b><br>m 5.00 kW<br>al 11.91 M | <b>Vp</b><br>∕ ac<br>IWh/year |
|                                                                                         |                     |                                                       | Loss diagram o                                                              | ver the whole year                                                                                                                                                                                                                                                                                                              |                                                                   |                               |
|                                                                                         |                     |                                                       |                                                                             |                                                                                                                                                                                                                                                                                                                                 |                                                                   |                               |
| Γ                                                                                       |                     | 1597 kWh/m²                                           |                                                                             | Horizontal global irradiation                                                                                                                                                                                                                                                                                                   |                                                                   |                               |
|                                                                                         | 1538 k<br>efficiend | Wh/m² * 39 m² coll.<br>cy at STC = 16.53%<br>9.85 MWh | -0.07%<br>-0.07%<br>-0.00%<br>-3.67%                                        | Global incident in coll. plane<br>Global incident below threshold<br>Near Shadings: irradiance loss<br>IAM factor on global<br>Effective irradiation on collectors<br>PV conversion<br>Array nominal energy (at STC effic.)<br>PV loss due to irradiance level                                                                  |                                                                   |                               |
|                                                                                         | 8.                  | .58 MWh                                               | -11.15%<br>-1.10%<br>-0.95%<br>-1.88%<br>0.00%<br>0.00%<br>0.00%            | PV loss due to temperature<br>Module quality loss<br>Mismatch loss, modules and strings<br>Ohmic wiring loss<br><b>Array virtual energy at MPP</b><br>Inverter Loss during operation (efficiency<br>Inverter Loss over nominal inv. power<br>Inverter Loss due to max. input current<br>Inverter Loss over nominal inv. voltage | )                                                                 |                               |
| grid<br>consumption                                                                     | 8.                  | 41 MWh                                                | → -0.01%<br>→ 0.00%<br>→ -0.05%                                             | Inverter Loss due to power threshold<br>Inverter Loss due to voltage threshold<br>Night consumption<br>Available Energy at Inverter Output                                                                                                                                                                                      |                                                                   |                               |
| 10.72 MWh 1.19                                                                          | 9 MWh               | 7.22 MWh                                              |                                                                             | Energy injected into grid                                                                                                                                                                                                                                                                                                       |                                                                   |                               |
| to user to<br>from grid from                                                            | user<br>n solar     | to grid                                               | J                                                                           |                                                                                                                                                                                                                                                                                                                                 |                                                                   |                               |

| PVSYST V6.86                                                       |                                     |                                                                                                         |                                                                                                      |                                                                 |                                   | 21/04/20                       | Page 7/7   |
|--------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|--------------------------------|------------|
|                                                                    |                                     | Grid-Conne                                                                                              | cted Syster                                                                                          | m <sup>.</sup> P50 - P90 e                                      | valuation                         |                                |            |
| Drainat                                                            |                                     |                                                                                                         |                                                                                                      | 11. 1 30 - 1 30 6                                               |                                   |                                |            |
| Project :                                                          |                                     | raman widan                                                                                             |                                                                                                      |                                                                 |                                   |                                |            |
| Simulation varia                                                   | ant :                               | big family - 6k                                                                                         | w                                                                                                    |                                                                 |                                   |                                |            |
| Main system par                                                    | ameters                             |                                                                                                         | System type                                                                                          | Sheds on ground                                                 |                                   |                                |            |
| Near Shadings                                                      |                                     | L                                                                                                       | inear shadings                                                                                       |                                                                 |                                   |                                |            |
| PV Field Orientation                                               | on                                  |                                                                                                         | tilt                                                                                                 | 5°                                                              | azimut                            | h O°                           |            |
| PV modules                                                         |                                     |                                                                                                         | Model                                                                                                | JAM6-72-320/SI                                                  | Pnor<br>Dnom tot                  | n 320 Wp                       |            |
| PV Allay<br>Inverter                                               |                                     | I                                                                                                       |                                                                                                      | 20<br>SUN20001 -5KTI                                            | Phom lota<br>Phor                 | al <b>0.40 KV</b><br>n 5.00 kV | vp<br>V ac |
| User's needs                                                       |                                     | Daily househ                                                                                            | old consumers                                                                                        | Constant over the ye                                            | ear Globa                         | al 11.91 N                     | 1Wh/year   |
| Evaluation of the                                                  | e Produc                            | tion probability                                                                                        | forecast                                                                                             | for liffer to the                                               |                                   | 1                              |            |
| I he probability dis                                               | stribution                          | of the system pro                                                                                       | duction forecast                                                                                     | t for different years is<br>the following choices:              | mainly depen                      | dent                           |            |
| Motoo data asura                                                   |                                     | and christiation, al                                                                                    |                                                                                                      | MotooNorm 7.0 -t-t                                              | ion                               |                                |            |
| Meteo data source                                                  | 3                                   |                                                                                                         | Kind                                                                                                 | Not defined                                                     | .1011<br>Vo:                      | ar 1005                        |            |
| Specified Deviation                                                | n                                   | Year devia                                                                                              | ation from aver                                                                                      | 3 %                                                             | 166                               | 1 1990                         |            |
| Year-to-year varial                                                | bility                              |                                                                                                         | Variance                                                                                             | 0.5 %                                                           |                                   |                                |            |
| The probability dis<br>Specified Deviation<br>Global variability ( | stribution<br>n P<br>Soi<br>meteo + | variance is also d<br>V module modelli<br>Inverter efficier<br>ling and mismatch<br>Degradat<br>system) | epending on so<br>ng/parameters<br>ncy uncertainty<br>n uncertainties<br>ion uncertainty<br>Variance | me system paramete<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % | rs uncertaintie<br>(quadratic sum | s<br>))                        |            |
| Annual production                                                  | probabil                            | ity                                                                                                     | Variability                                                                                          | 0.14 MWh                                                        |                                   |                                |            |
|                                                                    |                                     |                                                                                                         | P50<br>P90<br>P95                                                                                    | 7.22 MWh<br>7.05 MWh<br>7.00 MWh                                |                                   |                                |            |
|                                                                    |                                     |                                                                                                         | Probability                                                                                          | distribution                                                    |                                   |                                |            |
|                                                                    |                                     | 0.50                                                                                                    |                                                                                                      |                                                                 | · · · ·                           | 3                              |            |
|                                                                    |                                     | 0.45                                                                                                    |                                                                                                      | P50 = 7220 kWh                                                  |                                   |                                |            |
|                                                                    |                                     | 0.40                                                                                                    |                                                                                                      | E_Grid simul = 722                                              | 20 kWh                            | 1                              |            |
|                                                                    |                                     | 0.35                                                                                                    | /                                                                                                    |                                                                 |                                   | 1                              |            |
|                                                                    | ~                                   | 0.30                                                                                                    |                                                                                                      | $\backslash$                                                    |                                   | -                              |            |
|                                                                    | abilit                              | 0.25                                                                                                    |                                                                                                      | $\backslash$                                                    |                                   | -                              |            |
|                                                                    | Prof                                | 0.20                                                                                                    |                                                                                                      |                                                                 |                                   | 4                              |            |
|                                                                    |                                     | 0.15                                                                                                    | P90 = 70                                                                                             | 047 KWh                                                         | <b>\</b>                          | 4                              |            |
|                                                                    |                                     | 0.10                                                                                                    | P95 = 6998 kV                                                                                        | Vh                                                              | $\mathbf{i}$                      | Ē                              |            |
|                                                                    |                                     | 0.05                                                                                                    |                                                                                                      |                                                                 | $\mathbf{i}$                      | 1<br>1                         |            |
|                                                                    |                                     |                                                                                                         |                                                                                                      | <u> </u>                                                        |                                   | E                              |            |
|                                                                    |                                     | 6800 6900                                                                                               | 7000 7100                                                                                            | 7200 7300 740                                                   | 00 7500                           | 7600                           |            |

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                    |                                                                                        |                                                  |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             | 21/04/20                                                                                                  | Page 1/7                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------|
|                                                                                                                                                                                                 | Gric                                                                                   | d-Connecte                                       | ed System                                                                                                                           | n: Simulation p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arameters                                                                                                                   | ;                                                                                                         |                              |
| Project :                                                                                                                                                                                       | Та                                                                                     | man Midah (                                      | NEM)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                           |                              |
| Geographical S                                                                                                                                                                                  | ite                                                                                    | Kuala Lum                                        | pur/Subang                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Country                                                                                                                     | / Malays                                                                                                  | ia                           |
| Situation<br>Time defined                                                                                                                                                                       | as                                                                                     |                                                  | Latitude<br>Legal Time<br>Albedo                                                                                                    | 3.12° N<br>Time zone UT+8<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Longitude<br>Altitude                                                                                                       | e 101.55°<br>e 17 m                                                                                       | E                            |
| Meteo data:                                                                                                                                                                                     |                                                                                        | Kuala Lum                                        | pur/Subang                                                                                                                          | MeteoNorm 7.2 sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion - Synthetic                                                                                                            | ;                                                                                                         |                              |
| Simulation var                                                                                                                                                                                  | iant : big                                                                             | j family - 6kw                                   |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                           |                              |
|                                                                                                                                                                                                 |                                                                                        | Sin                                              | nulation date                                                                                                                       | 21/04/20 15h35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |                                                                                                           |                              |
| Simulation para                                                                                                                                                                                 | ameters                                                                                | ;                                                | System type                                                                                                                         | Sheds on ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                           |                              |
| Collector Plane                                                                                                                                                                                 | Orientation                                                                            |                                                  | Tilt                                                                                                                                | 5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Azimuth                                                                                                                     | n 0°                                                                                                      |                              |
| Models used                                                                                                                                                                                     |                                                                                        | Т                                                | ransposition                                                                                                                        | Perez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diffuse                                                                                                                     | e Perez, I                                                                                                | Neteonorm                    |
| Horizon                                                                                                                                                                                         |                                                                                        | ļ                                                | Free Horizon                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                           |                              |
| Near Shadings                                                                                                                                                                                   |                                                                                        | Line                                             | ear shadings                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                           |                              |
| User's needs :                                                                                                                                                                                  |                                                                                        | Daily household                                  | d consumers<br>average                                                                                                              | Constant over the year the yea | ear                                                                                                                         |                                                                                                           |                              |
| PV Array Charao<br>PV module<br>Original PVsys<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating c<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics | eteristics<br>t database<br>odules<br>PV modules<br>er<br>haracteristics<br>t database | Si-mono<br>r<br>No<br>(50°C)<br>I<br>Opera<br>Nt | Model<br>Vanufacturer<br>In series<br>Nb. modules<br>ominal (STC)<br>U mpp<br>Module area<br>Model<br>Vanufacturer<br>ating Voltage | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 U<br>6.40 kWp At o<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologie<br>90-500 V U<br>Max. p<br>2 * MPPT 50 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | In paralle<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>nit Nom. Powe<br>power (=>40°C<br>Total Powe | I 2 strings<br>r 320 Wp<br>5.75 kW<br>17 A<br>a 34.4 m <sup>2</sup><br>r 5.00 kW<br>j 5.50 kW<br>r 5.0 kW | s<br>/p (50°C)<br>/ac<br>/ac |
|                                                                                                                                                                                                 |                                                                                        |                                                  |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pnom ratio                                                                                                                  | 0 1.28                                                                                                    |                              |
| <b>PV Array loss fa</b><br>Thermal Loss fac                                                                                                                                                     | <b>ctors</b><br>tor                                                                    |                                                  | Uc (const)                                                                                                                          | 20.0 W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uv (wind)                                                                                                                   | ) 0.0 W/n                                                                                                 | n²K / m/s                    |
| Wiring Ohmic Lo<br>Module Quality L<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect,                                                                                                 | ss<br>oss<br>o Losses<br>o Ioss<br>ASHRAE para                                         | Glob                                             | oal array res.<br>IAM =                                                                                                             | 332 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Loss Fractior<br>Loss Fractior<br>Loss Fractior<br>Loss Fractior<br>bo Param                                                | n 1.5 % a<br>n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>. 0.05                                                  | t STC<br>t MPP               |



| PVSYST V6.86                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                     | 21                                                  | /04/20                                               | Page 3/7                     |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------|
|                                                                                             | Prid-Connected 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sveton                                                  | n: Detailed Lise                                                    | ar's needs                                          |                                                      |                              |
| Destant                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | av                                                      | I. Detailed 030                                                     | 3 NCCU3                                             |                                                      |                              |
| Project :                                                                                   | Taman Midah (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /1)                                                     |                                                                     |                                                     |                                                      |                              |
| Simulation variant :                                                                        | big family - 6kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                                                                     |                                                     |                                                      |                              |
| Main system parameters                                                                      | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | em type                                                 | Sheds on ground                                                     |                                                     |                                                      |                              |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear s<br>Nb. of r<br>Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the ye | azimuth<br>Pnom<br>Pnom total<br>Pnom<br>ear Global | 0°<br>320 Wp<br><b>6.40 kV</b><br>5.00 kW<br>5734 kV | <b>Vp</b><br>√ ac<br>Wh/year |
| Daily household consum                                                                      | ers, Constant over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e year, av                                              | verage = 15.7 kWh/d                                                 | lay                                                 |                                                      |                              |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annua                                                   | l values                                                            |                                                     |                                                      |                              |
|                                                                                             | Use 2 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number                                                  | Power                                                               | Use                                                 |                                                      | Energy                       |
| Lamps (LED or fluo)                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                      | 18 W/lamp                                                           | 5 h/da                                              | y 2                                                  | 2700 Wh/day                  |
| TV / PC / Mobile                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                       | 70 W/app                                                            | 14 h/da                                             | y 2                                                  | 2940 Wh/day                  |
| Iron                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       | 1200 W/app                                                          | 1 h/da                                              | y 1                                                  | 200 Wh/day                   |
| Fridge / Deep-freeze                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       |                                                                     | 24 Wh/day                                           | y 3                                                  | 3000 Wh/day                  |
| Dish- & Cloth-washers                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       |                                                                     | 2 Wh/da                                             | У                                                    | 750 Wh/day                   |
| Instant water heater                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                       | 2000 W tot                                                          | 2 h/da                                              | y e                                                  | 3000 Wh/day                  |
| Aircond                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                       | 750 W tot                                                           | 8 h/da                                              | y 36                                                 | 000 Wh/day                   |
| Total daily energy                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                     | 24 N/Ua                                             | <u>y </u><br>5/                                      | 24 Wh/day                    |
|                                                                                             | Function of dally energy for the second seco | Hourly                                                  | <b>profile</b>                                                      |                                                     |                                                      |                              |

| PVSYST V6.86                             |                                    |                |                                                        |                         |                        |                     |                          |                | 21/04/2            | ) Pag        | ge 4/7 |
|------------------------------------------|------------------------------------|----------------|--------------------------------------------------------|-------------------------|------------------------|---------------------|--------------------------|----------------|--------------------|--------------|--------|
|                                          |                                    | Grid           | -Conn                                                  | ected \$                | Syster                 | n: Maiı             | n resul                  | ts             |                    |              |        |
| Project ·                                | Та                                 | man Mi         | dah (NI                                                | =M)                     | ,                      |                     |                          |                |                    |              |        |
| Simulation variant                       | it<br>⊦t bi                        | a family       | - 6kw                                                  | ,                       |                        |                     |                          |                |                    |              |        |
|                                          |                                    | granny         |                                                        |                         |                        |                     |                          |                |                    |              |        |
| Main system param                        | eters                              |                | Sy                                                     | stem type               | Shed                   | s on grou           | und                      |                |                    |              |        |
| Near Shadings                            |                                    |                | Linea                                                  | r shadings              | 5                      |                     |                          | :              | L 00               |              |        |
| PV Field Orientation<br>PV modules       |                                    |                |                                                        | tii<br>Mode             | t 5°<br>I JAM6-        | -72-320/S           | SI                       | azimut<br>Pnor | n 0°<br>n 320V     | /n           |        |
| PV Array                                 |                                    |                | Nb. c                                                  | of modules              | s 20                   | 12 020/0            |                          | Pnom tota      | al <b>6.40</b> I   | ‹Wp          |        |
| Inverter                                 |                                    |                |                                                        | Mode                    | I SUN2                 | 000L-5KT            | Ľ                        | Pnor           | n 5.00 l           | w ac         |        |
| User's needs                             |                                    | Daily hou      | usehold c                                              | onsumers                | s Const                | ant over t          | he year                  | Globa          | al 5734            | kWh/yea      | ır     |
| Main simulation res<br>System Production | ults                               | Per            | <b>Produce</b><br>formance                             | ed Energy<br>e Ratio PF | <b>8.41</b>            | <b>MWh/yea</b><br>% | i <b>r</b> Sp<br>Solar F | ecific proc    | d. 1314<br>F 17.91 | kWh/kW<br>%  | p/year |
| Normalized productions (                 | per installed                      | l kWp): No     | minal powe                                             | er 6.40 kWp             |                        |                     | Per                      | formance R     | atio PR            |              |        |
| 6                                        |                                    | <del></del>    |                                                        |                         | 1                      | .0 <b>E</b>         | Porfermenter             |                |                    |              |        |
| Lc : Collection L<br>Ls : System Los     | oss (PV-array los<br>s (inverter,) | sses) (        | ).7 kWh/kWp/day<br>).07 kWh/kWp/day<br>3.6 kWb/kWp/day | y ay                    | 0                      | .9 - PR             | . Penomance r            | (11/11): 0.    | 023                | _            |        |
|                                          |                                    |                |                                                        | ,"<br>-                 | 0                      | .8                  |                          |                |                    |              |        |
| 4-<br>                                   |                                    |                |                                                        |                         | 8<br>8<br>0            | .7                  |                          |                |                    |              |        |
| A 3                                      |                                    |                |                                                        |                         | o se<br>Rati           | .0                  |                          |                |                    |              |        |
| Ener                                     |                                    |                |                                                        |                         | 0 formane              | .4                  |                          |                |                    |              |        |
| 2 -<br>malizec                           |                                    |                |                                                        |                         | Per 0                  | .3                  |                          |                |                    |              |        |
|                                          |                                    |                |                                                        |                         | 0                      | .2                  |                          |                |                    |              |        |
|                                          |                                    |                |                                                        |                         | 0                      | .1                  |                          |                |                    |              |        |
| Jan Feb Mar A                            | pr May Jun                         | Jul Aug        | Sep Oct                                                | Nov Dec                 | 0                      | .0 Jan Feb          | Mar Apr                  | May Jun        | Jul Aug S          | ep Oct N     | ov Dec |
|                                          |                                    |                |                                                        |                         |                        |                     |                          |                |                    |              |        |
|                                          |                                    |                |                                                        |                         |                        |                     |                          |                |                    |              |        |
|                                          |                                    |                |                                                        | hia far                 | nily 6k                | \                   |                          |                |                    |              |        |
|                                          |                                    |                | Ba                                                     | alances ar              | niny - ok<br>nd main i | vv<br>results       |                          |                |                    |              |        |
|                                          | i                                  |                |                                                        | 1 1                     |                        |                     |                          | 1              |                    |              | 1      |
|                                          | GlobHor                            | DiffHor        | T_Amb                                                  | GlobInc                 | GlobEff                | EArray              | E_User                   | E_Solar        | E_Grid             | EFrGrid      |        |
| lanuary                                  | 133 0                              | 82 20          | 28 10                                                  | 136.2                   | 121.2                  | 0.726               | 0.546                    | 0 100          |                    |              | ł      |
| February                                 | 134.6                              | 67.90          | 27.70                                                  | 137.4                   | 132.8                  | 0.720               | 0.437                    | 0.094          | 0.629              | 0.343        |        |
| March                                    | 149.8                              | 88.20          | 28.00                                                  | 150.3                   | 144.9                  | 0.804               | 0.437                    | 0.086          | 0.703              | 0.351        |        |
| April                                    | 140.3                              | 70.50          | 27.70                                                  | 138.8                   | 133.9                  | 0.742               | 0.492                    | 0.087          | 0.641              | 0.404        |        |
| Мау                                      | 140.3                              | 78.60          | 28.60                                                  | 136.9                   | 131.7                  | 0.734               | 0.492                    | 0.081          | 0.638              | 0.410        |        |
| June                                     | 132.0                              | 77.80          | 27.80                                                  | 128.3                   | 123.5                  | 0.691               | 0.437                    | 0.073          | 0.604              | 0.364        |        |
| July                                     | 134.4                              | 87.20          | 27.80                                                  | 131.1                   | 125.8                  | 0.710               | 0.546                    | 0.099          | 0.598              | 0.448        |        |
| August                                   | 132.2                              | 87.20<br>70.00 | 27.80                                                  | 130.1                   | 125.2                  | 0.700               | 0.437                    |                | 0.615              | U.366        |        |
| Octobor                                  | 129.2<br>128.9                     | 19.00<br>82.60 | 27.1U<br>27.10                                         | 120.0<br>140.4          | 124.U<br>125 5         | 0.091               | 0.437                    | 0.080          | 0.598              | 0.357        |        |
| November                                 | 117.6                              | 79.20          | 27.40<br>26.70                                         | 119.4                   | 115.4                  | 0.734               | 0 437                    | 0.107          | 0.573              | 0.376        |        |
| December                                 | 115.0                              | 73.20          | 26.29                                                  | 118.1                   | 113.6                  | 0.640               | 0.492                    | 0.077          | 0.551              | 0.415        |        |
| Year                                     | 1597.2                             | 953.59         | 27.58                                                  | 1596.2                  | 1537.5                 | 8.575               | 5.734                    | 1.027          | 7.382              | 4,708        | 1      |
|                                          |                                    | ,00.07         | _,                                                     |                         |                        |                     |                          | 1.527          | 7.002              |              | 1      |
| Legends: Glob                            | Hor H                              | lorizontal gl  | obal irradia                                           | ation                   |                        | GlobEff             | Effecti                  | ive Global, (  | corr. for IAN      | /I and shad  | dings  |
| Diff                                     | lor F                              | lorizontal d   | iffuse irradi                                          | iation                  |                        | EArray              | Effecti                  | ive energy a   | at the outpu       | ut of the ar | ray    |
| T_Ar                                     | nb T                               | amb.           |                                                        |                         |                        | E_User              | Energ                    | y supplied t   | o the user         |              |        |
| Glob                                     | Inc G                              | Blobal incide  | nt in coll. p                                          | olane                   |                        | E_Solar             | Energ                    | y from the s   | sun                |              |        |
|                                          |                                    |                |                                                        |                         |                        | E_Grid              | Energ                    | y injected ir  | nto grid           |              |        |
|                                          |                                    |                |                                                        |                         |                        | EFrGrid             | Energ                    | y from the o   | grid               |              |        |



| PVSYST V6.86     |           |                                             |                      |                |                                                                   | 21/04/20                       | Page 6/7 |
|------------------|-----------|---------------------------------------------|----------------------|----------------|-------------------------------------------------------------------|--------------------------------|----------|
|                  |           | Grid-Cc                                     | nnecte               | d Sv           | vstem: Loss diagram                                               |                                |          |
| Project ·        |           | Taman Mida                                  | h (NEM)              |                |                                                                   |                                |          |
| Simulation var   | riant ·   | hig family - 6                              | kw                   |                |                                                                   |                                |          |
| Main avatam na   |           |                                             | Custom               |                | Chada an array d                                                  |                                |          |
| Main system pa   | arameters |                                             | System               | type           | Sneas on ground                                                   |                                |          |
| PV Field Orienta | tion      |                                             | Linear sha           | tilt           | 5° azimut                                                         | h 0°                           |          |
| PV modules       |           |                                             | N                    | Model          | JAM6-72-320/SI Pnoi                                               | m 320 Wp                       |          |
| PV Array         |           |                                             | Nb. of mo            | dules          | 20 Pnom tot                                                       | al <b>6.40 kV</b><br>m 5.00 kW | /p       |
| User's needs     |           | Daily housel                                | nold consu           | imers          | Constant over the year Glob                                       | al 5734 k\                     | Vh/year  |
|                  |           |                                             | Loss diag            | gram o         | ver the whole year                                                |                                |          |
| Γ                |           | 1597 kWh/m²                                 |                      |                | Horizontal global irradiation                                     |                                |          |
|                  |           |                                             | -+ <br> -+           | 0.07%<br>0.07% | Global incident in coll. plane<br>Global incident below threshold |                                |          |
|                  |           |                                             |                      | ).00%          | Near Shadings: irradiance loss                                    |                                |          |
|                  |           |                                             |                      | .3.67%         | IAM factor on global                                              |                                |          |
|                  | 1538 k\   | Wh/m <sup>2</sup> * 39 m <sup>2</sup> coll. |                      |                | Effective irradiation on collectors                               |                                |          |
|                  | efficienc | = 16.53%                                    | ,<br>]               |                | PV conversion                                                     |                                |          |
|                  |           | 9.85 MVVN                                   | <b>→</b> -0.         | .75%           | PV loss due to irradiance level                                   |                                |          |
|                  |           |                                             | -1                   | 1.15%          | PV loss due to temperature                                        |                                |          |
|                  |           |                                             | +0.75%               | 6              | Module quality loss                                               |                                |          |
|                  |           |                                             | →-1.10%              | ,<br>D         | Mismatch loss, modules and strings                                |                                |          |
|                  | 0         |                                             | ⇒-0.95%              |                | Ohmic wiring loss                                                 |                                |          |
|                  | 0.        |                                             |                      |                | Array Virtual energy at MFF                                       |                                |          |
|                  |           |                                             | →-1.88%              |                | Inverter Loss during operation (efficiency)                       |                                |          |
|                  |           |                                             | $\rightarrow 0.00\%$ |                | Inverter Loss over nominal inv. power                             |                                |          |
|                  |           |                                             | → 0.00%              |                | Inverter Loss over nominal inv. voltage                           |                                |          |
|                  |           |                                             | →-0.01%              |                | Inverter Loss due to power threshold                              |                                |          |
| grid             |           |                                             | 70.00%               |                | Inverter Loss due to voltage threshold                            |                                |          |
| consumption      | 8.4       | 11 MWh                                      | /-0.0378             |                | Available Energy at Inverter Output                               |                                |          |
|                  | I         |                                             |                      |                |                                                                   |                                |          |
| 4.71 MWh 1.03    | MWh       | 7.38 MWh                                    | J                    |                | Energy injected into grid                                         |                                |          |
| to user to u     | ser       | to grid                                     |                      |                |                                                                   |                                |          |
| from grid from   | solar     |                                             |                      |                |                                                                   |                                |          |
|                  |           |                                             |                      |                |                                                                   |                                |          |

| PVSYST V6.86                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                                                                                                   |                                                                                |                                                                        |                                               | 21/04/20                                                         | Page 7/7                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Crid Conn                                                                                         | acted System                                                                   |                                                                        | avaluation                                    |                                                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Gna-Conn                                                                                          | ected Syster                                                                   | n: P50 - P90                                                           | evaluation                                    |                                                                  |                               |
| Project :                                                                                                                                                                                                                                                                                                                                                                                                    |                          | Taman Mida                                                                                        | ah (NEM)                                                                       |                                                                        |                                               |                                                                  |                               |
| Simulation vari                                                                                                                                                                                                                                                                                                                                                                                              | iant :                   | big family - (                                                                                    | ôkw                                                                            |                                                                        |                                               |                                                                  |                               |
| Main system par                                                                                                                                                                                                                                                                                                                                                                                              | rameters                 |                                                                                                   | System type                                                                    | Sheds on groun                                                         | d                                             |                                                                  |                               |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                                                                                                                                                                                                                                                                    | ion                      | Daily house                                                                                       | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>chold consumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the       | azimut<br>Pno<br>Pnom tot<br>Pno<br>year Glob | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kV<br>al 5734 k\ | V <b>p</b><br>V ac<br>Wh/year |
| Evaluation of the                                                                                                                                                                                                                                                                                                                                                                                            | e Produc                 | tion probabilit                                                                                   | y forecast                                                                     |                                                                        |                                               |                                                                  |                               |
| The probability dis                                                                                                                                                                                                                                                                                                                                                                                          | stribution<br>a used for | of the system p<br>the simulation,                                                                | roduction forecast<br>and depends on t                                         | for different years<br>he following choice                             | is mainly depen<br>es:                        | dent                                                             |                               |
| Meteo data sourc<br>Meteo data<br>Specified Deviatic<br>Year-to-year varia                                                                                                                                                                                                                                                                                                                                   | e<br>on<br>ability       | Year de                                                                                           | Kind<br>viation from aver.<br>Variance                                         | Not defined<br>3 %<br>0.5 %                                            | tation<br>Yea                                 | ar 1995                                                          |                               |
| The probability distribution variance is also depending on some system parameters uncertainties         Specified Deviation       PV module modelling/parameters       1.0 %         Inverter efficiency uncertainties       0.5 %         Soiling and mismatch uncertainties       1.0 %         Degradation uncertainty       1.0 %         Global variability (meteo + system)       Variance       1.9 % |                          |                                                                                                   |                                                                                |                                                                        |                                               |                                                                  |                               |
| Annual productior                                                                                                                                                                                                                                                                                                                                                                                            | n probabil               | ity                                                                                               | Variability<br>P50<br>P90<br>P95                                               | 0.14 MWh<br>7.38 MWh<br>7.20 MWh<br>7.16 MWh                           |                                               |                                                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                   | Probability                                                                    | distribution                                                           |                                               |                                                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                              | Probability              | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00<br>6900 7000 | P90 =<br>P95 = 7155<br>7100 7200 73                                            | P50 = 7382 kWh<br>F_Grid simul =<br>7205 kWh<br>5 kWh<br>300 7400 7500 | = 7382 kWh                                    | 7800                                                             |                               |

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                                   |                                                                                                          |                                                                                                                                            |                                                                                                                                                                                         | 2                                                                                                                                        | 21/04/20                                                                                             | Page 1/7                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                                | Grid-Conne                                                                                               | cted System                                                                                                                                | n: Simulation pa                                                                                                                                                                        | arameters                                                                                                                                |                                                                                                      |                                    |
| Project :                                                                                                                                                                                                      | Taman Mida                                                                                               | h (NEM)                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                      |                                    |
| Geographical S                                                                                                                                                                                                 | ite Kuala L                                                                                              | umpur/Subang                                                                                                                               |                                                                                                                                                                                         | Country                                                                                                                                  | Malays                                                                                               | ia                                 |
| Situation                                                                                                                                                                                                      |                                                                                                          | Latitude                                                                                                                                   | 3.12° N                                                                                                                                                                                 | Longitude                                                                                                                                | 101.55°                                                                                              | E                                  |
| Time defined                                                                                                                                                                                                   | as                                                                                                       | Legal Time                                                                                                                                 | Time zone UT+8                                                                                                                                                                          | Altitude                                                                                                                                 | 17 m                                                                                                 |                                    |
| Meteo data:                                                                                                                                                                                                    | Kuala L                                                                                                  | umpur/Subang                                                                                                                               | 0.20<br>MeteoNorm 7.2 stati                                                                                                                                                             | on - Synthetic                                                                                                                           |                                                                                                      |                                    |
| Simulation var                                                                                                                                                                                                 | ant : big family - 9                                                                                     | kw                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                      |                                    |
|                                                                                                                                                                                                                |                                                                                                          | Simulation date                                                                                                                            | 21/04/20 15h40                                                                                                                                                                          |                                                                                                                                          |                                                                                                      |                                    |
| Simulation para                                                                                                                                                                                                | meters                                                                                                   | System type                                                                                                                                | Sheds on ground                                                                                                                                                                         |                                                                                                                                          |                                                                                                      |                                    |
| <b>Collector Plane</b>                                                                                                                                                                                         | Orientation                                                                                              | Tilt                                                                                                                                       | 5°                                                                                                                                                                                      | Azimuth                                                                                                                                  | 0°                                                                                                   |                                    |
| Models used                                                                                                                                                                                                    |                                                                                                          | Transposition                                                                                                                              | Perez                                                                                                                                                                                   | Diffuse                                                                                                                                  | Perez, I                                                                                             | Neteonorm                          |
| Horizon                                                                                                                                                                                                        |                                                                                                          | Free Horizon                                                                                                                               |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                      |                                    |
| Near Shadings                                                                                                                                                                                                  |                                                                                                          | Linear shadings                                                                                                                            |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                      |                                    |
| User's needs :                                                                                                                                                                                                 | Daily house                                                                                              | hold consumers<br>average                                                                                                                  | Constant over the ye 32.6 kWh/Day                                                                                                                                                       | ar                                                                                                                                       |                                                                                                      |                                    |
| PV Array Charac<br>PV module<br>Original PVsys<br>Number of PV mo<br>Total number of F<br>Array global powe<br>Array operating c<br>Total area<br>Inverter<br>Custom param<br>Characteristics<br>Inverter pack | eteristics<br>Si-mo<br>database<br>dules<br>V modules<br>er<br>maracteristics (50°C)<br>eters definition | no Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>U mpp<br>Module area<br>Model<br>Manufacturer<br>perating Voltage | JAM6-72-320/SI<br>JA Solar<br>14 modules<br>28 Un<br>8.96 kWp At op<br>470 V<br>54.3 m <sup>2</sup><br>SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Un<br>Max. pr<br>2 * MPPT 50 % | In parallel<br>it Nom. Power<br>perating cond.<br>I mpp<br>Cell area<br>s<br>it Nom. Power<br>ower (=>40°C)<br>Total Power<br>Pnom ratio | 2 string<br>320 Wp<br>8.05 kW<br>17 A<br>48.2 m <sup>2</sup><br>8.00 kW<br>8.80 kW<br>8.0 kW<br>1.12 | s<br>/p (50°C)<br>Vac<br>Vac<br>ac |
| <b>PV Array loss fa</b><br>Thermal Loss fac<br>Wiring Ohmic Lo<br>Module Quality L<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect,                                                                 | ctors<br>tor<br>ss (<br>bss<br>Losses<br>loss<br>ASHRAE parametrization                                  | Uc (const)<br>Global array res.<br>IAM =                                                                                                   | 20.0 W/m²K<br>465 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                          | Uv (wind)<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param.                                               | 0.0 W/n<br>1.5 % a<br>-0.8 %<br>1.0 % a<br>0.10 %<br>0.05                                            | n²K / m/s<br>t STC<br>t MPP        |



| PVSYST V6.86            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                | 21/            | 04/20 Page 3/              | /7          |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------|----------------|----------------------------|-------------|--|--|
| C                       | Grid-Connected S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | System                  | n. Detailed Lls                | er's needs     | I                          |             |  |  |
| Brojaat :               | Toman Midah (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>n</i> )              |                                |                |                            |             |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>n)</i>               |                                |                |                            |             |  |  |
| Simulation variant :    | big family - 9kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                                |                |                            |             |  |  |
| Main system parameters  | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | em type                 | Sheds on ground                |                |                            |             |  |  |
| Near Shadings           | Linear s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hadings                 |                                |                |                            |             |  |  |
| PV Field Orientation    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tilt                    | 5° azimuth 0°                  |                |                            |             |  |  |
| PV modules<br>PV Array  | Nb of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nodules                 | JANI6-72-320/51<br>28          | Pnom Pnom Pnom | 320 wp<br>8 <b>.96 kWn</b> |             |  |  |
| Inverter                | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | SUN2000L-8KTL                  | Pnom           | 3.00 kW ac                 |             |  |  |
| User's needs            | Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sumers                  | Constant over the y            | year Global    | 11.91 MWh/year             |             |  |  |
| Daily household consume | ers, Constant over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>year, a</b><br>Annua | verage = 32.6 kWh/<br>I values | /day           |                            |             |  |  |
|                         | Use 5 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number                  | Power                          | Use            | Energy                     | ٦           |  |  |
| Lamps (LED or fluo)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                      | 18 W/lamp                      | 5 h/day        | 2700 Wh/dav                | y           |  |  |
| TV / PC / Mobile        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                       | 70 W/app                       | 14 h/day       | 2940 Wh/da                 | ý           |  |  |
| Iron                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       | 1200 W/app                     | 1 h/day        | 1200 Wh/day                | 1200 Wh/day |  |  |
| Fridge / Deep-freeze    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       |                                | 24 Wh/day      | 3000 Wh/day                | у           |  |  |
| Dish- & Cloth-washers   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                       |                                | 2 Wh/day       | 750 Wh/day                 | У           |  |  |
| Instant water heater    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                       | 2000 W tot                     | 2 h/day        | 8000 Wh/day                | У           |  |  |
| Aircond                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                       | 750 W tot                      | 6 h/day        | 27000 Wh/day               | <u>y</u>    |  |  |
| Total daily energy      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                | 24 11/uay      | 45614 Wh/da                | <u>у</u>    |  |  |
|                         | Function of dally ending the formula of the formula | Hourly                  | <b>y profile</b>               |                |                            |             |  |  |

| PVSYST V6.86                                             |                     |                                   |                         |                           |                    |                                                   |                           | 21/04/2                      | ) Pag        | e 4/7 |
|----------------------------------------------------------|---------------------|-----------------------------------|-------------------------|---------------------------|--------------------|---------------------------------------------------|---------------------------|------------------------------|--------------|-------|
|                                                          | Grid                | l-Conn                            | ected                   | Syster                    | n: Mair            | n resu                                            | lts                       |                              |              |       |
| Project ·                                                | Taman M             | idah (NI                          | =M)                     | 2                         |                    |                                                   |                           |                              |              |       |
| Cimulation variant                                       |                     |                                   | _111)                   |                           |                    |                                                   |                           |                              |              |       |
| Simulation variant :                                     | big family          | - 9KW                             |                         |                           |                    |                                                   |                           |                              |              |       |
| Main system parameters                                   |                     | Sy                                | stem type               | Shed                      | s on grou          | Ind                                               |                           |                              |              |       |
| Near Shadings                                            |                     | Linea                             | r shadings              | 3                         |                    |                                                   |                           |                              |              |       |
| PV Field Orientation                                     |                     |                                   | til                     | t 5°                      |                    |                                                   | azimut                    | h 0°                         |              |       |
| PV modules                                               |                     |                                   | Mode                    | I JAM6                    | -72-320/S          |                                                   | Pnor                      | m 320 V                      | Vp           |       |
| PV Array                                                 |                     | Nb. c                             | of modules              | 5 28<br>J QUND            |                    |                                                   | Pnom tota                 | al <b>8.96</b> I<br>m 8.00 I | kwp          |       |
| User's needs                                             | Daily ho            | usehold c                         | consumers               | s Const                   | ant over t         | ∟<br>he vear                                      | Globa                     | al 11.91                     | MWh/vea      | ar    |
|                                                          | Daily no            |                                   |                         |                           |                    | ilo your                                          |                           |                              |              |       |
| Main simulation results<br>System Production             | Pe                  | <b>Produce</b>                    | ed Energy<br>e Ratio PF | <b>/ 11.78</b><br>R 82.40 | <b>MWh/ye</b><br>% | <b>ar</b> Sp<br>Solar F                           | ecific proc<br>Fraction S | d. 1315<br>F 10.83           | kWh/kWp<br>% | /year |
| Normalized productions (per ins                          | talled kWp): No     | ominal powe                       | er 8.96 kWp             |                           |                    | Per                                               | rformance R               | atio PR                      |              |       |
| 6                                                        | <del></del>         |                                   |                         | 1                         | .0 <b>E</b>        | <del>, , , , , , , , , , , , , , , , , , , </del> |                           |                              |              |       |
| Lc : Collection Loss (PV-a<br>Ls : System Loss (inverter | rray losses)<br>;,) | 0.7 kWh/kWp/da<br>0.07 kWh/kWp/da | y -<br>ay               | 0                         | .9 E PR            | : Performance F                                   | Ratio (Yf / Yr): 0.       | 824                          |              | -     |
| 5 - Yf ; Produced useful energ                           | y (inverter output) | 3.6 kWh/kWp/da                    | у –                     | 0                         | .8                 |                                                   |                           |                              |              |       |
|                                                          |                     |                                   | _ ]                     | 0<br>۲                    | .7                 |                                                   |                           |                              |              |       |
|                                                          |                     |                                   |                         | 원 0                       | .6                 |                                                   |                           |                              |              |       |
| 6.3-                                                     |                     |                                   |                         | 윤<br>왕 0                  | .5                 |                                                   |                           |                              |              |       |
|                                                          |                     |                                   | -                       | o man                     | .4                 |                                                   |                           |                              |              |       |
| ₽<br>                                                    |                     |                                   |                         | berg                      |                    |                                                   |                           |                              |              |       |
|                                                          |                     |                                   | -                       | 0                         |                    |                                                   |                           |                              |              |       |
| 1-                                                       |                     |                                   |                         | 0                         | .2                 |                                                   |                           |                              |              |       |
|                                                          |                     |                                   |                         | 0                         | .1                 |                                                   |                           |                              |              |       |
| Jan Feb Mar Apr May                                      | Jun Jul Aug         | Sep Oct                           | Nov Dec                 | 0                         | Jan Feb            | Mar Apr                                           | May Jun                   | Jul Aug S                    | ep Oct Nov   | Dec   |
|                                                          |                     |                                   |                         |                           |                    |                                                   |                           |                              |              |       |
|                                                          |                     |                                   |                         |                           |                    |                                                   |                           |                              |              |       |
|                                                          |                     |                                   | big fa                  | mily Ok                   |                    |                                                   |                           |                              |              |       |
|                                                          |                     | D                                 | biy iai                 | niny - 9K                 | vv                 |                                                   |                           |                              |              |       |
|                                                          |                     | Ba                                | alances al              | nu main i                 | results            |                                                   |                           |                              |              |       |
| Glob                                                     | Hor DiffHor         | T_Amb                             | GlobInc                 | GlobEff                   | EArray             | E_User                                            | E_Solar                   | E_Grid                       | EFrGrid      |       |
| kWh/                                                     | m² kWh/m²           | °C                                | kWh/m <sup>2</sup>      | kWh/m²                    | MWh                | MWh                                               | MWh                       | MWh                          | MWh          |       |
| January 133                                              | .0 82.20            | 28.10                             | 136.3                   | 131.2                     | 1.016              | 1.049                                             | 0.111                     | 0.886                        | 0.938        |       |
| February 134                                             | .6 67.90            | 27.70                             | 137.4                   | 132.8                     | 1.031              | 0.912                                             | 0.096                     | 0.918                        | 0.816        |       |
| March 149                                                | .8 88.20            | 28.00                             | 150.3                   | 144.9                     | 1.125              | 1.004                                             | 0.107                     | 0.998                        | 0.896        |       |
| April 140                                                | .3 70.50            | 27.70                             | 138.8                   | 133.9                     | 1.039              | 0.958                                             | 0.108                     | 0.912                        | 0.850        |       |
| May 140                                                  | .3 78.60            | 28.60                             | 136.9                   | 131.7                     | 1.027              | 1.049                                             | 0.118                     | 0.890                        | 0.931        |       |
| June 132                                                 | .U //.8U            | 27.80                             | 128.3                   | 123.5<br>125 0            | 0.96/              | 0.958                                             | 0.104                     | 0.844                        | 0.854        |       |
| August 134                                               | .4 87.20            | 27.80                             | 130.1                   | 125.0                     | 0.994              | 1.004                                             | 0.112                     | 0.850                        | 0.937        |       |
| September 129                                            | .2 79.00            | 27.10                             | 128.8                   | 124.0                     | 0.968              | 0.912                                             | 0.102                     | 0.847                        | 0.810        |       |
| October 138                                              | .8 82.60            | 27.40                             | 140.4                   | 135.5                     | 1.056              | 1.049                                             | 0.121                     | 0.915                        | 0.928        |       |
| November 117                                             | .6 79.20            | 26.70                             | 119.8                   | 115.4                     | 0.907              | 1.004                                             | 0.107                     | 0.782                        | 0.896        |       |
| December 115                                             | 0 73.20             | 26.20                             | 1101                    |                           |                    |                                                   | 1                         |                              |              |       |
| December 113                                             | .0 73.20            | 20.29                             | 118.1                   | 113.6                     | 0.896              | 0.958                                             | 0.097                     | 0.782                        | 0.861        |       |

Legends: GlobHor DiffHor

T\_Amb

GlobInc

Horizontal global irradiation Horizontal diffuse irradiation T amb. Global incident in coll. plane Effective Global, corr. for IAM and shadings Effective energy at the output of the array Energy supplied to the user Energy from the sun Energy injected into grid Energy from the grid

GlobEff

EArray

E\_User

E\_Solar

E\_Grid

EFrGrid


|                   | <del></del>   |                                             |                    |                |                                            | 1                 | 1          |
|-------------------|---------------|---------------------------------------------|--------------------|----------------|--------------------------------------------|-------------------|------------|
| PVSYST V6.86      |               |                                             |                    |                |                                            | 21/04/20          | Page 6/7   |
|                   |               | Grid-Co                                     | nnec               | ted Sv         | stem: Loss diagram                         |                   |            |
| Project ·         |               | Taman Midak                                 |                    |                | eterni 2000 diagram                        |                   |            |
| Simulation var    | iant ·        | big family - 9k                             | w                  | ")             |                                            |                   |            |
| Main system na    |               |                                             | Svet               | om typo        | Shade on ground                            |                   |            |
| Near Shadings     | rameter 5     | 1                                           | inear c            |                | Sheus on ground                            |                   |            |
| PV Field Orientat | tion          | -                                           | incar a            | tilt           | 5° azimu                                   | ith 0°            |            |
| PV modules        |               |                                             |                    | Model          | JAM6-72-320/SI Pno                         | om 320 W          | )          |
| PV Array          |               |                                             | Nb. of I           | modules        | 28 Pnom to                                 | tal <b>8.96 k</b> | Np<br>N aa |
| User's needs      |               | Daily househ                                | old cor            | nsumers        | Constant over the year Glob                | bal 11.91 l       | /Wh/year   |
|                   |               |                                             |                    |                |                                            |                   |            |
|                   |               |                                             | LOSS 0             | liagram ov     | ver the whole year                         |                   |            |
|                   |               |                                             |                    |                |                                            |                   |            |
| Γ                 |               | 1597 kWh/m²                                 |                    | 1              | Horizontal global irradiation              |                   |            |
|                   |               |                                             |                    | →-0.07%        | Global incident in coll. plane             |                   |            |
|                   |               |                                             |                    | <b>-</b> 0.07% | Global incident below threshold            |                   |            |
|                   |               |                                             | k                  | ₩0.00%         | Near Shadings: irradiance loss             |                   |            |
|                   |               |                                             |                    | →-3.67%        | IAM factor on global                       |                   |            |
|                   | 1538 k        | Wh/m <sup>2</sup> * 54 m <sup>2</sup> coll. |                    |                | Effective irradiation on collectors        |                   |            |
| _                 | efficien      | cy at STC = 16.53%                          | 1                  |                | PV conversion                              |                   |            |
|                   |               | 13.79 MWh                                   |                    | ⇒ 0.750/       | Array nominal energy (at STC effic.        | )                 |            |
|                   |               |                                             | K                  | ₹-0.75%<br>↑   |                                            |                   |            |
|                   |               |                                             |                    |                | PV loss due to temperature                 |                   |            |
|                   |               |                                             | (+0                | .75%           | Module quality loss                        |                   |            |
|                   |               |                                             | 9-1.               | 10%            | Mismatch loss, modules and strings         |                   |            |
|                   | 15            | 2 01 MW/b                                   | 9-0.9              | 95%            | Ohmic wiring loss                          |                   |            |
|                   | 12            |                                             |                    |                | Array virtual energy at wirt               |                   |            |
|                   |               |                                             | €-1.8              | 30%            | Inverter Loss during operation (efficience | y)                |            |
|                   |               |                                             | $\rightarrow 0.00$ | 1%<br>W        | Inverter Loss over nominal inv. power      |                   |            |
|                   |               |                                             | N0.00              | )%             | Inverter Loss due to max. Input current    |                   |            |
|                   |               |                                             | → 0.0C             | )%             | Inverter Loss due to power threshold       |                   |            |
| grid              |               |                                             | > 0.00             | 1%             | Inverter Loss due to voltage threshold     |                   |            |
| consumption       | 11            | 1.78 MWh                                    | 7-0.0              | 4%             | Available Energy at Inverter Output        |                   |            |
|                   |               |                                             |                    |                |                                            |                   |            |
| 10.62 MWb 1.29    | MWb           | 10.49 MW/b                                  |                    |                | Energy injected into grid                  |                   |            |
| 10.02 10001 1.25  |               |                                             | 1                  |                |                                            |                   |            |
| to user to u      | iser<br>solar | to grid                                     |                    |                |                                            |                   |            |
|                   | 20101         |                                             |                    |                |                                            |                   |            |
|                   |               |                                             |                    |                |                                            |                   |            |

| PVSYST V6.86                                                                              |                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                               |                                                                |                      |                                               | 21/04/20                                              | Page 7/7                      |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------|-----------------------------------------------|-------------------------------------------------------|-------------------------------|
|                                                                                           |                                                                                                                                                                                                                                                                                                                          | Grid-Conn                                                                                          | acted System                                                                  | m· P50 - P0                                                    |                      | uation                                        |                                                       |                               |
| Design                                                                                    |                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                               | п. г 50 - г з                                                  |                      | ualion                                        |                                                       |                               |
| Project :                                                                                 | . ,                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                                                                               |                                                                |                      |                                               |                                                       |                               |
| Simulation vari                                                                           | iant :                                                                                                                                                                                                                                                                                                                   | big family - 9                                                                                     | KW                                                                            |                                                                |                      |                                               |                                                       |                               |
| Main system par                                                                           | rameters                                                                                                                                                                                                                                                                                                                 |                                                                                                    | System type                                                                   | Sheds on grou                                                  | und                  |                                               |                                                       |                               |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                                                                                                                                                                                                                                                                                                      | Daily house                                                                                        | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>hold consumers | 5°<br>JAM6-72-320/S<br>28<br>SUN2000L-8KT<br>Constant over t   | il<br>FL<br>he year  | azimuth<br>Pnom<br>Pnom tota<br>Pnom<br>Globa | 0°<br>320 Wp<br>8 <b>.96 kV</b><br>8.00 kV<br>11.91 N | <b>∕p</b><br>/ ac<br>1Wh/year |
| Evaluation of the                                                                         | e Produc                                                                                                                                                                                                                                                                                                                 | tion probability                                                                                   | y forecast                                                                    |                                                                |                      |                                               |                                                       |                               |
| The probability dia on the meteo data                                                     | stribution<br>a used for                                                                                                                                                                                                                                                                                                 | of the system pr<br>the simulation,                                                                | oduction forecast<br>and depends on t                                         | for different yea<br>the following cho                         | irs is main<br>ices: | ly depend                                     | ent                                                   |                               |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                | e<br>on<br>ability                                                                                                                                                                                                                                                                                                       | Year dev                                                                                           | Kind<br>viation from aver.<br>Variance                                        | MeteoNorm 7.2<br>Not defined<br>3 %<br>0.5 %                   | 2 station            | Yea                                           | <sup>-</sup> 1995                                     |                               |
| The probability dia<br>Specified Deviatio                                                 | The probability distribution variance is also depending on some system parameters uncertainties<br>Specified Deviation PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soiling and mismatch uncertainties 1.0 %<br>Degradation uncertainty 1.0 %<br>Global variability (meteo + system) |                                                                                                    |                                                                               |                                                                |                      |                                               |                                                       |                               |
| Annual productior                                                                         | n probabil                                                                                                                                                                                                                                                                                                               | ity                                                                                                | Variability<br>P50<br>P90<br>P95                                              | 0.20 MWh<br>10.49 MWh<br>10.24 MWh<br>10.17 MWh                |                      |                                               |                                                       |                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                          |                                                                                                    | Probability                                                                   | distribution                                                   |                      |                                               |                                                       |                               |
|                                                                                           | Probability                                                                                                                                                                                                                                                                                                              | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00<br>9800 10000 | P90 = 10<br>P95 = 10172                                                       | 0 = 10494 kWh<br>E_Grid simul =<br>0243 kWh<br>kWh<br>00 10600 | 10494 kWh            |                                               | 1200                                                  |                               |

E\_Grid system production kWh

| PVSYST V6.86                                                                                                                                                                                                   |                                                                                                              |                                                                                                                                            |                                                                                                                                                                                         | :                                                                                                                                        | 21/04/20                                                                                               | Page 1/7                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                                | Grid-Conne                                                                                                   | cted System                                                                                                                                | n: Simulation pa                                                                                                                                                                        | arameters                                                                                                                                |                                                                                                        |                                    |
| Project :                                                                                                                                                                                                      | Taman Mida                                                                                                   | h (NEM)                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                        |                                    |
| Geographical S                                                                                                                                                                                                 | ite Kuala L                                                                                                  | umpur/Subang                                                                                                                               |                                                                                                                                                                                         | Country                                                                                                                                  | Malays                                                                                                 | ia                                 |
| Situation                                                                                                                                                                                                      |                                                                                                              | Latitude                                                                                                                                   | 3.12° N                                                                                                                                                                                 | Longitude                                                                                                                                | e 101.55°                                                                                              | E                                  |
| Time defined                                                                                                                                                                                                   | as                                                                                                           | Legal Time                                                                                                                                 | Time zone UT+8                                                                                                                                                                          | Altitude                                                                                                                                 | e 17 m                                                                                                 |                                    |
| Meteo data:                                                                                                                                                                                                    | Kuala L                                                                                                      | umpur/Subang                                                                                                                               | 0.20<br>MeteoNorm 7.2 stati                                                                                                                                                             | on - Synthetic                                                                                                                           |                                                                                                        |                                    |
| Simulation var                                                                                                                                                                                                 | ant : big family - 9                                                                                         | kw                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                        |                                    |
|                                                                                                                                                                                                                |                                                                                                              | Simulation date                                                                                                                            | 21/04/20 15h42                                                                                                                                                                          |                                                                                                                                          |                                                                                                        |                                    |
| Simulation para                                                                                                                                                                                                | meters                                                                                                       | System type                                                                                                                                | Sheds on ground                                                                                                                                                                         |                                                                                                                                          |                                                                                                        |                                    |
| <b>Collector Plane</b>                                                                                                                                                                                         | Orientation                                                                                                  | Tilt                                                                                                                                       | 5°                                                                                                                                                                                      | Azimuth                                                                                                                                  | 0°                                                                                                     |                                    |
| Models used                                                                                                                                                                                                    |                                                                                                              | Transposition                                                                                                                              | Perez                                                                                                                                                                                   | Diffuse                                                                                                                                  | e Perez, I                                                                                             | Neteonorm                          |
| Horizon                                                                                                                                                                                                        |                                                                                                              | Free Horizon                                                                                                                               |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                        |                                    |
| Near Shadings                                                                                                                                                                                                  |                                                                                                              | Linear shadings                                                                                                                            |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                        |                                    |
| User's needs :                                                                                                                                                                                                 | Daily house                                                                                                  | hold consumers<br>average                                                                                                                  | Constant over the year 15.7 kWh/Day                                                                                                                                                     | ar                                                                                                                                       |                                                                                                        |                                    |
| PV Array Charac<br>PV module<br>Original PVsys<br>Number of PV mo<br>Total number of F<br>Array global powe<br>Array operating c<br>Total area<br>Inverter<br>Custom param<br>Characteristics<br>Inverter pack | eteristics<br>Si-mon<br>t database<br>odules<br>V modules<br>er<br>naracteristics (50°C)<br>eters definition | no Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>U mpp<br>Module area<br>Model<br>Manufacturer<br>perating Voltage | JAM6-72-320/SI<br>JA Solar<br>14 modules<br>28 Un<br>8.96 kWp At op<br>470 V<br>54.3 m <sup>2</sup><br>SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Un<br>Max. po<br>2 * MPPT 50 % | In parallel<br>it Nom. Power<br>perating cond.<br>I mpp<br>Cell area<br>S<br>it Nom. Power<br>ower (=>40°C)<br>Total Power<br>Pnom ratio | 2 strings<br>320 Wp<br>8.05 kW<br>17 A<br>48.2 m <sup>2</sup><br>8.00 kW<br>8.80 kW<br>8.80 kW<br>1.12 | s<br>/p (50°C)<br>/ac<br>/ac<br>ac |
| <b>PV Array loss fa</b><br>Thermal Loss fac<br>Wiring Ohmic Lo<br>Module Quality L<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect,                                                                 | ctors<br>tor<br>ss (<br>oss<br>Losses<br>loss<br>ASHRAE parametrization                                      | Uc (const)<br>Global array res.<br>IAM =                                                                                                   | 20.0 W/m²K<br>465 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                          | Uv (wind)<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param.                                               | 0.0 W/n<br>1.5 % a<br>-0.8 %<br>1.0 % a<br>0.10 %<br>0.05                                              | n²K / m/s<br>t STC<br>t MPP        |



| PVSYST V6.86                                                                                |                                                                                       |                                                         |                                                                     | 2                                                   | 1/04/20                                              | Page 3/7                      |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|-------------------------------|
| G                                                                                           | rid-Connected S                                                                       | System                                                  | n. Detailed Llse                                                    | or's needs                                          |                                                      |                               |
| C Droinet                                                                                   |                                                                                       | <i>a</i> \                                              |                                                                     |                                                     |                                                      |                               |
| Project :                                                                                   | Taman Midan (NEN                                                                      | //)                                                     |                                                                     |                                                     |                                                      |                               |
| Simulation variant :                                                                        | big family - 9kw                                                                      |                                                         |                                                                     |                                                     |                                                      |                               |
| Main system parameters                                                                      | Syste                                                                                 | em type                                                 | Sheds on ground                                                     |                                                     |                                                      |                               |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear s<br>Nb. of r<br>Daily household cor                                           | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the ye | azimuth<br>Pnom<br>Pnom total<br>Pnom<br>ear Global | 0°<br>320 Wp<br><b>8.96 kV</b><br>8.00 kV<br>5734 k\ | V <b>p</b><br>V ac<br>Wh/year |
| Daily household consume                                                                     | ers, Constant over the                                                                | e year, av                                              | verage = 15.7 kWh/d                                                 | lay                                                 |                                                      |                               |
|                                                                                             |                                                                                       | Annua                                                   | l values                                                            |                                                     |                                                      |                               |
|                                                                                             | Use 2 days a week                                                                     | Number                                                  | Power                                                               | Use                                                 | ſ                                                    | Energy                        |
| Lamps (LED or fluo)                                                                         |                                                                                       | 30                                                      | 18 W/lamp                                                           | 5 h/d                                               | ay 2                                                 | 2700 Wh/day                   |
| TV / PC / Mobile                                                                            |                                                                                       | 3                                                       | 70 W/app                                                            | 14 h/d                                              | ay 2                                                 | 2940 Wh/day                   |
| Iron                                                                                        |                                                                                       | 1                                                       | 1200 W/app                                                          | 1 h/d                                               | ay 1                                                 | 200 Wh/day                    |
| Fridge / Deep-freeze                                                                        |                                                                                       | 1                                                       |                                                                     | 24 Wh/d                                             | ay 3                                                 | 3000 Wh/day                   |
| Dish- & Cloth-washers                                                                       |                                                                                       | 1                                                       |                                                                     | 2 Wh/d                                              | ay                                                   | 750 Wh/day                    |
| Instant water heater                                                                        |                                                                                       | 2                                                       | 2000 W tot                                                          | 2 h/d                                               | ay 8                                                 | 3000 Wh/day                   |
| Aircond                                                                                     |                                                                                       | 6                                                       | 750 W tot                                                           | 8 h/d                                               | <u>ay 36</u>                                         | 5000 Wh/day                   |
| Stand-by consumers                                                                          |                                                                                       |                                                         |                                                                     | 24 h/d                                              | ay                                                   | 24 Wh/day                     |
| lotal daily energy                                                                          |                                                                                       | Hourly                                                  | / profile                                                           |                                                     | 54                                                   | 1614 Wh/day                   |
|                                                                                             | Topo<br>6000<br>1000<br>2000<br>0 3000<br>0 3000<br>0 3000<br>0 3000<br>0 3000<br>0 3 |                                                         | 12 15 18 21                                                         | 24                                                  |                                                      |                               |

| PVSYST V6.86                                    |                                     |                    |                                   |            |                     |                     |                 |                            | 21/04/2           | 2 <b>0</b> Pa | ge 4/7  |
|-------------------------------------------------|-------------------------------------|--------------------|-----------------------------------|------------|---------------------|---------------------|-----------------|----------------------------|-------------------|---------------|---------|
|                                                 |                                     | Grid               | -Conn                             | ected S    | Syster              | n <sup>.</sup> Mair | n resul         | ts                         |                   |               |         |
| Destant                                         | -                                   |                    |                                   |            | 5,0101              | ni man              | 1100a           |                            |                   |               |         |
| Project :                                       | Ia                                  | aman Mi            | dah (NE                           | =IVI)      |                     |                     |                 |                            |                   |               |         |
| Simulation variant                              | : bi                                | g family           | - 9kw                             |            |                     |                     |                 |                            |                   |               |         |
| Main system param                               | eters                               |                    | Sy                                | stem type  | Shed                | s on grou           | und             |                            |                   |               |         |
| Near Shadings                                   |                                     |                    | Linea                             | r shadings | 5                   |                     |                 |                            |                   |               |         |
| PV Field Orientation                            |                                     |                    |                                   | til        | t 5°                |                     |                 | azimut                     | h 0°              |               |         |
| PV modules                                      |                                     |                    |                                   | Mode       | I JAM6              | -72-320/S           |                 | Pnor                       | m 320\            | Np            |         |
| PV Array                                        |                                     |                    | ND. C                             | t modules  | 5 28<br>I SUND      |                     | 1               | Pnom tota                  | al <b>8.96</b>    | kW/ oo        |         |
| livenei<br>User's needs                         |                                     | Daily ho           | isehold c                         |            | Const               | ant over t          | ∟<br>he vear    | Globa                      | n o.uu<br>al 5734 | kWh/vea       | ər      |
|                                                 |                                     | Daily 1100         |                                   | onsumer    | 5 001130            |                     |                 | 01000                      |                   | KWII/yCC      |         |
| Main simulation res                             | ults                                |                    |                                   |            |                     |                     | _               |                            |                   |               |         |
| System Production                               |                                     | -                  | Produce                           | d Energy   | 11.78               | MWh/ye              | ar Sp           | ecific prod                | d. 1315           | kWh/kW        | /p/year |
|                                                 |                                     | Per                | formance                          | e Ratio PF | 82.40               | %                   | Solar F         | raction S                  | F 18.28           | 3%            |         |
| Normalized productions (                        | per installed                       | tkWp): No          | minal powe                        | r 8.96 kWp |                     |                     | Per             | formance R                 | atio PR           |               |         |
| 6 <b></b>                                       |                                     |                    |                                   |            | 1                   | 0                   |                 |                            |                   |               |         |
| Lc : Collection L                               | oss (PV-array los                   | sses) (            | D.7 kWh/kWp/day                   | y -        | 1                   |                     | : Performance F | III<br>Ratio (Yf / Yr): 0. | 824               |               |         |
| Ls : System Loss                                | s (inverter,)<br>seful energy (inve | (<br>erter output) | ).07 kWh/kWp/da<br>3.6 kWh/kWp/da | ay<br>y -  | 0                   | .9                  |                 |                            |                   |               |         |
| [day]                                           |                                     | . ,                |                                   | Í          | 0                   | .8                  |                 |                            |                   |               |         |
| Yd 4-                                           |                                     |                    |                                   |            | 0<br>문              | .7                  |                 |                            |                   |               |         |
| HAN - HAN AND AND AND AND AND AND AND AND AND A |                                     |                    |                                   |            | 0 Katio             | .6                  |                 |                            |                   |               |         |
| 6 3 -                                           |                                     |                    |                                   |            | 0 gu ce             | .5                  |                 |                            |                   |               |         |
|                                                 |                                     |                    |                                   | -          | je o                | .4                  |                 |                            |                   |               |         |
| 2 - 2 -                                         |                                     |                    |                                   |            | ද<br>0              | .3                  |                 |                            |                   |               |         |
|                                                 |                                     |                    |                                   | -          | 0                   | .2                  |                 |                            |                   |               |         |
| 1-                                              |                                     |                    |                                   |            | 0                   | 1                   |                 |                            |                   |               |         |
|                                                 |                                     |                    |                                   |            | 0                   |                     | , ,             |                            |                   |               |         |
| Jan Feb Mar Ap                                  | pr May Jun                          | i Jul Aug          | Sep Oct                           | Nov Dec    | U                   | Jan Feb             | Mar Apr         | May Jun                    | Jul Aug           | Sep Oct N     | lov Dec |
|                                                 |                                     |                    |                                   |            |                     |                     |                 |                            |                   |               |         |
|                                                 |                                     |                    |                                   |            |                     |                     |                 |                            |                   |               |         |
|                                                 |                                     |                    |                                   |            |                     |                     |                 |                            |                   |               |         |
|                                                 |                                     |                    | _                                 | big fai    | тну - 9к            | W                   |                 |                            |                   |               |         |
|                                                 |                                     |                    | Ba                                | alances ai | nd main             | results             |                 |                            |                   |               |         |
|                                                 | GlobHor                             | Diff⊌or            | T Amb                             | Globing    | GlobEff             | FArroy              | E lleor         | E Solar                    | E Grid            | FErGrid       | ſ       |
|                                                 | k\//h/m2                            | k\//h/m2           | י_אוווט<br>∘ר                     | k\//h/m2   | kW/h/m <sup>2</sup> |                     |                 |                            |                   |               |         |
|                                                 | 122.0                               | 02.20              | 20.10                             | 104.0      | 101 0               | 1.01/               |                 | 0.100                      | 0.000             | 0.420         | 1       |
| February                                        | 133.0                               | 02.20<br>67.00     | 28.10<br>27.70                    | 130.3      | 131.Z<br>122 0      | 1.010               | 0.546           |                            | 0.890             | 0.439         |         |
| March                                           | 134.0<br>140.8                      | 88.20              | 28.00                             | 157.4      | 132.0<br>14/ 9      | 1 1 1 2 5           | 0.437           | 0.094                      |                   | 0.343         |         |
| Anril                                           | 147.0                               | 70.50              | 20.00                             | 138.8      | 133.0               | 1 039               | 0 492           | 0.000                      | 0.928             | 0.340         |         |
| Mav                                             | 140.3                               | 78.60              | 28.60                             | 136.9      | 131.7               | 1.027               | 0.492           | 0.085                      | 0.924             | 0.407         |         |
| June                                            | 132.0                               | 77.80              | 27.80                             | 128.3      | 123.5               | 0.967               | 0.437           | 0.073                      | 0.875             | 0.363         |         |
| July                                            | 134.4                               | 87.20              | 27.80                             | 131.1      | 125.8               | 0.994               | 0.546           | 0.105                      | 0.870             | 0.441         |         |
| August                                          | 132.2                               | 87.20              | 27.80                             | 130.1      | 125.2               | 0.980               | 0.437           | 0.069                      | 0.893             | 0.368         |         |
| September                                       | 129.2                               | 79.00              | 27.10                             | 128.8      | 124.0               | 0.968               | 0.437           | 0.081                      | 0.869             | 0.356         |         |
| October                                         | 138.8                               | 82.60              | 27.40                             | 140.4      | 135.5               | 1.056               | 0.546           | 0.109                      | 0.927             | 0.437         |         |
| November                                        | 117.6                               | 79.20              | 26.70                             | 119.8      | 115.4               | 0.907               | 0.437           | 0.065                      | 0.824             | 0.372         |         |
| December                                        | 115.0                               | 73.20              | 26.29                             | 118.1      | 113.6               | 0.896               | 0.492           | 0.079                      | 0.800             | 0.413         | 1       |

Legends: GlobHor Horizontal global irradiation GlobEff Effective Global, corr. for IAM and shadings DiffHor Horizontal diffuse irradiation EArray Effective energy at the output of the array T\_Amb T amb. E\_User Energy supplied to the user GlobInc Global incident in coll. plane E\_Solar Energy from the sun E\_Grid Energy injected into grid EFrGrid Energy from the grid

1537.5

12.005

5.734

1.048

10.736

4.686

1596.2

1597.2

953.59

27.58

Year



| PVSYST V6.86          | 3               |                                                  |                 |                                          | 21/04/20   | Page 6/7          |
|-----------------------|-----------------|--------------------------------------------------|-----------------|------------------------------------------|------------|-------------------|
|                       |                 | Grid-Co                                          | onnected Sv     | /stem: Loss diagram                      |            |                   |
| Drainat :             |                 | Tomon Mido                                       |                 |                                          |            |                   |
| Project :             |                 |                                                  |                 |                                          |            |                   |
| Simulation va         | irlant :        | big family - 9                                   | KW              |                                          |            |                   |
| Main system p         | arameters       |                                                  | System type     | Sheds on ground                          |            |                   |
| Near Shadings         | 5               |                                                  | Linear shadings |                                          |            |                   |
| PV Field Orienta      | ation           |                                                  | tilt            | 5° azim                                  | uth 0°     |                   |
| PV modules            |                 |                                                  | Nb of modulos   | JAN0-72-320/51 Pri                       | om 320 vvp | )<br>Mn           |
| r v Allay<br>Inverter |                 |                                                  | No. of modules  | SUN2000 -8KTI Pr                         | om 8.00 kV | <b>vp</b><br>V ac |
| User's needs          |                 | Dailv house                                      | hold consumers  | Constant over the year Glo               | bal 5734 k | Wh/vear           |
|                       |                 |                                                  |                 |                                          |            |                   |
|                       |                 |                                                  | Loss diagram o  | ver the whole year                       |            |                   |
|                       |                 |                                                  |                 |                                          |            |                   |
|                       |                 |                                                  |                 |                                          |            |                   |
| 1                     |                 | 1597 kWh/m <sup>2</sup>                          |                 | Horizontal global irradiation            |            |                   |
|                       |                 |                                                  | -0.07%          | Global incident in coll plane            |            |                   |
|                       |                 |                                                  | -0.07%          | Global incident below threshold          |            |                   |
|                       |                 |                                                  | →0.00%          | Near Shadings: irradiance loss           |            |                   |
|                       |                 |                                                  | 3-3.67%         | IAM factor on global                     |            |                   |
|                       | 1539 k          | $10/10^{-10} \times 54 \text{ m}^2 \text{ coll}$ | ,               | Effective irradiation on collectors      |            |                   |
| L                     |                 |                                                  |                 |                                          |            |                   |
| Г                     |                 | $\frac{10.537}{10.70}$                           | <u>0</u>        | P v conversion                           | `          |                   |
|                       |                 | 13.79 MWh                                        | -0 75%          | PV loss due to irradiance level          | .)         |                   |
|                       |                 |                                                  | 1 4-0.13%       |                                          |            |                   |
|                       |                 |                                                  | -11.15%         | PV loss due to temperature               |            |                   |
|                       |                 |                                                  | +0.75%          | Module quality loss                      |            |                   |
|                       |                 |                                                  | <b>→</b> -1.10% | Mismatch loss, modules and strings       |            |                   |
|                       |                 |                                                  | →-0.95%         | Ohmic wiring loss                        |            |                   |
|                       | 12              | 2.01 MWh                                         |                 | Array virtual energy at MPP              |            |                   |
|                       |                 |                                                  | 1 80%           | Inverter Loss during operation (efficien | cv)        |                   |
|                       |                 |                                                  | V 0.00%         | Inverter Loss over nominal inv. power    | ·y)        |                   |
|                       |                 |                                                  | > 0.00%         | Inverter Loss due to max. input current  |            |                   |
|                       |                 |                                                  | ₩0.00%          | Inverter Loss over nominal inv. voltage  |            |                   |
|                       |                 |                                                  | ₩0.00%          | Inverter Loss due to power threshold     |            |                   |
| grid                  |                 |                                                  | →0.00%          | Inverter Loss due to voltage threshold   |            |                   |
| consumption           | 11              | 70 M///b                                         | →-0.04%         | Night consumption                        |            |                   |
|                       | 11              | ./ 0 1010011                                     |                 | Available Energy at inverter Output      |            |                   |
|                       |                 |                                                  |                 |                                          |            |                   |
| 4.69 MWh 1.0          | 5 MWh 1         | 0.74 MWh                                         |                 | Energy injected into grid                |            |                   |
|                       |                 |                                                  | -               |                                          |            |                   |
| to user to            | user<br>n solar | to grid                                          |                 |                                          |            |                   |
| nom griu nom          | 1 30101         |                                                  |                 |                                          |            |                   |

|                                                                                           |                           |                                                                                       |                                                                                                                          |                                                                      |                                               | 21/04/20                                                        | Daga 7/7                      |
|-------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-------------------------------|
| PVSYSI V6.86                                                                              |                           |                                                                                       |                                                                                                                          |                                                                      |                                               | 21/04/20                                                        | Page ///                      |
|                                                                                           |                           | Grid-Coni                                                                             | nected Syster                                                                                                            | m: P50 - P90 ev                                                      | aluation                                      |                                                                 |                               |
| Project :                                                                                 |                           | Taman Mic                                                                             | lah (NEM)                                                                                                                |                                                                      |                                               |                                                                 |                               |
| -<br>Simulation vari                                                                      | ant :                     | big family -                                                                          | 9kw                                                                                                                      |                                                                      |                                               |                                                                 |                               |
| Main system par                                                                           | ameters                   |                                                                                       | System type                                                                                                              | Sheds on ground                                                      |                                               |                                                                 |                               |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | on                        | Daily hous                                                                            | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>sehold consumers                                          | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the yea | azimut<br>Pnoi<br>Pnom tot<br>Pnoi<br>ar Glob | h 0°<br>n 320 Wp<br>al <b>8.96 kV</b><br>n 8.00 kV<br>al 5734 k | V <b>p</b><br>V ac<br>Wh/year |
| Evaluation of the                                                                         | e Produc                  | tion probabil                                                                         | ity forecast                                                                                                             |                                                                      |                                               |                                                                 |                               |
| The probability dis                                                                       | stribution                | of the system                                                                         | production forecas                                                                                                       | t for different vears is n                                           | nainly depen                                  | dent                                                            |                               |
| on the meteo data                                                                         | a used for                | the simulation                                                                        | n, and depends on                                                                                                        | the following choices:                                               |                                               |                                                                 |                               |
| Meteo data source<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia               | e<br>n<br>bility          | Year d                                                                                | Kind<br>eviation from aver.<br>Variance                                                                                  | MeteoNorm 7.2 static<br>Not defined<br>3 %<br>0.5 %                  | on<br>Yea                                     | ar 1995                                                         |                               |
| The probability dis<br>Specified Deviatio                                                 | stribution<br>n P<br>Soil | variance is als<br>V module moo<br>Inverter effi<br>ling and mism<br>Degra<br>system) | so depending on so<br>delling/parameters<br>iciency uncertainty<br>atch uncertainties<br>idation uncertainty<br>Variance | me system parameters<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (q | s uncertaintie<br>juadratic sun               | ⊹s<br>∩)                                                        |                               |
| Annual production                                                                         | n probabili               | ity                                                                                   | Variability<br>P50<br>P90<br>P95                                                                                         | 0.20 MWh<br>10.74 MWh<br>10.48 MWh<br>10.41 MWh                      |                                               |                                                                 |                               |
|                                                                                           |                           |                                                                                       | Probability                                                                                                              | distribution                                                         |                                               |                                                                 |                               |
|                                                                                           | Probability               | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05          | P90 =<br>P95 = 104                                                                                                       | P50 = 10736 kWh<br>E_Grid simul = 1073<br>= 10478 kWh<br>06 kWh      | i6 kWh                                        |                                                                 |                               |

0.00 10000

E\_Grid system production kWh

|                                                                          |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21/04/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Page 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grid                                                                     | d-Connected System                                                                                                                                                           | n: Simulation p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | arameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Та                                                                       | man Midah (NEM)                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ite                                                                      | Kuala Lumpur/Subang                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / Malays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| as                                                                       | Latitude<br>Legal Time<br>Albedo                                                                                                                                             | 3.12° N<br>Time zone UT+8<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Longitude<br>Altitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e 101.55°<br>e 17 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                          | Kuala Lumpur/Subang                                                                                                                                                          | MeteoNorm 7.2 sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion - Synthetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| iant : Ov                                                                | vn house                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          | Simulation date                                                                                                                                                              | 21/04/20 14h32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ameters                                                                  | System type                                                                                                                                                                  | Sheds on ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Orientation                                                              | Tilt                                                                                                                                                                         | 5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Azimuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          | Transposition                                                                                                                                                                | Perez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Diffuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Perez, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Neteonorm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                          | Free Horizon                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          | Linear shadings                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          | Daily household consumers<br>average                                                                                                                                         | Constant over the year 30.4 kWh/Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cteristics<br>t database<br>odules<br>PV modules<br>er<br>haracteristics | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>(50°C) U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters  | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 U<br>6.40 kWp At 0<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologie<br>90-500 V U<br>Max. p<br>2 * MPPT 50 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In paralle<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>nit Nom. Power<br>power (=>40°C<br>Total Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I 2 string:<br>320 Wp<br>5.75 kW<br>17 A<br>34.4 m <sup>2</sup><br>r 5.00 kW<br>5.50 kW<br>r 5.0 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s<br>/p (50°C)<br>Vac<br>Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                          |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pnom ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>ctors</b><br>tor                                                      | Uc (const)                                                                                                                                                                   | 20.0 W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Uv (wind)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 0.0 W/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n²K / m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ss<br>oss<br>n Losses<br>n loss<br>ASHRAE para                           | Global array res.                                                                                                                                                            | 332 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5 % a<br>-0.8 %<br>1.0 % a<br>0.10 %<br>. 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t STC<br>t MPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                          | Gric<br>Ta<br>ite<br>as<br>iant : Ow<br>ameters<br>Orientation<br>cteristics<br>at database<br>odules<br>PV modules<br>er<br>haracteristics of<br>st database<br>of database | Grid-Connected System<br>Taman Midah (NEM)<br>ite Kuala Lumpur/Subang<br>Latitude<br>as Legal Time<br>Albedo<br>Kuala Lumpur/Subang<br>iant : Own house<br>Simulation date<br>ameters System type<br>Orientation Tilt<br>Transposition<br>Free Horizon<br>Linear shadings<br>Daily household consumers<br>average<br>Cteristics<br>Si-mono Model<br>th database Manufacturer<br>bdules In series<br>PV modules Nb. modules<br>er Nominal (STC)<br>haracteristics (50°C) U mpp<br>Module area<br>St database Manufacturer<br>Operating Voltage<br>Nb. of inverters<br>tor Uc (const)<br>ss Global array res.<br>os n Losses<br>NASHRAE parametrization IAM = | Grid-Connected System: Simulation provide the second system: Simulation provide the system is the second system i | Grid-Connected System: Simulation parameters     Taman Midah (NEM)     itte Kuala Lumpur/Subang   Country     Latitude Albedo 0.20     Kuala Lumpur/Subang MeteoNorm 7.2 station - Synthetic Albedo 0.20     Kuala Lumpur/Subang MeteoNorm 7.2 station - Synthetic O.20     iant: Own house     Simulation date 21/04/20 14h32     ameters System type Sheds on ground     Orientation Tit 5° Azimuth     Constant over the year 30.4 kWh/Day     Daily household consumers Average 30.4 kWh/Day     Daily household consumers Average 30.4 kWh/Day     Constant over the year 30.4 kWh/Day     Ceteristics     Manufacturer JA Solar     Operating Voltage 38.8 m²     Operating Voltage 90-500 V     Model     SUN2000L-5KTL     Huawei Technologies     Operating Voltage 90-500 V     Operating Voltage 90-500 V     Operating Voltage 90-500 V     Operating Voltage 90-500 V     Operating Voltage 100 modules 100 modules     < | 21/04/20     Grid-Connected System: Simulation parameters     Taman Midah (NEM)     itte Kuala Lumpur/Subang   Country Malays     as   Latitude 3.12° N   Longitude 101.55°     as   Latitude 3.12° N   Longitude 101.55°     as   Latitude 2.1/04/20 14h32     ameters   System type   Sheds on ground     Orientation   Tit 5°   Azimuth 0°     Transposition Perez   Diffuse Perez, N     Daily household consumers   Constant over the year     average   30.4 kWh//Day     Certristics     Simono   Model   JAM6-72-320/SI     total box fractor for Model   JAM6-72-320/SI     total colspan="2">Simulation date   2 for Matage     Jameters   Simulation (Sitt) A Solar     Daily household consumers   Constant over the year     Jameters   Simulation for Module   < |



|                       |                         |               |                      | Ι               | —————————————————————————————————————— |             |
|-----------------------|-------------------------|---------------|----------------------|-----------------|----------------------------------------|-------------|
| PVSYST V6.86          |                         |               |                      | 21/             | 04/20                                  | Page 3/8    |
|                       | Grid-Connected          | Systen        | n: Detailed Us       | er's needs      |                                        |             |
| Project ·             | Taman Midah (NFI        | N)            |                      |                 |                                        |             |
| Simulation variant :  |                         | •••           |                      |                 |                                        |             |
|                       | Own nouse               |               |                      |                 |                                        |             |
| Main system parameter | s Syste                 | em type       | Sheds on ground      | l               |                                        |             |
| Near Shadings         | Linear s                | shadings      | 50                   |                 | •                                      |             |
| PV Field Orientation  |                         | tilt<br>Model | 5°<br>JAM6-72-320/SI | azimuth<br>Pnom | J°<br>320 Wn                           |             |
| PV Array              | Nb. of                  | modules       | 20                   | Pnom total      | 6.40 kW                                | /p          |
| Inverter              |                         | Model         | SUN2000L-5KTL        | Pnom            | 5.00 kW                                | / ac        |
| User's needs          | Daily household cor     | nsumers       | Constant over the    | year Global     | 11.10 M                                | IWh/year    |
| Daily household consu | mers, Constant over the | e year, a     | verage = 30.4 kWh    | /day            |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         | Annua         | al values            |                 |                                        |             |
|                       | Use 5 days a week       | Number        | Power                | Use             | ŀ                                      | Energy      |
| Lamps (LED or fluo)   |                         | 30            | 18 W/lamp            | 6 h/day         | 2                                      | 970 Wh/day  |
| TV / PC / Mobile      |                         | 3             | 70 W/app             | 4 h/day         | /                                      | 840 Wh/day  |
| Iron                  |                         | 1             | 1200 W/app           | 1 h/day         | / 1                                    | 200 Wh/day  |
| Fridge / Deep-freeze  |                         | 1             |                      | 24 Wh/day       | / 3                                    | 000 Wh/day  |
| Dish- & Cloth-washers |                         | 1             |                      | 2 Wh/day        | / 1                                    | 000 Wh/day  |
| Instant water heater  |                         | 1             | 2000 W tot           | 1 h/day         | / 2                                    | :000 Wh/day |
| Aircond               |                         | 6             | 750 W tot            | 7 h/day         | <u>'</u> 31                            | 500 Wh/day  |
| Stand-by consumers    |                         |               |                      | 24 h/day        | 1                                      | 24 Wh/day   |
| Total daily energy    |                         |               |                      |                 | 42                                     | 534 Wh/uay  |
|                       |                         | Hourb         | v profile            |                 |                                        |             |
|                       | <u>∞</u> 7000           |               |                      |                 |                                        |             |
|                       |                         |               | <b>.</b>             |                 |                                        |             |
|                       | a 4000 -                |               |                      | -               |                                        |             |
|                       | <sup>ਰ</sup> 3000 –     |               |                      |                 |                                        |             |
|                       | 2000<br>둔 1000          |               |                      |                 |                                        |             |
|                       |                         | بميلا         |                      |                 |                                        |             |
|                       | 0 3                     | 6 9           | 9 12 15 18           | 21 24           |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |
|                       |                         |               |                      |                 |                                        |             |

| PVSYST V6.86                             |                          |                    |                            |                       |                     |                     |                        |                               | 21/04/2           | 0 Pa           | ge 4/8  |
|------------------------------------------|--------------------------|--------------------|----------------------------|-----------------------|---------------------|---------------------|------------------------|-------------------------------|-------------------|----------------|---------|
|                                          |                          | Grid               | -Conne                     | ected \$              | Svster              | n: Mair             | n resul                | ts                            |                   |                |         |
| Project :                                | Та                       | aman Mi            | dah (NE                    | :M)                   |                     |                     |                        |                               |                   |                |         |
| Simulation variant                       | + · ·                    |                    |                            |                       |                     |                     |                        |                               |                   |                |         |
|                                          |                          | WITTIOUS           |                            |                       |                     |                     |                        |                               |                   |                |         |
| Main system param                        | eters                    |                    | Sys                        | stem type             | Shed                | s on grou           | Ind                    |                               |                   |                |         |
| Near Shadings                            |                          |                    | Linear                     | shadings              | 5<br>t 5°           |                     |                        | azimut                        | h O°              |                |         |
| PV modules                               |                          |                    |                            | Mode                  | I JAM6 <sup>.</sup> | -72-320/S           | 51                     | Pnor                          | n 320 V           | Vp             |         |
| PV Array                                 |                          |                    | Nb. of                     | f modules             | 3 20                |                     |                        | Pnom tota                     | al <b>6.40</b>    | kWp            |         |
| Inverter                                 |                          | Daily bo           | isebold co                 | Mode                  | I SUN2              | 000L-5KT            | L<br>he vear           | Pnor                          | n 5.00            | kW ac          | oor     |
|                                          |                          | Daily 1100         |                            | Jisumera              | 5 00150             |                     | ne year                | Globa                         |                   | / IVIVVII/ ye  |         |
| Main simulation res<br>System Production | sults                    | Per                | <b>Produce</b><br>formance | d Energy<br>Ratio PF  | <b>8.41</b>         | MWh/yea<br>%        | r Spo<br>Solar F       | ecific proc<br>raction SI     | d. 1314<br>F 5.35 | kWh/kW<br>%    | /p/year |
| Normalized productions (                 | (per installed           | l kWp): No         | minal power                | <sup>.</sup> 6.40 kWp |                     |                     | Per                    | formance Ra                   | atio PR           |                |         |
| 6 Lc : Collection L                      | Loss (PV-array los       | I I<br>sses) (     | 1 I I<br>0.7 kWh/kWp/day   |                       | 1                   | .0<br>.9            | I I<br>: Performance R | atio (Yf / Yr): 0.4           | 1 I<br>823        | <del></del>    |         |
| 5 Yf : Produced us                       | seful energy (inverter,) | erter output)      | 3.6 kWh/kWp/day            | y -                   | 0                   | .8                  |                        |                               |                   |                |         |
| Kep/dw.                                  |                          |                    |                            |                       | ~ 0                 | .7                  |                        |                               |                   |                |         |
| 4<br>4/4/WA                              |                          |                    |                            |                       | atio PI             | .6                  |                        |                               |                   |                |         |
| G 3-                                     |                          |                    |                            |                       | 0 guce              | .5                  |                        |                               |                   |                |         |
| E                                        |                          |                    |                            | -                     | erform              | .4                  |                        |                               |                   |                |         |
| Lormali:                                 |                          |                    |                            |                       | 0                   | .3                  |                        |                               |                   |                |         |
| 2                                        |                          |                    |                            | -                     | 0                   | .2                  |                        |                               |                   |                |         |
|                                          |                          |                    |                            | -                     | 0                   | .1                  |                        |                               |                   |                |         |
| 0 Jan Feb Mar A                          | opr May Jur              | Jul Aug            | Sep Oct                    | Nov Dec               | 0                   | .0 <b>E</b> Jan Feb | Mar Apr                | May Jun                       | Jul Aug S         | Sep Oct N      | lov Dec |
|                                          |                          |                    |                            |                       |                     |                     |                        |                               |                   |                |         |
|                                          |                          |                    |                            |                       |                     |                     |                        |                               |                   |                |         |
|                                          |                          |                    |                            | Owr                   | house ו             |                     |                        |                               |                   |                |         |
|                                          |                          |                    | Ba                         | lances ar             | nd main             | results             |                        |                               |                   |                |         |
|                                          | GlobHor                  | DiffHor            | T_Amb                      | GlobInc               | GlobEff             | EArray              | E_User                 | E_Solar                       | E_Grid            | EFrGrid        | ]       |
|                                          | kWh/m <sup>2</sup>       | kWh/m <sup>2</sup> | °C                         | kWh/m²                | kWh/m <sup>2</sup>  | MWh                 | MWh                    | MWh                           | MWh               | MWh            | -       |
| January                                  | 133.0                    | 82.20              | 28.10                      | 136.3                 | 131.2               | 0.726               | 0.978                  | 0.051                         | 0.660             | 0.927          |         |
| March                                    | 134.6                    | 67.90<br>88.20     | 27.70                      | 137.4<br>150.3        | 132.8<br>144 9      | 0.737               | 0.851                  | 0.047                         | 0.676             | 0.804          |         |
| April                                    | 140.3                    | 70.50              | 27.70                      | 138.8                 | 133.9               | 0.742               | 0.893                  | 0.032                         | 0.679             | 0.845          |         |
| May                                      | 140.3                    | 78.60              | 28.60                      | 136.9                 | 131.7               | 0.734               | 0.978                  | 0.054                         | 0.665             | 0.924          |         |
| June                                     | 132.0                    | 77.80              | 27.80                      | 128.3                 | 123.5               | 0.691               | 0.893                  | 0.046                         | 0.631             | 0.847          |         |
| July                                     | 134.4                    | 87.20              | 27.80                      | 131.1                 | 125.8               | 0.710               | 0.936                  | 0.052                         | 0.644             | 0.884          |         |
| August                                   | 132.2                    | 87.20              | 27.80                      | 130.1                 | 125.2               | 0.700               | 0.978                  | 0.051                         | 0.635             | 0.928          |         |
| September                                | 129.2                    | /9.00              | 27.10                      | 128.8                 | 124.0               | 0.691               | 0.851                  | 0.046                         | 0.632             | 0.805          |         |
| November                                 | 117 6                    | 02.0U<br>79.20     | 27.40<br>26.70             | 140.4<br>110 Q        | 135.5<br>115 /      | 0.754               | 0.978                  | 0.053                         | 0.007<br>0.222    | 0.925<br>0.925 |         |
| December                                 | 115.0                    | 73.20              | 26.29                      | 118.1                 | 113.6               | 0.640               | 0.893                  | 0.046                         | 0.582             | 0.848          |         |
| Year                                     | 1597.2                   | 953.59             | 27.58                      | 1596.2                | 1537.5              | 8.575               | 11.101                 | 0.594                         | 7.815             | 10.508         | 1       |
|                                          | ļ                        |                    |                            |                       | -                   |                     | -                      | ļ                             | -                 |                | 4       |
| Legends: Glob                            | Hor F                    | lorizontal gl      | lobal irradia              | tion                  |                     | GlobEff             | Effecti                | ve Global, d                  | corr. for IAI     | M and sha      | dings   |
| Diff                                     | Hor H                    | lorizontal d       | iffuse irradia             | ation                 |                     | EArray              | Effecti                | ve energy a                   | at the outp       | ut of the a    | rray    |
| T_A                                      | mb T                     | amb.               |                            |                       |                     | E_User              | Energy                 | y supplied to                 | o the user        |                |         |
| Glob                                     | oinc C                   | Jobal incide       | ent in coll. p             | lane                  |                     | E_Solar             | Energy                 | y from the s                  | sun               |                |         |
|                                          |                          |                    |                            |                       |                     | E_GNO<br>FFrGrid    | Energy                 | y injected in<br>v from the c | no gria<br>rrid   |                |         |
|                                          |                          |                    |                            |                       |                     |                     |                        | بعسسر                         | g- 154            |                |         |



| PVSYST V6.86      |          |                         |                     |           |                                  |                   | 21/04/20   | Page 6/8  |
|-------------------|----------|-------------------------|---------------------|-----------|----------------------------------|-------------------|------------|-----------|
|                   | 1        | Grid-Con                | nect                | ed Sv     | stem: Loss diagra                | m                 |            |           |
| Draigat :         |          | Taman Midah             |                     |           |                                  |                   |            |           |
| Simulation var    | iant ·   |                         |                     | )         |                                  |                   |            |           |
|                   |          | own nouse               | <b>0</b> /          |           |                                  |                   |            |           |
| Main system pa    | rameters |                         | Syste               | m type    | Sneds on ground                  |                   |            |           |
| PV Field Orientat | ion      | LII                     | near sr             | tilt      | 5°                               | azimut            | h O°       |           |
| PV modules        |          | N                       | lb of m             | Model     | JAM6-72-320/SI                   | Pnor<br>Pnom tota | n 320 Wp   | No.       |
| Inverter          |          | IN                      | 10. OI II           | Model     | SUN2000L-5KTL                    | Phom tota<br>Pnor | n 5.00 kV  | vp<br>√ac |
| User's needs      |          | Daily househo           | old con             | sumers    | Constant over the year           | Globa             | al 11.10 N | 1Wh/year  |
|                   |          | L                       | _oss di             | agram ov  | er the whole year                |                   |            |           |
|                   |          |                         |                     |           |                                  |                   |            |           |
|                   |          |                         |                     |           |                                  |                   |            |           |
| Γ                 |          | 1597 kWh/m <sup>2</sup> |                     |           | Horizontal global irradiatio     | n                 |            |           |
|                   |          |                         |                     | →-0.07%   | Global incident in coll. plan    | าย                |            |           |
|                   |          |                         |                     | →0.00%    | Near Shadings: irradiance los    | s                 |            |           |
|                   |          |                         | N                   | ⇒-3.67%   | IAM factor on global             |                   |            |           |
|                   | 1538     | kWh/m² * 39 m² coll.    |                     |           | Effective irradiation on co      | llectors          |            |           |
| _                 | efficier | ncy at STC = 16.53%     |                     |           | PV conversion                    |                   |            |           |
|                   |          | 9.85 MWh                |                     | H 0 750/  | Array nominal energy (at S       | STC effic.)       |            |           |
|                   |          |                         | 1 C                 | 1         |                                  | -1                |            |           |
|                   |          |                         |                     | -11.15%   | PV loss due to temperature       |                   |            |           |
|                   |          |                         | (+0.                | 75%       | Module quality loss              |                   |            |           |
|                   |          |                         | <b>4</b> -1.7       | 10%<br>5% | Mismatch loss, modules and s     | strings           |            |           |
|                   | 8        | 8.58 MWh                | 7-0.3               | JJ 70     | Array virtual energy at MP       | Р                 |            |           |
|                   |          | 1                       | <b>N</b> -18        | 8%        | Inverter Loss during operation   | n (efficiency     | 4)         |           |
|                   |          |                         | 0.00                | %         | Inverter Loss over nominal inv   | v. power          | )          |           |
|                   |          |                         | → 0.00'             | %         | Inverter Loss due to max. input  | ut current        |            |           |
|                   |          |                         | →-0.01              | %<br>1%   | Inverter Loss due to power th    | reshold           |            |           |
| grid              |          |                         | → 0.00 <sup>+</sup> | %         | Inverter Loss due to voltage the | hreshold          |            |           |
| consumption       | 8        | 3.41 MWh                | 7-0.00              | J 70      | Available Energy at Inverte      | er Output         |            |           |
|                   | I        |                         |                     |           |                                  |                   |            |           |
| 10.51 MWh 0.59    | NWh      | 7.82 MWh                | ]                   |           | Energy injected into grid        |                   |            |           |
| to user to u      | iser     | to grid                 |                     |           |                                  |                   |            |           |
| from grid from    | solar    |                         |                     |           |                                  |                   |            |           |
|                   |          |                         |                     |           |                                  |                   |            |           |

| PVSYST V6.86                                                                                |                                                                                                                                                                                        |                                                                          |                                              | 21/04/20                                                         | Page 7/8                      |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|-------------------------------|
|                                                                                             | Grid-Connected Syster                                                                                                                                                                  | n: P50 - P90 eva                                                         | aluation                                     |                                                                  |                               |
| Project ·                                                                                   | Taman Midah (NFM)                                                                                                                                                                      |                                                                          |                                              |                                                                  |                               |
| Simulation variant :                                                                        | Own house                                                                                                                                                                              |                                                                          |                                              |                                                                  |                               |
| Main system parameters                                                                      | System type                                                                                                                                                                            | Sheds on ground                                                          |                                              |                                                                  |                               |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Daily household consumers                                                                                               | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the year    | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>Globa | h 0°<br>n 320 Wp<br>al <b>6.40 kW</b><br>n 5.00 kW<br>al 11.10 M | <b>/p</b><br>/ ac<br>IWh/year |
| Evaluation of the Produc                                                                    | tion probability forecast                                                                                                                                                              |                                                                          |                                              |                                                                  |                               |
| The probability distribution                                                                | of the system production forecast                                                                                                                                                      | for different vears is ma                                                | inly depen                                   | dent                                                             |                               |
| on the meteo data used for                                                                  | the simulation, and depends on t                                                                                                                                                       | he following choices:                                                    |                                              | 2011                                                             |                               |
| Meteo data source<br>Meteo data<br>Specified Deviation<br>Year-to-year variability          | Kind<br>Year deviation from aver.<br>Variance                                                                                                                                          | MeteoNorm 7.2 station<br>Not defined<br>3 %<br>0.5 %                     | Yea                                          | ar 1995                                                          |                               |
| The probability distribution<br>Specified Deviation P<br>Soi<br>Global variability (meteo + | variance is also depending on so<br>V module modelling/parameters<br>Inverter efficiency uncertainty<br>ling and mismatch uncertainties<br>Degradation uncertainty<br>system) Variance | me system parameters u<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (qua | uncertaintie<br>adratic sum                  | s<br>ı)                                                          |                               |
| Annual production probabil                                                                  | ity Variability<br>P50<br>P90<br>P95                                                                                                                                                   | 0.15 MWh<br>7.82 MWh<br>7.63 MWh<br>7.58 MWh                             |                                              |                                                                  |                               |
|                                                                                             | Probability                                                                                                                                                                            | distribution                                                             |                                              |                                                                  |                               |
| Probability                                                                                 | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.20<br>0.15<br>0.10<br>P90 = 7628 kWh<br>0.05<br>0.00                                                                         | 5 kWh<br>E_Grid simul = 7815 kWh                                         |                                              |                                                                  |                               |

0.00 

E\_Grid system production kWh

| PVSYST V6.86               |                                      |                                                                    |                                           |                  | 21/04/20    | Page 8/8   |
|----------------------------|--------------------------------------|--------------------------------------------------------------------|-------------------------------------------|------------------|-------------|------------|
|                            | Grid-C                               | connected Sv                                                       | vstem: CO2 Ba                             | lance            |             |            |
| Project .                  | Taman Mid                            | ah (NEM)                                                           |                                           | lance            |             |            |
| Simulation variant :       |                                      |                                                                    |                                           |                  |             |            |
|                            | Own nouse                            |                                                                    | <u></u>                                   |                  |             |            |
| Main system parameters     |                                      | System type                                                        | Sheds on ground                           |                  |             |            |
| PV Field Orientation       |                                      | Linear snadings                                                    | 5°                                        | azimut           | h O°        |            |
| PV modules                 |                                      | Model                                                              | JAM6-72-320/SI                            | Pnor<br>Pnom tot | n 320 Wp    | In         |
| Inverter                   |                                      | Model                                                              | 20<br>SUN2000L-5KTL                       | Phomitola        | n 5.00 kW   | /p<br>/ ac |
| User's needs               | Daily hous                           | ehold consumers                                                    | Constant over the ye                      | ear Globa        | al 11.10 M  | Wh/year    |
| Produced Emissions         |                                      | <b>Total:</b><br>Source:                                           | <b>11.84 tCO2</b><br>Detailed calculation | from table bel   | ow          |            |
| Replaced Emissions         | Sy                                   | Total:<br>stem production:                                         | <b>166.5 tCO2</b><br>8408.96 kWh/yr       | Lifetime         | : 30 years  | 3          |
|                            | Grid Lifecycle Emissions:<br>Source: |                                                                    |                                           | Country          | r: Malaysia | а          |
| CO2 Emission Balance       |                                      | Total:                                                             | 132.6 tCO2                                |                  |             |            |
| System Lifecycle Emissio   | ons Details:                         | M                                                                  | odules                                    |                  | Supports    |            |
| LCE                        |                                      | 1713 k                                                             | GCO2/kWp 4.40 kgCO2/kg                    |                  |             |            |
| Quantity<br>Subtotal [kgCO | 2]                                   | 6.4                                                                | 40 kWp 200 kg<br>10961 880                |                  |             |            |
|                            |                                      | Saved CO2 Er<br>140<br>100<br>60<br>40<br>20<br>-20<br>0<br>5<br>1 | nission vs. Time                          |                  |             |            |

| PVSYST V6.86                                                                                                                                                                                     |                                                                          |                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                               | 21/04/20                                                                                                  | Page 1/8                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                                                                                                                                                  | Grid                                                                     | d-Connected Systen                                                                                                                                                          | n: Simulation p                                                                                                                                                                   | arameters                                                                                                                     | ;                                                                                                         |                                     |
| Project :                                                                                                                                                                                        | Та                                                                       | man Midah (NEM)                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                               |                                                                                                           |                                     |
| Geographical S                                                                                                                                                                                   | ite                                                                      | Kuala Lumpur/Subang                                                                                                                                                         |                                                                                                                                                                                   | Country                                                                                                                       | / Malays                                                                                                  | ia                                  |
| Situation<br>Time defined                                                                                                                                                                        | as                                                                       | Latitude<br>Legal Time<br>Albedo                                                                                                                                            | 3.12° N<br>Time zone UT+8<br>0.20                                                                                                                                                 | Longitude<br>Altitude                                                                                                         | e 101.55°<br>e 17 m                                                                                       | E                                   |
| Meteo data:                                                                                                                                                                                      |                                                                          | Kuala Lumpur/Subang                                                                                                                                                         | MeteoNorm 7.2 sta                                                                                                                                                                 | tion - Synthetic                                                                                                              | :                                                                                                         |                                     |
| Simulation var                                                                                                                                                                                   | iant : Ov                                                                | vn house                                                                                                                                                                    |                                                                                                                                                                                   |                                                                                                                               |                                                                                                           |                                     |
|                                                                                                                                                                                                  |                                                                          | Simulation date                                                                                                                                                             | 21/04/20 14h34                                                                                                                                                                    |                                                                                                                               |                                                                                                           |                                     |
| Simulation para                                                                                                                                                                                  | ameters                                                                  | System type                                                                                                                                                                 | Sheds on ground                                                                                                                                                                   |                                                                                                                               |                                                                                                           |                                     |
| Collector Plane                                                                                                                                                                                  | Orientation                                                              | Tilt                                                                                                                                                                        | 5°                                                                                                                                                                                | Azimuth                                                                                                                       | n 0°                                                                                                      |                                     |
| Models used                                                                                                                                                                                      |                                                                          | Transposition                                                                                                                                                               | Perez                                                                                                                                                                             | Diffuse                                                                                                                       | e Perez, I                                                                                                | Vleteonorm                          |
| Horizon                                                                                                                                                                                          |                                                                          | Free Horizon                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                               |                                                                                                           |                                     |
| Near Shadings                                                                                                                                                                                    |                                                                          | Linear shadings                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                               |                                                                                                           |                                     |
| User's needs :                                                                                                                                                                                   |                                                                          | Daily household consumers<br>average                                                                                                                                        | Constant over the y<br>12.8 kWh/Day                                                                                                                                               | ear                                                                                                                           |                                                                                                           |                                     |
| PV Array Charac<br>PV module<br>Original PVsys<br>Number of PV mod<br>Total number of P<br>Array global powe<br>Array operating c<br>Total area<br>Inverter<br>Original PVsys<br>Characteristics | eteristics<br>t database<br>odules<br>PV modules<br>er<br>haracteristics | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>(50°C) U mpp<br>Module area<br>Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters | JAM6-72-320/SI<br>JA Solar<br>10 modules<br>20 U<br>6.40 kWp At 0<br>336 V<br>38.8 m <sup>2</sup><br>SUN2000L-5KTL<br>Huawei Technologie<br>90-500 V U<br>Max. p<br>2 * MPPT 50 % | In paralle<br>nit Nom. Power<br>operating cond.<br>I mpp<br>Cell area<br>es<br>nit Nom. Power<br>power (=>40°C<br>Total Power | I 2 string:<br>r 320 Wp<br>5.75 kW<br>17 A<br>a 34.4 m <sup>2</sup><br>r 5.00 kW<br>) 5.50 kW<br>r 5.0 kW | s<br>/p (50°C)<br>Vac<br>Vac<br>Vac |
|                                                                                                                                                                                                  |                                                                          |                                                                                                                                                                             |                                                                                                                                                                                   | Pnom ratio                                                                                                                    | 0 1.28                                                                                                    |                                     |
| <b>PV Array loss fa</b><br>Thermal Loss fac                                                                                                                                                      | <b>ctors</b><br>tor                                                      | Uc (const)                                                                                                                                                                  | 20.0 W/m²K                                                                                                                                                                        | Uv (wind)                                                                                                                     | ) 0.0 W/n                                                                                                 | n²K / m/s                           |
| Wiring Ohmic Lo<br>Module Quality L<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect,                                                                                                  | ss<br>oss<br>i Losses<br>i loss<br>ASHRAE para                           | Global array res.                                                                                                                                                           | 332 mOhm<br>1 - bo (1/cos i - 1)                                                                                                                                                  | Loss Fractior<br>Loss Fractior<br>Loss Fractior<br>Loss Fractior<br>bo Param                                                  | n 1.5 % a<br>n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>. 0.05                                                  | t STC<br>It MPP                     |



| DVOVOT VIG OG                                                           |                        |                 |                     | 21          | /04/20     |              |  |  |
|-------------------------------------------------------------------------|------------------------|-----------------|---------------------|-------------|------------|--------------|--|--|
| PV3131 V0.80                                                            |                        |                 |                     | 21          | /04/20     | Page 3/8     |  |  |
| 0                                                                       | Grid-Connected S       | Svsten          | n: Detailed Use     | er's needs  |            |              |  |  |
| Project :                                                               | Taman Midah (NEN       | /)              |                     |             |            |              |  |  |
| Simulation variant ·                                                    | Own house              | ,               |                     |             |            |              |  |  |
| Main avatam naramatara                                                  | <u> </u>               |                 | Chada an ground     |             |            |              |  |  |
| Main system parameters                                                  | Syste                  | em type         | Sheas on ground     |             |            |              |  |  |
| PV Field Orientation                                                    | Linear s               | nadings<br>tilt | 5°                  | azimuth     | 0°         |              |  |  |
| PV modules                                                              |                        | Model           | JAM6-72-320/SI      | Pnom        | 320 Wp     |              |  |  |
| PV Array                                                                | Nb. of r               | nodules         |                     | Pnom total  | 6.40 kW    | p            |  |  |
| User's needs                                                            | Daily household cor    | nsumers         | Constant over the y | vear Global | 4687 kW    | ac<br>h/year |  |  |
| Daily household consum                                                  | ers, Constant over the | e year, av      | verage = 12.8 kWh/  | day         |            |              |  |  |
|                                                                         |                        | Annua           | l values            |             |            |              |  |  |
|                                                                         | Use 2 days a week      | Number          | Power               | Use         | E          | nergy        |  |  |
| Lamps (LED or fluo)                                                     |                        | 30              | 18 W/lamp           | 6 h/da      | y 29       | 70 Wh/day    |  |  |
| TV / PC / Mobile                                                        |                        | 3               | 70 W/app            | 14 h/da     | y 29       | 40 Wh/day    |  |  |
| Iron                                                                    |                        | 1               | 1200 W/app          | 1 h/da      | y 12       | 200 Wh/day   |  |  |
| Fridge / Deep-freeze                                                    |                        | 1               |                     | 24 Wh/da    | y 30       | 00 Wh/day    |  |  |
| Dish- & Cloth-washers                                                   |                        | 1               | 2000 14/ 4-4        | 2 Wh/da     | y 10       | 00 Wh/day    |  |  |
| Instant water neater                                                    |                        |                 | 2000 W tot          | I n/da      | y 20       | 00 Wh/day    |  |  |
| Stand-by consumers                                                      |                        | 0               | 750 W 101           | 24 h/da     | y 310<br>v | 24 Wh/day    |  |  |
| Total daily energy                                                      |                        |                 |                     | 2417.00     | <u>446</u> | 534 Wh/day   |  |  |
| Stand-by consumers 24 h/day 24 Wh/day   Total daily energy 44634 Wh/day |                        |                 |                     |             |            |              |  |  |
|                                                                         |                        |                 |                     |             |            |              |  |  |

| Grid-Connected System: Main results                                                                                                                                                                                                                                 |                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| -                                                                                                                                                                                                                                                                   |                                   |
| Project · Taman Midah (NEM)                                                                                                                                                                                                                                         |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
| Simulation variant : Own nouse                                                                                                                                                                                                                                      |                                   |
| Main system parameters     System type     Sheds on ground                                                                                                                                                                                                          |                                   |
| Near Shadings Linear shadings                                                                                                                                                                                                                                       |                                   |
| PV Field Orientation tilt 5° azimuth 0°                                                                                                                                                                                                                             | A.I                               |
| V modules Model JAM6-72-320/SI Phom 320 V                                                                                                                                                                                                                           | vp<br>kWp                         |
| nverter Model SUN20001-5KTI Phom 5.00                                                                                                                                                                                                                               | kW ac                             |
| Jser's needs Daily household consumers Constant over the year Global 4687                                                                                                                                                                                           | kWh/year                          |
| lain simulation results                                                                                                                                                                                                                                             |                                   |
| System ProductionProduced Energy8.41 MWh/yearSpecific prod.1314Performance Ratio PR82.32 %Solar Fraction SF9.32                                                                                                                                                     | kWh/kWp/yea<br>%                  |
|                                                                                                                                                                                                                                                                     |                                   |
| Normalized productions (per installed kWp): Nominal power 6.40 kWp Performance Ratio PR                                                                                                                                                                             |                                   |
| Lc : Collection Loss (PV-array losses) 0.7 kWh/kWp/day Ls : System Loss (inverter,) 0.07 kWh/kWp/day 0.9                                                                                                                                                            | -                                 |
| 5 - VI · Produced useful energy (inverter output) 3.6 kWh/kWp/day - 0.8                                                                                                                                                                                             |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
| OLA LI                                                                                                                                                                                                                          | Sep Oct Nov Dec                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
|                                                                                                                                                                                                                                                                     |                                   |
| Own nouse<br>Balances and main results                                                                                                                                                                                                                              |                                   |
| GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_User E_Solar E_Grid                                                                                                                                                                                                  | EFrGrid                           |
| kWh/m² kWh/m² °C kWh/m² kWh/m² MWh MWh MWh                                                                                                                                                                                                                          | MWh                               |
| January 133.0 82.20 28.10 136.3 131.2 0.726 0.446 0.042 0.669                                                                                                                                                                                                       | 0.404                             |
| February     134.6     67.90     27.70     137.4     132.8     0.737     0.357     0.035     0.688                                                                                                                                                                  | 0.322                             |
| March     149.8     88.20     28.00     150.3     144.9     0.804     0.357     0.035     0.753                                                                                                                                                                     | 0.322                             |
| April     140.3     70.50     27.70     138.8     133.9     0.742     0.402     0.038     0.689                                                                                                                                                                     | 0.363                             |
| May 140.3 78.60 28.60 136.9 131.7 0.734 0.402 0.038 0.681                                                                                                                                                                                                           | 0.364                             |
| June     132.0     7/.80     27.80     128.3     123.5     0.691     0.357     0.032     0.645       July     134.4     07.20     27.80     121.1     125.0     0.710     0.414     0.250     0.645                                                                 | 0.325                             |
| July 134.4 87.20 27.80 131.1 125.8 0.710 0.446 0.043 0.653                                                                                                                                                                                                          | 0.403                             |
| August 132.2 07.20 27.00 130.1 125.2 0.700 0.357 0.030 0.656<br>September 129.2 79.00 27.10 128.8 124.0 0.601 0.357 0.034 0.644                                                                                                                                     | 0.327                             |
| October 138.8 82.60 27.40 140.4 135.5 0.754 0.446 0.043 0.697                                                                                                                                                                                                       | 0.403                             |
| November     117.6     79.20     26.70     119.8     115.4     0.648     0.357     0.030     0.605                                                                                                                                                                  | 0.327                             |
| December 115.0 73.20 26.29 118.1 113.6 0.640 0.402 0.035 0.592                                                                                                                                                                                                      | 0.366                             |
| Year     1597.2     953.59     27.58     1596.2     1537.5     8.575     4.687     0.437     7.972                                                                                                                                                                  | 4.250                             |
|                                                                                                                                                                                                                                                                     | ·1                                |
|                                                                                                                                                                                                                                                                     |                                   |
| Legends: GlobHor Horizontal global irradiation GlobEff Effective Global, corr. for IA                                                                                                                                                                               | M and shadings                    |
| Legends: GlobHor Horizontal global irradiation GlobEff Effective Global, corr. for IA   DiffHor Horizontal diffuse irradiation EArray Effective energy at the output   T Amb T amb F blocc                                                                          | M and shadings<br>ut of the array |
| Legends:GlobHorHorizontal global irradiationGlobEffEffective Global, corr. for IADiffHorHorizontal diffuse irradiationEArrayEffective energy at the outpT_AmbT amb.E_UserEnergy supplied to the userGlobIncGlobal incident in coll, planeE_SolarEnergy from the sup | M and shadings<br>ut of the array |

EFrGrid Energy from the grid



| PVSYST V6.86     |             |                         |                      |                                           | 21/04/20    | Page 6/8 |
|------------------|-------------|-------------------------|----------------------|-------------------------------------------|-------------|----------|
|                  |             | Grid-Co                 | nnected Sv           | /stem: Loss diagram                       |             |          |
| Drainat :        |             | Taman Midak             |                      |                                           |             |          |
| Simulation var   | iant ·      |                         |                      |                                           |             |          |
| Simulation val   |             | Own nouse               |                      |                                           |             |          |
| Main system pa   | rameters    |                         | System type          | Sheds on ground                           |             |          |
| Near Shadings    | tion        | L                       | inear shadings.      | 5° azimi                                  | ιth 0°      |          |
| PV modules       |             |                         | Model                | JAM6-72-320/SI Pro                        | m 320 Wr    | )        |
| PV Array         |             | ļ                       | Nb. of modules       | 20 Pnom to                                | tal 6.40 kV | Vp       |
| Inverter         |             |                         | Model                | SUN2000L-5KTL Pnc                         | om 5.00 kV  | Vac      |
| User's needs     |             | Daily househ            | old consumers        | Constant over the year Glob               | al 4687 k   | /Vh/year |
|                  |             |                         | Loss diagram o       | ver the whole year                        |             |          |
|                  |             |                         |                      |                                           |             |          |
|                  |             |                         |                      |                                           |             |          |
| Г                |             | 1597 kWh/m <sup>2</sup> |                      | Horizontal global irradiation             |             |          |
|                  |             |                         | -0.07%               | Global incident in coll. plane            |             |          |
|                  |             |                         | -0.07%               | 6 Global incident below threshold         |             |          |
|                  |             |                         | 0.00%                | Near Shadings: irradiance loss            |             |          |
|                  |             |                         | -3.67%               | 6 IAM factor on global                    |             |          |
|                  | 1538        | kWh/m² * 39 m² coll.    |                      | Effective irradiation on collectors       |             |          |
| _                | efficien    | ncy at STC = 16.53%     |                      | PV conversion                             |             |          |
|                  |             | 9.85 MWh                |                      | Array nominal energy (at STC effic.       | )           |          |
|                  |             |                         | -0.75%               | PV loss due to irradiance level           |             |          |
|                  |             |                         | -11.15%              | 6 PV loss due to temperature              |             |          |
|                  |             |                         | +0.75%               | Module quality loss                       |             |          |
|                  |             |                         | →-1.10%              | Mismatch loss, modules and strings        |             |          |
|                  |             |                         | →-0.95%              | Ohmic wiring loss                         |             |          |
|                  | 8           | 3.58 MVVN               |                      | Array virtual energy at MPP               |             |          |
|                  |             |                         | 9-1.88%              | Inverter Loss during operation (efficiend | cy)         |          |
|                  |             |                         | ₩0.00%               | Inverter Loss over nominal inv. power     |             |          |
|                  |             |                         | ₩0.00%               | Inverter Loss due to max. input current   |             |          |
|                  |             |                         | $\rightarrow 0.00\%$ | Inverter Loss over nominal inv. voltage   |             |          |
| arid             |             |                         | 4-0.01%              | Inverter Loss due to power threshold      |             |          |
| consumption      |             |                         | -0.05%               | Night consumption                         |             |          |
|                  | 8           | .41 MWh                 |                      | Available Energy at Inverter Output       |             |          |
|                  | 1           |                         |                      |                                           |             |          |
| 4.25 MWh 0.44 M  | <b>W</b> Wh | 7.97 MWh                |                      | Energy injected into grid                 |             |          |
| to user to us    | ser         | to grid                 |                      |                                           |             |          |
| from grid from s | solar       |                         |                      |                                           |             |          |
|                  |             |                         |                      |                                           |             |          |

| PVSYST V6.86                 |                                    |                           |               | 21/04/20                | Page 7/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------|------------------------------------|---------------------------|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Grid-Connected Syster              | m: P50 - P90 eva          | luation       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Project :                    | Taman Midah (NFM)                  |                           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Simulation variant :         | Own house                          |                           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Main system nerometers       | Sustem time                        | Shada an graund           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Main system parameters       | System type                        | Sneas on ground           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PV Field Orientation         | Linear shadings<br>tilt            | 5°                        | azimutl       | ר 0°                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PV modules                   | Model                              | JAM6-72-320/SI            | Pnon          | n 320 Wp                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PV Array                     | Nb. of modules                     |                           | Pnom tota     | d 6.40 kV               | Vp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Inverter<br>User's needs     | Model<br>Daily household consumers | Constant over the year    | Phon<br>Globa | n 5.00 KV<br>nl 4687 kV | / ac<br>Vh/vear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |                                    |                           |               |                         | , and the second s |
| Evaluation of the Produc     | tion probability forecast          |                           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The probability distribution | of the system production forecast  | for different years is ma | inly depend   | dent                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| on the meteo data used for   | the simulation, and depends on t   | he following choices:     |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Meteo data source            |                                    | MeteoNorm 7.2 station     |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Meteo data                   | Kind                               | Not defined               | Yea           | r 1995                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Specified Deviation          | Year deviation from aver.          | 3%                        |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| real-lo-year variability     | Validite                           | 0.5 %                     |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The probability distribution | variance is also depending on so   | me system parameters u    | Incertaintie  | S                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Specified Deviation P        | V module modelling/parameters      | 1.0 %                     |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Soi                          | ling and mismatch uncertainties    | 0.5 %                     |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | Degradation uncertainty            | 1.0 %                     |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Global variability (meteo +  | system) Variance                   | 1.9 % (qua                | adratic sum   | )                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Annual production probabil   | itv Variabilitv                    | 0.15 MWh                  |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | P50                                | 7.97 MWh                  |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | P90                                | 7.78 MWh                  |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | P95                                | 7.73 MWh                  |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |                                    |                           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | Probability                        | distribution              |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 0.50                               |                           |               | 3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 0.45                               | P50 = 7972 kWh            |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 0.40                               | E_Grid simul = 797        | 72 kWh        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 0.35                               |                           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ≥                            | 0.30                               |                           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| abilit                       | 0.25                               |                           |               | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2<br>4                       | 0.20                               | 0 = 7781 kWh              |               | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 0.15                               |                           |               |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 0.10 P95 = 7                       | 727 kWh                   | $\mathbf{i}$  | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 0.05                               |                           | $\mathbf{i}$  | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              | 0.00 <b>7400</b> 7600 7800         | 8000 820                  | <u></u>       | <b>H</b><br>3400        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

E\_Grid system production kWh

| P\/SYST \/6 86                     |                                     |                                                                                                      |                                           |                   | 21/04/20                       | Page 8/8          |  |  |  |
|------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|--------------------------------|-------------------|--|--|--|
| F V3131 V0.00                      |                                     |                                                                                                      |                                           |                   | 21/04/20                       |                   |  |  |  |
|                                    | Grid-C                              | connected Sy                                                                                         | vstem: CO2 Ba                             | lance             |                                |                   |  |  |  |
| Project :                          | Taman Mid                           | ah (NEM)                                                                                             |                                           |                   |                                |                   |  |  |  |
| Simulation variant :               | Own house                           | )                                                                                                    |                                           |                   |                                |                   |  |  |  |
| Main system parameters             |                                     | System type                                                                                          | Sheds on ground                           |                   |                                |                   |  |  |  |
| Near Shadings                      |                                     | Linear shadings                                                                                      | ٣٩                                        | orimut            | ь 0°                           |                   |  |  |  |
| PV Field Orientation<br>PV modules |                                     | Model                                                                                                | 5<br>JAM6-72-320/SI                       | Pnor              | n 0°<br>n 320 Wp               |                   |  |  |  |
| PV Array                           |                                     | Nb. of modules<br>Model                                                                              | 20<br>SUN2000L-5KTI                       | Pnom tota<br>Pnor | al <b>6.40 kV</b><br>n 5.00 kW | <b>/p</b><br>/ ac |  |  |  |
| User's needs                       | Daily hous                          | ehold consumers                                                                                      | Constant over the ye                      | ear Globa         | al 4687 kV                     | Vh/year           |  |  |  |
| Produced Emissions                 |                                     | <b>Total:</b><br>Source:                                                                             | <b>11.84 tCO2</b><br>Detailed calculation | from table bel    | ow                             |                   |  |  |  |
| Replaced Emissions                 | Sy                                  | Total:<br>stem production:                                                                           | <b>166.5 tCO2</b><br>8408.96 kWh/yr       | Lifetime          | e: 30 years                    | 3                 |  |  |  |
|                                    | 660 gCO2/kWh<br>IEA List            | Country                                                                                              | /: Malaysi                                | а                 |                                |                   |  |  |  |
| CO2 Emission Balance               |                                     | Total:                                                                                               | 132.6 tCO2                                |                   |                                |                   |  |  |  |
| System Lifecycle Emissio           | System Lifecycle Emissions Details: |                                                                                                      |                                           |                   |                                |                   |  |  |  |
| LCE                                |                                     | 1713 k                                                                                               | <pre>cgCO2/kWp 4.40 kgCO2/kg</pre>        |                   |                                |                   |  |  |  |
| Quantity<br>Subtotal [kgCQ         | 21                                  | 6.4<br>1                                                                                             | 40 kWp 200 kg<br>10961 880                |                   |                                |                   |  |  |  |
|                                    |                                     | Saved CO2 En<br>140<br>120<br>100<br>80<br>40<br>-0<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20 | nission vs. Time                          |                   |                                |                   |  |  |  |

| PVSYST V6.86                                                                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                                               | 21/04/20 Page 1/6                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                               | Grid-Connected Syster                                                                                                                                                                                       | m: Simulation parameters                                                                                                                                                                      | 3                                                                      |
| Project :                                                                                                                                                                     | Taman Midah (NEM)                                                                                                                                                                                           |                                                                                                                                                                                               |                                                                        |
| -<br>Geographical S                                                                                                                                                           | te Kuala Lumpur/Subang                                                                                                                                                                                      | Countr                                                                                                                                                                                        | y <b>Malaysia</b>                                                      |
| Situation                                                                                                                                                                     | Latitude                                                                                                                                                                                                    | 3.12° N Longitud                                                                                                                                                                              | e 101.55° E                                                            |
| Time defined                                                                                                                                                                  | as Legal Time                                                                                                                                                                                               | Time zone UT+8 Altitud                                                                                                                                                                        | e 17 m                                                                 |
| Meteo data:                                                                                                                                                                   | Kuala Lumpur/Subang                                                                                                                                                                                         | MeteoNorm 7.2 station - Synthetic                                                                                                                                                             | 5                                                                      |
| Simulation vari                                                                                                                                                               | ant : Own (9KW)                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                        |
|                                                                                                                                                                               | Simulation date                                                                                                                                                                                             | 21/04/20 14h27                                                                                                                                                                                |                                                                        |
| Simulation para                                                                                                                                                               | meters System type                                                                                                                                                                                          | Sheds on ground                                                                                                                                                                               |                                                                        |
| <b>Collector Plane</b>                                                                                                                                                        | Orientation Tilt                                                                                                                                                                                            | 5° Azimut                                                                                                                                                                                     | h O°                                                                   |
| Models used                                                                                                                                                                   | Transposition                                                                                                                                                                                               | Perez Diffus                                                                                                                                                                                  | e Perez, Meteonorm                                                     |
| Horizon                                                                                                                                                                       | Free Horizon                                                                                                                                                                                                |                                                                                                                                                                                               |                                                                        |
| Near Shadings                                                                                                                                                                 | Linear shadings                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                        |
| User's needs :                                                                                                                                                                | Daily household consumers<br>average                                                                                                                                                                        | Constant over the year<br>30.4 kWh/Day                                                                                                                                                        |                                                                        |
| PV Array Charac<br>PV module<br>Original PVsysi<br>Number of PV mod<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Custom param | teristics<br>Si-mono Model<br>database Manufacturer<br>dules In series<br>V modules Nb. modules<br>or Nominal (STC)<br>haracteristics (50°C) U mpp<br>Module area<br>Model<br>eters definition Manufacturer | JAM6-72-320/SI<br>JA Solar<br>14 modules In paralle<br>28 Unit Nom. Powe<br>8.96 kWp At operating cond<br>470 V I mp<br>54.3 m <sup>2</sup> Cell area<br>SUN2000L-8KTL<br>Huawei Technologies | el 2 strings<br>er 320 Wp<br>l. 8.05 kWp (50°C)<br>o 17 A<br>a 48.2 m² |
| Characteristics                                                                                                                                                               | Operating Voltage                                                                                                                                                                                           | 200-850 V Unit Nom. Powe<br>Max. power (=>40°C                                                                                                                                                | er 8.00 kWac<br>C) 8.80 kWac                                           |
| Inverter pack                                                                                                                                                                 | Nb. of inverters                                                                                                                                                                                            | 2 * MPPT 50 % Total Powe<br>Pnom rati                                                                                                                                                         | er 8.0 kWac<br>o 1.12                                                  |
| PV Array loss fa                                                                                                                                                              | ctors                                                                                                                                                                                                       |                                                                                                                                                                                               |                                                                        |
| Thermal Loss fac                                                                                                                                                              | or Uc (const)                                                                                                                                                                                               | 20.0 W/m²K Uv (wind                                                                                                                                                                           | l) 0.0 W/m²K / m/s                                                     |
| Wiring Ohmic Los<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                                           | Global array res.<br>Doss<br>Losses<br>loss<br>ASHRAE parametrization IAM =                                                                                                                                 | 465 mOhm<br>Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>Loss Fractio                      | n 1.5 % at STC<br>n -0.8 %<br>n 1.0 % at MPP<br>n 0.10 %<br>n. 0.05    |
|                                                                                                                                                                               |                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                        |



| PVSYST V6.86                         |                                      |                    |                                     |          |                    |                 |                 |                     | 21/04/2                    | D Page 4/6     |
|--------------------------------------|--------------------------------------|--------------------|-------------------------------------|----------|--------------------|-----------------|-----------------|---------------------|----------------------------|----------------|
|                                      |                                      | Grid               | -Conne                              | ected \$ | Syster             | n: Mair         | n resul         | lts                 |                            |                |
| Project :                            | Ta                                   | aman Mi            | idah (NE                            | M)       | -                  |                 |                 |                     |                            |                |
| Project :                            | 4. O                                 |                    |                                     | ,        |                    |                 |                 |                     |                            |                |
|                                      | 1. 0                                 | wn (9rv            | v)                                  |          |                    |                 |                 |                     |                            |                |
| Main system param                    | neters                               |                    | Syst                                | tem type | Sheds              | s on grou       | und             |                     |                            |                |
| Near Shadings                        |                                      |                    | Linear                              | shadings | 6                  |                 |                 |                     |                            |                |
| PV Field Orientation                 |                                      |                    |                                     | til      | t 5°               |                 |                 | azimut              | h 0°                       |                |
| PV modules                           |                                      |                    | NII 4                               | Mode     | I JAM6             | -72-320/S       | i -             | Pnor<br>Pnor        | m 320V                     | Vp             |
| overter                              |                                      |                    | IND. OI                             | Mode     | 5 20<br>1 SUN2     |                 | 1               | Phom lot            | al <b>0.90</b>  <br>m 8.00 | kwp<br>Wac     |
| Jser's needs                         |                                      | Daily ho           | usehold co                          | nsumers  | Const              | ant over t      | ∟<br>he year    | Globa               | al 11.10                   | MWh/year       |
| lain simulation ros                  | sulte                                |                    |                                     |          |                    |                 |                 |                     |                            |                |
| System Production                    | suits                                |                    | Produced                            | I Energy | / 11.78            | MWh/ye          | <b>ar</b> Sp    | ecific prod         | d. 1315                    | kWh/kWp/yea    |
|                                      |                                      | Pei                | rformance                           | Ratio PF | R 82.40            | %               | Solar F         | raction S           | F 5.49                     | %              |
| Normalized productions               | (per installed                       | d kWp): No         | ominal power                        | 8.96 kWp |                    |                 | Per             | rformance R         | atio PR                    |                |
| 6                                    |                                      | - I - I            | <del></del>                         |          | 1                  | .° <b>F</b>     | 1 1             | <u> </u>            |                            |                |
| Lc : Collection I<br>Ls : System Los | Loss (PV-array los<br>ss (inverter,) | sses)              | 0.7 kWh/kWp/day<br>0.07 kWh/kWp/day | 1        | 0                  | .9 <b>E P</b> R | : Performance F | Ratio (Yf / Yr): 0. | .824                       |                |
| 5 - Yf ; Produced u                  | iseful energy (inv                   | erter output)      | 3.6 kWh/kWp/day                     | -        | 0                  | .8              |                 |                     |                            |                |
| Mp/dg                                |                                      |                    |                                     | _ ]      | ~ 0                | .7              |                 |                     |                            |                |
| 4<br>/4//                            |                                      |                    |                                     |          | 음 0                | .6              |                 |                     |                            |                |
| à a                                  |                                      |                    |                                     |          | e O                | 5               |                 |                     |                            |                |
| Energy                               |                                      |                    |                                     |          | manc               |                 |                 |                     |                            |                |
| p                                    |                                      |                    |                                     |          | 0 Perfor           | .4              |                 |                     |                            |                |
| ormalii                              |                                      |                    |                                     |          | 0                  | .3              |                 |                     |                            |                |
| ž<br>1-                              |                                      |                    |                                     |          | 0                  | .2              |                 |                     |                            |                |
|                                      |                                      |                    |                                     | _        | 0                  | .1              |                 |                     |                            |                |
|                                      |                                      |                    |                                     | 1        | 0                  |                 | 1               |                     |                            |                |
| Jan Feb Mar A                        | Apr May Jur                          | n Jul Aug          | Sep Oct I                           | Nov Dec  |                    | Jan Feb         | Mar Apr         | May Jun             | Jul Aug S                  | ep Oct Nov Dec |
|                                      |                                      |                    |                                     |          |                    |                 |                 |                     |                            |                |
|                                      |                                      |                    |                                     |          |                    |                 |                 |                     |                            |                |
|                                      |                                      |                    |                                     | Owr      | ר (9KW)            |                 |                 |                     |                            |                |
|                                      |                                      |                    | Bal                                 | ances ai | nd main i          | results         |                 |                     |                            |                |
|                                      | GlobHor                              | DiffHor            | T_Amb                               | GlobInc  | GlobEff            | EArray          | E_User          | E_Solar             | E_Grid                     | EFrGrid        |
|                                      | kWh/m <sup>2</sup>                   | kWh/m <sup>2</sup> | °C                                  | kWh/m²   | kWh/m <sup>2</sup> | MWh             | MWh             | MWh                 | MWh                        | MWh            |
| January                              | 133.0                                | 82.20              | 28.10                               | 136.3    | 131.2              | 1.016           | 0.978           | 0.052               | 0.945                      | 0.926          |
| February                             | 134.6                                | 67.90              | 27.70                               | 137.4    | 132.8              | 1.031           | 0.851           | 0.047               | 0.966                      | 0.804          |
| March                                | 149.8                                | 88.20              | 28.00                               | 150.3    | 144.9              | 1.125           | 0.936           | 0.052               | 1.053                      | 0.884          |
| April                                | 140.3                                | 70.50              | 27.70                               | 138.8    | 133.9              | 1.039           | 0.893           | 0.050               | 0.971                      | 0.844          |
| May                                  | 140.3                                | 78.60              | 28.60                               | 136.9    | 131.7              | 1.027           | 0.978           | 0.056               | 0.952                      | 0.922          |
| June                                 | 132.0                                | 77.80              | 27.80                               | 128.3    | 123.5              | 0.967           | 0.893           | 0.048               | 0.901                      | 0.845          |
| July                                 | 134.4                                | 87.20              | 27.80                               | 131.1    | 125.8              | 0.994           | 0.936           | 0.052               | 0.923                      | 0.883          |
| August                               | 132.2                                | 87.20              | 27.80                               | 130.1    | 125.2              | 0.980           | 0.978           | 0.052               | 0.909                      | 0.926          |
| September                            | 129.2                                | 79.00              | 27.10                               | 128.8    | 124.0              | 0.968           | 0.851           | 0.047               | 0.902                      | 0.804          |
| October                              | 138.8                                | 82.60              | 27.40                               | 140.4    | 135.5              | 1.056           | 0.978           | 0.055               | 0.981                      | 0.923          |
| November                             | 117.6                                | 79.20              | 26.70                               | 119.8    | 115.4              | 0.907           | 0.936           | 0.050               | 0.839                      | 0.886          |
| December                             | 115.0                                | 73.20              | 26.29                               | 118.1    | 113.6              | 0.896           | 0.893           | 0.048               | 0.831                      | 0.846          |
| Year                                 | 1597.2                               | 953.59             | 27.58                               | 1596.2   | 1537.5             | 12.005          | 11.101          | 0.609               | 11.175                     | 10.492         |
| L                                    | 1                                    | l                  | I                                   |          |                    | <b></b>         | ł               | <b>!</b>            |                            | I              |
| Legends: Glob                        | oHor H                               | Horizontal q       | lobal irradiati                     | ion      |                    | GlobEff         | Effecti         | ive Global,         | corr. for IAI              | A and shadings |

Legends: GlobHor DiffHor

T\_Amb

GlobInc

Horizontal global irradiation Horizontal diffuse irradiation T amb. Global incident in coll. plane Effective Global, corr. for IAM and shadings Effective energy at the output of the array Energy supplied to the user Energy from the sun Energy injected into grid Energy from the grid

EArray

E\_User

E\_Solar

E\_Grid

EFrGrid



| PVSYST V6.86         |          |                                             |                   |                 |                                                                                  | 21/04/20                        | Page 6/6          |
|----------------------|----------|---------------------------------------------|-------------------|-----------------|----------------------------------------------------------------------------------|---------------------------------|-------------------|
|                      |          | Grid-Co                                     | nnect             | ed Sv:          | stem: Loss diagram                                                               |                                 |                   |
| Project ·            |          | Taman Midak                                 |                   | )<br>)          |                                                                                  |                                 |                   |
| Simulation var       | iant :   | Own (9KW)                                   |                   | )               |                                                                                  |                                 |                   |
| Main system na       | ramotors | •••••(•••••)                                | Sveto             | m tupo          | Shade on ground                                                                  |                                 |                   |
| Noar Shadings        | rameters | 1                                           | incor sh          |                 | Sheas on ground                                                                  |                                 |                   |
| PV Field Orientat    | ion      | L                                           |                   | tilt            | 5° azimu                                                                         | th 0°                           |                   |
| PV modules           |          |                                             |                   | Model           | JAM6-72-320/SI Pnc                                                               | m 320 Wp                        |                   |
| PV Array<br>Inverter |          |                                             | Nb. of m          | Model           | 28 Pnom to<br>SUN2000L-8KTI Pno                                                  | ial <b>8.96 kV</b><br>m 8.00 kV | <b>Vp</b><br>V ac |
| User's needs         |          | Daily househ                                | old cons          | sumers          | Constant over the year Glob                                                      | al 11.10 N                      | 1Wh/year          |
|                      |          |                                             | Loss dia          | agram ov        | er the whole year                                                                |                                 |                   |
|                      |          |                                             |                   | •               | ·                                                                                |                                 |                   |
|                      |          |                                             |                   |                 |                                                                                  |                                 |                   |
| Г                    |          | 1597 kWh/m <sup>2</sup>                     |                   |                 | Horizontal global irradiation                                                    |                                 |                   |
|                      |          |                                             |                   | →-0.07%         | Global incident in coll. plane                                                   |                                 |                   |
|                      |          |                                             |                   | -0.07%          | Global incident below threshold                                                  |                                 |                   |
|                      |          |                                             | N,                | -3 67%          | A LAM factor on global                                                           |                                 |                   |
|                      | 1538     | kWh/m <sup>2</sup> * 54 m <sup>2</sup> coll |                   | 7 0.01 /0       |                                                                                  |                                 |                   |
| L                    | efficier | ncy at STC = 16.539                         | <br>%             |                 | PV conversion                                                                    |                                 |                   |
| Г                    |          | 13.79 MWh                                   |                   |                 | Array nominal energy (at STC effic                                               | .)                              |                   |
|                      |          |                                             |                   | <b>∍</b> -0.75% | PV loss due to irradiance level                                                  |                                 |                   |
|                      |          |                                             |                   | }-11.15%        | PV loss due to temperature                                                       |                                 |                   |
|                      |          |                                             | (+0. <sup>-</sup> | 75%             | Module quality loss                                                              |                                 |                   |
|                      |          |                                             | 9-1.1             | 10%             | Mismatch loss, modules and strings                                               |                                 |                   |
|                      | 1        |                                             | 9-0.9             | 15%             | Ohmic wiring loss                                                                |                                 |                   |
|                      | 1        | 2.01 100011                                 |                   |                 | Anay virtual energy at wir i                                                     |                                 |                   |
|                      |          |                                             | 9-1.8             | 0%              | Inverter Loss during operation (efficien                                         | cy)                             |                   |
|                      |          |                                             | $70.00^{\circ}$   | %<br>%          | Inverter Loss over nominal inv. power<br>Inverter Loss due to max, input current |                                 |                   |
|                      |          |                                             | → 0.00°           | %               | Inverter Loss over nominal inv. voltage                                          |                                 |                   |
|                      |          |                                             | > 0.00            | %               | Inverter Loss due to power threshold                                             |                                 |                   |
| grid<br>consumption  |          |                                             | →-0.04            | %<br>4%         | Night consumption                                                                |                                 |                   |
|                      | 1        | 1.78 MWh                                    |                   |                 | Available Energy at Inverter Output                                              | :                               |                   |
|                      | 1        |                                             |                   |                 |                                                                                  |                                 |                   |
| 10.49 MWh 0.61 I     | MWh      | 11.17 MWh                                   |                   |                 | Energy injected into grid                                                        |                                 |                   |
| to user to u         | Iser     | to grid                                     |                   |                 |                                                                                  |                                 |                   |
| from grid from       | solar    |                                             |                   |                 |                                                                                  |                                 |                   |
|                      |          |                                             |                   |                 |                                                                                  |                                 |                   |

| PVSYST V6.86                                                                                                                                                                |                                                                                                                                                                                                             | 2                                                                                                                                                                                                 | 21/04/20 Page 1/6                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                                                                                             | Grid-Connected Syster                                                                                                                                                                                       | n: Simulation parameters                                                                                                                                                                          |                                                                       |
| Project :                                                                                                                                                                   | Taman Midah (NEM)                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                       |
| Geographical S                                                                                                                                                              | te Kuala Lumpur/Subang                                                                                                                                                                                      | Country                                                                                                                                                                                           | Malaysia                                                              |
| Situation<br>Time defined                                                                                                                                                   | as Legal Time                                                                                                                                                                                               | 3.12° NLongitudeTime zone UT+8Altitude                                                                                                                                                            | 101.55° E<br>17 m                                                     |
| Meteo data:                                                                                                                                                                 | Albedo<br>Kuala Lumpur/Subang                                                                                                                                                                               | 0.20<br>MeteoNorm 7.2 station - Synthetic                                                                                                                                                         |                                                                       |
| Simulation vari                                                                                                                                                             | ant : Own (9KW)                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                       |
|                                                                                                                                                                             | Simulation date                                                                                                                                                                                             | 21/04/20 14h29                                                                                                                                                                                    |                                                                       |
| Simulation para                                                                                                                                                             | meters System type                                                                                                                                                                                          | Sheds on ground                                                                                                                                                                                   |                                                                       |
| Collector Plane                                                                                                                                                             | Orientation Tilt                                                                                                                                                                                            | 5° Azimuth                                                                                                                                                                                        | 0°                                                                    |
| Models used                                                                                                                                                                 | Transposition                                                                                                                                                                                               | Perez Diffuse                                                                                                                                                                                     | Perez, Meteonorm                                                      |
| Horizon                                                                                                                                                                     | Free Horizon                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                       |
| Near Shadings                                                                                                                                                               | Linear shadings                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                       |
| User's needs :                                                                                                                                                              | Daily household consumers average                                                                                                                                                                           | Constant over the year<br>12.8 kWh/Day                                                                                                                                                            |                                                                       |
| PV Array Charac<br>PV module<br>Original PVsys<br>Number of PV mo<br>Total number of P<br>Array global powe<br>Array operating ch<br>Total area<br>Inverter<br>Custom param | teristics<br>Si-mono Model<br>database Manufacturer<br>dules In series<br>V modules Nb. modules<br>rr Nominal (STC)<br>haracteristics (50°C) U mpp<br>Module area<br>Model<br>eters definition Manufacturer | JAM6-72-320/SI<br>JA Solar<br>14 modules In parallel<br>28 Unit Nom. Power<br>8.96 kWp At operating cond.<br>470 V I mpp<br>54.3 m <sup>2</sup> Cell area<br>SUN2000L-8KTL<br>Huawei Technologies | 2 strings<br>320 Wp<br>8.05 kWp (50°C)<br>17 A<br>48.2 m <sup>2</sup> |
| Characteristics                                                                                                                                                             | Operating Voltage                                                                                                                                                                                           | 200-850 V Unit Nom. Power<br>Max. power (=>40°C)                                                                                                                                                  | 8.00 kWac<br>8.80 kWac                                                |
| Inverter pack                                                                                                                                                               | Nb. of inverters                                                                                                                                                                                            | 2 * MPPT 50 % Total Power<br>Pnom ratio                                                                                                                                                           | 8.0 kWac<br>1.12                                                      |
| PV Array loss fa                                                                                                                                                            | ctors                                                                                                                                                                                                       |                                                                                                                                                                                                   |                                                                       |
| Thermal Loss fac                                                                                                                                                            | or Uc (const)                                                                                                                                                                                               | 20.0 W/m <sup>2</sup> K Uv (wind)                                                                                                                                                                 | 0.0 W/m²K / m/s                                                       |
| Wiring Ohmic Los<br>Module Quality Lo<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, A                                                                         | Global array res.<br>bss<br>Losses<br>loss<br>ASHRAE parametrization IAM =                                                                                                                                  | 465 mOhm<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>1 - bo (1/cos i - 1)<br>bo Param.                                                                                 | 1.5 % at STC<br>-0.8 %<br>1.0 % at MPP<br>0.10 %<br>0.05              |
|                                                                                                                                                                             |                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                                       |



| PVSYST V6.86           |                             |                           |                                | 21/0                   | 04/20 Page 3/6      |  |  |  |
|------------------------|-----------------------------|---------------------------|--------------------------------|------------------------|---------------------|--|--|--|
| (                      | Grid-Connected S            | System                    | n. Detailed Lls                | er's needs             |                     |  |  |  |
|                        | Toman Midah (NEN            | <i>a</i> \                | i. Detailed 00                 |                        |                     |  |  |  |
| Project :              | Taman Midan (NEN            | //)                       |                                |                        |                     |  |  |  |
| Simulation variant :   | Own (9KW)                   |                           |                                |                        |                     |  |  |  |
| Main system parameters | Syste                       | em type                   | Sheds on ground                |                        |                     |  |  |  |
| Near Shadings          | Linear s                    | hadings                   |                                |                        |                     |  |  |  |
| PV Field Orientation   |                             | tilt                      | 5°                             | azimuth C              | )°                  |  |  |  |
| PV modules<br>PV Array | Nb of r                     | IVIODEI<br>modules        | JAM6-72-320/SI<br>28           | Pnom 3<br>Pnom total 8 | 320 vvp<br>8 96 kWn |  |  |  |
| Inverter               | Model SUN2000L-8KTL Pnom    |                           |                                |                        | 8.00 kW ac          |  |  |  |
| User's needs           | Daily household cor         | nsumers                   | Constant over the y            | year Global 4          | 4687 kWh/year       |  |  |  |
| Daily household consum | ers, Constant over the      | <b>year, a</b> v<br>Annua | verage = 12.8 kWh/<br>I values | /day                   |                     |  |  |  |
|                        | Use 2 days a week           | Number                    | Power                          | Use                    | Energy              |  |  |  |
| Lamps (LED or fluo)    |                             | 30                        | 18 W/lamp                      | 6 h/day                | 2970 Wh/day         |  |  |  |
| TV / PC / Mobile       |                             | 3                         | 70 W/app                       | 14 h/day               | 2940 Wh/day         |  |  |  |
| Iron                   |                             | 1                         | 1200 W/app                     | 1 h/day                | 1200 Wh/day         |  |  |  |
| Fridge / Deep-freeze   |                             | 1                         |                                | 24 Wh/day              | 3000 Wh/day         |  |  |  |
| Dish- & Cloth-washers  |                             | 1                         |                                | 2 Wh/day               | 1000 Wh/day         |  |  |  |
| Instant water neater   |                             |                           | 2000 W tot                     | I n/day                | 2000 Wh/day         |  |  |  |
| Stand-by consumers     |                             | 0                         | 750 W 101                      | 24 h/day               | 24 Wh/day           |  |  |  |
| Total daily energy     |                             |                           |                                | 2417003                | 44634 Wh/day        |  |  |  |
|                        | Laction of daily energy [3] | Hourly<br>6 9             | <b>/ profile</b>               | 21 24                  |                     |  |  |  |

| VSYST V6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   | 21/04/20                                                                                                                                              | ) Page                                                                                                                                                         | 9/6  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                                                                                                                                                                                                                                    | Grid-Conn                                                                                                                                                                                                                                                                                              | ected \$                                                                                                                                                                                    | Svsten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n: Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı resu                                                                                                                                               | lts                                                                                                               |                                                                                                                                                       |                                                                                                                                                                |      |
| Project :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tomo                                                                                                                                                                                                                                                 | n Midah (NI                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      | in which in (ini                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| Simulation variant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t: Own                                                                                                                                                                                                                                               | (9KW)                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| Main system param                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eters                                                                                                                                                                                                                                                | Sy                                                                                                                                                                                                                                                                                                     | stem type                                                                                                                                                                                   | Sheds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s on grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd                                                                                                                                                   |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| Near Shadings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      | Linea                                                                                                                                                                                                                                                                                                  | r shadings                                                                                                                                                                                  | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| PV Field Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | til                                                                                                                                                                                         | t 5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | azimut                                                                                                            | h O°                                                                                                                                                  |                                                                                                                                                                |      |
| V modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | Mode                                                                                                                                                                                        | I JAM6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·72-320/SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      | Pnor                                                                                                              | n 320 W                                                                                                                                               | /р                                                                                                                                                             |      |
| V Array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      | Nb. c                                                                                                                                                                                                                                                                                                  | of modules                                                                                                                                                                                  | s 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      | Pnom tota                                                                                                         | al <b>8.96 k</b>                                                                                                                                      | (Wp                                                                                                                                                            |      |
| iverter<br>Isor's poods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dai                                                                                                                                                                                                                                                  | ly household a                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                             | Const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000L-8K11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>No voar                                                                                                                                         | Phor<br>Cloby                                                                                                     | N 8.00K                                                                                                                                               | (VV ac<br>kWb/yoar                                                                                                                                             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dai                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                        | Unsumers                                                                                                                                                                                    | Const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ant over tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ie year                                                                                                                                              | Gioba                                                                                                             | 4007                                                                                                                                                  | kwn/year                                                                                                                                                       |      |
| Main simulation res<br>System Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sults                                                                                                                                                                                                                                                | <b>Produce</b><br>Performance                                                                                                                                                                                                                                                                          | ed Energy<br>e Ratio PF                                                                                                                                                                     | <b>11.78</b><br>82.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>MWh/yea</b><br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a <b>r</b> Sp<br>Solar F                                                                                                                             | ecific proc<br>Fraction S                                                                                         | d. 1315<br>F 9.58 %                                                                                                                                   | kWh/kWp/<br>%                                                                                                                                                  | year |
| Normalized productions (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (per installed kWp                                                                                                                                                                                                                                   | o): Nominal powe                                                                                                                                                                                                                                                                                       | er 8.96 kWp                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pe                                                                                                                                                   | rformance R                                                                                                       | atio PR                                                                                                                                               |                                                                                                                                                                |      |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | · · · ]                                                                                                                                                                                     | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   | 1 1                                                                                                                                                   | 1                                                                                                                                                              |      |
| Lc : Collection Lo<br>Ls : System Los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .oss (PV-array losses)<br>s (inverter,)                                                                                                                                                                                                              | 0.7 kWh/kWp/da<br>0.07 kWh/kWp/d                                                                                                                                                                                                                                                                       | y -<br>ay                                                                                                                                                                                   | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Performance                                                                                                                                          | Ratio (Yf / Yr): 0.                                                                                               | 824                                                                                                                                                   |                                                                                                                                                                | -    |
| 5 - Yf ; Produced us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | seful energy (inverter ou                                                                                                                                                                                                                            | tput) 3.6 kWh/kWp/da                                                                                                                                                                                                                                                                                   | iy –                                                                                                                                                                                        | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| Ap/de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                           | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| (X)/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | 8<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| × -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| 6 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | eg 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                           | E O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | £ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| paz 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | Ъе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | ළ<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| 2 2 Vormalized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | <u>ه</u><br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| Partie 2<br>Normality 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | ع<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| 22-<br>1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                             | ළ<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                      |                                                                                                                   |                                                                                                                                                       |                                                                                                                                                                |      |
| 2<br>1<br>Jan Feb Mar Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pr May Jun Jul                                                                                                                                                                                                                                       | I I I<br>Aug Sep Oct                                                                                                                                                                                                                                                                                   | Nov Dec                                                                                                                                                                                     | ළ<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>2<br>1<br>Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar Apr                                                                                                                                              | 1 1 1<br>May Jun                                                                                                  | Jul Aug Se                                                                                                                                            | ep Oct Nov                                                                                                                                                     | Dec  |
| Difference of the second secon | pr May Jun Jul                                                                                                                                                                                                                                       | I I I I<br>Aug Sep Oct                                                                                                                                                                                                                                                                                 | Nov Dec                                                                                                                                                                                     | 2<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>2<br>1<br>Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar Apr                                                                                                                                              | 1 1 1<br>May Jun                                                                                                  | Jul Aug Se                                                                                                                                            | ep Oct Nov                                                                                                                                                     | Dec  |
| 2<br>1<br>Jan Feb Mar A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LLLL<br>pr May Jun Jul                                                                                                                                                                                                                               | I I I I<br>Aug Sep Oct                                                                                                                                                                                                                                                                                 | Nov Dec                                                                                                                                                                                     | ي<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>2<br>1<br>Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar Apr                                                                                                                                              | 1 1 1<br>May Jun                                                                                                  | Jul Aug Se                                                                                                                                            | ep Oct Nov                                                                                                                                                     | Dec  |
| provide a second | pr May Jun Jul                                                                                                                                                                                                                                       | I I I I<br>Aug Sep Oct                                                                                                                                                                                                                                                                                 | Nov Dec                                                                                                                                                                                     | ຍ<br>1.<br>1.<br>1.<br>2.<br>1.<br>2.<br>1.<br>2.<br>1.<br>2.<br>1.<br>2.<br>1.<br>2.<br>1.<br>2.<br>1.<br>2.<br>1.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>2<br>1<br>Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L<br>Mar Apr                                                                                                                                         | L L L<br>May Jun                                                                                                  | L L<br>Jul Aug Se                                                                                                                                     | ep Oct Nov                                                                                                                                                     | Dec  |
| Dan Feb Mar A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pr May Jun Ju                                                                                                                                                                                                                                        | I Aug Sep Oct                                                                                                                                                                                                                                                                                          | Nov Dec<br>Owr<br>alances ar                                                                                                                                                                | ິ 0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l<br>Mar Apr                                                                                                                                         | 1 1 1<br>May Jun                                                                                                  | Jul Aug Se                                                                                                                                            | ep Oct Nov                                                                                                                                                     | Dec  |
| Jan Feb Mar A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pr May Jun Ju                                                                                                                                                                                                                                        | Aug Sep Oct                                                                                                                                                                                                                                                                                            | Nov Dec                                                                                                                                                                                     | ۵.<br>۵.<br>۱ (9KW)<br>۲ main ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar Apr                                                                                                                                              | May Jun                                                                                                           | Jul Aug Se                                                                                                                                            | ep Oct Nov                                                                                                                                                     | Dec  |
| Dan Feb Mar A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pr May Jun Ju<br>GlobHor Dif                                                                                                                                                                                                                         | Haug Sep Oct                                                                                                                                                                                                                                                                                           | Nov Dec<br>Owr<br>alances ar                                                                                                                                                                | ۵.<br>۵.<br>۱ (9KW)<br>nd main r<br>GlobEff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar Apr                                                                                                                                              | May Jun                                                                                                           | Jul Aug Se                                                                                                                                            | ep Oct Nov                                                                                                                                                     | Dec  |
| PPEr 2<br>1<br>1<br>Jan Feb Mar Aj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pr May Jun Ju<br>GlobHor Dif<br>kWh/m² kW                                                                                                                                                                                                            | Haug Sep Oct<br>Ba<br>fHor T_Amb<br>h/m <sup>2</sup> °C                                                                                                                                                                                                                                                | Nov Dec<br>Owr<br>alances ar<br>Globl nc<br>kWh/m <sup>2</sup>                                                                                                                              | د .<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar Apr<br>E_User<br>MWh                                                                                                                             | E_Solar<br>MWh                                                                                                    | Jul Aug Se<br>E_Grid<br>MWh                                                                                                                           | ep Oct Nov<br>EFrGrid<br>MWh                                                                                                                                   | Dec  |
| January                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GlobHor Dif<br>kWh/m² kW<br>133.0 82                                                                                                                                                                                                                 | fHor T_Amb<br>h/m <sup>2</sup> 22.0 28.10                                                                                                                                                                                                                                                              | Nov Dec<br>Owr<br>alances ar<br>GlobInc<br>kWh/m <sup>2</sup><br>136.3                                                                                                                      | ی م<br>روب<br>(9KW)<br>nd main r<br>GlobEff<br><u>kWh/m</u> 2<br>131.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mar Apr<br>E_User<br>MWh<br>0.446                                                                                                                    | E_Solar<br>MWh                                                                                                    | Jul Aug Se<br>E_Grid<br>MWh<br>0.954                                                                                                                  | EFrGrid<br>MWh<br>0.403                                                                                                                                        | Dec  |
| January<br>February                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67                                                                                                                                                                                                     | FHor T_Amb<br>h/m <sup>2</sup> C<br>2.20 28.10<br>7.90 27.70                                                                                                                                                                                                                                           | Owr<br>alances ar<br>GlobI nc<br>kWh/m <sup>2</sup><br>136.3<br>137.4                                                                                                                       | en (9KW)<br>ad main r<br>GlobEff<br><u>kWh/m<sup>2</sup></u><br>131.2<br>132.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>3</sup><br><sup>2</sup><br><sub>Jan</sub> Feb<br>results<br>EArray<br>MWh<br>1.016<br>1.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mar Apr<br>E_User<br>MWh<br>0.446<br>0.357                                                                                                           | E_Solar<br>MWh<br>0.043<br>0.036                                                                                  | Jul Aug Se<br>E_Grid<br>MWh<br>0.954<br>0.978                                                                                                         | EFrGrid<br>MWh<br>0.403<br>0.322                                                                                                                               | Dec  |
| January<br>February<br>March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 85                                                                                                                                                                                         | Aug     Sep     Oct       Hor     T_Amb     °C       Aug     28.10     27.70       3.20     28.00                                                                                                                                                                                                      | Owr<br>alances ar<br>GlobInc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3                                                                                                               | e (9KW)<br>d (9KW)<br>d main r<br>GlobEff<br>kWh/m <sup>2</sup><br>131.2<br>132.8<br>144.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>3</sup><br><sup>2</sup><br><sub>3</sub><br><sub>2</sub><br><sub>3</sub><br><sub>3</sub><br><sub>4</sub><br><sub>5</sub><br><sub>6</sub><br><sub>7</sub><br><sub>7</sub><br><sub>6</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mar Apr<br>E_User<br>MWh<br>0.446<br>0.357<br>0.357                                                                                                  | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036                                                                         | E_Grid<br>MWh<br>0.954<br>0.978<br>1.070                                                                                                              | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.322                                                                                                                      | Dec  |
| January<br>February<br>March<br>April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 88<br>140.3 70                                                                                                                                                                             | Aug     Sep     Oct       Aug     Sep     Oct       Ba     C     2.20     28.10       7.90     27.70     28.00       0.50     27.70     27.70                                                                                                                                                          | Owr<br>alances ar<br>GlobI nc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8                                                                                                     | e (9KW)<br>nd main r<br>GlobEff<br>kWh/m <sup>2</sup><br>131.2<br>132.8<br>144.9<br>133.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>3</sup><br><sup>2</sup><br><sub>3</sub><br><sub>3</sub><br><sub>2</sub><br><sub>3</sub><br><sub>3</sub><br><sub>4</sub><br><sub>5</sub><br><sub>2</sub><br><sub>3</sub><br><sub>4</sub><br><sub>7</sub><br><sub>6</sub><br><sub>3</sub><br><sub>6</sub><br><sub>7</sub><br><sub>7</sub><br><sub>6</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub><br><sub>9</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E_User<br>MWh<br>0.446<br>0.357<br>0.357<br>0.402                                                                                                    | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.039                                                                | E_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.971                                                                                            | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.362<br>0.362                                                                                                             | Dec  |
| January<br>February<br>March<br>April<br>May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 88<br>140.3 70<br>140.3 76                                                                                                                                                                 | FHor T_Amb<br>h/m <sup>2</sup> °C<br>2.20 28.10<br>7.90 27.70<br>3.20 28.60<br>0.50 27.70<br>3.60 28.60                                                                                                                                                                                                | Owr<br>alances ar<br>Globl nc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8<br>136.9                                                                                            | a (9KW)<br>o (9KW)<br>o main r<br>GlobEff<br>kWh/m <sup>2</sup><br>131.2<br>132.8<br>144.9<br>133.9<br>133.7<br>100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>3</sup><br><sup>2</sup><br><sub>3</sub><br><sub>3</sub><br><sub>4</sub><br><sub>5</sub><br><sub>3</sub><br><sub>4</sub><br><sub>5</sub><br><sub>1</sub><br><sub>6</sub><br><sub>7</sub><br><sub>7</sub><br><sub>7</sub><br><sub>7</sub><br><sub>7</sub><br><sub>7</sub><br><sub>7</sub><br><sub>7</sub><br><sub>7</sub><br><sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E_User<br>MWh<br>0.446<br>0.357<br>0.357<br>0.402<br>0.402                                                                                           | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.039<br>0.040                                                       | E_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.968<br>0.01                                                                                    | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.322<br>0.362<br>0.362                                                                                                    | Dec  |
| January<br>February<br>March<br>April<br>May<br>June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 88<br>140.3 70<br>140.3 76<br>132.0 77                                                                                                                                                     | Aug     Sep     Oct       Aug     Sep     Oct       fHor     T_Amb     °C       h/m²     °C       2.20     28.10       7.90     27.70       3.20     28.00       0.50     27.70       3.60     28.60       7.80     27.80                                                                              | Owr<br>alances ar<br>GlobInc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8<br>136.9<br>128.3                                                                                    | a (9KW)<br>o (9KW)<br>od main r<br>GlobEff<br><u>kWh/m<sup>2</sup></u><br>131.2<br>132.8<br>144.9<br>133.9<br>131.7<br>123.5<br>125.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>3</sup><br><sup>2</sup><br><sup>1</sup><br><sub>0</sub><br><sub>Jan</sub> <sub>Feb</sub><br>EArray<br><u>MWh</u><br>1.016<br>1.031<br>1.125<br>1.039<br>1.027<br>0.967<br>0.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E_User<br>MWh<br>0.446<br>0.357<br>0.402<br>0.402<br>0.402<br>0.357                                                                                  | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.036<br>0.039<br>0.040<br>0.033<br>0.033                            | E_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.968<br>0.916<br>0.921                                                                          | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.322<br>0.362<br>0.362<br>0.324<br>0.324                                                                                  | Dec  |
| Jan Feb Mar Aj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 88<br>140.3 70<br>140.3 78<br>132.0 77<br>134.4 87                                                                                                                                         | Aug     Sep     Oct       Aug     Sep     Oct       FHor     T_Amb     °C       2.20     28.10       7.90     27.70       3.20     28.00       0.50     27.70       3.60     28.60       7.80     27.80                                                                                                | Owr<br>alances ar<br>GlobInc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8<br>136.9<br>128.3<br>131.1                                                                           | a (9KW)<br>o (9KW)<br>od main r<br>GlobEff<br>kWh/m <sup>2</sup><br>131.2<br>132.8<br>144.9<br>133.9<br>131.7<br>123.5<br>125.8<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>3</sup><br><sup>2</sup><br><sup>1</sup><br><sub>0</sub><br><sub>Jan</sub> Feb<br>EArray<br>MWh<br>1.016<br>1.031<br>1.125<br>1.039<br>1.027<br>0.967<br>0.994<br>0.994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mar Apr<br>E_User<br>MWh<br>0.446<br>0.357<br>0.402<br>0.402<br>0.402<br>0.402<br>0.357<br>0.402                                                     | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.036<br>0.039<br>0.040<br>0.033<br>0.044<br>0.035                   | E_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.968<br>0.916<br>0.931<br>0.931                                                                 | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.322<br>0.362<br>0.362<br>0.324<br>0.324<br>0.402                                                                         | Dec  |
| Jan Feb Mar Aj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 88<br>140.3 70<br>140.3 78<br>132.0 77<br>134.4 87<br>132.2 87                                                                                                                             | Aug     Sep     Oct       fHor     T_Amb     °C       2.20     28.10       7.90     27.70       3.20     28.00       0.50     27.70       3.60     28.60       7.80     27.80       7.20     27.80       7.20     27.80                                                                                | Owr<br>alances ar<br>GlobInc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8<br>136.9<br>128.3<br>131.1<br>130.1                                                                  | a (9KW)<br>o (9KW)<br>od main r<br>GlobEff<br>kWh/m <sup>2</sup><br>131.2<br>132.8<br>144.9<br>133.9<br>131.7<br>123.5<br>125.8<br>125.8<br>125.2<br>125.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>5</sup><br><sup>6</sup><br><sup>6</sup><br><sup>6</sup><br><sup>6</sup><br><sup>6</sup><br><sup>6</sup><br><sup>7</sup><br><sup>7</sup><br><sup>6</sup><br><sup>6</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup>                                                                 | Mar Apr<br>E_User<br>MWh<br>0.446<br>0.357<br>0.402<br>0.402<br>0.402<br>0.402<br>0.402<br>0.457<br>0.446<br>0.357                                   | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.039<br>0.040<br>0.033<br>0.044<br>0.031                            | E_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.968<br>0.916<br>0.931<br>0.930<br>0.930                                                        | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.322<br>0.362<br>0.362<br>0.362<br>0.324<br>0.402<br>0.326<br>0.326                                                       | Dec  |
| January<br>February<br>March<br>April<br>May<br>June<br>July<br>August<br>September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 88<br>140.3 70<br>140.3 76<br>132.0 77<br>134.4 87<br>132.2 87<br>129.2 79                                                                                                                 | Aug     Sep     Oct       Aug     Sep     Oct       fHor     T_Amb     °C       2.20     28.10       7.90     27.70       3.20     28.00       0.50     27.70       3.60     28.60       7.80     27.80       7.20     27.80       7.20     27.80       7.20     27.10                                 | Nov Dec<br>Owr<br>alances ar<br>GlobInc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8<br>136.9<br>128.3<br>131.1<br>130.1<br>128.8                                              | Lange Content of the second se | <sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>5</sup><br><sup>6</sup><br><sup>6</sup><br><sup>5</sup><br><sup>6</sup><br><sup>6</sup><br><sup>6</sup><br><sup>7</sup><br><sup>6</sup><br><sup>6</sup><br><sup>6</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>6</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup> | Mar Apr<br>E_User<br>MWh<br>0.446<br>0.357<br>0.402<br>0.357<br>0.402<br>0.357<br>0.446<br>0.357<br>0.446<br>0.357<br>0.446                          | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.039<br>0.040<br>0.033<br>0.044<br>0.031<br>0.035<br>0.035          | E_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.968<br>0.916<br>0.931<br>0.930<br>0.930<br>0.935<br>0.935                                      | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.362<br>0.362<br>0.362<br>0.362<br>0.362<br>0.324<br>0.402<br>0.326<br>0.322                                              | Dec  |
| January<br>February<br>March<br>April<br>May<br>June<br>July<br>August<br>September<br>October                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 88<br>140.3 70<br>140.3 76<br>132.0 77<br>134.4 87<br>132.2 87<br>132.2 87<br>132.2 87<br>132.2 87<br>138.8 82<br>115 1                                                                    | Aug     Sep     Oct       Aug     Sep     Oct       fHor     T_Amb     °C       2.20     28.10       7.90     27.70       3.20     28.00       0.50     27.70       3.60     28.60       7.20     27.80       7.20     27.80       7.20     27.80       2.20     27.40                                 | Nov Dec<br>Owr<br>alances ar<br>GlobI nc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8<br>136.9<br>128.3<br>131.1<br>130.1<br>128.8<br>140.4                                    | Lange Content of the second se | <sup>3</sup><br><sup>2</sup><br><sub>3</sub><br><sub>3</sub><br><sub>2</sub><br><sub>3</sub><br><sub>3</sub><br><sub>2</sub><br><sub>3</sub><br><sub>3</sub><br><sub>2</sub><br><sub>3</sub><br><sub>4</sub><br><sub>7</sub><br><sub>6</sub><br><sub>1</sub><br><sub>1</sub><br><sub>1</sub><br><sub>1</sub><br><sub>1</sub><br><sub>1</sub><br><sub>1</sub><br><sub>1</sub><br><sub>1</sub><br><sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E_User<br>MWh<br>0.446<br>0.357<br>0.402<br>0.402<br>0.402<br>0.402<br>0.357<br>0.402<br>0.357<br>0.446<br>0.357<br>0.357<br>0.446                   | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.036<br>0.039<br>0.040<br>0.033<br>0.044<br>0.031<br>0.035<br>0.044 | L_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.968<br>0.916<br>0.931<br>0.930<br>0.915<br>0.992<br>0.992                                      | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.362<br>0.362<br>0.362<br>0.362<br>0.362<br>0.324<br>0.402<br>0.326<br>0.322<br>0.326<br>0.322<br>0.326                   | Dec  |
| January<br>February<br>March<br>April<br>May<br>June<br>July<br>August<br>September<br>October<br>November                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GlobHor Dif<br>kWh/m² kW<br>133.0 82<br>134.6 67<br>149.8 88<br>140.3 70<br>140.3 76<br>132.0 77<br>134.4 87<br>132.2 87<br>132.2 87<br>132.2 87<br>132.2 87<br>138.8 82<br>117.6 79                                                                 | Aug     Sep     Oct       fHor     T_Amb       h/m²     °C       2.20     28.10       7.90     27.70       3.20     28.00       0.50     27.70       3.60     28.60       7.80     27.80       7.20     27.80       7.20     27.80       7.20     27.40       2.00     27.40                           | Nov Dec<br>Owr<br>alances ar<br>Globl nc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8<br>136.9<br>128.3<br>131.1<br>130.1<br>128.8<br>140.4<br>119.8<br>140.4                  | Lange Content of the second se | <sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>2</sup><br><sup>2</sup><br><sup>3</sup><br><sup>2</sup><br><sup>3</sup><br><sup>3</sup><br><sup>4</sup><br><sup>5</sup><br><sup>5</sup><br><sup>6</sup><br><sup>5</sup><br><sup>6</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup><br><sup>7</sup>                                                                                                                                                                                                                 | E_User<br>MWh<br>0.446<br>0.357<br>0.402<br>0.402<br>0.402<br>0.402<br>0.402<br>0.357<br>0.446<br>0.357<br>0.446<br>0.357<br>0.446<br>0.357<br>0.446 | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.039<br>0.040<br>0.033<br>0.044<br>0.031<br>0.035<br>0.044<br>0.031 | E_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.968<br>0.916<br>0.931<br>0.930<br>0.915<br>0.992<br>0.858<br>0.916                             | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.362<br>0.362<br>0.362<br>0.324<br>0.402<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326                                     | Dec  |
| Jan Feb Mar Aj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GlobHor     Dif       kWh/m²     kW       133.0     82       134.6     67       149.8     88       140.3     70       132.0     77       134.4     87       132.2     87       129.2     79       138.8     82       117.6     79       115.0     73 | Aug     Sep     Oct       Aug     Sep     Oct       fHor     T_Amb       h/m²     °C       2.20     28.10       7.90     27.70       3.20     28.60       7.80     27.80       7.20     27.80       7.20     27.80       9.00     27.10       2.60     27.40       9.20     26.70       3.20     26.29 | Nov Dec<br>Owr<br>alances ar<br>GlobInc<br>kWh/m <sup>2</sup><br>136.3<br>137.4<br>150.3<br>138.8<br>136.9<br>128.3<br>131.1<br>130.1<br>128.8<br>130.1<br>128.8<br>140.4<br>119.8<br>118.1 | a (9KW)<br>o (9KW)<br>od main r<br>GlobEff<br>kWh/m <sup>2</sup><br>131.2<br>132.8<br>144.9<br>133.9<br>131.7<br>123.5<br>125.8<br>125.2<br>125.8<br>125.2<br>124.0<br>135.5<br>115.4<br>113.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>3</sup><br><sup>2</sup><br><sup>1</sup><br><sub>0</sub><br><sub>Jan</sub> Feb<br>EArray<br>MWh<br>1.016<br>1.031<br>1.125<br>1.039<br>1.027<br>0.967<br>0.994<br>0.980<br>0.968<br>1.056<br>0.907<br>0.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mar Apr<br>E_User<br>MWh<br>0.446<br>0.357<br>0.402<br>0.402<br>0.357<br>0.402<br>0.357<br>0.446<br>0.357<br>0.357<br>0.446<br>0.357<br>0.357        | E_Solar<br>MWh<br>0.043<br>0.036<br>0.036<br>0.036<br>0.037<br>0.044<br>0.031<br>0.035                            | Jul Aug Se<br>Jul Aug Se<br>E_Grid<br>MWh<br>0.954<br>0.978<br>1.070<br>0.981<br>0.968<br>0.916<br>0.931<br>0.930<br>0.915<br>0.992<br>0.858<br>0.842 | EFrGrid<br>MWh<br>0.403<br>0.322<br>0.362<br>0.362<br>0.324<br>0.324<br>0.402<br>0.326<br>0.322<br>0.326<br>0.322<br>0.326<br>0.326<br>0.326<br>0.326<br>0.326 | Dec  |

Legends: GlobHor DiffHor

T\_Amb

GlobInc

Horizontal global irradiation Horizontal diffuse irradiation T amb. Global incident in coll. plane Effective Global, corr. for IAM and shadings Effective energy at the output of the array Energy supplied to the user Energy from the sun Energy injected into grid Energy from the grid

GlobEff

EArray

E\_User

E\_Solar

E\_Grid

EFrGrid


| PVSYST V6.86      |          |                                              |             |            |                                                                                    | 21/04/20   | Page 6/6 |  |  |  |
|-------------------|----------|----------------------------------------------|-------------|------------|------------------------------------------------------------------------------------|------------|----------|--|--|--|
|                   |          | Grid-Co                                      | nnec        | ted Sv     | stem: Loss diagram                                                                 |            |          |  |  |  |
| Project -         |          | Taman Midal                                  |             |            |                                                                                    |            |          |  |  |  |
| Simulation var    | iant ·   | Own (9KW)                                    |             | ")         |                                                                                    |            |          |  |  |  |
| Main avatam na    | ramatara |                                              | Svot        |            | Shada an ground                                                                    |            |          |  |  |  |
| Noar Shadings     | rameters | ſ                                            | Syste       | en type    | Sheas on ground                                                                    |            |          |  |  |  |
| PV Field Orientat | tion     | ľ                                            |             | tilt       | 5° azimu                                                                           | th 0°      |          |  |  |  |
| PV modules        |          |                                              | Nh of       | Model      | JAM6-72-320/SI Pnom 320 Wp                                                         |            |          |  |  |  |
| Inverter          |          |                                              |             | Model      | SUN2000L-8KTL Pno                                                                  | m 8.00 kV  | √ ac     |  |  |  |
| User's needs      |          | Daily house                                  | nold cor    | sumers     | Constant over the year Glob                                                        | al 4687 kV | Vh/year  |  |  |  |
|                   |          |                                              | Loss d      | liagram ov | ver the whole year                                                                 |            |          |  |  |  |
|                   |          |                                              |             |            |                                                                                    |            |          |  |  |  |
|                   |          |                                              |             |            |                                                                                    |            |          |  |  |  |
|                   |          | 1597 kWh/m <sup>2</sup>                      |             | 1          | Horizontal global irradiation                                                      |            |          |  |  |  |
|                   |          |                                              |             | → -0.07%   | Global incident in coll. plane                                                     |            |          |  |  |  |
|                   |          |                                              | L.          | 0.00%      | Near Shadings: irradiance loss                                                     |            |          |  |  |  |
|                   |          |                                              |             | →-3.67%    | IAM factor on global                                                               |            |          |  |  |  |
|                   | 1538     | kWh/m <sup>2</sup> * 54 m <sup>2</sup> coll. |             |            | Effective irradiation on collectors                                                |            |          |  |  |  |
| г                 | efficier | ncy at STC = 16.539                          | %           |            | PV conversion                                                                      |            |          |  |  |  |
|                   |          | 13.79 MWh                                    |             | ∍-0.75%    | Array nominal energy (at STC effic.)<br>PV loss due to irradiance level            | 1          |          |  |  |  |
|                   |          |                                              |             | →-11.15%   | PV loss due to temperature                                                         |            |          |  |  |  |
|                   |          |                                              | (+C         | 7<br>).75% | Module quality loss                                                                |            |          |  |  |  |
|                   |          |                                              | <b>→</b> -1 | .10%       | Mismatch loss, modules and strings                                                 |            |          |  |  |  |
|                   | 1        | 2.01 MWh                                     | 9-0.        | 95%        | Ohmic wiring loss<br>Array virtual energy at MPP                                   |            |          |  |  |  |
|                   |          |                                              | k.          |            | .,                                                                                 |            |          |  |  |  |
|                   |          |                                              | -1.0<br>    | 80%<br>0%  | Inverter Loss during operation (efficienc<br>Inverter Loss over nominal inv. power | y)         |          |  |  |  |
|                   |          |                                              | >0.00       | )%         | Inverter Loss due to max. input current                                            |            |          |  |  |  |
|                   |          |                                              | → 0.00      | )%<br>)%   | Inverter Loss over nominal inv. voltage                                            |            |          |  |  |  |
| grid              |          |                                              | >0.00       | )%         | Inverter Loss due to voltage threshold                                             |            |          |  |  |  |
| consumption       | 1        | 1.78 MWh                                     | →-0.0       | 14%        | Night consumption<br>Available Energy at Inverter Output                           |            |          |  |  |  |
|                   | 1        |                                              |             |            |                                                                                    |            |          |  |  |  |
| 4.24 MWh 0.45     | /Wh 1    | 11.34 MWh                                    |             |            | Energy injected into grid                                                          |            |          |  |  |  |
| to user to us     | ser      | to grid                                      |             |            |                                                                                    |            |          |  |  |  |
| from grid from s  | solar    |                                              |             |            |                                                                                    |            |          |  |  |  |
|                   |          |                                              |             |            |                                                                                    |            |          |  |  |  |

| rr                                                                                                                                                           |                                                            |                                                                                                           |                                                                                         |                                                                         |                                                                           |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------|
| PVSYST V6.86                                                                                                                                                 |                                                            |                                                                                                           |                                                                                         |                                                                         | 21/04/20                                                                  | Page 1/8         |
|                                                                                                                                                              | Gric                                                       | d-Connected System                                                                                        | n: Simulati                                                                             | on parameters                                                           | S                                                                         |                  |
| Project :                                                                                                                                                    | Та                                                         | man Midah (NEM)                                                                                           |                                                                                         |                                                                         |                                                                           |                  |
| Geographical Site                                                                                                                                            | 9                                                          | Kuala Lumpur/Subang                                                                                       |                                                                                         | Countr                                                                  | ry <b>Malays</b>                                                          | ia               |
| Situation                                                                                                                                                    |                                                            | Latitude                                                                                                  | 3.12° N                                                                                 | Longitud                                                                | le 101.55°                                                                | 'Е               |
| Time defined as                                                                                                                                              | 6                                                          | Legal Time                                                                                                | Time zone UT                                                                            | F+8 Altitud                                                             | le 17 m                                                                   |                  |
| Meteo data:                                                                                                                                                  |                                                            | Kuala Lumpur/Subang                                                                                       | MeteoNorm 7                                                                             | 7.2 station - Syntheti                                                  | с                                                                         |                  |
| Simulation varia                                                                                                                                             | nt: SE                                                     | LCO - working couple (                                                                                    | 6kw)                                                                                    |                                                                         |                                                                           |                  |
|                                                                                                                                                              |                                                            | Simulation date                                                                                           | 21/04/20 17h                                                                            | 48                                                                      |                                                                           |                  |
| Simulation param                                                                                                                                             | neters                                                     | System type                                                                                               | Sheds on gro                                                                            | ound                                                                    |                                                                           |                  |
| Collector Plane C                                                                                                                                            | rientation                                                 | Tilt                                                                                                      | 5°                                                                                      | Azimut                                                                  | th 0°                                                                     |                  |
| Models used                                                                                                                                                  |                                                            | Transposition                                                                                             | Perez                                                                                   | Diffus                                                                  | se Perez, l                                                               | Meteonorm        |
| Horizon                                                                                                                                                      |                                                            | Free Horizon                                                                                              |                                                                                         |                                                                         |                                                                           |                  |
| Near Shadings                                                                                                                                                |                                                            | Linear shadings                                                                                           |                                                                                         |                                                                         |                                                                           |                  |
| Storage                                                                                                                                                      |                                                            | Kind<br>Charging strategy<br>Discharging strategy                                                         | Self-consumpt<br>When excess<br>As soon as po                                           | tion, No grid reinjecti<br>solar power is availa<br>wer is needed       | on<br>Ible                                                                |                  |
| User's needs :                                                                                                                                               |                                                            | Daily household consumers<br>average                                                                      | Constant ove<br>11.2 kWh/Da                                                             | r the year<br>y                                                         |                                                                           |                  |
| PV Array Character<br>PV module<br>Original PVsyst of<br>Number of PV mode<br>Total number of PV<br>Array global power<br>Array operating char<br>Total area | eristics<br>database<br>ules<br>modules<br>tracteristics ( | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>(50°C) U mpp<br>Module area | JAM6-72-320<br>JA Solar<br>10 modules<br>20<br>6.40 kWp<br>336 V<br>38.8 m <sup>2</sup> | In paralle<br>Unit Nom. Powe<br>At operating conc<br>I mp<br>Cell are   | el 2 string<br>er 320 Wp<br>d. 5.75 kW<br>p 17 A<br>a 34.4 m <sup>2</sup> | s<br>/p (50°C)   |
| Inverter<br>Original PVsyst<br>Characteristics                                                                                                               | database                                                   | Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters                                            | SUN2000L-51<br>Huawei Techi<br>90-500 V<br>2 * MPPT 50                                  | KTL<br>nologies<br>Unit Nom. Powe<br>Max. power (=>40°0<br>% Total Powe | er 5.00 kV<br>C) 5.50 kV                                                  | Vac<br>Vac<br>ac |
|                                                                                                                                                              |                                                            | No. of inverters                                                                                          | 2 1011130                                                                               | Pnom rati                                                               | io 1.28                                                                   | 40               |
| Battery                                                                                                                                                      |                                                            | Model                                                                                                     | PVX-2120L                                                                               |                                                                         |                                                                           |                  |
| Battery Pack Char                                                                                                                                            | acteristics                                                | Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                            | 2 in series x 4<br>24 V<br>50.0 %<br>Fixed (20°C)                                       | 4 in parallel<br>Nominal Capacit<br>Stored energ                        | ty 784 Ah<br>iy 9.4 kWl                                                   | (C10)<br>h       |
| Battery input cha                                                                                                                                            | rger                                                       | Model<br>Max. charging power                                                                              | Generic<br>5.4 kWdc                                                                     | Max./ Euro efficienc                                                    | y 97.0/95                                                                 | .0 %             |
| Battery to Grid in                                                                                                                                           | verter                                                     | Model<br>Max. discharging power                                                                           | Generic<br>1.9 kWac                                                                     | Max./ Euro efficienc                                                    | y 97.0/95                                                                 | .0 %             |
| PV Array loss fact                                                                                                                                           | ors                                                        |                                                                                                           |                                                                                         |                                                                         |                                                                           |                  |
| Thermal Loss facto                                                                                                                                           | r                                                          | Uc (const)                                                                                                | 20.0 W/m²K                                                                              | Uv (wind                                                                | d) 0.0 W/r                                                                | n²K / m/s        |
| Wiring Ohmic Loss                                                                                                                                            |                                                            | Global array res.                                                                                         | 332 mOhm                                                                                | Loss Fractio                                                            | on 1.5% a                                                                 | t STC            |
| L                                                                                                                                                            |                                                            |                                                                                                           |                                                                                         |                                                                         |                                                                           |                  |

| PVSYST V6.86                                                                  |                                                        |                                                   |                 |           | 21/04/20 | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|-----------------|-----------|----------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr                                            | : Simulation pa | arameters | 6        |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | L<br>L<br>L<br>ization IAM = 1 - bo (1/cos i - 1) |                 |           |          | t MPP    |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |



| PVSYST V6.86                                                                                                                   |                                                                       |                                                                                                                                                                                                                                                                                        |                 | 21/0       | 04/20 Page 4/8              |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-----------------------------|--|--|--|--|
| (                                                                                                                              | Grid-Connected S                                                      | System                                                                                                                                                                                                                                                                                 | n: Detailed Us  | er's needs |                             |  |  |  |  |
| Project ·                                                                                                                      | Taman Midah (NFN                                                      | л)                                                                                                                                                                                                                                                                                     |                 |            |                             |  |  |  |  |
| Simulation variant :                                                                                                           | SELCO - working c                                                     | ,<br>ouple (6                                                                                                                                                                                                                                                                          | 3kw)            |            |                             |  |  |  |  |
| Main system narameters                                                                                                         | Svete                                                                 |                                                                                                                                                                                                                                                                                        | Sheds on around |            |                             |  |  |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs<br>Daily household consum          | Linear s<br>Nb. of r<br>Daily household cor<br>ers, Constant over the | Linear shadings<br>tilt 5° azimuth 0°<br>Model JAM6-72-320/SI Pnom 320 Wp<br>Nb. of modules 20 Pnom total <b>6.40 kWp</b><br>Model SUN2000L-5KTL Pnom 5.00 kW ac<br>ily household consumers Constant over the year Global 4080 kWh/ye<br>onstant over the year, average = 11.2 kWh/day |                 |            |                             |  |  |  |  |
|                                                                                                                                |                                                                       | Annua                                                                                                                                                                                                                                                                                  | l values        |            |                             |  |  |  |  |
|                                                                                                                                | Use 5 days a week                                                     | Number                                                                                                                                                                                                                                                                                 | Power           | Use        | Energy                      |  |  |  |  |
| Lamps (LED or fluo)                                                                                                            |                                                                       | 20                                                                                                                                                                                                                                                                                     | 18 W/lamp       | 7 h/day    | 2340 Wh/day                 |  |  |  |  |
| TV / PC / Mobile                                                                                                               |                                                                       | 1                                                                                                                                                                                                                                                                                      | 70 W/app        | 6 h/day    | 420 Wh/day                  |  |  |  |  |
| Iron                                                                                                                           |                                                                       | 1                                                                                                                                                                                                                                                                                      | 1200 W/app      | 1 h/day    | 600 Wh/day                  |  |  |  |  |
| Fridge / Deep-freeze                                                                                                           |                                                                       | 1                                                                                                                                                                                                                                                                                      |                 | 24 Wh/day  | 3000 Wh/day                 |  |  |  |  |
| Dish- & Cloth-washers                                                                                                          |                                                                       | 1                                                                                                                                                                                                                                                                                      |                 | 1 Wh/day   | 500 Wh/day                  |  |  |  |  |
| Instant water heater                                                                                                           |                                                                       |                                                                                                                                                                                                                                                                                        | 2000 W tot      | 1 h/day    | 2000 Wh/day                 |  |  |  |  |
| Aircond<br>Stand by consumers                                                                                                  |                                                                       | 2                                                                                                                                                                                                                                                                                      | 750 W tot       | 5 n/day    | 6750 Wh/day                 |  |  |  |  |
| Total daily energy                                                                                                             |                                                                       |                                                                                                                                                                                                                                                                                        |                 | 24 11/uay  | 24 WII/Udy<br>15634 W/b/day |  |  |  |  |
| Item Item Item Item Item Item Item Item   Stand-by consumers 24 h/day 24 Wh/day 15634 Wh/day   Total daily energy 15634 Wh/day |                                                                       |                                                                                                                                                                                                                                                                                        |                 |            |                             |  |  |  |  |

| PVSYST V6.86         |          |                           |                             | 21/04/20   | Page 5/8    |
|----------------------|----------|---------------------------|-----------------------------|------------|-------------|
|                      |          | Grid-Connected S          | ystem: Main results         |            |             |
| Project :            |          | Taman Midah (NEM)         |                             |            |             |
| Simulation varia     | nt :     | SELCO - working couple (  | ôkw)                        |            |             |
| Main system para     | meters   | System type               | Sheds on ground             |            |             |
| Near Shadings        |          | Linear shadings           |                             |            |             |
| PV Field Orientation | n        | tilt                      | 5° azimu                    | th 0°      |             |
| PV modules           |          | Model                     | JAM6-72-320/SI Pnc          | m 320 Wj   | D           |
| PV Array             |          | Nb. of modules            | 20 Pnom to                  | tal 6.40 k | Wp          |
| Inverter             |          | Model                     | SUN2000L-5KTL Pnc           | m 5.00 k\  | N ac        |
| User's needs         |          | Daily household consumers | Constant over the year Glob | al 4080 k  | Wh/year     |
| Main simulation re   | esults   |                           |                             |            |             |
| System Production    | 1        | Produced Energy           | 8.41 MWh/year Specific pro  | d. 1314 k  | Wh/kWp/year |
|                      |          | Performance Ratio PR      | 29.80 % Solar Fraction S    | SF 74.62 9 | %           |
| Battery ageing (Sta  | te of We | ear) Cycles SOW           | 79.3% Static SO             | W 80.0%    |             |
|                      |          | Battery lifetime          | 4.8 years                   |            |             |







## SELCO - working couple (6kw) Balances and main results

|               | GlobHor            | DiffHor                                      | T_Amb           | GlobInc | GlobEff | EArray  | E_User         | E_Solar             | EUnused      | EFrGrid      |
|---------------|--------------------|----------------------------------------------|-----------------|---------|---------|---------|----------------|---------------------|--------------|--------------|
|               | kWh/m <sup>2</sup> | kWh/m²                                       | °C              | kWh/m²  | kWh/m²  | MWh     | MWh            | MWh                 | MWh          | MWh          |
| January       | 133.0              | 82.20                                        | 28.10           | 136.3   | 131.2   | 0.726   | 0.360          | 0.270               | 0.397        | 0.090        |
| February      | 134.6              | 67.90                                        | 27.70           | 137.4   | 132.8   | 0.737   | 0.313          | 0.242               | 0.444        | 0.071        |
| March         | 149.8              | 88.20                                        | 28.00           | 150.3   | 144.9   | 0.804   | 0.344          | 0.266               | 0.473        | 0.078        |
| April         | 140.3              | 70.50                                        | 27.70           | 138.8   | 133.9   | 0.742   | 0.328          | 0.258               | 0.438        | 0.070        |
| Мау           | 140.3              | 78.60                                        | 28.60           | 136.9   | 131.7   | 0.734   | 0.360          | 0.269               | 0.405        | 0.091        |
| June          | 132.0              | 77.80                                        | 27.80           | 128.3   | 123.5   | 0.691   | 0.328          | 0.237               | 0.394        | 0.091        |
| July          | 134.4              | 87.20                                        | 27.80           | 131.1   | 125.8   | 0.710   | 0.344          | 0.262               | 0.399        | 0.082        |
| August        | 132.2              | 87.20                                        | 27.80           | 130.1   | 125.2   | 0.700   | 0.360          | 0.261               | 0.383        | 0.099        |
| September     | 129.2              | 79.00                                        | 27.10           | 128.8   | 124.0   | 0.691   | 0.313          | 0.235               | 0.396        | 0.078        |
| October       | 138.8              | 82.60                                        | 27.40           | 140.4   | 135.5   | 0.754   | 0.360          | 0.264               | 0.440        | 0.096        |
| November      | 117.6              | 79.20                                        | 26.70           | 119.8   | 115.4   | 0.648   | 0.344          | 0.241               | 0.353        | 0.103        |
| December      | 115.0              | 73.20                                        | 26.29           | 118.1   | 113.6   | 0.640   | 0.328          | 0.241               | 0.346        | 0.088        |
| Year          | 1597.2             | 953.59                                       | 27.58           | 1596.2  | 1537.5  | 8.575   | 4.080          | 3.045               | 4.867        | 1.036        |
|               | •                  | •                                            |                 |         |         |         |                |                     | •            | I            |
| Legends: Glob | Hor                | Horizontal glo                               | obal irradiatio | on      |         | GlobEff | Effectiv       | e Global, co        | orr. for IAM | and shadings |
| Diff          | lor l              | Horizontal dif                               | fuse irradiat   | ion     |         | EArray  | Effectiv       | e energy at         | the output   | of the array |
| T_A           | mb <sup>-</sup>    | Г amb.                                       |                 |         |         | E_User  | Energy         | supplied to         | the user     |              |
| Glob          | olnc (             | Global incider                               | nt in coll. pla | ne      |         | E_Solar | Energy         | Energy from the sun |              |              |
|               |                    | EUnused Unused energy (battery full, no grid |                 |         |         |         | grid injection |                     |              |              |
|               |                    |                                              |                 |         |         | EFrGrid | Energy         | from the gr         | id           |              |





| PVSYST V6.86                                                                                |                           |                                                                                                          |                                                                                               |                                                                    |                                                 | 21/04/20                                                         | Page 8/8                     |
|---------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                             |                           | Grid-Conne                                                                                               | cted Syster                                                                                   | m: P50 - P90 e                                                     | evaluation                                      |                                                                  |                              |
| Proiect :                                                                                   |                           | Taman Midal                                                                                              | n (NEM)                                                                                       |                                                                    |                                                 |                                                                  |                              |
| Simulation vari                                                                             | ant :                     | SELCO - wor                                                                                              | king couple (                                                                                 | ôkw)                                                               |                                                 |                                                                  |                              |
| Main system par                                                                             | rameters                  |                                                                                                          | System type                                                                                   | Sheds on ground                                                    |                                                 |                                                                  |                              |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | on                        | l<br>Daily houser                                                                                        | inear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>nold consumers                  | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the y | azimut<br>Pnor<br>Pnom tot<br>Pnor<br>vear Glob | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kV<br>al 4080 kV | <b>Vp</b><br>√ ac<br>Wh/year |
| Evaluation of the                                                                           | e Produc                  | tion probability                                                                                         | forecast                                                                                      |                                                                    |                                                 |                                                                  |                              |
| The probability dis                                                                         | stribution                | of the system or                                                                                         | nonecasi                                                                                      | t for different vears is                                           | mainly denen                                    | dent                                                             |                              |
| on the meteo data                                                                           | a used for                | the simulation, a                                                                                        | and depends on t                                                                              | the following choices                                              |                                                 | dent                                                             |                              |
| Meteo data source<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                 | e<br>n<br>bility          | Year devi                                                                                                | Kind<br>ation from aver.<br>Variance                                                          | MeteoNorm 7.2 sta<br>Not defined<br>3 %<br>0.5 %                   | tion<br>Yea                                     | ar 1995                                                          |                              |
| The probability dis<br>Specified Deviatio                                                   | stribution<br>n P<br>Soi  | variance is also o<br>V module modell<br>Inverter efficie<br>ling and mismato<br>Degrada                 | depending on so<br>ling/parameters<br>ency uncertainty<br>h uncertainties<br>tion uncertainty | me system paramete<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %             | ers uncertaintie                                | S                                                                |                              |
| Global variability (                                                                        | (meteo + :                | system)                                                                                                  | Variance                                                                                      | 1.9 %                                                              | (quadratic sun                                  | ו)                                                               |                              |
| Annual production                                                                           | n probabil                | ity                                                                                                      | Variability<br>P50<br>P90<br>P95                                                              | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                       |                                                 |                                                                  |                              |
|                                                                                             |                           |                                                                                                          | Probability                                                                                   | distribution                                                       |                                                 |                                                                  |                              |
|                                                                                             | Viliabability brobability | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>50 = 000 kWh<br>0.00<br> | X axis: no data fo                                                                            | or the extremities definition                                      | 1                                               | 1.0                                                              |                              |

| ГГ                                                                                                                                                                                 |                                                                                                                           |                                                                                                                                                      | []                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| PVSYST V6.86                                                                                                                                                                       |                                                                                                                           |                                                                                                                                                      | 21/04/20 Page 1/8                                                      |
|                                                                                                                                                                                    | Grid-Connected System                                                                                                     | n: Simulation parameters                                                                                                                             | 6                                                                      |
| Project :                                                                                                                                                                          | Taman Midah (NEM)                                                                                                         |                                                                                                                                                      |                                                                        |
| Geographical Site                                                                                                                                                                  | Kuala Lumpur/Subang                                                                                                       | Counti                                                                                                                                               | y <b>Malaysia</b>                                                      |
| Situation                                                                                                                                                                          | Latitude                                                                                                                  | 3.12° N Longitud                                                                                                                                     | le 101.55° E                                                           |
| Time defined as                                                                                                                                                                    | Legal Time                                                                                                                | Time zone UT+8 Altitud                                                                                                                               | le 17 m                                                                |
| Meteo data:                                                                                                                                                                        | Albedo<br>Kuala Lumpur/Subang                                                                                             | 0.20<br>MeteoNorm 7.2 station - Syntheti                                                                                                             | с                                                                      |
| Simulation variant :                                                                                                                                                               | SELCO - working couple (                                                                                                  | 6kw)                                                                                                                                                 |                                                                        |
|                                                                                                                                                                                    | Simulation date                                                                                                           | 21/04/20 17h51                                                                                                                                       |                                                                        |
| Simulation parameters                                                                                                                                                              | System type                                                                                                               | Sheds on ground                                                                                                                                      |                                                                        |
| Collector Plane Orienta                                                                                                                                                            | tion Tilt                                                                                                                 | 5° Azimut                                                                                                                                            | h 0°                                                                   |
| Models used                                                                                                                                                                        | Transposition                                                                                                             | Perez Diffus                                                                                                                                         | e Perez, Meteonorm                                                     |
| Horizon                                                                                                                                                                            | Free Horizon                                                                                                              |                                                                                                                                                      |                                                                        |
| Near Shadings                                                                                                                                                                      | Linear shadings                                                                                                           |                                                                                                                                                      |                                                                        |
| Storage                                                                                                                                                                            | Kind                                                                                                                      | Self-consumption, No grid reinjecti                                                                                                                  | on                                                                     |
|                                                                                                                                                                                    | Charging strategy<br>Discharging strategy                                                                                 | When excess solar power is availa<br>As soon as power is needed                                                                                      | ble                                                                    |
| User's needs :                                                                                                                                                                     | Daily household consumers<br>average                                                                                      | Constant over the year<br>6.9 kWh/Day                                                                                                                |                                                                        |
| PV Array Characteristic<br>PV module<br>Original PVsyst databa<br>Number of PV modules<br>Total number of PV modu<br>Array global power<br>Array operating character<br>Total area | s Si-mono Model<br>se Manufacturer<br>In series<br>les Nb. modules<br>Nominal (STC)<br>istics (50°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>10 modules In paralle<br>20 Unit Nom. Powe<br>6.40 kWp At operating cond<br>336 V I mp<br>38.8 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>1. 5.75 kWp (50°C)<br>p 17 A<br>a 34.4 m² |
| Inverter<br>Original PVsyst databa<br>Characteristics                                                                                                                              | Model<br>ase Manufacturer<br>Operating Voltage                                                                            | SUN2000L-5KTL<br>Huawei Technologies<br>90-500 V Unit Nom. Powe<br>Max. power (=>40°C                                                                | er 5.00 kWac<br>C) 5.50 kWac                                           |
| Inverter pack                                                                                                                                                                      | Nb. of inverters                                                                                                          | 2 * MPPT 50 % Total Powe<br>Pnom rati                                                                                                                | er 5.0 kWac<br>io 1.28                                                 |
| Battery                                                                                                                                                                            | Model                                                                                                                     | PVX-2120L                                                                                                                                            |                                                                        |
| Battery Pack Characteris                                                                                                                                                           | tics Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                                       | Concorde<br>2 in series x 4 in parallel<br>24 V Nominal Capacit<br>50.0 % Stored energy<br>Fixed (20°C)                                              | ty 784 Ah (C10)<br>Iy 9.4 kWh                                          |
| Battery input charger                                                                                                                                                              | Model                                                                                                                     | Generic                                                                                                                                              |                                                                        |
| Battery to Grid inverter                                                                                                                                                           | Max. charging power<br>Model                                                                                              | 5.4 kWdc Max./ Euro efficienc<br>Generic                                                                                                             | y 97.0/95.0 %                                                          |
|                                                                                                                                                                                    | Max. discharging power                                                                                                    | 1.9 kWac Max./ Euro efficienc                                                                                                                        | y 97.0/95.0 %                                                          |
|                                                                                                                                                                                    |                                                                                                                           |                                                                                                                                                      |                                                                        |
| Thermal Loss factor                                                                                                                                                                | Lie (const)                                                                                                               | 20.0 W/m²k Llv (win                                                                                                                                  | $d = 0.0 W/m^{2}k' / m/c$                                              |
|                                                                                                                                                                                    | Global array res                                                                                                          | 332 mOhm Loss Fractic                                                                                                                                | 1, 0.0 w/m-r / m/s                                                     |
|                                                                                                                                                                                    | 2.2241 41149 1001                                                                                                         |                                                                                                                                                      |                                                                        |

| PVSYST V6.86                                                                  |                                                        |                                                   |                 |           | 21/04/20 | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|-----------------|-----------|----------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr                                            | : Simulation pa | arameters | 6        |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | L<br>L<br>L<br>ization IAM = 1 - bo (1/cos i - 1) |                 |           |          | t MPP    |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |
|                                                                               |                                                        |                                                   |                 |           |          |          |



| PVSYST V6.86            |                        |               |                              |              | 21/04/20          | Page 4/8    |
|-------------------------|------------------------|---------------|------------------------------|--------------|-------------------|-------------|
|                         | rid Connected          | Svetor        | . Dotailed Llev              | or'e poode   |                   |             |
| 9                       |                        | System        | I. Detalled 056              |              | )                 |             |
| Project :               | Taman Midah (NEN       | /1)           |                              |              |                   |             |
| Simulation variant :    | SELCO - working c      | ouple (6      | škw)                         |              |                   |             |
| Main system parameters  | Syste                  | em type       | Sheds on ground              |              |                   |             |
| Near Shadings           | Linear s               | hadings       |                              |              |                   |             |
| PV Field Orientation    |                        | tilt<br>Model | 5°<br>IAM6-72-320/SI         | azimut       | h 0°<br>m 320.W/m |             |
| PV Array                | Nb. of r               | nodules       | 20                           | Pnom tota    | al <b>6.40 kV</b> | Vp          |
| Inverter                |                        | Model         | SUN2000L-5KTL                | Pnor         | m 5.00 kV         | V ac        |
| User's needs            | Daily household con    | sumers        | Constant over the y          | ear Globa    | al 2510 k\        | Wh/year     |
| Daily household consume | ers, Constant over the | e year, av    | verage = 6.9 kWh/d           | ay           |                   |             |
|                         |                        |               |                              |              |                   |             |
|                         |                        | Annua         | l values                     |              |                   |             |
|                         | Use 2 days a week      | Number        | Power                        | Use          |                   | Energy      |
| Lamps (LED or fluo)     |                        | 20            | 18 W/lamp                    | 5 h          | /day 1            | 1800 Wh/day |
| TV / PC / Mobile        |                        | 1             | 70 W/app                     | 14 h         | /day              | 980 Wh/day  |
| Iron                    |                        | 1             | 1200 W/app                   | 1 h          | /day              | 600 Wh/day  |
| Fridge / Deep-freeze    |                        | 1             |                              | 24 Wh        | /day 3            | 3000 Wh/day |
| DISN- & CIOTN-Washers   |                        | 1             | 2000 W/ tot                  | 1 VVN<br>1 b | /day              |             |
| Aircond                 |                        | 2             | 2000 W tot                   | 10 h         | /day 15           | 5000 Wh/day |
| Stand-by consumers      |                        |               | 700 W lot                    | 24 h         | /day              | 24 Wh/day   |
| Total daily energy      |                        | ļ             | •                            |              | 23                | 3904 Wh/day |
| Total daily energy      |                        | Hourly        | <b>profile</b><br>12 15 18 2 | 21 24        | 23                | 3904 Wh/day |

| PVSYST V6.86        |           |                           |                        |                | 21/04/20  | Page 5/8    |
|---------------------|-----------|---------------------------|------------------------|----------------|-----------|-------------|
|                     |           | Grid-Connected S          | ystem: Main res        | sults          |           |             |
| Project :           |           | Taman Midah (NEM)         |                        |                |           |             |
| Simulation varia    | ant :     | SELCO - working couple (  | ôkw)                   |                |           |             |
| Main system para    | ameters   | System type               | Sheds on ground        |                |           |             |
| Near Shadings       |           | Linear shadings           |                        |                |           |             |
| PV Field Orientatio | on        | tilt                      | 5°                     | azimuth        | n 0°      |             |
| PV modules          |           | Model                     | JAM6-72-320/SI         | Pnom           | n 320 Wp  |             |
| PV Array            |           | Nb. of modules            | 20                     | Pnom tota      | 6.40 kV   | Vp          |
| Inverter            |           | Model                     | SUN2000L-5KTL          | Pnom           | n 5.00 kV | / ac        |
| User's needs        |           | Daily household consumers | Constant over the year | ar Globa       | l 2510 k\ | Vh/year     |
| Main simulation     | results   |                           |                        |                |           |             |
| System Production   | n         | Produced Energy           | 8.41 MWh/year          | Specific prod  | . 1314 k\ | Nh/kWp/year |
|                     |           | Performance Ratio PR      | 19.48 % Sola           | ar Fraction SF | 79.29 %   | ,<br>D      |
| Battery ageing (Sta | ate of We | ar) Cycles SOW            | 89.7%                  | Static SOV     | / 80.0%   |             |
|                     |           | Battery lifetime          | 5.0 years              |                |           |             |







## SELCO - working couple (6kw) Balances and main results

|               | GlobHor            | DiffHor        | T_Amb           | GlobInc | GlobEff | EArray   | E_User       | E_Solar             | EUnused        | EFrGrid        |
|---------------|--------------------|----------------|-----------------|---------|---------|----------|--------------|---------------------|----------------|----------------|
|               | kWh/m <sup>2</sup> | kWh/m²         | °C              | kWh/m²  | kWh/m²  | MWh      | MWh          | MWh                 | MWh            | MWh            |
| January       | 133.0              | 82.20          | 28.10           | 136.3   | 131.2   | 0.726    | 0.239        | 0.188               | 0.481          | 0.051          |
| February      | 134.6              | 67.90          | 27.70           | 137.4   | 132.8   | 0.737    | 0.191        | 0.165               | 0.529          | 0.027          |
| March         | 149.8              | 88.20          | 28.00           | 150.3   | 144.9   | 0.804    | 0.191        | 0.158               | 0.600          | 0.034          |
| April         | 140.3              | 70.50          | 27.70           | 138.8   | 133.9   | 0.742    | 0.215        | 0.176               | 0.530          | 0.039          |
| Мау           | 140.3              | 78.60          | 28.60           | 136.9   | 131.7   | 0.734    | 0.215        | 0.162               | 0.513          | 0.053          |
| June          | 132.0              | 77.80          | 27.80           | 128.3   | 123.5   | 0.691    | 0.191        | 0.155               | 0.490          | 0.037          |
| July          | 134.4              | 87.20          | 27.80           | 131.1   | 125.8   | 0.710    | 0.239        | 0.188               | 0.485          | 0.051          |
| August        | 132.2              | 87.20          | 27.80           | 130.1   | 125.2   | 0.700    | 0.191        | 0.147               | 0.499          | 0.045          |
| September     | 129.2              | 79.00          | 27.10           | 128.8   | 124.0   | 0.691    | 0.191        | 0.147               | 0.500          | 0.045          |
| October       | 138.8              | 82.60          | 27.40           | 140.4   | 135.5   | 0.754    | 0.239        | 0.193               | 0.513          | 0.046          |
| November      | 117.6              | 79.20          | 26.70           | 119.8   | 115.4   | 0.648    | 0.191        | 0.141               | 0.462          | 0.050          |
| December      | 115.0              | 73.20          | 26.29           | 118.1   | 113.6   | 0.640    | 0.215        | 0.172               | 0.431          | 0.043          |
| Year          | 1597.2             | 953.59         | 27.58           | 1596.2  | 1537.5  | 8.575    | 2.510        | 1.990               | 6.033          | 0.520          |
| Lawarda Clah  |                    |                |                 |         |         | Clab Eff | <b>Fff h</b> |                     |                |                |
| Legends: Glob | Hor I              | Horizontal gio | bal irradiatio  | on      |         | GIODETT  | Effectiv     | e Global, co        | orr. for IAM a | and snadings   |
| DITT          | HOr I              | Horizontal dif | ruse irradiat   | ion     |         | EArray   | Effectiv     | e energy at         | the output     | of the array   |
| T_A           | mb                 | Famb.          |                 |         |         | E_User   | Energy       | supplied to         | the user       |                |
| Glob          | olnc (             | Global incider | nt in coll. pla | ne      |         | E_Solar  | Energy       | Energy from the sun |                |                |
|               |                    |                |                 |         |         | EUnused  | Unused       | l energy (ba        | ttery full, no | grid injection |
|               |                    |                |                 |         |         | EFrGrid  | Energy       | from the gr         | id             |                |





| PVSYST V6.86                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                         |                                                                  |                                              | 21/04/20                                                         | Page 8/8                     |
|------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                          |                                        | Grid-Conne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cted Syste                                                                                              | m: P50 - P90                                                     | evaluation                                   |                                                                  |                              |
| Proiect :                                                                                |                                        | Taman Midał                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n (NEM)                                                                                                 |                                                                  |                                              |                                                                  |                              |
| Simulation var                                                                           | iant :                                 | SELCO - wor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | king couple (                                                                                           | ôkw)                                                             |                                              |                                                                  |                              |
| Main system pa                                                                           | rameters                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | System type                                                                                             | Sheds on ground                                                  | ł                                            |                                                                  |                              |
| Near Shadings<br>PV Field Orientat<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                    | L<br>Daily househ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | inear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>old consumers                             | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the | azimu<br>Pno<br>Pnom tot<br>Pno<br>year Glob | h 0°<br>m 320 Wp<br>al <b>6.40 kV</b><br>m 5.00 kV<br>al 2510 kV | <b>Vp</b><br>V ac<br>Vh/year |
| Evaluation of th                                                                         | e Produc                               | tion probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | forecast                                                                                                |                                                                  |                                              |                                                                  |                              |
| The probability di                                                                       | istribution                            | of the system pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oduction forecasi                                                                                       | t for different years                                            | is mainly depen                              | dent                                                             |                              |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia               | ce<br>on<br>ability                    | Year devia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kind<br>ation from aver.<br>Variance                                                                    | MeteoNorm 7.2 st<br>Not defined<br>3 %<br>0.5 %                  | ation<br>Ye                                  | ar 1995                                                          |                              |
| The probability di<br>Specified Deviatio                                                 | istribution<br>on P<br>Soi<br>(meteo + | variance is also o<br>V module modell<br>Inverter efficie<br>ling and mismatc<br>Degrada<br>system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | depending on so<br>ing/parameters<br>ncy uncertainty<br>h uncertainties<br>tion uncertainty<br>Variance | me system parame<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 %    | ters uncertaintie                            | es<br>1)                                                         |                              |
| Annual productio                                                                         | n probabil                             | ity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Variability                                                                                             | 0.00 MWh                                                         | (quadratic sur                               | ')                                                               |                              |
|                                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P50<br>P90<br>P95                                                                                       | 0.00 MWh<br>0.00 MWh<br>0.00 MWh                                 |                                              |                                                                  |                              |
|                                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Probability                                                                                             | distribution                                                     |                                              |                                                                  |                              |
|                                                                                          | Probability                            | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>0.00<br>0.05<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | X axis: no data fo<br>Verse avet<br>0.2 0.4<br>E_Grid sy                                                | or the extremities definition                                    | on !                                         | <b>1</b> .0                                                      |                              |

| PVSYST V6.86                                                                                                                                                                                  |                                                                                                                 |                                                                                                                                                      | 21/04/20 Page 1/8                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| G                                                                                                                                                                                             | Grid-Connected System                                                                                           | n: Simulation parameters                                                                                                                             | 6                                                                                  |
| Project :                                                                                                                                                                                     | Taman Midah (NEM)                                                                                               |                                                                                                                                                      |                                                                                    |
| Geographical Site                                                                                                                                                                             | Kuala Lumpur/Subang                                                                                             | Countr                                                                                                                                               | y <b>Malaysia</b>                                                                  |
| Situation                                                                                                                                                                                     | Latitude                                                                                                        | 3.12° N Longitud                                                                                                                                     | le 101.55° E                                                                       |
| Time defined as                                                                                                                                                                               | Legal Time                                                                                                      | Time zone UT+8 Altitud                                                                                                                               | le 17 m                                                                            |
| Meteo data:                                                                                                                                                                                   | Kuala Lumpur/Subang                                                                                             | MeteoNorm 7.2 station - Syntheti                                                                                                                     | с                                                                                  |
| Simulation variant :                                                                                                                                                                          | SELCO - Small family - 6kv                                                                                      | V                                                                                                                                                    |                                                                                    |
|                                                                                                                                                                                               | Simulation date                                                                                                 | 21/04/20 17h25                                                                                                                                       |                                                                                    |
| Simulation parameters                                                                                                                                                                         | System type                                                                                                     | Sheds on ground                                                                                                                                      |                                                                                    |
| Collector Plane Orientation                                                                                                                                                                   | on Tilt                                                                                                         | 5° Azimut                                                                                                                                            | h 0°                                                                               |
| Models used                                                                                                                                                                                   | Transposition                                                                                                   | Perez Diffus                                                                                                                                         | e Perez, Meteonorm                                                                 |
| Horizon                                                                                                                                                                                       | Free Horizon                                                                                                    |                                                                                                                                                      |                                                                                    |
| Near Shadings                                                                                                                                                                                 | Linear shadings                                                                                                 |                                                                                                                                                      |                                                                                    |
| Storage                                                                                                                                                                                       | Kind<br>Charging strategy                                                                                       | Self-consumption, No grid reinjecti<br>When excess solar power is availa                                                                             | on<br>Ible                                                                         |
|                                                                                                                                                                                               | Discharging strategy                                                                                            | As soon as power is needed                                                                                                                           |                                                                                    |
| User's needs :                                                                                                                                                                                | Daily household consumers average                                                                               | Constant over the year<br>19.4 kWh/Day                                                                                                               |                                                                                    |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristic<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>S Nb. modules<br>Nominal (STC)<br>ics (50°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>10 modules In paralle<br>20 Unit Nom. Powe<br>6.40 kWp At operating cond<br>336 V I mp<br>38.8 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>d. 5.75 kWp (50°C)<br>p 17 A<br>a 34 4 m <sup>2</sup> |
| Inverter<br>Original PVsyst database<br>Characteristics                                                                                                                                       | Model<br>Model<br>Manufacturer<br>Operating Voltage                                                             | SUN2000L-5KTL<br>Huawei Technologies<br>90-500 V Unit Nom. Powe<br>Max. power (=>40°C                                                                | er 5.00 kWac<br>C) 5.50 kWac                                                       |
| Inverter pack                                                                                                                                                                                 | Nb. of inverters                                                                                                | 2 MPPT 50 % Total Powe<br>Pnom rati                                                                                                                  | er 5.0 kvvac<br>jo 1.28                                                            |
| Battery                                                                                                                                                                                       | Model                                                                                                           | PVX-2120L                                                                                                                                            |                                                                                    |
| Battery Pack Characteristic                                                                                                                                                                   | Manufacturer<br>s Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                                | Concorde<br>2 in series x 4 in parallel<br>24 V Nominal Capacit<br>50.0 % Stored energy<br>Fixed (20°C)                                              | ty 784 Ah (C10)<br>Iy 9.4 kWh                                                      |
| Battery input charger                                                                                                                                                                         | Model                                                                                                           | Generic                                                                                                                                              |                                                                                    |
| Battery to Grid inverter                                                                                                                                                                      | Max. charging power<br>Model                                                                                    | 5.4 kWdc Max./ Euro efficienc<br>Generic                                                                                                             | y 97.0/95.0 %                                                                      |
| -                                                                                                                                                                                             | Max. discharging power                                                                                          | 3.1 kWac Max./ Euro efficienc                                                                                                                        | y 97.0/95.0 %                                                                      |
|                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                                      |                                                                                    |
| PV Array loss factors                                                                                                                                                                         |                                                                                                                 | 20.0 \/\/m2k                                                                                                                                         | d) 00///m2k / m/a                                                                  |
| Wiring Ohmic Loss                                                                                                                                                                             | UC (CONST)<br>Global array res                                                                                  | 332 mOhm Loss Fractio                                                                                                                                | 1, 0.0  w/m-rc / m/s                                                               |
|                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                                      |                                                                                    |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                                    | Page 2/8 |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|-------------------------------------------------------------|----------|--|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                                           |          |  |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | tion -0.8 %<br>tion 1.0 % at MPP<br>tion 0.10 %<br>am. 0.05 |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |



| PVSYST V6.86                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                    | 21/                                                            | 04/20 Page 4                                                               | 1/8 |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-----|--|--|--|--|
| (                                                                                           | Grid-Connected S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | System                                                  | n: Detailed Us                                                     | er's needs                                                     | 1                                                                          |     |  |  |  |  |
| Brojoct -                                                                                   | Taman Midah (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>.</i>                                                |                                                                    |                                                                |                                                                            |     |  |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vi)<br>                                                 |                                                                    |                                                                |                                                                            |     |  |  |  |  |
| Simulation variant :                                                                        | SELCO - Small fam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ily - 6kw                                               | 1                                                                  |                                                                |                                                                            |     |  |  |  |  |
| Main system parameters                                                                      | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | em type                                                 | Sheds on ground                                                    |                                                                |                                                                            |     |  |  |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear s<br>Nb. of r<br>Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the y | azimuth (<br>Pnom 2<br>Pnom total (<br>Pnom 8<br>year Global 7 | h 0°<br>m 320 Wp<br>al <b>6.40 kWp</b><br>m 5.00 kW ac<br>al 7066 kWh/year |     |  |  |  |  |
| Daily household consumers, Constant over the year, average = 19.4 kWh/day                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                    |                                                                |                                                                            |     |  |  |  |  |
|                                                                                             | Use 5 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number                                                  | Power                                                              | Use                                                            | Enerav                                                                     |     |  |  |  |  |
| Lamps (LED or fluo)                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                      | 18 W/lamp                                                          | 5 h/day                                                        | 2340 Wh/da                                                                 | av  |  |  |  |  |
| TV / PC / Mobile                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                      | 70 W/app                                                           | 9 h/day                                                        | 1260 Wh/da                                                                 | av  |  |  |  |  |
| Iron                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       | 1200 W/app                                                         | 1 h/day                                                        | 1200 Wh/da                                                                 | ay  |  |  |  |  |
| Fridge / Deep-freeze                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       |                                                                    | 24 Wh/day                                                      | 3000 Wh/da                                                                 | ay  |  |  |  |  |
| Dish- & Cloth-washers                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       |                                                                    | 1 Wh/day                                                       | 500 Wh/da                                                                  | ay  |  |  |  |  |
| Instant water heater                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       | 2000 W tot                                                         | 2 h/day                                                        | 3000 Wh/da                                                                 | ay  |  |  |  |  |
| Aircond                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                       | 750 W tot                                                          | 7 h/day                                                        | 15750 Wh/da                                                                | ay  |  |  |  |  |
| Stand-by consumers                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                    | 24 h/day                                                       | 24 Wh/da                                                                   | ау  |  |  |  |  |
| Total daily energy                                                                          | Harding of the second s | Hourly<br>6 9                                           | <b>v profile</b>                                                   | 21 24                                                          | 27074 Wh/da                                                                | зу  |  |  |  |  |

| PVSYST V6.86                                                                              |                             |                                                                                          |                                                                            | 2                                             | 21/04/20                                             | Page 5/8                     |
|-------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|------------------------------|
| Project :<br>Simulation vari                                                              | iant :                      | Grid-Connected S<br>Taman Midah (NEM)<br>SELCO - Small family - 6kw                      | ystem: Main results                                                        | 5                                             |                                                      |                              |
| Main system parameter                                                                     |                             | System type                                                                              | Sheds on ground                                                            |                                               |                                                      |                              |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                         | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Daily household consumers | 5°<br>JAM6-72-320/SI<br>20 Pn<br>SUN2000L-5KTL<br>Constant over the year   | azimuth<br>Pnom<br>om total<br>Pnom<br>Global | 0°<br>320 Wp<br><b>6.40 kV</b><br>5.00 kW<br>7066 kV | <b>/p</b><br>/ ac<br>Vh/year |
| Main simulation<br>System Productio<br>Battery ageing (S                                  | results<br>on<br>tate of We | Produced Energy<br>Performance Ratio PR<br>ear) Cycles SOW<br>Battery lifetime           | <b>8.41 MWh/year</b> Speci<br>32.00 % Solar Fra<br>78.4% Stat<br>4.6 years | ific prod.<br>ction SF<br>tic SOW             | 1314 k\<br>46.26 %<br>80.0%                          | Wh/kWp/year                  |







## SELCO - Small family - 6kw Balances and main results

|               | GlobHor                                      | DiffHor        | T_Amb           | GlobInc | GlobEff        | EArray  | E_User              | E_Solar      | EUnused     | EFrGrid      |
|---------------|----------------------------------------------|----------------|-----------------|---------|----------------|---------|---------------------|--------------|-------------|--------------|
|               | kWh/m <sup>2</sup>                           | kWh/m²         | °C              | kWh/m²  | kWh/m²         | MWh     | MWh                 | MWh          | MWh         | MWh          |
| January       | 133.0                                        | 82.20          | 28.10           | 136.3   | 131.2          | 0.726   | 0.623               | 0.292        | 0.373       | 0.330        |
| February      | 134.6                                        | 67.90          | 27.70           | 137.4   | 132.8          | 0.737   | 0.541               | 0.262        | 0.420       | 0.280        |
| March         | 149.8                                        | 88.20          | 28.00           | 150.3   | 144.9          | 0.804   | 0.596               | 0.284        | 0.449       | 0.312        |
| April         | 140.3                                        | 70.50          | 27.70           | 138.8   | 133.9          | 0.742   | 0.569               | 0.278        | 0.415       | 0.291        |
| Мау           | 140.3                                        | 78.60          | 28.60           | 136.9   | 131.7          | 0.734   | 0.623               | 0.289        | 0.382       | 0.333        |
| June          | 132.0                                        | 77.80          | 27.80           | 128.3   | 123.5          | 0.691   | 0.569               | 0.252        | 0.373       | 0.316        |
| July          | 134.4                                        | 87.20          | 27.80           | 131.1   | 125.8          | 0.710   | 0.596               | 0.284        | 0.375       | 0.311        |
| August        | 132.2                                        | 87.20          | 27.80           | 130.1   | 125.2          | 0.700   | 0.623               | 0.279        | 0.361       | 0.343        |
| September     | 129.2                                        | 79.00          | 27.10           | 128.8   | 124.0          | 0.691   | 0.541               | 0.250        | 0.371       | 0.291        |
| October       | 138.8                                        | 82.60          | 27.40           | 140.4   | 135.5          | 0.754   | 0.623               | 0.285        | 0.419       | 0.338        |
| November      | 117.6                                        | 79.20          | 26.70           | 119.8   | 115.4          | 0.648   | 0.596               | 0.253        | 0.339       | 0.342        |
| December      | 115.0                                        | 73.20          | 26.29           | 118.1   | 113.6          | 0.640   | 0.569               | 0.259        | 0.324       | 0.310        |
| Year          | 1597.2                                       | 953.59         | 27.58           | 1596.2  | 1537.5         | 8.575   | 7.066               | 3.269        | 4.601       | 3.798        |
|               | •                                            | •              |                 |         |                |         |                     |              |             | <b>-</b> -   |
| Legends: Glob | Hor                                          | Horizontal glo | obal irradiatio | on      |                | GlobEff | Effectiv            | e Global, co | rr. for IAM | and shadings |
| Diff          | lor I                                        | Horizontal dif | fuse irradiat   | ion     |                | EArray  | Effectiv            | e energy at  | the output  | of the array |
| T_A           | mb ¯                                         | Γamb.          |                 |         |                | E_User  | Energy              | supplied to  | the user    |              |
| Glob          | lnc (                                        | Global incider | nt in coll. pla | ne      |                | E_Solar | Energy from the sun |              |             |              |
|               | EUnused Unused energy (battery full, no grid |                |                 |         | grid injection |         |                     |              |             |              |
|               |                                              |                |                 |         |                | EFrGrid | Energy              | from the gr  | id          |              |





| PVSYST V6.86                                                                             |                           |                                                                                                          |                                                                                    |                                                                    |                                                  | 21/04/20                                                         | Page 8/8                     |
|------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                          |                           | Grid-Connec                                                                                              | ted Syster                                                                         | m: P50 - P90 e                                                     | evaluation                                       |                                                                  |                              |
| Project ·                                                                                |                           | Taman Midah                                                                                              | (NFM)                                                                              |                                                                    |                                                  |                                                                  |                              |
| Simulation var                                                                           | iant :                    | SELCO - Small                                                                                            | family - 6kw                                                                       | 1                                                                  |                                                  |                                                                  |                              |
| Main system pa                                                                           | rameters                  |                                                                                                          | System type                                                                        | Sheds on ground                                                    |                                                  |                                                                  |                              |
| Near Shadings<br>PV Field Orientat<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                       | Lir<br>N<br>Daily househo                                                                                | hear shadings<br>tilt<br>Model<br>b. of modules<br>Model<br>Id consumers           | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the y | azimut<br>Pnoi<br>Pnom tota<br>Pnoi<br>ear Globa | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kV<br>al 7066 kV | <b>/p</b><br>/ ac<br>Vh/year |
| Evaluation of th                                                                         | e Produc                  | tion probability f                                                                                       | orecast                                                                            |                                                                    |                                                  |                                                                  |                              |
| The probability di                                                                       | stribution                | of the system prod                                                                                       | uction forecast                                                                    | for different years is                                             | mainly depen                                     | dent                                                             |                              |
| Meteo data source<br>Meteo data<br>Specified Deviation<br>Year-to-year varia             | ce<br>on<br>ability       | Year deviat                                                                                              | Kind<br>ion from aver.<br>Variance                                                 | MeteoNorm 7.2 sta<br>Not defined<br>3 %<br>0.5 %                   | tion<br>Yea                                      | ar 1995                                                          |                              |
| The probability di<br>Specified Deviatio                                                 | stribution<br>on F<br>Soi | variance is also de<br>V module modellin<br>Inverter efficiend<br>iling and mismatch<br>Degradatio       | pending on so<br>g/parameters<br>cy uncertainty<br>uncertainties<br>on uncertainty | me system paramete<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %             | ers uncertaintie                                 | S                                                                |                              |
| Global variability                                                                       | (meteo +                  | system)                                                                                                  | Variance                                                                           | 1.9 %                                                              | (quadratic sun                                   | 1)                                                               |                              |
| Annual production                                                                        | n probabil                | lity                                                                                                     | Variability<br>P50<br>P90<br>P95                                                   | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                       |                                                  |                                                                  |                              |
|                                                                                          |                           |                                                                                                          | Probability                                                                        | distribution                                                       |                                                  |                                                                  |                              |
|                                                                                          | Probability               | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>50 = Coo kWh<br>0.00<br> | X axis: no data fo                                                                 | or the extremities definition                                      | <br><br><br>0.8                                  | 1.0                                                              |                              |

| PVSYST V6.86                                                                                                                                                                                  |                                                                                                              |                                                                                                                                                    | 21/04/20 Page 1/8                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| G                                                                                                                                                                                             | rid-Connected System                                                                                         | n: Simulation parameter                                                                                                                            | S                                                                                    |
| Project :                                                                                                                                                                                     | Taman Midah (NEM)                                                                                            |                                                                                                                                                    |                                                                                      |
| Geographical Site                                                                                                                                                                             | Kuala Lumpur/Subang                                                                                          | Count                                                                                                                                              | ry <b>Malaysia</b>                                                                   |
| Situation                                                                                                                                                                                     | Latitude                                                                                                     | 3.12° N Longitud                                                                                                                                   | de 101.55° E                                                                         |
| Time defined as                                                                                                                                                                               | Legal Time                                                                                                   | Time zone UT+8 Altitud                                                                                                                             | de 17 m                                                                              |
| Meteo data:                                                                                                                                                                                   | Kuala Lumpur/Subang                                                                                          | MeteoNorm 7.2 station - Synthet                                                                                                                    | ic                                                                                   |
| Simulation variant :                                                                                                                                                                          | SELCO - Small family - 6kv                                                                                   | V                                                                                                                                                  |                                                                                      |
|                                                                                                                                                                                               | Simulation date                                                                                              | 21/04/20 17h26                                                                                                                                     |                                                                                      |
| Simulation parameters                                                                                                                                                                         | System type                                                                                                  | Sheds on ground                                                                                                                                    |                                                                                      |
| Collector Plane Orientation                                                                                                                                                                   | n Tilt                                                                                                       | 5° Azimu                                                                                                                                           | th 0°                                                                                |
| Models used                                                                                                                                                                                   | Transposition                                                                                                | Perez Diffus                                                                                                                                       | se Perez, Meteonorm                                                                  |
| Horizon                                                                                                                                                                                       | Free Horizon                                                                                                 |                                                                                                                                                    |                                                                                      |
| Near Shadings                                                                                                                                                                                 | Linear shadings                                                                                              |                                                                                                                                                    |                                                                                      |
| Storage                                                                                                                                                                                       | Kind<br>Charging strategy<br>Discharging strategy                                                            | Self-consumption, No grid reinject<br>When excess solar power is availa<br>As soon as power is needed                                              | ion<br>able                                                                          |
| User's needs :                                                                                                                                                                                | Daily household consumers average                                                                            | Constant over the year<br>9.9 kWh/Day                                                                                                              |                                                                                      |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristic<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>cs (50°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>10 modules In parall<br>20 Unit Nom. Powe<br>6.40 kWp At operating com<br>336 V I mp<br>38.8 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>d. 5.75 kWp (50°C)<br>op 17 A<br>ea 34.4 m <sup>2</sup> |
| Inverter<br>Original PVsyst database<br>Characteristics                                                                                                                                       | Model<br>Manufacturer<br>Operating Voltage                                                                   | SUN2000L-5KTL<br>Huawei Technologies<br>90-500 V Unit Nom. Pow<br>Max. power (=>40°<br>2 * MPPT 50 % Total Pow                                     | er 5.00 kWac<br>C) 5.50 kWac<br>er 5.0 kWac                                          |
|                                                                                                                                                                                               | IND. OF INVERTERS                                                                                            | Pnom rat                                                                                                                                           | io 1.28                                                                              |
| Battery                                                                                                                                                                                       | Model                                                                                                        | PVX-2120L                                                                                                                                          |                                                                                      |
| Battery Pack Characteristic                                                                                                                                                                   | Manufacturer<br>s Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                             | Concorde<br>2 in series x 4 in parallel<br>24 V Nominal Capaci<br>50.0 % Stored energy<br>Fixed (20°C)                                             | ity 784 Ah (C10)<br>gy 9.4 kWh                                                       |
| Battery input charger                                                                                                                                                                         | Model                                                                                                        | Generic                                                                                                                                            |                                                                                      |
| Battery to Grid inverter                                                                                                                                                                      | Max. charging power<br>Model                                                                                 | 5.4 kWdc Max./ Euro efficienc<br>Generic                                                                                                           | cy 97.0/95.0 %                                                                       |
|                                                                                                                                                                                               | Max. discharging power                                                                                       | 3.1 kWac Max./ Euro efficience                                                                                                                     | cy 97.0/95.0 %                                                                       |
| BV Array loss fasters                                                                                                                                                                         |                                                                                                              |                                                                                                                                                    |                                                                                      |
| Thermal Loss factor                                                                                                                                                                           | Uc (const)                                                                                                   | 20.0 W/m²K LIv (win                                                                                                                                | d) 0.0 W/m²K / m/s                                                                   |
| Wiring Ohmic Loss                                                                                                                                                                             | Global array res.                                                                                            | 332 mOhm Loss Fraction                                                                                                                             | on 1.5 % at STC                                                                      |
|                                                                                                                                                                                               |                                                                                                              |                                                                                                                                                    |                                                                                      |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                                    | Page 2/8 |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|-------------------------------------------------------------|----------|--|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                                           |          |  |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | tion -0.8 %<br>tion 1.0 % at MPP<br>tion 0.10 %<br>am. 0.05 |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |



| PVSYST V6.86                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                      | 21          | /04/20 | Page 4/8    |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------------|--|--|--|
| 6                                                                                           | rid-Connected 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Svetor                                                  | n: Detailed Lls                                                                                                                      | er's needs  |        |             |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jysten                                                  | I. Detalled 03                                                                                                                       | el 3 lleeus |        |             |  |  |  |
| Project :                                                                                   | Taman Midah (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Л)                                                      |                                                                                                                                      |             |        |             |  |  |  |
| Simulation variant :                                                                        | SELCO - Small fami                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ily - 6kw                                               | 1                                                                                                                                    |             |        |             |  |  |  |
| Main system parameters                                                                      | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | em type                                                 | Sheds on ground                                                                                                                      |             |        |             |  |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear s<br>Nb. of r<br>Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers | 5°azimuth0°JAM6-72-320/SIPnom320 Wp20Pnom total <b>6.40 kWp</b> SUN2000L-5KTLPnom5.00 kW acConstant over the yearGlobal3625 kWh/year |             |        |             |  |  |  |
| Daily household consume                                                                     | rs, Constant over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e year, av                                              | verage = 9.9 kWh/d                                                                                                                   | lay         |        |             |  |  |  |
| Annual values                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                      |             |        |             |  |  |  |
|                                                                                             | Use 2 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number                                                  | Power                                                                                                                                | Use         |        | Energy      |  |  |  |
| Lamps (LED or fluo)                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                      | 18 W/lamp                                                                                                                            | 5 h/da      | y 2    | 2340 Wh/day |  |  |  |
| TV / PC / Mobile                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                       | 70 W/app                                                                                                                             | 14 h/da     | y 1    | 1960 Wh/day |  |  |  |
| Iron                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       | 1200 W/app                                                                                                                           | 1 h/da      | y 1    | 200 Wh/day  |  |  |  |
| Fridge / Deep-freeze                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       |                                                                                                                                      | 24 Wh/da    | y 3    | 3000 Wh/day |  |  |  |
| Dish- & Cloth-washers                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       |                                                                                                                                      | 1 Wh/da     | y      | 500 Wh/day  |  |  |  |
| Instant water heater                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                       | 2000 W tot                                                                                                                           | 2 h/da      | y 3    | 3000 Wh/day |  |  |  |
| Aircond                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                       | 750 W tot                                                                                                                            | 10 h/da     | y 22   | 2500 Wh/day |  |  |  |
| Stand-by consumers                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                      | 24 h/da     | у      | 24 Wh/day   |  |  |  |
| Total daily energy                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                      |             | 34     | 1524 Wh/day |  |  |  |
|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hourly                                                  | v profile                                                                                                                            |             |        |             |  |  |  |
|                                                                                             | Second and the second | 6 9                                                     | 12 15 18                                                                                                                             | 21 24       |        |             |  |  |  |

| PVSYST V6.86          |            |                            |                             | 21/04/20              | Page 5/8    |
|-----------------------|------------|----------------------------|-----------------------------|-----------------------|-------------|
|                       |            | Grid-Connected S           | ystem: Main results         |                       |             |
| Project :             |            | Taman Midah (NEM)          |                             |                       |             |
| Simulation vari       | iant :     | SELCO - Small family - 6kw | I                           |                       |             |
| Main system parameter |            | System type                | Sheds on ground             |                       |             |
| Near Shadings         |            | Linear shadings            |                             |                       |             |
| PV Field Orientati    | ion        | tilt                       | 5° azimu                    | th 0°                 |             |
| PV modules            |            | Model                      | JAM6-72-320/SI Pnc          | m 320 W               | р           |
| PV Array              |            | Nb. of modules             | 20 Pnom to                  | tal <b>6.40 k</b> '   | Wp          |
| Inverter              |            | Model                      | SUN2000L-5KTL Pnc           | m 5.00 k <sup>v</sup> | N ac        |
| User's needs          |            | Daily household consumers  | Constant over the year Glob | oal 3625 k            | Wh/year     |
| Main simulation       | results    |                            |                             |                       |             |
| System Production     | on         | Produced Energy            | 8.41 MWh/year Specific pro  | d. 1314 k             | Wh/kWp/year |
|                       |            | Performance Ratio PR       | 21.25 % Solar Fraction S    | SF 59.88 °            | %           |
| Battery ageing (S     | tate of We | ear) Cycles SOW            | 88.5% Static SC             | W 80.0%               |             |
|                       |            | Battery lifetime           | 5.0 years                   |                       |             |







## SELCO - Small family - 6kw Balances and main results

|               | GlobHor            | DiffHor        | T_Amb           | GlobInc | GlobEff | EArray  | E_User   | E_Solar      | EUnused        | EFrGrid        |
|---------------|--------------------|----------------|-----------------|---------|---------|---------|----------|--------------|----------------|----------------|
|               | kWh/m <sup>2</sup> | kWh/m²         | °C              | kWh/m²  | kWh/m²  | MWh     | MWh      | MWh          | MWh            | MWh            |
| January       | 133.0              | 82.20          | 28.10           | 136.3   | 131.2   | 0.726   | 0.345    | 0.207        | 0.458          | 0.139          |
| February      | 134.6              | 67.90          | 27.70           | 137.4   | 132.8   | 0.737   | 0.276    | 0.184        | 0.506          | 0.092          |
| March         | 149.8              | 88.20          | 28.00           | 150.3   | 144.9   | 0.804   | 0.276    | 0.175        | 0.578          | 0.101          |
| April         | 140.3              | 70.50          | 27.70           | 138.8   | 133.9   | 0.742   | 0.311    | 0.188        | 0.516          | 0.123          |
| Мау           | 140.3              | 78.60          | 28.60           | 136.9   | 131.7   | 0.734   | 0.311    | 0.177        | 0.494          | 0.134          |
| June          | 132.0              | 77.80          | 27.80           | 128.3   | 123.5   | 0.691   | 0.276    | 0.170        | 0.471          | 0.107          |
| July          | 134.4              | 87.20          | 27.80           | 131.1   | 125.8   | 0.710   | 0.345    | 0.203        | 0.465          | 0.142          |
| August        | 132.2              | 87.20          | 27.80           | 130.1   | 125.2   | 0.700   | 0.276    | 0.161        | 0.479          | 0.115          |
| September     | 129.2              | 79.00          | 27.10           | 128.8   | 124.0   | 0.691   | 0.276    | 0.159        | 0.482          | 0.117          |
| October       | 138.8              | 82.60          | 27.40           | 140.4   | 135.5   | 0.754   | 0.345    | 0.215        | 0.486          | 0.130          |
| November      | 117.6              | 79.20          | 26.70           | 119.8   | 115.4   | 0.648   | 0.276    | 0.146        | 0.456          | 0.130          |
| December      | 115.0              | 73.20          | 26.29           | 118.1   | 113.6   | 0.640   | 0.311    | 0.186        | 0.414          | 0.125          |
| Year          | 1597.2             | 953.59         | 27.58           | 1596.2  | 1537.5  | 8.575   | 3.625    | 2.171        | 5.806          | 1.454          |
| Legends: Glob | Hor I              | Horizontal glo | bal irradiatio  | on      |         | GlobEff | Effectiv | e Global, co | orr. for IAM   | and shadings   |
| Diff          | Hor I              | Horizontal dif | fuse irradiati  | on      |         | EArray  | Effectiv | e energy at  | the output     | of the array   |
| T_A           | mb <sup>-</sup>    | T amb.         |                 |         |         | E_User  | Energy   | supplied to  | the user       |                |
| Glob          | Inc                | Global incider | nt in coll. pla | ne      |         | E_Solar | Energy   | from the su  | un             |                |
|               |                    |                |                 |         |         | EUnused | Unused   | l energy (ba | ttery full, no | grid injection |
|               |                    |                |                 |         |         | EFrGrid | Energy   | from the gr  | id             |                |





| PVSYST V6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                                                                                          |                                                         |                                                                           |                                                   | 21/04/20                                                         | Page 8/8                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------|------------------------------|--|--|
| Grid-Connected System: P50 - P90 evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                                                                                          |                                                         |                                                                           |                                                   |                                                                  |                              |  |  |
| Project ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | Taman Midah                                                                              | (NFM)                                                   |                                                                           |                                                   |                                                                  |                              |  |  |
| Simulation variant :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | SELCO - Small family - 6kw                                                               |                                                         |                                                                           |                                                   |                                                                  |                              |  |  |
| Main system parameters System type Sheds on ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                                                                          |                                                         |                                                                           |                                                   |                                                                  |                              |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>Daily household consumers |                                                         | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the y        | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>year Globa | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kV<br>al 3625 kV | <b>Vp</b><br>√ ac<br>Vh/year |  |  |
| Evaluation of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Produc                         | tion probability                                                                         | forecast                                                |                                                                           |                                                   |                                                                  |                              |  |  |
| The probability dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | stribution                       | of the system pro                                                                        | duction forecast                                        | for different years is                                                    | s mainly depen                                    | dent                                                             |                              |  |  |
| on the meteo data<br>Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a used for<br>e<br>on<br>ability | r the simulation, ai<br>Year devia                                                       | nd depends on t<br>Kind<br>ation from aver.<br>Variance | the following choices<br>MeteoNorm 7.2 sta<br>Not defined<br>3 %<br>0.5 % | s:<br>ation<br>Yea                                | ar 1995                                                          |                              |  |  |
| The probability distribution variance is also depending on some system parameters uncertainties<br>Specified Deviation PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soiling and mismatch uncertainties 1.0 %<br>Degradation uncertainty 1.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                                                                          |                                                         |                                                                           |                                                   |                                                                  |                              |  |  |
| Global variability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (meteo +                         | system)                                                                                  | Variance                                                | 1.9 %                                                                     | (quadratic sun                                    | 1)                                                               |                              |  |  |
| Annual production probability Variability<br>P50<br>P90<br>P95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                                             |                                                         |                                                                           |                                                   |                                                                  |                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                          | Probability                                             | distribution                                                              |                                                   |                                                                  |                              |  |  |
| $\begin{array}{c} 0.50 \\ 0.45 \\ 0.40 \\ 0.35 \\ 0.30 \\ 0.25 \\ 0.20 \\ 0.20 \\ 0.15 \\ 0.10 \\ 0.05 \\ 0.00 \\ 0.26 \\ 0.15 \\ 0.10 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.00 \\ 0.28 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.$ |                                  |                                                                                          |                                                         |                                                                           |                                                   |                                                                  |                              |  |  |

|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                      | 1 1                                                                                 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|
| PVSYST V6.86                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                      | 21/04/20 Page 1/8                                                                   |  |  |  |  |  |
| Grid-Connected System: Simulation parameters                                                                                                                                                       |                                                                                                         |                                                                                                                                                      |                                                                                     |  |  |  |  |  |
| Project : Tam                                                                                                                                                                                      | an Midah (NEM)                                                                                          |                                                                                                                                                      |                                                                                     |  |  |  |  |  |
| Geographical Site                                                                                                                                                                                  | Kuala Lumpur/Subang                                                                                     | Count                                                                                                                                                | ry <b>Malaysia</b>                                                                  |  |  |  |  |  |
| Situation                                                                                                                                                                                          | Latitude                                                                                                | 3 12° N Longitur                                                                                                                                     | le 101.55° E                                                                        |  |  |  |  |  |
| Time defined as                                                                                                                                                                                    | Legal Time                                                                                              | Time zone UT+8 Altitud                                                                                                                               | de 17 m                                                                             |  |  |  |  |  |
| Mater data                                                                                                                                                                                         |                                                                                                         | 0.20<br>MotooNorm 7.2 station - Syntheti                                                                                                             |                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                      |                                                                                     |  |  |  |  |  |
| Simulation variant : SELC                                                                                                                                                                          | CO - small family - 9kw                                                                                 | ,                                                                                                                                                    |                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                    | Simulation date                                                                                         | 21/04/20 17h27                                                                                                                                       |                                                                                     |  |  |  |  |  |
| Simulation parameters                                                                                                                                                                              | System type                                                                                             | Sheds on ground                                                                                                                                      |                                                                                     |  |  |  |  |  |
| <b>Collector Plane Orientation</b>                                                                                                                                                                 | Tilt                                                                                                    | 5° Azimut                                                                                                                                            | th 0°                                                                               |  |  |  |  |  |
| Models used                                                                                                                                                                                        | Transposition                                                                                           | Perez Diffus                                                                                                                                         | se Perez, Meteonorm                                                                 |  |  |  |  |  |
| Horizon                                                                                                                                                                                            | Free Horizon                                                                                            |                                                                                                                                                      |                                                                                     |  |  |  |  |  |
| Near Shadings                                                                                                                                                                                      | Linear shadings                                                                                         |                                                                                                                                                      |                                                                                     |  |  |  |  |  |
| Storage                                                                                                                                                                                            | Kind                                                                                                    | Self-consumption, No grid reinject                                                                                                                   | ion                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                    | Charging strategy<br>Discharging strategy                                                               | When excess solar power is availa<br>As soon as power is needed                                                                                      | able                                                                                |  |  |  |  |  |
| User's needs : Da                                                                                                                                                                                  | ily household consumers<br>average                                                                      | Constant over the year<br>19.4 kWh/Day                                                                                                               |                                                                                     |  |  |  |  |  |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristics (50<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>0°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>14 modules In paralle<br>28 Unit Nom. Powe<br>8.96 kWp At operating cond<br>470 V I mp<br>54.3 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>d. 8.05 kWp (50°C)<br>p 17 A<br>ea 48.2 m <sup>2</sup> |  |  |  |  |  |
| Inverter<br>Custom parameters definition<br>Characteristics                                                                                                                                        | Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters                                          | SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Unit Nom. Power<br>Max. power (=>40°C<br>2 * MPPT 50 % Total Power                                 | er 8.00 kWac<br>C) 8.80 kWac<br>er 8.0 kWac                                         |  |  |  |  |  |
| inventer pack                                                                                                                                                                                      | ND. OF Inverters                                                                                        | Pnom rat                                                                                                                                             | io 1.12                                                                             |  |  |  |  |  |
| Battery                                                                                                                                                                                            | Model                                                                                                   | PVX-2120L                                                                                                                                            |                                                                                     |  |  |  |  |  |
| Battery Pack Characteristics                                                                                                                                                                       | Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                          | Concorde<br>3 in series x 4 in parallel<br>36 V Nominal Capaci<br>50.0 % Stored energy<br>Fixed (20°C)                                               | ty 784 Ah (C10)<br>gy 14.1 kWh                                                      |  |  |  |  |  |
| Battery input charger                                                                                                                                                                              | Model                                                                                                   | Generic                                                                                                                                              |                                                                                     |  |  |  |  |  |
| Battery to Grid inverter                                                                                                                                                                           | Max. charging power<br>Model                                                                            | 7.5 kWdc Max./ Euro efficienc<br>Generic                                                                                                             | xy 97.0/95.0 %                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                    | Max. discharging power                                                                                  | 3.1 kWac Max./ Euro efficienc                                                                                                                        | y 97.0/95.0 %                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                      |                                                                                     |  |  |  |  |  |
| Thermal Loss factors                                                                                                                                                                               | Lie (const)                                                                                             | 20.0 \//m2k/                                                                                                                                         | d) 0.0 \//m2k / m/a                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                    | Global array res                                                                                        | 465 mOhm Loss Fractic                                                                                                                                | on 15% at STC                                                                       |  |  |  |  |  |
|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                      |                                                                                     |  |  |  |  |  |

| PVSYST V6.86                                                                                                                                                          |  |  |  |  | 21/04/20                                             | Page 2/8 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|------------------------------------------------------|----------|--|--|--|
| Grid-Connected System: Simulation parameters                                                                                                                          |  |  |  |  |                                                      |          |  |  |  |
| Module Quality LossLoss FractModule Mismatch LossesLoss FractStrings Mismatch IossLoss FractIncidence effect, ASHRAE parametrizationIAM = 1 - bo (1/cos i - 1)bo Para |  |  |  |  | on -0.8 %<br>on 1.0 % at MPP<br>on 0.10 %<br>n. 0.05 |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |  |                                                      |          |  |  |  |


| PVSYST V6.86                                                                                          |                        |            |                    | 21/                     | 04/20 Page  | e 4/8        |  |  |
|-------------------------------------------------------------------------------------------------------|------------------------|------------|--------------------|-------------------------|-------------|--------------|--|--|
| (                                                                                                     | Grid-Connected S       | System     | n: Detailed Us     | er's needs              | •           |              |  |  |
| Project ·                                                                                             | Taman Midah (NFN       | л)         |                    |                         |             |              |  |  |
| Simulation variant :                                                                                  |                        | ilv - Qkw  | ,                  |                         |             |              |  |  |
|                                                                                                       | SELCO - Sinaii Taini   | ily - Skw  |                    |                         |             |              |  |  |
| Main system parameters                                                                                | Syste                  | em type    | Sheds on ground    |                         |             |              |  |  |
| Near Shadings                                                                                         | Linear s               | hadings    | 5°                 | azimuth (               | ٥           |              |  |  |
| PV modules                                                                                            |                        | Model      | JAM6-72-320/SI     | Pnom 3                  | ,<br>320 Wp |              |  |  |
| PV Array                                                                                              | Nb. of I               | modules    | 28                 | Pnom total              | 3.96 kWp    |              |  |  |
| Inverter                                                                                              | Daily household cor    | Model      | SUN2000L-8KTL      | Pnom 8<br>(ear Global 7 | 3.00 kW ac  |              |  |  |
| Daily household consum                                                                                | ers, Constant over the | e year, av | verage = 19.4 kWh/ | /day                    |             |              |  |  |
|                                                                                                       |                        | Annua      | l values           |                         |             |              |  |  |
|                                                                                                       | Use 5 days a week      | Number     | Power              | Use                     | Energy      |              |  |  |
| Lamps (LED or fluo)                                                                                   |                        | 26         | 18 W/lamp          | 5 h/day                 | 2340 Wh     | /day         |  |  |
| TV / PC / Mobile                                                                                      |                        | 2          | 70 W/app           | 9 h/day                 | 1260 Wh     | /day         |  |  |
| Iron                                                                                                  |                        | 1          | 1200 W/app         | 1 h/day                 | 1200 Wh     | /day         |  |  |
| Fridge / Deep-freeze                                                                                  |                        |            |                    | 24 Wh/day               | 3000 Wh     | /day         |  |  |
| Disn- & Cloth-Washers                                                                                 |                        |            | 2000 W/ tot        | I Wh/day                | 500 Wh      | /day         |  |  |
| Aircond                                                                                               |                        |            | 2000 W tot         | 2 h/uay<br>7 h/day      | 15750 Wh    | /uay<br>/day |  |  |
| Stand-by consumers                                                                                    |                        | 5          | 750 W 101          | 24 h/day                | 24 Wh       | /day         |  |  |
| Total daily energy                                                                                    |                        |            |                    |                         | 27074 Wh    | /day         |  |  |
| Aircond3750 W tot7 h/day15750 Wh/dayStand-by consumers24 h/day24 Wh/dayTotal daily energy27074 Wh/day |                        |            |                    |                         |             |              |  |  |

| PVSYST V6.86                        |                            |                              | 21/04/20 Page 5/8    |  |  |  |  |  |
|-------------------------------------|----------------------------|------------------------------|----------------------|--|--|--|--|--|
| Grid-Connected System: Main results |                            |                              |                      |  |  |  |  |  |
| Project :                           | Taman Midah (NEM)          |                              |                      |  |  |  |  |  |
| Simulation variant :                | SELCO - small family - 9kw | 1                            |                      |  |  |  |  |  |
| Main system paramet                 | ers System type            | Sheds on ground              |                      |  |  |  |  |  |
| Near Shadings                       | Linear shadings            |                              |                      |  |  |  |  |  |
| PV Field Orientation                | tilt                       | 5° azimut                    | h O°                 |  |  |  |  |  |
| PV modules                          | Model                      | JAM6-72-320/SI Pnor          | m 320 Wp             |  |  |  |  |  |
| PV Array                            | Nb. of modules             | 28 Pnom tota                 | al <b>8.96 kWp</b>   |  |  |  |  |  |
| Inverter                            | Model                      | SUN2000L-8KTL Pnor           | m 8.00 kW ac         |  |  |  |  |  |
| User's needs                        | Daily household consumers  | Constant over the year Globa | al 7066 kWh/year     |  |  |  |  |  |
| Main simulation resul               | ts                         |                              |                      |  |  |  |  |  |
| System Production                   | Produced Energy            | 11.78 MWh/year Specific proc | d. 1315 kWh/kWp/year |  |  |  |  |  |
|                                     | Performance Ratio PR       | 32.41 % Solar Fraction S     | F 65.60 %            |  |  |  |  |  |
| Battery ageing (State o             | f Wear) Cycles SOW         | 79.0% Static SOV             | V 80.0%              |  |  |  |  |  |
|                                     | Battery lifetime           | 4.8 years                    |                      |  |  |  |  |  |







## SELCO - small family - 9kw Balances and main results

|               | GlobHor         | DiffHor         | T_Amb           | GlobInc | GlobEff | EArray  | E_User                        | E_Solar      | EUnused        | EFrGrid        |
|---------------|-----------------|-----------------|-----------------|---------|---------|---------|-------------------------------|--------------|----------------|----------------|
|               | kWh/m²          | kWh/m²          | °C              | kWh/m²  | kWh/m²  | MWh     | MWh                           | MWh          | MWh            | MWh            |
| January       | 133.0           | 82.20           | 28.10           | 136.3   | 131.2   | 1.016   | 0.623                         | 0.416        | 0.512          | 0.207          |
| February      | 134.6           | 67.90           | 27.70           | 137.4   | 132.8   | 1.031   | 0.541                         | 0.370        | 0.583          | 0.171          |
| March         | 149.8           | 88.20           | 28.00           | 150.3   | 144.9   | 1.125   | 0.596                         | 0.404        | 0.619          | 0.191          |
| April         | 140.3           | 70.50           | 27.70           | 138.8   | 133.9   | 1.039   | 0.569                         | 0.395        | 0.575          | 0.174          |
| Мау           | 140.3           | 78.60           | 28.60           | 136.9   | 131.7   | 1.027   | 0.623                         | 0.410        | 0.529          | 0.213          |
| June          | 132.0           | 77.80           | 27.80           | 128.3   | 123.5   | 0.967   | 0.569                         | 0.357        | 0.515          | 0.211          |
| July          | 134.4           | 87.20           | 27.80           | 131.1   | 125.8   | 0.994   | 0.596                         | 0.402        | 0.519          | 0.194          |
| August        | 132.2           | 87.20           | 27.80           | 130.1   | 125.2   | 0.980   | 0.623                         | 0.397        | 0.497          | 0.226          |
| September     | 129.2           | 79.00           | 27.10           | 128.8   | 124.0   | 0.968   | 0.541                         | 0.358        | 0.513          | 0.183          |
| October       | 138.8           | 82.60           | 27.40           | 140.4   | 135.5   | 1.056   | 0.623                         | 0.404        | 0.581          | 0.219          |
| November      | 117.6           | 79.20           | 26.70           | 119.8   | 115.4   | 0.907   | 0.596                         | 0.361        | 0.466          | 0.234          |
| December      | 115.0           | 73.20           | 26.29           | 118.1   | 113.6   | 0.896   | 0.569                         | 0.362        | 0.453          | 0.207          |
| Year          | 1597.2          | 953.59          | 27.58           | 1596.2  | 1537.5  | 12.005  | 7.066                         | 4.636        | 6.361          | 2.431          |
|               |                 | •               |                 |         |         |         |                               |              | •              | ,              |
| Legends: Glob | Hor I           | Horizontal glo  | obal irradiatio | on      |         | GlobEff | Effectiv                      | e Global, co | orr. for IAM   | and shadings   |
| Diff          | lor l           | -lorizontal dif | fuse irradiat   | ion     |         | EArray  | Effectiv                      | e energy at  | the output     | of the array   |
| T_A           | mb <sup>-</sup> | Гamb.           |                 |         |         | E_User  | r Energy supplied to the user |              |                |                |
| Glob          | olnc (          | Global incider  | nt in coll. pla | ne      |         | E_Solar | Energy                        | from the su  | un             |                |
|               |                 |                 |                 |         |         | EUnused | Unused                        | l energy (ba | ttery full, no | grid injection |
|               |                 |                 |                 |         |         | EFrGrid | Energy                        | from the gr  | id             |                |





| PVSYST V6.86                                                                                       |                                                                                                                                                                                                                                                     |                                             | 21/04/20                                                     | Page 8/8                     |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|------------------------------|
|                                                                                                    | Grid-Connected System: P50 - P90 evalua                                                                                                                                                                                                             | ition                                       |                                                              |                              |
| Project :                                                                                          | Taman Midah (NEM)                                                                                                                                                                                                                                   |                                             |                                                              |                              |
| Simulation varia                                                                                   | nt : SELCO - small family - 9kw                                                                                                                                                                                                                     |                                             |                                                              |                              |
| Main system para                                                                                   | meters System type Sheds on ground                                                                                                                                                                                                                  |                                             |                                                              |                              |
| <b>Near Shadings</b><br>PV Field Orientatio<br>PV modules<br>PV Array<br>Inverter<br>User's needs  | Linear shadings<br>n tilt 5° a<br>Model JAM6-72-320/SI<br>Nb. of modules 28 Pno<br>Model SUN2000L-8KTL<br>Daily household consumers Constant over the year                                                                                          | azimuth<br>Pnom<br>om tota<br>Pnom<br>Globa | n 0°<br>320 Wp<br>I <b>8.96 kV</b><br>n 8.00 kW<br>I 7066 kV | <b>/p</b><br>/ ac<br>Vh/year |
| Evaluation of the                                                                                  | Production probability forecast                                                                                                                                                                                                                     |                                             |                                                              |                              |
| The probability dist                                                                               | ribution of the system production forecast for different years is mainly of                                                                                                                                                                         | depend                                      | lent                                                         |                              |
| on the meteo data<br>Meteo data source<br>Meteo data<br>Specified Deviation<br>Year-to-year variab | used for the simulation, and depends on the following choices:<br>MeteoNorm 7.2 station<br>Kind Not defined<br>Year deviation from aver. 3 %<br>ility Variance 0.5 %                                                                                | Yea                                         | r 1995                                                       |                              |
| The probability dist<br>Specified Deviation                                                        | ribution variance is also depending on some system parameters uncer<br>PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soiling and mismatch uncertainties 1.0 %<br>Degradation uncertainty 1.0 %<br>Nariance 1.9 % | tainties                                    | 5                                                            |                              |
|                                                                                                    | probability Variability 0.00 MWb                                                                                                                                                                                                                    | ic Sum                                      | )                                                            |                              |
|                                                                                                    | Piobability 0.00 MWh<br>P50 0.00 MWh<br>P90 0.00 MWh<br>P95 0.00 MWh                                                                                                                                                                                |                                             |                                                              |                              |
|                                                                                                    | Probability distribution                                                                                                                                                                                                                            |                                             |                                                              |                              |
|                                                                                                    | $ \begin{array}{c} 0.50\\ 0.45\\ 0.40\\ 0.35\\ 0.30\\ 0.25\\ 0.20\\ 0.20\\ 0.20\\ 0.5\\ 0.00\\ 0.25\\ 0.00\\ 0.25\\ 0.00\\ 0.26\\ 0.26\\ 0.26\\ 0.26\\ 0.4\\ 0.26\\ 0.26\\ 0.4\\ 0.6\\ 0.6\\ 0.8\\ E_Grid system production kWh \end{array} $       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-   | 1.0                                                          |                              |

| ГГ                                                                                                                                                                                                 |                                                                                                         |                                                                                                                                                  | 1 1                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| PVSYST V6.86                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                  | 21/04/20 Page 1/8                                                         |
| Grid-                                                                                                                                                                                              | Connected Systen                                                                                        | n: Simulation parameter                                                                                                                          | S                                                                         |
| Project : Tam                                                                                                                                                                                      | an Midah (NEM)                                                                                          |                                                                                                                                                  |                                                                           |
| Geographical Site                                                                                                                                                                                  | Kuala Lumpur/Subang                                                                                     | Count                                                                                                                                            | ry <b>Malaysia</b>                                                        |
| Situation                                                                                                                                                                                          | Latitude                                                                                                | 3.12° N Longitu                                                                                                                                  | de 101.55° E                                                              |
| Time defined as                                                                                                                                                                                    | Legal Time                                                                                              | Time zone UT+8 Altitue                                                                                                                           | de 17 m                                                                   |
| Meteo data:                                                                                                                                                                                        | Kuala Lumpur/Subang                                                                                     | MeteoNorm 7.2 station - Synthet                                                                                                                  | ic                                                                        |
| Simulation variant : SEL                                                                                                                                                                           | CO - small family - 9kw                                                                                 | ,                                                                                                                                                |                                                                           |
|                                                                                                                                                                                                    | Simulation date                                                                                         | 21/04/20 17h28                                                                                                                                   |                                                                           |
| Simulation parameters                                                                                                                                                                              | System type                                                                                             | Sheds on ground                                                                                                                                  |                                                                           |
| <b>Collector Plane Orientation</b>                                                                                                                                                                 | Tilt                                                                                                    | 5° Azimu                                                                                                                                         | th 0°                                                                     |
| Models used                                                                                                                                                                                        | Transposition                                                                                           | Perez Diffu                                                                                                                                      | se Perez, Meteonorm                                                       |
| Horizon                                                                                                                                                                                            | Free Horizon                                                                                            |                                                                                                                                                  |                                                                           |
| Near Shadings                                                                                                                                                                                      | Linear shadings                                                                                         |                                                                                                                                                  |                                                                           |
| Storage                                                                                                                                                                                            | Kind<br>Charging strategy<br>Discharging strategy                                                       | Self-consumption, No grid reinject<br>When excess solar power is avail<br>As soon as power is needed                                             | ion<br>able                                                               |
| User's needs : Da                                                                                                                                                                                  | aily household consumers<br>average                                                                     | Constant over the year<br>9.9 kWh/Day                                                                                                            |                                                                           |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristics (50<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>D°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>14 modules In paral<br>28 Unit Nom. Pow<br>8.96 kWp At operating con<br>470 ∨ I mp<br>54.3 m <sup>2</sup> Cell are | lel 2 strings<br>er 320 Wp<br>d. 8.05 kWp (50°C)<br>pp 17 A<br>ea 48.2 m² |
| Inverter<br>Custom parameters definition<br>Characteristics                                                                                                                                        | Model<br>Manufacturer<br>Operating Voltage                                                              | SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Unit Nom. Pow<br>Max. power (=>40°                                                             | rer 8.00 kWac<br>C) 8.80 kWac                                             |
|                                                                                                                                                                                                    | ND. OF INVERTERS                                                                                        | Pnom ra                                                                                                                                          | tio 1.12                                                                  |
| Battery<br>Battery Pack Characteristics                                                                                                                                                            | Model<br>Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                 | PVX-2120LConcorde3 in series x 4 in parallel36 VStored energy50.0 %Stored energyFixed (20°C)                                                     | ity 784 Ah (C10)<br>gy 14.1 kWh                                           |
| Battery input charger<br>Battery to Grid inverter                                                                                                                                                  | Model<br>Max. charging power<br>Model                                                                   | Generic<br>7.5 kWdc Max./ Euro efficien<br>Generic                                                                                               | cy 97.0/95.0 %                                                            |
| -                                                                                                                                                                                                  | Max. discharging power                                                                                  | 3.1 kWac Max./ Euro efficien                                                                                                                     | cy 97.0/95.0 %                                                            |
| PV Array loss factors                                                                                                                                                                              |                                                                                                         |                                                                                                                                                  |                                                                           |
| Thermal Loss factor                                                                                                                                                                                | Uc (const)                                                                                              | 20.0 W/m²K Uv (win                                                                                                                               | d) 0.0 W/m²K / m/s                                                        |
| Wiring Ohmic Loss                                                                                                                                                                                  | Global array res.                                                                                       | 465 mOhm Loss Fraction                                                                                                                           | on 1.5 % at STC                                                           |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                     | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |



| PVSYST V6.86                                                                                |                                             |                                                        |                                                                    | 2                                                    | 1/04/20                                              | Page 4/8                     |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------|--|--|
|                                                                                             |                                             |                                                        | . Datailad Lla                                                     |                                                      |                                                      |                              |  |  |
| G                                                                                           | na-Connected a                              | System                                                 | 1. Detailed US                                                     | ers needs                                            |                                                      |                              |  |  |
| Project : 1                                                                                 | Гатап Midah (NEM                            | 1)                                                     |                                                                    |                                                      |                                                      |                              |  |  |
| Simulation variant : S                                                                      | SELCO - small fami                          | ly - 9kw                                               |                                                                    |                                                      |                                                      |                              |  |  |
| Main system parameters                                                                      | Syste                                       | em type                                                | Sheds on ground                                                    |                                                      |                                                      |                              |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear s<br>Nb. of r<br>Daily household cor | hadings<br>tilt<br>Model<br>nodules<br>Model<br>sumers | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the y | azimuth<br>Pnom<br>Pnom total<br>Pnom<br>year Global | 0°<br>320 Wp<br><b>8.96 kV</b><br>8.00 kV<br>3625 k\ | <b>Vp</b><br>V ac<br>Wh/year |  |  |
| Daily household consumer                                                                    | rs, Constant over the                       | e year, av                                             | verage = 9.9 kWh/d                                                 | lay                                                  |                                                      |                              |  |  |
|                                                                                             |                                             | Annua                                                  | l values                                                           |                                                      |                                                      |                              |  |  |
|                                                                                             | Use 2 days a week                           | Number                                                 | Power                                                              | Use                                                  |                                                      | Energy                       |  |  |
| Lamps (LED or fluo)                                                                         |                                             | 26                                                     | 18 W/lamp                                                          | 5 h/da                                               | ay 2                                                 | 2340 Wh/day                  |  |  |
| TV / PC / Mobile                                                                            |                                             | 2                                                      | 70 W/app                                                           | 14 h/da                                              | ay 1                                                 | 960 Wh/day                   |  |  |
| Iron                                                                                        |                                             | 1                                                      | 1200 W/app                                                         | 1 h/da                                               | ay 1                                                 | 200 Wh/day                   |  |  |
| Fridge / Deep-freeze                                                                        |                                             | 1                                                      |                                                                    | 24 Wh/da                                             | ау З                                                 | 3000 Wh/day                  |  |  |
| Dish- & Cloth-washers                                                                       |                                             | 1                                                      |                                                                    | 1 Wh/da                                              | зу                                                   | 500 Wh/day                   |  |  |
| Instant water heater                                                                        |                                             | 1                                                      | 2000 W tot                                                         | 2 h/da                                               | ау З                                                 | 3000 Wh/day                  |  |  |
| Aircond                                                                                     |                                             | 3                                                      | 750 W tot                                                          | 10 h/da                                              | зу 22                                                | 2500 Wh/day                  |  |  |
| Stand-by consumers                                                                          |                                             |                                                        |                                                                    | 24 h/da                                              | <u>ay</u>                                            | 24 Wh/day                    |  |  |
| l otal daily energy                                                                         |                                             |                                                        |                                                                    |                                                      | 32                                                   | 1524 Wh/day                  |  |  |
| Stand-by consumers     24 h/day     24 Wh/day       Total daily energy     34524 Wh/day     |                                             |                                                        |                                                                    |                                                      |                                                      |                              |  |  |

| PVSYST V6.86                        |                            |                              | 21/04/20 Page 5/8   |  |  |  |  |  |
|-------------------------------------|----------------------------|------------------------------|---------------------|--|--|--|--|--|
| Grid-Connected System: Main results |                            |                              |                     |  |  |  |  |  |
| Project :                           | Taman Midah (NEM)          |                              |                     |  |  |  |  |  |
| Simulation variant :                | SELCO - small family - 9kw |                              |                     |  |  |  |  |  |
| Main system paramete                | ers System type            | Sheds on ground              |                     |  |  |  |  |  |
| Near Shadings                       | Linear shadings            |                              |                     |  |  |  |  |  |
| PV Field Orientation                | tilt                       | 5° azimutl                   | ר 0°                |  |  |  |  |  |
| PV modules                          | Model                      | JAM6-72-320/SI Pnon          | n 320 Wp            |  |  |  |  |  |
| PV Array                            | Nb. of modules             | 28 Pnom tota                 | al 8.96 kWp         |  |  |  |  |  |
| Inverter                            | Model                      | SUN2000L-8KTL Pnon           | n 8.00 kW ac        |  |  |  |  |  |
| User's needs                        | Daily household consumers  | Constant over the year Globa | l 3625 kWh/year     |  |  |  |  |  |
| Main simulation result              | ts                         |                              |                     |  |  |  |  |  |
| System Production                   | Produced Energy            | 11.78 MWh/year Specific prod | . 1315 kWh/kWp/year |  |  |  |  |  |
|                                     | Performance Ratio PR       | 19.78 % Solar Fraction SI    | 78.05 %             |  |  |  |  |  |
| Battery ageing (State of            | Wear) Cycles SOW           | 89.2% Static SOV             | V 80.0%             |  |  |  |  |  |
|                                     | Battery lifetime           | 5.0 years                    |                     |  |  |  |  |  |







## SELCO - small family - 9kw Balances and main results

|               | GlobHor            | DiffHor            | T Amb           | GlobIng            | GlobEff            | EArray  | E User   | E Solar      | EUnused        | EFrGrid        |
|---------------|--------------------|--------------------|-----------------|--------------------|--------------------|---------|----------|--------------|----------------|----------------|
|               | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | °C              | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | MWh     | MWh      | MWh          | MWh            | MWh            |
| January       | 133.0              | 82.20              | 28.10           | 136.3              | 131.2              | 1.016   | 0.345    | 0.265        | 0.665          | 0.080          |
| February      | 134.6              | 67.90              | 27.70           | 137.4              | 132.8              | 1.031   | 0.276    | 0.234        | 0.734          | 0.043          |
| March         | 149.8              | 88.20              | 28.00           | 150.3              | 144.9              | 1.125   | 0.276    | 0.225        | 0.833          | 0.051          |
| April         | 140.3              | 70.50              | 27.70           | 138.8              | 133.9              | 1.039   | 0.311    | 0.252        | 0.736          | 0.059          |
| Мау           | 140.3              | 78.60              | 28.60           | 136.9              | 131.7              | 1.027   | 0.311    | 0.231        | 0.710          | 0.080          |
| June          | 132.0              | 77.80              | 27.80           | 128.3              | 123.5              | 0.967   | 0.276    | 0.220        | 0.679          | 0.056          |
| July          | 134.4              | 87.20              | 27.80           | 131.1              | 125.8              | 0.994   | 0.345    | 0.266        | 0.672          | 0.079          |
| August        | 132.2              | 87.20              | 27.80           | 130.1              | 125.2              | 0.980   | 0.276    | 0.209        | 0.688          | 0.067          |
| September     | 129.2              | 79.00              | 27.10           | 128.8              | 124.0              | 0.968   | 0.276    | 0.208        | 0.693          | 0.068          |
| October       | 138.8              | 82.60              | 27.40           | 140.4              | 135.5              | 1.056   | 0.345    | 0.275        | 0.708          | 0.070          |
| November      | 117.6              | 79.20              | 26.70           | 119.8              | 115.4              | 0.907   | 0.276    | 0.199        | 0.643          | 0.077          |
| December      | 115.0              | 73.20              | 26.29           | 118.1              | 113.6              | 0.896   | 0.311    | 0.246        | 0.597          | 0.065          |
| Year          | 1597.2             | 953.59             | 27.58           | 1596.2             | 1537.5             | 12.005  | 3.625    | 2.829        | 8.360          | 0.796          |
|               |                    |                    |                 |                    |                    |         |          |              |                |                |
| Legends: Glob | Hor I              | Horizontal glo     | obal irradiatio | on                 |                    | GlobEff | Effectiv | e Global, co | rr. for IAM    | and shadings   |
| Diff          | Hor I              | Horizontal dif     | fuse irradiat   | ion                |                    | EArray  | Effectiv | e energy at  | the output     | of the array   |
| T_A           | mb                 | T amb.             |                 |                    |                    | E_User  | Energy   | supplied to  | the user       |                |
| Glob          | olnc (             | Global incider     | nt in coll. pla | ne                 |                    | E_Solar | Energy   | from the su  | IN             |                |
|               |                    |                    |                 |                    |                    | EUnused | Unused   | l energy (ba | ttery full, no | grid injection |
|               |                    |                    |                 |                    |                    | EFrGrid | Energy   | from the gr  | id             |                |





| PVSYST V6.86                                                                                |                                                                                                                                                                                                                                       | 21/04/20                                                                            | Page 8/8                      |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------|
|                                                                                             | Grid-Connected System: P50 - P90 evaluatio                                                                                                                                                                                            | n                                                                                   |                               |
| Proiect :                                                                                   | Taman Midah (NEM)                                                                                                                                                                                                                     | •                                                                                   |                               |
| Simulation varia                                                                            | nt : SELCO - small family - 9kw                                                                                                                                                                                                       |                                                                                     |                               |
| Main system para                                                                            | meters System type Sheds on ground                                                                                                                                                                                                    |                                                                                     |                               |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear shadings<br>n tilt 5° azim<br>Model JAM6-72-320/SI Pn<br>Nb. of modules 28 Pnom to<br>Model SUN2000L-8KTL Pn<br>Daily household consumers Constant over the year Glo                                                           | uth 0°<br>om 320 Wp<br>otal <b>8.96 kV</b><br>om 8.00 kV<br>bal 3625 k <sup>1</sup> | V <b>p</b><br>V ac<br>Wh/year |
| Evaluation of the                                                                           | Production probability forecast                                                                                                                                                                                                       |                                                                                     |                               |
| The probability dist                                                                        | ribution of the system production forecast for different years is mainly dependent of the simulation, and dependence the following chaines:                                                                                           | endent                                                                              |                               |
| Meteo data source<br>Meteo data<br>Specified Deviation<br>Year-to-year variab               | MeteoNorm 7.2 station<br>Kind Not defined Y<br>Year deviation from aver. 3 %<br>Ility Variance 0.5 %                                                                                                                                  | ear 1995                                                                            |                               |
| The probability dist<br>Specified Deviation                                                 | ribution variance is also depending on some system parameters uncertain<br>PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soiling and mismatch uncertainties 1.0 %<br>Degradation uncertainty 1.0 % | ies                                                                                 |                               |
| Global variability (m                                                                       | neteo + system) Variance 1.9 % (quadratic su                                                                                                                                                                                          | ım)                                                                                 |                               |
| Annual production p                                                                         | probability Variability 0.00 MWh<br>P50 0.00 MWh<br>P90 0.00 MWh<br>P95 0.00 MWh                                                                                                                                                      |                                                                                     |                               |
|                                                                                             | Probability distribution                                                                                                                                                                                                              |                                                                                     |                               |
|                                                                                             | $ \begin{array}{c} 0.50\\ 0.45\\ 0.40\\ 0.35\\ 0.20\\ 0.25\\ 0.20\\ 0.15\\ 0.00\\ 0.95\\ 0.00\\ 0.95\\ 0.00\\ 0.95\\ 0.00\\ 0.2\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.6\\ 0.6\\ 0.8\\ E_Grid system production kWh \end{array} $                | 1.0                                                                                 |                               |

| r                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                       |                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| PVSYST V6.86                                                                                                                                                                  |                                                                                                                                      |                                                                                                                                                       | 21/04/20 Page 1/8                                                      |
|                                                                                                                                                                               | Grid-Connected System                                                                                                                | n: Simulation parameters                                                                                                                              | 3                                                                      |
| Project :                                                                                                                                                                     | Taman Midah (NEM)                                                                                                                    |                                                                                                                                                       |                                                                        |
| Geographical Site                                                                                                                                                             | Kuala Lumpur/Subang                                                                                                                  | Countr                                                                                                                                                | y <b>Malaysia</b>                                                      |
| Situation                                                                                                                                                                     | Latitude                                                                                                                             | 3.12° N Longitud                                                                                                                                      | e 101.55° E                                                            |
| Time defined as                                                                                                                                                               | Legal Time                                                                                                                           | Time zone UT+8 Altitud                                                                                                                                | e 17 m                                                                 |
| Meteo data:                                                                                                                                                                   | Kuala Lumpur/Subang                                                                                                                  | MeteoNorm 7.2 station - Synthetic                                                                                                                     | C                                                                      |
| Simulation variant :                                                                                                                                                          | SELCO - average family - (                                                                                                           | ôkw                                                                                                                                                   |                                                                        |
|                                                                                                                                                                               | Simulation date                                                                                                                      | 21/04/20 16h13                                                                                                                                        |                                                                        |
| Simulation parameter                                                                                                                                                          | s System type                                                                                                                        | Sheds on ground                                                                                                                                       |                                                                        |
| Collector Plane Orien                                                                                                                                                         | tation Tilt                                                                                                                          | 5° Azimut                                                                                                                                             | h O°                                                                   |
| Models used                                                                                                                                                                   | Transposition                                                                                                                        | Perez Diffus                                                                                                                                          | e Perez, Meteonorm                                                     |
| Horizon                                                                                                                                                                       | Free Horizon                                                                                                                         |                                                                                                                                                       |                                                                        |
| Near Shadings                                                                                                                                                                 | Linear shadings                                                                                                                      |                                                                                                                                                       |                                                                        |
| Storage                                                                                                                                                                       | Kind                                                                                                                                 | Self-consumption, No grid reinjection                                                                                                                 | on                                                                     |
|                                                                                                                                                                               | Charging strategy<br>Discharging strategy                                                                                            | When excess solar power is availa<br>As soon as power is needed                                                                                       | ble                                                                    |
| User's needs :                                                                                                                                                                | Daily household consumers average                                                                                                    | Constant over the year<br>25.1 kWh/Day                                                                                                                |                                                                        |
| PV Array Characterist<br>PV module<br>Original PVsyst data<br>Number of PV modules<br>Total number of PV mod<br>Array global power<br>Array operating character<br>Total area | ics<br>Si-mono Model<br>base Manufacturer<br>In series<br>dules Nb. modules<br>Nominal (STC)<br>eristics (50°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>10 modules In paralle<br>20 Unit Nom. Powe<br>6.40 kWp At operating cond<br>336 V I mpj<br>38.8 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>I. 5.75 kWp (50°C)<br>p 17 A<br>a 34.4 m² |
| Inverter<br>Original PVsyst data<br>Characteristics                                                                                                                           | Model<br>base Manufacturer<br>Operating Voltage                                                                                      | SUN2000L-5KTL<br>Huawei Technologies<br>90-500 V Unit Nom. Power<br>Max. power (=>40°C                                                                | er 5.00 kWac<br>C) 5.50 kWac                                           |
| Invener pack                                                                                                                                                                  | ND. OF INVERTERS                                                                                                                     | 2 MPPT 50 % Total Powe<br>Pnom rati                                                                                                                   | o 1.28                                                                 |
| Battery                                                                                                                                                                       | Model                                                                                                                                | PVX-2120L                                                                                                                                             |                                                                        |
| Battery Pack Character                                                                                                                                                        | ristics Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                                                               | Concorde<br>2 in series x 4 in parallel<br>24 V Nominal Capacit<br>50.0 % Stored energ<br>Fixed (20°C)                                                | y 784 Ah (C10)<br>y 9.4 kWh                                            |
| Battery input charger                                                                                                                                                         | Model                                                                                                                                | Generic                                                                                                                                               |                                                                        |
| Battery to Grid inverte                                                                                                                                                       | Max. charging power<br><b>Pr</b> Model                                                                                               | 5.4 kWdc Max./ Euro efficienc                                                                                                                         | y 97.0/95.0 %                                                          |
|                                                                                                                                                                               | Max. discharging power                                                                                                               | 5.2 kWac Max./ Euro efficienc                                                                                                                         | y 97.0/95.0 %                                                          |
| DV/ Arrow loop factors                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                       |                                                                        |
| Thermal Loss factor                                                                                                                                                           | Le (const)                                                                                                                           | 20.0 W/m²K                                                                                                                                            | 1) 00W/m2K/m/s                                                         |
| Wiring Ohmic Loss                                                                                                                                                             | Global arrav res.                                                                                                                    | 332 mOhm Loss Fractio                                                                                                                                 | n 1.5 % at STC                                                         |
|                                                                                                                                                                               | ,                                                                                                                                    |                                                                                                                                                       |                                                                        |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                     | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |



| PVSYST V6.86                                                                                                          |                                                                       |                                                                            |                                                                                                 | 2                                                    | 21/04/20                                             | Page 4/8                     |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------|--|
|                                                                                                                       |                                                                       |                                                                            |                                                                                                 |                                                      |                                                      |                              |  |
| (                                                                                                                     | Grid-Connected S                                                      | System                                                                     | n: Detailed Us                                                                                  | er's needs                                           |                                                      |                              |  |
| Project :                                                                                                             | Taman Midah (NEM                                                      | A)                                                                         |                                                                                                 |                                                      |                                                      |                              |  |
| Simulation variant : SELCO - average family - 6kw                                                                     |                                                                       |                                                                            |                                                                                                 |                                                      |                                                      |                              |  |
| Main system parameters                                                                                                | Syste                                                                 | em type                                                                    | Sheds on ground                                                                                 |                                                      |                                                      |                              |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs<br>Daily household consum | Linear s<br>Nb. of r<br>Daily household cor<br>ers, Constant over the | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers<br><b>year, av</b> | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the y<br><b>/erage = 25.1 kWh/</b> | azimuth<br>Pnom<br>Pnom total<br>Pnom<br>year Global | 0°<br>320 Wp<br><b>6.40 kV</b><br>5.00 kV<br>9174 k\ | <b>Vp</b><br>V ac<br>Wh/year |  |
|                                                                                                                       |                                                                       | Annua                                                                      | l values                                                                                        |                                                      |                                                      |                              |  |
|                                                                                                                       | Use 5 days a week                                                     | Number                                                                     | Power                                                                                           | Use                                                  |                                                      | Energy                       |  |
| Lamps (LED or fluo)                                                                                                   |                                                                       | 28                                                                         | 18 W/lamp                                                                                       | 6 h/c                                                | lay 3                                                | 3024 Wh/day                  |  |
| TV / PC / Mobile                                                                                                      |                                                                       | 2                                                                          | 70 W/app                                                                                        | 10 h/c                                               | lay 1                                                | 400 Wh/day                   |  |
| Iron                                                                                                                  |                                                                       | 1                                                                          | 1200 W/app                                                                                      | 1 h/c                                                | lay 1                                                | 200 Wh/day                   |  |
| Fridge / Deep-freeze                                                                                                  |                                                                       | 1                                                                          |                                                                                                 | 24 Wh/c                                              | lay 3                                                | 3000 Wh/day                  |  |
| Dish- & Cloth-washers                                                                                                 |                                                                       | 1                                                                          |                                                                                                 | 1 Wh/c                                               | lay                                                  | 500 Wh/day                   |  |
| Instant water heater                                                                                                  |                                                                       | 2                                                                          | 2000 W tot                                                                                      | 2 h/c                                                | lay 8                                                | 3000 Wh/day                  |  |
| Aircond                                                                                                               |                                                                       | 3                                                                          | 750 W tot                                                                                       | 8 h/c                                                | lay 18                                               | 3000 Wh/day                  |  |
| Stand-by consumers                                                                                                    |                                                                       |                                                                            |                                                                                                 | 24 h/c                                               | lay                                                  | 24 Wh/day                    |  |
| Stand-by consumers     3     750 W lot     8 in/day     18000 Win/day       Total daily energy     35148 Wh/day       |                                                                       |                                                                            |                                                                                                 |                                                      |                                                      |                              |  |

| PVSYST V6.86                                      |            |                           |                             | 21/04/20              | Page 5/8    |  |  |  |  |
|---------------------------------------------------|------------|---------------------------|-----------------------------|-----------------------|-------------|--|--|--|--|
| Grid-Connected System: Main results               |            |                           |                             |                       |             |  |  |  |  |
| Project : Taman Midah (NEM)                       |            |                           |                             |                       |             |  |  |  |  |
| Simulation variant : SELCO - average family - 6kw |            |                           |                             |                       |             |  |  |  |  |
| Main system pa                                    | rameters   | System type               | Sheds on ground             |                       |             |  |  |  |  |
| Near Shadings                                     |            | Linear shadings           |                             |                       |             |  |  |  |  |
| PV Field Orientat                                 | ion        | tilt                      | 5° azimu                    | th 0°                 |             |  |  |  |  |
| PV modules                                        |            | Model                     | JAM6-72-320/SI Pnc          | m 320 W               | р           |  |  |  |  |
| PV Array                                          |            | Nb. of modules            | 20 Pnom to                  | tal 6.40 k            | Wp          |  |  |  |  |
| Inverter                                          |            | Model                     | SUN2000L-5KTL Pnc           | m 5.00 k <sup>v</sup> | N ac        |  |  |  |  |
| User's needs                                      |            | Daily household consumers | Constant over the year Glob | oal 9174 k            | Wh/year     |  |  |  |  |
| Main simulation                                   | results    |                           |                             |                       |             |  |  |  |  |
| System Production                                 | on         | Produced Energy           | 8.41 MWh/year Specific pro  | d. 1314 k             | Wh/kWp/year |  |  |  |  |
|                                                   |            | Performance Ratio PR      | 33.81 % Solar Fraction S    | SF 37.65 °            | %           |  |  |  |  |
| Battery ageing (S                                 | tate of We | ear) Cycles SOW           | 79.1% Static SC             | W 80.0%               |             |  |  |  |  |
|                                                   |            | Battery lifetime          | 4.8 years                   |                       |             |  |  |  |  |







# SELCO - average family - 6kw Balances and main results

|               | GlobHor            | DiffHor        | T_Amb           | GlobInc | GlobEff | EArray  | E_User   | E_Solar                                         | EUnused     | EFrGrid      |
|---------------|--------------------|----------------|-----------------|---------|---------|---------|----------|-------------------------------------------------|-------------|--------------|
|               | kWh/m <sup>2</sup> | kWh/m²         | °C              | kWh/m²  | kWh/m²  | MWh     | MWh      | MWh                                             | MWh         | MWh          |
| January       | 133.0              | 82.20          | 28.10           | 136.3   | 131.2   | 0.726   | 0.808    | 0.307                                           | 0.356       | 0.502        |
| February      | 134.6              | 67.90          | 27.70           | 137.4   | 132.8   | 0.737   | 0.703    | 0.274                                           | 0.405       | 0.429        |
| March         | 149.8              | 88.20          | 28.00           | 150.3   | 144.9   | 0.804   | 0.773    | 0.299                                           | 0.432       | 0.475        |
| April         | 140.3              | 70.50          | 27.70           | 138.8   | 133.9   | 0.742   | 0.738    | 0.295                                           | 0.394       | 0.443        |
| Мау           | 140.3              | 78.60          | 28.60           | 136.9   | 131.7   | 0.734   | 0.808    | 0.307                                           | 0.362       | 0.501        |
| June          | 132.0              | 77.80          | 27.80           | 128.3   | 123.5   | 0.691   | 0.738    | 0.268                                           | 0.355       | 0.470        |
| July          | 134.4              | 87.20          | 27.80           | 131.1   | 125.8   | 0.710   | 0.773    | 0.297                                           | 0.361       | 0.477        |
| August        | 132.2              | 87.20          | 27.80           | 130.1   | 125.2   | 0.700   | 0.808    | 0.295                                           | 0.343       | 0.514        |
| September     | 129.2              | 79.00          | 27.10           | 128.8   | 124.0   | 0.691   | 0.703    | 0.267                                           | 0.355       | 0.436        |
| October       | 138.8              | 82.60          | 27.40           | 140.4   | 135.5   | 0.754   | 0.808    | 0.307                                           | 0.393       | 0.501        |
| November      | 117.6              | 79.20          | 26.70           | 119.8   | 115.4   | 0.648   | 0.773    | 0.270                                           | 0.320       | 0.504        |
| December      | 115.0              | 73.20          | 26.29           | 118.1   | 113.6   | 0.640   | 0.738    | 0.269                                           | 0.310       | 0.469        |
| Year          | 1597.2             | 953.59         | 27.58           | 1596.2  | 1537.5  | 8.575   | 9.174    | 3.454                                           | 4.384       | 5.720        |
| Legends: Glob | Hor I              | Horizontal glo | bal irradiatio  | )n      | •       | GlobEff | Effectiv | e Global co                                     | orr for IAM | and shadings |
| Diff          | lor I              | Horizontal dif | fuse irradiat   | ion     |         | EArray  | Effectiv | e energy at                                     | the output  | of the array |
| T_A           | mb .               | Г amb.         |                 |         |         | E_User  | Energy   | supplied to                                     | the user    |              |
| Glob          | Inc                | Global incider | nt in coll. pla | ne      |         | E_Solar | Energy   | Energy from the sun                             |             |              |
|               |                    |                |                 |         |         | EUnused | Unused   | Unused energy (battery full, no grid injection) |             |              |
|               |                    |                |                 |         |         | EFrGrid | Energy   | from the gr                                     | -<br>id     |              |





| PVSYST V6.86                                                                                                                                                                    |                                                                                                                                                                                                                                                  |                   |                                                                             |                                                                    |                                              | 21/04/20                                                         | Page 8/8                     |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------|------------------------------|--|--|
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                  | Grid-Conne        | cted Syster                                                                 | m: P50 - P90 (                                                     | evaluation                                   |                                                                  |                              |  |  |
| Proiect :                                                                                                                                                                       |                                                                                                                                                                                                                                                  | Taman Midah       | (NEM)                                                                       |                                                                    |                                              |                                                                  |                              |  |  |
| Simulation var                                                                                                                                                                  | iant :                                                                                                                                                                                                                                           | SELCO - aver      | age family - 6                                                              | Skw                                                                |                                              |                                                                  |                              |  |  |
| Main system pa                                                                                                                                                                  | rameters                                                                                                                                                                                                                                         | i                 | System type                                                                 | Sheds on ground                                                    |                                              |                                                                  |                              |  |  |
| Near Shadings<br>PV Field Orientat<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                                        | ion                                                                                                                                                                                                                                              | L<br>Daily househ | inear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>old consumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the y | azimu<br>Pno<br>Pnom tot<br>Pno<br>year Glob | h 0°<br>m 320 Wp<br>al <b>6.40 kV</b><br>m 5.00 kV<br>al 9174 kV | <b>Vp</b><br>V ac<br>Vh/year |  |  |
| Evaluation of th                                                                                                                                                                | e Produc                                                                                                                                                                                                                                         | ction probability | forecast                                                                    |                                                                    |                                              |                                                                  |                              |  |  |
| The probability di on the meteo dat                                                                                                                                             | istribution<br>a used for                                                                                                                                                                                                                        | of the system pro | duction forecast                                                            | t for different years is<br>the following choices                  | s mainly depen<br>s:                         | dent                                                             |                              |  |  |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                                                                                                      | ce<br>on<br>ability                                                                                                                                                                                                                              | Year devia        | Kind<br>ation from aver.<br>Variance                                        | MeteoNorm 7.2 sta<br>Not defined<br>3 %<br>0.5 %                   | ation<br>Ye                                  | ar 1995                                                          |                              |  |  |
| The probability di<br>Specified Deviatio                                                                                                                                        | The probability distribution variance is also depending on some system parameters uncertainties<br>Specified Deviation PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soiling and mismatch uncertainties 1.0 % |                   |                                                                             |                                                                    |                                              |                                                                  |                              |  |  |
| Global variability                                                                                                                                                              | (meteo +                                                                                                                                                                                                                                         | system)           | Variance                                                                    | 1.9 %                                                              | (quadratic sur                               | n)                                                               |                              |  |  |
| Annual productio                                                                                                                                                                | n probabil                                                                                                                                                                                                                                       | lity              | Variability<br>P50<br>P90<br>P95                                            | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                       |                                              |                                                                  |                              |  |  |
|                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                   | Probability                                                                 | distribution                                                       |                                              |                                                                  |                              |  |  |
| 0.50<br>0.45<br>0.40<br>0.35<br>0.20<br>0.25<br>0.20<br>0.15<br>0.10<br>0.50 = 000 kWh<br>0.00 = page. Use out where with 0.4 = 0.6 = 0.8 = 1.0<br>E_Grid system production kWh |                                                                                                                                                                                                                                                  |                   |                                                                             |                                                                    |                                              |                                                                  |                              |  |  |

| PVSYST V6.86                                                                                                                                                                        |                                                                                                                          |                                                                                                                                                        | 21/04/20 Page 1/8                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                                                                                                                     | Grid-Connected System                                                                                                    | n: Simulation parameters                                                                                                                               | 3                                                                    |
| Project :                                                                                                                                                                           | Taman Midah (NEM)                                                                                                        |                                                                                                                                                        |                                                                      |
| Geographical Site                                                                                                                                                                   | Kuala Lumpur/Subang                                                                                                      | Country                                                                                                                                                | y <b>Malaysia</b>                                                    |
| Situation                                                                                                                                                                           | Latitude                                                                                                                 | 3.12° N Longitude                                                                                                                                      | e 101.55° E                                                          |
| Time defined as                                                                                                                                                                     | Legal Time                                                                                                               | Time zone UT+8 Altitude                                                                                                                                | e 17 m                                                               |
| Meteo data:                                                                                                                                                                         | Kuala Lumpur/Subang                                                                                                      | MeteoNorm 7.2 station - Synthetic                                                                                                                      |                                                                      |
| Simulation variant :                                                                                                                                                                | SELCO - average family - (                                                                                               | δkw                                                                                                                                                    |                                                                      |
|                                                                                                                                                                                     | Simulation date                                                                                                          | 21/04/20 16h14                                                                                                                                         |                                                                      |
| Simulation parameters                                                                                                                                                               | System type                                                                                                              | Sheds on ground                                                                                                                                        |                                                                      |
| Collector Plane Orienta                                                                                                                                                             | tion Tilt                                                                                                                | 5° Azimut                                                                                                                                              | n O°                                                                 |
| Models used                                                                                                                                                                         | Transposition                                                                                                            | Perez Diffus                                                                                                                                           | e Perez, Meteonorm                                                   |
| Horizon                                                                                                                                                                             | Free Horizon                                                                                                             |                                                                                                                                                        |                                                                      |
| Near Shadings                                                                                                                                                                       | Linear shadings                                                                                                          |                                                                                                                                                        |                                                                      |
| Storage                                                                                                                                                                             | Kind<br>Charging strategy<br>Discharging strategy                                                                        | Self-consumption, No grid reinjection<br>When excess solar power is available<br>As soon as power is needed                                            | on<br>ble                                                            |
| User's needs :                                                                                                                                                                      | Daily household consumers<br>average                                                                                     | Constant over the year<br>11.1 kWh/Day                                                                                                                 |                                                                      |
| PV Array Characteristics<br>PV module<br>Original PVsyst databa<br>Number of PV modules<br>Total number of PV modu<br>Array global power<br>Array operating character<br>Total area | s Si-mono Model<br>se Manufacturer<br>In series<br>les Nb. modules<br>Nominal (STC)<br>stics (50°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>10 modules In paralle<br>20 Unit Nom. Powe<br>6.40 kWp At operating cond<br>336 V I mpp<br>38.8 m <sup>2</sup> Cell area | el 2 strings<br>r 320 Wp<br>. 5.75 kWp (50°C)<br>o 17 A<br>a 34.4 m² |
| Inverter<br>Original PVsyst databa<br>Characteristics<br>Inverter pack                                                                                                              | Model<br>ase Manufacturer<br>Operating Voltage<br>Nb. of inverters                                                       | SUN2000L-5KTL<br>Huawei Technologies<br>90-500 V Unit Nom. Powe<br>Max. power (=>40°C<br>2 * MPPT 50 % Total Powe                                      | er 5.00 kWac<br>5) 5.50 kWac<br>er 5.0 kWac                          |
|                                                                                                                                                                                     |                                                                                                                          | Pnom ratio                                                                                                                                             | o 1.28                                                               |
| Battery<br>Battery Pack Characteris                                                                                                                                                 | Model<br>Manufacturer<br>tics Nb. of units<br>Voltage                                                                    | PVX-2120L         Concorde         2 in series x 4 in parallel         24 V         Nominal Capacity         50 0 %                                    | y 784 Ah (C10)                                                       |
|                                                                                                                                                                                     | Temperature                                                                                                              | Fixed (20°C)                                                                                                                                           | y J.4 NVVII                                                          |
| Battery input charger<br>Battery to Grid inverter                                                                                                                                   | Model<br>Max. charging power<br>Model                                                                                    | Generic<br>5.4 kWdc Max./ Euro efficiency<br>Generic                                                                                                   | y 97.0/95.0 %                                                        |
|                                                                                                                                                                                     | Max. discharging power                                                                                                   | 5.2 kWac Max./ Euro efficiency                                                                                                                         | y 97.0/95.0 %                                                        |
| PV Array loss fasters                                                                                                                                                               |                                                                                                                          |                                                                                                                                                        |                                                                      |
| Thermal Loss factor                                                                                                                                                                 | LLC (const)                                                                                                              | 20.0 W/m²K                                                                                                                                             | ) 0 0 W/m²K / m/e                                                    |
| Wiring Ohmic Loss                                                                                                                                                                   | Global arrav res.                                                                                                        | 332 mOhm Loss Fraction                                                                                                                                 | n 1.5 % at STC                                                       |
| <b>~</b>                                                                                                                                                                            | ,                                                                                                                        |                                                                                                                                                        |                                                                      |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                     | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |



| PV/SYST V6 86                                     |                     |                      | 21/                                        | 04/20 Page 4/8             |  |  |  |
|---------------------------------------------------|---------------------|----------------------|--------------------------------------------|----------------------------|--|--|--|
|                                                   |                     |                      |                                            |                            |  |  |  |
| Grid-Connecte                                     | ed System           | n: Detailed Us       | er's needs                                 |                            |  |  |  |
| Project : Taman Midah (I                          | NEM)                |                      |                                            |                            |  |  |  |
| Simulation variant : SELCO - average family - 6kw |                     |                      |                                            |                            |  |  |  |
| Main system parameters                            | Svstem type         | Sheds on around      |                                            |                            |  |  |  |
| Near Shadings Line                                | ear shadings        | U                    |                                            |                            |  |  |  |
| PV Field Orientation                              | tilt                | 5°                   | azimuth (                                  | )°                         |  |  |  |
| PV modules<br>PV Array Nb                         | Model<br>of modules | JAM6-72-320/SI<br>20 | Pnom Com Com Com Com Com Com Com Com Com C | 320 vvp<br>6 <b>40 kWn</b> |  |  |  |
| Inverter                                          | Model               | SUN2000L-5KTL        | Pnom 5                                     | 5.00 kW ac                 |  |  |  |
| User's needs Daily household                      | consumers           | Constant over the y  | /ear Global 4                              | 1045 kWh/year              |  |  |  |
| Daily household consumers, Constant over          | r the year, av      | verage = 11.1 kWh/   | /day                                       |                            |  |  |  |
|                                                   | <b>A</b> in in i o  |                      |                                            |                            |  |  |  |
|                                                   | Annua               |                      |                                            | ,                          |  |  |  |
| Use 2 days a w                                    | eek Number          | Power                | Use                                        | Energy                     |  |  |  |
| Lamps (LED or fluo)                               | 28                  | 18 W/lamp            | 6 h/day                                    | 3024 Wh/day                |  |  |  |
| TV / PC / Mobile                                  | 2                   | 70 W/app             | 10 h/day                                   | 1400 Wh/day                |  |  |  |
| Iron                                              | 1                   | 1200 W/app           | 1 h/day                                    | 1200 Wh/day                |  |  |  |
| Fridge / Deep-freeze                              |                     |                      | 24 Wh/day                                  | 3000 Wh/day                |  |  |  |
| Disn- & Ciolin-Washers                            |                     | 2000 W/ tot          | i wn/day                                   | S00 Wh/day                 |  |  |  |
| Aircond                                           | 2                   | 750 W tot            | 10 h/day                                   | 21375 Wh/day               |  |  |  |
| Stand-by consumers                                |                     | 750 W lot            | 24 h/day                                   | 24 Wh/day                  |  |  |  |
| Total daily energy                                |                     | ł                    | ļj                                         | 38523 Wh/day               |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
| · 5000                                            | Hourly              | / profile            | <b>-</b>                                   |                            |  |  |  |
| 중 4000 —                                          | 1                   |                      |                                            |                            |  |  |  |
| 5<br>5<br>2000                                    |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      | -                                          |                            |  |  |  |
| 5 2000 <b>-</b>                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   | 3 6 9               | 12 15 18             | 21 24                                      |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |
|                                                   |                     |                      |                                            |                            |  |  |  |

| PVSYST V6.86                                      |                           |                              | 21/04/20          | Page 5/8    |  |  |  |  |  |
|---------------------------------------------------|---------------------------|------------------------------|-------------------|-------------|--|--|--|--|--|
| Grid-Connected System: Main results               |                           |                              |                   |             |  |  |  |  |  |
|                                                   |                           |                              |                   |             |  |  |  |  |  |
| Simulation variant : SELCO - average family - 6kw |                           |                              |                   |             |  |  |  |  |  |
| Main system parameter                             | s System type             | Sheds on ground              |                   |             |  |  |  |  |  |
| Near Shadings                                     | Linear shadings           |                              |                   |             |  |  |  |  |  |
| PV Field Orientation                              | tilt                      | 5° azimut                    | h 0°              |             |  |  |  |  |  |
| PV modules                                        | Model                     | JAM6-72-320/SI Pnor          | m 320 Wp          | 1           |  |  |  |  |  |
| PV Array                                          | Nb. of modules            | 20 Pnom tota                 | al <b>6.40 kV</b> | Vp          |  |  |  |  |  |
| Inverter                                          | Model                     | SUN2000L-5KTL Pnor           | m 5.00 kV         | V ac        |  |  |  |  |  |
| User's needs                                      | Daily household consumers | Constant over the year Globa | al 4045 k\        | Wh/year     |  |  |  |  |  |
| Main simulation results                           |                           |                              |                   |             |  |  |  |  |  |
| System Production                                 | Produced Energy           | 8.41 MWh/year Specific proc  | d. 1314 k\        | Nh/kWp/year |  |  |  |  |  |
|                                                   | Performance Ratio PR      | 21.51 % Solar Fraction S     | F 54.33 %         | ,<br>D      |  |  |  |  |  |
| Battery ageing (State of V                        | Vear) Cycles SOW          | 87.8% Static SO              | N 80.0%           |             |  |  |  |  |  |
|                                                   | Battery lifetime          | 5.0 years                    |                   |             |  |  |  |  |  |

### Normalized productions (per installed kWp): Nominal power 6.40 kWp



Performance Ratio PR



## SELCO - average family - 6kw Balances and main results

|                              | GlobHor            | DiffHor        | T_Amb           | GlobInc | GlobEff                                         | EArray  | E_User   | E_Solar             | EUnused      | EFrGrid      |
|------------------------------|--------------------|----------------|-----------------|---------|-------------------------------------------------|---------|----------|---------------------|--------------|--------------|
|                              | kWh/m <sup>2</sup> | kWh/m²         | °C              | kWh/m²  | kWh/m²                                          | MWh     | MWh      | MWh                 | MWh          | MWh          |
| January                      | 133.0              | 82.20          | 28.10           | 136.3   | 131.2                                           | 0.726   | 0.385    | 0.209               | 0.451        | 0.176        |
| February                     | 134.6              | 67.90          | 27.70           | 137.4   | 132.8                                           | 0.737   | 0.308    | 0.186               | 0.500        | 0.123        |
| March                        | 149.8              | 88.20          | 28.00           | 150.3   | 144.9                                           | 0.804   | 0.308    | 0.177               | 0.571        | 0.131        |
| April                        | 140.3              | 70.50          | 27.70           | 138.8   | 133.9                                           | 0.742   | 0.347    | 0.189               | 0.510        | 0.157        |
| Мау                          | 140.3              | 78.60          | 28.60           | 136.9   | 131.7                                           | 0.734   | 0.347    | 0.179               | 0.488        | 0.168        |
| June                         | 132.0              | 77.80          | 27.80           | 128.3   | 123.5                                           | 0.691   | 0.308    | 0.172               | 0.464        | 0.137        |
| July                         | 134.4              | 87.20          | 27.80           | 131.1   | 125.8                                           | 0.710   | 0.385    | 0.205               | 0.458        | 0.180        |
| August                       | 132.2              | 87.20          | 27.80           | 130.1   | 125.2                                           | 0.700   | 0.308    | 0.163               | 0.471        | 0.145        |
| September                    | 129.2              | 79.00          | 27.10           | 128.8   | 124.0                                           | 0.691   | 0.308    | 0.162               | 0.475        | 0.146        |
| October                      | 138.8              | 82.60          | 27.40           | 140.4   | 135.5                                           | 0.754   | 0.385    | 0.221               | 0.475        | 0.164        |
| November                     | 117.6              | 79.20          | 26.70           | 119.8   | 115.4                                           | 0.648   | 0.308    | 0.147               | 0.449        | 0.161        |
| December                     | 115.0              | 73.20          | 26.29           | 118.1   | 113.6                                           | 0.640   | 0.347    | 0.187               | 0.406        | 0.159        |
| Year                         | 1597.2             | 953.59         | 27.58           | 1596.2  | 1537.5                                          | 8.575   | 4.045    | 2.197               | 5.719        | 1.847        |
|                              |                    | •              |                 |         |                                                 |         |          |                     |              | I            |
| Legends: Glob                | Hor                | Horizontal glo | obal irradiatio | on      |                                                 | GlobEff | Effectiv | e Global, co        | orr. for IAM | and shadings |
| Diff                         | lor l              | Horizontal dif | fuse irradiat   | ion     |                                                 | EArray  | Effectiv | e energy at         | the output   | of the array |
| T_A                          | mb <sup>-</sup>    | Г amb.         |                 |         |                                                 | E_User  | Energy   | supplied to         | the user     |              |
| Glob                         | olnc (             | Global incider | nt in coll. pla | ne      |                                                 | E_Solar | Energy   | Energy from the sun |              |              |
|                              |                    |                |                 | EUnused | Unused energy (battery full, no grid injection) |         |          |                     |              |              |
| EFrGrid Energy from the grid |                    |                |                 |         |                                                 |         |          |                     |              |              |





| PVSYST V6.86                                                                             |                                                                                                                                                                                                                                                  |                   |                                                                             |                                                                  |                                                 | 21/04/20                                                         | Page 8/8                      |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|-------------------------------|--|--|
|                                                                                          |                                                                                                                                                                                                                                                  | Grid-Conne        | cted Syster                                                                 | m: P50 - P90                                                     | evaluation                                      |                                                                  |                               |  |  |
| Project :                                                                                |                                                                                                                                                                                                                                                  | Taman Midah       | n (NEM)                                                                     |                                                                  |                                                 |                                                                  |                               |  |  |
| Simulation var                                                                           | iant :                                                                                                                                                                                                                                           | SELCO - aver      | age family - 6                                                              | Skw                                                              |                                                 |                                                                  |                               |  |  |
| Main system pa                                                                           | rameters                                                                                                                                                                                                                                         |                   | System type                                                                 | Sheds on ground                                                  | 1                                               |                                                                  |                               |  |  |
| Near Shadings<br>PV Field Orientat<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                                                                                                                                                                                                                              | L<br>Daily househ | inear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>old consumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the | azimut<br>Pnor<br>Pnom tot<br>Pnor<br>year Glob | h 0°<br>m 320 Wp<br>al <b>6.40 kV</b><br>m 5.00 kV<br>al 4045 k\ | V <b>p</b><br>V ac<br>Vh/year |  |  |
| Evaluation of th                                                                         | e Produc                                                                                                                                                                                                                                         | tion probability  | forecast                                                                    |                                                                  |                                                 |                                                                  |                               |  |  |
| The probability di on the meteo data                                                     | istribution<br>a used for                                                                                                                                                                                                                        | of the system pro | duction forecast                                                            | t for different years i<br>the following choice                  | is mainly depen<br>s:                           | dent                                                             |                               |  |  |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia               | ce<br>on<br>ability                                                                                                                                                                                                                              | Year devia        | Kind<br>ation from aver.<br>Variance                                        | MeteoNorm 7.2 st<br>Not defined<br>3 %<br>0.5 %                  | ation<br>Yea                                    | ar 1995                                                          |                               |  |  |
| The probability di<br>Specified Deviatio                                                 | The probability distribution variance is also depending on some system parameters uncertainties<br>Specified Deviation PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soiling and mismatch uncertainties 1.0 % |                   |                                                                             |                                                                  |                                                 |                                                                  |                               |  |  |
| Global variability                                                                       | (meteo +                                                                                                                                                                                                                                         | system)           | Variance                                                                    | 1.9 %                                                            | (quadratic sun                                  | n)                                                               |                               |  |  |
| Annual production                                                                        | n probabil                                                                                                                                                                                                                                       | ity               | Variability<br>P50<br>P90<br>P95                                            | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                     |                                                 |                                                                  |                               |  |  |
|                                                                                          |                                                                                                                                                                                                                                                  |                   | Probability                                                                 | distribution                                                     |                                                 |                                                                  |                               |  |  |
| Probability distribution                                                                 |                                                                                                                                                                                                                                                  |                   |                                                                             |                                                                  |                                                 |                                                                  |                               |  |  |

| PVSYST V6.86                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                      | 21/04/20 Page 1/8                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Grid-                                                                                                                                                                                              | Connected Systen                                                                                        | n: Simulation parameters                                                                                                                             | 6                                                                      |
| Project : Tam                                                                                                                                                                                      | an Midah (NEM)                                                                                          |                                                                                                                                                      |                                                                        |
| Geographical Site                                                                                                                                                                                  | Kuala Lumpur/Subang                                                                                     | Countr                                                                                                                                               | y <b>Malaysia</b>                                                      |
| Situation                                                                                                                                                                                          | Latitude                                                                                                | 3.12° N Lonaitud                                                                                                                                     | e 101.55° E                                                            |
| Time defined as                                                                                                                                                                                    | Legal Time                                                                                              | Time zone UT+8 Altitud                                                                                                                               | e 17 m                                                                 |
| Meteo data:                                                                                                                                                                                        | Albedo<br>Kuala Lumpur/Subang                                                                           | 0.20<br>MeteoNorm 7.2 station - Synthetic                                                                                                            | c                                                                      |
| Simulation variant : SEL                                                                                                                                                                           | CO - average family - 9                                                                                 | )kw                                                                                                                                                  |                                                                        |
|                                                                                                                                                                                                    | Simulation date                                                                                         | 21/04/20 16h17                                                                                                                                       |                                                                        |
| Simulation parameters                                                                                                                                                                              | System type                                                                                             | Sheds on ground                                                                                                                                      |                                                                        |
| <b>Collector Plane Orientation</b>                                                                                                                                                                 | Tilt                                                                                                    | 5° Azimut                                                                                                                                            | h 0°                                                                   |
| Models used                                                                                                                                                                                        | Transposition                                                                                           | Perez Diffus                                                                                                                                         | e Perez, Meteonorm                                                     |
| Horizon                                                                                                                                                                                            | Free Horizon                                                                                            |                                                                                                                                                      |                                                                        |
| Near Shadings                                                                                                                                                                                      | Linear shadings                                                                                         |                                                                                                                                                      |                                                                        |
| Storage                                                                                                                                                                                            | Kind                                                                                                    | Self-consumption, No grid reinjecti                                                                                                                  | on                                                                     |
|                                                                                                                                                                                                    | Charging strategy<br>Discharging strategy                                                               | When excess solar power is availa As soon as power is needed                                                                                         | ble                                                                    |
| User's needs : Da                                                                                                                                                                                  | ily household consumers<br>average                                                                      | Constant over the year<br>25.1 kWh/Day                                                                                                               |                                                                        |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristics (50<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>0°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>14 modules In paralle<br>28 Unit Nom. Powe<br>8.96 kWp At operating cond<br>470 V I mp<br>54.3 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>l. 8.05 kWp (50°C)<br>p 17 A<br>a 48.2 m² |
| Inverter<br>Custom parameters definition<br>Characteristics                                                                                                                                        | Model<br>Manufacturer<br>Operating Voltage                                                              | SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Unit Nom. Power<br>Max. power (=>40°C                                                              | er 8.00 kWac<br>C) 8.80 kWac                                           |
|                                                                                                                                                                                                    | ND. OF INVERTERS                                                                                        | Pnom rati                                                                                                                                            | o 1.12                                                                 |
| Battery                                                                                                                                                                                            | Model                                                                                                   | PVX-2120L                                                                                                                                            |                                                                        |
| Battery Pack Characteristics                                                                                                                                                                       | Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                          | Concorde<br>3 in series x 4 in parallel<br>36 V Nominal Capacit<br>50.0 % Stored energ<br>Fixed (20°C)                                               | y 784 Ah (C10)<br>y 14.1 kWh                                           |
| Battery input charger                                                                                                                                                                              | Model                                                                                                   | Generic                                                                                                                                              |                                                                        |
| Battery to Grid inverter                                                                                                                                                                           | Max. charging power<br>Model                                                                            | 7.5 kWdc Max./ Euro efficienc<br>Generic                                                                                                             | y 97.0/95.0 %                                                          |
| -                                                                                                                                                                                                  | Max. discharging power                                                                                  | 5.2 kWac Max./ Euro efficienc                                                                                                                        | y 97.0/95.0 %                                                          |
| PV Array loss factors                                                                                                                                                                              |                                                                                                         |                                                                                                                                                      |                                                                        |
| Thermal Loss factor                                                                                                                                                                                | Lic (const)                                                                                             | 20.0 W/m²K                                                                                                                                           | 1) 00 W/m2K / m/s                                                      |
| Wiring Ohmic Loss                                                                                                                                                                                  | Global arrav res.                                                                                       | 465 mOhm Loss Fractio                                                                                                                                | n 1.5 % at STC                                                         |
| •<br>•                                                                                                                                                                                             |                                                                                                         |                                                                                                                                                      |                                                                        |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                     | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |



| PVSYST V6.86                                                                                                          |                                                                       |                                                         |                                                                                                                                                           | 21/        | 04/20        | Page 4/8 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|----------|--|--|--|
|                                                                                                                       |                                                                       | <b></b>                                                 |                                                                                                                                                           | I          |              |          |  |  |  |
| (                                                                                                                     | Fild-Connected                                                        | System                                                  | n: Detailed Use                                                                                                                                           | er's needs |              |          |  |  |  |
| Project :                                                                                                             | Taman Midah (NEM                                                      | Л)                                                      |                                                                                                                                                           |            |              |          |  |  |  |
| Simulation variant :                                                                                                  | SELCO - average fa                                                    | amily - 9                                               | )kw                                                                                                                                                       |            |              |          |  |  |  |
| Main system parameters                                                                                                | Syste                                                                 | em type                                                 | Sheds on ground                                                                                                                                           |            |              |          |  |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs<br>Daily household consum | Linear s<br>Nb. of r<br>Daily household cor<br>ers, Constant over the | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers | 5°azimuth0°JAM6-72-320/SIPnom320 Wp28Pnom total <b>8.96 kWp</b> SUN2000L-8KTLPnom8.00 kW acConstant over the yearGlobal9174 kWh/yearverage = 25.1 kWh/day |            |              |          |  |  |  |
| Annual values                                                                                                         |                                                                       |                                                         |                                                                                                                                                           |            |              |          |  |  |  |
|                                                                                                                       | Use 5 days a week                                                     | Number                                                  | Power                                                                                                                                                     | Use        | Ener         | rgy      |  |  |  |
| Lamps (LED or fluo)                                                                                                   |                                                                       | 28                                                      | 18 W/lamp                                                                                                                                                 | 6 h/day    | 3024         | Wh/day   |  |  |  |
| TV / PC / Mobile                                                                                                      |                                                                       | 2                                                       | 70 W/app                                                                                                                                                  | 10 h/day   | y 1400 Wh/da |          |  |  |  |
| Iron                                                                                                                  |                                                                       | 1                                                       | 1200 W/app                                                                                                                                                | 1 h/day    | 1200         | ) Wh/day |  |  |  |
| Fridge / Deep-freeze                                                                                                  |                                                                       | 1                                                       |                                                                                                                                                           | 24 Wh/day  | 3000         | ) Wh/day |  |  |  |
| Dish- & Cloth-washers                                                                                                 |                                                                       | 1                                                       |                                                                                                                                                           | 1 Wh/day   | 500          | Wh/day   |  |  |  |
| Instant water heater                                                                                                  |                                                                       | 2                                                       | 2000 W tot                                                                                                                                                | 2 h/day    | 8000         | Wh/day   |  |  |  |
| Aircond                                                                                                               |                                                                       | 3                                                       | 750 W tot                                                                                                                                                 | 8 h/day    | 18000        | ) Wh/day |  |  |  |
| Stand-by consumers                                                                                                    |                                                                       |                                                         |                                                                                                                                                           | 24 h/day   | 24           | Wh/day   |  |  |  |
| Hourly profile<br>Hourly profile                                                                                      |                                                                       |                                                         |                                                                                                                                                           |            |              |          |  |  |  |

| PVSYST V6.86                                      |          |                           |                          | 2     | 1/04/20 | Page 5/8    |  |  |
|---------------------------------------------------|----------|---------------------------|--------------------------|-------|---------|-------------|--|--|
| Grid-Connected System: Main results               |          |                           |                          |       |         |             |  |  |
| Project : Taman Midah (NEM)                       |          |                           |                          |       |         |             |  |  |
| Simulation variant : SELCO - average family - 9kw |          |                           |                          |       |         |             |  |  |
| Main system parameters                            |          | System type               | Sheds on ground          |       |         |             |  |  |
| Near Shadings                                     |          | Linear shadings           |                          |       |         |             |  |  |
| PV Field Orientation                              | ו        | tilt                      | 5° azi                   | nuth  | 0°      |             |  |  |
| PV modules                                        |          | Model                     | JAM6-72-320/SI P         | nom   | 320 Wp  |             |  |  |
| PV Array                                          |          | Nb. of modules            | 28 Pnom                  | total | 8.96 kV | Vp          |  |  |
| Inverter                                          |          | Model                     | SUN2000L-8KTL P          | nom   | 8.00 kV | / ac        |  |  |
| User's needs                                      |          | Daily household consumers | Constant over the year G | obal  | 9174 kV | Vh/year     |  |  |
| Main simulation re                                | esults   |                           |                          |       |         |             |  |  |
| System Production                                 |          | Produced Energy           | 11.78 MWh/year Specific  | orod. | 1315 k\ | Nh/kWp/year |  |  |
|                                                   |          | Performance Ratio PR      | 34.34 % Solar Fractio    | n SF  | 53.54 % | ,<br>D      |  |  |
| Battery ageing (Stat                              | te of We | ar) Cycles SOW            | 79.0% Static S           | SOW   | 80.0%   |             |  |  |
|                                                   |          | Battery lifetime          | 4.8 years                |       |         |             |  |  |







## SELCO - average family - 9kw Balances and main results

|                                        | GlobHor                       | DiffHor | T_Amb | GlobInc                      | GlobEff  | EArray                                         | E_User         | E_Solar | EUnused | EFrGrid |
|----------------------------------------|-------------------------------|---------|-------|------------------------------|----------|------------------------------------------------|----------------|---------|---------|---------|
|                                        | kWh/m <sup>2</sup>            | kWh/m²  | °C    | kWh/m²                       | kWh/m²   | MWh                                            | MWh            | MWh     | MWh     | MWh     |
| January                                | 133.0                         | 82.20   | 28.10 | 136.3                        | 131.2    | 1.016                                          | 0.808          | 0.438   | 0.489   | 0.371   |
| February                               | 134.6                         | 67.90   | 27.70 | 137.4                        | 132.8    | 1.031                                          | 0.703          | 0.389   | 0.561   | 0.314   |
| March                                  | 149.8                         | 88.20   | 28.00 | 150.3                        | 144.9    | 1.125                                          | 0.773          | 0.426   | 0.593   | 0.347   |
| April                                  | 140.3                         | 70.50   | 27.70 | 138.8                        | 133.9    | 1.039                                          | 0.738          | 0.421   | 0.544   | 0.317   |
| Мау                                    | 140.3                         | 78.60   | 28.60 | 136.9                        | 131.7    | 1.027                                          | 0.808          | 0.436   | 0.501   | 0.373   |
| June                                   | 132.0                         | 77.80   | 27.80 | 128.3                        | 123.5    | 0.967                                          | 0.738          | 0.380   | 0.490   | 0.359   |
| July                                   | 134.4                         | 87.20   | 27.80 | 131.1                        | 125.8    | 0.994                                          | 0.773          | 0.425   | 0.496   | 0.349   |
| August                                 | 132.2                         | 87.20   | 27.80 | 130.1                        | 125.2    | 0.980                                          | 0.808          | 0.420   | 0.472   | 0.388   |
| September                              | 129.2                         | 79.00   | 27.10 | 128.8                        | 124.0    | 0.968                                          | 0.703          | 0.379   | 0.490   | 0.324   |
| October                                | 138.8                         | 82.60   | 27.40 | 140.4                        | 135.5    | 1.056                                          | 0.808          | 0.431   | 0.549   | 0.377   |
| November                               | 117.6                         | 79.20   | 26.70 | 119.8                        | 115.4    | 0.907                                          | 0.773          | 0.384   | 0.440   | 0.389   |
| December                               | 115.0                         | 73.20   | 26.29 | 118.1                        | 113.6    | 0.896                                          | 0.738          | 0.382   | 0.429   | 0.356   |
| Year                                   | 1597.2                        | 953.59  | 27.58 | 1596.2                       | 1537.5   | 12.005                                         | 9.174          | 4.912   | 6.054   | 4.262   |
|                                        |                               |         |       |                              |          |                                                |                |         |         |         |
| DiffHor Horizontal diffuse irradiation |                               |         |       | FArray                       | Effectiv | Effective energy at the output of the array    |                |         |         |         |
| T Amb T amb                            |                               |         |       | E llser                      | Energy   | Energy supplied to the user                    |                |         |         |         |
| Glob                                   | Global incident in coll plane |         |       | E_Solar                      | Energy   | Energy from the sun                            |                |         |         |         |
| 0.01                                   |                               |         |       | EUnused                      | Unuser   | Unused energy (battery full no grid injection) |                |         |         |         |
|                                        |                               |         |       | EFEGrid Energy from the grid |          |                                                | gria injection |         |         |         |
|                                        | Errond Energy from the grid   |         |       |                              |          |                                                |                |         |         |         |




| PVSYST V6.86                                                                                                                                                                                                                                     |                  |                                                                                                          |                                                                           |                                                                  |                                              | 21/04/20                                                          | Page 8/8                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|-------------------------------|--|
|                                                                                                                                                                                                                                                  |                  | Grid-Connec                                                                                              | ted Syster                                                                | m: P50 - P90                                                     | evaluation                                   |                                                                   |                               |  |
| Project ·                                                                                                                                                                                                                                        |                  | Taman Midah                                                                                              | (NFM)                                                                     |                                                                  |                                              |                                                                   |                               |  |
| Simulation vari                                                                                                                                                                                                                                  | iant :           | SELCO - avera                                                                                            | age family - 9                                                            | )kw                                                              |                                              |                                                                   |                               |  |
| Main system par                                                                                                                                                                                                                                  | rameters         |                                                                                                          | System type                                                               | Sheds on ground                                                  | d                                            |                                                                   |                               |  |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                                                                                                        | ion              | Lii<br>N<br>Daily househc                                                                                | near shadings<br>tilt<br>Model<br>Ib. of modules<br>Model<br>Id consumers | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the | azimu<br>Pno<br>Pnom tol<br>Pno<br>year Glob | th 0°<br>m 320 Wp<br>al <b>8.96 kV</b><br>m 8.00 kV<br>al 9174 kV | V <b>p</b><br>V ac<br>Wh/year |  |
| Evaluation of the                                                                                                                                                                                                                                | e Produc         | tion probability f                                                                                       | orecast                                                                   |                                                                  |                                              |                                                                   |                               |  |
| The probability dis                                                                                                                                                                                                                              | stribution       | of the system proc                                                                                       | luction forecast                                                          | for different years                                              | is mainly deper                              | ndent                                                             |                               |  |
| on the meteo data                                                                                                                                                                                                                                | a used for       | the simulation, an                                                                                       | d depends on t                                                            | he following choice                                              | es:                                          |                                                                   |                               |  |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                                                                                                                                                                       | e<br>n<br>bility | Year devia                                                                                               | Kind<br>tion from aver.<br>Variance                                       | MeteoNorm 7.2 st<br>Not defined<br>3 %<br>0.5 %                  | tation<br>Ye                                 | ar 1995                                                           |                               |  |
| The probability distribution variance is also depending on some system parameters uncertainties<br>Specified Deviation PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soiling and mismatch uncertainties 1.0 % |                  |                                                                                                          |                                                                           |                                                                  |                                              |                                                                   |                               |  |
| Global variability                                                                                                                                                                                                                               | (meteo +         | system)                                                                                                  | Variance                                                                  | 1.9 %                                                            | (quadratic sur                               | n)                                                                |                               |  |
| Annual productior                                                                                                                                                                                                                                | n probabil       | ity                                                                                                      | Variability<br>P50<br>P90<br>P95                                          | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                     |                                              |                                                                   |                               |  |
|                                                                                                                                                                                                                                                  |                  |                                                                                                          | Probability                                                               | distribution                                                     |                                              |                                                                   |                               |  |
|                                                                                                                                                                                                                                                  | Probability      | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>50 = C00 kWh<br>0.00<br> | X axis: no data fo                                                        | or the extremities definition                                    | on !                                         | 1.0                                                               |                               |  |
|                                                                                                                                                                                                                                                  |                  |                                                                                                          |                                                                           |                                                                  |                                              |                                                                   |                               |  |

|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                      | 1 1                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| PVSYST V6.86                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                      | 21/04/20 Page 1/8                                                                   |
| Grid-                                                                                                                                                                                              | Connected Systen                                                                                        | n: Simulation parameter                                                                                                                              | S                                                                                   |
| Project : Tam                                                                                                                                                                                      | an Midah (NEM)                                                                                          |                                                                                                                                                      |                                                                                     |
| Geographical Site                                                                                                                                                                                  | Kuala Lumpur/Subang                                                                                     | Count                                                                                                                                                | ry <b>Malaysia</b>                                                                  |
| Situation                                                                                                                                                                                          | Latitude                                                                                                | 3 12° N Longitur                                                                                                                                     | le 101.55° E                                                                        |
| Time defined as                                                                                                                                                                                    | Legal Time                                                                                              | Time zone UT+8 Altitud                                                                                                                               | de 17 m                                                                             |
| Motoo data:                                                                                                                                                                                        | Albedo                                                                                                  | 0.20<br>MotooNorm 7.2 station - Syntheti                                                                                                             |                                                                                     |
|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                      |                                                                                     |
| Simulation variant : SEL                                                                                                                                                                           | CO - average family - 9                                                                                 | )kw                                                                                                                                                  |                                                                                     |
|                                                                                                                                                                                                    | Simulation date                                                                                         | 21/04/20 16h19                                                                                                                                       |                                                                                     |
| Simulation parameters                                                                                                                                                                              | System type                                                                                             | Sheds on ground                                                                                                                                      |                                                                                     |
| <b>Collector Plane Orientation</b>                                                                                                                                                                 | Tilt                                                                                                    | 5° Azimut                                                                                                                                            | th 0°                                                                               |
| Models used                                                                                                                                                                                        | Transposition                                                                                           | Perez Diffus                                                                                                                                         | se Perez, Meteonorm                                                                 |
| Horizon                                                                                                                                                                                            | Free Horizon                                                                                            |                                                                                                                                                      |                                                                                     |
| Near Shadings                                                                                                                                                                                      | Linear shadings                                                                                         |                                                                                                                                                      |                                                                                     |
| Storage                                                                                                                                                                                            | Kind                                                                                                    | Self-consumption, No grid reinject                                                                                                                   | ion                                                                                 |
|                                                                                                                                                                                                    | Charging strategy<br>Discharging strategy                                                               | When excess solar power is availa<br>As soon as power is needed                                                                                      | able                                                                                |
| User's needs : Da                                                                                                                                                                                  | ily household consumers<br>average                                                                      | Constant over the year<br>11.1 kWh/Day                                                                                                               |                                                                                     |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristics (50<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>0°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>14 modules In paralle<br>28 Unit Nom. Powe<br>8.96 kWp At operating cond<br>470 V I mp<br>54.3 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>d. 8.05 kWp (50°C)<br>p 17 A<br>ea 48.2 m <sup>2</sup> |
| Inverter<br>Custom parameters definition<br>Characteristics                                                                                                                                        | Model<br>Manufacturer<br>Operating Voltage                                                              | SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Unit Nom. Power<br>Max. power (=>40°C                                                              | er 8.00 kWac<br>C) 8.80 kWac                                                        |
| invener pack                                                                                                                                                                                       | IND. OF Inverters                                                                                       | 2 MPPT 50 % Total Pow<br>Pnom rat                                                                                                                    | io 1.12                                                                             |
| Battery                                                                                                                                                                                            | Model                                                                                                   | PVX-2120L                                                                                                                                            |                                                                                     |
| Battery Pack Characteristics                                                                                                                                                                       | Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                          | Concorde<br>3 in series x 4 in parallel<br>36 V Nominal Capaci<br>50.0 % Stored energy<br>Fixed (20°C)                                               | ty 784 Ah (C10)<br>gy 14.1 kWh                                                      |
| Battery input charger                                                                                                                                                                              | Model                                                                                                   | Generic                                                                                                                                              |                                                                                     |
| Battery to Grid inverter                                                                                                                                                                           | Max. charging power<br>Model                                                                            | 7.5 kWdc Max./ Euro efficienc<br>Generic                                                                                                             | y 97.0/95.0 %                                                                       |
|                                                                                                                                                                                                    | Max. discharging power                                                                                  | 5.2 kWac Max./ Euro efficienc                                                                                                                        | y 97.0/95.0 %                                                                       |
| DV Arrow loop fasters                                                                                                                                                                              |                                                                                                         |                                                                                                                                                      |                                                                                     |
| Thermal Loss factors                                                                                                                                                                               | Lie (const)                                                                                             | 20.0 \//m2k                                                                                                                                          | d) 0.0 \//m2k / m/a                                                                 |
|                                                                                                                                                                                                    | Global array res                                                                                        | 465 mOhm Loss Fractic                                                                                                                                | on 15% at STC                                                                       |
|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                      |                                                                                     |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                                    | Page 2/8 |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|-------------------------------------------------------------|----------|--|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                                           |          |  |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | tion -0.8 %<br>tion 1.0 % at MPP<br>tion 0.10 %<br>am. 0.05 |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |



| PVSYST V6.86                                                                                |                                                       |                                                         |                                                                     | 21/                                                 | /04/20 Page 4/8                                                            |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|--|
| (                                                                                           | Grid-Connected S                                      | System                                                  | n: Detailed Use                                                     | er's needs                                          |                                                                            |  |
| Brojoct ·                                                                                   | Taman Midah (NEN                                      | <i>n</i> )                                              |                                                                     |                                                     |                                                                            |  |
|                                                                                             |                                                       | //)                                                     |                                                                     |                                                     |                                                                            |  |
| Simulation variant :                                                                        | SELCO - average fa                                    | amily - 9                                               | )kw                                                                 |                                                     |                                                                            |  |
| Main system parameters                                                                      | Syste                                                 | em type                                                 | Sheds on ground                                                     |                                                     |                                                                            |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear s<br>Nb. of r<br>Daily household cor           | hadings<br>tilt<br>Model<br>modules<br>Model<br>nsumers | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the ye | azimuth<br>Pnom<br>Pnom total<br>Pnom<br>ear Global | h 0°<br>n 320 Wp<br>al <b>8.96 kWp</b><br>n 8.00 kW ac<br>al 4045 kWh/year |  |
| Daily household consum                                                                      | ers, Constant over the                                | e year, av                                              | verage = 11.1 kWh/o                                                 | day                                                 |                                                                            |  |
|                                                                                             |                                                       | Annua                                                   | l values                                                            |                                                     |                                                                            |  |
|                                                                                             | Use 2 days a week                                     | Number                                                  | Power                                                               | Use                                                 | Energy                                                                     |  |
| Lamps (LED or fluo)                                                                         |                                                       | 28                                                      | 18 W/lamp                                                           | 6 h/day                                             | / 3024 Wh/day                                                              |  |
| TV / PC / Mobile                                                                            |                                                       | 2                                                       | 70 W/app                                                            | 10 h/day                                            | / 1400 Wh/day                                                              |  |
| Iron                                                                                        |                                                       | 1                                                       | 1200 W/app                                                          | 1 h/day                                             | / 1200 Wh/day                                                              |  |
| Fridge / Deep-freeze                                                                        |                                                       | 1                                                       |                                                                     | 24 Wh/day                                           | / 3000 Wh/day                                                              |  |
| Dish- & Cloth-washers                                                                       |                                                       | 1                                                       |                                                                     | 1 Wh/day                                            | / 500 Wh/day                                                               |  |
| Instant water heater                                                                        |                                                       | 2                                                       | 2000 W tot                                                          | 2 h/day                                             | / 8000 Wh/day                                                              |  |
| Aircond                                                                                     |                                                       | 3                                                       | 750 W tot                                                           | 10 h/day                                            | / 21375 Wh/day                                                             |  |
| Stand-by consumers                                                                          |                                                       |                                                         |                                                                     | 24 h/day                                            | / 24 Wh/day                                                                |  |
| Total daily energy                                                                          | 5000<br>4000<br>1000<br>0<br>3000<br>0<br>3<br>3<br>3 | Hourly                                                  | <b>/ profile</b>                                                    | 24                                                  | 38523 Wh/day                                                               |  |

| PVSYST V6.86               |                            |                              | 21/04/20          | Page 5/8    |
|----------------------------|----------------------------|------------------------------|-------------------|-------------|
|                            | Grid-Connected S           | ystem: Main results          |                   |             |
| Project :                  | Taman Midah (NEM)          |                              |                   |             |
| Simulation variant :       | SELCO - average family - 9 | )kw                          |                   |             |
| Main system parameters     | System type                | Sheds on ground              |                   |             |
| Near Shadings              | Linear shadings            |                              |                   |             |
| PV Field Orientation       | tilt                       | 5° azimut                    | th 0°             |             |
| PV modules                 | Model                      | JAM6-72-320/SI Pnoi          | m 320 Wp          |             |
| PV Array                   | Nb. of modules             | 28 Pnom tot                  | al <b>8.96 kV</b> | /р          |
| Inverter                   | Model                      | SUN2000L-8KTL Pnoi           | m 8.00 kW         | / ac        |
| User's needs               | Daily household consumers  | Constant over the year Globa | al 4045 kV        | Vh/year     |
| Main simulation results    |                            |                              |                   |             |
| System Production          | Produced Energy            | 11.78 MWh/year Specific proc | d. 1315 k\        | Vh/kWp/year |
|                            | Performance Ratio PR       | 20.55 % Solar Fraction S     | F 72.65 %         | )           |
| Battery ageing (State of W | ear) Cycles SOW            | 88.4% Static SO              | N 80.0%           |             |
|                            | Battery lifetime           | 5.0 years                    |                   |             |







## SELCO - average family - 9kw Balances and main results

|                         | GlobHor            | DiffHor            | T Amb           | GlobInc            | GlobEff            | EArray                                          | E User      | E Solar             | EUnused      | EFrGrid      |
|-------------------------|--------------------|--------------------|-----------------|--------------------|--------------------|-------------------------------------------------|-------------|---------------------|--------------|--------------|
|                         | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | °C              | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | MWh                                             | MWh         | MWh                 | MWh          | MWh          |
| January                 | 133.0              | 82.20              | 28.10           | 136.3              | 131.2              | 1.016                                           | 0.385       | 0.278               | 0.646        | 0.107        |
| February                | 134.6              | 67.90              | 27.70           | 137.4              | 132.8              | 1.031                                           | 0.308       | 0.245               | 0.717        | 0.063        |
| March                   | 149.8              | 88.20              | 28.00           | 150.3              | 144.9              | 1.125                                           | 0.308       | 0.235               | 0.816        | 0.074        |
| April                   | 140.3              | 70.50              | 27.70           | 138.8              | 133.9              | 1.039                                           | 0.347       | 0.258               | 0.724        | 0.088        |
| Мау                     | 140.3              | 78.60              | 28.60           | 136.9              | 131.7              | 1.027                                           | 0.347       | 0.238               | 0.698        | 0.109        |
| June                    | 132.0              | 77.80              | 27.80           | 128.3              | 123.5              | 0.967                                           | 0.308       | 0.230               | 0.663        | 0.078        |
| July                    | 134.4              | 87.20              | 27.80           | 131.1              | 125.8              | 0.994                                           | 0.385       | 0.276               | 0.657        | 0.109        |
| August                  | 132.2              | 87.20              | 27.80           | 130.1              | 125.2              | 0.980                                           | 0.308       | 0.217               | 0.671        | 0.091        |
| September               | 129.2              | 79.00              | 27.10           | 128.8              | 124.0              | 0.968                                           | 0.308       | 0.217               | 0.678        | 0.091        |
| October                 | 138.8              | 82.60              | 27.40           | 140.4              | 135.5              | 1.056                                           | 0.385       | 0.288               | 0.691        | 0.098        |
| November                | 117.6              | 79.20              | 26.70           | 119.8              | 115.4              | 0.907                                           | 0.308       | 0.202               | 0.636        | 0.106        |
| December                | 115.0              | 73.20              | 26.29           | 118.1              | 113.6              | 0.896                                           | 0.347       | 0.254               | 0.581        | 0.092        |
| Year                    | 1597.2             | 953.59             | 27.58           | 1596.2             | 1537.5             | 12.005                                          | 4.045       | 2.938               | 8.178        | 1.106        |
|                         | •                  | •                  |                 |                    |                    |                                                 |             |                     | •            |              |
| Legends: Glob           | Hor I              | Horizontal glo     | obal irradiatio | on                 |                    | GlobEff                                         | Effectiv    | e Global, co        | orr. for IAM | and shadings |
| Diff                    | lor I              | Horizontal dif     | fuse irradiat   | ion                |                    | EArray                                          | Effectiv    | e energy at         | the output   | of the array |
| T_A                     | mb <sup>-</sup>    | Г amb.             |                 |                    |                    | E_User                                          | Energy      | supplied to         | the user     |              |
| Glob                    | Inc (              | Global incider     | nt in coll. pla | ne                 |                    | E_Solar                                         | Energy      | Energy from the sun |              |              |
|                         |                    |                    |                 | EUnused            | Unused             | Unused energy (battery full, no grid injection) |             |                     |              |              |
| EFrGrid Energy from the |                    |                    |                 |                    |                    |                                                 | from the gr | id                  |              |              |





| PVSYST V6.86                                                                                                                                                                                                                                                                      |                                   |                                                                                  |                                                                          |                                                                           |                                               | 21/04/20                                                          | Page 8/8                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|------------------------------|--|--|
|                                                                                                                                                                                                                                                                                   |                                   | Grid-Connec                                                                      | ted Syster                                                               | m: P50 - P90 (                                                            | evaluation                                    |                                                                   |                              |  |  |
| Project ·                                                                                                                                                                                                                                                                         |                                   | Taman Midah                                                                      | (NEM)                                                                    |                                                                           |                                               |                                                                   |                              |  |  |
| Simulation var                                                                                                                                                                                                                                                                    | iant :                            | SELCO - avera                                                                    | ige family - 9                                                           | )kw                                                                       |                                               |                                                                   |                              |  |  |
| Main system pa                                                                                                                                                                                                                                                                    | rameters                          | i                                                                                | System type                                                              | Sheds on ground                                                           |                                               |                                                                   |                              |  |  |
| Near Shadings<br>PV Field Orientat<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                                                                                                                                          | ion                               | Lir<br>N<br>Daily househo                                                        | near shadings<br>tilt<br>Model<br>b. of modules<br>Model<br>Id consumers | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the y        | azimut<br>Pno<br>Pnom tot<br>Pno<br>year Glob | th 0°<br>m 320 Wp<br>al <b>8.96 kV</b><br>m 8.00 kV<br>al 4045 k\ | <b>/p</b><br>/ ac<br>Vh/year |  |  |
| Evaluation of th                                                                                                                                                                                                                                                                  | e Produc                          | tion probability f                                                               | orecast                                                                  |                                                                           |                                               |                                                                   |                              |  |  |
| The probability di                                                                                                                                                                                                                                                                | istribution                       | of the system prod                                                               | luction forecast                                                         | t for different years is                                                  | s mainly depen                                | dent                                                              |                              |  |  |
| on the meteo dat<br>Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                                                                                                                                                                                    | a used for<br>ce<br>on<br>ability | r the simulation, an<br>Year deviat                                              | d depends on f<br>Kind<br>tion from aver.<br>Variance                    | the following choices<br>MeteoNorm 7.2 sta<br>Not defined<br>3 %<br>0.5 % | s:<br>ation<br>Yea                            | ar 1995                                                           |                              |  |  |
| The probability distribution variance is also depending on some system parameters uncertainties<br>Specified Deviation PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soiling and mismatch uncertainties 1.0 %<br>Degradation uncertainty 1.0 % |                                   |                                                                                  |                                                                          |                                                                           |                                               |                                                                   |                              |  |  |
| Global variability                                                                                                                                                                                                                                                                | (meteo +                          | system)                                                                          | Variance                                                                 | 1.9 %                                                                     | (quadratic sun                                | n)                                                                |                              |  |  |
| Annual productio                                                                                                                                                                                                                                                                  | n probabil                        | lity                                                                             | Variability<br>P50<br>P90<br>P95                                         | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                              |                                               |                                                                   |                              |  |  |
|                                                                                                                                                                                                                                                                                   |                                   |                                                                                  | Probability                                                              | distribution                                                              |                                               |                                                                   |                              |  |  |
|                                                                                                                                                                                                                                                                                   | Probability                       | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br> | X axis: no data fo                                                       | or the extremities definition                                             | n !<br>                                       | <b>1</b> .0                                                       |                              |  |  |

|                                                                                                                        |                                              |                                                                            |                                                                       |                                                                 | 1                                       |                |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|----------------|
| PVSYST V6.86                                                                                                           |                                              |                                                                            |                                                                       |                                                                 | 21/04/20                                | Page 1/8       |
|                                                                                                                        | Grid                                         | -Connected Systen                                                          | n: Simulati                                                           | on parameter                                                    | S                                       |                |
| Proiect :                                                                                                              | Tan                                          | nan Midah (NEM)                                                            |                                                                       |                                                                 |                                         |                |
| Geographical Site                                                                                                      |                                              | Kuala Lumpur/Subang                                                        |                                                                       | Count                                                           | ∾ Malavs                                | ia             |
| Situation                                                                                                              |                                              | l atitude                                                                  | 3 12° N                                                               | Lonaituc                                                        | le 101.55°                              | F              |
| Time defined as                                                                                                        |                                              | Legal Time                                                                 | Time zone UT                                                          | Γ+8 Altituc                                                     | le 17 m                                 | _              |
| Meteo data:                                                                                                            |                                              | Albedo<br>Kuala Lumpur/Subang                                              | 0.20<br>MeteoNorm 7                                                   | 7.2 station - Syntheti                                          | C                                       |                |
|                                                                                                                        |                                              |                                                                            |                                                                       | 2 station by the                                                |                                         |                |
| Simulation variar                                                                                                      | nt: SEL                                      | .CO - big family - 6kw                                                     |                                                                       |                                                                 |                                         |                |
|                                                                                                                        |                                              | Simulation date                                                            | 21/04/20 15h                                                          | 44                                                              |                                         |                |
| Simulation parame                                                                                                      | eters                                        | System type                                                                | Sheds on gro                                                          | ound                                                            |                                         |                |
| Collector Plane Or                                                                                                     | rientation                                   | Tilt                                                                       | 5°                                                                    | Azimu                                                           | h 0°                                    |                |
| Models used                                                                                                            |                                              | Transposition                                                              | Perez                                                                 | Diffus                                                          | e Perez, I                              | Veteonorm      |
| Horizon                                                                                                                |                                              | Free Horizon                                                               |                                                                       |                                                                 |                                         |                |
| Near Shadings                                                                                                          |                                              | Linear shadings                                                            |                                                                       |                                                                 |                                         |                |
| Storage                                                                                                                |                                              | Kind                                                                       | Self-consumpt                                                         | tion, No grid reinjecti                                         | on                                      |                |
|                                                                                                                        |                                              | Charging strategy<br>Discharging strategy                                  | When excess<br>As soon as po                                          | solar power is availa<br>wer is needed                          | ıble                                    |                |
| User's needs :                                                                                                         | D                                            | aily household consumers<br>average                                        | Constant over<br>32.6 kWh/Da                                          | r the year<br>y                                                 |                                         |                |
| PV Array Character<br>PV module<br>Original PVsyst da<br>Number of PV modu<br>Total number of PV<br>Array global power | <b>ristics</b><br>atabase<br>iles<br>modules | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC) | <b>JAM6-72-320</b><br>JA Solar<br>10 modules<br>20<br><b>6.40 kWp</b> | <b>)/SI</b><br>In parall<br>Unit Nom. Powe<br>At operating cond | el 2 string:<br>er 320 Wp<br>1. 5.75 kW | s<br>/p (50°C) |
| Array operating char                                                                                                   | acteristics (5                               | 50°C) U mpp<br>Module area                                                 | 336 V<br><b>38-8 m²</b>                                               | l mp<br>Cell are                                                | p 17A<br>a 344m²                        |                |
| Inverter<br>Original PVsyst d<br>Characteristics                                                                       | latabase                                     | Model<br>Manufacturer<br>Operating Voltage                                 | <b>SUN2000L-5I</b><br>Huawei Techi<br>90-500 V                        | KTL<br>nologies<br>Unit Nom. Powe<br>Max. power (=>40°0         | er 5.00 kV<br>C) 5.50 kV                | Vac<br>Vac     |
| Inverter pack                                                                                                          |                                              | Nb. of inverters                                                           | 2 * MPPT 50                                                           | % Total Powe<br>Pnom rat                                        | er 5.0 kWa<br>io 1.28                   | ac             |
| Battery                                                                                                                |                                              | Model                                                                      | PVX-2120L                                                             |                                                                 |                                         |                |
| Battery Pack Chara                                                                                                     | cteristics                                   | Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC            | Concorde<br>2 in series x 4<br>24 V<br>50.0 %                         | 4 in parallel<br>Nominal Capaci<br>Stored energ                 | ty 784 Ah<br>jy 9.4 kWł                 | (C10)<br>า     |
|                                                                                                                        |                                              | I emperature                                                               | Fixed (20°C)                                                          |                                                                 |                                         |                |
| Battery input charged<br>Battery to Grid inv                                                                           | ger<br>rerter                                | Model<br>Max. charging power<br>Model                                      | Generic<br>5.4 kWdc<br>Generic                                        | Max./ Euro efficienc                                            | y 97.0/95                               | .0 %           |
| -                                                                                                                      |                                              | Max. discharging power                                                     | 5.6 kWac                                                              | Max./ Euro efficienc                                            | y 97.0/95                               | .0 %           |
|                                                                                                                        |                                              |                                                                            |                                                                       |                                                                 |                                         |                |
| PV Array loss facto                                                                                                    | ors                                          | 11 7 3                                                                     |                                                                       | / .                                                             |                                         | -216 / - /     |
| I nermal Loss factor                                                                                                   |                                              | Uc (const)                                                                 | $20.0 \text{ W/m}^2\text{K}$                                          | Uv (wind                                                        | u.u.w/n 1.5 º/ כ                        | n~K / M/S      |
|                                                                                                                        |                                              | Giobai altay les.                                                          | 332 munin                                                             | LUSS FIACIO                                                     | n 1.0 % a                               | 1010           |
| L                                                                                                                      |                                              |                                                                            |                                                                       |                                                                 |                                         |                |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                                    | Page 2/8 |  |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|-------------------------------------------------------------|----------|--|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                                           |          |  |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | tion -0.8 %<br>tion 1.0 % at MPP<br>tion 0.10 %<br>am. 0.05 |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |
|                                                                               |                                                        |        |                      |                                                          |                                                             |          |  |



| PVSYST V6.86           |                                                                   |               |                                                           |                 | 21/04/20         | Page 4/8     |
|------------------------|-------------------------------------------------------------------|---------------|-----------------------------------------------------------|-----------------|------------------|--------------|
| (                      | Grid-Connected                                                    | System        | n. Detailed Lls                                           | er's needs      |                  |              |
|                        |                                                                   | a)            | i. Detailed 03                                            |                 |                  |              |
| Project :              | Taman Midah (NEN                                                  | /1)           |                                                           |                 |                  |              |
| Simulation variant :   | SELCO - big family                                                | - 6kw         |                                                           |                 |                  |              |
| Main system parameters | Syste                                                             | em type       | Sheds on ground                                           |                 |                  |              |
| Near Shadings          | Linear s                                                          | hadings       | <b>C</b> 0                                                |                 | - 00             |              |
| PV Field Orientation   |                                                                   | tiit<br>Model | 5°<br>JAM6-72-320/SI                                      | azimuti<br>Pnon | n 0°<br>n 320.Wn | 1            |
| PV Array               | Nb. of r                                                          | nodules       | 20                                                        | Pnom tota       | al 6.40 kV       | Vp           |
| Inverter               |                                                                   | Model         | SUN2000L-5KTL                                             | Pnon            | n 5.00 kV        | / ac         |
| User's needs           | Daily household cor                                               | sumers        | Constant over the y                                       | /ear Globa      | al 11.91 N       | 1Wh/year     |
| Daily household consum | ers, Constant over the                                            | e year, a     | verage = 32.6 kWh/                                        | /day            |                  |              |
|                        |                                                                   | Annua         | l values                                                  |                 |                  |              |
|                        | Use 5 days a week                                                 | Number        | Power                                                     | Use             |                  | Energy       |
| Lamps (LED or fluo)    |                                                                   | 30            | 18 W/lamp                                                 | 5 h/            | /day 2           | 2700 Wh/day  |
| TV / PC / Mobile       |                                                                   | 3             | 70 W/app                                                  | 14 h/           | /day 2           | 2940 Wh/day  |
| Iron                   |                                                                   | 1             | 1200 W/app                                                | 1 h/            | /day 1           | 200 Wh/day   |
| Fridge / Deep-freeze   |                                                                   | 1             |                                                           | 24 Wh           | /day 3           | 3000 Wh/day  |
| Dish- & Cloth-washers  |                                                                   | 1             |                                                           | 2 Wh            | /day             | 750 Wh/day   |
| Instant water heater   |                                                                   | 2             | 2000 W tot                                                | 2 h/            | /day 8           | 3000 Wh/day  |
| Aircond                |                                                                   | 6             | 750 W tot                                                 | 6 h/            | /day 27          | 2000 Wh/day  |
| Stand-by consumers     |                                                                   |               |                                                           | 24 h/           | /day             | 24 Wh/day    |
| Total daily energy     |                                                                   |               |                                                           |                 | 43               | of 14 wh/day |
|                        | Fraction of daily needs 3000 0 0000 0 0000 0 0000 0 0000 0 0000 0 | Hourly        | 7 <b>profile</b><br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 |                  |              |

| PVSYST V6.86             |                           |                              | 21/04/20 Page 5/8    |
|--------------------------|---------------------------|------------------------------|----------------------|
|                          | Grid-Connected S          | ystem: Main results          |                      |
| Project :                | Taman Midah (NEM)         |                              |                      |
| Simulation variant :     | SELCO - big family - 6kw  |                              |                      |
| Main system paramete     | System type               | Sheds on ground              |                      |
| Near Shadings            | Linear shadings           |                              |                      |
| PV Field Orientation     | tilt                      | 5° azimut                    | h O°                 |
| PV modules               | Model                     | JAM6-72-320/SI Pnor          | n 320 Wp             |
| PV Array                 | Nb. of modules            | 20 Pnom tota                 | al <b>6.40 kWp</b>   |
| Inverter                 | Model                     | SUN2000L-5KTL Pnor           | n 5.00 kW ac         |
| User's needs             | Daily household consumers | Constant over the year Globa | al 11.91 MWh/year    |
| Main simulation result   | S                         |                              |                      |
| System Production        | Produced Energy           | 8.41 MWh/year Specific proc  | I. 1314 kWh/kWp/year |
|                          | Performance Ratio PR      | 36.09 % Solar Fraction SI    | = 30.97 %            |
| Battery ageing (State of | Wear) Cycles SOW          | 80.8% Static SOV             | V 80.0%              |
|                          | Battery lifetime          | 5.0 years                    |                      |







## SELCO - big family - 6kw Balances and main results

| GlobHor            | DiffHor                                                                                                                                                                 | T_Amb                                                                                                                                                                                                                                         | GlobInc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GlobEff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EArray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_User                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E_Solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EUnused                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EFrGrid                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kWh/m <sup>2</sup> | kWh/m²                                                                                                                                                                  | °C                                                                                                                                                                                                                                            | kWh/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MWh                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 133.0              | 82.20                                                                                                                                                                   | 28.10                                                                                                                                                                                                                                         | 136.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.723                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 134.6              | 67.90                                                                                                                                                                   | 27.70                                                                                                                                                                                                                                         | 137.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 132.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.622                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 149.8              | 88.20                                                                                                                                                                   | 28.00                                                                                                                                                                                                                                         | 150.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 144.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.686                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 140.3              | 70.50                                                                                                                                                                   | 27.70                                                                                                                                                                                                                                         | 138.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 133.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.643                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 140.3              | 78.60                                                                                                                                                                   | 28.60                                                                                                                                                                                                                                         | 136.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.720                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 132.0              | 77.80                                                                                                                                                                   | 27.80                                                                                                                                                                                                                                         | 128.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.670                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 134.4              | 87.20                                                                                                                                                                   | 27.80                                                                                                                                                                                                                                         | 131.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 132.2              | 87.20                                                                                                                                                                   | 27.80                                                                                                                                                                                                                                         | 130.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.733                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 129.2              | 79.00                                                                                                                                                                   | 27.10                                                                                                                                                                                                                                         | 128.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 124.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.627                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 138.8              | 82.60                                                                                                                                                                   | 27.40                                                                                                                                                                                                                                         | 140.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.718                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 117.6              | 79.20                                                                                                                                                                   | 26.70                                                                                                                                                                                                                                         | 119.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.714                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 115.0              | 73.20                                                                                                                                                                   | 26.29                                                                                                                                                                                                                                         | 118.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.674                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1597.2             | 953.59                                                                                                                                                                  | 27.58                                                                                                                                                                                                                                         | 1596.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1537.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.219                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -lor -             | Iorizontal de                                                                                                                                                           | bal irradiatio                                                                                                                                                                                                                                | n .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GlobEff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Effectiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Clobal co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rr for IAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and shadings                                                                                                                                                                                                                                                                                                                                                                                                                              |
| or F               | Horizontal dif                                                                                                                                                          | fuse irradiati                                                                                                                                                                                                                                | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FArray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effectiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e energy at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the output i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of the array                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nh 1               | F amh                                                                                                                                                                   |                                                                                                                                                                                                                                               | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E LISOr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | supplied to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the user                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or the array                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | Slobal incider                                                                                                                                                          | nt in coll pla                                                                                                                                                                                                                                | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E_OSCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy supplied to the user                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                                                                                                                                         | n in coil. più                                                                                                                                                                                                                                | ne -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ellnused                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Linergy from the sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enorgy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from the ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gria injection                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | GlobHor<br><u>kWh/m²</u><br>133.0<br>134.6<br>149.8<br>140.3<br>140.3<br>132.0<br>134.4<br>132.2<br>129.2<br>138.8<br>117.6<br>115.0<br>1597.2<br>Hor<br>For<br>nc<br>C | GlobHor DiffHor   kWh/m² kWh/m²   133.0 82.20   134.6 67.90   149.8 88.20   140.3 70.50   140.3 78.60   132.0 77.80   132.2 87.20   129.2 79.00   138.8 82.60   117.6 79.20   15.0 73.20   1597.2 953.59   Horizontal difficit Global incider | GlobHor DiffHor T_Amb   kWh/m² °C   133.0 82.20 28.10   134.6 67.90 27.70   149.8 88.20 28.00   140.3 70.50 27.70   140.3 78.60 28.60   132.0 77.80 27.80   132.1 87.20 27.80   132.2 87.20 27.80   129.2 79.00 27.10   138.8 82.60 27.40   117.6 79.20 26.70   115.0 73.20 26.29   1597.2 953.59 27.58   Horizontal global irradiation or Horizontal diffuse irradiation or Horizontal dire or Horizontal diffuse irradiatire or Horizontal diffuse irrad | GlobHor DiffHor T_Amb GlobInc   kWh/m2 °C kWh/m2   133.0 82.20 28.10 136.3   134.6 67.90 27.70 137.4   149.8 88.20 28.00 150.3   140.3 70.50 27.70 138.8   140.3 78.60 28.60 136.9   132.0 77.80 27.80 128.3   134.4 87.20 27.80 131.1   132.2 87.20 27.80 130.1   129.2 79.00 27.10 128.8   138.8 82.60 27.40 140.4   117.6 79.20 26.70 119.8   115.0 73.20 26.29 118.1   1597.2 953.59 27.58 1596.2   Arr Horizontal diffuse irradiation 1596.2 1596.2   Nor Horizontal diffuse irradiation 1596.2 1596.2 | GlobHor DiffHor T_Amb GlobInc GlobEff   kWh/m2 kWh/m2 °C kWh/m2 kWh/m2   133.0 82.20 28.10 136.3 131.2   134.6 67.90 27.70 137.4 132.8   149.8 88.20 28.00 150.3 144.9   140.3 70.50 27.70 138.8 133.9   140.3 78.60 28.60 136.9 131.7   132.0 77.80 27.80 128.3 123.5   134.4 87.20 27.80 130.1 125.8   132.2 87.20 27.80 130.1 125.2   129.2 79.00 27.10 128.8 124.0   138.8 82.60 27.40 140.4 135.5   117.6 79.20 26.70 119.8 115.4   1507 2953.59 27.58 1596.2 1537.5   for Horizontal diffuse irradiation 1596.2 1537.5 <td< td=""><td>GlobHor DiffHor T_Amb GlobInc GlobEff EArray   kWh/m2 kWh/m2 °C kWh/m2 kWh/m2 MWh   133.0 82.20 28.10 136.3 131.2 0.726   134.6 67.90 27.70 137.4 132.8 0.737   149.8 88.20 28.00 150.3 144.9 0.804   140.3 70.50 27.70 138.8 133.9 0.742   140.3 78.60 28.60 136.9 131.7 0.734   132.0 77.80 27.80 128.3 123.5 0.691   134.4 87.20 27.80 131.1 125.2 0.700   132.2 87.20 27.80 130.1 125.2 0.700   129.2 79.00 27.10 128.8 124.0 0.648   117.6 79.20 26.70 119.8 115.4 0.640   1597.2 953.59 27.58 1596.2 1537.5 8.575</td><td>GlobHor DiffHor T_Amb GlobInc GlobEft EArray E_User   kWh/m2 kWh/m2 °C kWh/m2 kWh/m2 MWh MWh   133.0 82.20 28.10 136.3 131.2 0.726 1.049   134.6 67.90 27.70 137.4 132.8 0.737 0.912   149.8 88.20 28.00 150.3 144.9 0.804 1.004   140.3 70.50 27.70 138.8 133.9 0.742 0.958   140.3 78.60 28.60 136.9 131.7 0.734 1.049   132.0 77.80 27.80 128.3 123.5 0.691 0.958   134.4 87.20 27.80 130.1 125.2 0.700 1.049   129.2 79.00 27.10 128.8 124.0 0.691 0.912   138.8 82.60 27.40 140.4 135.5 0.754 1.049   117.6 79.20</td><td>GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_User E_Solar   kWh/m2 kWh/m2 °C kWh/m2 MWh MWh MWh   133.0 82.20 28.10 136.3 131.2 0.726 1.049 0.326   134.6 67.90 27.70 137.4 132.8 0.737 0.912 0.290   149.8 88.20 28.00 150.3 144.9 0.804 1.004 0.317   140.3 70.50 27.70 138.8 133.9 0.742 0.958 0.315   140.3 78.60 28.60 136.9 131.7 0.734 1.049 0.329   132.0 77.80 27.80 128.3 123.5 0.691 0.958 0.288   134.4 87.20 27.80 130.1 125.2 0.700 1.049 0.316   129.2 79.00 27.10 128.8 124.0 0.691 0.912 0.285   138.8</td></td<> <td>GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_User E_Solar EUnused   kWh/m2 kWh/m2 °C kWh/m2 MWh MUh MUh MUh MUh MIssitintin</td> | GlobHor DiffHor T_Amb GlobInc GlobEff EArray   kWh/m2 kWh/m2 °C kWh/m2 kWh/m2 MWh   133.0 82.20 28.10 136.3 131.2 0.726   134.6 67.90 27.70 137.4 132.8 0.737   149.8 88.20 28.00 150.3 144.9 0.804   140.3 70.50 27.70 138.8 133.9 0.742   140.3 78.60 28.60 136.9 131.7 0.734   132.0 77.80 27.80 128.3 123.5 0.691   134.4 87.20 27.80 131.1 125.2 0.700   132.2 87.20 27.80 130.1 125.2 0.700   129.2 79.00 27.10 128.8 124.0 0.648   117.6 79.20 26.70 119.8 115.4 0.640   1597.2 953.59 27.58 1596.2 1537.5 8.575 | GlobHor DiffHor T_Amb GlobInc GlobEft EArray E_User   kWh/m2 kWh/m2 °C kWh/m2 kWh/m2 MWh MWh   133.0 82.20 28.10 136.3 131.2 0.726 1.049   134.6 67.90 27.70 137.4 132.8 0.737 0.912   149.8 88.20 28.00 150.3 144.9 0.804 1.004   140.3 70.50 27.70 138.8 133.9 0.742 0.958   140.3 78.60 28.60 136.9 131.7 0.734 1.049   132.0 77.80 27.80 128.3 123.5 0.691 0.958   134.4 87.20 27.80 130.1 125.2 0.700 1.049   129.2 79.00 27.10 128.8 124.0 0.691 0.912   138.8 82.60 27.40 140.4 135.5 0.754 1.049   117.6 79.20 | GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_User E_Solar   kWh/m2 kWh/m2 °C kWh/m2 MWh MWh MWh   133.0 82.20 28.10 136.3 131.2 0.726 1.049 0.326   134.6 67.90 27.70 137.4 132.8 0.737 0.912 0.290   149.8 88.20 28.00 150.3 144.9 0.804 1.004 0.317   140.3 70.50 27.70 138.8 133.9 0.742 0.958 0.315   140.3 78.60 28.60 136.9 131.7 0.734 1.049 0.329   132.0 77.80 27.80 128.3 123.5 0.691 0.958 0.288   134.4 87.20 27.80 130.1 125.2 0.700 1.049 0.316   129.2 79.00 27.10 128.8 124.0 0.691 0.912 0.285   138.8 | GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_User E_Solar EUnused   kWh/m2 kWh/m2 °C kWh/m2 MWh MUh MUh MUh MUh MIssitintin |





| PVSYST V6.86                                                                             |                                   |                                                                                                       |                                                                                                              |                                                                      |                                                 | 21/04/20                                                         | Page 8/8                      |
|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|-------------------------------|
|                                                                                          |                                   | Grid-Conne                                                                                            | ected Syster                                                                                                 | m: P50 - P90 ev                                                      | aluation                                        |                                                                  |                               |
| Project :                                                                                |                                   | Taman Mida                                                                                            | h (NEM)                                                                                                      |                                                                      |                                                 |                                                                  |                               |
| Simulation var                                                                           | iant :                            | SELCO - big                                                                                           | family - 6kw                                                                                                 |                                                                      |                                                 |                                                                  |                               |
| Main system pa                                                                           | rameter                           | S                                                                                                     | System type                                                                                                  | Sheds on ground                                                      |                                                 |                                                                  |                               |
| Near Shadings<br>PV Field Orientat<br>PV modules<br>PV Array<br>Inverter<br>User's needs | tion                              | Daily house                                                                                           | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>hold consumers                                | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the yea | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>ar Globa | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kW<br>al 11.91 M | <b>∕p</b><br>/ ac<br>1Wh/year |
| Evaluation of th                                                                         | ie Produ                          | uction probability                                                                                    | / forecast                                                                                                   |                                                                      |                                                 |                                                                  |                               |
| The probability di<br>on the meteo data                                                  | istributio<br>a used fo           | n of the system pr<br>or the simulation,                                                              | oduction forecast<br>and depends on t                                                                        | t for different years is m<br>the following choices:                 | nainly depend                                   | dent                                                             |                               |
| Meteo data sourc<br>Meteo data<br>Specified Deviatic<br>Year-to-year varia               | ce<br>on<br>ability               | Year dev                                                                                              | Kind<br>viation from aver.<br>Variance                                                                       | MeteoNorm 7.2 static<br>Not defined<br>3 %<br>0.5 %                  | on<br>Yea                                       | ar 1995                                                          |                               |
| The probability di<br>Specified Deviatio                                                 | istributio<br>on<br>S<br>(meteo - | n variance is also<br>PV module mode<br>Inverter efficie<br>oiling and mismat<br>Degrada<br>+ system) | depending on so<br>lling/parameters<br>ency uncertainty<br>ch uncertainties<br>ation uncertainty<br>Variance | me system parameters<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (q | s uncertaintie<br>uadratic sum                  | s<br>ı)                                                          |                               |
| Annual production                                                                        | n probat                          | bility                                                                                                | Variability<br>P50<br>P90<br>P95                                                                             | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                         |                                                 |                                                                  |                               |
|                                                                                          |                                   |                                                                                                       | Probability                                                                                                  | distribution                                                         |                                                 |                                                                  |                               |
|                                                                                          | Dechodelite                       | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>P50 = 0 00 kWh<br>0.00<br>    | X axis: no data fo                                                                                           | or the extremities definition !                                      | <br>                                            | Title<br>1.0                                                     |                               |

| r                                                                                                                                                                              |                                                                                                                                      |                                                                                                                                                        |                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| PVSYST V6.86                                                                                                                                                                   |                                                                                                                                      |                                                                                                                                                        | 21/04/20 Page 1/8                                                     |
|                                                                                                                                                                                | Grid-Connected System                                                                                                                | n: Simulation parameters                                                                                                                               | 3                                                                     |
| Project :                                                                                                                                                                      | Taman Midah (NEM)                                                                                                                    |                                                                                                                                                        |                                                                       |
| Geographical Site                                                                                                                                                              | Kuala Lumpur/Subang                                                                                                                  | Countr                                                                                                                                                 | y <b>Malaysia</b>                                                     |
| Situation                                                                                                                                                                      | Latitude                                                                                                                             | 3.12° N Longitud                                                                                                                                       | e 101.55° E                                                           |
| Time defined as                                                                                                                                                                | Legal Time<br>Albedo                                                                                                                 | Time zone UT+8 Altitud                                                                                                                                 | e 17 m                                                                |
| Meteo data:                                                                                                                                                                    | Kuala Lumpur/Subang                                                                                                                  | MeteoNorm 7.2 station - Synthetic                                                                                                                      | 2                                                                     |
| Simulation variant :                                                                                                                                                           | SELCO - big family - 6kw                                                                                                             |                                                                                                                                                        |                                                                       |
|                                                                                                                                                                                | Simulation date                                                                                                                      | 21/04/20 15h45                                                                                                                                         |                                                                       |
| Simulation parameter                                                                                                                                                           | s System type                                                                                                                        | Sheds on ground                                                                                                                                        |                                                                       |
| Collector Plane Orien                                                                                                                                                          | tation Tilt                                                                                                                          | 5° Azimut                                                                                                                                              | h O°                                                                  |
| Models used                                                                                                                                                                    | Transposition                                                                                                                        | Perez Diffus                                                                                                                                           | e Perez, Meteonorm                                                    |
| Horizon                                                                                                                                                                        | Free Horizon                                                                                                                         |                                                                                                                                                        |                                                                       |
| Near Shadings                                                                                                                                                                  | Linear shadings                                                                                                                      |                                                                                                                                                        |                                                                       |
| Storage                                                                                                                                                                        | Kind<br>Charging strategy<br>Discharging strategy                                                                                    | Self-consumption, No grid reinjection<br>When excess solar power is availand<br>As soon as power is needed                                             | on<br>ble                                                             |
| User's needs :                                                                                                                                                                 | Daily household consumers<br>average                                                                                                 | Constant over the year<br>15.7 kWh/Day                                                                                                                 |                                                                       |
| PV Array Characterist<br>PV module<br>Original PVsyst datat<br>Number of PV modules<br>Total number of PV mod<br>Array global power<br>Array operating character<br>Total area | ics<br>Si-mono Model<br>base Manufacturer<br>In series<br>dules Nb. modules<br>Nominal (STC)<br>eristics (50°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>10 modules In paralle<br>20 Unit Nom. Powe<br>6.40 kWp At operating cond<br>336 V I mpp<br>38.8 m <sup>2</sup> Cell area | el 2 strings<br>r 320 Wp<br>l. 5.75 kWp (50°C)<br>p 17 A<br>a 34.4 m² |
| Inverter<br>Original PVsyst data<br>Characteristics                                                                                                                            | Model<br>base Manufacturer<br>Operating Voltage<br>Nb. of inverters                                                                  | SUN2000L-5KTL<br>Huawei Technologies<br>90-500 V Unit Nom. Powe<br>Max. power (=>40°C<br>2 * MPPT 50 % Total Powe                                      | er 5.00 kWac<br>3) 5.50 kWac<br>9r 5.0 kWac                           |
|                                                                                                                                                                                |                                                                                                                                      | Pnom rati                                                                                                                                              | o 1.28                                                                |
| Battery                                                                                                                                                                        | Model                                                                                                                                | PVX-2120L                                                                                                                                              |                                                                       |
| Battery Pack Character                                                                                                                                                         | ristics Nb. of units<br>Voltage<br>Discharging min. SOC                                                                              | 2 in series x 4 in parallel<br>24 V Nominal Capacit<br>50.0 % Stored energ<br>Fixed (20°C)                                                             | y 784 Ah (C10)<br>y 9.4 kWh                                           |
| Battery input charger                                                                                                                                                          | Model<br>Max. charging power                                                                                                         | Generic<br>5.4 kWdc Max./ Euro efficienc                                                                                                               | y 97.0/95.0 %                                                         |
|                                                                                                                                                                                | Max. discharging power                                                                                                               | 5.6 kWac Max./ Euro efficienc                                                                                                                          | y 97.0/95.0 %                                                         |
| <b>PV Array loss factors</b><br>Thermal Loss factor                                                                                                                            | Uc (const)                                                                                                                           | 20.0 W/m²K Uv (wind                                                                                                                                    | l) 0.0 W/m²K / m/s                                                    |
| Wiring Ohmic Loss                                                                                                                                                              | Global array res.                                                                                                                    | 332 mOhm Loss Fractio                                                                                                                                  | n 1.5 % at STC                                                        |
|                                                                                                                                                                                | •                                                                                                                                    |                                                                                                                                                        |                                                                       |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                     | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |



| PVSYST V6.86                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                           |              | 21/04/20            | Page 4/8            |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------|--------------|---------------------|---------------------|--|--|--|--|
|                               | Grid-Connected S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Svsten        | n: Detailed Us                                            | er's needs   |                     |                     |  |  |  |  |
| Project ·                     | Taman Midah (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br>/\        |                                                           |              |                     |                     |  |  |  |  |
| Cimulation variant            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ()<br>()      |                                                           |              |                     |                     |  |  |  |  |
| Simulation variant :          | SELCO - big family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 6KW         |                                                           |              |                     |                     |  |  |  |  |
| Main system parameters        | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | em type       | Sheds on ground                                           |              |                     |                     |  |  |  |  |
| Near Shadings                 | Linear s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hadings       |                                                           |              | • •                 |                     |  |  |  |  |
| PV Field Orientation          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tilt<br>Model | 5°<br>IAM6-72-320/SI                                      | azimuti      | 1 0°<br>n 320.Wn    |                     |  |  |  |  |
| PV Array                      | Nb. of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | modules       | 20                                                        | Pnom tota    | al 6.40 kV          | Vp                  |  |  |  |  |
| Inverter                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Model         | SUN2000L-5KTL                                             | Pnon         | n 5.00 kV           | / ac                |  |  |  |  |
| User's needs                  | Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nsumers       | Constant over the y                                       | /ear Globa   | al 5734 k\          | Wh/year             |  |  |  |  |
| Daily household consum        | Daily household consumers, Constant over the year, average = 15.7 kWh/day<br>Annual values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                           |              |                     |                     |  |  |  |  |
|                               | Use 2 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number        | Power                                                     | Use          |                     | Energy              |  |  |  |  |
| Lamps (LED or fluo)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30            | 18 W/lamp                                                 | 5 h/         | /day 2              | 2700 Wh/day         |  |  |  |  |
| TV / PC / Mobile              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3             | 70 W/app                                                  | 14 h/        | /day 2              | 2940 Wh/day         |  |  |  |  |
| Iron                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1             | 1200 W/app                                                | 1 h/         | /day 1              | 200 Wh/day          |  |  |  |  |
| Fridge / Deep-freeze          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1             |                                                           | 24 Wh        | /day 3              | 3000 Wh/day         |  |  |  |  |
| Dish- & Cloth-washers         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1             |                                                           | 2 Wh         | /day                | 750 Wh/day          |  |  |  |  |
| Instant water heater          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2             | 2000 W tot                                                | 2 h/         | /day 8              | 3000 Wh/day         |  |  |  |  |
| Aircona<br>Stand by consumers |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0             | 750 W 101                                                 | 8 n/<br>24 h | /day 30             | 24 Wb/day           |  |  |  |  |
| Total daily energy            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                           | 24 11/       | <sup>r</sup> uay 5/ | $\frac{24}{Wh/day}$ |  |  |  |  |
|                               | Fraction of data<br>4000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>00000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000 | Hourly<br>6 9 | <b>r profile</b><br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |              |                     |                     |  |  |  |  |

| PVSYST V6.86                                  |           |                           |                        |                | 21/04/20       | Page 5/8    |
|-----------------------------------------------|-----------|---------------------------|------------------------|----------------|----------------|-------------|
|                                               |           | Grid-Connected S          | ystem: Main res        | sults          |                |             |
| Project :                                     |           | Taman Midah (NEM)         |                        |                |                |             |
| Simulation variant : SELCO - big family - 6kw |           |                           |                        |                |                |             |
| Main system par                               | ameters   | System type               | Sheds on ground        |                |                |             |
| Near Shadings                                 |           | Linear shadings           |                        |                |                |             |
| PV Field Orientation                          | on        | tilt                      | 5°                     | azimuth        | 0° ו           |             |
| PV modules                                    |           | Model                     | JAM6-72-320/SI         | Pnom           | n 320 Wp       |             |
| PV Array                                      |           | Nb. of modules            | 20                     | Pnom tota      | d 6.40 kV      | Vp          |
| Inverter                                      |           | Model                     | SUN2000L-5KTL          | Pnom           | n 5.00 kV      | / ac        |
| User's needs                                  |           | Daily household consumers | Constant over the year | ar Globa       | l 5734 k\      | Wh/year     |
| Main simulation                               | results   |                           |                        |                |                |             |
| System Productio                              | n         | Produced Energy           | 8.41 MWh/year          | Specific prod  | . 1314 k\      | Nh/kWp/year |
|                                               |           | Performance Ratio PR      | 21.32 % Sola           | ar Fraction SF | <b>37.98</b> % | ,<br>D      |
| Battery ageing (St                            | ate of We | ear) Cycles SOW           | 87.3%                  | Static SOV     | V 80.0%        |             |
|                                               |           | Battery lifetime          | 5.0 years              |                |                |             |







## SELCO - big family - 6kw Balances and main results

|               | GlobHor            | DiffHor            | T Amb           | GlobInc            | GlobEff            | EArray  | E User                                          | E Solar      | EUnused      | EFrGrid      |
|---------------|--------------------|--------------------|-----------------|--------------------|--------------------|---------|-------------------------------------------------|--------------|--------------|--------------|
|               | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | °C              | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | MWh     | MWh                                             | MWh          | MWh          | MWh          |
| January       | 133.0              | 82.20              | 28.10           | 136.3              | 131.2              | 0.726   | 0.546                                           | 0.211        | 0.450        | 0.335        |
| February      | 134.6              | 67.90              | 27.70           | 137.4              | 132.8              | 0.737   | 0.437                                           | 0.187        | 0.498        | 0.250        |
| March         | 149.8              | 88.20              | 28.00           | 150.3              | 144.9              | 0.804   | 0.437                                           | 0.177        | 0.570        | 0.260        |
| April         | 140.3              | 70.50              | 27.70           | 138.8              | 133.9              | 0.742   | 0.492                                           | 0.191        | 0.507        | 0.301        |
| Мау           | 140.3              | 78.60              | 28.60           | 136.9              | 131.7              | 0.734   | 0.492                                           | 0.176        | 0.492        | 0.316        |
| June          | 132.0              | 77.80              | 27.80           | 128.3              | 123.5              | 0.691   | 0.437                                           | 0.167        | 0.468        | 0.270        |
| July          | 134.4              | 87.20              | 27.80           | 131.1              | 125.8              | 0.710   | 0.546                                           | 0.205        | 0.458        | 0.342        |
| August        | 132.2              | 87.20              | 27.80           | 130.1              | 125.2              | 0.700   | 0.437                                           | 0.157        | 0.477        | 0.280        |
| September     | 129.2              | 79.00              | 27.10           | 128.8              | 124.0              | 0.691   | 0.437                                           | 0.162        | 0.477        | 0.275        |
| October       | 138.8              | 82.60              | 27.40           | 140.4              | 135.5              | 0.754   | 0.546                                           | 0.221        | 0.474        | 0.325        |
| November      | 117.6              | 79.20              | 26.70           | 119.8              | 115.4              | 0.648   | 0.437                                           | 0.143        | 0.452        | 0.294        |
| December      | 115.0              | 73.20              | 26.29           | 118.1              | 113.6              | 0.640   | 0.492                                           | 0.182        | 0.412        | 0.310        |
| Year          | 1597.2             | 953.59             | 27.58           | 1596.2             | 1537.5             | 8.575   | 5.734                                           | 2.178        | 5.738        | 3.556        |
|               |                    |                    |                 |                    |                    |         |                                                 |              |              |              |
| Legends: Glob | Hor H              | Horizontal glo     | obal irradiatio | on                 |                    | GlobEff | Effectiv                                        | e Global, co | orr. for IAM | and shadings |
| Diff          | Hor H              | Horizontal dif     | fuse irradiat   | ion                |                    | EArray  | Effectiv                                        | e energy at  | the output   | of the array |
| T_A           | mb 1               | Famb.              |                 |                    |                    | E_User  | Energy                                          | supplied to  | the user     |              |
| Glob          | olnc (             | Global incider     | nt in coll. pla | ne                 |                    | E_Solar | Energy                                          | from the su  | un           |              |
|               |                    |                    |                 |                    | EUnused            | Unused  | Unused energy (battery full, no grid injection) |              |              |              |
|               |                    |                    |                 |                    |                    | EFrGrid | Energy                                          | from the gr  | id           |              |





| PVSYST V6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                                                                          |                                                                                                                       |                                                                       |                                               | 21/04/20                                                         | Page 8/8                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Grid-Conr                                                                                                | nected Syster                                                                                                         | m: P50 - P90 eva                                                      | aluation                                      |                                                                  |                              |  |
| Project :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Taman Mid                                                                                                | ah (NEM)                                                                                                              |                                                                       |                                               |                                                                  |                              |  |
| Simulation vari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iant :                     | SELCO - bi                                                                                               | g family - 6kw                                                                                                        |                                                                       |                                               |                                                                  |                              |  |
| Main system par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rameters                   |                                                                                                          | System type                                                                                                           | Sheds on ground                                                       |                                               |                                                                  |                              |  |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion                        | Daily hous                                                                                               | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>sehold consumers                                       | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the year | azimutl<br>Pnon<br>Pnom tota<br>Pnon<br>Globa | n 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kV<br>al 5734 kV | <b>/p</b><br>/ ac<br>Vh/year |  |
| Evaluation of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Produc                   | tion probabil                                                                                            | ty forecast                                                                                                           |                                                                       |                                               |                                                                  |                              |  |
| The probability dis<br>on the meteo data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stribution<br>a used for   | of the system                                                                                            | production forecast                                                                                                   | t for different years is ma<br>the following choices:                 | ainly depend                                  | dent                                                             |                              |  |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e<br>on<br>ability         | Year de                                                                                                  | Kind<br>eviation from aver.<br>Variance                                                                               | MeteoNorm 7.2 station<br>Not defined<br>3 %<br>0.5 %                  | n<br>Yea                                      | ır 1995                                                          |                              |  |
| The probability dis<br>Specified Deviatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stribution<br>on P<br>Soil | variance is als<br>V module moc<br>Inverter effi<br>ling and misma<br>Degra<br>system)                   | o depending on so<br>lelling/parameters<br>ciency uncertainty<br>atch uncertainties<br>dation uncertainty<br>Variance | me system parameters<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (gu | uncertaintie                                  | S                                                                |                              |  |
| Annual production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n probabili                | ity                                                                                                      | Variability<br>P50                                                                                                    | 0.00 MWh<br>0.00 MWh                                                  |                                               | <i>''</i>                                                        |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                                                                          | P90<br>P95                                                                                                            | 0.00 MWh<br>0.00 MWh                                                  |                                               |                                                                  |                              |  |
| The probability distribution of the system production forecast for different years is mainly dependent<br>on the meteo data used for the simulation, and depends on the following choices:<br>Meteo data source MeteoNom 7.2 station<br>Meteo data Source Near 1995<br>Specified Deviation Year deviation from aver. 3 %<br>Year-to-year variability Variance is also depending on some system parameters uncertainties<br>Specified Deviation PV module modelling/parameters 1.0 %<br>Inverter efficiency uncertainty 0.5 %<br>Soliling and mismatch uncertainties 1.0 %<br>Degradation uncertainty 1.0 %<br>Global variability (meteo + system) Variance 1.9 % (quadratic sum)<br>Annual production probability<br>Probability distribution<br>Probability distribution<br>Probability distribution<br>Probability distribution<br>Probability distribution |                            |                                                                                                          |                                                                                                                       |                                                                       |                                               |                                                                  |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Probability                | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>50 = Q00 kWh<br>0.00<br> | X axis: no data fo<br>0.2 0.4<br>E_Grid sy                                                                            | or the extremities definition !                                       | 8                                             | 1.0                                                              |                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                                                                          |                                                                                                                       |                                                                       |                                               |                                                                  |                              |  |

| ГГ                                                                                                                                                                                                 |                                                                                                         |                                                                                                                                                   |                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| PVSYST V6.86                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                   | 21/04/20 Page 1/8                                                                     |
| Grid-                                                                                                                                                                                              | Connected Systen                                                                                        | n: Simulation parameter                                                                                                                           | S                                                                                     |
| Project : Tam                                                                                                                                                                                      | an Midah (NEM)                                                                                          |                                                                                                                                                   |                                                                                       |
| Geographical Site                                                                                                                                                                                  | Kuala Lumpur/Subang                                                                                     | Count                                                                                                                                             | ry <b>Malaysia</b>                                                                    |
| Situation                                                                                                                                                                                          | Latitude                                                                                                | 3.12° N Longitud                                                                                                                                  | de 101.55° E                                                                          |
| Time defined as                                                                                                                                                                                    | Legal Time                                                                                              | Time zone UT+8 Altitud                                                                                                                            | de 17 m                                                                               |
| Meteo data:                                                                                                                                                                                        | Albedo<br>Kuala Lumpur/Subang                                                                           | 0.20<br>MeteoNorm 7.2 station - Synthet                                                                                                           | ic                                                                                    |
| Simulation variant : SEL                                                                                                                                                                           | CO - big family - 9kw                                                                                   |                                                                                                                                                   |                                                                                       |
|                                                                                                                                                                                                    | Simulation date                                                                                         | 21/04/20 15h47                                                                                                                                    |                                                                                       |
| Simulation parameters                                                                                                                                                                              | System type                                                                                             | Sheds on ground                                                                                                                                   |                                                                                       |
| <b>Collector Plane Orientation</b>                                                                                                                                                                 | Tilt                                                                                                    | 5° Azimu                                                                                                                                          | th 0°                                                                                 |
| Models used                                                                                                                                                                                        | Transposition                                                                                           | Perez Diffu                                                                                                                                       | se Perez, Meteonorm                                                                   |
| Horizon                                                                                                                                                                                            | Free Horizon                                                                                            |                                                                                                                                                   |                                                                                       |
| Near Shadings                                                                                                                                                                                      | Linear shadings                                                                                         |                                                                                                                                                   |                                                                                       |
| Storage                                                                                                                                                                                            | Kind                                                                                                    | Self-consumption, No grid reinject                                                                                                                | ion                                                                                   |
|                                                                                                                                                                                                    | Charging strategy<br>Discharging strategy                                                               | As soon as power is needed                                                                                                                        | able                                                                                  |
| User's needs : Da                                                                                                                                                                                  | aily household consumers<br>average                                                                     | Constant over the year<br>32.6 kWh/Day                                                                                                            |                                                                                       |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristics (50<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>D°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>14 modules In parall<br>28 Unit Nom. Pow<br>8.96 kWp At operating con<br>470 V I mp<br>54.3 m <sup>2</sup> Cell are | lel 2 strings<br>er 320 Wp<br>d. 8.05 kWp (50°C)<br>pp 17 A<br>2a 48 2 m <sup>2</sup> |
| Inverter<br>Custom parameters definition<br>Characteristics                                                                                                                                        | Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters                                          | SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Unit Nom. Pow<br>Max. power (=>40°<br>2 * MPPT 50 % Total Pow                                   | er 8.00 kWac<br>C) 8.80 kWac<br>er 8.0 kWac                                           |
|                                                                                                                                                                                                    |                                                                                                         | Pnom rat                                                                                                                                          | tio 1.12                                                                              |
| Battery<br>Battery Pack Characteristics                                                                                                                                                            | Model<br>Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                 | PVX-2120LConcorde3 in series x 4 in parallel36 VStored energy50.0 %Stored energyFixed (20°C)                                                      | ity 784 Ah (C10)<br>gy 14.1 kWh                                                       |
| Battery input charger                                                                                                                                                                              | Model                                                                                                   | Generic                                                                                                                                           |                                                                                       |
| Battery to Grid inverter                                                                                                                                                                           | Max. charging power<br>Model                                                                            | 7.5 kWdc Max./ Euro efficience<br>Generic                                                                                                         | cy 97.0/95.0 %                                                                        |
|                                                                                                                                                                                                    | Max. discharging power                                                                                  | 5.6 kWac Max./ Euro efficiend                                                                                                                     | cy 97.0/95.0 %                                                                        |
| PV Arrow loss fasters                                                                                                                                                                              |                                                                                                         |                                                                                                                                                   |                                                                                       |
| Thermal Loss factor                                                                                                                                                                                | Lic (const)                                                                                             | 20.0 W/m²K Llv (win                                                                                                                               | d) 00W/m²K/m/s                                                                        |
| Wiring Ohmic Loss                                                                                                                                                                                  | Global arrav res.                                                                                       | 465 mOhm Loss Fractio                                                                                                                             | on 1.5 % at STC                                                                       |
|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                   |                                                                                       |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                     | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |



| PVSYST V6.86           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                               |            | 21/04/20         | Page 4/8    |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|------------|------------------|-------------|
| (                      | Grid-Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System                    | n. Detailed Lise              | er's needs |                  |             |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a)                        | I. Detailed 030               |            |                  |             |
| Project :              | Taman Midah (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /1)                       |                               |            |                  |             |
| Simulation variant :   | SELCO - big family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 9kw                     |                               |            |                  |             |
| Main system parameters | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | em type                   | Sheds on ground               |            |                  |             |
| Near Shadings          | Linear s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hadings                   | 50                            |            | 00               |             |
| PV Field Orientation   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tilt<br>Model             | 5°<br>IAM6-72-320/SI          | azimutr    | ו 0°<br>א 320 Wn |             |
| PV Array               | Nb. of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nodules                   | 28                            | Pnom tota  | <b>8.96 kV</b>   | Vp          |
| Inverter               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Model                     | SUN2000L-8KTL                 | Pnom       | n 8.00 kV        | / ac        |
| User's needs           | Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sumers                    | Constant over the ye          | ear Globa  | l 11.91 N        | 1Wh/year    |
| Daily household consum | ers, Constant over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>year, a</b> v<br>Annua | verage = 32.6 kWh/o           | day        |                  |             |
|                        | Use 5 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number                    | Power                         | Use        |                  | Energy      |
| Lamps (LED or fluo)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                        | 18 W/lamp                     | 5 h/       | /day 2           | 2700 Wh/day |
| TV / PC / Mobile       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                         | 70 W/app                      | 14 h/      | /day 2           | 940 Wh/day  |
| Iron                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                         | 1200 W/app                    | 1 h/       | /day 1           | 200 Wh/day  |
| Fridge / Deep-freeze   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                         |                               | 24 Wh/     | 'day 3           | 8000 Wh/day |
| Dish- & Cloth-washers  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                         |                               | 2 Wh/      | ′day             | 750 Wh/day  |
| Instant water heater   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                         | 2000 W tot                    | 2 h/       | /day 8           | 8000 Wh/day |
| Aircond                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                         | 750 W tot                     | 6 h/       | day 27           | 24 Wh/day   |
| Total daily operay     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                               | 24 n/      | /day             | 24 Wh/day   |
|                        | Figure 1000<br>Figure 1000<br>Figur | Hourly                    | <b>profile</b><br>112 15 18 2 | 24         |                  |             |

| PVSYST V6.86          |                            |                              | 21/04/20 Page 5/8    |  |  |  |
|-----------------------|----------------------------|------------------------------|----------------------|--|--|--|
|                       | Grid-Connected S           | system: Main results         |                      |  |  |  |
| Project :             | Taman Midah (NEM)          |                              |                      |  |  |  |
| Simulation variant    | : SELCO - big family - 9kw |                              |                      |  |  |  |
| Main system parame    | eters System type          | Sheds on ground              |                      |  |  |  |
| Near Shadings         | Linear shadings            |                              |                      |  |  |  |
| PV Field Orientation  | tilt                       | 5° azimut                    | n 0°                 |  |  |  |
| PV modules            | Model                      | JAM6-72-320/SI Pnor          | n 320 Wp             |  |  |  |
| PV Array              | Nb. of modules             | 28 Pnom tota                 | al 8.96 kWp          |  |  |  |
| Inverter              | Model                      | SUN2000L-8KTL Pnor           | n 8.00 kW ac         |  |  |  |
| User's needs          | Daily household consumers  | Constant over the year Globa | al 11.91 MWh/year    |  |  |  |
| Main simulation resu  | ults                       |                              |                      |  |  |  |
| System Production     | Produced Energy            | 11.78 MWh/year Specific proc | l. 1315 kWh/kWp/year |  |  |  |
|                       | Performance Ratio PR       | 36.24 % Solar Fraction SI    | = 43.54 %            |  |  |  |
| Battery ageing (State | of Wear) Cycles SOW        | 80.0% Static SOV             | V 80.0%              |  |  |  |
|                       | Battery lifetime           | 5.0 years                    |                      |  |  |  |







## SELCO - big family - 9kw Balances and main results

|               | GlobHor | DiffHor         | T_Amb           | GlobInc | GlobEff | EArray  | E_User                                          | E_Solar      | EUnused      | EFrGrid      |
|---------------|---------|-----------------|-----------------|---------|---------|---------|-------------------------------------------------|--------------|--------------|--------------|
|               | kWh/m²  | kWh/m²          | °C              | kWh/m²  | kWh/m²  | MWh     | MWh                                             | MWh          | MWh          | MWh          |
| January       | 133.0   | 82.20           | 28.10           | 136.3   | 131.2   | 1.016   | 1.049                                           | 0.458        | 0.465        | 0.591        |
| February      | 134.6   | 67.90           | 27.70           | 137.4   | 132.8   | 1.031   | 0.912                                           | 0.408        | 0.543        | 0.505        |
| March         | 149.8   | 88.20           | 28.00           | 150.3   | 144.9   | 1.125   | 1.004                                           | 0.445        | 0.575        | 0.559        |
| April         | 140.3   | 70.50           | 27.70           | 138.8   | 133.9   | 1.039   | 0.958                                           | 0.444        | 0.521        | 0.514        |
| Мау           | 140.3   | 78.60           | 28.60           | 136.9   | 131.7   | 1.027   | 1.049                                           | 0.461        | 0.472        | 0.588        |
| June          | 132.0   | 77.80           | 27.80           | 128.3   | 123.5   | 0.967   | 0.958                                           | 0.404        | 0.464        | 0.554        |
| July          | 134.4   | 87.20           | 27.80           | 131.1   | 125.8   | 0.994   | 1.004                                           | 0.442        | 0.477        | 0.561        |
| August        | 132.2   | 87.20           | 27.80           | 130.1   | 125.2   | 0.980   | 1.049                                           | 0.443        | 0.446        | 0.606        |
| September     | 129.2   | 79.00           | 27.10           | 128.8   | 124.0   | 0.968   | 0.912                                           | 0.402        | 0.465        | 0.510        |
| October       | 138.8   | 82.60           | 27.40           | 140.4   | 135.5   | 1.056   | 1.049                                           | 0.466        | 0.512        | 0.583        |
| November      | 117.6   | 79.20           | 26.70           | 119.8   | 115.4   | 0.907   | 1.004                                           | 0.409        | 0.415        | 0.595        |
| December      | 115.0   | 73.20           | 26.29           | 118.1   | 113.6   | 0.896   | 0.958                                           | 0.401        | 0.411        | 0.557        |
| Year          | 1597.2  | 953.59          | 27.58           | 1596.2  | 1537.5  | 12.005  | 11.905                                          | 5.184        | 5.765        | 6.722        |
|               |         |                 |                 |         |         |         |                                                 |              |              | ······       |
| Legends: Glob | Hor     | Horizontal glo  | obal irradiatio | on      |         | GlobEff | Effectiv                                        | e Global, co | orr. for IAM | and shadings |
| Diff          | lor l   | -lorizontal dif | fuse irradiat   | ion     |         | EArray  | Effectiv                                        | e energy at  | the output   | of the array |
| T_A           | mb ¯    | Г amb.          |                 |         |         | E_User  | Energy                                          | supplied to  | the user     |              |
| Glob          | olnc (  | Global incider  | nt in coll. pla | ne      |         | E_Solar | Energy                                          | from the su  | un           |              |
|               |         |                 |                 |         | EUnused | Unused  | Unused energy (battery full, no grid injection) |              |              |              |
|               |         |                 |                 |         |         | EFrGrid | Energy                                          | from the gr  | id           |              |





| PVSYST V6.86                                                                                                                                                                            |                                  |                                                                                                                       |                                                                                                              |                                                                      |                                                 | 21/04/20                                                         | Page 8/8                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|-------------------------------|--|--|
|                                                                                                                                                                                         |                                  | Grid-Conne                                                                                                            | ected Syster                                                                                                 | m: P50 - P90 ev                                                      | aluation                                        |                                                                  |                               |  |  |
| Project : Taman Midah (NEM)                                                                                                                                                             |                                  |                                                                                                                       |                                                                                                              |                                                                      |                                                 |                                                                  |                               |  |  |
| Simulation vari                                                                                                                                                                         | iant :                           | SELCO - big                                                                                                           | family - 9kw                                                                                                 |                                                                      |                                                 |                                                                  |                               |  |  |
| Main system pa                                                                                                                                                                          | rameter                          | s                                                                                                                     | System type                                                                                                  | Sheds on ground                                                      |                                                 |                                                                  |                               |  |  |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                                               | ion                              | Daily house                                                                                                           | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>hold consumers                                | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the yea | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>ar Globa | h 0°<br>n 320 Wp<br>al <b>8.96 kV</b><br>n 8.00 kW<br>al 11.91 M | <b>∕p</b><br>/ ac<br>1Wh/year |  |  |
| Evaluation of the Production probability forecast                                                                                                                                       |                                  |                                                                                                                       |                                                                                                              |                                                                      |                                                 |                                                                  |                               |  |  |
| The probability distribution of the system production forecast for different years is mainly dependent on the meteo data used for the simulation, and depends on the following choices: |                                  |                                                                                                                       |                                                                                                              |                                                                      |                                                 |                                                                  |                               |  |  |
| Meteo data sourc<br>Meteo data<br>Specified Deviatic<br>Year-to-year varia                                                                                                              | e<br>on<br>ability               | Year dev                                                                                                              | Kind<br>iation from aver.<br>Variance                                                                        | MeteoNorm 7.2 statio<br>Not defined<br>3 %<br>0.5 %                  | n<br>Yea                                        | ar 1995                                                          |                               |  |  |
| The probability dia<br>Specified Deviatio                                                                                                                                               | stributio<br>on<br>S<br>(meteo - | n variance is also<br>PV module mode<br>Inverter efficie<br>oiling and mismate<br>Degrada<br>+ system)                | depending on so<br>lling/parameters<br>ency uncertainty<br>ch uncertainties<br>ation uncertainty<br>Variance | me system parameters<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (q | uncertaintie<br>uadratic sum                    | s<br>ı)                                                          |                               |  |  |
| Annual productior                                                                                                                                                                       | n probat                         | bility                                                                                                                | Variability<br>P50<br>P90<br>P95                                                                             | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                         |                                                 |                                                                  |                               |  |  |
| Probability distribution                                                                                                                                                                |                                  |                                                                                                                       |                                                                                                              |                                                                      |                                                 |                                                                  |                               |  |  |
|                                                                                                                                                                                         | Dockooliite                      | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>P50 = C00 kWh<br>0.00<br>P98-x46.004k | X axis: no data fo<br>X axis: no data fo<br>0.2 0.4<br>E_Grid sy                                             | or the extremities definition !                                      | <u> </u><br>0.8                                 | 1.0                                                              |                               |  |  |

| PVSYST V6.86                                                                                                                                                                        |                                                                                                         |                                                                                                                  | 21/04/20 Page 1/8                                           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|
| Grid-Connected System: Simulation parameters                                                                                                                                        |                                                                                                         |                                                                                                                  |                                                             |  |  |  |  |  |
| Project : Tam                                                                                                                                                                       | an Midah (NEM)                                                                                          |                                                                                                                  |                                                             |  |  |  |  |  |
| Geographical Site                                                                                                                                                                   | Kuala Lumpur/Subang                                                                                     | Count                                                                                                            | ry <b>Malaysia</b>                                          |  |  |  |  |  |
| Situation                                                                                                                                                                           | . Latitude                                                                                              | 3.12° N Longitu                                                                                                  | de 101.55° E                                                |  |  |  |  |  |
| Time defined as                                                                                                                                                                     | Legal Time                                                                                              | Time zone UT+8 Altitue                                                                                           | de 17 m                                                     |  |  |  |  |  |
| Meteo data:                                                                                                                                                                         | Albedo<br>Kuala Lumpur/Subang                                                                           | 0.20<br>MeteoNorm 7.2 station - Synthet                                                                          | ic                                                          |  |  |  |  |  |
| Simulation variant : SEL                                                                                                                                                            | CO - big family - 9kw                                                                                   |                                                                                                                  |                                                             |  |  |  |  |  |
|                                                                                                                                                                                     | Simulation date                                                                                         | 21/04/20 15h48                                                                                                   |                                                             |  |  |  |  |  |
| Simulation parameters                                                                                                                                                               | System type                                                                                             | Sheds on ground                                                                                                  |                                                             |  |  |  |  |  |
| <b>Collector Plane Orientation</b>                                                                                                                                                  | Tilt                                                                                                    | 5° Azimu                                                                                                         | th 0°                                                       |  |  |  |  |  |
| Models used                                                                                                                                                                         | Transposition                                                                                           | Perez Diffu                                                                                                      | se Perez, Meteonorm                                         |  |  |  |  |  |
| Horizon                                                                                                                                                                             | Free Horizon                                                                                            |                                                                                                                  |                                                             |  |  |  |  |  |
| Near Shadings                                                                                                                                                                       | Linear shadings                                                                                         |                                                                                                                  |                                                             |  |  |  |  |  |
| Storage                                                                                                                                                                             | Kind                                                                                                    | Self-consumption, No grid reinject                                                                               | tion                                                        |  |  |  |  |  |
|                                                                                                                                                                                     | Charging strategy<br>Discharging strategy                                                               | When excess solar power is availand As soon as power is needed                                                   | able                                                        |  |  |  |  |  |
| User's needs : Da                                                                                                                                                                   | aily household consumers<br>average                                                                     | Constant over the year<br>15.7 kWh/Day                                                                           |                                                             |  |  |  |  |  |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristics (5 | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>0°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>14 modules In paral<br>28 Unit Nom. Pow<br>8.96 kWp At operating con<br>470 V I mp | lel 2 strings<br>er 320 Wp<br>d. 8.05 kWp (50°C)<br>pp 17 A |  |  |  |  |  |
| Inverter<br>Custom parameters definition<br>Characteristics                                                                                                                         | Module area<br>Model<br>Manufacturer<br>Operating Voltage<br>Nb. of inverters                           | SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Unit Nom. Pow<br>Max. power (=>40°<br>2 * MPPT 50 % Total Pow  | rer 8.00 kWac<br>C) 8.80 kWac<br>rer 8.0 kWac               |  |  |  |  |  |
|                                                                                                                                                                                     |                                                                                                         | Pnom rat                                                                                                         | tio 1.12                                                    |  |  |  |  |  |
| Battery<br>Battery Pack Characteristics                                                                                                                                             | Model<br>Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                 | PVX-2120LConcorde3 in series x 4 in parallel36 VStored energy50.0 %Stored energyFixed (20°C)                     | ity 784 Ah (C10)<br>gy 14.1 kWh                             |  |  |  |  |  |
| Battery input charger                                                                                                                                                               | Model                                                                                                   |                                                                                                                  |                                                             |  |  |  |  |  |
| Battery to Grid inverter                                                                                                                                                            | Model                                                                                                   | Generic<br>5.6 kWac Max / Euro efficient                                                                         | cy 97.0/95.0 %                                              |  |  |  |  |  |
|                                                                                                                                                                                     | war. userarying power                                                                                   |                                                                                                                  | Jy 91.0/90.0 /0                                             |  |  |  |  |  |
| PV Array loss factors                                                                                                                                                               |                                                                                                         |                                                                                                                  |                                                             |  |  |  |  |  |
| Thermal Loss factor                                                                                                                                                                 | Un (const)                                                                                              | 20.0 W/m²K Llv (win                                                                                              | d) 0.0 W/m²K / m/s                                          |  |  |  |  |  |
| Wiring Ohmic Loss                                                                                                                                                                   | Global array res.                                                                                       | 465 mOhm Loss Fraction                                                                                           | on 1.5 % at STC                                             |  |  |  |  |  |
| -                                                                                                                                                                                   |                                                                                                         |                                                                                                                  |                                                             |  |  |  |  |  |

| PVSYST V6.86                                                                                                                                                          |  |  |  |                                                          | 21/04/20                                             | Page 2/8 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|----------------------------------------------------------|------------------------------------------------------|----------|--|--|--|
| Grid-Connected System: Simulation parameters                                                                                                                          |  |  |  |                                                          |                                                      |          |  |  |  |
| Module Quality LossLoss FractModule Mismatch LossesLoss FractStrings Mismatch lossLoss FractIncidence effect, ASHRAE parametrizationIAM = 1 - bo (1/cos i - 1)bo Para |  |  |  | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | on -0.8 %<br>on 1.0 % at MPP<br>on 0.10 %<br>m. 0.05 |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |
|                                                                                                                                                                       |  |  |  |                                                          |                                                      |          |  |  |  |


| PVSYST V6.86                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                       | 2          | 21/04/20   | Page 4/8            |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|------------|------------|---------------------|
| (                             | Grid-Connected S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | System     | n. Detailed Us        | er's needs |            |                     |
| Brojoot :                     | Tomon Midoh (NEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | л)         |                       |            |            |                     |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ")<br>     |                       |            |            |                     |
| Simulation variant :          | SELCO - big family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 9KW      |                       |            |            |                     |
| Main system parameters        | Syste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | em type    | Sheds on ground       |            |            |                     |
| Near Shadings                 | Linear s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hadings    | <b>F</b> <sup>0</sup> | o – imuth  | 00         |                     |
| PV modules                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model      | 5<br>JAM6-72-320/SI   | Pnom       | 320 Wp     |                     |
| PV Array                      | Nb. of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nodules    | 28                    | Pnom total | 8.96 kV    | Vp                  |
| Inverter                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Model      | SUN2000L-8KTL         | Pnom       | 8.00 kV    | / ac                |
| User's needs                  | Daily household cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nsumers    | Constant over the y   | ear Global | 5734 k\    | Wh/year             |
| Daily household consum        | ers, Constant over the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e year, av | verage = 15.7 kWh/    | day        |            |                     |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annua      | l values              |            |            |                     |
|                               | Use 2 days a week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number     | Power                 | Use        |            | Energy              |
| Lamps (LED or fluo)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30         | 18 W/lamp             | 5 h/c      | day 2      | 2700 Wh/day         |
| TV / PC / Mobile              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3          | 70 W/app              | 14 h/c     | day 2      | 2940 Wh/day         |
| Iron                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | 1200 W/app            | 1 h/c      | day 1      | 200 Wh/day          |
| Fridge / Deep-freeze          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |                       | 24 Wh/c    | day 3      | 3000 Wh/day         |
| Dish- & Cloth-washers         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |                       | 2 Wh/c     | day        | 750 Wh/day          |
| Instant water heater          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2          | 2000 W tot            | 2 h/c      | day 8      | 3000 Wh/day         |
| Aircond<br>Stand by consumers |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6          | 750 W tot             | 8 n/c      | aay 30     | 24 Wh/day           |
| Total daily energy            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                       | 24 11/0    | uay <br>5/ | $\frac{24}{Wh/day}$ |
|                               | Fundamental states of the stat | Hourly     | r profile             |            |            |                     |

| PVSYST V6.86       |            |                           |                        |                | 21/04/20  | Page 5/8    |
|--------------------|------------|---------------------------|------------------------|----------------|-----------|-------------|
|                    |            | Grid-Connected S          | ystem: Main res        | sults          |           |             |
| Project :          |            | Taman Midah (NEM)         |                        |                |           |             |
| Simulation vari    | ant :      | SELCO - big family - 9kw  |                        |                |           |             |
| Main system par    | rameters   | System type               | Sheds on ground        |                |           |             |
| Near Shadings      |            | Linear shadings           |                        |                |           |             |
| PV Field Orientati | on         | tilt                      | 5°                     | azimuth        | 0° ו      |             |
| PV modules         |            | Model                     | JAM6-72-320/SI         | Pnom           | n 320 Wp  |             |
| PV Array           |            | Nb. of modules            | 28                     | Pnom tota      | l 8.96 kV | Vp          |
| Inverter           |            | Model                     | SUN2000L-8KTL          | Pnom           | n 8.00 kV | / ac        |
| User's needs       |            | Daily household consumers | Constant over the year | ar Globa       | l 5734 k\ | Wh/year     |
| Main simulation    | results    |                           |                        |                |           |             |
| System Productio   | n          | Produced Energy           | 11.78 MWh/year         | Specific prod  | . 1315 k\ | Nh/kWp/year |
|                    |            | Performance Ratio PR      | 21.02 % Sola           | ar Fraction SF | 52.43 %   | ,<br>D      |
| Battery ageing (St | tate of We | ear) Cycles SOW           | 87.8%                  | Static SOW     | / 80.0%   |             |
|                    |            | Battery lifetime          | 5.0 years              |                |           |             |





Performance Ratio PR



## SELCO - big family - 9kw Balances and main results

|               | GlobHor         | DiffHor         | T_Amb           | GlobInc | GlobEff | EArray  | E_User   | E_Solar      | EUnused        | EFrGrid        |
|---------------|-----------------|-----------------|-----------------|---------|---------|---------|----------|--------------|----------------|----------------|
|               | kWh/m²          | kWh/m²          | °C              | kWh/m²  | kWh/m²  | MWh     | MWh      | MWh          | MWh            | MWh            |
| January       | 133.0           | 82.20           | 28.10           | 136.3   | 131.2   | 1.016   | 0.546    | 0.285        | 0.640          | 0.261          |
| February      | 134.6           | 67.90           | 27.70           | 137.4   | 132.8   | 1.031   | 0.437    | 0.254        | 0.708          | 0.183          |
| March         | 149.8           | 88.20           | 28.00           | 150.3   | 144.9   | 1.125   | 0.437    | 0.242        | 0.807          | 0.194          |
| April         | 140.3           | 70.50           | 27.70           | 138.8   | 133.9   | 1.039   | 0.492    | 0.265        | 0.716          | 0.227          |
| Мау           | 140.3           | 78.60           | 28.60           | 136.9   | 131.7   | 1.027   | 0.492    | 0.243        | 0.692          | 0.249          |
| June          | 132.0           | 77.80           | 27.80           | 128.3   | 123.5   | 0.967   | 0.437    | 0.234        | 0.657          | 0.203          |
| July          | 134.4           | 87.20           | 27.80           | 131.1   | 125.8   | 0.994   | 0.546    | 0.283        | 0.649          | 0.263          |
| August        | 132.2           | 87.20           | 27.80           | 130.1   | 125.2   | 0.980   | 0.437    | 0.218        | 0.671          | 0.219          |
| September     | 129.2           | 79.00           | 27.10           | 128.8   | 124.0   | 0.968   | 0.437    | 0.223        | 0.673          | 0.214          |
| October       | 138.8           | 82.60           | 27.40           | 140.4   | 135.5   | 1.056   | 0.546    | 0.302        | 0.674          | 0.244          |
| November      | 117.6           | 79.20           | 26.70           | 119.8   | 115.4   | 0.907   | 0.437    | 0.202        | 0.634          | 0.235          |
| December      | 115.0           | 73.20           | 26.29           | 118.1   | 113.6   | 0.896   | 0.492    | 0.255        | 0.580          | 0.236          |
| Year          | 1597.2          | 953.59          | 27.58           | 1596.2  | 1537.5  | 12.005  | 5.734    | 3.007        | 8.102          | 2.728          |
|               |                 |                 |                 |         |         |         |          |              |                |                |
| Legends: Glob | Hor I           | Horizontal glo  | obal irradiatio | on      |         | GlobEff | Effectiv | e Global, co | orr. for IAM   | and shadings   |
| Diff          | Hor I           | -lorizontal dif | fuse irradiat   | ion     |         | EArray  | Effectiv | e energy at  | the output     | of the array   |
| T_A           | mb <sup>-</sup> | Гamb.           |                 |         |         | E_User  | Energy   | supplied to  | the user       |                |
| Glob          | olnc (          | Global incider  | nt in coll. pla | ne      |         | E_Solar | Energy   | from the su  | un             |                |
|               |                 |                 |                 |         |         | EUnused | Unused   | l energy (ba | ttery full, no | grid injection |
|               |                 |                 |                 |         |         | EFrGrid | Energy   | from the gr  | id             |                |





| PVSYST V6.86                                                                              |                                    |                                                                                                                     |                                                                                                                        |                                                                       |                                                | 21/04/20                                                         | Page 8/8                     |
|-------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|------------------------------|
|                                                                                           |                                    | Grid-Con                                                                                                            | nected Syster                                                                                                          | m: P50 - P90 ev                                                       | aluation                                       |                                                                  |                              |
| Project :                                                                                 |                                    | Taman Mic                                                                                                           | lah (NEM)                                                                                                              |                                                                       |                                                |                                                                  |                              |
| Simulation vari                                                                           | iant :                             | SELCO - bi                                                                                                          | g family - 9kw                                                                                                         |                                                                       |                                                |                                                                  |                              |
| Main system par                                                                           | rameter                            | S                                                                                                                   | System type                                                                                                            | Sheds on ground                                                       |                                                |                                                                  |                              |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                | Daily hous                                                                                                          | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>sehold consumers                                        | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the yea  | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>r Globa | h 0°<br>n 320 Wp<br>al <b>8.96 kV</b><br>n 8.00 kW<br>al 5734 kV | <b>/p</b><br>/ ac<br>Vh/year |
| Evaluation of the                                                                         | e Produ                            | iction probabil                                                                                                     | ity forecast                                                                                                           |                                                                       |                                                |                                                                  |                              |
| The probability dia on the meteo data                                                     | stributior<br>a used fo            | n of the system<br>or the simulatior                                                                                | production forecast                                                                                                    | t for different years is m<br>the following choices:                  | ainly depend                                   | dent                                                             |                              |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia                | e<br>on<br>ability                 | Year d                                                                                                              | Kind<br>eviation from aver.<br>Variance                                                                                | MeteoNorm 7.2 station<br>Not defined<br>3 %<br>0.5 %                  | n<br>Yea                                       | ar 1995                                                          |                              |
| The probability dia<br>Specified Deviation                                                | stributior<br>on<br>So<br>(meteo + | n variance is als<br>PV module moo<br>Inverter effi<br>oiling and mism<br>Degra<br>⊦ system)                        | to depending on so<br>delling/parameters<br>ciency uncertainty<br>atch uncertainties<br>dation uncertainty<br>Variance | me system parameters<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (qu | uncertaintie<br>uadratic sum                   | s<br>))                                                          |                              |
| Annual productior                                                                         | n probab                           | bility                                                                                                              | Variability<br>P50<br>P90<br>P95                                                                                       | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                          |                                                |                                                                  |                              |
|                                                                                           |                                    |                                                                                                                     | Probability                                                                                                            | distribution                                                          |                                                |                                                                  |                              |
|                                                                                           | Probability                        | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>P50 = 000 kWh<br>0.00<br>- 298 - 200<br>0.0 | X axis: no data fo                                                                                                     | or the extremities definition !                                       | <u> </u><br>                                   | 1.0                                                              |                              |

| PVSYST V6.86                                                                                                                                                                            |                                                                                                                        |                                                                                                                                                        | 21/04/20 Page 1/9                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                                                                                                         | Grid-Connected System                                                                                                  | n: Simulation parameters                                                                                                                               | 5                                                                                |
| Project :                                                                                                                                                                               | Taman Midah (NEM)                                                                                                      |                                                                                                                                                        |                                                                                  |
| Geographical Site                                                                                                                                                                       | Kuala Lumpur/Subang                                                                                                    | Country                                                                                                                                                | y Malaysia                                                                       |
| Situation                                                                                                                                                                               | Latitude                                                                                                               | 3.12° N Longitude                                                                                                                                      | e 101.55° E                                                                      |
| Time defined as                                                                                                                                                                         | Legal Time                                                                                                             | Time zone UT+8 Altitude                                                                                                                                | e 17 m                                                                           |
| Meteo data:                                                                                                                                                                             | Kuala Lumpur/Subang                                                                                                    | MeteoNorm 7.2 station - Synthetic                                                                                                                      | ;                                                                                |
| Simulation variant :                                                                                                                                                                    | Own house - SELCO 6kw                                                                                                  | inv                                                                                                                                                    |                                                                                  |
|                                                                                                                                                                                         | Simulation date                                                                                                        | 21/04/20 14h40                                                                                                                                         |                                                                                  |
| Simulation parameters                                                                                                                                                                   | System type                                                                                                            | Sheds on ground                                                                                                                                        |                                                                                  |
| Collector Plane Orienta                                                                                                                                                                 | tion Tilt                                                                                                              | 5° Azimut                                                                                                                                              | n 0°                                                                             |
| Models used                                                                                                                                                                             | Transposition                                                                                                          | Perez Diffus                                                                                                                                           | e Perez, Meteonorm                                                               |
| Horizon                                                                                                                                                                                 | Free Horizon                                                                                                           |                                                                                                                                                        |                                                                                  |
| Near Shadings                                                                                                                                                                           | Linear shadings                                                                                                        |                                                                                                                                                        |                                                                                  |
| Storage                                                                                                                                                                                 | Kind<br>Charging strategy<br>Discharging strategy                                                                      | Self-consumption, No grid reinjection<br>When excess solar power is available<br>As soon as power is needed                                            | on<br>ble                                                                        |
| User's needs :                                                                                                                                                                          | Daily household consumers average                                                                                      | Constant over the year<br>30.4 kWh/Day                                                                                                                 |                                                                                  |
| PV Array Characteristics<br>PV module<br>Original PVsyst databas<br>Number of PV modules<br>Total number of PV modul<br>Array global power<br>Array operating characterin<br>Total area | Si-mono Model<br>se Manufacturer<br>In series<br>les Nb. modules<br>Nominal (STC)<br>stics (50°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>10 modules In paralle<br>20 Unit Nom. Powe<br>6.40 kWp At operating cond<br>336 V I mpp<br>38.8 m <sup>2</sup> Cell area | el 2 strings<br>r 320 Wp<br>. 5.75 kWp (50°C)<br>o 17 A<br>a 34.4 m <sup>2</sup> |
| Inverter<br>Original PVsyst databa<br>Characteristics<br>Inverter pack                                                                                                                  | Model<br>Nee Manufacturer<br>Operating Voltage<br>Nb. of inverters                                                     | SUN2000L-5KTL<br>Huawei Technologies<br>90-500 V Unit Nom. Powe<br>Max. power (=>40°C<br>2 * MPPT 50 % Total Powe                                      | r 5.00 kWac<br>) 5.50 kWac<br>r 5.0 kWac                                         |
|                                                                                                                                                                                         |                                                                                                                        | Pnom ratio                                                                                                                                             | o 1.28                                                                           |
| Battery                                                                                                                                                                                 | Model                                                                                                                  | PVX-2120L                                                                                                                                              |                                                                                  |
| Battery Pack Characteris                                                                                                                                                                | tics Nb. of units<br>Voltage<br>Discharging min. SOC                                                                   | 2 in series x 4 in parallel<br>24 V Nominal Capacit<br>50.0 % Stored energy                                                                            | y 784 Ah (C10)<br>y 9.4 kWh                                                      |
| Battery input charger                                                                                                                                                                   | Model                                                                                                                  | Generic                                                                                                                                                |                                                                                  |
| Battery to Grid inverter                                                                                                                                                                | Max. charging power<br>Model                                                                                           | 5.4 kWdc Max./ Euro efficiency<br>Generic                                                                                                              | / 97.0/95.0 %                                                                    |
| -                                                                                                                                                                                       | Max. discharging power                                                                                                 | 6.6 kWac Max./ Euro efficiency                                                                                                                         | / 97.0/95.0 %                                                                    |
|                                                                                                                                                                                         |                                                                                                                        |                                                                                                                                                        |                                                                                  |
| Thermal Loss factors                                                                                                                                                                    | Lie (const)                                                                                                            | 20.0 W/m²k Llv (wind                                                                                                                                   | ) 0.0 $W/m^{2}k$ / m/s                                                           |
| Wiring Ohmic Loss                                                                                                                                                                       | Global arrav res.                                                                                                      | 332 mOhm Loss Fraction                                                                                                                                 | n 1.5 % at STC                                                                   |
| <b>,</b>                                                                                                                                                                                |                                                                                                                        |                                                                                                                                                        |                                                                                  |

| PVSYST V6.86                                                                  |                                                     |       |                      |                                                          | 21/04/20                                     | Page 2/9 |
|-------------------------------------------------------------------------------|-----------------------------------------------------|-------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                   | /stem | n: Simulation pa     | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization | IAM = | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |



| PVSYST V6.86             |                                                                             |               |                      |                | 21/04/20          | Page 4/9    |
|--------------------------|-----------------------------------------------------------------------------|---------------|----------------------|----------------|-------------------|-------------|
| G                        | rid-Connected S                                                             | System        | n. Detailed Use      | er's needs     |                   |             |
| Braiaat .                | Tomon Midoh (NEN                                                            | <b>/</b> )    |                      |                |                   |             |
| Project :                | i aman Midan (NEN                                                           |               |                      |                |                   |             |
| Simulation variant : C   | Own house - SELC                                                            | 0 6kw i       | inv                  |                |                   |             |
| Main system parameters   | Syste                                                                       | em type       | Sheds on ground      |                |                   |             |
| Near Shadings            | Linear s                                                                    | hadings       |                      |                |                   |             |
| PV Field Orientation     |                                                                             | tilt<br>Modol | 5°<br>IAM6-72-320/SI | azımuth        | ר 0°<br>מי 220 Wr |             |
| PV Array                 | Nb. of r                                                                    | nodules       | 20                   | Pnom tota      | al <b>6.40 kV</b> | qV          |
| Inverter                 |                                                                             | Model         | SUN2000L-5KTL        | Pnom           | n 5.00 kV         | / ac        |
| User's needs             | Daily household cor                                                         | sumers        | Constant over the ye | ear Globa      | l 11.10 M         | 1Wh/year    |
| Daily household consumer | rs, Constant over the                                                       | e year, av    | verage = 30.4 kWh/c  | day            |                   |             |
|                          |                                                                             | Annua         | l values             |                |                   |             |
|                          | Use 5 days a week                                                           | Number        | Power                | Use            |                   | Energy      |
| Lamps (LED or fluo)      |                                                                             | 30            | 18 W/lamp            | 6 h/           | /day 2            | 970 Wh/day  |
| TV / PC / Mobile         |                                                                             | 3             | 70 W/app             | 4 h/           | /day              | 840 Wh/day  |
| Iron                     |                                                                             | 1             | 1200 W/app           | 1 h/           | /day 1            | 200 Wh/day  |
| Fridge / Deep-freeze     |                                                                             | 1             |                      | 24 Wh/         | /day 3            | 8000 Wh/day |
| Disn- & Cloth-Washers    |                                                                             |               | 2000 W/ tot          | 2 VVN/<br>1 b/ | /day              | 000 Wh/day  |
| Aircond                  |                                                                             | 6             | 2000 W tot           | 1 11/<br>7 h/  | /day 31           | 500 Wh/day  |
| Stand-by consumers       |                                                                             | 0             | 730 W tot            |                | /day              | 24 Wh/day   |
| Total daily energy       |                                                                             |               | ĮĮ.                  |                | 42                | 2534 Wh/day |
|                          | Faction of daily end<br>000<br>1000<br>000<br>000<br>000<br>000<br>000<br>0 | Hourly        | <b>/ profile</b>     | 1 24           |                   |             |

|                                                                                                                                | -                    |                    |                                                                          |                                                          |                                                 |                                                  |                      |                                        |                                                            |                                              |          |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------|----------------------------------------|------------------------------------------------------------|----------------------------------------------|----------|
| PVSYST V6.86                                                                                                                   |                      |                    |                                                                          |                                                          |                                                 |                                                  |                      |                                        | 21/04/2                                                    | 20 Р                                         | 'age 5/9 |
|                                                                                                                                |                      | Grid               | -Conn                                                                    | ected S                                                  | Syster                                          | n: Mai                                           | n resu               | lts                                    |                                                            |                                              |          |
| Project :                                                                                                                      | Та                   | aman Mi            | idah (NE                                                                 | EM)                                                      |                                                 |                                                  |                      |                                        |                                                            |                                              |          |
| Simulation var                                                                                                                 | riant : O            | wn hous            | se - SEL                                                                 | .CO 6kw                                                  | / inv                                           |                                                  |                      |                                        |                                                            |                                              |          |
| Main system pa                                                                                                                 | arameters            |                    | Sys                                                                      | stem type                                                | Shed                                            | s on gro                                         | und                  |                                        |                                                            |                                              |          |
| Near Shadings<br>PV Field Orienta<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                        | tion                 | Daily hou          | Linear<br>Nb. o<br>usehold c                                             | shadings<br>til<br>Mode<br>f modules<br>Mode<br>onsumers | s<br>t 5°<br>I JAM6<br>s 20<br>I SUN2<br>s Cons | -72-320/\$<br>2000L-5K <sup>-</sup><br>tant over | SI<br>FL<br>the year | azimu<br>Pno<br>Pnom to<br>Pno<br>Glob | oth 0°<br>om 320<br>tal <b>6.40</b><br>om 5.00<br>oal 11.1 | Wp<br><b>kWp</b><br>kW ac<br>0 MWh/ <u>y</u> | year     |
| Main simulatior                                                                                                                | n results            |                    |                                                                          |                                                          |                                                 |                                                  |                      |                                        |                                                            |                                              |          |
| System Producti<br>Battery ageing (S                                                                                           | on<br>State of Wear) | Per                | Produce<br>formance<br>Cyc                                               | d Energy<br>Ratio PR<br>cles SOW                         | 8.41<br>8 30.52<br>9 81.29                      | MWh/yea<br>%                                     | ar Sp<br>Solar I     | ecific pro<br>Fraction S<br>Static SO  | od. 1314<br>SF 28.0<br>W 80.0                              | 4 kWh/k\<br>9 %<br>%                         | Np/year  |
| Normalized product                                                                                                             | ions (per installe   | d kWp): No         | minal powe                                                               | r 6.40 kWp                                               |                                                 |                                                  | Pe                   | erformance                             | Ratio PR                                                   |                                              |          |
| 6<br>Lc : Coll<br>Ls : Sys<br>5<br>5<br>1<br>4<br>4<br>4<br>1<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | tar Apr May Jur      | rter output)       | 0.7 kWh/kWp/day<br>2.34 kWh/kWp/da<br>1.33 kWh/kWp/da<br>1.33 kWh/kWp/da | vy<br>ay                                                 | Performance Ratio PR                            | 1.0 PF                                           | R : Performance      | Ratio (Yf / Yr) :                      | Jul Aug                                                    | Sep Oct                                      | Nov Dec  |
|                                                                                                                                |                      |                    | Ow<br>Ba                                                                 | n house -<br>Ilances ar                                  | SELCO                                           | 6kw inv<br>results                               |                      |                                        |                                                            |                                              |          |
|                                                                                                                                | GlobHor              | DiffHor            | T_Amb                                                                    | GlobInc                                                  | GlobEff                                         | EArray                                           | E_User               | E_Solar                                | EUnused                                                    | EFrGrid                                      | ]        |
|                                                                                                                                | kWh/m <sup>2</sup>   | kWh/m <sup>2</sup> | °C                                                                       | kWh/m <sup>2</sup>                                       | kWh/m <sup>2</sup>                              | MWh                                              | MWh                  | MWh                                    | MWh                                                        | MWh                                          | 4        |
| January                                                                                                                        | 133.0                | 82.20              | 28.10                                                                    | 136.3                                                    | 131.2                                           | 0.726                                            | 0.978                | 0.276                                  | 0.380                                                      | 0.703                                        |          |

|          | Glob    | Hor | DiffHor              | T_Amb            | GlobInc            | GlobEff | EArray  | E_User   | E_Solar       | EUnused       | EFrGrid         |
|----------|---------|-----|----------------------|------------------|--------------------|---------|---------|----------|---------------|---------------|-----------------|
|          | kWh     | /m² | kWh/m²               | °C               | kWh/m <sup>2</sup> | kWh/m²  | MWh     | MWh      | MWh           | MWh           | MWh             |
| January  | 133     | .0  | 82.20                | 28.10            | 136.3              | 131.2   | 0.726   | 0.978    | 0.276         | 0.380         | 0.703           |
| February | 134     | .6  | 67.90                | 27.70            | 137.4              | 132.8   | 0.737   | 0.851    | 0.248         | 0.424         | 0.603           |
| March    | 149     | .8  | 88.20                | 28.00            | 150.3              | 144.9   | 0.804   | 0.936    | 0.268         | 0.457         | 0.667           |
| April    | 140     | 0.3 | 70.50                | 27.70            | 138.8              | 133.9   | 0.742   | 0.893    | 0.264         | 0.418         | 0.629           |
| Мау      | 140     | 0.3 | 78.60                | 28.60            | 136.9              | 131.7   | 0.734   | 0.978    | 0.276         | 0.387         | 0.702           |
| June     | 132     | .0  | 77.80                | 27.80            | 128.3              | 123.5   | 0.691   | 0.893    | 0.240         | 0.376         | 0.653           |
| July     | 134     | .4  | 87.20                | 27.80            | 131.1              | 125.8   | 0.710   | 0.936    | 0.271         | 0.379         | 0.664           |
| August   | 132     | .2  | 87.20                | 27.80            | 130.1              | 125.2   | 0.700   | 0.978    | 0.264         | 0.367         | 0.714           |
| Septembe | er 129  | .2  | 79.00                | 27.10            | 128.8              | 124.0   | 0.691   | 0.851    | 0.239         | 0.378         | 0.612           |
| October  | 138     | 8.8 | 82.60                | 27.40            | 140.4              | 135.5   | 0.754   | 0.978    | 0.276         | 0.417         | 0.702           |
| November | r 117   | .6  | 79.20                | 26.70            | 119.8              | 115.4   | 0.648   | 0.936    | 0.245         | 0.336         | 0.690           |
| December | - 115   | .0  | 73.20                | 26.29            | 118.1              | 113.6   | 0.640   | 0.893    | 0.248         | 0.324         | 0.645           |
| Year     | 159     | 7.2 | 953.59               | 27.58            | 1596.2             | 1537.5  | 8.575   | 11.101   | 3.118         | 4.642         | 7.983           |
| Legends: | GlobHor | ł   | Horizontal glo       | bal irradiatio   | n                  |         | GlobEff | Effectiv | e Global, coi | r. for IAM a  | nd shadings     |
|          | DiffHor | ŀ   | -<br>Horizontal difi | fuse irradiatio  | on                 |         | EArray  | Effectiv | e energy at   | the output o  | f the array     |
|          | T_Amb   | ٦   | Г amb.               |                  |                    |         | E_User  | Energy   | supplied to   | the user      |                 |
|          | GlobInc | (   | Global incider       | it in coll. plar | ie                 |         | E_Solar | Energy   | from the su   | n             |                 |
|          |         |     |                      |                  |                    |         | EUnused | Unused   | energy (bat   | tery full, no | grid injection) |
|          |         |     |                      |                  |                    |         | EFrGrid | Energy   | from the gri  | d             |                 |





| PVSYST V6.86                                                                              |                                                          |                                                                                                          |                                                                                                             |                                                                 |                       | :                                             | 21/04/20                                             | Page 8/9                      |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------|
|                                                                                           |                                                          | Grid-Conne                                                                                               | ected Syster                                                                                                | m: P50 - P90                                                    | ) evalua              | ation                                         |                                                      |                               |
| Project :                                                                                 |                                                          | Taman Mida                                                                                               | h (NEM)                                                                                                     |                                                                 |                       |                                               |                                                      |                               |
| Simulation var                                                                            | iant :                                                   | Own house -                                                                                              | SELCO 6kw                                                                                                   | inv                                                             |                       |                                               |                                                      |                               |
| Main system pa                                                                            | rameters                                                 |                                                                                                          | System type                                                                                                 | Sheds on grour                                                  | nd                    |                                               |                                                      |                               |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs | ion                                                      | Daily housel                                                                                             | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>nold consumers                               | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over th | Pn<br>-<br>e year     | azimuth<br>Pnom<br>om total<br>Pnom<br>Global | 0°<br>320 Wp<br><b>6.40 kW</b><br>5.00 kW<br>11.10 N | <b>/p</b><br>/ ac<br> Wh/year |
| Evaluation of th                                                                          | e Product                                                | tion probability                                                                                         | forecast                                                                                                    |                                                                 |                       |                                               |                                                      |                               |
| The probability dia on the meteo data                                                     | istribution of a used for                                | of the system protocol the simulation, a                                                                 | oduction forecast<br>and depends on t                                                                       | t for different years                                           | s is mainly<br>ces:   | depend                                        | ent                                                  |                               |
| Meteo data sourc<br>Meteo data<br>Specified Deviatic<br>Year-to-year varia                | ce<br>on<br>ability                                      | Year dev                                                                                                 | '<br>Kind<br>iation from aver.<br>Variance                                                                  | MeteoNorm 7.2 :<br>Not defined<br>3 %<br>0.5 %                  | station               | Year                                          | <sup>-</sup> 1995                                    |                               |
| The probability dia<br>Specified Deviatio                                                 | istribution v<br>on P <sup>v</sup><br>Soil<br>(meteo + s | variance is also<br>V module model<br>Inverter efficie<br>ing and mismato<br>Degrada<br>system)          | depending on so<br>ling/parameters<br>ency uncertainty<br>ch uncertainties<br>ation uncertainty<br>Variance | me system param<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 %    | eters unce<br>(quadra | ertainties<br>atic sum)                       |                                                      |                               |
| Annual production                                                                         | n probabili                                              | ty                                                                                                       | Variability<br>P50<br>P90<br>P95                                                                            | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                    |                       |                                               |                                                      |                               |
|                                                                                           |                                                          |                                                                                                          | Probability                                                                                                 | distribution                                                    |                       |                                               |                                                      |                               |
|                                                                                           | Probability                                              | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>0.05<br>50 = 000 kWh<br>0.00<br> | X axis: no data fo<br>We so www.<br>0.2 0.4<br>E_Grid sy                                                    | or the extremities defini                                       | ition !               |                                               | .0                                                   |                               |

| PVSYST V6.86                                                                                |              |                                                                                |                                                                     |                                                  | 21/04/20                                                         | Page 9/9                       |
|---------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------------|
|                                                                                             | Grid-C       | connected Sy                                                                   | vstem: CO2 Ba                                                       | lance                                            |                                                                  |                                |
| Project :                                                                                   | Taman Mid    | ah (NEM)                                                                       |                                                                     |                                                  |                                                                  |                                |
| Simulation variant :                                                                        | Own house    | e - SELCO 6kw                                                                  | inv                                                                 |                                                  |                                                                  |                                |
| Main system parameters                                                                      |              | System type                                                                    | Sheds on ground                                                     |                                                  |                                                                  |                                |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Daily hous   | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>ehold consumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the ye | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>ear Globa | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kV<br>al 11.10 N | V <b>p</b><br>V ac<br>/Wh/year |
| Produced Emissions                                                                          |              | <b>Total:</b><br>Source:                                                       | <b>11.84 tCO2</b><br>Detailed calculation                           | from table be                                    | ow                                                               |                                |
| Replaced Emissions                                                                          | Sy           | Total:<br>stem production:                                                     | <b>166.5 tCO2</b><br>8408.96 kWh/yr<br>Annus                        | Lifetime<br>al Degradatior                       | e: 30 year<br>n: 1.0 %                                           | S                              |
|                                                                                             | Grid Life    | cycle Emissions:<br>Source:                                                    | 660 gCO2/kWh<br>IEA List                                            | Country                                          | /: Malaysi                                                       | а                              |
| CO2 Emission Balance                                                                        |              | Total:                                                                         | 132.6 tCO2                                                          |                                                  |                                                                  |                                |
| System Lifecycle Emissic                                                                    | one Details: |                                                                                |                                                                     |                                                  |                                                                  |                                |
| Item                                                                                        |              | M                                                                              | odules                                                              |                                                  | Supports                                                         |                                |
| LCE                                                                                         |              | 1713 k                                                                         | gCO2/kWp                                                            | 2                                                | 1.40 kgCO2/kg                                                    | J                              |
| Subtotal [kgCO                                                                              | 2]           | 1                                                                              | 0961                                                                |                                                  | 880                                                              |                                |
|                                                                                             |              | Saved CO2 Er<br>140<br>120<br>100<br>60<br>40<br>-20<br>0<br>5<br>1            | nission vs. Time                                                    |                                                  |                                                                  |                                |

| PVSYST V6.86                              |                                           |                                                                 | 21/04/20 Page 1/9         |
|-------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|---------------------------|
|                                           | Grid-Connected System                     | n: Simulation parameters                                        | 3                         |
| Project :                                 | Taman Midah (NEM)                         |                                                                 |                           |
| Geographical Site                         | Kuala Lumpur/Subang                       | Countr                                                          | y <b>Malaysia</b>         |
| Situation                                 | Latitude                                  | 3.12° N Longitud                                                | e 101.55° E               |
| Time defined as                           | Legal Time                                | Time zone UT+8 Altitud                                          | e 17 m                    |
| Meteo data:                               | Kuala Lumpur/Subang                       | 0.20<br>MeteoNorm 7.2 station - Synthetic                       | 2                         |
| Simulation variant :                      | Own house - SELCO 6kw                     | inv                                                             |                           |
|                                           | Simulation date                           | 21/04/20 14h41                                                  |                           |
| Simulation parameters                     | System type                               | Sheds on ground                                                 |                           |
| Collector Plane Orienta                   | tion Tilt                                 | 5° Azimut                                                       | h 0°                      |
| Models used                               | Transposition                             | Perez Diffus                                                    | e Perez, Meteonorm        |
| Horizon                                   | Free Horizon                              |                                                                 |                           |
| Near Shadings                             | Linear shadings                           |                                                                 |                           |
| Storage                                   | Kind                                      | Self-consumption, No grid reinjection                           | on                        |
|                                           | Charging strategy<br>Discharging strategy | When excess solar power is availa<br>As soon as power is needed | ble                       |
| User's needs :                            | Daily household consumers<br>average      | Constant over the year<br>12.8 kWh/Day                          |                           |
| PV Array Characteristic<br>PV module      | s<br>Si-mono Model                        | JAM6-72-320/SI                                                  |                           |
| Number of PV modules                      | In series                                 | 10 modules In paralle                                           | el 2 strings              |
| Total number of PV modu                   | les Nb. modules                           | 20 Unit Nom. Powe                                               | r 320 Wp                  |
| Array operating character                 | istics (50°C) U mpp                       | 336 V At operating cond                                         | 5.75 kwp (50 C)<br>5 17 A |
| Total area                                | Module area                               | 38.8 m <sup>2</sup> Cell area                                   | a 34.4 m²                 |
| Inverter                                  | Model                                     | SUN2000L-5KTL                                                   |                           |
| Original PVsyst databa<br>Characteristics | ase Manufacturer<br>Operating Voltage     | Huawei Technologies<br>90-500 V Unit Nom. Power                 | er 5.00 kWac              |
| Inverter pack                             | Nh. of invortors                          | iviax. power (=>40°C<br>2 * MPPT 50 % Total Dowe                | h = 5.00  kWac            |
| nivenei pauk                              | ND. OF INVERTERS                          | 2 WEELSO / Poom rati                                            | o 1.28                    |
| Battery                                   | Model                                     | PVX-2120L                                                       |                           |
| Battery Pack Characteris                  | tics Nb. of units                         | 2 in series x 4 in parallel                                     |                           |
|                                           | Discharging min. SOC<br>Temperature       | 50.0 % Stored energ<br>Fixed (20°C)                             | y 9.4 kWh                 |
| Battery input charger                     | Mov. charging power                       | Generic                                                         |                           |
| Battery to Grid inverter                  | Model                                     | Generic                                                         | y 97.0/93.0 %             |
|                                           | Max. discharging power                    | 6.6 kWac Max./ Euro efficiency                                  | y 97.0/95.0 %             |
| PV Arrav loss factors                     |                                           |                                                                 |                           |
| Thermal Loss factor                       | Uc (const)                                | 20.0 W/m²K Uv (wind                                             | l) 0.0 W/m²K / m/s        |
| Wiring Ohmic Loss                         | Global array res.                         | 332 mOhm Loss Fractio                                           | n 1.5 % at STC            |
|                                           |                                           |                                                                 |                           |

| PVSYST V6.86                                                                  |                                                     |       |                      |                                                          | 21/04/20                                     | Page 2/9 |
|-------------------------------------------------------------------------------|-----------------------------------------------------|-------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                   | /stem | n: Simulation pa     | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization | IAM = | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |
|                                                                               |                                                     |       |                      |                                                          |                                              |          |



| PVSYST V6.86         |                           |               |                      |            | 21/04/20          | Page 4/9    |
|----------------------|---------------------------|---------------|----------------------|------------|-------------------|-------------|
|                      | Grid-Connected            | Svetor        | n. Detailed Lls      | or's noods |                   |             |
| Droinet :            |                           |               | i. Detailed 03       |            |                   |             |
| Project :            |                           | //)<br>       |                      |            |                   |             |
| Simulation variant   | : Own nouse - SELC        | O 6KW I       | nv                   |            |                   |             |
| Main system parame   | ters Syste                | em type       | Sheds on ground      |            |                   |             |
| Near Shadings        | Linear s                  | hadings       |                      |            |                   |             |
| PV Field Orientation |                           | tilt<br>Model | 5°<br>IAM6-72-320/SI | azimut     | h 0°<br>m 320.Wn  | ,<br>,      |
| PV Array             | Nb. of I                  | modules       | 20                   | Pnom tota  | al <b>6.40 kV</b> | Vp          |
| Inverter             |                           | Model         | SUN2000L-5KTL        | Pnor       | n 5.00 kV         | V ac        |
| User's needs         | Daily household cor       | nsumers       | Constant over the y  | year Globa | al 4687 KN        | /Vh/year    |
| Daily household con  | sumers, Constant over the | e year, av    | verage = 12.8 kWh/   | /day       |                   |             |
|                      |                           | _             |                      |            |                   |             |
|                      |                           | Annua         | l values             |            |                   |             |
|                      | Use 2 days a week         | Number        | Power                | Use        |                   | Energy      |
| Lamps (LED or fluo)  |                           | 30            | 18 W/lamp            | 6 h        | /day 2            | 2970 Wh/day |
| TV / PC / Mobile     |                           | 3             | 70 W/app             | 14 h       | /day 2            | 2940 Wh/day |
| Iron                 |                           | 1             | 1200 W/app           | 1 h        | /day 1            | 1200 Wh/day |
| Fridge / Deep-freeze | <del>5</del>              | 1             |                      | 24 Wh      | /day 3            | 3000 Wh/day |
| Dish- & Cloth-washe  | ers                       | 1             |                      | 2 Wh       | /day 1            | 1000 Wh/day |
| Instant water heate  | r                         | 1             | 2000 W tot           | 1 h        | /day 2            | 2000 Wh/day |
| Aircond              |                           | 6             | 750 W tot            | 7 h        | /day 31           | 1500 Wh/day |
| Stand-by consumers   | 5                         |               |                      | 24 h       | /day              | 24 Wh/day   |
| l otal dally energy  |                           |               |                      |            | 44                | 1634 Wh/day |
|                      |                           | Hourly        | profile              |            |                   |             |
|                      | ≊ 7000 <mark></mark>      |               |                      |            |                   |             |
|                      | 6000 -<br>5000 -          |               |                      |            |                   |             |
|                      | 5000 -<br>≥ 4000 -        |               |                      |            |                   |             |
|                      | · <sup>reg</sup> 3000 -   |               |                      | -1         |                   |             |
|                      | ົ <u></u> 2000            |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      | 0 3                       | 6 9           | 12 15 18             | 21 24      |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |
|                      |                           |               |                      |            |                   |             |

| PVSYST V6 86                                                                                |                                                                                                                                |                                                    |                                                    |                                                             |                                                    |                                                    |                                           |                                           | 21/04/2                                            | 20 P                                      | age 5/9 |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|---------|
|                                                                                             |                                                                                                                                |                                                    |                                                    |                                                             |                                                    |                                                    |                                           |                                           | 2.00.02                                            |                                           |         |
|                                                                                             |                                                                                                                                | Grid                                               | -Conn                                              | ected \$                                                    | Syster                                             | n: Mai                                             | n resu                                    | lts                                       |                                                    |                                           |         |
| Project :                                                                                   | Та                                                                                                                             | man Mi                                             | dah (NE                                            | EM)                                                         |                                                    |                                                    |                                           |                                           |                                                    |                                           |         |
| Simulation variant                                                                          | :: 0                                                                                                                           | vn hous                                            | se - SEL                                           | _CO 6kw                                                     | / inv                                              |                                                    |                                           |                                           |                                                    |                                           |         |
| Main system parame                                                                          | eters                                                                                                                          |                                                    | Sy                                                 | stem type                                                   | Shed                                               | s on gro                                           | und                                       |                                           |                                                    |                                           |         |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs |                                                                                                                                | Daily hou                                          | Linear<br>Nb. c<br>usehold c                       | r shadings<br>til<br>Mode<br>f modules<br>Mode<br>consumers | s<br>t 5°<br>I JAM6<br>s 20<br>I SUN2<br>s Const   | -72-320/\$<br>2000L-5K <sup></sup><br>ant over t   | SI<br>TL<br>the year                      | azimu<br>Pnc<br>Pnom to<br>Pnc<br>Glot    | om 320<br>tal <b>6.40</b><br>om 5.00<br>oal 4687   | Wp<br><b>kWp</b><br>kW ac<br>⁄ kWh/ye     | ar      |
| Main simulation res<br>System Production<br>Battery ageing (State                           | ults<br>of Wear)                                                                                                               | Per                                                | <b>Produce</b><br>formance<br>Cyc                  | ed Energy<br>e Ratio PF<br>cles SOW                         | <b>/ 8.41</b><br>R 16.70<br>/ 87.6%                | MWh/yea<br>%                                       | ar Sp<br>Solar F                          | ecific pro<br>Fraction S<br>Static SO     | od. 1314<br>SF 36.4<br>W 80.0                      | 4 kWh/k\<br>0 %<br>%                      | Vp/year |
| Normalized productions (per installed kWp): Nominal power 6.40 kWp Performance Ratio PR     |                                                                                                                                |                                                    |                                                    |                                                             |                                                    |                                                    |                                           |                                           |                                                    |                                           |         |
| Lc : Collection Lc<br>Ls : System Loss<br>5                                                 | <pre>6<br/>6<br/>7<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9<br/>9</pre> |                                                    |                                                    |                                                             |                                                    |                                                    |                                           |                                           | Nov Dec                                            |                                           |         |
|                                                                                             |                                                                                                                                |                                                    | Ba                                                 | alances ai                                                  | nd main                                            | results                                            |                                           |                                           |                                                    |                                           |         |
|                                                                                             | GlobHor<br>kWh/m²                                                                                                              | DiffHor<br>kWh/m²                                  | T_Amb<br>℃                                         | GlobInc<br>kWh/m²                                           | GlobEff<br>kWh/m²                                  | EArray<br>MWh                                      | E_User<br>MWh                             | E_Solar<br>MWh                            | EUnused<br>MWh                                     | EFrGrid<br>MWh                            |         |
| January                                                                                     | 133.0                                                                                                                          | 82.20                                              | 28.10                                              | 136.3                                                       | 131.2                                              | 0.726                                              | 0.446                                     | 0.156                                     | 0.499                                              | 0.290                                     |         |
| March                                                                                       | 134.0                                                                                                                          | 88.20                                              | 27.70                                              | 157.4                                                       | 132.8<br>144.9                                     | 0.737                                              | 0.357                                     | 0.138                                     | 0.605                                              | 0.219                                     |         |
| April                                                                                       | 140.3                                                                                                                          | 70.50                                              | 27.70                                              | 138.8                                                       | 133.9                                              | 0.742                                              | 0.402                                     | 0.153                                     | 0.538                                              | 0.249                                     |         |
| Мау                                                                                         | 140.3                                                                                                                          | 78.60                                              | 28.60                                              | 136.9                                                       | 131.7                                              | 0.734                                              | 0.402                                     | 0.139                                     | 0.519                                              | 0.262                                     |         |
| June                                                                                        | 132.0                                                                                                                          | 77.80                                              | 27.80                                              | 128.3                                                       | 123.5                                              | 0.691                                              | 0.357                                     | 0.134                                     | 0.495                                              | 0.223                                     |         |
|                                                                                             | 124.4                                                                                                                          | 07.00                                              |                                                    | 1 141 1                                                     | 175.8                                              |                                                    | 1 1/4/6                                   | 1 161                                     | 1 1/106                                            | 11/25                                     |         |
| August                                                                                      | 134.4<br>132.2                                                                                                                 | 87.20<br>87.20                                     | 27.80<br>27.80                                     | 131.1                                                       | 125.0                                              | 0.710                                              | 0.440                                     | 0.124                                     | 0.475                                              | 0.200                                     |         |
| August<br>September                                                                         | 134.4<br>132.2<br>129.2                                                                                                        | 87.20<br>87.20<br>79.00                            | 27.80<br>27.80<br>27.10                            | 130.1<br>128.8                                              | 125.2<br>124.0                                     | 0.700                                              | 0.357                                     | 0.124                                     | 0.506                                              | 0.233                                     |         |
| August<br>September<br>October                                                              | 134.4<br>132.2<br>129.2<br>138.8                                                                                               | 87.20<br>87.20<br>79.00<br>82.60                   | 27.80<br>27.80<br>27.10<br>27.40                   | 130.1<br>128.8<br>140.4                                     | 125.0<br>125.2<br>124.0<br>135.5                   | 0.700<br>0.691<br>0.754                            | 0.357<br>0.357<br>0.446                   | 0.124<br>0.124<br>0.170                   | 0.473<br>0.506<br>0.509<br>0.518                   | 0.233<br>0.233<br>0.277                   |         |
| August<br>September<br>October<br>November                                                  | 134.4<br>132.2<br>129.2<br>138.8<br>117.6                                                                                      | 87.20<br>87.20<br>79.00<br>82.60<br>79.20          | 27.80<br>27.80<br>27.10<br>27.40<br>26.70          | 130.1<br>128.8<br>140.4<br>119.8                            | 125.0<br>125.2<br>124.0<br>135.5<br>115.4          | 0.700<br>0.691<br>0.754<br>0.648                   | 0.357<br>0.357<br>0.446<br>0.357          | 0.124<br>0.124<br>0.170<br>0.122          | 0.473<br>0.506<br>0.509<br>0.518<br>0.466          | 0.233<br>0.233<br>0.277<br>0.235          |         |
| August<br>September<br>October<br>November<br>December                                      | 134.4<br>132.2<br>129.2<br>138.8<br>117.6<br>115.0                                                                             | 87.20<br>87.20<br>79.00<br>82.60<br>79.20<br>73.20 | 27.80<br>27.80<br>27.10<br>27.40<br>26.70<br>26.29 | 130.1<br>128.8<br>140.4<br>119.8<br>118.1                   | 125.0<br>125.2<br>124.0<br>135.5<br>115.4<br>113.6 | 0.710<br>0.700<br>0.691<br>0.754<br>0.648<br>0.640 | 0.357<br>0.357<br>0.446<br>0.357<br>0.402 | 0.124<br>0.124<br>0.170<br>0.122<br>0.149 | 0.493<br>0.506<br>0.509<br>0.518<br>0.466<br>0.438 | 0.233<br>0.233<br>0.277<br>0.235<br>0.253 |         |

Legends: GlobHor DiffHor

T\_Amb

GlobInc

Horizontal global irradiation Horizontal diffuse irradiation T amb. Global incident in coll. plane GlobEff Effective Global, corr. for IAM and shadings EArray Effective energy at the output of the array E\_User Energy supplied to the user E\_Solar Energy from the sun EUnused Unused energy (battery full, no grid injection) EFrGrid Energy from the grid







| PVSYST V6.86                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                               | 21/04/20                                                       | Page 8/9                     |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|------------------------------|
|                                                                                            | Grid-Connected System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n: P50 - P90 eva                                                          | luation                                       |                                                                |                              |
| Project :                                                                                  | Taman Midah (NEM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                               |                                                                |                              |
| Simulation varia                                                                           | nt : Own house - SELCO 6kw in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | าง                                                                        |                                               |                                                                |                              |
| Main system para                                                                           | meters System type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sheds on ground                                                           |                                               |                                                                |                              |
| Near Shadings<br>PV Field Orientatio<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Linear shadings<br>n tilt 5<br>Model 5<br>Nb. of modules 2<br>Model 5<br>Daily household consumers 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the year     | azimutl<br>Pnon<br>Pnom tota<br>Pnon<br>Globa | n 0°<br>n 320 Wp<br>n <b>6.40 kW</b><br>n 5.00 kW<br>n 4687 kV | <b>/p</b><br>/ ac<br>Vh/year |
| Evaluation of the                                                                          | Production probability forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                               |                                                                |                              |
| The probability dist                                                                       | ibution of the system production forecast four section is a simulation, and depends on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | for different years is mai                                                | nly depend                                    | dent                                                           |                              |
| Meteo data source<br>Meteo data<br>Specified Deviation<br>Year-to-year variab              | ا<br>Kind<br>Year deviation from aver. 3<br>النام النام ال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MeteoNorm 7.2 station<br>Not defined<br>3 %<br>0.5 %                      | Yea                                           | r 1995                                                         |                              |
| The probability dist<br>Specified Deviation<br>Global variability (n                       | ribution variance is also depending on som<br>PV module modelling/parameters<br>Inverter efficiency uncertainty<br>Soiling and mismatch uncertainties<br>Degradation uncertainty<br>neteo + system)<br>Variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ne system parameters un<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 % (qua | ncertaintie                                   | s<br>)                                                         |                              |
| Annual production                                                                          | probability Variability P50 (<br>P90 (<br>P95 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                              |                                               |                                                                |                              |
|                                                                                            | Probability c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | distribution                                                              |                                               |                                                                |                              |
|                                                                                            | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>P50 = 000  kWh<br>0.00<br>P50 = 000  kWh<br>0.02<br>0.25  kWh<br>0.04<br>0.05  kWh<br>0.05<br>P50 = 000  kWh<br>0.04<br>0.25  kWh<br>0.05<br>P50 = 000  kWh<br>0.26  kWh | the extremities definition !                                              | I                                             | 1.0                                                            |                              |

| PVSYST V6.86                                                                                |                                                                                        |                                                                                |                                                                     |                                                                                                                                                                   | 21/04/20                                                         | Page 9/9                     |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|--|--|
|                                                                                             | Grid-C                                                                                 | onnected Sy                                                                    | vstem: CO2 Ba                                                       | lance                                                                                                                                                             |                                                                  |                              |  |  |
| Project :                                                                                   | Taman Mid                                                                              | ah (NEM)                                                                       |                                                                     |                                                                                                                                                                   |                                                                  |                              |  |  |
| Simulation variant :                                                                        | Own house                                                                              | - SELCO 6kw                                                                    | inv                                                                 |                                                                                                                                                                   |                                                                  |                              |  |  |
| Main system parameters                                                                      |                                                                                        | System type                                                                    | Sheds on ground                                                     |                                                                                                                                                                   |                                                                  |                              |  |  |
| Near Shadings<br>PV Field Orientation<br>PV modules<br>PV Array<br>Inverter<br>User's needs | Daily hous                                                                             | Linear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>ehold consumers | 5°<br>JAM6-72-320/SI<br>20<br>SUN2000L-5KTL<br>Constant over the ye | azimut<br>Pnor<br>Pnom tot<br>Pnor<br>ear Glob                                                                                                                    | h 0°<br>n 320 Wp<br>al <b>6.40 kV</b><br>n 5.00 kW<br>al 4687 kV | <b>∕p</b><br>∕ ac<br>Vh/year |  |  |
| Produced Emissions                                                                          |                                                                                        | <b>Total:</b><br>Source:                                                       | <b>11.84 tCO2</b><br>Detailed calculation                           | from table be                                                                                                                                                     | ow                                                               |                              |  |  |
| Replaced Emissions                                                                          | eplaced Emissions Total:<br>System production:<br>Grid Lifecycle Emissions:<br>Source: |                                                                                |                                                                     | <ul> <li>166.5 tCO2</li> <li>8408.96 kWh/yr Lifetime: 30 years<br/>Annual Degradation: 1.0 %</li> <li>660 gCO2/kWh</li> <li>IEA List Country: Malaysia</li> </ul> |                                                                  |                              |  |  |
| CO2 Emission Balance                                                                        |                                                                                        | Total:                                                                         | 132.6 tCO2                                                          |                                                                                                                                                                   |                                                                  |                              |  |  |
| System Lifecycle Emissio                                                                    | ns Details:                                                                            | Ma<br>1713 k<br>6.4<br>1                                                       | odules<br>gCO2/kWp<br>0 kWp<br>0961                                 |                                                                                                                                                                   | Supports<br>I.40 kgCO2/kg<br>200 kg<br>880                       |                              |  |  |
|                                                                                             |                                                                                        | Saved CO2 En<br>140<br>120<br>100<br>40<br>-20<br>0<br>5<br>1                  | nission vs. Time                                                    |                                                                                                                                                                   |                                                                  |                              |  |  |

| PVSYST V6.86                                                                                                                                                                              |                                                                                                                  |                                                                                                                                                     | 21/04/20 Page 1/8                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| (                                                                                                                                                                                         | Grid-Connected System                                                                                            | n: Simulation parameter                                                                                                                             | S                                                                                   |
| Proiect :                                                                                                                                                                                 | Taman Midah (NEM)                                                                                                |                                                                                                                                                     |                                                                                     |
| Geographical Site                                                                                                                                                                         | Kuala Lumpur/Subang                                                                                              | Count                                                                                                                                               | rv <b>Malavsia</b>                                                                  |
| Situation                                                                                                                                                                                 | Latitude                                                                                                         | 3 12° N Longitur                                                                                                                                    | de 101.55° E                                                                        |
| Time defined as                                                                                                                                                                           | Legal Time                                                                                                       | Time zone UT+8 Altitud                                                                                                                              | de 17 m                                                                             |
| Matao data                                                                                                                                                                                | Albedo                                                                                                           | 0.20<br>MotooNorm 7.2 station Syntheti                                                                                                              |                                                                                     |
|                                                                                                                                                                                           |                                                                                                                  |                                                                                                                                                     |                                                                                     |
| Simulation variant :                                                                                                                                                                      | Own house - SELCO 9kw                                                                                            | inv                                                                                                                                                 |                                                                                     |
|                                                                                                                                                                                           | Simulation date                                                                                                  | 21/04/20 15h11                                                                                                                                      |                                                                                     |
| Simulation parameters                                                                                                                                                                     | System type                                                                                                      | Sheds on ground                                                                                                                                     |                                                                                     |
| Collector Plane Orientati                                                                                                                                                                 | on Tilt                                                                                                          | 5° Azimu                                                                                                                                            | th 0°                                                                               |
| Models used                                                                                                                                                                               | Transposition                                                                                                    | Perez Diffus                                                                                                                                        | se Perez, Meteonorm                                                                 |
| Horizon                                                                                                                                                                                   | Free Horizon                                                                                                     |                                                                                                                                                     |                                                                                     |
| Near Shadings                                                                                                                                                                             | Linear shadings                                                                                                  |                                                                                                                                                     |                                                                                     |
| Storage                                                                                                                                                                                   | Kind                                                                                                             | Self-consumption, No grid reinject                                                                                                                  | ion                                                                                 |
|                                                                                                                                                                                           | Charging strategy<br>Discharging strategy                                                                        | When excess solar power is availa<br>As soon as power is needed                                                                                     | able                                                                                |
| User's needs :                                                                                                                                                                            | Daily household consumers<br>average                                                                             | Constant over the year<br>30.4 kWh/Day                                                                                                              |                                                                                     |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV module<br>Array global power<br>Array operating characteris<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>s Nb. modules<br>Nominal (STC)<br>tics (50°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>14 modules In parall<br>28 Unit Nom. Powe<br>8.96 kWp At operating cone<br>470 V I mp<br>54.3 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>d. 8.05 kWp (50°C)<br>p 17 A<br>ea 48.2 m <sup>2</sup> |
| Inverter<br>Custom parameters defi<br>Characteristics                                                                                                                                     | Model<br>nition Manufacturer<br>Operating Voltage<br>Nb. of inverters                                            | SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Unit Nom. Pow<br>Max. power (=>40°C<br>2 * MPPT 50 % Total Pow                                    | er 8.00 kWac<br>C) 8.80 kWac<br>er 8.0 kWac                                         |
|                                                                                                                                                                                           |                                                                                                                  | Pnom rat                                                                                                                                            | io 1.12                                                                             |
| Battery                                                                                                                                                                                   | Model                                                                                                            | PVX-2120L                                                                                                                                           |                                                                                     |
| Battery Pack Characteristic                                                                                                                                                               | Manufacturer<br>cs Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                                | Concorde<br>3 in series x 4 in parallel<br>36 V Nominal Capaci<br>50.0 % Stored energy<br>Fixed (20°C)                                              | ty 784 Ah (C10)<br>gy 14.1 kWh                                                      |
| Battery input charger                                                                                                                                                                     | Model                                                                                                            | Generic                                                                                                                                             |                                                                                     |
| Battery to Grid inverter                                                                                                                                                                  | Max. charging power<br>Model                                                                                     | 7.5 kWdc Max./ Euro efficienc<br>Generic                                                                                                            | cy 97.0/95.0 %                                                                      |
|                                                                                                                                                                                           | Max. discharging power                                                                                           | 6.6 kWac Max./ Euro efficience                                                                                                                      | cy 97.0/95.0 %                                                                      |
|                                                                                                                                                                                           |                                                                                                                  |                                                                                                                                                     |                                                                                     |
| PV Array loss factors                                                                                                                                                                     |                                                                                                                  |                                                                                                                                                     |                                                                                     |
| Thermal Loss factor                                                                                                                                                                       | Uc (const)                                                                                                       | 20.0 W/m²K Uv (win                                                                                                                                  | d) 0.0 W/m²K / m/s                                                                  |
| vviring Ohmic Loss                                                                                                                                                                        | Global array res.                                                                                                | 465 mOhm Loss Fractio                                                                                                                               | on 1.5 % at STC                                                                     |

| PVSYST V6.86                                                                  |                                                        |        |                      |                                                          | 21/04/20                                     | Page 2/8 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------|----------------------------------------------------------|----------------------------------------------|----------|
|                                                                               | Grid-Connected Sy                                      | rsterr | : Simulation pa      | arameters                                                | 6                                            |          |
| Module Quality Le<br>Module Mismatch<br>Strings Mismatch<br>Incidence effect, | oss<br>n Losses<br>n loss<br>ASHRAE parametrization I/ | AM =   | 1 - bo (1/cos i - 1) | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | n -0.8 %<br>n 1.0 % a<br>n 0.10 %<br>n. 0.05 | t MPP    |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |
|                                                                               |                                                        |        |                      |                                                          |                                              |          |



| PVSYST V6.86            |                       |               |                       |               | 21/04/20            | Page 4/8    |
|-------------------------|-----------------------|---------------|-----------------------|---------------|---------------------|-------------|
| G                       | rid-Connected S       | System        | n. Detailed Lise      | r's needs     |                     |             |
| Draigat .               | Tomon Midoh (NEN      | <b>/</b> )    |                       | 10110040      |                     |             |
| Project :               | i aman Midan (NEN     | //)<br>       |                       |               |                     |             |
| Simulation variant : 0  | Own house - SELC      | :O 9kw i      | inv                   |               |                     |             |
| Main system parameters  | Syste                 | em type       | Sheds on ground       |               |                     |             |
| Near Shadings           | Linear s              | hadings       | 50                    |               | 00                  |             |
| PV Field Orientation    |                       | tilt<br>Model | 5°<br>IAM6-72-320/SI  | azimuth       | ו 0°<br>איז 220 W/m |             |
| PV Array                | Nb. of r              | nodules       | 28                    | Pnom tota     | <b>8.96 kV</b>      | Vp          |
| Inverter                |                       | Model         | SUN2000L-8KTL         | Pnom          | n 8.00 kV           | / ac        |
| User's needs            | Daily household cor   | sumers        | Constant over the yea | ar Globa      | I 11.10 N           | 1Wh/year    |
| Daily household consume | rs, Constant over the | e year, av    | verage = 30.4 kWh/da  | ay            |                     |             |
|                         |                       | Annua         | l values              |               |                     |             |
|                         | Use 5 days a week     | Number        | Power                 | Use           |                     | Energy      |
| Lamps (LED or fluo)     |                       | 30            | 18 W/lamp             | 6 h/          | /day 2              | 2970 Wh/day |
| TV / PC / Mobile        |                       | 3             | 70 W/app              | 4 h/          | /day                | 840 Wh/day  |
| Iron                    |                       | 1             | 1200 W/app            | 1 h/          | /day 1              | 200 Wh/day  |
| Fridge / Deep-freeze    |                       | 1             |                       | 24 Wh/        | 'day 3              | 8000 Wh/day |
| Disn- & Cloth-Washers   |                       |               | 2000 W/ tot           | 2 WN/         | day<br>(day         | 1000 Wh/day |
| Aircond                 |                       | 6             | 2000 W tot            | 1 11/<br>7 h/ | /day 31             | 500 Wh/day  |
| Stand-by consumers      |                       | 0             | 730 W lot             |               | day 5               | 24 Wh/day   |
| Total daily energy      |                       |               | ĮĮ                    |               | 42                  | 2534 Wh/day |
|                         |                       | Hourly        | <b>v profile</b>      | 24            |                     |             |

| PVSYST V6.86        |                                                |                           |                        | 2          | 21/04/20 | Page 5/8    |  |  |  |
|---------------------|------------------------------------------------|---------------------------|------------------------|------------|----------|-------------|--|--|--|
|                     |                                                | Grid-Connected S          | ystem: Main results    | ;          |          |             |  |  |  |
| Project :           |                                                | Taman Midah (NEM)         |                        |            |          |             |  |  |  |
| Simulation varia    | Simulation variant : Own house - SELCO 9kw inv |                           |                        |            |          |             |  |  |  |
| Main system para    | ameters                                        | System type               | Sheds on ground        |            |          |             |  |  |  |
| Near Shadings       |                                                | Linear shadings           |                        |            |          |             |  |  |  |
| PV Field Orientatio | on                                             | tilt                      | 5°                     | azimuth    | 0°       |             |  |  |  |
| PV modules          |                                                | Model                     | JAM6-72-320/SI         | Pnom       | 320 Wp   |             |  |  |  |
| PV Array            |                                                | Nb. of modules            | 28 Pn                  | om total   | 8.96 kV  | /p          |  |  |  |
| Inverter            |                                                | Model                     | SUN2000L-8KTL          | Pnom       | 8.00 kV  | / ac        |  |  |  |
| User's needs        |                                                | Daily household consumers | Constant over the year | Global     | 11.10 N  | 1Wh/year    |  |  |  |
| Main simulation r   | results                                        |                           |                        |            |          |             |  |  |  |
| System Production   | า                                              | Produced Energy           | 11.78 MWh/year Speci   | ific prod. | 1315 k\  | Wh/kWp/year |  |  |  |
|                     |                                                | Performance Ratio PR      | 31.64 % Solar Frac     | ction SF   | 40.76 %  | )           |  |  |  |
| Battery ageing (Sta | ate of We                                      | ear) Cycles SOW           | 80.1% Stat             | ic SOW     | 80.0%    |             |  |  |  |
|                     |                                                | Battery lifetime          | 5.0 years              |            |          |             |  |  |  |





Performance Ratio PR



## Own house - SELCO 9kw inv Balances and main results

|               | GlobHor            | DiffHor        | T_Amb           | GlobInc     | GlobEff | EArray  | E_User   | E_Solar      | EUnused        | EFrGrid        |
|---------------|--------------------|----------------|-----------------|-------------|---------|---------|----------|--------------|----------------|----------------|
|               | kWh/m <sup>2</sup> | kWh/m²         | °C              | kWh/m²      | kWh/m²  | MWh     | MWh      | MWh          | MWh            | MWh            |
| January       | 133.0              | 82.20          | 28.10           | 136.3       | 131.2   | 1.016   | 0.978    | 0.400        | 0.522          | 0.578          |
| February      | 134.6              | 67.90          | 27.70           | 137.4       | 132.8   | 1.031   | 0.851    | 0.358        | 0.589          | 0.492          |
| March         | 149.8              | 88.20          | 28.00           | 150.3       | 144.9   | 1.125   | 0.936    | 0.388        | 0.630          | 0.548          |
| April         | 140.3              | 70.50          | 27.70           | 138.8       | 133.9   | 1.039   | 0.893    | 0.384        | 0.580          | 0.509          |
| Мау           | 140.3              | 78.60          | 28.60           | 136.9       | 131.7   | 1.027   | 0.978    | 0.400        | 0.532          | 0.578          |
| June          | 132.0              | 77.80          | 27.80           | 128.3       | 123.5   | 0.967   | 0.893    | 0.350        | 0.517          | 0.543          |
| July          | 134.4              | 87.20          | 27.80           | 131.1       | 125.8   | 0.994   | 0.936    | 0.392        | 0.524          | 0.544          |
| August        | 132.2              | 87.20          | 27.80           | 130.1       | 125.2   | 0.980   | 0.978    | 0.385        | 0.504          | 0.594          |
| September     | 129.2              | 79.00          | 27.10           | 128.8       | 124.0   | 0.968   | 0.851    | 0.347        | 0.520          | 0.504          |
| October       | 138.8              | 82.60          | 27.40           | 140.4       | 135.5   | 1.056   | 0.978    | 0.402        | 0.575          | 0.576          |
| November      | 117.6              | 79.20          | 26.70           | 119.8       | 115.4   | 0.907   | 0.936    | 0.357        | 0.462          | 0.579          |
| December      | 115.0              | 73.20          | 26.29           | 118.1       | 113.6   | 0.896   | 0.893    | 0.361        | 0.445          | 0.532          |
| Year          | 1597.2             | 953.59         | 27.58           | 1596.2      | 1537.5  | 12.005  | 11.101   | 4.525        | 6.400          | 6.576          |
| Laganda, Clab | llor l             | lorizontol ala | hal imadiati    |             |         | ClabEff | Effectio | . Clabal as  | tor IAM        | and chodings   |
| Legends: Glob | HOF I              | Horizontal gio | odal irradiatio | on<br>Is is |         | GIODEIT | Effectiv | e Global, co | orr. for TAIM  | and snadings   |
| DITT          | HOF I              | Horizontal dir | ruse irradiat   | ion         |         | EArray  | Effectiv | e energy at  | the output     | or the array   |
| I_A           | mb                 | amb.           |                 |             |         | E_User  | Energy   | supplied to  | the user       |                |
| Glob          | oinc (             | iobal incider  | nt in coll. pla | ne          |         | E_Solar | Energy   | from the su  | un             |                |
|               |                    |                |                 |             |         | EUnused | Unused   | l energy (ba | ttery full, no | grid injection |
|               |                    |                |                 |             |         | EFrGrid | Energy   | from the gr  | id             |                |





| PVSYST V6.86                                                                             |                                        |                                                                                                                                                                 |                                                                                                         |                                                                  |                        | 2                                           | 21/04/20                                             | Page 8/8                      |
|------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|---------------------------------------------|------------------------------------------------------|-------------------------------|
|                                                                                          |                                        | Grid-Conne                                                                                                                                                      | cted Syster                                                                                             | m: P50 - P90                                                     | evaluat                | ion                                         |                                                      |                               |
| Project :                                                                                |                                        | Taman Midah                                                                                                                                                     | n (NEM)                                                                                                 |                                                                  |                        |                                             |                                                      |                               |
| Simulation var                                                                           | iant :                                 | Own house -                                                                                                                                                     | SELCO 9kw                                                                                               | inv                                                              |                        |                                             |                                                      |                               |
| Main system pa                                                                           | rameters                               | 5                                                                                                                                                               | System type                                                                                             | Sheds on groun                                                   | d                      |                                             |                                                      |                               |
| Near Shadings<br>PV Field Orientat<br>PV modules<br>PV Array<br>Inverter<br>User's needs | lion                                   | L<br>Daily househ                                                                                                                                               | inear shadings<br>tilt<br>Model<br>Nb. of modules<br>Model<br>old consumers                             | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the | az<br>Pnor<br>e year ( | zimuth<br>Pnom<br>n total<br>Pnom<br>Global | 0°<br>320 Wp<br><b>8.96 kW</b><br>8.00 kW<br>11.10 M | <b>/p</b><br>/ ac<br>IWh/year |
| Evaluation of th                                                                         | e Produc                               | ction probability                                                                                                                                               | forecast                                                                                                |                                                                  |                        |                                             |                                                      |                               |
| The probability di<br>on the meteo dat                                                   | istribution<br>a used for              | of the system pro                                                                                                                                               | oduction forecast                                                                                       | t for different years                                            | is mainly de           | epende                                      | ent                                                  |                               |
| Meteo data sourc<br>Meteo data<br>Specified Deviatio<br>Year-to-year varia               | ce<br>on<br>ability                    | Year devia                                                                                                                                                      | Kind<br>ation from aver.<br>Variance                                                                    | MeteoNorm 7.2 s<br>Not defined<br>3 %<br>0.5 %                   | station                | Year                                        | 1995                                                 |                               |
| The probability di<br>Specified Deviatio                                                 | istribution<br>on F<br>Soi<br>(meteo + | variance is also o<br>V module modell<br>Inverter efficie<br>iling and mismatc<br>Degrada<br>system)                                                            | depending on so<br>ing/parameters<br>ncy uncertainty<br>h uncertainties<br>tion uncertainty<br>Variance | me system parame<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 %    | eters uncerta          | ainties<br>sum)                             |                                                      |                               |
| Annual production                                                                        | n probabil                             | lity                                                                                                                                                            | Variability<br>P50<br>P90<br>P95                                                                        | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                     |                        |                                             |                                                      |                               |
|                                                                                          |                                        |                                                                                                                                                                 | Probability                                                                                             | distribution                                                     |                        |                                             |                                                      |                               |
|                                                                                          | Probability                            | 0.50<br>0.45<br>0.40<br>0.35<br>0.30<br>0.25<br>0.20<br>0.15<br>0.10<br>-<br>0.05<br>-<br>0.00<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | X axis: no data fo                                                                                      | or the extremities definit                                       | ion !                  |                                             | .0                                                   |                               |

|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                     | 1 1                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| PVSYST V6.86                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                     | 21/04/20 Page 1/8                                                                    |
| Grid-                                                                                                                                                                                              | Connected Systen                                                                                        | n: Simulation parameter                                                                                                                             | S                                                                                    |
| Proiect : Tam                                                                                                                                                                                      | an Midah (NEM)                                                                                          |                                                                                                                                                     |                                                                                      |
| Geographical Site                                                                                                                                                                                  | Kuala Lumpur/Subang                                                                                     | Count                                                                                                                                               | ry <b>Malaysia</b>                                                                   |
| Situation                                                                                                                                                                                          | Latitude                                                                                                | 3.12° N Longitud                                                                                                                                    | de 101.55° E                                                                         |
| Time defined as                                                                                                                                                                                    | Legal Time                                                                                              | Time zone UT+8 Altitud                                                                                                                              | de 17 m                                                                              |
| Meteo data:                                                                                                                                                                                        | Albedo<br>Kuala Lumpur/Subang                                                                           | 0.20<br>MeteoNorm 7.2 station - Syntheti                                                                                                            | ic                                                                                   |
| Simulation variant : Own                                                                                                                                                                           | house - SELCO 9kw                                                                                       | inv                                                                                                                                                 |                                                                                      |
|                                                                                                                                                                                                    | Simulation date                                                                                         | 21/04/20 15h12                                                                                                                                      |                                                                                      |
| Simulation parameters                                                                                                                                                                              | System type                                                                                             | Sheds on ground                                                                                                                                     |                                                                                      |
| <b>Collector Plane Orientation</b>                                                                                                                                                                 | Tilt                                                                                                    | 5° Azimu                                                                                                                                            | th 0°                                                                                |
| Models used                                                                                                                                                                                        | Transposition                                                                                           | Perez Diffus                                                                                                                                        | se Perez, Meteonorm                                                                  |
| Horizon                                                                                                                                                                                            | Free Horizon                                                                                            |                                                                                                                                                     |                                                                                      |
| Near Shadings                                                                                                                                                                                      | Linear shadings                                                                                         |                                                                                                                                                     |                                                                                      |
| Storage                                                                                                                                                                                            | Kind                                                                                                    | Self-consumption, No grid reinject                                                                                                                  | ion                                                                                  |
|                                                                                                                                                                                                    | Charging strategy<br>Discharging strategy                                                               | When excess solar power is availa<br>As soon as power is needed                                                                                     | able                                                                                 |
| User's needs : Da                                                                                                                                                                                  | aily household consumers<br>average                                                                     | Constant over the year<br>12.8 kWh/Day                                                                                                              |                                                                                      |
| PV Array Characteristics<br>PV module<br>Original PVsyst database<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristics (50<br>Total area | Si-mono Model<br>Manufacturer<br>In series<br>Nb. modules<br>Nominal (STC)<br>D°C) U mpp<br>Module area | JAM6-72-320/SI<br>JA Solar<br>14 modules In parall<br>28 Unit Nom. Powe<br>8.96 kWp At operating cone<br>470 V I mp<br>54.3 m <sup>2</sup> Cell are | el 2 strings<br>er 320 Wp<br>d. 8.05 kWp (50°C)<br>pp 17 A<br>ea 48.2 m <sup>2</sup> |
| Inverter<br>Custom parameters definition<br>Characteristics                                                                                                                                        | Model<br>Manufacturer<br>Operating Voltage                                                              | SUN2000L-8KTL<br>Huawei Technologies<br>200-850 V Unit Nom. Pow<br>Max. power (=>40°C                                                               | er 8.00 kWac<br>C) 8.80 kWac<br>er 8.0 kWac                                          |
| inventer pack                                                                                                                                                                                      | ND. OF INVERTERS                                                                                        | Pnom rat                                                                                                                                            | io 1.12                                                                              |
| Battery                                                                                                                                                                                            | Model                                                                                                   | PVX-2120L                                                                                                                                           |                                                                                      |
| Battery Pack Characteristics                                                                                                                                                                       | Manufacturer<br>Nb. of units<br>Voltage<br>Discharging min. SOC<br>Temperature                          | Concorde<br>3 in series x 4 in parallel<br>36 V Nominal Capaci<br>50.0 % Stored energy<br>Fixed (20°C)                                              | ty 784 Ah (C10)<br>gy 14.1 kWh                                                       |
| Battery input charger                                                                                                                                                                              | Model                                                                                                   | Generic                                                                                                                                             |                                                                                      |
| Battery to Grid inverter                                                                                                                                                                           | Max. charging power<br>Model                                                                            | 7.5 kWdc Max./ Euro efficienc<br>Generic                                                                                                            | cy 97.0/95.0 %                                                                       |
|                                                                                                                                                                                                    | Max. discharging power                                                                                  | 6.6 kWac Max./ Euro efficienc                                                                                                                       | cy 97.0/95.0 %                                                                       |
|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                     |                                                                                      |
| Thermal Loss factor                                                                                                                                                                                | Lie (const)                                                                                             | 20 0 \//m2k/                                                                                                                                        | d) $0.0.10/(m^{2}k^{\prime}/m^{2}c)$                                                 |
|                                                                                                                                                                                                    | Global array res                                                                                        | 465 mOhm Loss Fractic                                                                                                                               | on 1.5 % at STC                                                                      |
|                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                     |                                                                                      |

| PVSYST V6.86                                                                                                                                                      |  |  |  |                                                          | 21/04/20                                             | Page 2/8 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|----------------------------------------------------------|------------------------------------------------------|----------|--|--|--|--|--|
| Grid-Connected System: Simulation parameters                                                                                                                      |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
| Module Quality LossLoss FracModule Mismatch LossesLoss FracStrings Mismatch lossLoss FracIncidence effect, ASHRAE parametrizationIAM = 1 - bo (1/cos i - 1)bo Par |  |  |  | Loss Fractio<br>Loss Fractio<br>Loss Fractio<br>bo Param | on -0.8 %<br>on 1.0 % at MPP<br>on 0.10 %<br>m. 0.05 |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |
|                                                                                                                                                                   |  |  |  |                                                          |                                                      |          |  |  |  |  |  |



| PVSYST V6.86                                                              |                     |        |                                             |                  | 21/04/20 | Page 4/8    |  |  |  |  |  |  |
|---------------------------------------------------------------------------|---------------------|--------|---------------------------------------------|------------------|----------|-------------|--|--|--|--|--|--|
| G                                                                         | rid-Connected S     | Svetor | . Dotailod Lla                              | or's poods       |          |             |  |  |  |  |  |  |
| Breiset                                                                   |                     |        |                                             |                  |          |             |  |  |  |  |  |  |
| Project : I aman Mildan (NEM)                                             |                     |        |                                             |                  |          |             |  |  |  |  |  |  |
| Simulation variant : Own house - SELCO 9kw inv                            |                     |        |                                             |                  |          |             |  |  |  |  |  |  |
| Main system parameters                                                    | System type         |        | Sheds on ground                             |                  |          |             |  |  |  |  |  |  |
| Near Shadings                                                             | Linear shadings     |        | 50                                          |                  |          |             |  |  |  |  |  |  |
| PV Field Orientation                                                      | tiit<br>Model       |        | 5°<br>JAM6-72-320/SI                        | n 0°<br>n 320.Wn | 320 Wp   |             |  |  |  |  |  |  |
| PV Array                                                                  | Nb. of modules      |        | 28 Pnom total <b>8.96 kWp</b>               |                  |          | Vp          |  |  |  |  |  |  |
| Inverter                                                                  | Model               |        | SUN2000L-8KTL Pnom 8.00 kW ac               |                  |          | √ ac        |  |  |  |  |  |  |
| User's needs                                                              | Daily household con | sumers | Constant over the year Global 4687 kWh/year |                  |          | Nh/year     |  |  |  |  |  |  |
| Daily household consumers, Constant over the year, average = 12.8 kWh/day |                     |        |                                             |                  |          |             |  |  |  |  |  |  |
|                                                                           |                     |        |                                             |                  |          |             |  |  |  |  |  |  |
|                                                                           |                     |        |                                             |                  | 1        |             |  |  |  |  |  |  |
|                                                                           | Use 2 days a week   | Number | Power                                       | Use              |          | Energy      |  |  |  |  |  |  |
| Lamps (LED or fluo)                                                       |                     | 30     | 18 W/lamp                                   | 6 h              | /day 2   | 2970 Wh/day |  |  |  |  |  |  |
| TV / PC / Mobile                                                          |                     | 3      | 70 W/app                                    | 14 h             | /day 2   | 2940 Wh/day |  |  |  |  |  |  |
| Iron                                                                      |                     | 1      | 1200 W/app                                  | 1 h              | /day     | 200 Wh/day  |  |  |  |  |  |  |
| Fridge / Deep-freeze                                                      |                     | 1      |                                             | 24 VVN<br>2 W/b  | /day 3   | 3000 Wh/day |  |  |  |  |  |  |
| Instant water beater                                                      |                     | 1      | 2000 W/ tot                                 | 2 VVII<br>1 b    | /uay     | 2000 Wh/day |  |  |  |  |  |  |
| Aircond                                                                   |                     | 6      | 750 W tot                                   | 7 h              | /day = 2 | 1500 Wh/day |  |  |  |  |  |  |
| Stand-by consumers                                                        |                     | 0      | 730 W 101                                   | <br>24 h         | /day 3   | 24 Wh/day   |  |  |  |  |  |  |
| Total daily energy                                                        |                     |        | 4                                           |                  | 44       | 1634 Wh/day |  |  |  |  |  |  |
| Total daily energy 44634 Wh/day                                           |                     |        |                                             |                  |          |             |  |  |  |  |  |  |
| PVSYST V6.86                        |         |                           |                               |                | 21/04/20  | Page 5/8      |  |  |  |
|-------------------------------------|---------|---------------------------|-------------------------------|----------------|-----------|---------------|--|--|--|
| Grid-Connected System: Main results |         |                           |                               |                |           |               |  |  |  |
| Project :                           |         | Taman Midah (NEM)         |                               |                |           |               |  |  |  |
| Simulation variant :                |         | Own house - SELCO 9kw inv |                               |                |           |               |  |  |  |
| Main system parameters              |         | System type               | Sheds on ground               |                |           |               |  |  |  |
| Near Shadings                       |         | Linear shadings           |                               |                |           |               |  |  |  |
| PV Field Orientation                |         | tilt                      | 5° azimuth                    |                | 0° ו      |               |  |  |  |
| PV modules                          |         | Model                     | JAM6-72-320/SI Pnom           |                | n 320 Wp  | 1             |  |  |  |
| PV Array                            |         | Nb. of modules            | 28 Pnom tota                  |                | l 8.96 kV | Vp            |  |  |  |
| Inverter                            |         | Model                     | SUN2000L-8KTL Pnom            |                | n 8.00 kV | 8.00 kW ac    |  |  |  |
| User's needs                        |         | Daily household consumers | Constant over the year Global |                | l 4687 k\ | 4687 kWh/year |  |  |  |
| Main simulation                     | results |                           |                               |                |           |               |  |  |  |
| System Production                   |         | Produced Energy           | 11.78 MWh/year                | Specific prod  | . 1315 k\ | Nh/kWp/year   |  |  |  |
|                                     |         | Performance Ratio PR      | 16.99 % Sola                  | ar Fraction SF | 51.85 %   | ,<br>0        |  |  |  |
| Battery ageing (State of We         |         | ear) Cycles SOW           | 87.8%                         | Static SOV     | V 80.0%   |               |  |  |  |
|                                     |         | Battery lifetime          | 5.0 years                     |                |           |               |  |  |  |





Performance Ratio PR



## Own house - SELCO 9kw inv Balances and main results

|                                                | GlobHor            | DiffHor            | T Amb   | GlobInc            | GlobEff                     | EArray   | E User                                          | E Solar      | EUnused      | EFrGrid |
|------------------------------------------------|--------------------|--------------------|---------|--------------------|-----------------------------|----------|-------------------------------------------------|--------------|--------------|---------|
|                                                | kWh/m <sup>2</sup> | kWh/m <sup>2</sup> | °C      | kWh/m <sup>2</sup> | kWh/m <sup>2</sup>          | MWh      | MWh                                             | MWh          | MWh          | MWh     |
| January                                        | 133.0              | 82.20              | 28.10   | 136.3              | 131.2                       | 1.016    | 0.446                                           | 0.220        | 0.701        | 0.226   |
| February                                       | 134.6              | 67.90              | 27.70   | 137.4              | 132.8                       | 1.031    | 0.357                                           | 0.194        | 0.765        | 0.163   |
| March                                          | 149.8              | 88.20              | 28.00   | 150.3              | 144.9                       | 1.125    | 0.357                                           | 0.192        | 0.851        | 0.165   |
| April                                          | 140.3              | 70.50              | 27.70   | 138.8              | 133.9                       | 1.039    | 0.402                                           | 0.217        | 0.757        | 0.184   |
| Мау                                            | 140.3              | 78.60              | 28.60   | 136.9              | 131.7                       | 1.027    | 0.402                                           | 0.201        | 0.729        | 0.201   |
| June                                           | 132.0              | 77.80              | 27.80   | 128.3              | 123.5                       | 0.967    | 0.357                                           | 0.191        | 0.695        | 0.166   |
| July                                           | 134.4              | 87.20              | 27.80   | 131.1              | 125.8                       | 0.994    | 0.446                                           | 0.229        | 0.696        | 0.217   |
| August                                         | 132.2              | 87.20              | 27.80   | 130.1              | 125.2                       | 0.980    | 0.357                                           | 0.177        | 0.707        | 0.180   |
| September                                      | 129.2              | 79.00              | 27.10   | 128.8              | 124.0                       | 0.968    | 0.357                                           | 0.176        | 0.717        | 0.181   |
| October                                        | 138.8              | 82.60              | 27.40   | 140.4              | 135.5                       | 1.056    | 0.446                                           | 0.242        | 0.728        | 0.205   |
| November                                       | 117.6              | 79.20              | 26.70   | 119.8              | 115.4                       | 0.907    | 0.357                                           | 0.175        | 0.654        | 0.182   |
| December                                       | 115.0              | 73.20              | 26.29   | 118.1              | 113.6                       | 0.896    | 0.402                                           | 0.214        | 0.613        | 0.187   |
| Year                                           | 1597.2             | 953.59             | 27.58   | 1596.2             | 1537.5                      | 12.005   | 4.687                                           | 2.430        | 8.614        | 2.257   |
|                                                |                    |                    |         |                    |                             |          |                                                 |              |              |         |
| Legends: GlobHor Horizontal global irradiation |                    |                    |         |                    | GlobEff                     | Effectiv | re Global, co                                   | orr. for IAM | and shadings |         |
| DiffHor Horizontal diffuse irradiation         |                    |                    |         |                    | EArray                      | Effectiv | Effective energy at the output of the array     |              |              |         |
| T_Amb T amb.                                   |                    |                    | E_User  | Energy             | Energy supplied to the user |          |                                                 |              |              |         |
| GlobInc Global incident in coll. plane         |                    |                    | E_Solar | Energy             | Energy from the sun         |          |                                                 |              |              |         |
|                                                |                    |                    |         |                    | EUnused                     | Unused   | Unused energy (battery full, no grid injection) |              |              |         |
|                                                |                    |                    |         |                    |                             | EFrGrid  | Energy                                          | from the gr  | id           |         |





| PVSYST V6.86                                                                                                                                                  |                                       |                                                                                                                  |                                                                                              |                                                                    |                                                  | 21/04/20                                                         | Page 8/8                     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|------------------------------|--|--|--|--|
|                                                                                                                                                               |                                       | Grid-Connect                                                                                                     | ed Syster                                                                                    | m: P50 - P90 e                                                     | evaluation                                       |                                                                  |                              |  |  |  |  |
| Project :                                                                                                                                                     |                                       |                                                                                                                  |                                                                                              |                                                                    |                                                  |                                                                  |                              |  |  |  |  |
| Simulation variant :                                                                                                                                          |                                       | Own house - SELCO 9kw inv                                                                                        |                                                                                              |                                                                    |                                                  |                                                                  |                              |  |  |  |  |
| Main system par                                                                                                                                               | rameters                              | :                                                                                                                | System type                                                                                  | Sheds on ground                                                    |                                                  |                                                                  |                              |  |  |  |  |
| Near Shadings<br>PV Field Orientati<br>PV modules<br>PV Array<br>Inverter<br>User's needs                                                                     | ion                                   | Lin<br>Nb<br>Daily household                                                                                     | ear shadings<br>tilt<br>Model<br>o. of modules<br>Model<br>d consumers                       | 5°<br>JAM6-72-320/SI<br>28<br>SUN2000L-8KTL<br>Constant over the y | azimut<br>Pnor<br>Pnom tota<br>Pnor<br>ear Globa | h 0°<br>n 320 Wp<br>al <b>8.96 kV</b><br>n 8.00 kW<br>al 4687 kV | <b>/p</b><br>/ ac<br>Vh/year |  |  |  |  |
| Evaluation of the Production probability forecast                                                                                                             |                                       |                                                                                                                  |                                                                                              |                                                                    |                                                  |                                                                  |                              |  |  |  |  |
| The probability di                                                                                                                                            | stribution<br>a used for              | of the system produ                                                                                              | uction forecast<br>I depends on t                                                            | t for different years is<br>the following choices:                 | mainly depen                                     | dent                                                             |                              |  |  |  |  |
| Meteo data sourc<br>Meteo data<br>Specified Deviatic<br>Year-to-year varia                                                                                    | e<br>on<br>ability                    | Year deviation                                                                                                   | Kind<br>on from aver.<br>Variance                                                            | MeteoNorm 7.2 stat<br>Not defined<br>3 %<br>0.5 %                  | tion<br>Yea                                      | ar 1995                                                          |                              |  |  |  |  |
| The probability dis<br>Specified Deviation                                                                                                                    | stribution<br>on P<br>Soi<br>(meteo + | variance is also dep<br>V module modelling<br>Inverter efficienc<br>ling and mismatch u<br>Degradatio<br>system) | pending on so<br>g/parameters<br>y uncertainty<br>uncertainties<br>n uncertainty<br>Variance | me system paramete<br>1.0 %<br>0.5 %<br>1.0 %<br>1.0 %<br>1.9 %    | ers uncertaintie<br>(quadratic sun               | n)                                                               |                              |  |  |  |  |
| Annual productior                                                                                                                                             | n probabil                            | ity                                                                                                              | Variability<br>P50<br>P90<br>P95                                                             | 0.00 MWh<br>0.00 MWh<br>0.00 MWh<br>0.00 MWh                       |                                                  |                                                                  |                              |  |  |  |  |
| Probability distribution                                                                                                                                      |                                       |                                                                                                                  |                                                                                              |                                                                    |                                                  |                                                                  |                              |  |  |  |  |
| 0.50<br>0.45<br>0.40<br>0.35<br>0.20<br>0.20<br>0.20<br>0.15<br>0.10<br>0.05<br>P50 = 000 kWh<br>0.00<br>0.20<br>0.40<br>0.50<br>E_Grid system production kWh |                                       |                                                                                                                  |                                                                                              |                                                                    |                                                  |                                                                  |                              |  |  |  |  |
|                                                                                                                                                               |                                       |                                                                                                                  |                                                                                              |                                                                    |                                                  |                                                                  |                              |  |  |  |  |