

A WEB-BASED IMPLEMENTATION OF

K-MEANS ALGORITHMS

LEE QUAN

UNIVERSITI TUNKU ABDUL RAHMAN

ii

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : LEE QUAN

ID No. : 18UEB01846

Date : 10 May 2022

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “A WEB-BASED

IMPLEMENTATION OF K-MEANS ALGORITHMS” was prepared by

LEE QUAN has met the required standard for submission in partial fulfilment

of the requirements for the award of Bachelor of Science (Hons) Software

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Khor Kok Chin

11/5/2022

iv

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be

made of the use of any material contained in, or derived from, this report.

© 2022, Lee Quan. All right reserved.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my sincerest gratitude to Dr. Khor

Kok Chin, my supervisor, for his continued guidance and patience throughout

the entire duration of this project. This project would not have been possible

without his invaluable advice and input at every stage.

Furthermore, I am eternally grateful to my loving and caring parents

for their encouragement and cheers from the side-lines. They were with me

every step of the way, helping me push on till I managed to cross the finishing

line.

 Lastly, let’s not forget my academic peers, who provided much needed

advice and suggestions during the design and development phases of this

project.

vi

ABSTRACT

The K-means algorithm has been around for over a century. While a rather

simplistic and dated algorithm, it remains widely used and taught till this day.

The K-means algorithm requires two inputs for it to be applied onto a data set,

the value K, and a proximity measure. Picking the right inputs is of utmost

importance if one wishes to achieve good results with the algorithm, especially

the proximity measure. There are plenty of different proximity measures

available in the world, all of them best suited for different types of

applications and data sets. Yet knowing this, most modern data mining tools

only offer a handful of proximity measures to the user, with the most common

ones being Euclidean distance and Manhattan distance. This stinginess of

proximity measures in data mining tools is stifling the performance of the

algorithm. This is where k-luster comes in.

 k-luster, the web application developed as a result of this project,

implements the K-means and K-means++ algorithm along with ten proximity

measures, seven of which are distance measures and whereas the remaining

three are similarity measures. The project was planned using the Kanban

development methodology, and was built using HTML, CSS, JavaScript,

Django, NumPy and pandas. The completed web application is then hosted on

Heroku. k-luster allows users to upload their own data set, or choose from one

of three samples if they just want to try out the application. Playing around

with different settings and comparing the results obtained, it is clear how large

of an impact choosing the right proximity measure can make.

 In conclusion, this project has accomplished what it first set out to

achieve. However, there is still much room for improvement. Firstly, k-luster

could incorporate additional clustering algorithms, or even classification

algorithms in the future. Furthermore, the web application could save the users’

past work, so that they may resume their work at a later time without skipping

a beat.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS xvi

LIST OF APPENDICES xvii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Problem Background 1

1.3 Problem Statement 3

1.4 Project Objectives 3

1.5 Project Solution 3

1.6 Project Approach 4

1.7 Project Scope 5

2 LITERATURE REVIEW 6

2.1 The K-means Algorithm 6

2.1.1 Brief Introduction to Data Mining 6

2.1.2 The K-means Algorithm 11

2.1.3 The K-means++ Algorithm 14

2.1.4 Proximity Measures 15

2.2 Review of Common Data Mining Tools 25

viii

2.2.1 amap (R package) 25

2.2.2 scikit-learn (Python package) 26

2.2.3 WEKA 26

2.2.4 Oracle Data Mining 27

2.2.5 Summary 27

2.3 Web Application 28

2.3.1 Introduction to Web Applications 28

2.3.2 Static and Dynamic Web Pages 28

2.3.3 General Architecture of a Web Application 29

2.3.4 Summary 29

2.4 Development Methodology 30

2.4.1 Agile 30

2.4.2 Kanban 30

3 METHODOLOGY AND WORK PLAN 33

3.1 Introduction 33

3.2 Development Methodology 33

3.3 Work Plan 35

3.3.1 Work Breakdown Structure 35

3.3.2 Project Schedule 37

3.3.3 Gantt Chart 39

3.4 Tools and Frameworks 41

3.4.1 HTML and CSS 41

3.4.2 JavaScript 41

3.4.3 Python 41

3.4.4 Django 42

3.4.5 NumPy 42

3.4.6 pandas 42

3.4.7 Matplotlib 42

3.4.8 Desmos API 43

3.4.9 Visual Studio Code 43

3.4.10 Git 43

3.4.11 GitHub 43

3.4.12 Trello 44

ix

3.4.13 Heroku 44

4 PROJECT SPECIFICATION 45

4.1 Introduction 45

4.2 Functional Requirements 45

4.2.1 Upload data sets module 45

4.2.2 Data pre-processing module 45

4.2.3 Clustering module 45

4.2.4 Results module 46

4.3 Non-functional Requirements 46

4.3.1 Operational requirements 46

4.3.2 Reliability requirements 46

4.3.3 Performance requirements 46

4.4 Use-cases 47

4.4.1 Use-case diagram 47

4.4.2 Use-Case Descriptions 48

4.5 Prototype 60

5 SYSTEM DESIGN 63

5.1 System Architecture 63

5.2 Data Flow Diagrams 64

5.3 Activity Diagrams 66

5.4 Page Designs 69

6 SYSTEM IMPLEMENTATION 71

6.1 Introduction 71

6.2 Migrating Prototype Code 71

6.3 Initialise a Git Repository and Push Code to GitHub 71

6.4 Implementing K-means++ 72

6.5 Implementing Additional Proximity Measures (I) 73

6.6 Deploying Project to Heroku 74

6.7 Attribute Exclusion 76

6.8 Attribute Normalisation 77

x

6.9 Seed Specification 77

6.10 Improving Result Visualisation Using Desmos API 77

6.11 Detection of Attribute Data Types 79

6.12 Implementing Sessions 80

6.13 Handling Missing Values in Uploaded Data sets 81

6.14 Sample Data sets 82

6.14.1 Iris Data set 82

6.14.2 Diabetes Data set 83

6.14.3 Breast Cancer Data set 83

6.15 Download Results 84

6.16 Classes to Clusters Evaluation 84

6.17 Implementing Additional Proximity Measures (II) 85

7 SYSTEM TESTING 87

7.1 SUS Testing 87

7.1.1 Test Procedure 87

7.1.2 Calculating SUS Scores 88

7.1.3 Interpreting SUS Scores 88

7.1.4 Conducting the SUS Test 90

8 CONCLUSIONS AND RECOMMENDATIONS 95

8.1 Conclusion 95

8.2 Recommendations for future work 95

REFERENCES 96

APPENDICES 99

xi

LIST OF TABLES

Table 2.1: K-means Algorithm Pseudocode (Han, Kamber

and Pei, 2011) 12

Table 2.2: K-means++ Algorithm Pseudocode (Arthur and

Vassilvitskii, 2007) 14

Table 3.1: Project Schedule 37

Table 4.1: Upload Data Set Use-Case Description 48

Table 4.2: Fill Missing Values Use-Case Description 49

Table 4.3: Choose Sample Data Set Use-Case Description 50

Table 4.4: Cluster Data Use-Case Description 51

Table 4.5: Choose K-means Variant Use-Case Description 52

Table 4.6: Choose Proximity Measure Use-Case

Description 53

Table 4.7: Enter Number of Clusters Use-Case Description 54

Table 4.8: Exclude Attributes Use-Case Description 55

Table 4.9: Enter Seed Use-Case Description 56

Table 4.10: Normalise Attributes Use-Case Description 57

Table 4.11: Show Classes to Clusters Evaluation Use-Case

Description 58

Table 4.12: Download Cluster Results Use-Case

Description 59

Table 7.1 Adjective Rating Scale (Bangor, Kortum

and Miller, 2009) 89

Table 7.2 Average SUS Scores for each Adjective

Rating (Bangor, Kortum and Miller, 2009) 90

Table 7.3 Summary of Responses Received 90

Table 7.4 Converted SUS Scores 91

xii

LIST OF FIGURES

Figure 1.1: Web Application Overview 3

Figure 1.2: Kanban Board Sample (Kirovska and

Koceski, 2015, p.29) 4

Figure 2.1: General Steps in Data Mining (Han, Kamber

and Pei, 2011) 6

Figure 2.2: K-means Algorithm in Action (Han,

Kamber and Pei, 2011) 13

Figure 2.3: Built-in Proximity Measures in WEKA 26

Figure 2.4: Error Shown When Picking an Unsupported

Distance Metric 26

Figure 2.5: General Architecture of a Web Application 29

Figure 2.6: Kanban Board Sample (Kirovska and Koceski,

2015, p.29) 31

Figure 3.1: Kanban Board Sample (Kirovska and Koceski,

2015, p.29) 33

Figure 3.2: Gantt Chart 39

Figure 3.3: Gantt Chart (continued) 40

Figure 4.1: Use-Case Diagram 47

Figure 4.2: Home page 60

Figure 4.3: Clustering page 61

Figure 4.4: Clustering page with results 62

Figure 5.1: System Architecture 63

Figure 5.2: Context Diagram 64

Figure 5.3: Level 0 Data Flow Diagram 64

Figure 5.4: Level 1 Data Flow Diagram: Cluster Data set 65

Figure 5.5: Activity Diagram: Upload Data set 66

xiii

Figure 5.6: Activity Diagram: Choose Sample Data set 67

Figure 5.7: Activity Diagram: Cluster Data set 68

Figure 5.8: k-luster Home Page 69

Figure 5.9: k-luster Missing Values Prompt 69

Figure 5.10: k-luster Cluster Page 70

Figure 5.11: k-luster Cluster Page with Cluster Results 70

Figure 6.1: k-luster GitHub Repository 72

Figure 6.2: Algorithm Variant Selection Field 72

Figure 6.3: K-means and K-means++ Code 73

Figure 6.4: Chebyshev Distance Code 73

Figure 6.5: Average Distance Code 74

Figure 6.6: Canberra Distance Code 74

Figure 6.7: k-luster App on Heroku 75

Figure 6.8: Requirements.txt Contents 75

Figure 6.9: Procfile Commands 76

Figure 6.10 Attribute Exclusion Field 76

Figure 6.11: Drop Excluded Attributes 76

Figure 6.12: Normalise Attributes Field 77

Figure 6.13: Attribute Normalisation Code 77

Figure 6.14: Seed Specification Field 77

Figure 6.15: Seed Specification Code 77

Figure 6.16: Importing the Desmos API 78

Figure 6.17: Cluster Result View 78

Figure 6.18: Update Result Visualisation 78

Figure 6.19: x-axis and y-axis Dropdowns 79

xiv

Figure 6.20: x-axis and y-axis Dropdown Event Listeners 79

Figure 6.21: Check to Distinguish Numeric and Textual

Attributes 79

Figure 6.22: Textual Attribute Disabled in Attribute

Exclusion Field 80

Figure 6.23: Textual Attribute Disabled in Axis Dropdown 80

Figure 6.24: Saving an Uploaded Data set 80

Figure 6.25: Loading an Uploaded Data set 81

Figure 6.26: Check for Missing Values 81

Figure 6.27: Filling in Missing Values 82

Figure 6.28: Check for Missing Values in the Iris Data set 82

Figure 6.29: Replacing Values Under Outcome in the

Diabetes Data set 83

Figure 6.30: Replacing Values Under Diagnosis in the

Breast Cancer Data set 83

Figure 6.31: Downloaded Results 84

Figure 6.32: Classes to Clusters Evaluation 84

Figure 6.33: Chord Distance Code 85

Figure 6.34: Mean Character Difference Code 85

Figure 6.35: Cosine Measure Code 86

Figure 6.36: Czekanowski Coefficient Code 86

Figure 6.37: Index of Association Code 86

Figure 7.1: Plot of Percentile Against SUS Score (Sauro,

2018) 89

Figure 7.2: Overlapping of Clusters 92

Figure 7.3: No Overlapping between Clusters 92

Figure 7.4: From Left to Right, Download Button,

Classes to Clusters Button, Results Text 93

xv

Figure 7.5: Popup Message Pointing at Classes to Clusters

Button 93

xvi

LIST OF SYMBOLS / ABBREVIATIONS

JIT Just-In-Time

GIGO Garbage in, garbage out

GUI Graphical user interface

URL Uniform Resource Locator

IP Internet Protocol

DNS Domain Name System

HTTP Hypertext Transfer Protocol

IDE Integrated development environment

UI User interface

JSON JavaScript Object Notation

SUS System usability scale

CSV Comma separated values

xvii

LIST OF APPENDICES

APPENDIX A: SUS Responses 99

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

This project aims to resolve the constant lack of supported proximity measure

options for the K-means algorithm in data mining tools and packages by developing

a web application that implements the K-means and K-means++ algorithm along

with a plethora of proximity measures, including both similarity and dissimilarity

measures.

1.2 Problem Background

The K-means algorithm is a partitioning clustering algorithm that works by

iteratively recalculating the centroid of each cluster and reassigning cluster

memberships for each data point if necessary (Han, Kamber and Pei, 2011). A

proximity measure is used to determine the cluster of a data point. There are many

proximity measures available, including Euclidean distance, Weighted Euclidean

distance, Manhattan distance, Minkowski distance, Average distance, Chord distance,

Mahalanobis distance, Pearson coefficient, and many others (Shirkhorshidi,

Aghabozorgi and Wah, 2015). The algorithm is halted when there are no more

changes to any of the clusters.

There has always been a shortage of choices for proximity measures

available for use with the algorithm in many data mining tools. The following are a

few examples of popular data mining tools and the available distance metrics for the

K-means algorithm:

2

1. amap (R package) (RDocumentation, n.d.)

• Euclidean distance

• Maximum distance

• Manhattan distance

• Canberra distance

• Binary distance

• Pearson correlation coefficient

• Absolute Pearson correlation coefficient

• Correlation coefficient

• Absolute correlation coefficient

• Spearman rank correlation coefficient

• Kendall rank correlation coefficient

2. scikit-learn (Python package):

• Euclidean distance

3. Weka:

• Euclidean distance

• Manhattan distance

4. Oracle Data Mining (Oracle, n.d.)

• Euclidean distance

• Cosine distance

As seen above, only the amap package for R supports more than 2 proximity

measures. This is the main inspiration behind this project.

3

1.3 Problem Statement

Many popular data mining tools such as scikit-learn the Python package, Weka, and

Oracle Data Mining do not implement a large variety of proximity measures for K-

means clustering. Most of them only include common similarity measures such as

Euclidean distance.

1.4 Project Objectives

This project aims to solve the problem above by achieving the following objectives:

• To implement K-means and K-means++ algorithm using web scripting

languages.

• To integrate two categories of proximity measures, namely, similarity and

dissimilarity measures into the K-means and K-means++ algorithms.

1.5 Project Solution

Figure 1.1: Web Application Overview

A web application that implements the K-means and K-means++ algorithm was

developed. Figure 1.1 shows the languages and libraries that were used to develop

the system. The client side or front-end of the application is handled by HTML, CSS

JavaScript and the Desmos API, whereas the back-end or the web server is coded

using Python, Django, NumPy and pandas. Django is responsible for providing web

services. NumPy and pandas are used for their blazingly fast speed when

manipulating data sets. The entire web application is hosted on Heroku.

4

Both the K-means and K-means++ clustering algorithms are written in

Python. The web application allows users to upload their data sets and input their

desired settings for the K-means algorithm. These include the proximity metric used,

the number of clusters, excluded attributes, seed and attribute normalisation. The

web application also allows the user to choose from three sample data sets, in case

the user does not want to bother with uploading their own data set. The clustering

task is done on the web server with Python, pandas and NumPy. Once complete, the

web server returns the cluster results to the client where JavaScript will update the

page dynamically.

1.6 Project Approach

The aforementioned application was built with Kanban, an agile development

methodology. Kanban, meaning “signboard” in Japanese (Corona and Pani, 2013,

p.3), is a concept used by Toyota’s Just-In-Time (JIT) production system during the

1950s (Kirovska and Koceski, 2015, p.25). When applied to software development, a

Kanban board is used to keep track and visualise the project’s progress.

Figure 1.2: Kanban Board Sample (Kirovska and Koceski, 2015, p.29)

5

1.7 Project Scope

The final deliverable is a web application designed to work on desktops or laptops

with modern browsers such as Mozilla Firefox, Google Chrome, and Opera. The web

application features the K-means and K-means++ clustering algorithms, and allow

users to upload their own data sets and configure the algorithm settings according to

their wishes. The application was built using HTML, CSS, JavaScript, Python

Django, NumPy and pandas. The application is hosted on Heroku, so that users who

are interested may easily access and use it.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 The K-means Algorithm

This section introduces the K-means algorithm, explains its inner workings and ties it

with the need for this project.

2.1.1 Brief Introduction to Data Mining

In the simplest way possible, data mining is the process of exacting valuable insights

and actionable knowledge from heaps of data (Han, Kamber and Pei, 2011). As

technology slowly advanced over the past decades, humans have steadily amassed

tons of data. However, without proper analysis, these collected data have no practical

use. This is where data mining comes in.

Data mining is a practice that consists of steps to process and analyse the

collected data. The output at the end of the process is valuable knowledge.

Figure 2.1: General Steps in Data Mining (Han, Kamber and Pei, 2011)

7

In general, data mining boils down to the steps shown in figure 2.1. Data

collected has to be pre-processed first before learning algorithms can be applied onto

it.

2.1.1.1 The Need for Data Pre-processing

There is a famous saying in computer science that goes “garbage in, garbage out”, or

GIGO for short. Learning algorithms must not be blindly applied on any data set

without first pre-processing it. The data sets fed into learning algorithms are directly

being used to train the model. Pre-processing is done to ensure the data is accurate

and reliable. Without trustable data, the resulting model will not be able to output

accurate results, hence the phrase GIGO. If only garbage data is provided to a model,

the results obtained will be garbage as well.

Data pre-processing can be broken down into a few steps, which are: data

cleaning, data integration, data reduction, and data transformation. Pre-processing is

usually the longest phase of data mining. The techniques and tools used for pre-

processing depends on the data. There is no one-size-fits-all approach to data pre-

processing.

2.1.1.1.1 Data Cleaning

Data gathered from the real world is often noisy, incomplete and inconsistent (Han,

Kamber and Pei, 2011). Noisy is used to describe data filled with outliers;

incomplete means certain fields or columns have been left out either intentionally or

by accident; inconsistent means data from different fields contradict each other. Data

cleaning refers to the transforming and processing of such data in order to make it

usable for training models. There are different methods for tackling each issue

mentioned above.

For missing values in the data set, the easiest solution is to remove the

affected tuples entirely. Otherwise, a value can be inferred using data from other

tuples. Noisy data or outliers can be smoothed out to better fit with the rest of the

data using binning and regression algorithms. Other than that, clustering algorithms

such as DBSCAN can be applied to detect and remove outliers from the data set (Liu,

et. al., 2019).

8

2.1.1.1.2 Data Integration

Data collected for model training will likely come from different sources, be it

different databases, data warehouses, data cubes, or raw files. As such, the data

collected will be in different formats and schemas. Thus, techniques are needed to

merge data from different data stores into a single coherent data set for analysis. This

merging process is known as data integration (Han, Kamber and Pei, 2011).

 The main concerns when conducting data integration are the entity

identification problem, data duplication and data conflicts (Han, Kamber and Pei,

2011). The entity identification problem describes the challenge of identifying and

matching up data belonging to the same entity. For example, when building a

customer profile using data collected from multiple stores and shops, how can all

data pertaining to the same user be identified and joined together? Merely merging

them based on similar or equivalent names is insufficient, as users may provide their

real name to some stores and nicknames to others. Furthermore, the customer names

might not even be provided out of respect for the customers’ privacy. The only

identifying attribute given would be their customer IDs from different databases. In

cases like these, how can different customer IDs with no correlation between each

other be matched up?

 Data duplication refers to the repetition of tuples in the combined data set.

Duplicated tuples have to be removed from the data set prior to analysis as it will

throw off the model’s accuracy and degrade its performance both when learning and

predicting. An example of a data conflict is inconsistent data values for the same

entity received from different sources. This could be due to a variety of reasons,

including different units or scales used, data entry errors, or the entity simply giving

different values to both sources by accident.

9

2.1.1.1.3 Data Reduction

In most cases, the amount of data made available to us for analysis is too large to be

fed into an algorithm entirely. It would take an exceptionally long time for the

algorithm to learn from the entire data set. Thus, steps need to be taken to alleviate

this issue. Data reduction is the process of reducing the cardinality and

dimensionality of the data, yet still closely preserving the overall integrity and

feature distributions of the original data set (Han, Kamber and Pei, 2011).

 The most common technique to reduce cardinality is random sampling. This

means to randomly select a certain percentage of tuples from the original data set to

form the new reduced data set. Sampling can be done either with or without

replacement. Other than that, data can be aggregated to dramatically reduce the

number of tuples. For example, data on profits gained daily can be totalled up to be

monthly, quarterly or even yearly. For reducing dimensionality, unrelated attributes

are simply dropped before the data set is passed to the algorithm.

2.1.1.1.4 Data Transformation

Lastly, data transformation is the process of transforming the data to optimise the

mining process and to achieve a better and more accurate result (Han, Kamber and

Pei, 2011). Usual steps taken in the data transformation phase include normalisation,

discretisation, and attribute construction (Han, Kamber and Pei, 2011).

Normalisation is used to scale a numerical attribute so that all data values within it

fall in a certain range. Normalisation is usually done to enforce a consistent range

across multiple numerical features. Discretisation means to convert numerical data

into discrete data. A common example is the conversion of age numbers into a

categorical label such as young, teens, middle-aged or elderly. Attribute construction

refers to the derivation of new attributes from existing features.

10

2.1.1.2 Data Mining Algorithms

Once data has been pre-processed, data mining algorithms can be applied onto them

to obtain insights and knowledge. Data mining algorithms can be categorised into

several types, the most prominent ones being classification, regression, and

clustering.

 Classification problems are where given a certain set of known data values,

predict a discrete class which the set belongs to (Han, Kamber and Pei, 2011). For

example, given a person’s age, daily lifestyle habits, medical history, blood pressure

and BMI, predict if the patient is at risk of developing a heart attack. Popular

classifier algorithms include decision tree classifiers such as ID3, C4.5 and CART

(Han, Kamber and Pei, 2011). Regression tasks are similar to classification tasks, but

instead of predicting a discrete class label, a continuous numerical value is predicted.

 However, clustering is conceptually different from classification and

regression. In classification and regression, a class label and a numeric value is to be

predicted respectively. For clustering tasks, the goal is to group data points that

“belong together” into the same cluster. The method used to determine if points

belong in the same cluster vary depending on the clustering algorithm used.

Examples of clustering algorithms include affinity propagation, mean-shift,

agglomerative clustering, DBSCAN and K-Means (scikit-learn, n.d.), which is the

focus of this project.

11

2.1.2 The K-means Algorithm

This section explains the origin of the K-means algorithm, how the algorithm works,

its strengths and drawbacks.

2.1.2.1 Brief History of the K-means Algorithm

The K-means algorithm is by no means a modern idea. The three most commonly

used variations of the K-means algorithm are the Llyod algorithm, the Forgy

algorithm, the MacQueen algorithm, and the Hartigan-Wong algorithm (Morissette

and Chartier, 2013). The Llyod algorithm and the Forgy algorithm were developed in

1957 and 1965 respectively, but the Llyod algorithm was not published until 1982

The clustering steps in these two algorithms are exactly the same, with the only

difference being the consideration of data distribution (Morissette and Chartier,

2013). The Llyod algorithm was defined for discrete data, whereas the Forgy

algorithm considered continuous data The MacQueen algorithm, which was

proposed in 1967, is a slight variation on the Llyod and Forgy algorithms. The

Hartigan-Wong algorithm was first described by Hartigan in 1975, but was improved

upon in 1979 by Hartigan and Wong (Hartigan and Wong, 1979) The first variation

of the K-means algorithm appeared over 60 years ago, and yet this clustering

technique still remains used till this day.

12

2.1.2.2 Explanation of the K-means Algorithm

This section describes the Llyod/Forgy algorithm, which is the variant used in this

project.

The first step in using the algorithm is to pick a value for K, which is the

number of clusters to segregate the data points into. Then, K number of data points

are randomly chosen to be the initial cluster centroids. Next, each point in the data

set is assigned to the cluster it is most similar to. To determine the point’s similarity

with each cluster, a certain proximity measure is used. Proximity measures will be

further explained in section 2.1.3. After each value has been assigned a cluster

membership, all cluster centroids are recalculated to be the mean of all points

assigned to them. Then, each point’s similarity with all cluster centroids are re-

evaluated, and its cluster membership is reassigned if necessary. After that, each

cluster centroid is recalculated again. This repeats until there are no further changes

in cluster memberships and cluster centroids.

Thus, the pseudocode for the K-means algorithm is as follows:

Table 2.1: K-means Algorithm Pseudocode (Han, Kamber and Pei, 2011)

(1) Choose a value for K

(2) Randomly choose K points from the data set to act as initial cluster centroids

(3) DO:

 For each point, assign/reassign cluster memberships to the

 most similar cluster centroid

 Evaluate new cluster centroids by calculating the mean of

 all points belonging to the cluster

 WHILE there are still changes to cluster memberships and centroids

13

Figure 2.2: K-means Algorithm in Action (Han, Kamber and Pei, 2011)

 Figure 2.2 shows an example of the K-means algorithm being applied on an

arbitrary data set. In this example, the value of K is 3. The plot labelled (a) shows the

initial clusters based on the random points chosen to be the cluster centroids. Once

cluster memberships have been assigned to each point, the cluster centroids are

calculated as the mean of all points within the cluster. The centroids are labelled with

a “+” in the second plot. Then, each data point is reassigned a new cluster if needed,

and the cluster centroids are recalculated. The final plot on the right shows the final

clusters, the output of the algorithm.

2.1.2.3 Strengths and Drawbacks of the K-means algorithm

The most obvious advantage of the K-means algorithm is its simplicity and ease of

implementation. The algorithm’s low computational cost and memory usage also

contributed to it remaining popular throughout the decades (Morissette and Chartier,

2013) Furthermore, the algorithm also scales relatively well since it has a time

complexity of 𝑂(𝑛𝐾𝑡), where n is the number of data points, k is the number of

clusters, t is the number of iterations (Han, Kamber and Pei, 2011).

 On the other hand, the K-means algorithm is sensitive to outliers and noise

data (Han, Kamber and Pei, 2011), as it uses a mean measure to determine the cluster

centroids. Other than that, some data scientists view the need for specifying the

number of clusters beforehand to be a weakness (Han, Kamber and Pei, 2011). Other

clustering methods such as hierarchical clustering may be able to operate without

first specifying the number of clusters, but they are not as efficient as the K-means

algorithm.

14

2.1.3 The K-means++ Algorithm

K-means++ is a variant of the K-means algorithm that modifies the process of

picking the initial cluster centroids to favour more spread out arrangements. The

algorithm was proposed by Arthur and Vassilvitskii in 2007. The pseudocode for the

K-means++ algorithm is as follows:

Table 2.2: K-means++ Algorithm Pseudocode (Arthur and Vassilvitskii, 2007)

(1) Choose a value for K

(2) Randomly choose a single point from the data set, with uniform chance for all

points to be chosen

(3) WHILE number_of_clusters < K

 FOR all points in the data set

 Calculate probability of choosing that point with
𝐷(𝑥)2

∑ 𝐷(𝑥)2𝑥∈𝑋

 Choose a random point with the probabilities calculated

(4) DO:

 For each point, assign/reassign cluster memberships to the

 most similar cluster centroid

 Evaluate new cluster centroids by calculating the mean of all

points belonging to the cluster

 WHILE there are still changes to cluster memberships and centroids

where

𝐷(𝑥) = distance from that particular data point to the closest cluster centroid

Notice how the only difference between this algorithm and the regular K-

means algorithm is the way the initial centroids are picked. By assigning a higher

probability of being picked to data points that are further away, the initial chosen

centroids tend to be more spread out. Also note that step 4 in table 2.2 is the exact

same as step 3 in table 2.1.

15

2.1.4 Proximity Measures

In section 2.1.2.2, it is mentioned that a certain proximity measure is needed to

determine a point’s similarity with each cluster centroid, which is then used to assign

the point to a certain cluster. In this section, the purpose of proximity measures in

data mining will be explained in more depth. This section also presents a list of

proximity measures that can be used with the K-means algorithm.

 In data mining, there are many algorithms that require a proximity measure to

function. Examples include partitioning clustering algorithms such as K-means and

K-medoids (Shirkhorshidi, Aghabozorgi and Wah, 2015). In most cases, Euclidean

distance is selected as the distance metric. The proximity measure chosen to be used

with these algorithms directly affects the algorithm’s performance and results. Due to

the significance of a proximity measure’s effect, much research has been done

looking into new measures and comparing them to existing metrics in terms of

performance, advantages and disadvantages when applied to various different types

of data such as categorical data and binary data (Shirkhorshidi, Aghabozorgi and

Wah, 2015). It should also be noted that proximity measures are not universally

applicable to all types of data. Furthermore, there is no single “best” proximity

measure for all applications (Shirkhorshidi, Aghabozorgi and Wah, 2015). The

optimal metric for each situation needs to be discovered through experimentation.

 Proximity measures fall into one of two categories, similarity and

dissimilarity measures (Shirkhorshidi, Aghabozorgi and Wah, 2015). For this project,

emphasis will be given on proximity measures meant for continuous data. The

following proximity measures are all featured in the web application.

16

2.1.4.1 Similarity Measures

Metrics listed under this subsection measure the similarity between two data points.

The higher the value, the more alike the two points are. When used with the K-means

algorithm, points with a higher value will be placed into the same cluster.

2.1.4.1.1 Czekanowski Coefficient

This proximity measure is known to give reliable results when used with the K-

means algorithm for medium-dimensionality data (Shirkhorshidi, Aghabozorgi and

Wah, 2015).

 𝑑 = 1 −
2∑ min(𝑥𝑖,𝑦𝑖)

𝑛
𝑖=1

∑ (𝑥𝑖+𝑦𝑖)
𝑛
𝑖=1

 (2.1)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

2.1.4.1.2 Coefficient of Divergence

Evidence has shown that this proximity metric is able to produce accurate results

when used with the K-means algorithm (Shirkhorshidi, Aghabozorgi and Wah, 2015).

 𝑑 = √1

𝑛
∑ (

𝑥𝑖−𝑦𝑖

𝑥𝑖+𝑦𝑖
)
2

𝑛
𝑖=1 (2.2)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

17

2.1.4.1.3 Mean Character Difference

In contrast to Czekanowski coefficient, research has shown that mean character

difference proximity measure tends to produce inaccurate results when used with the

K-means algorithm for data sets with a high number of dimensions (Shirkhorshidi,

Aghabozorgi and Wah, 2015).

 𝑑 =
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1 (2.3)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

2.1.4.1.4 Index of Association

This measure is known to produce inaccurate results when used with K-means.

 𝑑 =
1

𝑛
∑ |

𝑥𝑖

∑ 𝑥𝑖
𝑛
𝑖=1

−
𝑦𝑖

∑ 𝑦𝑖
𝑛
𝑖=1

|𝑛
𝑖=1 (2.4)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

18

2.1.4.1.5 Pearson Coefficient

This measure is commonly used for clustering gene expression data (Shirkhorshidi,

Aghabozorgi and Wah, 2015). One of its biggest disadvantage is that it is easily

affected by outliers.

 𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑥, 𝑦) =
∑ (𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)
𝑛
𝑖=1

√∑ (𝑥𝑖−𝜇𝑥)
2𝑛

𝑖=1
√∑ (𝑦𝑖−𝜇𝑦)

2𝑛
𝑖=1

 (2.5)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

𝜇𝑥 = mean of all attribute values in 𝑥

𝜇𝑦 = mean of all attribute values in 𝑦

2.1.4.1.6 Cosine Measure

A similarity measure that is usually used for determining document similarity

(Shirkhorshidi, Aghabozorgi and Wah, 2015).

 𝐶𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑦) =
∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
 (2.6)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

‖𝑥‖2 = √∑ 𝑥𝑖
2𝑛

𝑖=1

‖𝑦‖2 = √∑ 𝑦𝑖
2𝑛

𝑖=1

19

2.1.4.2 Dissimilarity Measures

Measures listed under this subsection is the exact opposite to those listed in section

2.1.3.1. The measures here quantify the distance between two points. When used

with the K-means algorithm, points with a lower dissimilarity will be placed in the

same cluster.

2.1.4.2.1 Euclidean Distance

The most common proximity measure used with the K-means algorithm, and also the

default option in most cases, if not the only option. This metric works well in most

cases, but is however sensitive to outliers and easily affected by largely-scaled

attributes (Shirkhorshidi, Aghabozorgi and Wah, 2015). To solve the issue of

largely-scaled features, normalisation is usually performed beforehand. The equation

for computing the Euclidean distance between two points is as follows:

 𝑑 = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 (2.7)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

20

2.1.4.2.2 Weighted Euclidean Distance

A variation of Euclidean distance that allows weights to be assigned for each

attributes. This allows the algorithm to put more emphasis on certain attributes when

during the clustering phase (Shirkhorshidi, Aghabozorgi and Wah, 2015). The

equation for this metric is as follows:

 𝑑 = √∑ 𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1 (2.8)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

𝑤𝑖 = weight assigned to attribute 𝑖

2.1.4.2.3 Average Distance

Another variant of Euclidean distance, designed to dampen the effects of outliers

within the data set (Shirkhorshidi, Aghabozorgi and Wah, 2015) by averaging out the

sum of distances for all attributes. The formula for this is as below:

 𝑑 = √(
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1) (2.9)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

21

2.1.4.2.4 Manhattan Distance

A common alternative to Euclidean distance, has the same strengths and drawbacks

as Euclidean distance (Shirkhorshidi, Aghabozorgi and Wah, 2015). Manhattan

distance is also known as city block distance (Cha, 2007).

 𝑑 = ∑ (|𝑥𝑖 − 𝑦𝑖|)
𝑛
𝑖=1 (2.10)

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

2.1.4.2.5 Minkowski Distance

A general case for Euclidean distance and Manhattan Distance. In fact, both

Euclidean distance and Manhattan distance are measures that belong under the

Minkowski family (Shirkhorshidi, Aghabozorgi and Wah, 2015). When 𝑚 = 1, the

formula gives the same result as Manhattan distance. When 𝑚 = 2, the equation

gives the same result as Euclidean distance The equation for Minkowski distance is

as follows:

 𝑑 = (∑ |𝑥𝑖 − 𝑦𝑖|
𝑚𝑛

𝑖=1)
1

𝑚,𝑚 ≥ 1 (2.11)

where

𝑛 = number of attributes

𝑚 = a positive real number

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

22

2.1.4.2.6 Chebyshev Distance

An extension of Minkowski distance. As the value of 𝑚 approaches infinity, the

distance obtained is known as the Chebyshev distance (Cha, 2007). The distance can

be approximated by finding the maximum absolutute distance across all attributes

The following is the equation for that approximation:

 𝑑 = 𝑚𝑎𝑥𝑖|𝑥𝑖 − 𝑦𝑖| (2.12)

where

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

2.1.4.2.7 Chord Distance

A modified version of Euclidean distance developed to overcome the weaknesses of

Euclidean distance, including issue of it being heavily affected by largely scaled

attributes (Shirkhorshidi, Aghabozorgi and Wah, 2015). It is defined as “the length of

the chord joining two normalized points within a hypersphere of radius one”

(Shirkhorshidi, Aghabozorgi and Wah, 2015). The following is the equation for

Chord distance:

 𝑑 = √2 − 2
∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
 (2.13)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

‖𝑥‖2 = √∑ 𝑥𝑖
2𝑛

𝑖=1

‖𝑦‖2 = √∑ 𝑦𝑖
2𝑛

𝑖=1

23

2.1.4.2.8 Canberra Distance

This dissimilarity measure was first introduced by Lance back in the 1960’s and

further improved on the next year by Williams (Faisal, Zamzami and Sutarman,

2020). Research conducted shows that this metric is able to provide accurate

clustering results, provided that the data has been properly preprocessed. (Faisal,

Zamzami and Sutarman, 2020; Thakare and Bagal, 2015). The performance of this

metric is comparable to the performances of Euclidean distance and Manhattan

distance. However, the Canberra distance is easily affected by largely-scaled

attributes. Normalising the data before clustering will rectify this issue.

 𝑑 = ∑
|𝑥𝑖−𝑦𝑖|

|𝑥𝑖|−|𝑦𝑖|
𝑛
𝑖=1 (2.14)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

24

2.1.4.2.9 Dissimilarity Approach

The above measures are all known as similarity measures. They measure the

similarity between two data values However, proximity measures can be broken up

into similarity and dissimilarity measures. Thus, some dissimilarity measures need to

be implemented in the project as well.

Wang (2013) describes a dissimilarity based variation of the K-means

algorithm in their conference paper. Dissimilarity measures work in the opposite way

as compared to similarity measures. The smaller the value, the closer the two points

are together. There are two equations involved, one to calculate attribute dissimilarity,

and the other to calculate object dissimilarity. Attribute dissimilarity measures the

dissimilarity between two values of the same attribute in two data points.

 a𝑡𝑡_𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑖 , 𝑦𝑖) =
||𝑥𝑖−𝜇𝑖|−|𝑦𝑖−𝜇𝑖||

2

max(𝑖)−min(𝑖)
 (2.15)

where

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

𝜇𝑖 = mean of all values for attribute 𝑖

max(𝑖) = mean of all attribute values in 𝑦

min(𝑖) = mean of all attribute values in 𝑦

Object dissimilarity is simply the average of the attribute dissimilarities for all

attributes in two points.

 𝑜𝑏𝑗_𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) =
∑ 𝑎𝑡𝑡_𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑖,𝑦𝑖)
𝑛
𝑖=1

𝑛
 (2.16)

where

𝑛 = number of attributes

𝑥𝑖 = value of attribute 𝑖 for first data point

𝑦𝑖 = value of attribute 𝑖 for second data point

25

2.2 Review of Common Data Mining Tools

The main inspiration behind this project is the constant lack of choices for proximity

measures in data mining tools that support the K-means algorithm. In this section,

several tools are reviewed and a list of proximity measures supported by the tool will

be presented. Tools reviewed include libraries or frameworks for programming

languages as well as standalone tools.

2.2.1 amap (R package)

R is a programming language designed for statistical computing (R, n.d.). The amap

package for R provides an implementation of the K-means algorithm. According to

RDocumentation (n.d.), the supported proximity measures are as follows:

• Euclidean distance

• Maximum distance

• Manhattan distance

• Canberra distance

• Binary distance

• Pearson coefficient

• Absolute Pearson coefficient

• Correlation coefficient

• Absolute correlation coefficient

• Spearman rank correlation coefficient

• Kendall rank correlation coefficient

26

2.2.2 scikit-learn (Python package)

Python is a programming language that was first released 3 decades ago. It has

gained immense popularity in recent years due to its simple and easy to understand

syntax. scikit-learn is a very popular Python package among beginners and veterans

alike in data science. It provides implementations for most of the commonly used

data mining algorithms, including the K-means algorithm. According to the

documentation, the only available proximity measure to be used with the K-means

algorithm is Euclidean distance (scikit-learn, n.d.).

2.2.3 WEKA

WEKA is an open-source data mining tool developed at the University of Waikato in

New Zealand (Frank, Hall and Witten, 2016). WEKA is an acronym for Waikato

Environment for Knowledge Analysis. The tool provides common data mining

algorithms in a user-friendly graphical user interface (GUI).

Figure 2.3: Built-in Proximity Measures in WEKA

 Figure 2.3 shows all available proximity measures in WEKA. However, the

K-means algorithm implementation only supports Euclidean and Manhattan

distance. Picking any other metric yields the following error:

Figure 2.4: Error Shown When Picking an Unsupported Distance Metric

27

2.2.4 Oracle Data Mining

Oracle Data Mining is a data mining tool built into Oracle Database that offers a

variety of data mining algorithms (Oracle, n.d.). It was designed to work on

extremely large data sets. Based on the documentation, the available proximity

measures for the K-means algorithm are Euclidean distance and Cosine distance

(Oracle, n.d.).

2.2.5 Summary

In summary, out of all data mining tools reviewed in this section, only the amap

package for R supports more than 2 proximity measures. The reason for the limited

choices of proximity measures in most popular data mining tools is unknown.

However, it is clear that the proximity measure chosen has a huge impact on the

clustering results obtained from the K-means algorithm. Considering how crucial it is

to select the right proximity measure to be used with the K-means algorithm, it is

counter-intuitive how few proximity measures are supported by most popular data

mining tools. This forms the crux of the issue that this project sets out to solve.

28

2.3 Web Application

This project aims to solve the constant lack of supported proximity measures for the

K-means algorithm in popular data mining tools. This objective of this project is to

develop a web application that implements the K-means algorithm and provides

numerous choices for proximity measures to use with the algorithm. This section will

briefly explain web applications and their general architecture.

2.3.1 Introduction to Web Applications

Basically put, web applications are applications that are hosted entirely online and

accessed through a web browser (Jazayeri, 2007). A Uniform Resource Locator

(URL) is used to tell the browser where a web page is located. A URL consists of a

domain name and a path to the resource. The domain name is converted into an IP

address with a Domain Name System (DNS), which points the browser to the

computer or server where the application is located. The path points to the object to

load.

 Hypertext Transfer Protocol (HTTP) is a protocol for communication

between clients and web servers (Jazayeri, 2007). There are eight operations defined

in the protocol. The most commonly used ones are GET and POST.

2.3.2 Static and Dynamic Web Pages

Web pages fall within one of two groups, static pages and dynamic pages. Static

pages are web pages which run entirely on the client side. In other words, static

pages are websites developed using only HTML, CSS and JavaScript.

 Dynamic pages require a server-side scripting language. The major difference

between static and dynamic pages is that dynamic pages are first processed by the

server before being displayed to the client (Jazayeri, 2007). For example, the web

server can receive a data set uploaded by the client and format the next page

accordingly before sending it to the client.

 For the web application this project aims to build, a dynamic web page is

needed as the contents displayed to the user will change based on the uploaded data

set.

29

2.3.3 General Architecture of a Web Application

Figure 2.5: General Architecture of a Web Application

The server will process the template programmatically using scripting languages and

many more before sending it to the client. The templates are typically written using

HTML, CSS and JavaScript. Web scripting languages include PHP, PERL, Python,

and many more.

2.3.4 Summary

In conclusion, the web application proposed by this project needs to be a dynamic

web page, since the cluster calculations are done on the server side. Besides that, the

appearance of the web page needs to change based on the data set that the user

uploaded or chose.

30

2.4 Development Methodology

This section introduces and explains an Agile methodology for software

development.

2.4.1 Agile

Agile methodologies deviate from traditional structured development methodologies

such as Waterfall, Spiral and so on. Agile methodologies emphasise on flexibility

and adapting to change instead of following a concrete plan. There is a common

misconception that development teams can choose to follow the Agile methodology.

However, Agile methodology is not a single concrete methodology to be followed,

but rather a general term referring to methodologies that adhere to the principles

stated in the Agile manifesto (Shore and Warden, 2007). Examples of such

methodologies are Extreme Programming (XP), Kanban, Scrum, Feature Driven

Development and so on.

2.4.2 Kanban

This subsection explains the origins of Kanban and how it has been adapted to

software development.

2.4.2.1 Brief Introduction to Kanban

Kanban got its start in a Toyota production system back in the 1950s (Kirovska and

Koceski, 2015). The production system follows the Just-in-time (JIT) concept. This

means that the production line only produces parts that are necessary, in just the right

quantity and no more. In Japanese, Kanban roughly means signal card. In the context

of Toyota’s production system, Kanban cards were used to signal what part were

needed and the exact quantity.

 The first time Kanban was introduced to the software development field was

when Microsoft invited David J. Anderson to come up with a method to visualise the

work flow within a development team.

31

2.4.2.2 Kanban in Software Development

When applied to software development, a Kanban board is used to visualise the

workflow within a team. An example of such a board is shown in figure 2.6 below:

Figure 2.6: Kanban Board Sample (Kirovska and Koceski, 2015, p.29)

 There are a few categories or groupings on the board, namely To Do, In

Progress, Test, and Done. Under each of these categories are cards labelled with

tasks. As work progresses, cards will be moved around from one category to another.

For example, when a team member decides to take up a task, the associated card is

moved from To Do to In Progress. Similarly, when a task is completed, the

associated card is moved to Done. That is the entirety of the Kanban methodology.

 This methodology is founded on five core principles (Kirovska and Koceski,

2015):

1. Visualise the workflow

2. Limit items being worked on concurrently

3. Manage flow

4. Make management policies explicit

5. Use models and the scientific method to improve

32

 Principle one is achieved by the Kanban board itself. By having a card for

each task, the workflow can be visualised as the project progresses. Principle two is

put into place to make Kanban scalable based on the size of the developer team. If

there are only a few developers on the team, the manager may consider setting a low

limit on the total number of items that can be worked on concurrently. Conversely, if

the team was larger, managers could experiment with raising the limit. Principle

three is related to principle one.

2.4.2.3 Benefits of Kanban

The biggest benefit of Kanban is its scalability. As there is only a single developer on

the project, selecting a methodology that scales well to the team size is paramount to

the success of this project. This is done by setting a limit on the concurrent tasks

being worked on during the entire project.

 Besides that, Kanban is a relatively simple methodology compared to

other Agile methodologies. All developers have to do is to pick a task from the board

and work on it until it is completed. This is repeated until the project is done. There

is no need for daily stand up meetings and pairwise code reviews. Furthermore, it is

quite flexible. The due date for each task can be adjusted based on its complexity

instead of following a fixed sprint cycle like Scrum.

33

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, the methodology chosen for this project will be explained, as

well as how it is applied to the project. This chapter also describes the overall

plan for completing the project. The tools and frameworks used to build the

project are listed in this chapter too.

3.2 Development Methodology

The Kanban development methodology was chosen for this project due to its

simplicity, flexibility and scalability. In this methodology, a Kanban board is

used to keep track of the project’s progress. The board is split into several lists,

with each list representing a step in the project workflow. Tasks are moved

across lists as the project progresses. Figure 3.1 below an example of a

Kanban board.

Figure 3.1: Kanban Board Sample (Kirovska and Koceski, 2015, p.29)

34

For this project, the Kanban board was split into the following lists:

a) Backlog

This list contains all of the project’s main tasks, taken from the work

breakdown structure. These tasks were arranged from most important

to least in the list. Tasks were moved to the prioritise list prior to being

worked on.

b) Prioritise

Similar to backlog, but for tasks with a higher priority at that time.

These include important tasks picked from the backlog and emergency

tasks. An example of an emergency task would be to fix a severe bug

that was recently discovered which is holding up the progress of other

tasks. This list also acts as a buffer for tasks picked from the backlog.

As such, it provides a clearer picture on what needs to be worked on

soon and gives a sense that progress is being made.

c) On hold

This list is for tasks that have been started but have hit a roadblock and

are unable to be continued on for the time being. There are several

possible reasons for this. For example, the task may require another

task to have started or completed first;

d) In Progress

Tasks that are currently being worked on will be under this list. Tasks

will remain on this list until they have been completed or come to a

halt due to some unexpected circumstance. If the task is completed, it

is moved to done. If it is unable to progress any further due to an

unforeseen reason, it is moved to on hold for the time being.

35

e) Done

Tasks that have been completed will be placed under this list. Once

tasks have been placed into this list, they can no longer be moved out.

If a bug is caused by one of the completed tasks, a new task to fix it

will be created under backlog or prioritise depending on the severity of

the bug.

3.3 Work Plan

In this section, a work plan encompassing the whole project will be laid out.

3.3.1 Work Breakdown Structure

0.0 A Web-based Implementation of the K-means Algorithm

1.0 Project Initiation

1.1 Register title

1.2 Kick-start project

1.3 Formulate problem statement

1.4 Formulate project objectives

1.5 Define project scope

2.0 Literature Review

2.1 Understand problem domain

2.1.1 Study basic data mining concepts

2.1.2 The K-means algorithm

2.1.3 The K-means++ algorithm

2.1.4 Proximity measures

2.1.4.1 Similarity measures

2.1.4.2 Dissimilarity measures

2.2 Review data mining tools

2.3 Review web frameworks

2.4 Review methodologies

3.0 Project Planning

3.1 Select suitable methodology

3.2 Develop work breakdown structure

3.3 Develop project schedule

36

3.4 Select suitable tools, frameworks and packages

4.0 Project Specifications

4.1 List functional requirements

4.2 List non-functional requirements

4.3 Describe use-cases

4.4 Develop simple functional prototype

4.4.1 Upload data set

4.4.2 File handling

4.4.3 The K-means algorithm

4.4.4 Euclidean distance

4.4.5 Manhattan distance

4.4.6 Results visualisation

4.4.7 Dummy UI elements

5.0 Development

5.1 Migrate prototype code

5.2 Initialise Git repository and set up GitHub remote repository

5.3 K-means++ algorithm

5.4 Additional proximity measures

5.5 Attribute exclusion

5.6 Attribute normalisation

5.7 Seed specification

5.8 Improve results visualisation

5.9 Sample data sets

5.9.1 Iris data set

5.9.2 Diabetes data set

5.9.3 Breast Cancer data set

5.10 Sessions implementation

5.11 Classes to clusters evaluation

5.12 Download results

5.13 Deploy to Heroku

6.0 Testing

6.1 SUS Test

6.1.1 Prepare SUS Test Template

6.1.2 Invite Participants

37

6.1.3 Calculate Final Score

7.0 Project Closure

7.1 Deploy web application

7.2 Finalise report

3.3.2 Project Schedule

Table 3.1: Project Schedule

Task Start Date End Date Duration

(Days)

Project Initiation

Register title 5-6-2021 5-6-2021 1

Kick-start project 17-6-2021 17-6-2021 1

Formulate problem statement 19-6-2021 24-6-2021 6

Formulate project objectives 19-6-2021 24-6-2021 6

Define project scope 19-6-2021 24-6-2021 6

Literature Review

Study basic data mining concepts 27-6-2021 7-7-2021 11

The K-means algorithm 2-7-2021 11-7-2021 10

The K-means++ algorithm 2-7-2021 11-7-2021 10

Similarity measures 8-7-2021 26-7-2021 19

Dissimilarity measures 8-7-2021 26-7-2021 19

Review data mining tools 27-7-2021 2-8-2021 7

Review web frameworks 30-7-2021 6-8-2021 8

Review methodologies 4-8-2021 13-8-2021 10

Project Planning

Select suitable methodology 16-8-2021 17-8-2021 2

Develop work breakdown structure 17-8-2021 24-8-2021 8

Develop project schedule 17-8-2021 24-8-2021 8

Select suitable tools, frameworks and

packages

22-8-2021 22-8-2021 1

Project Specifications

List functional requirements 20-8-2021 24-8-2021 5

List non-functional requirements 20-8-2021 24-8-2021 5

Describe use-cases 20-8-2021 24-8-2021 5

38

Upload data set 14-8-2021 15-8-2021 2

File handling 14-8-2021 15-8-2021 2

The K-means algorithm 15-8-2021 17-8-2021 3

Euclidean distance 15-8-2021 17-8-2021 3

Manhattan distance 15-8-2021 17-8-2021 3

Results visualisation 16-8-2021 18-8-2021 3

Dummy UI elements 14-8-2021 18-8-2021 5

Development

Migrate prototype code 26-1-2022 2-2-2022 8

Initialise Git repository and set up

GitHub remote repository

1-2-2022 6-2-2022 6

K-means++ algorithm 5-2-2022 8-2-2022 4

Attribute exclusion 7-2-2022 9-2-2022 3

Attribute normalisation 8-2-2022 10-2-2022 3

Seed specification 10-2-2022 11-2-2022 1

Improve results visualisation 9-2-2022 13-2-2022 5

Iris data set 21-2-2022 23-2-2022 3

Diabetes data set 21-2-2022 23-2-2022 3

Breast Cancer data set 21-2-2022 23-2-2022 3

Sessions implementation 3-2-2022 25-2-2022 23

Classes to clusters evaluation 15-2-2022 17-2-2022 3

Download results 21-2-2022 24-2-2022 4

Deploy to Heroku 3-3-2022 4-3-2022 2

Testing

Prepare SUS Test Template 6-3-2022 8-3-2022 3

Invite Participants 9-3-2022 20-3-2022 12

Calculate Final Score 21-3-2022 21-3-2022 1

Project Closure

Finalise report 4-4-2022 10-4-2022 7

39

3.3.3 Gantt Chart

Figure 3.2: Gantt Chart

40

Figure 3.3: Gantt Chart (continued)

41

3.4 Tools and Frameworks

This section lists the tools and frameworks used to develop the project, and provides

a brief explanation of their purpose.

3.4.1 HTML and CSS

HTML stands for HyperText Markup Language, and CSS stands for Cascading Style

Sheets. Together, these two languages form the basic building blocks of websites and

web applications. The entire interface of the web application was written using these

two languages.

3.4.2 JavaScript

JavaScript is a popular scripting language that runs on the client side. It is often

referred to as the programming language of the web (MDN Web Docs, n.d.).

JavaScript scripts can be included with the web pages sent by the web server. These

scripts can be made to trigger on certain events, such as buttons being pressed or

checkboxes being marked. For this project, JavaScript was used to dynamically

update the page.

3.4.3 Python

Python is a high-level programming language that has grown in popularity in the past

few years. Python was chosen for this project due to its simplicity and easy to read

code. The K-means algorithm and various proximity measures stated in section 2.1.3

was coded in Python.

 Besides that, Python was also chosen because of the wide range of available

packages for the language, some of which were utilised in this project. The packages

used for this project will be explained in the following subsections.

42

3.4.4 Django

Django is a popular web framework for Python. Django is used in this project to

provide web services so that the web application can be run. Django is responsible

for receiving the uploaded data set and other inputs from the client side. The data set

and inputs are then passed off to a Python script where the actual clustering takes

place. The results are then returned to the client by Django. Django was also chosen

over other web frameworks due to its support for dynamic web pages, which is a

must have for this project.

3.4.5 NumPy

NumPy is a Python library that adds support for arrays and matrices. While Python

supports lists out of the box, the performance is extremely slow compared to NumPy

arrays. This is because at its core, NumPy implemented in C. NumPy arrays are used

throughout the project wherever possible to speed up performance as much as

possible.

3.4.6 pandas

pandas is a powerful Python package designed for data analysis and manipulation.

pandas provides a data structure known as DataFrames, and complementary methods

to manipulate data stored within them. Most importantly, DataFrames provide a huge

performance boost over the built-in data structures in Python such as Lists and

Dictionaries. The uploaded data sets are loaded into Python and pre-processed using

the pandas package before the K-means or K-means++ algorithm is applied onto it.

3.4.7 Matplotlib

Matplotlib is a Python library for creating data visualisations. It is extremely versatile,

and plots can be tailored to meet specific needs. However, it does not provide any

intractability. As such, Matplotlib was only used in the prototype to plot the cluster

results.

43

3.4.8 Desmos API

Desmos is a graphing calculator made to aid the learning and teaching of

Mathematics. Students and teachers from all over the globe use Desmos to visualise

Mathematical functions. It is available as a web application and a mobile application.

However, Desmos also provides developers with an API which they can import into

their own projects. This allows developers to add an interactive Desmos graphing

calculator to their own pages. The Desmos API is used in this project to provide

interactive data and results visualisation.

3.4.9 Visual Studio Code

Visual Studio Code, usually abbreviated as VS Code, is a free, lightweight code

editor developed by Microsoft. It is not as feature-packed as other IDEs, but still

contains most of the commonly used features such as debugging, task running and

version control (Visual Studio Code, n.d.). VS Code also has a variety of plugins to

assist with development no matter the language used. VS Code was the main editor

of choice when developing this project. All Python scripts, HTML, CSS and

JavaScript files were written using VS Code.

3.4.10 Git

Git is a version control system developed by Linus Torvalds, the man behind Linux.

It was developed to facilitate version tracking and easy collaboration in software

development projects. Git was used to keep track of the changes made to the project,

and to enable swift rollbacks and rollforwards whenever necessary.

3.4.11 GitHub

GitHub is a remote repository hosting website owned by Microsoft. The website is

usually used hand in hand with Git. Aside from providing hosting services, GitHub

also provides GitHub Actions which allows for the creation of continuous integration

workflows and scripts to help automate repetitive tasks. However, for this project,

GitHub was just used as an archive for the project folder.

44

3.4.12 Trello

Trello is a virtual Kanban board that has integrations with multiple other productivity

tools such as JIRA, Bitbucket and Confluence to streamline a project’s workflow

make managing projects as seamless as possible. Trello was a perfect addition to this

project’s toolbox as the Kanban methodology was chosen. Trello was used to

manage and visualise the project’s workflow and progress.

3.4.13 Heroku

Heroku is a platform-as-a-service that allows developers to host their apps for free.

Developers only need to pay once they decide to upscale their apps or once they have

used up their monthly quota and require more. The web application is hosted on

Heroku to provide easy access so that anyone can play around with it on their own

devices.

45

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

In this chapter, the functional and non-functional requirements of the web application

will be listed. Different use-cases for the web application will also be presented

along with their accompanying use-case descriptions. Finally, a functional prototype

developed using Django will be presented.

4.2 Functional Requirements

This section lists the functional requirements of the system.

4.2.1 Upload data sets module

• The system shall allow users to upload their data sets in a .csv format.

• The system shall allow users to select from at least 3 pre-prepared data sets.

4.2.2 Data pre-processing module

• The system shall be able to display summary statistics of a data set.

• The system shall allow users to fill in missing values from their uploaded data

sets.

• The system shall allow users to exclude certain attributes from being used in

the clustering process.

• The system shall allow users to normalise attributes prior to clustering.

4.2.3 Clustering module

• The system shall be able to apply the K-means and K-means++ algorithms on

data sets uploaded or selected by the user.

• The system shall allow users to pick a desired proximity measure to be used

with the K-means or K-means++ algorithm.

• The system shall allow users to specify the value of K, the number of clusters

to form.

46

• The system shall feature at least 10 proximity measures, consisting of a mix

of similarity and dissimilarity measures.

• The system shall allow users to specify a seed to be used when choosing the

initial cluster centroids.

4.2.4 Results module

• The system shall be able to display the clustering results in the form of an

interactive plot to the user.

• The system shall allow the user to download their cluster results.

• The system shall be able to evaluate the clustering model’s performance by

comparing the formed clusters with the class label.

4.3 Non-functional Requirements

This section lists the non-functional requirements of the system.

4.3.1 Operational requirements

• The system shall work on modern web browsers, including but not limited to,

Mozilla Firefox, Google Chrome, and Opera.

4.3.2 Reliability requirements

• The system shall have an availability rate of at least 95%.

4.3.3 Performance requirements

• The system shall be able to return the cluster results within a certain amount

of time of starting the cluster task, relative to the number of tuples in the data

set. This amount of time includes time for pre-processing and clustering.

Number of tuples Response time

< 50 < 10 seconds

51 - 200 < 30 seconds

201 – 500 < 2 minutes

501 – 1000 < 5 minutes

> 1000 No time limit

47

4.4 Use-cases

In this section, the use-cases of the web application will be presented.

4.4.1 Use-case diagram

Figure 4.1: Use-Case Diagram

48

4.4.2 Use-Case Descriptions

Accompanying use-case descriptions for the use-cases shown in figure 4.1.

4.4.2.1 Upload Data Set

Table 4.1: Upload Data Set Use-Case Description

Use case name: Upload data set ID: 1 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Upload their data set for clustering

Brief Description:

Allows users to upload their data set in the form of a .csv file for clustering

Trigger:

Every time the user launches the web application

Relationship:

Aassociation: User

Include: -

Extend: -

Generalization: -

Normal flows of event:

1. The user loads the web application.

2. The user is brought to the home page.

3. If the user decides to upload their own data set, subflow S-1 is

performed.

If the user decides to pick one of the sample data sets, the “Choose

sample data set” use case (ID: 3) is performed.

Sub-flows:

S-1: 1.) The user browses for a data set to upload from their local machine.

 2.) The user clicks the upload button.

 3.) The user is redirected to the clustering page.

Alternate/ Exceptional Flows:

2.a.) If the uploaded data set contains any missing values, the “Fill missing

values” use case (ID: 2) is performed.

49

4.4.2.2 Fill Missing Values

Table 4.2: Fill Missing Values Use-Case Description

Use case name: Fill missing values ID: 2 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Fill in missing values found in their uploaded data set

Brief Description:

Allows users to pick a method to fill in the missing values found in the

uploaded data set

Trigger:

When the user uploads a data set with missing values

Relationship:

Aassociation: User

Include: -

Extend: Upload data set (ID: 1)

Generalization: -

Normal flows of event:

1. The user picks one of the methods to fill in the missing values.

2. The user is redirected to the clustering page.

Sub-flows: N/A

S-1: 1.) The user clicks on Show Data Set Details button

 2.) The web application shows the data sets summary statistics by

 2.) attribute

Alternate/ Exceptional Flows: N/A

50

4.4.2.3 Choose Sample Data Set

Table 4.3: Choose Sample Data Set Use-Case Description

Use case name: Choose sample data

set
ID: 3 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Choose a sample data set.

Brief Description:

Allows users to choose one of the sample data sets prepared so that they do

not have to upload their own.

Trigger:

When the user decides to choose one of the sample data sets instead of

uploading their own

Relationship:

Aassociation: User

Include: -

Extend: -

Generalization: -

Normal flows of event:

1. The user clicks one of the buttons corresponding to a sample data

set.

2. The user is redirected to the clustering page.

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

51

4.4.2.4 Cluster Data

Table 4.4: Cluster Data Use-Case Description

Use case name: Cluster data ID: 4 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Apply the K-means algorithm on the uploaded or chosen sample data

set

Brief Description:

Allows users to cluster the data using the chosen settings

Trigger:

When the user clicks on the Cluster! button

Relationship:

Aassociation: User

Include:

Extend: -

Generalization: -

Normal flows of event:

1. The user clicks on the Cluster! button.

2. The system clusters the data using the algorithm settings provided by

the user.

3. The system displays the cluster results to the user.

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

52

4.4.2.5 Choose K-means Variant

Table 4.5: Choose K-means Variant Use-Case Description

Use case name: Choose K-means

Variant
ID: 5 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Choose their desired K-means Variant

Brief Description:

Allows users to choose between the K-means and K-means++ algorithms

Trigger:

When the user wishes to change the K-means variant chosen

Relationship:

Aassociation: User

Include: -

Extend: Cluster data (ID: 4)

Generalization: -

Normal flows of event:

1. The user chooses either the K-means option or the K-means++

option.

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

53

4.4.2.6 Choose Proximity Measure

Table 4.6: Choose Proximity Measure Use-Case Description

Use case name: Choose proximity

measure
ID: 6 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Choose their desired proximity measure

Brief Description:

Allows users to choose their desired proximity measure to be used with the

K-means algorithm

Trigger:

When the user wishes to change the proximity measure used

Relationship:

Aassociation: User

Include: -

Extend: Cluster data (ID: 4)

Generalization: -

Normal flows of event:

1. The user chooses a proximity measure from the dropdown.

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

54

4.4.2.7 Enter Number of Clusters

Table 4.7: Enter Number of Clusters Use-Case Description

Use case name: Enter number of

clusters
ID: 7 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Enter the number of clusters

Brief Description:

Allows users to enter the number of clusters (the value of k) to form from

the data set

Trigger:

When the user wishes to change the number of clusters to form

Relationship:

Aassociation: User

Include: -

Extend: Cluster data (ID: 4)

Generalization: -

Normal flows of event:

1. The user enters the number of clusters to form.

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

55

4.4.2.8 Exclude Attributes

Table 4.8: Exclude Attributes Use-Case Description

Use case name: Exclude attributes ID: 8 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Exclude attributes from the clustering task

Brief Description:

Allows users to exclude some attributes from the clustering task.

Trigger:

When the user wishes to change the attributes included in the clustering task

Relationship:

Aassociation: User

Include: -

Extend: Cluster data (ID: 4)

Generalization: -

Normal flows of event:

1. The user unchecks the checkboxes next to the attributes they want

excluded.

Sub-flows: N/A

Alternate/ Exceptional Flows:

2.a.) If the user attempts to cluster when less than two attributes are

excluded, an error message will be displayed and the cluster task will not

start.

56

4.4.2.9 Enter Seed

Table 4.9: Enter Seed Use-Case Description

Use case name: Enter seed ID: 9 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Specify seed to use

Brief Description:

Allows users to specify the seed to use during the initial cluster centroid

selection

Trigger:

When the user wishes specify a seed to use

Relationship:

Aassociation: User

Include: -

Extend: Cluster data (ID: 4)

Generalization: -

Normal flows of event:

1. The user enters a seed to use.

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

57

4.4.2.10 Normalise Attributes

Table 4.10: Normalise Attributes Use-Case Description

Use case name: Normalise attributes ID: 10 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Normalise attributes before clustering

Brief Description:

Allows users to normalise all attributes before the K-means algorithm is

applied on the data set

Trigger:

When the user wishes to normalise all attributes

Relationship:

Aassociation: User

Include: -

Extend: Cluster data (ID: 4)

Generalization: -

Normal flows of event:

1. The user checks or unchecks the checkbox indicating if all attributes

should be normalised prior to clustering or not.

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

58

4.4.2.11 Show Classes to Clusters Evaluation

Table 4.11: Show Classes to Clusters Evaluation Use-Case Description

Use case name: Show classes to

clusters evaluation
ID: 11 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – View classes to clusters evaluation results

Brief Description:

Allows users to view the results of classes to clusters evaluation

Trigger:

When the user wishes to view the classes to clusters evaluation results

Relationship:

Aassociation: User

Include: -

Extend:

Generalization: -

Normal flows of event:

1. The user clicks on the Classes to Clusters Evaluation button.

2. The Classes to Clusters popup is displayed.

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

59

4.4.2.12 Download Cluster Results

Table 4.12: Download Cluster Results Use-Case Description

Use case name: Download cluster

results
ID: 12 Importance level: High

Primary actor: User Use case type: Detailed, Essential

Stakeholders and Interests:

User – Download their cluster results

Brief Description:

Allows users to download a csv file containing the original data and an

additional column containing the clustering results

Trigger:

When the user wishes to download their clustering results

Relationship:

Aassociation: User

Include: -

Extend:

Generalization: -

Normal flows of event:

1. The user clicks on the Download button.

2. The system starts the download.

3. The downloaded file is a csv file containing the original data and an

additional column containing the clustering results

Sub-flows: N/A

Alternate/ Exceptional Flows: N/A

60

4.5 Prototype

A functional prototype was developed using the Django framework for Python. It

supports the uploading of data sets from users, but has been hardcoded to only work

with the Iris data set for now. The K-means algorithm has also been programmed

into the prototype, along with two proximity measures, namely, Euclidean distance

and Manhattan distance. The prototype also uses Matplotlib to plot the cluster results

and saves it as an image. The image is then shown to the client-side using Django.

Other UI elements which do not directly serve the above functionalities

have been added to the prototype as dummies. This was done to provide a better

representation of the final application design. Furthermore, the prototype has been

hardcoded to always find 3 clusters using the K-means algorithm.

Figure 4.2: Home page

61

 Figure 4.2 shows the home page of the prototype. The page is split into two

sections. The top section is for users to upload their own data sets in the form of

a .csv file. The bottom section is for users who wish to pick from the pre-prepared

data sets. For this prototype, three dummy buttons have been created, each

representing a different data set, namely, the Iris data set, the Diabetes data set, and

the Breast Cancer Wisconsin data set respectively.

 Once the user has uploaded their data set or picked one from the pre-prepared

data sets, they will be brought to the following page:

Figure 4.3: Clustering page

 The left page displays all the settings for the K-means algorithm. This

includes the proximity measure to use, the value for k (the number of clusters), the

attributes to include in the clustering task, and whether to normalise the attributes

before clustering. Finally, there is a button at the bottom to start the K-means

algorithm.

 The right pane shows the results of the clustering task. Before the user clicks

on the Cluster! button, this pane will simply display a message prompting the user to

click on the button. Once the user clicks on the button, the page will update to

display the results.

62

Figure 4.4: Clustering page with results

 Figure 4.4 shows the clustering page with results displayed. Subsequent

clicks on the Cluster! button will refresh this page with the new results.

63

CHAPTER 5

5 SYSTEM DESIGN

5.1 System Architecture

There are two components to the web application, the client side (front-end) and the

web server (back-end). The client side is responsible for receiving data and clustering

results from the web server, and presenting them to the user. The web server will

store the data sets and cluster the data based on the settings sent from the client.

Additionally, the web server will also render page templates using a template engine

before they are sent to the client for display.

Figure 5.1: System Architecture

 The client side is using HTML, CSS, JavaScript and the Desmos API. HTML

and CSS are used to form the layout of the page. JavaScript is used to update the

page without having to reload the entire web page from scratch. The Desmos API is

used to visualise the data set.

 As for the web server, Python is the language of choice, with the Django

package being used to provide web services. The NumPy and pandas packages are

used to manipulate the data set and cluster the data.

 Finally, the entire system is hosted on Heroku to provide easy access to users.

64

5.2 Data Flow Diagrams

Figure 5.2: Context Diagram

Figure 5.3: Level 0 Data Flow Diagram

65

Figure 5.4: Level 1 Data Flow Diagram: Cluster Data set

66

5.3 Activity Diagrams

Figure 5.5: Activity Diagram: Upload Data set

67

Figure 5.6: Activity Diagram: Choose Sample Data set

68

Figure 5.7: Activity Diagram: Cluster Data set

69

5.4 Page Designs

Figure 5.8: k-luster Home Page

Figure 5.9: k-luster Missing Values Prompt

70

Figure 5.10: k-luster Cluster Page

Figure 5.11: k-luster Cluster Page with Cluster Results

71

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

The Kanban development methodology was adopted for this project. It is an Agile

development methodology that maps out all tasks that need to be carried out on a

Kanban board. Every sub-section following this introduction describes an individual

task carried out during the development phase. Thus, this chapter can be thought of

as a progression of events leading up to the completion of the system.

6.2 Migrating Prototype Code

Referring to the Gantt chart in chapter three, there exists a gap between the time the

prototype was developed and the time development for the full system started.

During that gap, a new major release of Django, the package providing web services,

was made available. Therefore, the code from the prototype needed to be migrated

over to a new project that utilises the latest version of Django at that time.

 Referring to the Django documentation, the basics are still exactly the same.

First, a new Django project was created with the command line. After that, a one-for-

one copy of the essential files, such as the view templates, route file and data

clustering scripts were made and moved to the new project folder.

6.3 Initialise a Git Repository and Push Code to GitHub

A new Git repository was initialised with the new project folder. A Git repository

provides system versioning and enables easy rollbacks in case a major bug occurs. In

addition, the project code was also pushed to a remote GitHub repository as a means

of archiving the project.

72

Figure 6.1: k-luster GitHub Repository

6.4 Implementing K-means++

In the prototype, only the K-means algorithm has been implemented. The K-

means++ algorithm had to be added into the web application. First, a field was

created on the client side to allow users to pick between the two algorithm variants.

Figure 6.2: Algorithm Variant Selection Field

 Then, the data clustering script was modified to include the K-means++

algorithm. The final code is as follows:

73

Figure 6.3: K-means and K-means++ Code

6.5 Implementing Additional Proximity Measures (I)

Up until now, only the Eulicdean distance and Manhattan distance proximity

measures had been implemented. Three additional distance measures were

implemented into the web application, Chebyshev distance, Average distance and

Canberra distance.

Figure 6.4: Chebyshev Distance Code

74

Figure 6.5: Average Distance Code

Figure 6.6: Canberra Distance Code

6.6 Deploying Project to Heroku

At this point, concerns arose that the web application would not work as intended

when deployed to Heroku. The main concern was with loading the data sets from the

file system. The web application was developed and tested locally on a Windows

machine, yet Heroku hosts applications on a UNIX-based machine. Furthermore,

when hosted on Heroku, the web server would be started by Gunicorn with a separate

config file instead of through Python directly. Thus, the decision was made to ensure

that the web application would work when deployed to an entirely different

environment before proceeding with the development the rest of the features.

 Firstly, a new Heroku account was set up and a new app named k-luster was

created under the account.

75

Figure 6.7: k-luster App on Heroku

 After that, the Git URL to the newly created app is added as a new remote

repository with Git. Then, a new text file called requirements.txt is also created. This

text file lists all the dependencies of the application. Heroku will read the file and

install all packages listed before attempting to build and run the application.

Figure 6.8: Requirements.txt Contents

 Gunicorn is be used to run the web server, whereas django-heroku is used to

automatically load in the secret key stored in the config vars of the Heroku app.

Besides that, a new file named Procfile is created in the project’s root

directory. This file contains a list of commands that will be executed every time

changes to the app are pushed, or the app is restarted.

76

Figure 6.9: Procfile Commands

 The first command will create a new database file in the project containing all

of Django’s default tables. The second command starts the web server and listens for

incoming HTTP requests.

 The two new files were committed and the entire project was pushed onto

Heroku. Within a few minutes, the project was successfully built and the web server

was online. The Heroku app is accessible at https://k-luster.herokuapp.com/.

6.7 Attribute Exclusion

There are times where a user would want to exclude certain attributes from the

clustering process in order to achieve a better result. In order to incorporate this

feature, an additional field is created that allows users to uncheck attributes they wish

to be excluded.

Figure 6.10 Attribute Exclusion Field

 When sending a request for cluster results to the web server, the included

attributes are sent in the request body. Then, on the web server, the excluded

attributes are dropped from the data set prior to the clustering process.

Figure 6.11: Drop Excluded Attributes

https://k-luster.herokuapp.com/

77

6.8 Attribute Normalisation

Normalisation is a very important data pre-processing step. Thus, it is crucial to

provide the user with the option to normalise all attributes before clustering.

Figure 6.12: Normalise Attributes Field

Figure 6.13: Attribute Normalisation Code

6.9 Seed Specification

Any pseudo-random number generator requires a seed to work. By default, Python

will use the current system time as the seed. However, this behaviour can be

overwritten to produce consistent results.

Figure 6.14: Seed Specification Field

Figure 6.15: Seed Specification Code

6.10 Improving Result Visualisation Using Desmos API

In the prototype, result visualisation was built by displaying an image of a plot

returned by the web server. This image was rendered using Matplotlib. This

approach brings about several disadvantages. First of all, the plot is not interactive.

The user is not able to drag it around, zoom in or zoom out. Secondly, the larger the

data set, the longer it will take for the web server to render the image, thus delaying

the HTTP response from the web server. This also takes up additional resources.

Lastly, the user is not able to freely switch between different attributes

78

 Hence, result visualisation will be handled by the Desmos API instead of

Matplotlib in the full system. This also shifts the load from the web server to the

client side.

 The Desmos API can be imported into the project with a single script tag on

the client side.

Figure 6.16: Importing the Desmos API

 On the back-end, a JSON object containing the cluster results is returned

instead of an image.

Figure 6.17: Cluster Result View

 Once the client receives the JSON object containing the results, the

visualisation is updated dynamically without the need to reload the entire page.

Figure 6.18: Update Result Visualisation

79

 Two dropdowns labelled x-axis and y-axis were also added to the top of the

page. Changing the selections in the dropdowns will update the visualisation

accordingly.

Figure 6.19: x-axis and y-axis Dropdowns

Figure 6.20: x-axis and y-axis Dropdown Event Listeners

6.11 Detection of Attribute Data Types

Both the K-means and K-means++ algorithms only work on numerical data, since

they work by calculating the distance between different points. Similarly, the result

visualisation implemented in the previous subsection is only able to plot numerical

data. Therefore, there needs to be a check to distinguish between numerical and

textual attributes.

Figure 6.21: Check to Distinguish Numeric and Textual Attributes

 On the client side, textual attributes are disallowed from being included in the

clustering process. These attributes are not allowed to be selected for any of the axes

as well.

80

Figure 6.22: Textual Attribute Disabled in Attribute Exclusion Field

Figure 6.23: Textual Attribute Disabled in Axis Dropdown

6.12 Implementing Sessions

Session implementation is needed so that multiple users may use the web application

concurrently. Without sessions, a user uploading a new data set will overwrite the

data set uploaded by a separate user. Sessions were implemented using Django’s

sessions framework. The framework assigns each user a unique session key, and

creates a new row in the django_sessions table with the session key as the primary

key. The session data can be retrieved from the database as a session object, which is

essentially just a dictionary of stored values.

 When a user uploads a new data set, it is saved using the user’s unique

session key as the file name.

Figure 6.24: Saving an Uploaded Data set

81

 Then, when the web server receives a cluster request, the data set with a

matching name as the user’s session key is loaded.

Figure 6.25: Loading an Uploaded Data set

6.13 Handling Missing Values in Uploaded Data sets

Sometimes, the data sets uploaded by users are incomplete and have missing values.

This presents an issue as the implementation of the K-means and K-means++

algorithm assumes that there will be no missing values. The same goes for the result

visualisation with the Desmos API. Therefore, missing values found in an uploaded

data set needs to be handled before proceeding to the clustering page. Currently,

there are a few methods available for users to pick from to fill in the missing values,

namely, forward fill, backward fill, average or mean, median, and mode. The prompt

for users to choose a fill in method also displays descriptive statistics of the data set

by attribute.

Figure 6.26: Check for Missing Values

82

Figure 6.27: Filling in Missing Values

6.14 Sample Data sets

A few popular data sets will be chosen and pre-processed. These data sets will serve

as samples for users who do not wish to look for and upload their own data set, and

just want a convenient way to try out the web application. Three data sets have been

chosen for this purpose, the iris data set, the diabetes data set, and the breast cancer

data set.

6.14.1 Iris Data set

This is a very common data set used to teach beginners the basics of data mining.

This data set was obtained from Kaggle (MathNerd, 2018) and has five attributes,

one of them being the class label. The data set was introduced by Ronald Fisher in

1936, and is now in the public domain (MathNerd, 2018). This means that the data

set is no longer protected under copyright law, and can be used freely.

 No pre-processing steps were taken for this data set as there were no missing

values within the dataset.

Figure 6.28: Check for Missing Values in the Iris Data set

83

6.14.2 Diabetes Data set

The diabetes data set is also a very popular data set, usually introduced as a toy data

set to students. The data set was obtained from Kaggle (UCI Machine Learning,

2016b). The data was collected and released by the National Institute of Diabetes and

Digestive and Kidney Diseases (UCI Machine Learning, 2016b). Similar to the iris

data set, this data set is also under the public domain.

 The only pre-processing step taken with this data set is replacing the values

under the Outcome attribute. 1’s were replaced with the word “Diabetic”, whereas

0’s were replaced with the word “Non-diabetic”.

Figure 6.29: Replacing Values Under Outcome in the Diabetes Data set

6.14.3 Breast Cancer Data set

This is the largest data set out of the three. This dataset is obtained from Kaggle (UCI

Machine Learning, 2016a). The data set is under the Creative Commons

NonCommercial-ShareAlike license. As the name suggests, the usage of this data set

for non-commercial purposes is permitted. Redistribution and modification of the

original data set is also allowed.

 Similar to the diabetes data set, the values under the diagnosis attribute have

been replaced. M has been replaced with “Malignant”, whereas B has been replaced

with “Benign”.

Figure 6.30: Replacing Values Under Diagnosis in the Breast Cancer Data set

84

6.15 Download Results

Once the user has clustered the data at least once, they will be able to download the

cluster results obtained. The downloaded file is the exact same csv file of the data set

they uploaded or chose, but with an additional column called k-luster results

containing the cluster results.

Figure 6.31: Downloaded Results

6.16 Classes to Clusters Evaluation

This feature evaluates the accuracy of the formed clusters using the class label.

Figure 6.32: Classes to Clusters Evaluation

85

 Each class label is assigned one of the formed clusters based on how many

instances of that class belong to each of the formed clusters. The formed cluster with

the highest instances of that particular class will be assigned to that class.

6.17 Implementing Additional Proximity Measures (II)

Additional proximity measures were implemented to achieve the project’s objectives.

The added proximity measures were chord distance, mean character difference,

cosine measure, Czekanowski coefficient, and index of association.

Figure 6.33: Chord Distance Code

Figure 6.34: Mean Character Difference Code

86

Figure 6.35: Cosine Measure Code

Figure 6.36: Czekanowski Coefficient Code

Figure 6.37: Index of Association Code

87

CHAPTER 7

7 SYSTEM TESTING

7.1 SUS Testing

System usability scale (SUS) testing is a method of assessing the usability of a

system. According to Lewis (2018), it was developed by John Brooke in 1984 for a

usability engineering program. In 1986, John Brooke then made it freely available to

anyone. Then, in 1996, John Brooke published a chapter in the book titled Usability

Evaluation In Industry describing the method. (Lewis, 2018) Since then, the SUS has

been used to evaluate several different hardware and software systems such as

handphones, computer programmes and websites (Sauro, 2011). While it is often

referred to as a “quick and dirty” method, it is capable of producing reliable results

with only a small sample size (Sauro, 2011).

7.1.1 Test Procedure

First, the test participant is introduced to the test subject. In the context of the

software development, this would usually be a type of application, either on the web

or for mobile devices, or some other form of computer system. The test participant

would then be allowed to explore the application given. Guidance may be provided

to the participant to introduce them to all the major functionalities of the system.

Once the participant has sufficiently explored the system, they are given a

questionnaire consisting of ten questions (Grier, et al., 2013). For each question, the

participant is required to provide a response on a five point Likert scale. The

participant is not allowed to leave any questions blank. The ten questions are as

follows:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use

this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

88

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

The SUS test concludes once the participant has responded to all ten questions.

7.1.2 Calculating SUS Scores

This process converts the participants’ responses into a score ranging from 0 to 100

(Lewis, 2018). First, subtract 1 from all the scores given for odd-numbered questions.

Next, for even-numbered questions, subtract the given score from 5. Then, sum up all

the converted scores and multiply the result by 2.5 (Lewis, 2018). Repeat the same

steps for all participants and calculate the average of all the converted scores. The

average score is the final SUS test score.

7.1.3 Interpreting SUS Scores

The final SUS score obtained is just a number and does not mean much on its own. A

method of interpreting the score is needed to determine if the tested system is well-

designed or not.

7.1.3.1 Percentiles

This is the most common way of evaluating SUS test scores.

89

Figure 7.1: Plot of Percentile Against SUS Score (Sauro, 2018)

 Figure 7.1 shows that 50 percent of SUS scores obtained for software systems

are above 68. Thus, as long as the final obtained score is higher than 68, the tested

system is considered to be above average in terms of usability. 68 is also often

referred to as the passing mark for SUS tests (Sauro, 2018).

7.1.3.2 Adjective Ratings

Bangor, Kortum and Miller (2009) conducted a study in an attempt to add adjective

rating scale to the SUS test. The scale shown in table 7.1 was proposed and added to

the bottom of the SUS questionnaire.

Table 7.1 Adjective Rating Scale (Bangor, Kortum and Miller, 2009)

Worst

Imaginable
Awful Poor OK Good Excellent

Best

Imaginable

 In addition to the ten usual questions asked in an SUS test, the participants

were also asked to select a rating that best describes the usability of the system being

tested. Bangor, Kortum and Miller (2009) then calculated the average of the SUS

scores associated with each rating.

90

Questions

Participants

Table 7.2 Average SUS Scores for each Adjective Rating (Bangor, Kortum and

Miller, 2009)

Adjective Rating Average SUS Score

Worst Imaginable 12.5

Awful 20.3

Poor 35.7

OK 50.9

Good 71.4

Excellent 85.5

Best Imaginable 90.9

7.1.4 Conducting the SUS Test

Five lecturers and one postgraduate student from UTAR were invited to participate

in the SUS test for the web application. They were first sent a link leading to the web

application and asked to play around with it. Guidance was provided for participants

whom were not familiar with data mining. Once the participants were ready, they

started filling out the questionnaire.

7.1.4.1 Test Responses

Table 7.3 Summary of Responses Received

 1 2 3 4 5 6 7 8 9 10

Participant 1 5 2 4 1 4 2 5 1 5 2

Participant 2 5 2 4 1 4 2 4 1 5 2

Participant 3 3 2 3 4 3 2 4 3 3 3

Participant 4 3 2 4 2 4 3 4 2 3 3

Participant 5 3 2 4 2 3 2 2 3 4 2

Participant 6 4 2 4 3 4 2 4 2 4 2

Table 7.3 summarises all the responses received from the test participants.

91

Table 7.4 Converted SUS Scores

Participant SUS Score

Participant 1 87.5

Participant 2 85

Participant 3 55

Participant 4 65

Participant 5 62.5

Participant 6 72.5

Calculating the average of all SUS scores shown in table 7.4, a final SUS score of

71.25 is achieved. Referring to the percentile rank of historical SUS scores, an SUS

score of 71.25 is slightly above average. Thus, a passing score has been achieved.

 According to table 7.2, a final SUS score of 71.25 is the closest to the “Good”

rating.

7.1.4.2 Other Comments

During the test, the participants were also asked for additional comments and

suggestions on improvements to the system. This subsection addresses the feedback

obtained the participants.

7.1.4.2.1 Default Algorithm Settings Causes Overlapping of Clusters

By default, on the clustering page, all selectable attributes are pre-selected. If the

user decides to cluster without changing the selection, there will be a lot of overlaps

between the clusters.

92

Figure 7.2: Overlapping of Clusters

 This is because the visualisation is only able to plot the data in two-

dimensions (x-axis and y-axis), yet the algorithm is taking all numeric attributes in

the data set to be used in the clustering process. If only the attributes being plotted by

are selected for clustering, there would be any overlaps between the clusters, as

shown in figure 7.2

Figure 7.3: No Overlapping between Clusters

93

 This behaviour may be unintuitive to users who are not very familiar with

clustering or the k-means algorithm. Thus, the web application has been changed to

only pre-select the first two numeric attributes in the data set, which is the same way

the attributes for both the x and y axes are selected. This will ensure that the selected

attributes match the plotted attributes when the cluster page is first loaded.

7.1.4.2.2 Hard to Notice Classes to Clusters Button

The button to toggle the display of the classes to clusters panel is at the top right

corner, in between the download button and the results text. It is denoted with an

ellipsis icon.

Figure 7.4: From Left to Right, Download Button, Classes to Clusters Button,

Results Text

 Since most of the screen is taken up by the data visualiser, some of the

participants had difficulty noticing the classes to clusters button. Hence, an additional

popup message pointing to the button has been added. This popup only displays the

first time the cluster button is clicked for the current session. Reloading or leaving

the page will reset the session.

Figure 7.5: Popup Message Pointing at Classes to Clusters Button

7.1.4.2.3 Back Button on Clustering Page

A few participants pointed out the lack of a back button on the clustering page to

return to the home page where users may choose or upload a different data set. The

intended way for users to navigate back to the home page is to use the browser’s

built-in back button. The page transition between the two pages is also designed to

94

accommodate for the back/forward cache (bfcache) of browsers so that users would

not be greeted with a blank page when using them. However, seeing how a few test

participants have pointed out this shortcoming, it would be best to add a back button

in the future.

7.1.4.2.4 Missing Values Handling

Several participants pointed out that the currently implemented methods for filling in

missing values are insufficient. Two of the most requested for methods that are not

implemented are to outright ignore the rows with missing values, and to allow the

user to specify a certain value to be used. These two methods should be implemented

in the near future.

7.1.4.2.5 Map Cluster Colours to Cluster Numbers

Looking at the output in the classes to clusters evaluation popup, it is not possible to

know which colour belongs to which cluster number. Only a single participant

pointed out this issue. While it is only a minor detail, it is still an oversight. Thus, to

rectify this problem, colour markers matching those shown on the result visualiser

can be added to the classes to clusters evaluation popup so that the user would know

which colour belongs to which cluster.

95

CHAPTER 8

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusion

The project has met all the objectives it set out to achieve. The result is k-luster, a

web application that allows users to upload or choose a sample dataset and cluster

the data using the K-means or K-means++ algorithm. Furthermore, it implements ten

proximity measures which the user may pick from to use with the clustering

algorithms. Comparing the available proximity measures in k-luster against those in

other prominent data mining tools, over half the proximity measures implemented in

k-luster are not seen in any other tools that were researched on. The web application

has been hosted on Heroku, so that anyone may access the site through their browser

at any time on their devices. An SUS test was also conducted with five lecturers and

one postgraduate student from UTAR to evaluate the usability of the system. The

final score achieved was 71.25. Admittedly, this is not a great score considering that

the passing score is 68, just a mere few points away. However, the testing process

provided invaluable insight as to how the web application may be further improved

in the future.

8.2 Recommendations for future work

Although all the goals have been met, there are still plenty of ways the web

application could be improved. First of all, all feedback pointed out by the SUS test

participants should be addressed. The issues brought up are all only require minor

changes, yet are capable of greatly improving user satisfaction.

 Besides that, the functionality of the web application can be further increased.

For example, other clustering algorithms such as k-medoids or DBSCAN can be

implemented into the web application. Other than that, support for classification

tasks could also be added in the future.

 Next, the web application can save a few of the users’ recent data sets along

with their most recently used algorithm settings for each data set. This will allow

users to resume their work right away when coming back to the web application the

next day or after restarting their computer.

96

REFERENCES

Arthur, D. and Vassilvitskii, S., 2013. k-means++: The Advantages of Careful

Seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pp. 1027–1035. [Accessed 21 April 2022]

Bangor, A., Kortum, P. and Miller, J., 2009. Determining What Individual SUS

Scores Mean: Adding an Adjective Rating Scale. Journal of Usability Studies, 4(3),

pp. 114-123. [Accessed 19 April 2022]

Cha, S., 2007. Comprehensive Survey on Distance/Similarity Measures between

Probability Density Functions. International Journal of Mathematical Models and

Methods in Applied Sciences, 1(4), pp.300-307. [Accessed 9 August 2021]

Corona, E. and Pani, F., 2013. A Review of Lean-Kanban Approaches in the Software

Development. University of Cagliari. Available at:

<http://www.wseas.us/journal/pdf/information/2013/5709-110.pdf> [Accessed 9 July

2021]

Faisal, M., Zamzami, E. M. and Sutarman, 2020. Comparative Analysis of Inter-

Centroid K-Means Performance using Euclidean Distance, Canberra Distance and

Manhattan Distance. Journal of Physics Conference Series.

Frank, E., Hall, M. A. and Witten, I. H., 2016. The WEKA Workbench. Online

Appendix for "Data Mining: Practical Machine Learning Tools and Techniques".

Available at:

<https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf>

[Accessed 12 August 2021]

Grier, R. A. et al., 2013. The System Usability Scale: Beyond Standard Usability

Testing. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

57(1), pp. 187–191. [Accessed 18 April 2022]

Han, J., Kamber, M. and Pei, J., 2011. Data Mining Concepts and Techniques. 3rd ed.

Waltham, Massachusetts: Morgan Kaufmann. [Accessed 27 June 2021]

Hartigan, J. A. and Wong, M. A., 1979. Algorithm AS 136: A K-Means Clustering

Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),

28(1), pp.100-108 [Accessed 10 August 2021]

Jazayeri, M., 2007. Some Trends in Web Application Development. Future of

Software Engineering (FOSE '07), pp.199-213. [Accessed 13 August 2021]

97

Kirovska, N. and Koceski, S., 2015. Usage of Kanban methodology at software

development teams. Journal of Applied Economics and Business, [online] Available

at: <http://www.aebjournal.org/articles/0303/030302.pdf> [Accessed 9 July 2021]

Lewis, J. R., 2018. The System Usability Scale: Past, Present, and Future.

International Journal of Human-Computer Interaction, pp. 1-14. [Accessed 18 April

2022]

Liu, H., Li, J., Wu, Y., and Fu, Y., 2019. Clustering with Outlier Removal. IEEE

Transactions on Knowledge and Data Engineering, 33(6), pp.2369-2379. [Accessed

10 August 2021]

MathNerd, 2018. Iris Flower Dataset. [online] Available at:

<https://www.kaggle.com/datasets/arshid/iris-flower-dataset> [Accessed 20 April

2022]

MDN Web Docs, n.d. JavaScript. [online] Available at:

<https://developer.mozilla.org/en-US/docs/Web/JavaScript>

Morissette, L. and Chartier, S., 2013. The k-means clustering technique: General

considerations and implementation in Mathematica. Tutorials in Quantitative

Methods for Psychology, 9(1), pp.15-24. [Accessed 9 August 2021]

Oracle, n.d. 2 Introduction to Oracle Data Mining. [online] Available at:

<https://docs.oracle.com/database/121/DMCON/GUID-0B1D8B18-218B-46C6-

92A1-2A499F961D49.htm#DMCON001> [Accessed 12 August 2021]

Oracle, n.d. Database PL/SQL Packages and Types References. [online] Available

at: <https://docs.oracle.com/database/121/ARPLS/d_datmin.htm#ARPLS618>

[Accessed 24 June 2021]

R, n.d. What is R? [online] Available at: <https://www.r-project.org/about.html>

[Accessed 12 August 2021]

RDocumentation, n.d. amap (version 0.8-18) Kmeans: K-Means Clustering. [online]

Available at: <https://www.rdocumentation.org/packages/amap/versions/0.8-

18/topics/Kmeans> [Accessed 20 July 2021]

Sauro, J., 2011. Measuring Usability with the System Usability Scale (SUS). [online]

Available at: <https://measuringu.com/sus/> [Accessed 18 April 2022]

Sauro, J., 2018. 5 Ways to Interpret a SUS Score. [online] Available at

<https://measuringu.com/interpret-sus-score/> [Accessed 19 April 2022]

scikit-learn, n.d. 2.3. Clustering. [online] Available at: <https://scikit-

learn.org/stable/modules/clustering.html> [Accessed 12 August 2021]

98

Shirkhorshidi, A. S., Aghabozorgi, S. and Wah, T. Y., 2015. A Comparison Study on

Similarity and Dissimilarity Measures in Clustering Continuous Data. PLoS ONE,

10(12). [Accessed 20 July 2021]

Thakare, Y. S. and Bagal S. B., 2015. Performance Evaluation of K-means

Clustering Algorithm with Various Distance Metrics. International Journal of

Computer Applications, 110(11), pp.12-16. [Accessed 20 July 2021]

UCI Machine Learning, 2016a. Breast Cancer Wisconsin (Diagnostic) Data Set.

[online] Available at: <https://www.kaggle.com/datasets/uciml/breast-cancer-

wisconsin-data> [Accessed 20 April 2022]

UCI Machine Learning, 2016b. Pima Indians Diabetes Database. [online] Available

at: <https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database>

[Accessed 20 April 2022]

Visual Studio Code, n.d. Visual Studio Code FAQ. [online] Available at:

<https://code.visualstudio.com/docs/supporting/faq> [Accessed 20 July 2021]

99

APPENDICES

APPENDIX A: SUS Responses

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

