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ABSTRACT 

 

The K-means algorithm has been around for over a century. While a rather 

simplistic and dated algorithm, it remains widely used and taught till this day. 

The K-means algorithm requires two inputs for it to be applied onto a data set, 

the value K, and a proximity measure. Picking the right inputs is of utmost 

importance if one wishes to achieve good results with the algorithm, especially 

the proximity measure. There are plenty of different proximity measures 

available in the world, all of them best suited for different types of 

applications and data sets. Yet knowing this, most modern data mining tools 

only offer a handful of proximity measures to the user, with the most common 

ones being Euclidean distance and Manhattan distance. This stinginess of 

proximity measures in data mining tools is stifling the performance of the 

algorithm. This is where k-luster comes in. 

 k-luster, the web application developed as a result of this project, 

implements the K-means and K-means++ algorithm along with ten proximity 

measures, seven of which are distance measures and whereas the remaining 

three are similarity measures. The project was planned using the Kanban 

development methodology, and was built using HTML, CSS, JavaScript, 

Django, NumPy and pandas. The completed web application is then hosted on 

Heroku. k-luster allows users to upload their own data set, or choose from one 

of three samples if they just want to try out the application. Playing around 

with different settings and comparing the results obtained, it is clear how large 

of an impact choosing the right proximity measure can make. 

 In conclusion, this project has accomplished what it first set out to 

achieve. However, there is still much room for improvement. Firstly, k-luster 

could incorporate additional clustering algorithms, or even classification 

algorithms in the future. Furthermore, the web application could save the users’ 

past work, so that they may resume their work at a later time without skipping 

a beat. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

This project aims to resolve the constant lack of supported proximity measure 

options for the K-means algorithm in data mining tools and packages by developing 

a web application that implements the K-means and K-means++ algorithm along 

with a plethora of proximity measures, including both similarity and dissimilarity 

measures. 

 

1.2 Problem Background 

The K-means algorithm is a partitioning clustering algorithm that works by 

iteratively recalculating the centroid of each cluster and reassigning cluster 

memberships for each data point if necessary (Han, Kamber and Pei, 2011). A 

proximity measure is used to determine the cluster of a data point. There are many 

proximity measures available, including Euclidean distance, Weighted Euclidean 

distance, Manhattan distance, Minkowski distance, Average distance, Chord distance, 

Mahalanobis distance, Pearson coefficient, and many others (Shirkhorshidi, 

Aghabozorgi and Wah, 2015). The algorithm is halted when there are no more 

changes to any of the clusters. 

There has always been a shortage of choices for proximity measures 

available for use with the algorithm in many data mining tools. The following are a 

few examples of popular data mining tools and the available distance metrics for the 

K-means algorithm: 
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1. amap (R package) (RDocumentation, n.d.) 

• Euclidean distance 

• Maximum distance 

• Manhattan distance 

• Canberra distance 

• Binary distance 

• Pearson correlation coefficient 

• Absolute Pearson correlation coefficient 

• Correlation coefficient 

• Absolute correlation coefficient 

• Spearman rank correlation coefficient 

• Kendall rank correlation coefficient 

 

2. scikit-learn (Python package): 

• Euclidean distance 

 

3. Weka: 

• Euclidean distance 

• Manhattan distance 

 

4. Oracle Data Mining (Oracle, n.d.) 

• Euclidean distance 

• Cosine distance 

 

As seen above, only the amap package for R supports more than 2 proximity 

measures. This is the main inspiration behind this project. 
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1.3 Problem Statement 

Many popular data mining tools such as scikit-learn the Python package, Weka, and 

Oracle Data Mining do not implement a large variety of proximity measures for K-

means clustering. Most of them only include common similarity measures such as 

Euclidean distance. 

 

1.4 Project Objectives 

This project aims to solve the problem above by achieving the following objectives: 

• To implement K-means and K-means++ algorithm using web scripting 

languages. 

• To integrate two categories of proximity measures, namely, similarity and 

dissimilarity measures into the K-means and K-means++ algorithms. 

 

1.5 Project Solution 

 

 

Figure 1.1: Web Application Overview 

 

A web application that implements the K-means and K-means++ algorithm was 

developed. Figure 1.1 shows the languages and libraries that were used to develop 

the system. The client side or front-end of the application is handled by HTML, CSS 

JavaScript and the Desmos API, whereas the back-end or the web server is coded 

using Python, Django, NumPy and pandas. Django is responsible for providing web 

services. NumPy and pandas are used for their blazingly fast speed when 

manipulating data sets. The entire web application is hosted on Heroku. 
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Both the K-means and K-means++ clustering algorithms are written in 

Python. The web application allows users to upload their data sets and input their 

desired settings for the K-means algorithm. These include the proximity metric used, 

the number of clusters, excluded attributes, seed and attribute normalisation. The 

web application also allows the user to choose from three sample data sets, in case 

the user does not want to bother with uploading their own data set. The clustering 

task is done on the web server with Python, pandas and NumPy. Once complete, the 

web server returns the cluster results to the client where JavaScript will update the 

page dynamically. 

 

1.6 Project Approach 

The aforementioned application was built with Kanban, an agile development 

methodology. Kanban, meaning “signboard” in Japanese (Corona and Pani, 2013, 

p.3), is a concept used by Toyota’s Just-In-Time (JIT) production system during the 

1950s (Kirovska and Koceski, 2015, p.25). When applied to software development, a 

Kanban board is used to keep track and visualise the project’s progress. 

 

 

Figure 1.2: Kanban Board Sample (Kirovska and Koceski, 2015, p.29) 
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1.7 Project Scope 

The final deliverable is a web application designed to work on desktops or laptops 

with modern browsers such as Mozilla Firefox, Google Chrome, and Opera. The web 

application features the K-means and K-means++ clustering algorithms, and allow 

users to upload their own data sets and configure the algorithm settings according to 

their wishes. The application was built using HTML, CSS, JavaScript, Python 

Django, NumPy and pandas. The application is hosted on Heroku, so that users who 

are interested may easily access and use it. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 The K-means Algorithm 

This section introduces the K-means algorithm, explains its inner workings and ties it 

with the need for this project. 

 

2.1.1 Brief Introduction to Data Mining 

In the simplest way possible, data mining is the process of exacting valuable insights 

and actionable knowledge from heaps of data (Han, Kamber and Pei, 2011). As 

technology slowly advanced over the past decades, humans have steadily amassed 

tons of data. However, without proper analysis, these collected data have no practical 

use. This is where data mining comes in. 

Data mining is a practice that consists of steps to process and analyse the 

collected data. The output at the end of the process is valuable knowledge. 

 

Figure 2.1: General Steps in Data Mining (Han, Kamber and Pei, 2011) 
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In general, data mining boils down to the steps shown in figure 2.1. Data 

collected has to be pre-processed first before learning algorithms can be applied onto 

it. 

 

2.1.1.1 The Need for Data Pre-processing 

There is a famous saying in computer science that goes “garbage in, garbage out”, or 

GIGO for short. Learning algorithms must not be blindly applied on any data set 

without first pre-processing it. The data sets fed into learning algorithms are directly 

being used to train the model. Pre-processing is done to ensure the data is accurate 

and reliable. Without trustable data, the resulting model will not be able to output 

accurate results, hence the phrase GIGO. If only garbage data is provided to a model, 

the results obtained will be garbage as well. 

Data pre-processing can be broken down into a few steps, which are: data 

cleaning, data integration, data reduction, and data transformation. Pre-processing is 

usually the longest phase of data mining. The techniques and tools used for pre-

processing depends on the data. There is no one-size-fits-all approach to data pre-

processing. 

 

2.1.1.1.1 Data Cleaning 

Data gathered from the real world is often noisy, incomplete and inconsistent (Han, 

Kamber and Pei, 2011). Noisy is used to describe data filled with outliers; 

incomplete means certain fields or columns have been left out either intentionally or 

by accident; inconsistent means data from different fields contradict each other. Data 

cleaning refers to the transforming and processing of such data in order to make it 

usable for training models. There are different methods for tackling each issue 

mentioned above. 

For missing values in the data set, the easiest solution is to remove the 

affected tuples entirely. Otherwise, a value can be inferred using data from other 

tuples. Noisy data or outliers can be smoothed out to better fit with the rest of the 

data using binning and regression algorithms. Other than that, clustering algorithms 

such as DBSCAN can be applied to detect and remove outliers from the data set (Liu, 

et. al., 2019). 
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2.1.1.1.2 Data Integration 

Data collected for model training will likely come from different sources, be it 

different databases, data warehouses, data cubes, or raw files. As such, the data 

collected will be in different formats and schemas. Thus, techniques are needed to 

merge data from different data stores into a single coherent data set for analysis. This 

merging process is known as data integration (Han, Kamber and Pei, 2011). 

 The main concerns when conducting data integration are the entity 

identification problem, data duplication and data conflicts (Han, Kamber and Pei, 

2011). The entity identification problem describes the challenge of identifying and 

matching up data belonging to the same entity. For example, when building a 

customer profile using data collected from multiple stores and shops, how can all 

data pertaining to the same user be identified and joined together? Merely merging 

them based on similar or equivalent names is insufficient, as users may provide their 

real name to some stores and nicknames to others. Furthermore, the customer names 

might not even be provided out of respect for the customers’ privacy. The only 

identifying attribute given would be their customer IDs from different databases. In 

cases like these, how can different customer IDs with no correlation between each 

other be matched up? 

 Data duplication refers to the repetition of tuples in the combined data set. 

Duplicated tuples have to be removed from the data set prior to analysis as it will 

throw off the model’s accuracy and degrade its performance both when learning and 

predicting. An example of a data conflict is inconsistent data values for the same 

entity received from different sources. This could be due to a variety of reasons, 

including different units or scales used, data entry errors, or the entity simply giving 

different values to both sources by accident. 
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2.1.1.1.3 Data Reduction 

In most cases, the amount of data made available to us for analysis is too large to be 

fed into an algorithm entirely. It would take an exceptionally long time for the 

algorithm to learn from the entire data set. Thus, steps need to be taken to alleviate 

this issue. Data reduction is the process of reducing the cardinality and 

dimensionality of the data, yet still closely preserving the overall integrity and 

feature distributions of the original data set (Han, Kamber and Pei, 2011). 

 The most common technique to reduce cardinality is random sampling. This 

means to randomly select a certain percentage of tuples from the original data set to 

form the new reduced data set. Sampling can be done either with or without 

replacement. Other than that, data can be aggregated to dramatically reduce the 

number of tuples. For example, data on profits gained daily can be totalled up to be 

monthly, quarterly or even yearly. For reducing dimensionality, unrelated attributes 

are simply dropped before the data set is passed to the algorithm. 

 

2.1.1.1.4 Data Transformation 

Lastly, data transformation is the process of transforming the data to optimise the 

mining process and to achieve a better and more accurate result (Han, Kamber and 

Pei, 2011). Usual steps taken in the data transformation phase include normalisation, 

discretisation, and attribute construction (Han, Kamber and Pei, 2011). 

Normalisation is used to scale a numerical attribute so that all data values within it 

fall in a certain range. Normalisation is usually done to enforce a consistent range 

across multiple numerical features. Discretisation means to convert numerical data 

into discrete data. A common example is the conversion of age numbers into a 

categorical label such as young, teens, middle-aged or elderly. Attribute construction 

refers to the derivation of new attributes from existing features. 
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2.1.1.2 Data Mining Algorithms 

Once data has been pre-processed, data mining algorithms can be applied onto them 

to obtain insights and knowledge. Data mining algorithms can be categorised into 

several types, the most prominent ones being classification, regression, and 

clustering. 

 Classification problems are where given a certain set of known data values, 

predict a discrete class which the set belongs to (Han, Kamber and Pei, 2011). For 

example, given a person’s age, daily lifestyle habits, medical history, blood pressure 

and BMI, predict if the patient is at risk of developing a heart attack. Popular 

classifier algorithms include decision tree classifiers such as ID3, C4.5 and CART 

(Han, Kamber and Pei, 2011). Regression tasks are similar to classification tasks, but 

instead of predicting a discrete class label, a continuous numerical value is predicted. 

 However, clustering is conceptually different from classification and 

regression. In classification and regression, a class label and a numeric value is to be 

predicted respectively. For clustering tasks, the goal is to group data points that 

“belong together” into the same cluster. The method used to determine if points 

belong in the same cluster vary depending on the clustering algorithm used. 

Examples of clustering algorithms include affinity propagation, mean-shift, 

agglomerative clustering, DBSCAN and K-Means (scikit-learn, n.d.), which is the 

focus of this project. 
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2.1.2 The K-means Algorithm 

This section explains the origin of the K-means algorithm, how the algorithm works, 

its strengths and drawbacks. 

 

2.1.2.1 Brief History of the K-means Algorithm 

The K-means algorithm is by no means a modern idea. The three most commonly 

used variations of the K-means algorithm are the Llyod algorithm, the Forgy 

algorithm, the MacQueen algorithm, and the Hartigan-Wong algorithm (Morissette 

and Chartier, 2013). The Llyod algorithm and the Forgy algorithm were developed in 

1957 and 1965 respectively, but the Llyod algorithm was not published until 1982 

The clustering steps in these two algorithms are exactly the same, with the only 

difference being the consideration of data distribution (Morissette and Chartier, 

2013). The Llyod algorithm was defined for discrete data, whereas the Forgy 

algorithm considered continuous data The MacQueen algorithm, which was 

proposed in 1967, is a slight variation on the Llyod and Forgy algorithms. The 

Hartigan-Wong algorithm was first described by Hartigan in 1975, but was improved 

upon in 1979 by Hartigan and Wong (Hartigan and Wong, 1979) The first variation 

of the K-means algorithm appeared over 60 years ago, and yet this clustering 

technique still remains used till this day. 
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2.1.2.2 Explanation of the K-means Algorithm 

This section describes the Llyod/Forgy algorithm, which is the variant used in this 

project. 

The first step in using the algorithm is to pick a value for K, which is the 

number of clusters to segregate the data points into. Then, K number of data points 

are randomly chosen to be the initial cluster centroids. Next, each point in the data 

set is assigned to the cluster it is most similar to. To determine the point’s similarity 

with each cluster, a certain proximity measure is used. Proximity measures will be 

further explained in section 2.1.3. After each value has been assigned a cluster 

membership, all cluster centroids are recalculated to be the mean of all points 

assigned to them. Then, each point’s similarity with all cluster centroids are re-

evaluated, and its cluster membership is reassigned if necessary. After that, each 

cluster centroid is recalculated again. This repeats until there are no further changes 

in cluster memberships and cluster centroids. 

 

Thus, the pseudocode for the K-means algorithm is as follows: 

 

Table 2.1: K-means Algorithm Pseudocode (Han, Kamber and Pei, 2011) 

(1)  Choose a value for K 

(2) Randomly choose K points from the data set to act as initial cluster centroids 

(3) DO: 

 
 For each point, assign/reassign cluster memberships to the  

  most similar cluster centroid 

 
 Evaluate new cluster centroids by calculating the mean of  

 all points belonging to the cluster 

 WHILE there are still changes to cluster memberships and centroids 
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Figure 2.2: K-means Algorithm in Action (Han, Kamber and Pei, 2011) 

 

 Figure 2.2 shows an example of the K-means algorithm being applied on an 

arbitrary data set. In this example, the value of K is 3. The plot labelled (a) shows the 

initial clusters based on the random points chosen to be the cluster centroids. Once 

cluster memberships have been assigned to each point, the cluster centroids are 

calculated as the mean of all points within the cluster. The centroids are labelled with 

a “+” in the second plot. Then, each data point is reassigned a new cluster if needed, 

and the cluster centroids are recalculated. The final plot on the right shows the final 

clusters, the output of the algorithm. 

 

2.1.2.3 Strengths and Drawbacks of the K-means algorithm 

The most obvious advantage of the K-means algorithm is its simplicity and ease of 

implementation. The algorithm’s low computational cost and memory usage also 

contributed to it remaining popular throughout the decades (Morissette and Chartier, 

2013) Furthermore, the algorithm also scales relatively well since it has a time 

complexity of 𝑂(𝑛𝐾𝑡), where n is the number of data points, k is the number of 

clusters, t is the number of iterations (Han, Kamber and Pei, 2011). 

 On the other hand, the K-means algorithm is sensitive to outliers and noise 

data (Han, Kamber and Pei, 2011), as it uses a mean measure to determine the cluster 

centroids. Other than that, some data scientists view the need for specifying the 

number of clusters beforehand to be a weakness (Han, Kamber and Pei, 2011). Other 

clustering methods such as hierarchical clustering may be able to operate without 

first specifying the number of clusters, but they are not as efficient as the K-means 

algorithm. 
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2.1.3 The K-means++ Algorithm 

K-means++ is a variant of the K-means algorithm that modifies the process of 

picking the initial cluster centroids to favour more spread out arrangements. The 

algorithm was proposed by Arthur and Vassilvitskii in 2007. The pseudocode for the 

K-means++ algorithm is as follows: 

 

Table 2.2: K-means++ Algorithm Pseudocode (Arthur and Vassilvitskii, 2007) 

(1)  Choose a value for K 

(2) Randomly choose a single point from the data set, with uniform chance for all 

points to be chosen 

(3) WHILE number_of_clusters < K 

 FOR all points in the data set 

  Calculate probability of choosing that point with 
𝐷(𝑥)2

∑ 𝐷(𝑥)2𝑥∈𝑋
 

 Choose a random point with the probabilities calculated 

(4) DO: 

 
 For each point, assign/reassign cluster memberships to the  

  most similar cluster centroid 

 
 Evaluate new cluster centroids by calculating the mean of  all 

points belonging to the cluster 

 WHILE there are still changes to cluster memberships and centroids 

where 

𝐷(𝑥) = distance from that particular data point to the closest cluster centroid 

 

Notice how the only difference between this algorithm and the regular K-

means algorithm is the way the initial centroids are picked. By assigning a higher 

probability of being picked to data points that are further away, the initial chosen 

centroids tend to be more spread out. Also note that step 4 in table 2.2 is the exact 

same as step 3 in table 2.1. 
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2.1.4 Proximity Measures 

In section 2.1.2.2, it is mentioned that a certain proximity measure is needed to 

determine a point’s similarity with each cluster centroid, which is then used to assign 

the point to a certain cluster. In this section, the purpose of proximity measures in 

data mining will be explained in more depth. This section also presents a list of 

proximity measures that can be used with the K-means algorithm. 

 In data mining, there are many algorithms that require a proximity measure to 

function. Examples include partitioning clustering algorithms such as K-means and 

K-medoids (Shirkhorshidi, Aghabozorgi and Wah, 2015). In most cases, Euclidean 

distance is selected as the distance metric. The proximity measure chosen to be used 

with these algorithms directly affects the algorithm’s performance and results. Due to 

the significance of a proximity measure’s effect, much research has been done 

looking into new measures and comparing them to existing metrics in terms of 

performance, advantages and disadvantages when applied to various different types 

of data such as categorical data and binary data (Shirkhorshidi, Aghabozorgi and 

Wah, 2015). It should also be noted that proximity measures are not universally 

applicable to all types of data. Furthermore, there is no single “best” proximity 

measure for all applications (Shirkhorshidi, Aghabozorgi and Wah, 2015). The 

optimal metric for each situation needs to be discovered through experimentation. 

 Proximity measures fall into one of two categories, similarity and 

dissimilarity measures (Shirkhorshidi, Aghabozorgi and Wah, 2015). For this project, 

emphasis will be given on proximity measures meant for continuous data. The 

following proximity measures are all featured in the web application. 
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2.1.4.1 Similarity Measures 

Metrics listed under this subsection measure the similarity between two data points. 

The higher the value, the more alike the two points are. When used with the K-means 

algorithm, points with a higher value will be placed into the same cluster. 

 

2.1.4.1.1 Czekanowski Coefficient 

This proximity measure is known to give reliable results when used with the K-

means algorithm for medium-dimensionality data (Shirkhorshidi, Aghabozorgi and 

Wah, 2015). 

 

 𝑑 = 1 −
2∑ min(𝑥𝑖,𝑦𝑖)

𝑛
𝑖=1

∑ (𝑥𝑖+𝑦𝑖)
𝑛
𝑖=1

 (2.1) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

 

2.1.4.1.2 Coefficient of Divergence 

Evidence has shown that this proximity metric is able to produce accurate results 

when used with the K-means algorithm (Shirkhorshidi, Aghabozorgi and Wah, 2015). 

 

 𝑑 = √1

𝑛
∑ (

𝑥𝑖−𝑦𝑖

𝑥𝑖+𝑦𝑖
)
2

𝑛
𝑖=1  (2.2) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 
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2.1.4.1.3 Mean Character Difference 

In contrast to Czekanowski coefficient, research has shown that mean character 

difference proximity measure tends to produce inaccurate results when used with the 

K-means algorithm for data sets with a high number of dimensions (Shirkhorshidi, 

Aghabozorgi and Wah, 2015). 

 

 𝑑 =
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|
𝑛
𝑖=1  (2.3) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

 

2.1.4.1.4 Index of Association 

This measure is known to produce inaccurate results when used with K-means. 

 

 𝑑 =
1

𝑛
∑ |

𝑥𝑖

∑ 𝑥𝑖
𝑛
𝑖=1

−
𝑦𝑖

∑ 𝑦𝑖
𝑛
𝑖=1

|𝑛
𝑖=1  (2.4) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 
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2.1.4.1.5 Pearson Coefficient 

This measure is commonly used for clustering gene expression data (Shirkhorshidi, 

Aghabozorgi and Wah, 2015). One of its biggest disadvantage is that it is easily 

affected by outliers. 

 

 𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑥, 𝑦) =
∑ (𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)
𝑛
𝑖=1

√∑ (𝑥𝑖−𝜇𝑥)
2𝑛

𝑖=1
√∑ (𝑦𝑖−𝜇𝑦)

2𝑛
𝑖=1

 (2.5) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

𝜇𝑥 = mean of all attribute values in 𝑥 

𝜇𝑦 = mean of all attribute values in 𝑦 

 

2.1.4.1.6 Cosine Measure 

A similarity measure that is usually used for determining document similarity 

(Shirkhorshidi, Aghabozorgi and Wah, 2015).  

 

 𝐶𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑦) =
∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
 (2.6) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

‖𝑥‖2 = √∑ 𝑥𝑖
2𝑛

𝑖=1   

‖𝑦‖2 = √∑ 𝑦𝑖
2𝑛

𝑖=1   
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2.1.4.2 Dissimilarity Measures 

Measures listed under this subsection is the exact opposite to those listed in section 

2.1.3.1. The measures here quantify the distance between two points. When used 

with the K-means algorithm, points with a lower dissimilarity will be placed in the 

same cluster. 

 

2.1.4.2.1 Euclidean Distance 

The most common proximity measure used with the K-means algorithm, and also the 

default option in most cases, if not the only option. This metric works well in most 

cases, but is however sensitive to outliers and easily affected by largely-scaled 

attributes (Shirkhorshidi, Aghabozorgi and Wah, 2015). To solve the issue of 

largely-scaled features, normalisation is usually performed beforehand. The equation 

for computing the Euclidean distance between two points is as follows: 

 

 𝑑 = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1  (2.7) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 
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2.1.4.2.2 Weighted Euclidean Distance 

A variation of Euclidean distance that allows weights to be assigned for each 

attributes. This allows the algorithm to put more emphasis on certain attributes when 

during the clustering phase (Shirkhorshidi, Aghabozorgi and Wah, 2015). The 

equation for this metric is as follows: 

 

 𝑑 = √∑ 𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1  (2.8) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

𝑤𝑖 = weight assigned to attribute 𝑖 

 

2.1.4.2.3 Average Distance 

Another variant of Euclidean distance, designed to dampen the effects of outliers 

within the data set (Shirkhorshidi, Aghabozorgi and Wah, 2015) by averaging out the 

sum of distances for all attributes. The formula for this is as below: 

 

 𝑑 = √(
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1 ) (2.9) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 
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2.1.4.2.4 Manhattan Distance 

A common alternative to Euclidean distance, has the same strengths and drawbacks 

as Euclidean distance (Shirkhorshidi, Aghabozorgi and Wah, 2015). Manhattan 

distance is also known as city block distance (Cha, 2007).  

 

 𝑑 = ∑ (|𝑥𝑖 − 𝑦𝑖|)
𝑛
𝑖=1  (2.10) 

 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

 

2.1.4.2.5 Minkowski Distance 

A general case for Euclidean distance and Manhattan Distance. In fact, both 

Euclidean distance and Manhattan distance are measures that belong under the 

Minkowski family (Shirkhorshidi, Aghabozorgi and Wah, 2015). When 𝑚 = 1, the 

formula gives the same result as Manhattan distance. When 𝑚 = 2, the equation 

gives the same result as Euclidean distance The equation for Minkowski distance is 

as follows: 

 

 𝑑 = (∑ |𝑥𝑖 − 𝑦𝑖|
𝑚𝑛

𝑖=1 )
1

𝑚,𝑚 ≥ 1 (2.11) 

 

where 

𝑛 = number of attributes 

𝑚 = a positive real number 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 
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2.1.4.2.6 Chebyshev Distance 

An extension of Minkowski distance. As the value of 𝑚  approaches infinity, the 

distance obtained is known as the Chebyshev distance (Cha, 2007). The distance can 

be approximated by finding the maximum absolutute distance across all attributes 

The following is the equation for that approximation: 

 

 𝑑 = 𝑚𝑎𝑥𝑖|𝑥𝑖 − 𝑦𝑖| (2.12) 

 

where 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

 

2.1.4.2.7 Chord Distance 

A modified version of Euclidean distance developed to overcome the weaknesses of 

Euclidean distance, including issue of it being heavily affected by largely scaled 

attributes (Shirkhorshidi, Aghabozorgi and Wah, 2015). It is defined as “the length of 

the chord joining two normalized points within a hypersphere of radius one” 

(Shirkhorshidi, Aghabozorgi and Wah, 2015). The following is the equation for 

Chord distance: 

 

 𝑑 = √2 − 2
∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

‖𝑥‖2‖𝑦‖2
 (2.13) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

‖𝑥‖2 = √∑ 𝑥𝑖
2𝑛

𝑖=1   

‖𝑦‖2 = √∑ 𝑦𝑖
2𝑛

𝑖=1   

 

 

  



23 

2.1.4.2.8 Canberra Distance 

This dissimilarity measure was first introduced by Lance back in the 1960’s and 

further improved on the next year by Williams (Faisal, Zamzami and Sutarman, 

2020). Research conducted shows that this metric is able to provide accurate 

clustering results, provided that the data has been properly preprocessed. (Faisal, 

Zamzami and Sutarman, 2020; Thakare and Bagal, 2015). The performance of this 

metric is comparable to the performances of Euclidean distance and Manhattan 

distance. However, the Canberra distance is easily affected by largely-scaled 

attributes. Normalising the data before clustering will rectify this issue. 

 

 𝑑 = ∑
|𝑥𝑖−𝑦𝑖|

|𝑥𝑖|−|𝑦𝑖|
𝑛
𝑖=1  (2.14) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 
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2.1.4.2.9 Dissimilarity Approach 

The above measures are all known as similarity measures. They measure the 

similarity between two data values However, proximity measures can be broken up 

into similarity and dissimilarity measures. Thus, some dissimilarity measures need to 

be implemented in the project as well. 

Wang (2013) describes a dissimilarity based variation of the K-means 

algorithm in their conference paper. Dissimilarity measures work in the opposite way 

as compared to similarity measures. The smaller the value, the closer the two points 

are together. There are two equations involved, one to calculate attribute dissimilarity, 

and the other to calculate object dissimilarity. Attribute dissimilarity measures the 

dissimilarity between two values of the same attribute in two data points. 

 

 a𝑡𝑡_𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑖 , 𝑦𝑖) =
||𝑥𝑖−𝜇𝑖|−|𝑦𝑖−𝜇𝑖||

2

max(𝑖)−min(𝑖)
 (2.15) 

 

where 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 

𝜇𝑖 = mean of all values for attribute 𝑖 

max(𝑖) = mean of all attribute values in 𝑦 

min(𝑖) = mean of all attribute values in 𝑦 

 

Object dissimilarity is simply the average of the attribute dissimilarities for all 

attributes in two points. 

 

 𝑜𝑏𝑗_𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) =
∑ 𝑎𝑡𝑡_𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥𝑖,𝑦𝑖)
𝑛
𝑖=1

𝑛
 (2.16) 

 

where 

𝑛 = number of attributes 

𝑥𝑖 = value of attribute 𝑖 for first data point 

𝑦𝑖 = value of attribute 𝑖 for second data point 
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2.2 Review of Common Data Mining Tools 

The main inspiration behind this project is the constant lack of choices for proximity 

measures in data mining tools that support the K-means algorithm. In this section, 

several tools are reviewed and a list of proximity measures supported by the tool will 

be presented. Tools reviewed include libraries or frameworks for programming 

languages as well as standalone tools. 

 

2.2.1 amap (R package) 

R is a programming language designed for statistical computing (R, n.d.). The amap 

package for R provides an implementation of the K-means algorithm. According to 

RDocumentation (n.d.), the supported proximity measures are as follows: 

• Euclidean distance 

• Maximum distance 

• Manhattan distance 

• Canberra distance 

• Binary distance 

• Pearson coefficient 

• Absolute Pearson coefficient 

• Correlation coefficient 

• Absolute correlation coefficient 

• Spearman rank correlation coefficient 

• Kendall rank correlation coefficient 
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2.2.2 scikit-learn (Python package) 

Python is a programming language that was first released 3 decades ago. It has 

gained immense popularity in recent years due to its simple and easy to understand 

syntax. scikit-learn is a very popular Python package among beginners and veterans 

alike in data science. It provides implementations for most of the commonly used 

data mining algorithms, including the K-means algorithm. According to the 

documentation, the only available proximity measure to be used with the K-means 

algorithm is Euclidean distance (scikit-learn, n.d.). 

 

2.2.3 WEKA 

WEKA is an open-source data mining tool developed at the University of Waikato in 

New Zealand (Frank, Hall and Witten, 2016). WEKA is an acronym for Waikato 

Environment for Knowledge Analysis. The tool provides common data mining 

algorithms in a user-friendly graphical user interface (GUI). 

 

Figure 2.3: Built-in Proximity Measures in WEKA 

 

 Figure 2.3 shows all available proximity measures in WEKA. However, the 

K-means algorithm implementation only supports Euclidean and Manhattan 

distance. Picking any other metric yields the following error: 

 

Figure 2.4: Error Shown When Picking an Unsupported Distance Metric 
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2.2.4 Oracle Data Mining 

Oracle Data Mining is a data mining tool built into Oracle Database that offers a 

variety of data mining algorithms (Oracle, n.d.). It was designed to work on 

extremely large data sets. Based on the documentation, the available proximity 

measures for the K-means algorithm are Euclidean distance and Cosine distance 

(Oracle, n.d.). 

 

2.2.5 Summary 

In summary, out of all data mining tools reviewed in this section, only the amap 

package for R supports more than 2 proximity measures. The reason for the limited 

choices of proximity measures in most popular data mining tools is unknown. 

However, it is clear that the proximity measure chosen has a huge impact on the 

clustering results obtained from the K-means algorithm. Considering how crucial it is 

to select the right proximity measure to be used with the K-means algorithm, it is 

counter-intuitive how few proximity measures are supported by most popular data 

mining tools. This forms the crux of the issue that this project sets out to solve. 
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2.3 Web Application 

This project aims to solve the constant lack of supported proximity measures for the 

K-means algorithm in popular data mining tools. This objective of this project is to 

develop a web application that implements the K-means algorithm and provides 

numerous choices for proximity measures to use with the algorithm. This section will 

briefly explain web applications and their general architecture. 

 

2.3.1 Introduction to Web Applications 

Basically put, web applications are applications that are hosted entirely online and 

accessed through a web browser (Jazayeri, 2007). A Uniform Resource Locator 

(URL) is used to tell the browser where a web page is located. A URL consists of a 

domain name and a path to the resource. The domain name is converted into an IP 

address with a Domain Name System (DNS), which points the browser to the 

computer or server where the application is located. The path points to the object to 

load. 

 Hypertext Transfer Protocol (HTTP) is a protocol for communication 

between clients and web servers (Jazayeri, 2007). There are eight operations defined 

in the protocol. The most commonly used ones are GET and POST. 

 

2.3.2 Static and Dynamic Web Pages 

Web pages fall within one of two groups, static pages and dynamic pages. Static 

pages are web pages which run entirely on the client side. In other words, static 

pages are websites developed using only HTML, CSS and JavaScript. 

 Dynamic pages require a server-side scripting language. The major difference 

between static and dynamic pages is that dynamic pages are first processed by the 

server before being displayed to the client (Jazayeri, 2007). For example, the web 

server can receive a data set uploaded by the client and format the next page 

accordingly before sending it to the client. 

 For the web application this project aims to build, a dynamic web page is 

needed as the contents displayed to the user will change based on the uploaded data 

set.  
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2.3.3 General Architecture of a Web Application 

 

 

Figure 2.5: General Architecture of a Web Application 

 

The server will process the template programmatically using scripting languages and 

many more before sending it to the client. The templates are typically written using 

HTML, CSS and JavaScript. Web scripting languages include PHP, PERL, Python, 

and many more.  

 

2.3.4 Summary 

In conclusion, the web application proposed by this project needs to be a dynamic 

web page, since the cluster calculations are done on the server side. Besides that, the 

appearance of the web page needs to change based on the data set that the user 

uploaded or chose. 
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2.4 Development Methodology 

This section introduces and explains an Agile methodology for software 

development. 

 

2.4.1 Agile 

Agile methodologies deviate from traditional structured development methodologies 

such as Waterfall, Spiral and so on. Agile methodologies emphasise on flexibility 

and adapting to change instead of following a concrete plan. There is a common 

misconception that development teams can choose to follow the Agile methodology. 

However, Agile methodology is not a single concrete methodology to be followed, 

but rather a general term referring to methodologies that adhere to the principles 

stated in the Agile manifesto (Shore and Warden, 2007). Examples of such 

methodologies are Extreme Programming (XP), Kanban, Scrum, Feature Driven 

Development and so on. 

 

2.4.2 Kanban 

This subsection explains the origins of Kanban and how it has been adapted to 

software development. 

 

2.4.2.1 Brief Introduction to Kanban 

Kanban got its start in a Toyota production system back in the 1950s (Kirovska and 

Koceski, 2015). The production system follows the Just-in-time (JIT) concept. This 

means that the production line only produces parts that are necessary, in just the right 

quantity and no more. In Japanese, Kanban roughly means signal card. In the context 

of Toyota’s production system, Kanban cards were used to signal what part were 

needed and the exact quantity. 

 The first time Kanban was introduced to the software development field was 

when Microsoft invited David J. Anderson to come up with a method to visualise the 

work flow within a development team. 
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2.4.2.2 Kanban in Software Development 

When applied to software development, a Kanban board is used to visualise the 

workflow within a team. An example of such a board is shown in figure 2.6 below: 

 

Figure 2.6: Kanban Board Sample (Kirovska and Koceski, 2015, p.29) 

 

 There are a few categories or groupings on the board, namely To Do, In 

Progress, Test, and Done. Under each of these categories are cards labelled with 

tasks. As work progresses, cards will be moved around from one category to another. 

For example, when a team member decides to take up a task, the associated card is 

moved from To Do to In Progress. Similarly, when a task is completed, the 

associated card is moved to Done. That is the entirety of the Kanban methodology. 

 This methodology is founded on five core principles (Kirovska and Koceski, 

2015): 

1. Visualise the workflow 

2. Limit items being worked on concurrently 

3. Manage flow 

4. Make management policies explicit 

5. Use models and the scientific method to improve 
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 Principle one is achieved by the Kanban board itself. By having a card for 

each task, the workflow can be visualised as the project progresses. Principle two is 

put into place to make Kanban scalable based on the size of the developer team. If 

there are only a few developers on the team, the manager may consider setting a low 

limit on the total number of items that can be worked on concurrently. Conversely, if 

the team was larger, managers could experiment with raising the limit. Principle 

three is related to principle one.  

 

2.4.2.3 Benefits of Kanban 

The biggest benefit of Kanban is its scalability. As there is only a single developer on 

the project, selecting a methodology that scales well to the team size is paramount to 

the success of this project. This is done by setting a limit on the concurrent tasks 

being worked on during the entire project. 

 Besides that, Kanban is a relatively simple methodology compared to 

other Agile methodologies. All developers have to do is to pick a task from the board 

and work on it until it is completed. This is repeated until the project is done. There 

is no need for daily stand up meetings and pairwise code reviews. Furthermore, it is 

quite flexible. The due date for each task can be adjusted based on its complexity 

instead of following a fixed sprint cycle like Scrum. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this chapter, the methodology chosen for this project will be explained, as 

well as how it is applied to the project. This chapter also describes the overall 

plan for completing the project. The tools and frameworks used to build the 

project are listed in this chapter too. 

 

3.2 Development Methodology 

The Kanban development methodology was chosen for this project due to its 

simplicity, flexibility and scalability. In this methodology, a Kanban board is 

used to keep track of the project’s progress. The board is split into several lists, 

with each list representing a step in the project workflow. Tasks are moved 

across lists as the project progresses. Figure 3.1 below an example of a 

Kanban board. 

 

 

Figure 3.1: Kanban Board Sample (Kirovska and Koceski, 2015, p.29) 
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For this project, the Kanban board was split into the following lists: 

a) Backlog 

This list contains all of the project’s main tasks, taken from the work 

breakdown structure. These tasks were arranged from most important 

to least in the list. Tasks were moved to the prioritise list prior to being 

worked on. 

 

b) Prioritise 

Similar to backlog, but for tasks with a higher priority at that time. 

These include important tasks picked from the backlog and emergency 

tasks. An example of an emergency task would be to fix a severe bug 

that was recently discovered which is holding up the progress of other 

tasks. This list also acts as a buffer for tasks picked from the backlog. 

As such, it provides a clearer picture on what needs to be worked on 

soon and gives a sense that progress is being made. 

 

c) On hold 

This list is for tasks that have been started but have hit a roadblock and 

are unable to be continued on for the time being. There are several 

possible reasons for this. For example, the task may require another 

task to have started or completed first;  

 

d) In Progress 

Tasks that are currently being worked on will be under this list. Tasks 

will remain on this list until they have been completed or come to a 

halt due to some unexpected circumstance. If the task is completed, it 

is moved to done. If it is unable to progress any further due to an 

unforeseen reason, it is moved to on hold for the time being. 
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e) Done 

Tasks that have been completed will be placed under this list. Once 

tasks have been placed into this list, they can no longer be moved out. 

If a bug is caused by one of the completed tasks, a new task to fix it 

will be created under backlog or prioritise depending on the severity of 

the bug. 

 

 

3.3 Work Plan 

In this section, a work plan encompassing the whole project will be laid out. 

 

3.3.1 Work Breakdown Structure 

0.0 A Web-based Implementation of the K-means Algorithm 

1.0 Project Initiation 

1.1 Register title 

1.2 Kick-start project 

1.3 Formulate problem statement 

1.4 Formulate project objectives 

1.5 Define project scope 

2.0 Literature Review 

2.1 Understand problem domain 

2.1.1 Study basic data mining concepts 

2.1.2 The K-means algorithm 

2.1.3 The K-means++ algorithm 

2.1.4 Proximity measures 

2.1.4.1 Similarity measures 

2.1.4.2 Dissimilarity measures 

2.2 Review data mining tools 

2.3 Review web frameworks 

2.4 Review methodologies 

3.0 Project Planning 

3.1 Select suitable methodology 

3.2 Develop work breakdown structure 

3.3 Develop project schedule 
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3.4 Select suitable tools, frameworks and packages 

4.0 Project Specifications 

4.1 List functional requirements 

4.2 List non-functional requirements 

4.3 Describe use-cases 

4.4 Develop simple functional prototype 

4.4.1 Upload data set 

4.4.2 File handling 

4.4.3 The K-means algorithm 

4.4.4 Euclidean distance 

4.4.5 Manhattan distance 

4.4.6 Results visualisation 

4.4.7 Dummy UI elements 

5.0 Development 

5.1 Migrate prototype code 

5.2 Initialise Git repository and set up GitHub remote repository 

5.3 K-means++ algorithm 

5.4 Additional proximity measures 

5.5 Attribute exclusion 

5.6 Attribute normalisation 

5.7 Seed specification 

5.8 Improve results visualisation 

5.9 Sample data sets 

5.9.1 Iris data set 

5.9.2 Diabetes data set 

5.9.3 Breast Cancer data set 

5.10 Sessions implementation 

5.11 Classes to clusters evaluation 

5.12 Download results 

5.13 Deploy to Heroku 

6.0 Testing 

6.1 SUS Test 

6.1.1 Prepare SUS Test Template 

6.1.2 Invite Participants 
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6.1.3 Calculate Final Score 

7.0 Project Closure 

7.1 Deploy web application 

7.2 Finalise report 

3.3.2 Project Schedule 

Table 3.1: Project Schedule 

Task Start Date End Date Duration 

(Days) 

Project Initiation 

Register title 5-6-2021 5-6-2021 1 

Kick-start project 17-6-2021 17-6-2021 1 

Formulate problem statement 19-6-2021 24-6-2021 6 

Formulate project objectives 19-6-2021 24-6-2021 6 

Define project scope 19-6-2021 24-6-2021 6 

Literature Review 

Study basic data mining concepts 27-6-2021 7-7-2021 11 

The K-means algorithm 2-7-2021 11-7-2021 10 

The K-means++ algorithm 2-7-2021 11-7-2021 10 

Similarity measures 8-7-2021 26-7-2021 19 

Dissimilarity measures 8-7-2021 26-7-2021 19 

Review data mining tools 27-7-2021 2-8-2021 7 

Review web frameworks 30-7-2021 6-8-2021 8 

Review methodologies 4-8-2021 13-8-2021 10 

Project Planning 

Select suitable methodology 16-8-2021 17-8-2021 2 

Develop work breakdown structure 17-8-2021 24-8-2021 8 

Develop project schedule 17-8-2021 24-8-2021 8 

Select suitable tools, frameworks and 

packages 

22-8-2021 22-8-2021 1 

Project Specifications 

List functional requirements 20-8-2021 24-8-2021 5 

List non-functional requirements 20-8-2021 24-8-2021 5 

Describe use-cases 20-8-2021 24-8-2021 5 



38 

Upload data set 14-8-2021 15-8-2021 2 

File handling 14-8-2021 15-8-2021 2 

The K-means algorithm 15-8-2021 17-8-2021 3 

Euclidean distance 15-8-2021 17-8-2021 3 

Manhattan distance 15-8-2021 17-8-2021 3 

Results visualisation 16-8-2021 18-8-2021 3 

Dummy UI elements 14-8-2021 18-8-2021 5 

Development 

Migrate prototype code 26-1-2022 2-2-2022 8 

Initialise Git repository and set up 

GitHub remote repository 

1-2-2022 6-2-2022 6 

K-means++ algorithm 5-2-2022 8-2-2022 4 

Attribute exclusion 7-2-2022 9-2-2022 3 

Attribute normalisation 8-2-2022 10-2-2022 3 

Seed specification 10-2-2022 11-2-2022 1 

Improve results visualisation 9-2-2022 13-2-2022 5 

Iris data set 21-2-2022 23-2-2022 3 

Diabetes data set 21-2-2022 23-2-2022 3 

Breast Cancer data set 21-2-2022 23-2-2022 3 

Sessions implementation 3-2-2022 25-2-2022 23 

Classes to clusters evaluation 15-2-2022 17-2-2022 3 

Download results 21-2-2022 24-2-2022 4 

Deploy to Heroku 3-3-2022 4-3-2022 2 

Testing 

Prepare SUS Test Template 6-3-2022 8-3-2022 3 

Invite Participants 9-3-2022 20-3-2022 12 

Calculate Final Score 21-3-2022 21-3-2022 1 

Project Closure 

Finalise report 4-4-2022 10-4-2022 7 
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3.3.3 Gantt Chart 

 

Figure 3.2: Gantt Chart 
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Figure 3.3: Gantt Chart (continued) 
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3.4 Tools and Frameworks 

This section lists the tools and frameworks used to develop the project, and provides 

a brief explanation of their purpose. 

 

3.4.1 HTML and CSS 

HTML stands for HyperText Markup Language, and CSS stands for Cascading Style 

Sheets. Together, these two languages form the basic building blocks of websites and 

web applications. The entire interface of the web application was written using these 

two languages. 

 

3.4.2 JavaScript 

JavaScript is a popular scripting language that runs on the client side. It is often 

referred to as the programming language of the web (MDN Web Docs, n.d.). 

JavaScript scripts can be included with the web pages sent by the web server. These 

scripts can be made to trigger on certain events, such as buttons being pressed or 

checkboxes being marked. For this project, JavaScript was used to dynamically 

update the page. 

 

3.4.3 Python 

Python is a high-level programming language that has grown in popularity in the past 

few years. Python was chosen for this project due to its simplicity and easy to read 

code. The K-means algorithm and various proximity measures stated in section 2.1.3 

was coded in Python. 

 Besides that, Python was also chosen because of the wide range of available 

packages for the language, some of which were utilised in this project. The packages 

used for this project will be explained in the following subsections. 
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3.4.4 Django 

Django is a popular web framework for Python. Django is used in this project to 

provide web services so that the web application can be run. Django is responsible 

for receiving the uploaded data set and other inputs from the client side. The data set 

and inputs are then passed off to a Python script where the actual clustering takes 

place. The results are then returned to the client by Django. Django was also chosen 

over other web frameworks due to its support for dynamic web pages, which is a 

must have for this project. 

 

3.4.5 NumPy 

NumPy is a Python library that adds support for arrays and matrices. While Python 

supports lists out of the box, the performance is extremely slow compared to NumPy 

arrays. This is because at its core, NumPy implemented in C. NumPy arrays are used 

throughout the project wherever possible to speed up performance as much as 

possible. 

 

3.4.6 pandas 

pandas is a powerful Python package designed for data analysis and manipulation. 

pandas provides a data structure known as DataFrames, and complementary methods 

to manipulate data stored within them. Most importantly, DataFrames provide a huge 

performance boost over the built-in data structures in Python such as Lists and 

Dictionaries. The uploaded data sets are loaded into Python and pre-processed using 

the pandas package before the K-means or K-means++ algorithm is applied onto it. 

 

3.4.7 Matplotlib 

Matplotlib is a Python library for creating data visualisations. It is extremely versatile, 

and plots can be tailored to meet specific needs. However, it does not provide any 

intractability. As such, Matplotlib was only used in the prototype to plot the cluster 

results. 
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3.4.8 Desmos API 

Desmos is a graphing calculator made to aid the learning and teaching of 

Mathematics. Students and teachers from all over the globe use Desmos to visualise 

Mathematical functions. It is available as a web application and a mobile application. 

However, Desmos also provides developers with an API which they can import into 

their own projects. This allows developers to add an interactive Desmos graphing 

calculator to their own pages. The Desmos API is used in this project to provide 

interactive data and results visualisation. 

 

3.4.9 Visual Studio Code 

Visual Studio Code, usually abbreviated as VS Code, is a free, lightweight code 

editor developed by Microsoft. It is not as feature-packed as other IDEs, but still 

contains most of the commonly used features such as debugging, task running and 

version control (Visual Studio Code, n.d.). VS Code also has a variety of plugins to 

assist with development no matter the language used. VS Code was the main editor 

of choice when developing this project. All Python scripts, HTML, CSS and 

JavaScript files were written using VS Code. 

 

3.4.10 Git 

Git is a version control system developed by Linus Torvalds, the man behind Linux. 

It was developed to facilitate version tracking and easy collaboration in software 

development projects. Git was used to keep track of the changes made to the project, 

and to enable swift rollbacks and rollforwards whenever necessary. 

 

3.4.11 GitHub 

GitHub is a remote repository hosting website owned by Microsoft. The website is 

usually used hand in hand with Git. Aside from providing hosting services, GitHub 

also provides GitHub Actions which allows for the creation of continuous integration 

workflows and scripts to help automate repetitive tasks. However, for this project, 

GitHub was just used as an archive for the project folder. 
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3.4.12 Trello 

Trello is a virtual Kanban board that has integrations with multiple other productivity 

tools such as JIRA, Bitbucket and Confluence to streamline a project’s workflow 

make managing projects as seamless as possible. Trello was a perfect addition to this 

project’s toolbox as the Kanban methodology was chosen. Trello was used to 

manage and visualise the project’s workflow and progress. 

 

3.4.13 Heroku 

Heroku is a platform-as-a-service that allows developers to host their apps for free. 

Developers only need to pay once they decide to upscale their apps or once they have 

used up their monthly quota and require more. The web application is hosted on 

Heroku to provide easy access so that anyone can play around with it on their own 

devices. 
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CHAPTER 4 

 

4 PROJECT SPECIFICATION 

 

4.1 Introduction 

In this chapter, the functional and non-functional requirements of the web application 

will be listed. Different use-cases for the web application will also be presented 

along with their accompanying use-case descriptions. Finally, a functional prototype 

developed using Django will be presented. 

 

4.2 Functional Requirements 

This section lists the functional requirements of the system. 

 

4.2.1 Upload data sets module 

• The system shall allow users to upload their data sets in a .csv format. 

• The system shall allow users to select from at least 3 pre-prepared data sets. 

 

4.2.2 Data pre-processing module 

• The system shall be able to display summary statistics of a data set. 

• The system shall allow users to fill in missing values from their uploaded data 

sets. 

• The system shall allow users to exclude certain attributes from being used in 

the clustering process. 

• The system shall allow users to normalise attributes prior to clustering. 

 

4.2.3 Clustering module 

• The system shall be able to apply the K-means and K-means++ algorithms on 

data sets uploaded or selected by the user. 

• The system shall allow users to pick a desired proximity measure to be used 

with the K-means or K-means++ algorithm. 

• The system shall allow users to specify the value of K, the number of clusters 

to form. 
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• The system shall feature at least 10 proximity measures, consisting of a mix 

of similarity and dissimilarity measures. 

• The system shall allow users to specify a seed to be used when choosing the 

initial cluster centroids. 

 

4.2.4 Results module 

• The system shall be able to display the clustering results in the form of an 

interactive plot to the user. 

• The system shall allow the user to download their cluster results. 

• The system shall be able to evaluate the clustering model’s performance by 

comparing the formed clusters with the class label. 

 

4.3 Non-functional Requirements 

This section lists the non-functional requirements of the system. 

 

4.3.1 Operational requirements 

• The system shall work on modern web browsers, including but not limited to, 

Mozilla Firefox, Google Chrome, and Opera. 

 

4.3.2 Reliability requirements 

• The system shall have an availability rate of at least 95%. 

 

4.3.3 Performance requirements 

• The system shall be able to return the cluster results within a certain amount 

of time of starting the cluster task, relative to the number of tuples in the data 

set. This amount of time includes time for pre-processing and clustering. 

Number of tuples Response time 

< 50 < 10 seconds 

51 - 200 < 30 seconds 

201 – 500 < 2 minutes 

501 – 1000 < 5 minutes 

> 1000 No time limit 
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4.4 Use-cases 

In this section, the use-cases of the web application will be presented. 

 

4.4.1 Use-case diagram 

 

 

Figure 4.1: Use-Case Diagram 
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4.4.2 Use-Case Descriptions 

Accompanying use-case descriptions for the use-cases shown in figure 4.1. 

 

4.4.2.1 Upload Data Set 

 

Table 4.1: Upload Data Set Use-Case Description 

Use case name: Upload data set ID: 1 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Upload their data set for clustering 

Brief Description:  

Allows users to upload their data set in the form of a .csv file for clustering 

Trigger:  

Every time the user launches the web application 

Relationship:  

Aassociation: User 

Include: - 

Extend: - 

Generalization: - 

Normal flows of event: 

1. The user loads the web application. 

2. The user is brought to the home page. 

3. If the user decides to upload their own data set, subflow S-1 is 

performed. 

If the user decides to pick one of the sample data sets, the “Choose 

sample data set” use case (ID: 3) is performed. 

Sub-flows:  

S-1: 1.) The user browses for a data set to upload from their local machine. 

        2.) The user clicks the upload button. 

        3.) The user is redirected to the clustering page. 

Alternate/ Exceptional Flows: 

2.a.) If the uploaded data set contains any missing values, the “Fill missing 

values” use case (ID: 2) is performed. 
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4.4.2.2 Fill Missing Values 

 

Table 4.2: Fill Missing Values Use-Case Description 

Use case name: Fill missing values ID: 2 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Fill in missing values found in their uploaded data set 

Brief Description:  

Allows users to pick a method to fill in the missing values found in the 

uploaded data set 

Trigger:  

When the user uploads a data set with missing values 

Relationship:  

Aassociation: User 

Include: - 

Extend: Upload data set (ID: 1) 

Generalization: - 

Normal flows of event: 

1. The user picks one of the methods to fill in the missing values. 

2. The user is redirected to the clustering page. 

Sub-flows: N/A 

S-1: 1.) The user clicks on Show Data Set Details button 

        2.) The web application shows the data sets summary statistics by 

        2.) attribute 

Alternate/ Exceptional Flows: N/A 
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4.4.2.3 Choose Sample Data Set 

 

Table 4.3: Choose Sample Data Set Use-Case Description 

Use case name: Choose sample data 

set 
ID: 3 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Choose a sample data set. 

Brief Description:  

Allows users to choose one of the sample data sets prepared so that they do 

not have to upload their own. 

Trigger:  

When the user decides to choose one of the sample data sets instead of 

uploading their own 

Relationship:  

Aassociation: User 

Include: - 

Extend: -  

Generalization: - 

Normal flows of event: 

1. The user clicks one of the buttons corresponding to a sample data 

set. 

2. The user is redirected to the clustering page. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.4.2.4 Cluster Data 

 

Table 4.4: Cluster Data Use-Case Description 

Use case name: Cluster data ID: 4 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Apply the K-means algorithm on the uploaded or chosen sample data 

set 

Brief Description:  

Allows users to cluster the data using the chosen settings 

Trigger:  

When the user clicks on the Cluster! button 

Relationship:  

Aassociation: User 

Include: 

Extend: - 

Generalization: - 

Normal flows of event: 

1. The user clicks on the Cluster! button. 

2. The system clusters the data using the algorithm settings provided by 

the user. 

3. The system displays the cluster results to the user. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.4.2.5 Choose K-means Variant 

 

Table 4.5: Choose K-means Variant Use-Case Description 

Use case name: Choose K-means 

Variant 
ID: 5 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Choose their desired K-means Variant 

Brief Description:  

Allows users to choose between the K-means and K-means++ algorithms 

Trigger:  

When the user wishes to change the K-means variant chosen 

Relationship:  

Aassociation: User 

Include: -  

Extend: Cluster data (ID: 4) 

Generalization: - 

Normal flows of event: 

1. The user chooses either the K-means option or the K-means++ 

option. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.4.2.6 Choose Proximity Measure 

 

Table 4.6: Choose Proximity Measure Use-Case Description 

Use case name: Choose proximity  

measure 
ID: 6 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Choose their desired proximity measure 

Brief Description:  

Allows users to choose their desired proximity measure to be used with the 

K-means algorithm 

Trigger:  

When the user wishes to change the proximity measure used 

Relationship:  

Aassociation: User 

Include: -  

Extend: Cluster data (ID: 4) 

Generalization: - 

Normal flows of event: 

1. The user chooses a proximity measure from the dropdown. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.4.2.7 Enter Number of Clusters 

 

Table 4.7: Enter Number of Clusters Use-Case Description 

Use case name: Enter number of  

clusters 
ID: 7 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Enter the number of clusters 

Brief Description:  

Allows users to enter the number of clusters (the value of k) to form from 

the data set 

Trigger:  

When the user wishes to change the number of clusters to form 

Relationship:  

Aassociation: User 

Include: -  

Extend: Cluster data (ID: 4) 

Generalization: - 

Normal flows of event: 

1. The user enters the number of clusters to form. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.4.2.8 Exclude Attributes 

 

Table 4.8: Exclude Attributes Use-Case Description 

Use case name: Exclude attributes ID: 8 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Exclude attributes from the clustering task 

Brief Description:  

Allows users to exclude some attributes from the clustering task. 

Trigger:  

When the user wishes to change the attributes included in the clustering task 

Relationship:  

Aassociation: User 

Include: -  

Extend: Cluster data (ID: 4) 

Generalization: - 

Normal flows of event: 

1. The user unchecks the checkboxes next to the attributes they want 

excluded. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: 

2.a.) If the user attempts to cluster when less than two attributes are 

excluded, an error message will be displayed and the cluster task will not 

start. 

 

 

  



56 

 

4.4.2.9 Enter Seed 

 

Table 4.9: Enter Seed Use-Case Description 

Use case name: Enter seed ID: 9 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Specify seed to use 

Brief Description:  

Allows users to specify the seed to use during the initial cluster centroid 

selection 

Trigger:  

When the user wishes specify a seed to use 

Relationship:  

Aassociation: User 

Include: -  

Extend: Cluster data (ID: 4) 

Generalization: - 

Normal flows of event: 

1. The user enters a seed to use. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.4.2.10 Normalise Attributes 

 

Table 4.10: Normalise Attributes Use-Case Description 

Use case name: Normalise attributes ID: 10 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Normalise attributes before clustering 

Brief Description:  

Allows users to normalise all attributes before the K-means algorithm is 

applied on the data set 

Trigger:  

When the user wishes to normalise all attributes 

Relationship:  

Aassociation: User 

Include: -  

Extend: Cluster data (ID: 4) 

Generalization: - 

Normal flows of event: 

1. The user checks or unchecks the checkbox indicating if all attributes 

should be normalised prior to clustering or not. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.4.2.11 Show Classes to Clusters Evaluation 

 

Table 4.11: Show Classes to Clusters Evaluation Use-Case Description 

Use case name: Show classes to 

clusters evaluation 
ID: 11 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – View classes to clusters evaluation results 

Brief Description:  

Allows users to view the results of classes to clusters evaluation 

Trigger:  

When the user wishes to view the classes to clusters evaluation results 

Relationship:  

Aassociation: User 

Include: -  

Extend: 

Generalization: - 

Normal flows of event: 

1. The user clicks on the Classes to Clusters Evaluation button. 

2. The Classes to Clusters popup is displayed. 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.4.2.12 Download Cluster Results 

 

Table 4.12: Download Cluster Results Use-Case Description 

Use case name: Download cluster 

results 
ID: 12 Importance level: High 

Primary actor: User Use case type: Detailed, Essential 

Stakeholders and Interests:  

User – Download their cluster results 

Brief Description:  

Allows users to download a csv file containing the original data and an 

additional column containing the clustering results 

Trigger:  

When the user wishes to download their clustering results 

Relationship:  

Aassociation: User 

Include: -  

Extend: 

Generalization: - 

Normal flows of event: 

1. The user clicks on the Download button. 

2. The system starts the download. 

3. The downloaded file is a csv file containing the original data and an 

additional column containing the clustering results 

Sub-flows: N/A 

 

Alternate/ Exceptional Flows: N/A 
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4.5 Prototype 

A functional prototype was developed using the Django framework for Python. It 

supports the uploading of data sets from users, but has been hardcoded to only work 

with the Iris data set for now. The K-means algorithm has also been programmed 

into the prototype, along with two proximity measures, namely, Euclidean distance 

and Manhattan distance. The prototype also uses Matplotlib to plot the cluster results 

and saves it as an image. The image is then shown to the client-side using Django. 

Other UI elements which do not directly serve the above functionalities 

have been added to the prototype as dummies. This was done to provide a better 

representation of the final application design. Furthermore, the prototype has been 

hardcoded to always find 3 clusters using the K-means algorithm.  

 

 

Figure 4.2: Home page 
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 Figure 4.2 shows the home page of the prototype. The page is split into two 

sections. The top section is for users to upload their own data sets in the form of 

a .csv file. The bottom section is for users who wish to pick from the pre-prepared 

data sets. For this prototype, three dummy buttons have been created, each 

representing a different data set, namely, the Iris data set, the Diabetes data set, and 

the Breast Cancer Wisconsin data set respectively. 

 

 Once the user has uploaded their data set or picked one from the pre-prepared 

data sets, they will be brought to the following page: 

 

Figure 4.3: Clustering page 

 

 The left page displays all the settings for the K-means algorithm. This 

includes the proximity measure to use, the value for k (the number of clusters), the 

attributes to include in the clustering task, and whether to normalise the attributes 

before clustering. Finally, there is a button at the bottom to start the K-means 

algorithm. 

 The right pane shows the results of the clustering task. Before the user clicks 

on the Cluster! button, this pane will simply display a message prompting the user to 

click on the button. Once the user clicks on the button, the page will update to 

display the results. 
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Figure 4.4: Clustering page with results 

 

 Figure 4.4 shows the clustering page with results displayed. Subsequent 

clicks on the Cluster! button will refresh this page with the new results. 
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CHAPTER 5 

 

5 SYSTEM DESIGN 

 

5.1 System Architecture 

There are two components to the web application, the client side (front-end) and the 

web server (back-end). The client side is responsible for receiving data and clustering 

results from the web server, and presenting them to the user. The web server will 

store the data sets and cluster the data based on the settings sent from the client. 

Additionally, the web server will also render page templates using a template engine 

before they are sent to the client for display. 

 

 

Figure 5.1: System Architecture 

 

 The client side is using HTML, CSS, JavaScript and the Desmos API. HTML 

and CSS are used to form the layout of the page. JavaScript is used to update the 

page without having to reload the entire web page from scratch. The Desmos API is 

used to visualise the data set. 

 As for the web server, Python is the language of choice, with the Django 

package being used to provide web services. The NumPy and pandas packages are 

used to manipulate the data set and cluster the data.  

 Finally, the entire system is hosted on Heroku to provide easy access to users. 

 

  



64 

 

5.2 Data Flow Diagrams 

 

 

Figure 5.2: Context Diagram 

 

 

 

Figure 5.3: Level 0 Data Flow Diagram 
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Figure 5.4: Level 1 Data Flow Diagram: Cluster Data set 
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5.3 Activity Diagrams 

 

Figure 5.5: Activity Diagram: Upload Data set 
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Figure 5.6: Activity Diagram: Choose Sample Data set 
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Figure 5.7: Activity Diagram: Cluster Data set 
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5.4 Page Designs 

 

Figure 5.8: k-luster Home Page 

 

 

 

Figure 5.9: k-luster Missing Values Prompt 
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Figure 5.10: k-luster Cluster Page 

 

 

 

Figure 5.11: k-luster Cluster Page with Cluster Results 
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CHAPTER 6 

 

6 SYSTEM IMPLEMENTATION 

 

6.1 Introduction 

The Kanban development methodology was adopted for this project. It is an Agile 

development methodology that maps out all tasks that need to be carried out on a 

Kanban board. Every sub-section following this introduction describes an individual 

task carried out during the development phase. Thus, this chapter can be thought of 

as a progression of events leading up to the completion of the system. 

 

6.2 Migrating Prototype Code 

Referring to the Gantt chart in chapter three, there exists a gap between the time the 

prototype was developed and the time development for the full system started. 

During that gap, a new major release of Django, the package providing web services, 

was made available. Therefore, the code from the prototype needed to be migrated 

over to a new project that utilises the latest version of Django at that time. 

 Referring to the Django documentation, the basics are still exactly the same. 

First, a new Django project was created with the command line. After that, a one-for-

one copy of the essential files, such as the view templates, route file and data 

clustering scripts were made and moved to the new project folder. 

 

6.3 Initialise a Git Repository and Push Code to GitHub 

A new Git repository was initialised with the new project folder. A Git repository 

provides system versioning and enables easy rollbacks in case a major bug occurs. In 

addition, the project code was also pushed to a remote GitHub repository as a means 

of archiving the project. 
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Figure 6.1: k-luster GitHub Repository 

 

6.4 Implementing K-means++ 

In the prototype, only the K-means algorithm has been implemented. The K-

means++ algorithm had to be added into the web application. First, a field was 

created on the client side to allow users to pick between the two algorithm variants. 

 

 

Figure 6.2: Algorithm Variant Selection Field 

 

 Then, the data clustering script was modified to include the K-means++ 

algorithm. The final code is as follows: 
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Figure 6.3: K-means and K-means++ Code 

 

6.5 Implementing Additional Proximity Measures (I) 

Up until now, only the Eulicdean distance and Manhattan distance proximity 

measures had been implemented. Three additional distance measures were 

implemented into the web application, Chebyshev distance, Average distance and 

Canberra distance. 

 

Figure 6.4: Chebyshev Distance Code 
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Figure 6.5: Average Distance Code 

 

 

Figure 6.6: Canberra Distance Code 

 

6.6 Deploying Project to Heroku 

At this point, concerns arose that the web application would not work as intended 

when deployed to Heroku. The main concern was with loading the data sets from the 

file system. The web application was developed and tested locally on a Windows 

machine, yet Heroku hosts applications on a UNIX-based machine. Furthermore, 

when hosted on Heroku, the web server would be started by Gunicorn with a separate 

config file instead of through Python directly. Thus, the decision was made to ensure 

that the web application would work when deployed to an entirely different 

environment before proceeding with the development the rest of the features. 

 Firstly, a new Heroku account was set up and a new app named k-luster was 

created under the account. 
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Figure 6.7: k-luster App on Heroku 

 

 After that, the Git URL to the newly created app is added as a new remote 

repository with Git. Then, a new text file called requirements.txt is also created. This 

text file lists all the dependencies of the application. Heroku will read the file and 

install all packages listed before attempting to build and run the application. 

 

Figure 6.8: Requirements.txt Contents 

 

 Gunicorn is be used to run the web server, whereas django-heroku is used to 

automatically load in the secret key stored in the config vars of the Heroku app. 

Besides that, a new file named Procfile is created in the project’s root 

directory. This file contains a list of commands that will be executed every time 

changes to the app are pushed, or the app is restarted. 
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Figure 6.9: Procfile Commands 

 

 The first command will create a new database file in the project containing all 

of Django’s default tables. The second command starts the web server and listens for 

incoming HTTP requests. 

 The two new files were committed and the entire project was pushed onto 

Heroku. Within a few minutes, the project was successfully built and the web server 

was online. The Heroku app is accessible at https://k-luster.herokuapp.com/. 

 

6.7 Attribute Exclusion 

There are times where a user would want to exclude certain attributes from the 

clustering process in order to achieve a better result. In order to incorporate this 

feature, an additional field is created that allows users to uncheck attributes they wish 

to be excluded. 

 

Figure 6.10 Attribute Exclusion Field 

 

 When sending a request for cluster results to the web server, the included 

attributes are sent in the request body. Then, on the web server, the excluded 

attributes are dropped from the data set prior to the clustering process. 

 

Figure 6.11: Drop Excluded Attributes 

 

  

https://k-luster.herokuapp.com/
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6.8 Attribute Normalisation 

Normalisation is a very important data pre-processing step. Thus, it is crucial to 

provide the user with the option to normalise all attributes before clustering. 

 

Figure 6.12: Normalise Attributes Field 

 

 

Figure 6.13: Attribute Normalisation Code 

 

6.9 Seed Specification 

Any pseudo-random number generator requires a seed to work. By default, Python 

will use the current system time as the seed. However, this behaviour can be 

overwritten to produce consistent results. 

 

Figure 6.14: Seed Specification Field 

 

 

Figure 6.15: Seed Specification Code 

 

6.10 Improving Result Visualisation Using Desmos API 

In the prototype, result visualisation was built by displaying an image of a plot 

returned by the web server. This image was rendered using Matplotlib. This 

approach brings about several disadvantages. First of all, the plot is not interactive. 

The user is not able to drag it around, zoom in or zoom out. Secondly, the larger the 

data set, the longer it will take for the web server to render the image, thus delaying 

the HTTP response from the web server. This also takes up additional resources. 

Lastly, the user is not able to freely switch between different attributes  
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 Hence, result visualisation will be handled by the Desmos API instead of 

Matplotlib in the full system. This also shifts the load from the web server to the 

client side. 

 The Desmos API can be imported into the project with a single script tag on 

the client side. 

 

Figure 6.16: Importing the Desmos API 

 

 On the back-end, a JSON object containing the cluster results is returned 

instead of an image. 

 

Figure 6.17: Cluster Result View  

 

 Once the client receives the JSON object containing the results, the 

visualisation is updated dynamically without the need to reload the entire page. 

 

Figure 6.18: Update Result Visualisation 
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 Two dropdowns labelled x-axis and y-axis were also added to the top of the 

page. Changing the selections in the dropdowns will update the visualisation 

accordingly. 

 

Figure 6.19: x-axis and y-axis Dropdowns 

 

 

Figure 6.20: x-axis and y-axis Dropdown Event Listeners 

 

6.11 Detection of Attribute Data Types 

Both the K-means and K-means++ algorithms only work on numerical data, since 

they work by calculating the distance between different points. Similarly, the result 

visualisation implemented in the previous subsection is only able to plot numerical 

data. Therefore, there needs to be a check to distinguish between numerical and 

textual attributes. 

 

Figure 6.21: Check to Distinguish Numeric and Textual Attributes 

 

 On the client side, textual attributes are disallowed from being included in the 

clustering process. These attributes are not allowed to be selected for any of the axes 

as well. 
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Figure 6.22: Textual Attribute Disabled in Attribute Exclusion Field 

 

 

Figure 6.23: Textual Attribute Disabled in Axis Dropdown 

 

6.12 Implementing Sessions 

Session implementation is needed so that multiple users may use the web application 

concurrently. Without sessions, a user uploading a new data set will overwrite the 

data set uploaded by a separate user. Sessions were implemented using Django’s 

sessions framework. The framework assigns each user a unique session key, and 

creates a new row in the django_sessions table with the session key as the primary 

key. The session data can be retrieved from the database as a session object, which is 

essentially just a dictionary of stored values. 

 When a user uploads a new data set, it is saved using the user’s unique 

session key as the file name. 

 

Figure 6.24: Saving an Uploaded Data set 
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 Then, when the web server receives a cluster request, the data set with a 

matching name as the user’s session key is loaded. 

 

Figure 6.25: Loading an Uploaded Data set 

 

6.13 Handling Missing Values in Uploaded Data sets 

Sometimes, the data sets uploaded by users are incomplete and have missing values. 

This presents an issue as the implementation of the K-means and K-means++ 

algorithm assumes that there will be no missing values. The same goes for the result 

visualisation with the Desmos API. Therefore, missing values found in an uploaded 

data set needs to be handled before proceeding to the clustering page. Currently, 

there are a few methods available for users to pick from to fill in the missing values, 

namely, forward fill, backward fill, average or mean, median, and mode. The prompt 

for users to choose a fill in method also displays descriptive statistics of the data set 

by attribute. 

 

Figure 6.26: Check for Missing Values 
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Figure 6.27: Filling in Missing Values 

 

6.14 Sample Data sets 

A few popular data sets will be chosen and pre-processed. These data sets will serve 

as samples for users who do not wish to look for and upload their own data set, and 

just want a convenient way to try out the web application. Three data sets have been 

chosen for this purpose, the iris data set, the diabetes data set, and the breast cancer 

data set. 

 

6.14.1 Iris Data set 

This is a very common data set used to teach beginners the basics of data mining. 

This data set was obtained from Kaggle (MathNerd, 2018) and has five attributes, 

one of them being the class label. The data set was introduced by Ronald Fisher in 

1936, and is now in the public domain (MathNerd, 2018). This means that the data 

set is no longer protected under copyright law, and can be used freely. 

 No pre-processing steps were taken for this data set as there were no missing 

values within the dataset. 

 

Figure 6.28: Check for Missing Values in the Iris Data set 
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6.14.2 Diabetes Data set 

The diabetes data set is also a very popular data set, usually introduced as a toy data 

set to students. The data set was obtained from Kaggle (UCI Machine Learning, 

2016b). The data was collected and released by the National Institute of Diabetes and 

Digestive and Kidney Diseases (UCI Machine Learning, 2016b). Similar to the iris 

data set, this data set is also under the public domain. 

 The only pre-processing step taken with this data set is replacing the values 

under the Outcome attribute. 1’s were replaced with the word “Diabetic”, whereas 

0’s were replaced with the word “Non-diabetic”. 

 

Figure 6.29: Replacing Values Under Outcome in the Diabetes Data set 

 

6.14.3 Breast Cancer Data set 

This is the largest data set out of the three. This dataset is obtained from Kaggle (UCI 

Machine Learning, 2016a). The data set is under the Creative Commons 

NonCommercial-ShareAlike license. As the name suggests, the usage of this data set 

for non-commercial purposes is permitted. Redistribution and modification of the 

original data set is also allowed. 

 Similar to the diabetes data set, the values under the diagnosis attribute have 

been replaced. M has been replaced with “Malignant”, whereas B has been replaced 

with “Benign”. 

 

Figure 6.30: Replacing Values Under Diagnosis in the Breast Cancer Data set 
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6.15 Download Results 

Once the user has clustered the data at least once, they will be able to download the 

cluster results obtained. The downloaded file is the exact same csv file of the data set 

they uploaded or chose, but with an additional column called k-luster results 

containing the cluster results. 

 

Figure 6.31: Downloaded Results 

 

6.16 Classes to Clusters Evaluation 

This feature evaluates the accuracy of the formed clusters using the class label. 

 

Figure 6.32: Classes to Clusters Evaluation 
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 Each class label is assigned one of the formed clusters based on how many 

instances of that class belong to each of the formed clusters. The formed cluster with 

the highest instances of that particular class will be assigned to that class. 

 

6.17 Implementing Additional Proximity Measures (II) 

Additional proximity measures were implemented to achieve the project’s objectives. 

The added proximity measures were chord distance, mean character difference, 

cosine measure, Czekanowski coefficient, and index of association. 

 

Figure 6.33: Chord Distance Code 

 

 

Figure 6.34: Mean Character Difference Code 
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Figure 6.35: Cosine Measure Code 

 

 

 

Figure 6.36: Czekanowski Coefficient Code 

 

 

Figure 6.37: Index of Association Code 
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CHAPTER 7 

 

7 SYSTEM TESTING 

 

7.1 SUS Testing 

System usability scale (SUS) testing is a method of assessing the usability of a 

system. According to Lewis (2018), it was developed by John Brooke in 1984 for a 

usability engineering program. In 1986, John Brooke then made it freely available to 

anyone. Then, in 1996, John Brooke published a chapter in the book titled Usability 

Evaluation In Industry describing the method. (Lewis, 2018) Since then, the SUS has 

been used to evaluate several different hardware and software systems such as 

handphones, computer programmes and websites (Sauro, 2011). While it is often 

referred to as a “quick and dirty” method, it is capable of producing reliable results 

with only a small sample size (Sauro, 2011).  

 

7.1.1 Test Procedure 

First, the test participant is introduced to the test subject. In the context of the 

software development, this would usually be a type of application, either on the web 

or for mobile devices, or some other form of computer system. The test participant 

would then be allowed to explore the application given. Guidance may be provided 

to the participant to introduce them to all the major functionalities of the system. 

Once the participant has sufficiently explored the system, they are given a 

questionnaire consisting of ten questions (Grier, et al., 2013). For each question, the 

participant is required to provide a response on a five point Likert scale. The 

participant is not allowed to leave any questions blank. The ten questions are as 

follows: 

1. I think that I would like to use this system frequently. 

2. I found the system unnecessarily complex. 

3. I thought the system was easy to use. 

4. I think that I would need the support of a technical person to be able to use 

this system. 

5. I found the various functions in this system were well integrated. 

6. I thought there was too much inconsistency in this system. 
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7. I would imagine that most people would learn to use this system very quickly. 

8. I found the system very cumbersome to use. 

9. I felt very confident using the system. 

10. I needed to learn a lot of things before I could get going with this system. 

 

The SUS test concludes once the participant has responded to all ten questions. 

 

7.1.2 Calculating SUS Scores 

This process converts the participants’ responses into a score ranging from 0 to 100 

(Lewis, 2018). First, subtract 1 from all the scores given for odd-numbered questions. 

Next, for even-numbered questions, subtract the given score from 5. Then, sum up all 

the converted scores and multiply the result by 2.5 (Lewis, 2018). Repeat the same 

steps for all participants and calculate the average of all the converted scores. The 

average score is the final SUS test score. 

 

7.1.3 Interpreting SUS Scores 

The final SUS score obtained is just a number and does not mean much on its own. A 

method of interpreting the score is needed to determine if the tested system is well-

designed or not. 

 

7.1.3.1 Percentiles 

This is the most common way of evaluating SUS test scores. 
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Figure 7.1: Plot of Percentile Against SUS Score (Sauro, 2018) 

 

 Figure 7.1 shows that 50 percent of SUS scores obtained for software systems 

are above 68. Thus, as long as the final obtained score is higher than 68, the tested 

system is considered to be above average in terms of usability. 68 is also often 

referred to as the passing mark for SUS tests (Sauro, 2018). 

 

7.1.3.2 Adjective Ratings 

Bangor, Kortum and Miller (2009) conducted a study in an attempt to add adjective 

rating scale to the SUS test. The scale shown in table 7.1 was proposed and added to 

the bottom of the SUS questionnaire. 

Table 7.1 Adjective Rating Scale (Bangor, Kortum and Miller, 2009) 

Worst 

Imaginable 
Awful Poor OK Good Excellent 

Best 

Imaginable 

 

 In addition to the ten usual questions asked in an SUS test, the participants 

were also asked to select a rating that best describes the usability of the system being 

tested. Bangor, Kortum and Miller (2009) then calculated the average of the SUS 

scores associated with each rating.  
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Questions 

Participants 

Table 7.2 Average SUS Scores for each Adjective Rating (Bangor, Kortum and 

Miller, 2009) 

Adjective Rating Average SUS Score 

Worst Imaginable 12.5 

Awful 20.3 

Poor 35.7 

OK 50.9 

Good 71.4 

Excellent 85.5 

Best Imaginable 90.9 

 

7.1.4 Conducting the SUS Test 

Five lecturers and one postgraduate student from UTAR were invited to participate 

in the SUS test for the web application. They were first sent a link leading to the web 

application and asked to play around with it. Guidance was provided for participants 

whom were not familiar with data mining. Once the participants were ready, they 

started filling out the questionnaire. 

 

7.1.4.1 Test Responses 

Table 7.3 Summary of Responses Received 

 1 2 3 4 5 6 7 8 9 10 

Participant 1 5 2 4 1 4 2 5 1 5 2 

Participant 2 5 2 4 1 4 2 4 1 5 2 

Participant 3 3 2 3 4 3 2 4 3 3 3 

Participant 4 3 2 4 2 4 3 4 2 3 3 

Participant 5 3 2 4 2 3 2 2 3 4 2 

Participant 6 4 2 4 3 4 2 4 2 4 2 

 

Table 7.3 summarises all the responses received from the test participants. 
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Table 7.4 Converted SUS Scores 

Participant SUS Score 

Participant 1 87.5 

Participant 2 85 

Participant 3 55 

Participant 4 65 

Participant 5 62.5 

Participant 6 72.5 

 

Calculating the average of all SUS scores shown in table 7.4, a final SUS score of 

71.25 is achieved. Referring to the percentile rank of historical SUS scores, an SUS 

score of 71.25 is slightly above average. Thus, a passing score has been achieved. 

 According to table 7.2, a final SUS score of 71.25 is the closest to the “Good” 

rating. 

 

7.1.4.2 Other Comments 

During the test, the participants were also asked for additional comments and 

suggestions on improvements to the system. This subsection addresses the feedback 

obtained the participants. 

 

7.1.4.2.1 Default Algorithm Settings Causes Overlapping of Clusters 

By default, on the clustering page, all selectable attributes are pre-selected. If the 

user decides to cluster without changing the selection, there will be a lot of overlaps 

between the clusters. 
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Figure 7.2: Overlapping of Clusters 

 

 This is because the visualisation is only able to plot the data in two-

dimensions (x-axis and y-axis), yet the algorithm is taking all numeric attributes in 

the data set to be used in the clustering process. If only the attributes being plotted by 

are selected for clustering, there would be any overlaps between the clusters, as 

shown in figure 7.2 

 

Figure 7.3: No Overlapping between Clusters 
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 This behaviour may be unintuitive to users who are not very familiar with 

clustering or the k-means algorithm. Thus, the web application has been changed to 

only pre-select the first two numeric attributes in the data set, which is the same way 

the attributes for both the x and y axes are selected. This will ensure that the selected 

attributes match the plotted attributes when the cluster page is first loaded. 

 

7.1.4.2.2 Hard to Notice Classes to Clusters Button 

The button to toggle the display of the classes to clusters panel is at the top right 

corner, in between the download button and the results text. It is denoted with an 

ellipsis icon. 

 

Figure 7.4: From Left to Right, Download Button, Classes to Clusters Button, 

Results Text 

 

 Since most of the screen is taken up by the data visualiser, some of the 

participants had difficulty noticing the classes to clusters button. Hence, an additional 

popup message pointing to the button has been added. This popup only displays the 

first time the cluster button is clicked for the current session. Reloading or leaving 

the page will reset the session. 

 

Figure 7.5: Popup Message Pointing at Classes to Clusters Button 

 

 

7.1.4.2.3 Back Button on Clustering Page 

A few participants pointed out the lack of a back button on the clustering page to 

return to the home page where users may choose or upload a different data set. The 

intended way for users to navigate back to the home page is to use the browser’s 

built-in back button. The page transition between the two pages is also designed to 
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accommodate for the back/forward cache (bfcache) of browsers so that users would 

not be greeted with a blank page when using them. However, seeing how a few test 

participants have pointed out this shortcoming, it would be best to add a back button 

in the future. 

 

7.1.4.2.4 Missing Values Handling 

Several participants pointed out that the currently implemented methods for filling in 

missing values are insufficient. Two of the most requested for methods that are not 

implemented are to outright ignore the rows with missing values, and to allow the 

user to specify a certain value to be used. These two methods should be implemented 

in the near future. 

 

7.1.4.2.5 Map Cluster Colours to Cluster Numbers 

Looking at the output in the classes to clusters evaluation popup, it is not possible to 

know which colour belongs to which cluster number. Only a single participant 

pointed out this issue. While it is only a minor detail, it is still an oversight. Thus, to 

rectify this problem, colour markers matching those shown on the result visualiser 

can be added to the classes to clusters evaluation popup so that the user would know 

which colour belongs to which cluster. 
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CHAPTER 8 

 

8 CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusion 

The project has met all the objectives it set out to achieve. The result is k-luster, a 

web application that allows users to upload or choose a sample dataset and cluster 

the data using the K-means or K-means++ algorithm. Furthermore, it implements ten 

proximity measures which the user may pick from to use with the clustering 

algorithms. Comparing the available proximity measures in k-luster against those in 

other prominent data mining tools, over half the proximity measures implemented in 

k-luster are not seen in any other tools that were researched on. The web application 

has been hosted on Heroku, so that anyone may access the site through their browser 

at any time on their devices. An SUS test was also conducted with five lecturers and 

one postgraduate student from UTAR to evaluate the usability of the system. The 

final score achieved was 71.25. Admittedly, this is not a great score considering that 

the passing score is 68, just a mere few points away. However, the testing process 

provided invaluable insight as to how the web application may be further improved 

in the future. 

 

8.2 Recommendations for future work 

Although all the goals have been met, there are still plenty of ways the web 

application could be improved. First of all, all feedback pointed out by the SUS test 

participants should be addressed. The issues brought up are all only require minor 

changes, yet are capable of greatly improving user satisfaction.  

 Besides that, the functionality of the web application can be further increased. 

For example, other clustering algorithms such as k-medoids or DBSCAN can be 

implemented into the web application. Other than that, support for classification 

tasks could also be added in the future. 

 Next, the web application can save a few of the users’ recent data sets along 

with their most recently used algorithm settings for each data set. This will allow 

users to resume their work right away when coming back to the web application the 

next day or after restarting their computer. 
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