

INTELLIGENT MOBILE PRIVATE TUTOR

FINDERS APPLICATION

LEONG KAM GA

UNIVERSITI TUNKU ABDUL RAHMAN

INTELLIGENT MOBILE PRIVATE TUTOR FINDERS APPLICATION

LEONG KAM GA

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2022

iii

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Leong Kam Ga

ID No. : 18UEB02038

Date : 9 May 2022

iv

APPROVAL FOR SUBMISSION

I certify that this project report entitled “INTELLIGENT MOBILE

PRIVATE TUTOR FINDERS APPLICATION” was prepared by LEONG

KAM GA has met the required standard for submission in partial fulfilment of

the requirements for the award of Bachelor of Science (Hons) Software

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Too Chian Wen

Date : 10 May 2022

Signature :

Co-Supervisor :

Date :

v

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be

made of the use of any material contained in, or derived from, this report.

© 2022, Leong Kam Ga. All right reserved.

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Dr. Too Chian Wen for her invaluable advice, guidance, and her

enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement and advice

during the process of conducting this project.

vii

ABSTRACT

According to the official statistic from the Department of Statistics Malaysia

(DOSM), there are 1899 tuition centers was established in Malaysia in 2010.

The number of registered private tuition centers had increased to 3107 in

Malaysia in 2013. The demand for private tutoring services was elevated day

by day due to the changes in the Malaysia examination and assessment system.

In addition, it is a challenge to find a private tutor during this COVID-19

pandemic because it has a high risk to meet with each of the tutors for

choosing the most matched private tutor. However, there are only limited

online platforms available in Malaysia while existing platforms only provide

simple filtering criteria in the searching tutor function and only apply

traditional searching methods (SQL exact matching).

 Therefore, an intelligent mobile private tutor application is developed

to help the tutor seeker in finding the ideal tutor that is highly matched their

expectation at their fingertips. By putting aside the traditional searching

method, this application applied similarity measures (Euclidean Distance,

Manhattan Distance, Minkowski Distance, Jaccard Similarity Coefficient, and

Cosine Similarity) to compare the similarity between one tutor with the ideal

tutor of the tutor seeker. The similarity percentage is considered as a metric for

tutor seekers to choose the ideal tutor while not only relying on intuition. In

addition, there are chat functions, demo classes, and other functions provided

to tutor seekers to have a formal channel to interact and communicate with the

tutor before coming to the final decision of having a formal class. After

conducting the unit testing, API testing, usability testing, and User Acceptance

Testing (UAT), the final product only applied the top three similarity measure

methods in the search function. The final product of the project enables tutor

seekers to search for their ideal tutor while also enabling tutors to expose

themselves to more opportunities.

viii

TABLE OF CONTENTS

DECLARATION iii

APPROVAL FOR SUBMISSION iv

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS viii

LIST OF TABLES xiii

LIST OF FIGURES xvii

LIST OF SYMBOLS / ABBREVIATIONS xxviii

LIST OF APPENDICES xxix

CHAPTER

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem statement 2

1.3 Project Objectives 4

1.4 Project Solution 4

1.5 Project Approach 6

1.6 Scope of the Project 7

1.6.1 Targeted Users 7

1.6.2 End Users Involved 7

1.6.3 Modules Covered 8

2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Study of Existing Similar Application 9

2.2.1 MyPrivateTutor 9

2.2.2 TeachMe 12

ix

2.2.3 Tuition Hero Malaysia 16

2.2.4 Stapps 19

2.2.5 Zhang Men 25

2.2.6 Comparison of Existing Similar Application 32

2.3 Searching Approaches 33

2.3.1 Exact searching by using SQL query 33

2.3.2 Similarity Measures 35

2.3.3 K-Nearest Neighbours (KNN) Algorithm 42

2.3.4 Summary of Searching Approaches 43

2.4 Software Development Methodology 43

2.4.1 Waterfall Model 44

2.4.2 Prototyping Model 45

2.4.3 Agile Software Development Model 47

2.4.4 Rapid Application Development (RAD)

Model 48

2.4.5 Comparison of Software Development

Methodologies 50

2.5 Usability Testing 51

2.5.1 Overview of Usability Testing 51

2.5.2 Usability Testing Methods 55

2.5.3 Summary of Usability Testing 56

3 METHODOLOGY AND WORK PLAN 57

3.1 Introduction 57

3.2 Software Development Methodology 57

3.2.1 Initial Requirements 58

3.2.2 Prototyping Iteration 58

3.2.3 Development 61

3.2.4 Test 61

3.2.5 Deployment and Maintenance 62

3.3 Research Methodology 62

3.3.1 Questionnaire 62

3.3.2 Literature Reviews 63

3.4 Project Planning 64

x

3.4.1 Work Break Down Structure (WBS) 64

3.4.2 Project Duration Plan 67

3.4.3 Gantt Chart 69

3.5 Development Tools 69

3.5.1 React Native 69

3.5.2 Firebase 70

3.5.3 Visual Studio Code 70

3.5.4 Express.js 70

3.5.5 Postman 71

3.5.6 AnyDesk 71

4 PROJECT INITIAL SPECIFICATION 72

4.1 Introduction 72

4.2 Use Case Modelling 73

4.2.1 Application’s Use Case Diagram 73

4.2.2 Use Case Description 74

4.3 System Requirements 91

4.3.1 Functional Requirements 91

4.3.2 Non-functional Requirements 92

4.4 Fact Findings 92

4.4.1 Overview of Responses 92

4.4.2 Data Analysis 95

5 SYSTEM DESIGN 98

5.1 Introduction 98

5.2 System Architecture Design 98

5.2.1 Three-tier Architecture 98

5.2.2 System Architecture Diagram 100

5.2.3 Context Diagram 103

5.2.4 Data Flow Diagram 104

5.2.5 Activity Diagram 105

5.3 Data Model Design 120

5.3.1 Logical Data Model (LDM) 120

xi

5.3.2 Physical Data Model (PDM) 121

5.3.3 Data Dictionary 123

5.4 User Interface Design 127

5.4.1 Navigation Model 127

5.4.2 User Interface Display 130

6 SYSTEM IMPLEMENTATION 150

6.1 Introduction 150

6.2 Application Programming Interface (API) Endpoint 150

6.3 Application Implementation 155

6.3.1 Sign Up Activity 155

6.3.2 Sign In Activity 158

6.3.3 Registered Tutor Seeker Side 160

6.3.4 Registered Tutor Side 188

6.3.5 Admin Side 197

7 SYSTEM TESTING 204

7.1 Introduction 204

7.2 Unit Testing 204

7.3 Application Programming Interface (API) Testing 214

7.4 User Acceptance Testing (UAT) 225

7.4.1 Tutor Seeker Side 225

7.4.2 Registered Tutor Side 227

7.4.3 Admin Side 228

7.5 Usability Testing 229

7.5.1 Usability Testing Scenario 229

7.5.2 User Satisfaction Survey Form 233

7.5.3 Usability Test Result Analysis 236

8 CONCLUSIONS AND RECOMMENDATIONS 238

8.1 Conclusions 238

8.2 Limitations and Future Enhancement 239

xii

REFERENCES 240

APPENDICES 247

xiii

LIST OF TABLES

Table 2.1: Comparison of Existing Similar Application 32

Table 2.2: Strengths and Limitations of SQL Query 34

Table 2.3: Strengths and Limitations of Euclidean Distance 36

Table 2.4: Strengths and Limitations of Manhattan

Distance 37

Table 2.5: Strengths and Limitations of Minkowski

Distance 39

Table 2.6: Strengths and Limitations of Cosine Similarity 40

Table 2.7: Strengths and Limitations of Jaccard Similarity

Coefficient 41

Table 2.8: Strengths and Limitations of KNN Algorithm 42

Table 2.9: Pros and Cons of Waterfall Model 45

Table 2.10: Pros and Cons of Prototyping Model 46

Table 2.11: Pros and Cons of Agile Software Development

Model 48

Table 2.12: Pros and Cons of Rapid Application

Development (RAD) Model 49

Table 2.13: Comparison of Software Development

Methodologies 50

Table 2.14: Moderated and Unmoderated Usability Testing 54

Table 2.15: Remote and In-person Usability Testing 54

Table 2.16: Explorative and Comparative Usability Testing 54

Table 3.1: Project Duration Plan 67

Table 4.1: Description of Use Case - Register New

Account 74

Table 4.2: Description of Use Case - Login Account 75

Table 4.3: Description of Use Case - Edit Profile 76

xiv

Table 4.4: Description of Use Case - Search Tutor 77

Table 4.5: Description of Use Case - View Tutor’s Profile 78

Table 4.6: Description of Use Case – Initiate chat 80

Table 4.7: Description of Use Case - View Class Detail 81

Table 4.8: Description of Use Case - Manage Demo Class

Request 82

Table 4.9: Description of Use Case - View Formal Class

Booking 83

Table 4.10: Description of Use Case - View Chat 84

Table 4.11: Description of Use Case – Reply Message 85

Table 4.12: Description of Use Case – Notify User 86

Table 4.13: Description of Use Case - Create Tutor’s

Account 87

Table 4.14: Description of Use Case – Update Tutor’s

Profile 88

Table 4.15: Description of Use Case - View User List 89

Table 4.16: Description of Use Case – Delete Account 90

Table 4.17: Count of Rating in Tutor Criteria Selection 94

Table 5.1: Data Dictionary (Users Collection) 123

Table 5.2: Data Dictionary (Tutor Info Collection) 123

Table 5.3: Data Dictionary (Demo Class Registration

Collection) 124

Table 5.4: Data Dictionary (Formal Class Registration

Collection) 125

Table 5.5: Data Dictionary (Rate Review Collection) 125

Table 5.6: Data Dictionary (Chat Collection) 126

Table 6.1: API Endpoint List 151

Table 7.1: Unit Testing – Log In Account 205

xv

Table 7.2: Unit Testing – Sign Up Account 206

Table 7.3: Unit Testing – Search Tutor 207

Table 7.4: Unit Testing – Send Message 207

Table 7.5: Unit Testing – Send Demo Class Request 208

Table 7.6: Unit Testing – Book Formal Class 209

Table 7.7: Unit Testing – Rate and Review 210

Table 7.8: Unit Testing – Delete Account 210

Table 7.9: Unit Testing – Edit Profile 211

Table 7.10: Unit Testing – Manage Demo Class 211

Table 7.11: Unit Testing – View Formal Class 211

Table 7.12: Unit Testing – Add Tutor 212

Table 7.13: Unit Testing – Update Tutor’s Professional

Detail 213

Table 7.14: Unit Testing – View Tutor Seeker List 213

Table 7.15: Testing Information Numbering 214

Table 7.16: UAT – Create and Login Account 225

Table 7.17: UAT – Search and View Ideal Tutor 226

Table 7.18: UAT – Chat With Tutor 226

Table 7.19: UAT – Register and View Classes 226

Table 7.20: UAT – View and Edit Profile (Tutor Seeker) 227

Table 7.21: UAT – Log In Account (Registered Tutor) 227

Table 7.22: UAT – View and Edit Profile (Registered

Tutor) 227

Table 7.23: UAT – Manage Class 227

Table 7.24: UAT – Chat With Tutor Seeker 228

Table 7.25: UAT – Log In Account (Admin) 228

xvi

Table 7.26: UAT – Manager Tutor 228

Table 7.27: UAT – View Tutor Seeker 229

Table 7.28: Usability Testing Scenario – Tutor Seeker 229

Table 7.29: Usability Testing Scenario – Registered Tutor 231

Table 7.30: Usability Testing Scenario – Admin 232

Table 7.31: Matching Rate of Similarity Measures’ Search

Results 237

xvii

LIST OF FIGURES

Figure 1.1: Overview of Application Architecture 6

Figure 1.2: Prototyping Methodology 6

Figure 2.1: Filter Result of MyPrivateTutor 10

Figure 2.2: Tutor Profile of MyPrivateTutor 10

Figure 2.3: Tutor Request of MyPrivateTutor 11

Figure 2.4: Tutor Suggestion of MyPrivateTutor 11

Figure 2.5: Job Applying of MyPrivateTutor 12

Figure 2.6: Filter Result of TeachMe 12

Figure 2.7: Tutors Profile of TeachMe 13

Figure 2.8: Online Tutoring Class Demo of TeachMe 14

Figure 2.9: Tutor Availability of TeachMe 14

Figure 2.10: Tutor Lessons of TeachMe 15

Figure 2.11: Tutor Add Subjects of TeachMe 15

Figure 2.12: Tutor Teaching Materials of TeachMe 15

Figure 2.13: Tutor Request Form of Tuition Hero Malaysia 17

Figure 2.14: Home Tuition Fee Calculator of Tuition Hero

Malaysia 18

Figure 2.15: Job Applying of Tuition Hero Malaysia (Web

Application) 18

Figure 2.16: Job Applying of Tuition Hero Malaysia

(Mobile Application) 19

Figure 2.17: Tutor Filtering of Stapps 20

Figure 2.18: Tutor Sorting of Stapps 20

Figure 2.19: Tutor Requesting of Stapps 21

Figure 2.20: Tutors Suggestion of Stapps 22

xviii

Figure 2.21: Learning Material Sharing of Stapps 22

Figure 2.22: Tutors' Profile of Stapps 23

Figure 2.23: Job Filtering of Stapps 24

Figure 2.24: Job Sorting of Stapps 24

Figure 2.25: Trial Tutoring Class of Zhang Men (Web

Application) 25

Figure 2.26: Trial Tutoring Class of Zhang Men (Mobile

Application) 26

Figure 2.27: Tutor Teaching Style of Trial Tutoring Class

of Zhang Men (Mobile Application) 26

Figure 2.28: Instrument Testing of Zhang Men (Mobile

Application) 27

Figure 2.29: Class Schedular of Zhang Men (Web

Application) 27

Figure 2.30: Class Schedular of Zhang Men (Mobile

Application) 28

Figure 2.31: Revision Schedular of Zhang Men (Mobile

Application) 28

Figure 2.32: Learning Materials of Zhang Men 29

Figure 2.33: Public Class of Zhang Men (Web Application)

 29

Figure 2.34: Public Class of Zhang Men (Mobile

Application) 30

Figure 2.35: AI English Level Test of Zhang Men 31

Figure 2.36: Learning Ability Test of Zhang Men 31

Figure 2.37: Basic Structure of SQL Query 34

Figure 2.38: Graphical Representation of Euclidean

Distance 35

Figure 2.39: Sample Python Code by Applying Euclidean

Distance 36

xix

Figure 2.40: Graphical Representation of Manhattan

Distance 37

Figure 2.41: Sample Python Code by Applying Manhattan

Distance 37

Figure 2.42: Graphical Representation of Manhattan

Distance 38

Figure 2.43: Sample Python Code by Applying Minkowski

Distance 38

Figure 2.44: Graphical Representation of Cosine Similarity 39

Figure 2.45: Sample Python Code by Applying Cosine

Similarity 40

Figure 2.46: Graphical Representation of Jaccard

Similarity Coefficient 41

Figure 2.47: Sample Python Code by Applying Jaccard

Similarity Coefficient 41

Figure 2.48: Graphical Representation of KNN Algorithm 42

Figure 2.49: Waterfall Model 44

Figure 2.50: Prototyping Model 45

Figure 2.51: Agile Software Development Model 47

Figure 2.52: Rapid Application Development (RAD)

Model 48

Figure 2.53: Usability Testing Flow of Information 52

Figure 2.54: Sample Template of SUS 53

Figure 2.55: Usability Testing Models 55

Figure 3.1: Prototyping Model 57

Figure 4.1: Use Case Diagram 73

Figure 4.2: Distribution of Parents and Students 92

Figure 4.3: Tutor Selection Criteria (Tutors’ Criteria) 93

Figure 4.4: Tutor Selection Criteria (External Criteria) 93

xx

Figure 4.5: Tutor Selection Criteria (External Criteria) 95

Figure 4.6: Overall Average Score of Tutor Selection

Criteria 95

Figure 4.7: Average Score of Tutor Selection Criteria

(Parents) 96

Figure 4.8: Average Score of Tutor Selection Criteria

(Students) 97

Figure 5.1: Three-tier Architecture Diagram 98

Figure 5.2: System Architecture Diagram 100

Figure 5.3: Firestore Access Rules 102

Figure 5.4: Context Diagram 103

Figure 5.5: DFD - Level 0 104

Figure 5.6: Activity Diagram – Register New Account 105

Figure 5.7: Activity Diagram – Login Account 106

Figure 5.8: Activity Diagram – Edit Profile 107

Figure 5.9: Activity Diagram – Search Tutor 108

Figure 5.10: Activity Diagram – View Tutor’s Profile 109

Figure 5.11: Activity Diagram – Initiate Chat 110

Figure 5.12: Activity Diagram – View Class Detail 111

Figure 5.13: Activity Diagram – Manage Demo Class

Request 112

Figure 5.14: Activity Diagram – View Formal Class

Booking 113

Figure 5.15: Activity Diagram – View Chat 114

Figure 5.16: Activity Diagram – Reply Message 115

Figure 5.17: Activity Diagram – Notify User 116

Figure 5.18: Activity Diagram – Create Tutor’s Account 117

Figure 5.19: Activity Diagram – Update Tutor’s Profile 118

xxi

Figure 5.20: Activity Diagram – View User List 119

Figure 5.21: Logical Data Model Diagram 120

Figure 5.22: Physical Data Model Diagram 121

Figure 5.23: Data Schema 122

Figure 5.24: Navigation Model Diagram (Overview) 127

Figure 5.25: Navigation Model Diagram (Student Interface)

 128

Figure 5.26: Navigation Model Diagram (Tutor Interface) 129

Figure 5.27: Navigation Model Diagram (Admin Interface) 129

Figure 5.28: UI – Sign in 130

Figure 5.29: UI – Sign up 130

Figure 5.30: UI – Tutor Seeker Home 131

Figure 5.31: UI – Tutor Seeker Class Requests History 131

Figure 5.32: UI – Tutor Seeker Rate and Review 132

Figure 5.33: UI – Tutor Seeker Chat History 132

Figure 5.34: UI – Tutor Seeker Chat Box 133

Figure 5.35: UI – Tutor Seeker Push Notification (From

Tutor) 133

Figure 5.36: UI – Tutor Seeker Search Tutor 134

Figure 5.37: UI – Tutor Seeker Search Result (Manhattan

Distance) 134

Figure 5.38: UI – Tutor Seeker Search Result (Euclidean

Distance) 135

Figure 5.39: UI – Tutor Seeker Search Result (Minkowski

Distance) 135

Figure 5.40: UI – Tutor Seeker Search Result (Jaccard

Similarity Coefficient) 136

Figure 5.41: UI – Tutor Seeker Search Result (Cosine

Similarity) 136

xxii

Figure 5.42: UI – Tutor Seeker Tutor Profile 137

Figure 5.43: UI – Tutor Seeker Demo and Formal Class

Registration 137

Figure 5.44: UI – Tutor Seeker Profile and Profile Edit 138

Figure 5.45: UI – Tutor Home 138

Figure 5.46: UI – Tutor Demo Class Manage 139

Figure 5.47: UI – Tutor Formal Class Manage 139

Figure 5.48: UI – Tutor Chat History 140

Figure 5.49: UI – Tutor Chat Box 140

Figure 5.50: UI – Tutor Push Notification (From Tutor

Seeker) 141

Figure 5.51: UI – Tutor Profile 141

Figure 5.52: UI – Tutor Profile Edit 142

Figure 5.53: UI – Admin Home 143

Figure 5.54: UI – Admin Add Tutor 144

Figure 5.55: UI – Admin Update Tutor 145

Figure 5.56: UI – Admin Student List 145

Figure 5.57: IFD – Helper Text (Input Error Handling) 146

Figure 5.58: IFD – Activity Indicator 147

Figure 5.59: IFD – Password Visibility Toggle 147

Figure 5.60: IFD – Empty Record Display 148

Figure 5.61: IFD – Alert Messages 149

Figure 6.1: Upload Profile Picture 155

Figure 6.2: Sign Up Tutor Seeker Account 156

Figure 6.3: Section Code (Front-end) – Sign Up Tutor

Seeker Account 157

xxiii

Figure 6.4: Section Code (Server API) – Sign Up Tutor

Seeker Account 157

Figure 6.5: Sign In Account 158

Figure 6.6: Section Code (Front-end) – Sign In Account 159

Figure 6.7: Section Code (Server API) – Retrieve Basic

Profile 159

Figure 6.8: Home (Registered Tutor Seeker) 160

Figure 6.9: Section Code (Server API) – Retrieve Popular

Tutor Part 1 161

Figure 6.10: Section Code (Server API) – Retrieve Popular

Tutor Part 2 161

Figure 6.11: Section Code (Front-end) – Home

AsynStorage Activity 162

Figure 6.12: Push Notification 162

Figure 6.13: Section Code (Front-end) – Home Push

Notification Activity 163

Figure 6.14: Section Code (Server API) – Update FCM

Token 163

Figure 6.15: History (Demo Class and Formal Class) 164

Figure 6.16: Section Code (Front-end) – History Tab View 164

Figure 6.17: Section Code (Server API) – Retrieve Class

Part 1 165

Figure 6.18: Section Code (Server API) – Retrieve Class

Part 2 166

Figure 6.19: History (Rate and Review) 167

Figure 6.20: Section Code (Server API) – Rate Review 167

Figure 6.21: Chat (Chat History List) 168

Figure 6.22: Section Code (Server API) – Retrieve Chat

User List 169

Figure 6.23: Section Code (Front-end) – Retrieve Chat List

Activity 170

xxiv

Figure 6.24: Chat (Chat Box) 171

Figure 6.25: Section Code (Front-end) – Chat Box

Activities Gifted Chat 171

Figure 6.26: Section Code (Front-end) – Retrieve Chat

Activity 172

Figure 6.27: Section Code (Front-end) – Send Notification

Activity 172

Figure 6.28: Search (Input and Result) 173

Figure 6.29: Section Code (Server API) – Similarity

Measure Part 1 174

Figure 6.30: Section Code (Server API) – Similarity

Measure Part 2 175

Figure 6.31: Section Code (Server API) – Similarity

Measure Part 3 176

Figure 6.32: Section Code (Server API) – Similarity

Measure Part 4 176

Figure 6.33: Section Code (Server API) – Similarity

Measure Part 5 177

Figure 6.34: Section Code (Server API) – Similarity

Measure Part 6 177

Figure 6.35: Section Code (Server API) – Similarity

Measure Part 7 178

Figure 6.36: Section Code (Server API) – Similarity

Measure Part 8 178

Figure 6.37: Section Code (Server API) – Similarity

Measure Part 9 179

Figure 6.38: Section Code (Server API) – Similarity

Measure Part 10 180

Figure 6.39: Search (View Tutor Profile) 181

Figure 6.40: Section Code (Server API) – Retrieve Rate

Review 182

Figure 6.41: Section Code (Server API) – Retrieve Profile

Information 183

xxv

Figure 6.42: Search (Demo and Formal Class Request

Status) 184

Figure 6.43: Section Code (Server API) – Register Demo

Class Part 1 185

Figure 6.44: Section Code (Server API) – Register Formal

Class 186

Figure 6.45: Profile (Display Profile, Edit Profile, Sign Out

Account) 187

Figure 6.46: Section Code (Server API) – Update Basic

Profile 187

Figure 6.47: Section Code (Front-end) – Sign Out Account 187

Figure 6.48: Section Code (Server API) – Delete Account 188

Figure 6.49: Section Code (Front-end) – Delete Account 188

Figure 6.50: Home (Registered Tutor) 189

Figure 6.51: Demo Class (Display and Manage Demo

Class Requests) 190

Figure 6.52: Section Code (Server API) – Update Demo

Class Status 190

Figure 6.53: Section Code (Server API) – Retrieve Demo

Class 191

Figure 6.54: Formal Class (Display Formal Class Requests)

 192

Figure 6.55: Section Code (Server API) – Retrieve Formal

Class 193

Figure 6.56: Chat (Registered Tutor) 194

Figure 6.57: Registered Tutor Profile (Profile Display and

Edit) 194

Figure 6.58: Section Code (Front-end) – Edit Tutor Profile

Part 1 195

Figure 6.59: Section Code (Front-end) – Edit Tutor Profile

Part 2 195

xxvi

Figure 6.60: Section Code (Front-end) – Edit Tutor Profile

Part 3 196

Figure 6.61: Section Code (Server API) – Update Tutor

Basic Information 196

Figure 6.62: Home (Admin) 197

Figure 6.63: Add Tutor 198

Figure 6.64: Section Code (Front-end) – Create Tutor

Information 199

Figure 6.65: Section Code (Server API) – Create Tutor

Information 200

Figure 6.66: Update Tutor 201

Figure 6.67: Section Code (Server API) – Retrieve User

List 202

Figure 6.68: Section Code (Server API) – Update

Professional Tutor Info 202

Figure 6.69: User List 203

Figure 7.1: API Testing – Retrieve User Basic Profile 214

Figure 7.2: API Testing – Retrieve Profile Info 215

Figure 7.3: API Testing – Retrieve Class 216

Figure 7.4: API Testing – Retrieve Popular Tutor 216

Figure 7.5: API Testing – Retrieve Rate Review 217

Figure 7.6: API Testing – Retrieve Tutor Formal Class 217

Figure 7.7: API Testing – Retrieve Tutor Demo Class 217

Figure 7.8: API Testing – Retrieve User List 218

Figure 7.9: API Testing – Retrieve Chat User List 218

Figure 7.10: API Testing – Delete Account 219

Figure 7.11: API Testing – Similarity Measure (Manhattan)

 219

Figure 7.12: API Testing – Similarity Measure (Euclidean) 220

xxvii

Figure 7.13: API Testing – Similarity Measure

(Minkowski) 220

Figure 7.14: API Testing – Similarity Measure (Jaccard) 221

Figure 7.15: API Testing – Similarity Measure (Cosine) 221

Figure 7.16: API Testing – Register Demo Class 222

Figure 7.17: API Testing – Register Formal Class 222

Figure 7.18: API Testing – Rate Review 222

Figure 7.19: API Testing – Register Basic Account 223

Figure 7.20: API Testing – Update Basic Profile 223

Figure 7.21: API Testing – Update Demo Class Status 223

Figure 7.22: API Testing – Update FCM Token 224

Figure 7.23: API Testing – Update Basic Tutor

Information 224

Figure 7.24: API Testing – Update Professional Tutor

Information 224

Figure 7.25: API Testing – Create Tutor Information 225

Figure 7.26: User Satisfaction Survey Form – Tutor Seeker

(Part 1) 233

Figure 7.27: User Satisfaction Survey Form – Tutor Seeker

(Part 2) 234

Figure 7.28: User Satisfaction Survey Form – Admin and

Registered Tutor 235

Figure 7.29: SUS of Participant on Application 236

Figure 7.30: SUS of Participant on Application 236

xxviii

LIST OF SYMBOLS / ABBREVIATIONS

API Application Programming Interface

GUI Graphical User Interface

HTTP Hyper Text Transfer Protocol

KNN K-Nearest Neighbours

RAD Rapid Application Development

SDLC Software Development Life Cycle

SQL Structured Query Language

SUS System Usability Scale

UAT User Acceptance Testing

xxix

LIST OF APPENDICES

APPENDIX A: Questionnaire 247

APPENDIX B: Gantt Chart 252

APPENDIX C: Usability Test Result 256

APPENDIX D: User Acceptance Testing Results 268

1

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

In this project, an intelligent mobile private tutor finder’s application is developed to

help the students and parents in finding their ideal tutors within a short period.

Prototyping methodology is applied as the software development methodology while

React Native, Express.js, Firebase as the main development tools in this project.

 This chapter provides an overview of the intelligent mobile private tutor

finders application project that included the project background, project objectives,

project problem statements, project solution, project approach, and the scope of the

project.

Private tutoring can be defined as fee-charging services that provide

educational assistance outside the schooling system in teaching academics subjects.

It could be performed via various forms such as one-to-one tutoring in-home, small

or large groups tutoring in a class, online tutoring via the internet, and so on (Bray,

1999). According to the official statistic from the Department of Statistics Malaysia

(DOSM), there are 1899 tuition centers was established in Malaysia in 2010

(Department of Statistics Malaysia, 2021). Besides, the number of registered private

tuition centers had increased to 3107 in Malaysia during 2013 (Kenayathulla and

Ubbudari, 2017). This shows that the demand for the private tutoring service is

increasing. Besides, the demand for private tutoring services will be elevated day by

day due to the changes in the Malaysia examination and assessment system. For

example, the Pentaksiran Tingkatan Tiga (PT3) and Pentaksiran Berasaskan Sekolah

(PBS) that was introduced a few years ago to replace the old examination and

assessment system. Both systems not only focus on the academics of the student as

the old system but it focuses on both academic and non-academic skills such as oral

communication skills and critical thinking skills (The Government of Malaysia,

2019). Therefore, it is a new challenge for the student to fit themselves into a new

examination and assessment skills within a short period. Private tutors played the

main role in helping the student to cope with this challenge. This is because

schoolteachers are always responsible to teach many classes and subjects instead of

focusing on a particular group of students.

2

Student and parent in Malaysia commonly find their private tutor through the

introduction of their friends or relatives due to the lack of a user-friendly platform to

find a suitable private tutor. In addition, it is a challenge to find a private tutor during

this COVID-19 pandemic because it has a high risk to meet with each of the tutors

for choosing the most matched private tutor (OECD, 2020). However, there are

fewer private tutor web and mobile applications with intelligent matching functions

are available in Malaysia cause students and parents spend a long time finding the

best private tutor.

Nowadays, the mobile application is widely used in different areas such as

business, individual and social areas due to its user-friendliness, accessible anytime

and anywhere (Islam, Islam and Mazumder, 2010). Therefore, a user-friendly

intelligent private tutor finder mobile application is needed instead of a web

application to tackle this issue. The mobile application should consist of an

intelligent matching feature that helps the student find the most matched tutors

within a short period and is easy to be used. This application is built and

implemented on only the Android platform. Besides, more criteria are needed in the

filtering function instead of only basic criteria that may help the user to filter the

private tutor in a more precise and accurate way.

1.2 Problem statement

i. Lack of private tutor finder mobile application in Malaysia

Nowadays, the mobile application is widely used in different areas such as business,

individual and social areas due to its user-friendliness, accessible at anytime and

anywhere. The use of mobile applications is increasing day by day corresponding to

desktop applications (Islam, Islam and Mazumder, 2010). However, there is very

limited private tutor finder mobile application that is applicable for the Malaysia area

are available at Play Store and App Store. Most of the private tutor finder platforms

in Malaysia such as MyPrivateTutor, TeachMe and Tuition Hero Malaysia (tutor

seeker side) remain as web applications while some students find their private tutor

via their friends or relatives. Hence, these will cause students and parents to spend

more time finding a suitable private tutor. In contrast, there are many popular private

tutor finder mobile applications available in other countries such as Stapps from

Hong Kong and Zhang Men in China. Finding a private tutor by using a mobile

application became a norm in their countries.

3

ii. Users hard in finding a suitable private tutor with limited features filter

functioning

By referring to some of the existing private tutor finder applications in Malaysia that

are shown in chapter 2, most of the applications filter the tutor by just using a few

basic criteria such as subject, standard, and area. For example, TeachMe only

provides teaching subjects and teaching standards in filtering and searching the tutors.

These basic criteria are not the best way in choosing a best-matched tutor for a

student. There are some important criteria that should be considered while finding a

suitable private tutor such as gender, race, teaching languages, teaching experiences,

and so on. For example, teaching a student with his or her mother tongue will cause

the student to learn more effectively compare to use the language that the student is

not familiar with (Nishanthi, 2020). Besides the student capable of fully

understanding the explanation of tutors, this will also contribute to the student can

express themselves clearly when facing some doubts (Nishanthi, 2020). In contrast,

there are more features applied in the filtering function in Stapps (tutor finder mobile

application in Hong Kong) and it provides an AI tutor matching function to help the

student find the best matching tutor.

iii. Limitation of rules-based SQL query

Structured Query Langue (SQL) Query is widely applied to access and manage the

database that is connected with the application or system (Myalapalli and Teja, 2015).

It is also applicable to the simple searching function of a system. However, the

limitation of SQL query is a problem in the tutor searching function. A rules-based

SQL query only perform an “IF” “THEN” logic that is instructed by developers

which is not applicable in handling high volume of complicated rules (Carew, 2020).

For example, query retrieves the data according to the “WHERE” clause with the

condition while the condition could be the “AND” or “OR” clause. By applying all

“AND” clauses in the conditions, it may cause the issue of getting less or no result

return due to no tutors to fulfill all the selected criteria. By applying all “OR” clauses

in the condition, it may cause the issue of getting irrelevant result returns due to

tutors that only fulfill fewer criteria being considered as a matched result. The using

od “AND” and “OR” clauses are hard to be measured to get a high accuracy to result

in the tutor searching function. In addition, large queries will consume many

4

memories that affect the application's performance (Elastic NV, 2021). Therefore,

SQL queries limit the searching function of tutor finder applications and become a

problem that should be solved by applying other algorithms.

1.3 Project Objectives

1. To develop a mobile application in helping students and parents find their ideal

tutors according to their learning preferences.

2. To provide a better platform for finding ideal tutors by applying similarity

measures according to the learning preferences of students and parents.

3. To evaluate the usability of the private tutor finder mobile application by using

usability testing in System Usability Scale (SUS).

1.4 Project Solution

As the problem statement stated above, there is a lack of mobile tutor searching

platform and incompleteness of tutor searching features due to few searching criteria

and limitation of SQL query in existing Malaysia mobile tutor searching platform.

These cause students and parents that could not find their ideal private tutors,

especially during this Covid-19 pandemic period.

 This intelligent mobile private tutor finders application provides a new

mobile platform to users while also allowing the students or parents to search for

their ideal tutors according to more criteria such as teaching style, subjects, area, and

so on. The similarity measures are applied in this project as the algorithm to measure

the similarity between the selected criteria and the criteria of registered tutors such as

Euclidean distance, Manhattan distance, Minkowski distance, Cosine similarity, and

Jaccard similarity coefficient. The similarity measures algorithm could tackle the

limitation of SQL query that can display tutors according to similarity instead of

exact matching (Polamuri, 2015).

In this project, React Native is applied to develop the user interface as the

frontend displays to the user. React Native is a JavaScript framework that runs on an

open-source library called React and it is a popular open-source framework that is

widely applied in developing a native-rendered mobile application (Netguru, 2021).

The frontend sends tutor selection criteria to the server (Express.js is used to create

the API within a server in supporting the backend logic and processing such as

similarity measures) via the HTTP request to prevent direct accessing the backend

5

processing and database table via the frontend and prevent task overloading at the

frontend. The server retrieves the tutors’ details from the cloud database (Firestore).

The similarity measure is performed in a back-end calculation by calling the API.

API returns the top 20 tutors' information with the highest similarity percentage in

JSON form to the frontend. Then, the list of tutors will be displayed for users as the

search result. The algorithm will increase the accuracy in finding an ideal tutor for

the students or parents. Students or parents could look through the profiles of tutors

and chat with tutors to discuss the details such as price or time. make a demo class

request or book the tutor’s formal class after attending the demo class.

 The application shows the demo class requests on the user interface of tutors.

Tutors could discuss details of class with students or parents by using the chat

function in the application. Then, the tutor could decide to accept or decline the

demo class requests. The application displays the result of the request to students or

parents after the tutors decide. This module helps the student to more understand the

teaching style of the tutors before hiring the tutors as their private tutors.

 The application only allows the admin to add new tutors and update their

details to the database after verification to ensure the quality of tutors. Admin could

view the user list by using the application without accessing the back-end database.

 The overview architecture of this application is shown in Figure 1.1. As

mentioned above, React Native is applied as the frontend development tool while

Express.js is used to create APIs within the server (laptop) to process the backend

logic actions. Firestore is linked to Express.js for CRU actions and as a cloud

database for storing application data such as tutors’ information, tutor seekers’

information, rate and reviews, chats, and so on. Besides, the Firebase Cloud

Messaging service is linked with the application in order to perform push notification

action. Firebase Authentication is applied in handling the sign-in and sign-up actions

in this application while Firebase Storage is used as the photo storage to store and

upload the users’ profile pictures.

6

Figure 1.1: Overview of Application Architecture

1.5 Project Approach

Prototyping methodology is chosen as the development methodology in this project

to develop the intelligent private tutor finder mobile application. Figure 1.2 shows

the phases in the prototyping methodology model.

Figure 1.2: Prototyping Methodology

7

Prototyping methodology is widely applied in real software development

projects because it helps developers to refine the software products. It needs

minimum initial specifications in building the first prototype with essential functions

quickly. Next, clients give feedback on the prototype and keep refining the

prototypes. The iteration of the planning, design, prototype, and feedback phases will

be stopped and enter the development phase when the client is satisfied with the

prototype. It helps the users to identify their actual requirements throughout the

iteration and build their ideal software (Susanto and Meiryani, 2019). This

methodology is suitable to be applied in the projects that lack the previous example

exists (Despa, 2014).

There is a lack of existing similar mobile applications available in PlayStore

and AppStore. This caused the specifications of the application could be hardly

defined. Prototyping methodology helps to refine the specifications and requirements

after each iteration. Besides, the algorithms should be tested frequently to get the best

result of matching. Therefore, space for improvement could be achieved in each

version of the prototype to build an intelligent private tutor finder mobile application

that helps the users in finding their ideal tutors with high accuracy.

1.6 Scope of the Project

1.6.1 Targeted Users

The targeted users of this intelligent private tutor finder mobile application are

students who study in primary and secondary schools in the Klang Valley area.

Students between 7 to 17 years old may lack experience in finding the best way in

studying and learning, they need more guidance and assistance in their learning

journey compared to the students who stepped into university. Besides, parents that

help their children in finding a private tutor also be considered the main targeted user

as well.

1.6.2 End Users Involved

Students, Parents, Tutors, and Admins are the end-users involved in this application.

Students or parents could find their ideal tutors while tutors could get their jobs from

this application. Admins are responsible to manage and update the registered tutors

to this application.

8

1.6.3 Modules Covered

i. Searching tutors according preferences

The application allows the users (students or parents) to choose their preference

criteria of tutors, the application will display the matched tutors in a list. Users

could read the tutor’s profile before proceeding to request demo classes and

formal classes.

ii. Requesting demo classes

Tutor seekers (students or parents) could request a free demo class before

applying for a formal class to more understand the teaching style of the tutor.

Tutors could choose to accept or reject the demo class request by using the

application.

iii. Rating and reviewing tutors

Tutor seekers (students or parents) could rate and give a review to the tutors by

using the application. The rate and review will be displayed in the tutor’s profile

as a reference for the other tutor seekers to find their ideal tutors.

iv. Booking formal classes

Tutor seekers (students or parents) could book a formal class after attending the

demo class and feel satisfied with the tutors’ teaching style and method by

using the application. The tutor will receive the booking by using the

application.

v. Chatting between tutor seekers and tutors

Tutor seekers (students or parents) could chat with the tutors to discuss detailed

information that is not listed in the tutor profile before and after raising the

demo classes and formal classes requests. A tutor could discuss the class details

with tutor seekers after the tutor seekers raise the demo classes or formal classes

requests.

9

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Five existing similar applications have been reviewed and compared about their

functions. Some functions or features of similar applications could be the reference

of this project. Next, searching approaches are reviewed and compared to identify the

best approaches that could be applied in the searching function in this project.

Besides, software development methodologies are studied and compared to apply the

most suitable methodology in this project that may improve the development process

and quality of products. Last but not least, the usability testing is reviewed to have a

better understanding of the workflow of usability testing.

2.2 Study of Existing Similar Application

There are 5 existing similar applications that have been reviewed about the functions

and services provided. MyPrivateTutor and TeachMe are web applications while

TuitionHero is a cross-platform application (mobile and web platform) that is

available in Malaysia. At the same time, there are 2 similar applications that are

popular in Hong Kong and China which are Stapps (mobile application) and

ZhangMen (cross-platform application) respectively.

2.2.1 MyPrivateTutor

MyPrivateTutor provides services to 3 types of end-users which are (parents and

students), (tutors and trainers), and (center and training institute). MyPrivateTutor is

a web application that provides the service of tutors and institutes finding to students

and parents while job finding service to the tutors and institutes over 25 countries

such as Malaysia, Thailand, Taiwan, Vietnam, United States (US), United Kingdom

(UK) and so on. It is marketed by Softz Solutions & Co Pvt Ltd since 2009 and is

available at https://www.myprivatetutor.my/ (Malaysia Area).

i. Tutors or Institutes Filtering

MyPrivateTutor allows the students or parents to find their ideal tutors or institutes

by using browsing and filtering functions according to the simple criteria that have

been selected by students and parents. For example, subjects, areas, and categories.

10

Figure 2.1: Filter Result of MyPrivateTutor

ii. Tutors Profile and Reviews

Students and parents could give reviews and rates to tutors and institutes after

attending class. The reviews and rates will be displayed in the profile of the tutors

and institute with their basic information and details.

Figure 2.2: Tutor Profile of MyPrivateTutor

iii. Tutors Requesting

Students and parents can make a tutor request on MyPrivateTutor by listing the

learning requirements and waiting for the application of tutors. The learning

requirements are basic criteria such as subject, area, type of tutors (online tutor,

11

private tutor, tuition center, and so on), introduction (what have learned), and basic

information (name, email address, mobile number)

Figure 2.3: Tutor Request of MyPrivateTutor

iv. Tutors and Institutes Suggestion

MyPrivateTutor suggests the relevant tutors as the “Reviews and Ratings” column on

the filter result page (Figure 2.4) and as “Tutors You May Like” on the tutor profile

page (Figure 2.2).

Figure 2.4: Tutor Suggestion of MyPrivateTutor

v. Jobs Applying

Besides waiting for the job requests from students or parents, tutors can also apply

for the tutoring jobs that were posted on MyPrivateTutor and wait for the reply of the

students and parents.

12

Figure 2.5: Job Applying of MyPrivateTutor

2.2.2 TeachMe

TeachMe provides services to 2 types of end-users which are (parents and students)

and tutors. TeachMe is a web application that provides tutors finding and online

tutoring services to students and parents while class managing service to the tutors in

Malaysia. It is released in Malaysia in 2017 and available at https://teachme.com.my/

i. Tutors Filtering

TeachMe allows the students and parents to find their ideal tutors by using

searching and filtering functions according to the basic criteria that have been

searched and selected by students and parents which are subjects and grades. The

tutor list is displayed either in a name or rating order.

Figure 2.6: Filter Result of TeachMe

13

ii. Tutors Profile and Reviews

Students and parents could give reviews and rates to tutors after attending the

online class. There are basic information, reviews, and rates are displayed in the

tutors’ profile.

Figure 2.7: Tutors Profile of TeachMe

iii. Online Class Tutoring

Besides the tutor finding function, TeachMe provides the service of online tutoring

by using their platform instead of third party’s platforms such as google meet,

Microsoft team, and so on. The tutor’s video is displayed on the left side while the

whiteboard and tools are displayed on the right side. Both students and tutors share

documents, edit the whiteboard, and export it as a note in a pdf format.

14

Figure 2.8: Online Tutoring Class Demo of TeachMe

iv. Class Managing

TeachMe provides some functions to help tutors in managing their tutorial classes

and teaching materials. For example, “Availability” and “Lessons” is used to

manage the class schedule of tutors and check the history and status of the

upcoming, ended, canceled, and declined class respectively.

Figure 2.9: Tutor Availability of TeachMe

15

Figure 2.10: Tutor Lessons of TeachMe

Figure 2.11: Tutor Add Subjects of TeachMe

Figure 2.12: Tutor Teaching Materials of TeachMe

16

2.2.3 Tuition Hero Malaysia

Tuition Hero Malaysia provides services to 2 types of end-users which is (parents

and students) and tutors. Tuition Hero Malaysia is a cross-platform application (web

and mobile platform) that is owned by Hero Education Sdn Bhd which provide tutor

matching service in Kuala Lumpur, Selangor, Seremban, Penang, and Johor only.

Tuition Hero Malaysia mobile application is only served the job finding service to

the tutors. At the same time, the Tuition Hero Malaysia web application provides

both services of tutors finding to students and parents and job finding service to the

tutors. The web application is available at https://tuitionhero.my/ since 2015 while

the mobile application is available in Malaysia Play Store and AppStore since 2018.

i. Tutors Requesting

Students and parents can make a tutor request on Tuition Hero Malaysia by

contacting the person in charge with WhatsApp or submitting the form that contains

some basic information of client, student, and additional information such as budget,

preference, and tuition start date. The requests will be displayed on the job list of the

tutors’ interface for applying.

17

Figure 2.13: Tutor Request Form of Tuition Hero Malaysia

18

ii. Home Tuition Fee Calculating

Tuition Hero Malaysia web application provides the function of calculating the

suggested market rate of home tuition according to the syllabus standard, days per

week, and the hours per day. Besides, it also calculates the home tuition fee

according to the preferred budget that was provided.

Figure 2.14: Home Tuition Fee Calculator of Tuition Hero Malaysia

iii. Jobs Applying

Tutors can apply for the tutoring jobs that were posted on Tuition Hero Malaysia via

the web application or mobile application and wait for the reply of the students and

parents. Tutors can only filter the jobs by using the area.

Figure 2.15: Job Applying of Tuition Hero Malaysia (Web Application)

19

Figure 2.16: Job Applying of Tuition Hero Malaysia (Mobile Application)

2.2.4 Stapps

Stapps provides services to 2 types of end-users which are (parents and students) and

tutors. Stapps is a mobile application owned and released by Stapps Limited in 2019

on Play Store and AppStore. It also can be downloaded via their official website and

available at: https://www.stapps.hk/. Stapps provides tutor matching services in

Hong Kong only. Students and parents could find their ideal tutors while tutors could

apply for tutoring jobs by using this mobile application.

i. Tutors Filtering

Stapps allows the students and parents to find their ideal tutors by using sorting and

filtering functions according to the criteria that have been selected by students and

parents such as school type, subject, level, area, budget, tutor available time, tutor

institute, tutor gender, and tutor teaching style. The tutor list is sorted and displayed

in different order such as rates, academic performance, number of students, nearby

area, and tutoring fee.

20

Figure 2.17: Tutor Filtering of Stapps

Figure 2.18: Tutor Sorting of Stapps

21

ii. Tutors Requesting

Students and parents can make a tutor request on Stapps by filling in the criteria of

tutors and basic information of students such as subject, student level, student gender,

tutoring type (one to one or group), number of classes per week, number of hours per

class, tutoring fee per hour, class time slot and additional requirement. The requests

will be displayed on the job list of the tutors’ interface for applying.

Figure 2.19: Tutor Requesting of Stapps

iii. Tutors Suggestion

Stapps suggests the relevant tutors at the section below the tutor filtering and

requesting section on the main page.

22

Figure 2.20: Tutors Suggestion of Stapps

iv. Learning Materials Sharing

There is a source sharing function in Stapps that allows the tutors to upload free

learning material such as tutoring videos, exercise papers, notes of different subjects.

Figure 2.21: Learning Material Sharing of Stapps

23

v. Tutors Profile and Reviews

Students and parents could give reviews and rates to tutors after attending the class.

There are reviews and rates, tutors’ basic information, and additional information are

displayed in the tutors’ profile. The additional information is including grades of

public examination of tutors that have been verified and available time slots that are

rarely displayed in tutors’ profiles compared with other similar applications. After

looking through the tutors’ profiles, students and parents can add their favorite tutors

to their favorite list.

Figure 2.22: Tutors' Profile of Stapps

vi. Jobs Applying

Tutors can apply for the tutoring jobs that were posted on Stapps wait for the reply

of the students and parents. Tutors could filter the jobs by using subject, area, level,

and tutoring fee per hour. Besides, tutors can sort the job request according to the

tutoring fee and the time of the request.

24

Figure 2.23: Job Filtering of Stapps

Figure 2.24: Job Sorting of Stapps

25

2.2.5 Zhang Men

Zhang Men only provides services to 1 type of end-users which is (parents and

students). Zhang Men is a cross-platform (web and mobile platform) online tutoring

application in China that allows parents and students to find their ideal private tutors

and conduct online classes. At the same time, it provides the many sub-functions

such as class recording that enable the student to replay their class, homework

checking function, and so on. More sub-functions will be available on the mobile

platform while only main functions will be provided on the web platform. It is

considered as a combination of tutor finder and online tutoring application that is

complete and well developed. Zhang Men is first released in 2014 by Shanghai

Zhang XiaoMen Education Technology Co., Ltd. This mobile application is only

available in China AppStore or downloads via their official website at:

https://www.zhangmen.com/.

i. Trial Tutoring Class and Tutor Matching

Zhang Men allows the students or parents to attend one free trial class before

purchasing the tutoring class. Students or parents should fill in the name, level,

subject, available time slot (only in the mobile platform) and select the preferred

tutor teaching style (only in mobile flatform). Next, the education consultant will

contact the students or parents to more understand their learning requirements of

them and arrange for the trial class. Once, students and parents are satisfied with the

trial class and the tutor, the matching is considered a success and the class will be

conducted after payment.

Figure 2.25: Trial Tutoring Class of Zhang Men (Web Application)

26

Figure 2.26: Trial Tutoring Class of Zhang Men (Mobile Application)

Figure 2.27: Tutor Teaching Style of Trial Tutoring Class of Zhang Men (Mobile

Application)

27

ii. Online Class Tutoring

Zhang Men provides the service of online tutoring by using their platform instead of

third-party’s platforms. The class will be recorded and can be replayed after the class

for revision purposes. Besides, parents can monitor their child’s study condition with

the application. In addition, Zhang Men AI will guide the student to set up their

instrument such as cameras, mic, wi-fi in a stable condition before the class.

Figure 2.28: Instrument Testing of Zhang Men (Mobile Application)

iii. Schedule Management

There is a scheduler function in Zhang Men for the students to arrange their class and

self-learning time wisely to prevent the booked classes are clash with each other’s,

remind the student to attend class on time and arrange their self-learning time.

Figure 2.29: Class Schedular of Zhang Men (Web Application)

28

Figure 2.30: Class Schedular of Zhang Men (Mobile Application)

Figure 2.31: Revision Schedular of Zhang Men (Mobile Application)

29

v. Learning Materials Offering

Zhang Men provides various notes and module papers of different subjects for the

student with no extra charge (only on a mobile platform) to train encourage the self-

learning of students.

Figure 2.32: Learning Materials of Zhang Men

vi. Extra Public Classes Redemption

Zhang Men provides some public classes that are tutored by some popular tutors that

can be redeemed after the student achieve the minimum class attendance without

extra fee-charging.

Figure 2.33: Public Class of Zhang Men (Web Application)

30

Figure 2.34: Public Class of Zhang Men (Mobile Application)

vii. AI Level and Learning Ability Testing

There are some tests are provided to students to understand their level in some

subjects and their learning ability in the Zhang Men mobile application. This also

helps the tutors to know the level of students and make a suitable teaching plan for

them.

31

Figure 2.35: AI English Level Test of Zhang Men

Figure 2.36: Learning Ability Test of Zhang Men

32

2.2.6 Comparison of Existing Similar Application

Table 2.1: Comparison of Existing Similar Application

 Application

Name

Functions

My

Private

Tutor

TeachM

e

Tuition

Hero

Malaysi

a

Stapps
Zhang

Men

Tutors Filtering

Yes

(3 Criteria)

Yes

(2 Criteria)

No Yes

(8 Criteria)

Yes

(Education

Consultant)

Tutors Requesting Yes No Yes Yes Yes

Tutors Suggesting Yes No No Yes No

Tutors Profile Yes Yes No Yes No

Tutors Rating and

Reviewing

Yes Yes No Yes No

Add to Favourite No No No Yes No

Learning Materials

Providing (Open Source)

No No No Yes Yes

Trial Class Providing No No No No Yes

Online Tutoring Platform No Yes No No Yes

AI Level Testing No No No No Yes

Direct Chatting with Tutors Yes Yes Yes Yes No

Class Schedule No No No No Yes

Job Applying

(Tutors/Trainers/Institute)

Yes No Yes Yes No

Class Managing

(Tutors/Trainers/Institute)

No Yes No Yes No

33

In conclusion, there are various functions and services are provided by the

applications to achieve the goal of matching an ideal tutor to a student or tutor online.

Some of the applications major in the tutors finding service such as MyPrivateTutor,

Tuition Hero Malaysia, and Stapps while TeachMe and ZhangMen major in online

tutoring and teaching services. Each of the applications possesses their strength and

weakness while the strength of the applications can be referred to and combined in

developing a more intelligent and user-friendly private tutor finder mobile

application. There are 4 functions (tutor filtering, tutor profiles, tutor rating and

reviewing, direct chatting with tutors) are selected as the references which is

sufficient to achieve the main goals of helping students and parents to find their ideal

tutor while easier for the tutors in getting their jobs.

i. Tutor Filtering

Students and parents could search their ideal tutors by selecting the required

criteria in the filter list, the tutor list will be displayed.

ii. Demo Class Requesting (Trial Class)

Students and parents can send the demo class request (trial class) to the tutors

before hiring the tutor to ensure the tutor is suitable for the student.

iii. Rate and Review

Students and parents could give rates and reviews to the tutors after attending

their demo or formal classes and act as a reference to other students and

parents who are looking for a tutor.

iv. Tutors’ Profile Viewing

The tutors’ profile displays their basic information (name, education level,

subject, teaching style, and so on), rate, and reviews that easier for the

students and parents to filter and find their ideal tutor.

2.3 Searching Approaches

2.3.1 Exact searching by using SQL query

Structured Query Language (SQL) is a language that is used to access and manage

the underlying database of the application or software (Myalapalli and Teja, 2015).

SQL is categorized into two standards which are American National Standards

Institute (ANSI) and International Organization for Standardization (ISO). Although

there are various versions of SQL language, some of the major commands in

different versions are similar due to the ANSI or ISO standard. For example,

34

SELECT, WHERE INSERT, DELETE, and UPDATE commands (W3Schools,

2021a). SQL queries could be applied in retrieving the matched-criteria tutors’

information from the database and displayed as a list. Figure 2.37 shows the basic

structure of SQL query in search results from the database.

Figure 2.37: Basic Structure of SQL Query (W3Schools, 2021b)

The “SELECT” must come with the “FROM” in retrieving the specified

attributes of the records. At the same time, the “WHERE” statement is applied to

filter the displayed records that fulfilled the required conditions or ranges. The

“GROUP BY” statement helps in combining the same values into summary rows

while the “ORDER BY” statement arranges the result records in ascending or

descending order according to the specified attributes (column). There are some

strengths and limitations of SQL query, and it may affect the searching result and

performance in this application.

Table 2.2: Strengths and Limitations of SQL Query

Strength Limitation

- Easy to learn and understand

- Portable (can be embedded with

different applications according

to developers’ needs and

requirements)

- Large queries consume many

memories and cause Parsing

Exception (Elastic NV, 2021).

- Suppose to produce consistent

results based on unchanging

input data (Helland, 2016).

- Possible to get no result due to

incorrect condition settings

(exact matching all the required

criteria from users may cause no

result)

- Sorting by aggregation cause

reduce accuracy of matched

results (usage “OR” clause in

35

filtering the tutors cause many

less relevant tutors are

considered as “matched result “)

2.3.2 Similarity Measures

Similarity measures are approaches that measure the similarity between two objects

by calculating their distance in terms of features similarity. The longer the distance

between two objects, the bigger the differences between the two objects and vice

versa. The similarity between two objects could be measured in the range of 0 to 1, 1

indicates the two objects are the same while 0 indicates the two objects are

completely different. The more the similarity score closer to 1 the higher the degree

of similarity between the two objects. A similarity measure is a basic block that is

widely applied in many machine learning and data mining such as classification and

clustering (Polamuri, 2015). There are five popular similarity measures always be

applied in the searching function.

i. Euclidean Distance

Euclidean distance is one of the common measures that is applied to calculate the

length of the straight connecting path of the two spatial points (Lu et al., 2020).

Euclidean distance is calculated based on the Pythagorean theorem (Polamuri, 2015).

In simple word, Euclidean distance measure the straight distance between two

vectors. The bigger the Euclidean distance value, the smaller the similarity between

two objects. The formula for calculating Euclidean distance is shown in equation 2.1.

Figure 2.38: Graphical Representation of Euclidean Distance (Sharma, 2019)

36

(2.1)

Figure 2.39: Sample Python Code by Applying Euclidean Distance (Polamuri, 2015)

Table 2.3: Strengths and Limitations of Euclidean Distance

Strength Limitation

- Perform well in compacted or

isolated clusters dataset

(Shirkhorshidi, Aghabozorgi

and Ying Wah, 2015).

- Additional new objects in the

analysis will not affect the

distance of the 2 objects (Bora

and Gupta, 2014).

- The distance is greatly affected

by the scale differences (Bora

and Gupta, 2014).

- The largest scale feature will

dominate the other features

(Shirkhorshidi, Aghabozorgi

and Ying Wah, 2015).

- The two objects that have the

same attribute value get a bigger

distance value than the objects

pair that do not have the same

attribute values (Shirkhorshidi,

Aghabozorgi and Ying Wah,

2015).

ii. Manhattan Distance

Manhattan distance is also known as Taxicab distance or the City Block distance that

calculates the sum of the absolute differences between its cartesian coordinates (x-

coordinates and y-coordinates) (Brownlee, 2020). In simple words, Manhattan

distance calculates the total differences of x-coordinate and y-coordinate of two

objects. A mathematical way to explain Manhattan distance is by calculating the

distances of the x-axis and y-axis of two objects at the right angle (Polamuri, 2015).

Equation 2.2 shows the formula for calculating Manhattan distance.

37

Figure 2.40: Graphical Representation of Manhattan Distance (Sharma, 2019)

(2.2)

Figure 2.41: Sample Python Code by Applying Manhattan Distance (Polamuri, 2015)

Table 2.4: Strengths and Limitations of Manhattan Distance

Strength Limitation

- Perform well in compacted or

isolated clusters dataset

(Shirkhorshidi, Aghabozorgi

and Ying Wah, 2015).

- Perform well in the high-

dimensional data mining

process. (Better than Euclidean

distance in a many-feature

dataset) (Aggarwal, Hinneburg

and Keim, 2001)

- Sensitive to outliers

(Shirkhorshidi, Aghabozorgi

and Ying Wah, 2015).

38

iii. Minkowski Distance

The Minkowski Distance is a generalization distance metric of Euclidean distance

and Manhattan distance (Polamuri, 2015). The formula of the metric can be modified

to calculate the distance differently. Equation 2.3 shows the mathematical formula

for calculating Minkowski distance. The p-value can be changed to 1,2 or ∞ to

calculate the Manhattan distance, Euclidean distance, and Chebychev distance

respectively (Sharma, 2019).

Figure 2.42: Graphical Representation of Manhattan Distance (Polamuri, 2015)

(2.3)

where p = Minkowski metric (1,2 or ∞)

Figure 2.43: Sample Python Code by Applying Minkowski Distance (Polamuri, 2015)

39

Table 2.5: Strengths and Limitations of Minkowski Distance

Strength Limitation

- Perform well in compacted or

isolated clusters dataset

(Shirkhorshidi, Aghabozorgi

and Ying Wah, 2015).

- The largest scale feature will

dominate the other features

(Shirkhorshidi, Aghabozorgi

and Ying Wah, 2015).

- The same limitations as

Manhattan distance and

Euclidean distance, cause

trouble when choosing a wrong

p-value (Grootendorst, 2021).

iv. Cosine Similarity

Cosine similarity measures the inner product space similarity between two objects or

vectors by finding the cosine angle between them while also identifying the two

vectors are pointing in the same direction or different directions (Han, Kamber and

Pei, 2012). The range of cosine similarity is from 0 to 1, 1 indicates there is a 0˚

angle difference between two vectors while 0 indicates there is a 90˚ angle difference

between two vectors (Polamuri, 2015). The closer to 1 cosine similarity, the higher

the similarity between two objects (smaller angle difference between two vectors)

and vice versa. Equation 2.4 shows the formula for calculating Cosine similarity.

Figure 2.44: Graphical Representation of Cosine Similarity (Grootendorst, 2021)

40

(2.4)

where θ = angle difference between two vectors

Figure 2.45: Sample Python Code by Applying Cosine Similarity (Polamuri, 2015)

Table 2.6: Strengths and Limitations of Cosine Similarity

Strength Limitation

- Could be varied when comes to

linear transformation

(Shirkhorshidi, Aghabozorgi and

Ying Wah, 2015).

- Not dependent on vectors’ length

(Shirkhorshidi, Aghabozorgi and

Ying Wah, 2015).

- Could not be varied when comes

to rotation (Shirkhorshidi,

Aghabozorgi and Ying Wah,

2015).

- The magnitude of vectors’

direction is not been taken into

account (Grootendorst, 2021).

v. Jaccard Similarity Coefficient/Index

Jaccard similarity coefficient is used to calculate the diversity and similarity

between different sample sets. Jaccard similarity coefficient is calculated by the

intersection cardinality of sets divided by the union cardinality of the sample sets.

In simple words, the Jaccard similarity coefficient is calculated by the number of

similar elements in sets divided by the total number of elements in sets

(Grootendorst, 2021). The range of the Jaccard similarity coefficient is from 0 to 1

and could be converted as a percentage by multiplying the division result by 100.

The more the Jaccard similarity coefficient closer to 1 or 100%, the higher the

41

similarity between sets and vice versa (DeepAI, 2016). Equation 2.5 shows the

formula to calculate the Jaccard similarity coefficient.

Figure 2.46: Graphical Representation of Jaccard Similarity Coefficient (Uniqtech,

2020)

(2.5)

where ∪ = union, ∩ = intersection

Figure 2.47: Sample Python Code by Applying Jaccard Similarity Coefficient

(Polamuri, 2015)

Table 2.7: Strengths and Limitations of Jaccard Similarity Coefficient

Strength Limitation

- Perform well in word similarity

measuring (Niwattanakul et al.,

2013).

- Highly influenced by the size of

the dataset (large dataset will

increase the number of union

sets) (Grootendorst, 2021).

42

2.3.3 K-Nearest Neighbours (KNN) Algorithm

K-Nearest Neighbours (KNN) Algorithm is a supervised machine learning algorithm

that is widely applied in solving the classification problem and predict the result.

KNN algorithm assumes similar objects near to each other and classifies them by

calculating their distances in order to predict the target result (Harrison, 2018). The

distance in this algorithm could be calculated by Euclidean Distance, Manhattan

Distance, Chebyshev Distance, Minkowski Distance, WMinkowski Distance,

SEuclidean Distance, or MahalanobisDistance (scikit-learn, 2020). This algorithm

could be applied in classification to classify the tutors into ideal tutor groups and

non-ideal tutor groups by using the searching history of the users as the train data.

Figure 2.48: Graphical Representation of KNN Algorithm (Javatpoint, 2021)

Table 2.8: Strengths and Limitations of KNN Algorithm (Javatpoint, 2021)

Strength Limitation

- Simple to implement.

- Robust to noisy training data.

- Hard to identify the most

suitable K value.

- Need many training data to get

higher accuracy results.

43

2.3.4 Summary of Searching Approaches

In conclusion, the approaches have their strengths and limitations that might affect

the performance of searching features in this application. However, the similarity

measures are more suitable to be applied in the searching and matching function.

This is because the similarity measures could calculate the similarity value between

the two objects and the higher similarity objects could be displayed as the searched

or matched result to the users. In contrast, the exact matching by using SQL query

only displays the objects that exactly fulfill the required criteria of users that may

cause fewer choices for the users or even no result be displayed. On the other hand,

the KNN algorithm needs a large number of searching histories data of users to

predict the group of the objects that prohibit the application of the algorithm in the

searching or matching function (Javatpoint, 2021). KNN algorithm is more suitable

to be applied in product categorizing function compared to searching or matching

functions.

Similarity measures are more suitable to be applied in the searching and

matching function in this project. The limitation of SQL may provide low accuracy

results while the KNN algorithm needs a large number of users' history to predict a

high accuracy result. There is a lack of users’ history in selecting tutors to train the

KNN algorithm since it is a new application, KNN algorithm is more suitable to be

applied in a feature-improving project in the future.

2.4 Software Development Methodology

The process in developing a successful software is not only “code and fix”. There are

other processes such as planning, design, and maintain should not be neglected to

produce a successful software under the limitation of time, cost, resources, and so on.

Therefore, software development methodology is needed to ensure the software

development is conducted more efficiently and predictable by imposing some

disciplined process upon it (Awad, 2005). In simple words, software development

methodology is a framework that is applied in software development to plan

structure and control the process of development (Simelane and Zuva, 2019). There

are various types of software development methodologies or models that can be

applied in developing software, the Waterfall Model, Prototyping Model, Agile

Software Development Model and Rapid Application Development (RAD) Model

will be discussed in the below section.

44

2.4.1 Waterfall Model

Figure 2.49: Waterfall Model (Despa, 2014)

Waterfall model is the oldest Software Development Life Cycle (SDLC) model that

is widely applied in many software developments projects (Alshamrani and Bahattab,

2015). Waterfall model is a linear-sequential development model that only proceeds

to the next phase after all activities in the current phase are completed. The required

deliverables and requirements of the next phase are clearly defined before proceeding

to the next phases. It ensures each development phase could be completed orderly

without overlapping with each other within the fixed period. Besides, this causes

each phase to be highly dependent on their previous phase and hard to be reversed

once proceed to the next phase. In addition, the testing team only be involved in the

testing phase. That causes the defects to be later found, high cost and time-

consuming in solving the defects (Balaji and Murugaiyan, 2012). On the other hand,

the Waterfall model that more concentrate on documentation and planning activities

contributes to the quality controlling of a project. Therefore, it is more suitable for

small-scale software development projects with clear requirements (Despa, 2014).

There are some pros and cons to applying the Waterfall model in a software

development project.

45

Table 2.9: Pros and Cons of Waterfall Model

Pros Cons

Requirements are clearly defined before

starting the development.

Not flexible in facing the requirements

changing of the client.

Linear models cause easier to be

implemented.

Working software only be produced at

the late phase of the development cycle.

Ensure each phase can be completed

within the given period.

High risk and uncertainty.

Provide a structured guide for an

inexperienced development team.

Difficult to go back to the previous

phase to solve the mistakes.

Proper documentation in each phase

helps in quality control.

Poor performance in complex and

object-oriented projects (Ragunath et al.,

2010).

Perform well in small and well-

understood requirements projects

(Ragunath et al., 2010).

Poor performance in long and ongoing

projects (Ragunath et al., 2010).

2.4.2 Prototyping Model

Figure 2.50: Prototyping Model

Prototyping model is a process that builds prototype rapidly with rapid planning and

making improvement of the prototype iteratively according to the feedback from the

customer until fulfil the requirements of the customer (Despa, 2014). In order to

achieve customer’s ideal software, Prototyping model allows users who only know

their basic requirements to have an initial prototype and add on details during the

iterative prototyping process. The planning phase is conducted rapidly to collect the

46

basic needs and requirements of customers. By undergoing a fast analysis, design,

and implementation phase, the initial prototype will be produced. Prototypes are

evaluated by customers to get feedback and add more features to the software. This

process is conducted iteratively until both the development team and customers

satisfy with the prototype to undergo a software deployment and development. The

iterative process in building prototype will not only improve the specified features of

the software while helps customers to clarify their requirements (Susanto and

Meiryani, 2019). However, an experienced development team or developer is needed

to cope with the fast pace in developing prototypes. It might cause a longer time

consuming due to the inexperience team not familiar with handling the customers

and prototype building (Chandra, 2015). There are some pros and cons to apply

Prototyping model in a software development project.

Table 2.10: Pros and Cons of Prototyping Model

Pros Cons

Flexible in adapting customers’

requirements change.

Development teams always neglect the

best practice of software development

to build a prototype quickly.

Easier to identify customers’ detail

needs through the iterative process.

Focus on quick developing reduce the

quality of software.

Helps customers who unclear about

their requirements to have an initial

picture of the software.

Lack of consideration for the long-time

maintenance.

High customers involvement improve

communication between customers and

development teams.

Prototyping causes the customer may

neglect the overall quality of the

software and more focus on specific

features.

High performance in new unique

software development projects that lack

of previous example (Despa, 2014).

Poor performance in large software

development projects (Chandra, 2015).

47

2.4.3 Agile Software Development Model

Figure 2.51: Agile Software Development Model (Accurate Reviews, 2020)

Agile software development model is primarily designed for an adaptive

development team in responding to the changing requirements of customers and

users (Balaji and Murugaiyan, 2012). The small software deliverables are produced

quickly and continuously within few weeks instead of months. Agile mode pays

attention to customer collaboration that involves customer interaction continuously

from the initial to the late in development while less relying on documentation.

Therefore, the development team keeps the initial phases as simple as possible such

as the planning phase. The working software is built and release to the customers.

Then, the customers provide feedback on the software. The development team

responds to the feedback quickly and improves the software base on the feedback

and requirements. Agile model always welcomes the change in requirements even in

the late phase of development. The iteration of software development phases as a

“loop” until the software met the requirements of customers. However, the fast pace

in requirement changing and software releasing (weekly or every two weeks) give a

high pressure on the development team (Dima and Maassen, 2018; Dubey, Jain and

Mantri, 2015). There are some pros and cons of Agile software development model.

48

Table 2.11: Pros and Cons of Agile Software Development Model

Pross Cons

Project can be delivered quickly.

High individual dependency due to less

documentation. New developers or

development team hard to take over the

project.

Rapid respond to changing requirements

of customers.

High pressures on development teams

and developers to release software

weekly or every two weeks.

Minimal of documentation reduces total

project development time.

Scope of project increase continuously

without limit if a clear-end goal is not

be set well.

High involvement of customers in

software development process reduces

the misunderstanding of requirements

within the development process.

The adding of new features and

requirements cause some of the

function’s implementation violate the

good design of development. Extra

works are needed in long run to

maintain and sustain the software

(Gallagher, Dunleavy and Reeves,

2019; Dubey, Jain and Mantri, 2015).

Perform well in small and medium

software development projects (Rahim

et al., 2018; Balaji and Murugaiyan,

2012).

Poor performance in large software

development projects (Rahim et al.,

2018; Balaji and Murugaiyan, 2012).

2.4.4 Rapid Application Development (RAD) Model

Figure 2.52: Rapid Application Development (RAD) Model (tutorialspoint, 2021)

49

Rapid Application Development (RAD) model is originated from rapid prototyping

model and first released by James Martin in 1991(Berger, Beynon-Davies and Cleary,

2004). RAD is a linear sequential software development model that applied iterative

methods to develop software in a very short time. It is more emphasis on

development instead of planning tasks. The software or application is broken down

into different modules with different features and developed parallelly. After going

through the business modelling (business analysis), data modelling (research and

information gathering), and process modelling (planning and design) quickly, the

main focus is on application generation, testing and turnover. The process and data

models are be converted to actual prototypes. The prototypes are refined and tested

base on the customer’s feedback. After customers satisfying with the prototypes, the

actual application is built by integrating the prototypes with an automated tool. These

processes are completed within a short time and it is time constraint is one of the

limitations of this model (Fatimah, Supriatna and Kurniawati, 2018; Despa, 2014).

There are some pros and cons of RAD model in software development.

Table 2.12: Pros and Cons of Rapid Application Development (RAD) Model

Pros Cons

Application can be produced within a

very short period.

Project scope less scalable (the scope of

projects are limited and not similar as

Agile and Prototyping models that can

keep adding more and more features)

Adaptable to customers’ requirement

changes.

Poor documentation cause new

developers or programmers hard to

follow up the previous work.

Code and components can be reused. Code integration issues always happen

when combining the modules as a real

application.

Perform well in small and medium

software development project (Despa,

2014).

Weak performance in large software

development project (Chandra, 2015).

50

2.4.5 Comparison of Software Development Methodologies

Table 2.13: Comparison of Software Development Methodologies

 Methodology

Characteristic

Waterfall

Model

Prototyping

Model

Agile

Software

Development

Model

Rapid

Application

Development

(RAD)

Model

Adaptability to

Changes

Low High Very High High

User

Involvement

Low

(Only involve

in initial

phases)

High

(Involve in all

phases but

more focus

on specific

features of

prototype)

Very High

(Involve in all

phases, focus

the real

application)

High

(Involve in all

phases but

more focus

on specific

features of

prototypes or

modules)

Development

Cost

Low Intermediate Very High Very High

Targeted Users Users have

clear goals

and

requirements

detail.

Users have

only basic

requirements

and not clear

with

requirement

details.

Users have

only basic

requirements

and not clear

with

requirement

details.

Users have

only basic

requirements

and not clear

with

requirement

details.

Experts

Required

Little Less Many Many

Performance in

Short Time

Schedule

Projects

Very poor Good Very Good Good

Suitable

Project

Small and

well-

understood

requirements

projects

Small and

new unique

software

development

projects that

lack of

previous

example

Small and

medium

software

development

projects

small and

medium

software

development

projects.

51

In conclusion, there are strengths and weaknesses in each software development

methodology. If the methodology or model is chosen and applied in the right way,

their strengths can be fully brought into a software development project to develop

software efficiently and effectively. According to the comparison table above, all

four models are suitable to be applied in small to medium-scoped projects. However,

the only Waterfall model performs poorly in adapting the user requirement changes

and the documentation consumes more total software development time compared to

the other models. Although both Agile and RAD models adapt to the changes of

users’ requirements, it needs many experts that familiar with the specific technology

field in releasing software or modules within short periods. This needs a very high

cost to employ experts and senior developers. Therefore, the prototyping model is

more suitable to be applied in this project. As the background research stated before,

there are fewer similar mobile applications available that could be referred to as an

example. Besides, the targeted users such as parents and students in Malaysia that

less exposed to the similar application do not have a clear details requirement

towards a tutor finder application. At the same time, this project is a short time

schedule that only consists of three months in doing research and three months in

developing the small-scoped mobile application.

2.5 Usability Testing

2.5.1 Overview of Usability Testing

Testing can be subdivided into two types which is formative testing and summative

testing. Formative testing is conducted repeatedly while the software is in

development to diagnose and fix the problem of the software. Summative testing is

conducted after the software is nearly finished or finished to validate the software

achieves the requirements before releasing (M.Barnum, 2021). Usability testing is

one of the summative testing that can be defined as an evaluation performed by

representative users in testing the software or products. The main objective of

usability testing is to determine the satisfaction level of the users toward to software

by collecting the qualitative and quantitative data and identifying usability problems

of the software (usability.gov, 2021b; Gatsou, Politis and Zevgolis, 2013).

52

Figure 2.53: Usability Testing Flow of Information (Moran, 2019)

There are some main roles in usability which are participant, facilitator, and

note-takers. Sometimes, the facilitator could be the note-takers as well. There are

four main elements play important roles to conduct a small usability test (M.Barnum,

2021). First, establishing the user profiles by grouping the intended participants. A

small usability testing usually involves 5- 10 participants due to budget limitations.

Next, creating the task-based scenarios for the participants. Participants should

perform a specific task that was included in the task-based scenario after the

facilitator giving a brief description (not direct instruction). The facilitator or note-

takers should observe the operation of participants in performing the tasks. Third,

facilitators applied the think-aloud protocol in encouraging the participants to speak

out their thoughts while using the software. This easier for the facilitators and note-

takers in understanding what the participants are thinking at the moment. This helps

facilitators and note-takers in evaluating the software and writing the testing report.

After the test, the facilitator will give a questionnaire to participants or conduct a

post-test interview to more understand the issues encountered by the participants in

the test. Data are analysed and summarized as a test report. Forth, the software is

changed based on the problems found in the usability test and conduct a usability test

again.

Besides, an usability scale can be applied in determining the usability of a

system which is System Usability Scale (SUS). Participants rate from 1 to 5

according to 10 questions, 1 indicate strongly disagree and 5 indicate strongly agree.

There are two steps in calculating SUS which is sum up the score and multiply by 2.5.

The score should be processed before summing up. The odd-numbered questions’

53

score is deducted by 1 while deduct 5 by the even-numbered questions’ score. The

SUS will be calculated according to the rate from participants, if most of the

participants score more than 68 means that the usability of the system is above

average, the system performs well and user-friendly. In contrast, if majority of the

participants score less than 68 means the usability of the system is below average,

there might have some issues within the system have to be fixed before releasing

(usability.gov, 2021a; Sauro, 2011; Brooke, 1995).

Figure 2.54: Sample Template of SUS (Brooke, 1995)

There are various type of usability testing methods and could be grouped as

overall 3 main testing type (hotjar, 2021).

54

i. Moderated or Unmoderated Usability Testing

Table 2.14: Moderated and Unmoderated Usability Testing (hotjar, 2021; playbook

ux, 2021)

Moderated Usability Testing Unmoderated Usability Testing

Testing process must be administered

by at least one moderator (facilitator or

note-takers). Moderators give a brief

introduction of the test to the

participants and ask follow-up questions

to the participants after the testing

process. It is applied to more

understand the user behaviour in

finding the usability issues.

Testing process can be conducted

without direct supervision. Participants

are likely are in their own spaces and

using their own devices to test the

software. It is applied to analyse the

user behaviour pattern in improving the

software.

ii. Remote or In-person Usability Testing

Table 2.15: Remote and In-person Usability Testing (hotjar, 2021)

Remote Usability Testing In-person Usability Testing

Testing process is conducted over the

internet or by phone, face-to-face

meeting with a moderator is not

required. Remote usability testing main

in getting large numbers of brief data

instead of conducting a deep analysis in

participants as in-person usability

testing.

Testing process is conducted in the

physical presence, a face-to-face

meeting with the moderator is required.

Moderators can observe the facial

expression and body language of

participants during the testing process.

Therefore, the moderator can get a

deeper analysis compared to remote

usability testing.

iii. Explorative or Comparative Usability Testing

Table 2.16: Explorative and Comparative Usability Testing (hotjar, 2021)

Explorative Usability Testing Comparative Usability Testing

Explorative usability testing is an open-

ended test that allows participants to

give opinions, brainstorm, and voice out

their ideas towards the software. This

Comparative usability testing is a close-

ended test that allows participants to

choose theirs prefer solutions. This

testing is usually applied in comparison

55

helps the development team in

collecting the data in identifying

potential new features of the software.

of software between competitors.

2.5.2 Usability Testing Methods

Figure 2.55: Usability Testing Models (hotjar, 2021)

There are some usability testing methods that are created based on the two main

concepts above such as video interview, session recording, lab usability testing,

Guerrilla testing, and observation. Video interview usability testing, lab usability

testing, and Guerrilla usability testing is the top popular usability methods that

widely applied in many systems testing processes.

i. Video Interview Usability Testing

Video interview usability testing method applied the concept of moderated and

remote usability testing. In video interview usability testing, the moderator will give

the task-based scenario to the participants and observe the performance of the

participants remotely. Participants should share their screen and switch on their

camera that enables moderator to catch every single facial expression of participants

and task performed by the participants.

ii. Lab Usability Testing

Lab usability testing method applied the concept of moderated and in-person

usability testing. In lab usability testing, the test is conducted a testing lab that

consists of a one-way mirror. Participants perform the task while the moderators

observe the participants’ behaviour and ask them some related questions. At the same

56

time, the stakeholders or development team members can observe the participants

behind the one-way mirror (playbook ux, 2021). It is suitable to be applied in

investigating the dept information of user-software interaction and get more

qualitative information compared to video interview usability testing. However, it

needs high cost to fulfil the requirement of standardised environments such as

computers and a testing lab (hotjar, 2021; Babich, 2019).

iii. Guerrilla Usability Testing

Guerrilla usability testing method applied the concept of moderated and in-person

usability testing. Guerrilla usability testing chooses to invite the participants

randomly with a small incentive at public areas instead of recruit and pay the formal

participants. It is a good testing method in collecting a large number of personal

opinions toward a specific element in the software with a minimal cost. However, it

is not suitable to be applied to get deep information due to the time limitation, the

participants usually reluctant to give more than 15 minutes in doing software testing

in a public area (Babich, 2019; hotjar, 2021).

2.5.3 Summary of Usability Testing

In conclusion, each usability testing method possesses its main specification in

getting a test result. Different usability testing methods should be applied

accordingly based on the purpose of the development team such as getting a quality

or quantity test result. Video interview testing method is one of the suitable methods

that can be applied in the testing stage of this project. During this Covid-19 pandemic,

it could reduce physical interaction between participants and moderator while it

allows the moderator to observe the facial expression and performance of

participants remotely. Besides, it is a live session testing that provides a live

communication platform for moderator and participants instead of session recording

that only record the actions of participant without communication. In addition, the

SUS could increase the accuracy in evaluating the application by showing a score

instead of just get a generic answer from the questionnaires.

57

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

The prototyping model is applied as the software development methodology in this

project. The methodology and workplan of the project are described according to the

prototyping methodology. The time duration planning is prepared and explained in

detail. The time duration planning and task distribution are to ensure the project can

be completed on time and follow the plan without running in the wrong direction.

The main development tools are identified to develop the application such as React

Native framework, Firebase, and Visio Studio Code.

3.2 Software Development Methodology

Figure 3.1: Prototyping Model

According to the study in CHAPTER 2, prototyping model is chosen as the software

development methodology in developing this intelligent mobile private tutor finders

application. Prototyping model helps users in identifying their real needs and

requirements during the iteration of prototyping implementation. Besides, there are

other reasons this model is chosen are clarified in CHAPTER 2. There are 5 main

58

parts of prototype model are shown in figure 3.1 which include initial requirement,

prototyping iteration, development, testing, deployment and maintenance phases.

3.2.1 Initial Requirements

The initial requirement phase is a phase that collects related information of the

project to identify the initial requirements of the project such as system requirements,

user requirements, resources required, and so on. In this project, the initial

requirement phase is implemented by conducting various studies. A general

background study is conducted to have a better understanding of the current status

and market of private tutors in Malaysia. The study notifies the problems of the lack

of similar mobile applications are available in Malaysia compared to China and

Hong Kong. The limited tutor finder platforms that are available in Malaysia lack the

features of “intelligent” in searching for a tutor. Hence, the scopes and objectives of

this project are roughly drafted out after going through a general background study.

At the same time, five similar existing applications are reviewed and compared base

on their features and functionality. The strengths of each application can be

considered as a reference in determining the functional requirements in this

application. Besides, quantitative research is conducted to more clarify the tutor

selection criteria of the intended users which are parents and students. The data is

collected and analysed to identify criteria that are important for students and parents

in searching for an ideal tutor. Therefore, the functional and non-functional

requirements are determined while the use case modelling can be constructed

accordingly. In order to ensure the development of the application can be completed

within 24 weeks, project planning is implemented by constructing the work

breakdown structure, project duration plan, and Gantt chart.

3.2.2 Prototyping Iteration

After the initial requirements are collected, prototype iteration phase is started to

develop different versions of the prototype base on the reviews of customers. There

are no customers in this project while users play the role of reviewing the prototype.

There are four main stages in the prototyping iteration phase which include design,

prototyping, user evaluation, review, and update stages. A total of three prototyping

iteration will be performed in this project to improve and enhance the main functions

of the prototype according to the feedbacks from users.

3.2.2.1 First Iteration

59

The main focus of the first iteration is to perform the main function of the application

in searching a tutor by using different similarity measures. This main function

enables the users to understand that the main focus of the application is to search for

an ideal tutor by applying different similarity measures as the “intelligent” features in

this application. Besides, the sample tutor’s data are prepared for the purpose of

performing the search function.

i. Design

Drafting out the prototype layouts that enable a clearer picture of the application.

Preparing the sample tutors’ data for the search function purpose. Making an outline

of the implementation of similarity measures to the search function.

ii. Prototyping

Creating a primary prototype with sample data by using React Native framework.

Implementing the search tutor function with three similarity measures which include

Euclidean distance, Manhattan distance, and Minkowski distance.

iii. User Evaluation

Selected users perform a simple survey on the first prototype to evaluate the search

function with the application of the three different similarity measures of the

application. Selected users provide feedbacks and comments that help in the further

refinement of the prototype.

iv. Review and Update

The collected feedbacks and comments are reviewed and analysed to improve and

update the features of the prototype. Search function with the application of the three

similarity measures is refined to achieve the satisfaction of users before proceeding

to the second iteration.

3.2.2.2 Second Iteration

After achieving success in implementing the search function with the application of

the first three similarity measures, the rest of the two similarity measures are

implemented in the prototype. Besides that, additional functions are added to the

prototype in the second iteration which is added to raise demo class function, rate

and review tutor function.

i. Design

The layout of the application is drafted according to the addition of new two

functions. Outlines of the additional functions are prepared to avoid the conflict of

functions and interfaces.

60

ii. Prototyping

Implementing the other two similarity measures (Cosine similarity and Jaccard

similarity coefficient) to the search function according to the suggestion that is

provided by the users. Adding two more new functions to the prototype which

include raise demo class function, book formal class function, rate and review tutors’

function.

iii. User Evaluation

After all similarity measures are applied to the search function, the users evaluate the

prototype again and provide feedbacks and comparison about the accuracy of the

different similarity measures. Besides, the add to raise demo class function, book

formal class function, rate and review function are checked by users to ensure all are

workable.

iv. Review and Update

Analysing the effect of similarity measures on search function according to the

comparison feedbacks from users and make enhancement on the search function.

Review and refine the raise demo class, book formal class function, rate and review

tutors’ function according to the review of users before proceeding to the third

iteration.

3.2.2.3 Third Iteration

The main focus of the prototype in the third iteration is the subfunctions of the

application which include manage demo class, mana tutors’ detail, edit profile

function, register and log in functions. The produced prototype in the third iteration

provides a very clear picture of the application workflow to the users.

i. Design

There are many functions in the third-iteration prototype that are confusing and cause

conflict easily. Therefore, outline the interfaces and functions linkage to have a clear

picture of the relationship of different interfaces and functions especially the newly

added functions such as manage demo class, manage tutors’ detail, edit profile

function, register and log in functions.

ii. Prototyping

Implementing the raise demo class, manage demo class, mana tutors’ detail, edit

profile function, register and log in functions wisely to avoid the conflict between

functions. The third-iteration prototype is considered as a “semi-final” product of the

project that consists of all functions of the private tutors’ finder’s mobile application.

61

The complete functions are shown in the prototype that enables the user to

completely understand the workflow in using the application.

iii. User Evaluation

Selected users’ feedbacks are expected to be more distributed to different aspects of

the prototype compared to the previous two iterations due to the implementation of

full functions in this prototype. Different selected users may provide feedbacks on

different functions base on their preference. Variety type of suggestions are provided

to the prototype.

iv. Review and Update

The collection of reviews and feedbacks from selected users are analysed and applied

to enhance the features of the prototype until the selected users satisfy with the final

prototype before proceeding to the development phase.

3.2.3 Development

The final prototype is equipped with full functionality and can be implemented in a

real application. At the same time, the minor view functions that required minimal

user-application interaction will be developed in this development phase instead of

the prototyping phase. This is due to the main aims of prototyping is to identify the

needs of users in using the application (functions that need user-application

interaction) while the minor view functions are considered as a minor part of

functions that provide convenience to users instead of defining the needs of users.

The features and functions in the final prototype are considered as a reference to the

real application. Therefore, the codes and components can be refined reused, and

became the reference in developing the real application. Besides, the sample data is

not enough to cover the requirement of users in finding tutors, the real application is

connected to the real-time database with the insertion of more tutors’ data. The

improvement and modification of user interface design are performed when the

database connection and functions of the application are well-prepared. Last but not

least, the comments are added as the internal documentation while the codes are

tidied to make it simpler and clearer.

3.2.4 Test

After the application is well-prepared and the environment is set up, different types

of tests are conducted to ensure the functional and non-functional requirements are

achieved in this application. The tests are including unit tests, integration tests,

system tests, usability tests, and user acceptance tests. Developers play the role in

62

conducting the unit, integration test and system test while there are intended users

who are invited as the tester to perform usability tests and usability testing. The main

objectives of the unit test, integration test and system test are testing the functionality

of applications (whether work or not) while the usability and user acceptance testing

involve both functional and non-functional requirements (quality) of the application.

The usability test is evaluated by using System Usability Scale (SUS). Once the SUS

of this application is above 68 that indicates this application is ready to be deployed

without big issue. The bugs or failures that are found in tests are fixed to ensure all

the functions perform successfully. The test phase is ended while the test exit criteria

are achieved and continue proceeding to the deployment phase.

3.2.5 Deployment and Maintenance

The last part of the application development process is the deployment and

maintenance phase that indicates that the application is ready to be released and used

by the users. In the deployment phase, the application is installed in an Android

phone as the final product. The documentation work is completed by preparing a

report that consists of project details such as project objectives, scopes, workflow,

development process, and so on. The report clearly listed out the details of

developing the application from the beginning to the end that enables an outsider can

clearly understand the project. Then, a presentation is conducted to convey the

overview of the project and show the final product (application).

3.3 Research Methodology

In this project, there are two types of research methodologies are applied which are

questionnaire and literature review methodology. Literature review research

methodology provides a better understanding of the related knowledge of this project

while questionnaire research methodology clarifies the needs of potential end-users

towards this private tutors’ finder’s mobile application.

3.3.1 Questionnaire

Questionnaire is one of the quantitative research methodologies that is applied to

determine whether a hypothesis is approved or rejected. The criteria that are

concerned by each end-user in selecting their ideal tutors are different from one to

another, this became one of the challenges to determine the tutor searching criteria in

this project. Therefore, a questionnaire is suitable to be applied in clarifying the real

needs of different end-users in selecting their ideal tutors. There are 50 potential end-

63

users are involved themselves as respondents in this questionnaire research via a

google form. The respondents are different ages (from 19-55) and marital status (as

students or parents). The questionnaire contains two main parts which are personal

details and tutor selection criteria. There are mixed open-ended and close-ended

questions in both sections. Respondents have to rate the importance of criteria in

selecting a tutor and provide extra criteria that are important in selecting a tutor in the

questionnaire. The results of questionnaire research are collected and analysed in the

CHAPTER 4 Fact Findings section.

3.3.2 Literature Reviews

Literature reviews are neither qualitative nor quantitative research methodologies.

However, literature review is considered as a research methodology that is used to

offer an overview of different types of reviews, compare and evaluate different types

of reviews (Snyder, 2019). It can provide a basic concept of a theory to the reviewers

to have a better understanding of theories or technical skills that they are never

exposed to before.

 In this project, five existing similar applications’ features have been reviewed

and compared to have a better understanding of the main features of a tutor finder

application. The five existing similar applications are MyPrivateTutor, TeachMe,

TuitionHero Malaysia, Stapps, and Zhang Men. Next, different searching approaches

are reviews and compared to identify the best approaches to be applied in the

searching function to display a list of tutors that matches the expectation of the

students and parents. The searching approaches that are studied are exact SQL query

searching, similarity measures, and K-Nearest Neighbors (KNN) Algorithm. Next,

there are four software development methodologies are studied to identify the

methodology that is the most suitable to be applied in this project in developing a

high-quality application within 24 weeks. Last but not least, the usability testing is

studied to more understanding on the workflow and metrics can be applied in

measuring the usability of this application.

64

3.4 Project Planning

3.4.1 Work Break Down Structure (WBS)

0.0 Intelligent Mobile Private Tutors Finders Application

1.0 Preliminary Planning

1.1 Conduct background study

1.1.1 Gather general information of project

1.2 Identify problem statement

1.3 Identify project objective

1.4 Propose project solution

1.5 Propose project approach

1.6 Determine project scope

1.6.1 Identify targeted users

1.6.2 Identify modules covered

2.0 Project Analysis

2.1 Conduct literature review

2.1.1 Review on similar existing application

2.1.1.1 Study features of MyPrivateTutor

2.1.1.2 Study features of TeachMe

2.1.1.3 Study features of Tuition Hero Malaysia

2.1.1.4 Study features of Stapps

2.1.1.5 Study features of Zhang Men

2.1.1.6 Compare and contrast features of applications

2.1.2 Review on searching approach

2.1.2.1 Research on SQL exact matching

2.1.2.2 Research on similarity measures

2.1.2.3 Research on K-Nearest Neighbors (KNN) algorithm

2.1.2.4 List out strengths and limitations of approaches

2.1.3 Review on software development methodology

2.1.3.1 Study features of Waterfall model

2.1.3.2 Study features of Prototyping model

2.1.3.3 Study features of Agile model

2.1.3.4 Study features of Rapid Application Development (RAD)

model

65

2.1.3.5 Compare and contrast features of software development

models

2.1.4 Review on usability testing

2.1.4.1 Research on usability testing methods

2.1.4.2 Research on System Usability Scale

2.2 Requirement analysis

2.2.1 Conduct survey

2.2.1.1 Design questionnaire

2.2.1.2 Collect data from intended users

2.2.2 Data analysis

3.0 Project Initial Specification

3.1 Time management

3.1.1 Identify tasks and activities

3.1.1.1 Construct works break down structure (WBS)

3.1.2 Create project duration plan

3.1.3 Construct Gantt chart

3.2 Tools management

3.2.1 Determine development tools

3.3 Requirement specification

3.3.1 Identify functional requirements

3.3.2 Identify non-functional requirements

3.4 Use case modelling

3.4.1 Construct use case diagram

3.4.2 Prepare use case description

4.0 Prototype Implementation

4.1 First Iteration

4.1.1 Design prototype with main functions

4.1.1.1 Set up sample data for developing search function purpose

4.1.1.2 Search function with Euclidean distance

4.1.1.3 Search function with Manhattan distance

4.1.1.4 Search function with Minkowski distance

4.1.2 User survey

4.1.3 Improve prototype based on user’s review

4.2 Second Iteration

66

4.2.1 Design Prototype with main functions

4.2.1.1 Search function with Cosine similarity

4.2.1.2 Search function with Jaccard similarity coefficient

4.2.1.3 Rate and review function

4.2.1.4 Raise demo class function

4.2.1.5 Book formal class function

4.2.2 User survey

4.2.3 Improve prototype based on review

4.3 Third Iteration

4.3.1 Design Prototype with main functions

4.3.1.1 Manage demo class function

4.3.1.2 Manage tutors’ detail function

4.3.1.3 Register and log in function

4.3.1.4 Edit profile function

4.3.2 User survey

4.3.3 Improve prototype based on review

5.0 Development

5.1 Develop all functions

5.1.1 Main functions with proper interface linkage

5.1.2 Minor view functions with proper interface linkage

5.2 Set up real-time database

5.3 Insert data into database

5.4 Improve user interface design

5.5 Internal documentation

5.5.1 Clean code

5.5.2 Add comments for explanation

6.0 Testing

6.1 Conduct unit testing

6.2 Conduct integration testing

6.3 Conduct system testing

6.4 Conduct usability testing

6.5 Conduct user acceptance testing

7.0 Deployment

7.1 Deploy production

67

7.2 Documentation

7.3 Presentation

3.4.2 Project Duration Plan

Table 3.1: Project Duration Plan

Task Name Duration Start Date Finish Date

Intelligent Mobile Private Tutors Finders

Application

339 days Mon 7/6/21 Tue 19/4/22

 1.0 Preliminary Planning 14 days Mon 7/6/21 Sun 20/6/21

 1.1 Conduct background study 2 days Mon 7/6/21 Tue 8/6/21

 1.1.1 Gather general information of

project

2 days Mon 7/6/21 Tue 8/6/21

 1.2 Identify problem statement 2 days Wed 9/6/21 Thu 10/6/21

 1.3 Identify project objective 2 days Fri 11/6/21 Sat 12/6/21

 1.4 Propose project solution 2 days Sat 12/6/21 Mon 14/6/21

 1.5 Propose project approach 2 days Mon 14/6/21 Wed 16/6/21

 1.6 Determine project scope 4 days Wed 16/6/21 Sun 20/6/21

 1.6.1 Identify targeted users 2 days Wed 16/6/21 Fri 18/6/21

 1.6.2 Identify modules covered 2 days Fri 18/6/21 Sun 20/6/21

 2.0 Project Analysis 46 days Sun 20/6/21 Sun 1/8/21

 2.1 Conduct literature review 36 days Sun 20/6/21 Fri 23/7/21

 2.1.1 Review on similar existing

application

12 days Sun 20/6/21 Thu 1/7/21

 2.1.1.1 Study features of

MyPrivateTutor

2 days Sun 20/6/21 Mon 21/6/21

 2.1.1.2 Study features of TeachMe 2 days Tue 22/6/21 Wed 23/6/21

 2.1.1.3 Study features of Tuition

Hero Malaysia

2 days Thu 24/6/21 Fri 25/6/21

 2.1.1.4 Study features of Stapps 2 days Sat 26/6/21 Sun 27/6/21

 2.1.1.5 Study features of Zhang Men 2 days Sun 27/6/21 Tue 29/6/21

 2.1.1.6 Compare and contrast

features of application

2 days Tue 29/6/21 Thu 1/7/21

 2.1.2 Review on searching approach 10 days Thu 1/7/21 Sat 10/7/21

 2.1.2.1 Research on SQL exact

matching

2 days Thu 1/7/21 Sat 3/7/21

 2.1.2.2 Research on similarity

measures

3 days Sat 3/7/21 Mon 5/7/21

 2.1.2.3 Research on K-Nearest

Neighbors (KNN) algorithm

2 days Tue 6/7/21 Wed 7/7/21

 2.1.2.4 List out strengths and

limitations of approaches

3 days Thu 8/7/21 Sat 10/7/21

 2.1.3 Review on software

development methodology

10 days Sat 10/7/21 Mon 19/7/21

 2.1.3.1 Study features of Waterfall

model

2 days Sat 10/7/21 Mon 12/7/21

 2.1.3.2 Study features of Prototyping

model

2 days Mon 12/7/21 Wed 14/7/21

 2.1.3.3 Study features of Agile model 2 days Wed 14/7/21 Fri 16/7/21

 2.1.3.4 Study features of Rapid

Application Development (RAD) model

2 days Fri 16/7/21 Sun 18/7/21

68

 2.1.3.5 Compare and contrast

features of software development models

2 days Sun 18/7/21 Mon 19/7/21

 2.1.4 Review on usability testing 4 days Tue 20/7/21 Fri 23/7/21

 2.1.4.1 Research on usability testing

methods

2 days Tue 20/7/21 Wed 21/7/21

 2.1.4.2 Research on System Usability

Scale

2 days Thu 22/7/21 Fri 23/7/21

 2.2 Requirement analysis 10 days Sat 24/7/21 Sun 1/8/21

 2.2.1 Conduct survey 7 days Sat 24/7/21 Fri 30/7/21

 2.2.1.1 Design questionnaire 2 days Sat 24/7/21 Sun 25/7/21

 2.2.1.2 Collect data from intended

users

5 days Sun 25/7/21 Fri 30/7/21

 2.2.2 Data analysis 3 days Fri 30/7/21 Sun 1/8/21

 3.0 Project Initial Specification 20 days Mon 2/8/21 Fri 20/8/21

 3.1 Time management 8 days Mon 2/8/21 Mon 9/8/21

 3.1.1 Identify tasks and activities 3 days Mon 2/8/21 Wed 4/8/21

 3.1.1.1 Construct works break down

structure (WBS)

3 days Mon 2/8/21 Wed 4/8/21

 3.1.2 Create project duration plan 3 days Thu 5/8/21 Sat 7/8/21

 3.1.3 Construct Gantt chart 2 days Sat 7/8/21 Mon 9/8/21

 3.2 Tool management 3 days Mon 9/8/21 Thu 12/8/21

 3.2.1 Determine development tools 3 days Mon 9/8/21 Thu 12/8/21

 3.3 Requirement specification 4 days Thu 12/8/21 Sun 15/8/21

 3.3.1 Identify functional requirements 2 days Thu 12/8/21 Sat 14/8/21

 3.3.2 Identify non-functional

requirements

2 days Sat 14/8/21 Sun 15/8/21

 3.4 Use case modelling 5 days Mon 16/8/21 Fri 20/8/21

 3.4.1 Construct use case diagram 2 days Mon 16/8/21 Tue 17/8/21

 3.4.2 Prepare use case description 3 days Wed 18/8/21 Fri 20/8/21

 4.0 Prototype Implementation 34 days Mon 24/1/22 Thu 24/2/22

 4.1 First Iteration 12 days Mon 24/1/22 Fri 4/2/22

 4.1.1 Design prototype with main

function

8 days Mon 24/1/22 Mon 31/1/22

 4.1.1.1 Set up sample data for

developing search function purpose

2 days Mon 24/1/22 Tue 25/1/22

 4.1.1.2 Search function with

Euclidean distance

2 days Wed 26/1/22 Thu 27/1/22

 4.1.1.3 Search function with

Manhattan distance

2 days Fri 28/1/22 Sat 29/1/22

 4.1.1.4 Search function with

Minkowski distance

2 days Sat 29/1/22 Mon 31/1/22

 4.1.2 User survey 2 days Mon 31/1/22 Wed 2/2/22

 4.1.3 Improve prototype based on

user's review

2 days Wed 2/2/22 Fri 4/2/22

 4.2 Second Iteration 14 days Fri 4/2/22 Thu 17/2/22

 4.2.1 Design Prototype with main

functions

10 days Fri 4/2/22 Sun 13/2/22

 4.2.1.1 Search function with Cosine

similarity

2 days Fri 4/2/22 Sun 6/2/22

 4.2.1.2 Search function with Jaccard

similarity coefficient

2 days Sun 6/2/22 Mon 7/2/22

 4.2.1.3 Rate and review function 2 days Tue 8/2/22 Wed 9/2/22

 4.2.1.4 Raise demo class function 2 days Thu 10/2/22 Fri 11/2/22

69

 4.2.1.5 Book formal class function 2 days Sat 12/2/22 Sun 13/2/22

 4.2.2 User survey 2 days Sun 13/2/22 Tue 15/2/22

 4.2.3 Improve prototype based on

review

2 days Tue 15/2/22 Thu 17/2/22

 4.3 Third Iteration 10 days Tue 15/2/22 Thu 24/2/22

 4.3.1 Design Prototype with main

functions

6 days Tue 15/2/22 Sun 20/2/22

 4.3.1.1 Manage demo class function 2 days Tue 15/2/22 Thu 17/2/22

 4.3.1.2 Manage tutors' detail function 2 days Thu 17/2/22 Sat 19/2/22

 4.3.1.3 Register and log in function 1 day Sat 19/2/22 Sun 20/2/22

 4.3.1.4 Edit profile function 1 day Sun 20/2/22 Sun 20/2/22

 4.3.2 User survey 2 days Mon 21/2/22 Tue 22/2/22

 4.3.3 Improve prototype based on

review

2 days Wed 23/2/22 Thu 24/2/22

 5.0 Development 33 days Fri 25/2/22 Sun 27/3/22

 5.1 Develop all functions 14 days Fri 25/2/22 Wed 9/3/22

 5.1.1 Main functions with proper

interface linkage

7 days Fri 25/2/22 Thu 3/3/22

 5.1.2 Minor view functions with proper

interface linkage

7 days Thu 3/3/22 Wed 9/3/22

 5.2 Set up real-time database 5 days Thu 10/3/22 Mon 14/3/22

 5.3 Insert data into database 5 days Mon 14/3/22 Sat 19/3/22

 5.4 Improve user interface design 5 days Sat 19/3/22 Wed 23/3/22

 5.5 Internal documentation 4 days Thu 24/3/22 Sun 27/3/22

 5.5.1 Clean code 4 days Thu 24/3/22 Sun 27/3/22

 6.0 Testing 13 days Sun 27/3/22 Fri 8/4/22

 6.1 Conduct unit testing 4 days Sun 27/3/22 Thu 31/3/22

 6.2 Conduct integration testing 3 days Thu 31/3/22 Sun 3/4/22

 6.3 Conduct system testing 2 days Sun 3/4/22 Mon 4/4/22

 6.4 Conduct usability testing 2 days Tue 5/4/22 Wed 6/4/22

 6.5 Conduct user acceptance testing 2 days Thu 7/4/22 Fri 8/4/22

 7.0 Deployment 11 days Sat 9/4/22 Mon 18/4/22

 7.1 Deploy production 3 days Sat 9/4/22 Mon 11/4/22

 7.2 Documentation 7 days Mon 11/4/22 Sun 17/4/22

 7.3 Presentation 1 day Mon 18/4/22 Mon 18/4/22

3.4.3 Gantt Chart

The Gantt chart is attached in the Appendices section.

3.5 Development Tools

3.5.1 React Native

Netguru (2021) stated React Native is a JavaScript framework that runs on an open-

source library called React. React Native application is written by using JavaScript

and JXL (special markup code). It is widely applied in developing a native-rendered

mobile application. This is because of the high code reusability in React Native, the

code can be applied in powering both iOS and Android. Besides the UI native

components, there are ready-to-use UI kits in React Native that enable the developers

70

to enhance their user interface design. In this project, React Native acts as the main

tool in developing the user interface of the mobile application.

3.5.2 Firebase

Firebase is a Backend as a Services (BaaS) that supports the real-time NoSQL

database for React Native that provides a real-time data synchronization function.

The data is stored in JSON format (Firebase, 2021a). Firebase could be a database,

servers, and API that need less management of the developers (Esplin, 2016). It

provides a cross-platform API with minimal setup when it is working with React

Native in building an application. Besides, Firebase also acts as an authentication

system that helps users sign up and authentication such as creating new user records

when new users sign up (Firebase, 2021b). By applying Firebase as the database in

this application, it enables the data can be synchronized and provide simple

authentication of users. Firebase provides various kinds of services such as Firestore,

Firebase Storage, Firebase Authentication, Firebase Cloud Messaging, and so on. In

this project, Firestore is responsible as a cloud database to store the needed data in

this application, the create, update, retrieve actions (CRU actions) are triggered by

the server. Firebase Authentication is used to handle the sign-in and sign-up actions

while Firebase Storage is used to upload users’ profile pictures and retrieve profile

picture links. Besides, Firebase Cloud Messaging played an important role in

handling the message push notification actions when users send messages by using

the application.

3.5.3 Visual Studio Code

Visual Studio Code is a popular code editor that supports different development

operations such as version control, task running, and debugging. Visual Studio Code

is chosen due to the extensive features that provide a development environment for

React Native. The code can be debugged easily by applying the extensions.

3.5.4 Express.js

Express.js is a framework for Node.js that allows the developers in creating an API

in a more convenient way and with a minimal line of codes. It is responsible as a

library of a server in accepting and responding to HTTP requests from the client-side.

Express.js is used to design an API in a server to manage the backend logic such as

71

similarity measures in this application to reduce the client-side application workload

while preventing the data can be retrieved easily by accessing the front-end interface.

3.5.5 Postman

Postman is a platform that provides a simple Graphical User Interface (GUI) for

testing the API. The HTTP requests with parameters or raw body could be saved and

reused by using the GUI without memorizing the requested link and testing with the

browser. Postman is applied in API testing of this project in order to test the

functionality of each API.

3.5.6 AnyDesk

AnyDesk is a remote desktop application that is closed source. This application is

applied in conducting usability testing and User Acceptance Testing (UAT) by

controlling the tutor finders application with a laptop or another smartphone. Besides,

this application is used in doing product demonstrations by showing the phone’s

interface on the laptop’s screen.

72

CHAPTER 4

4 PROJECT INITIAL SPECIFICATION

4.1 Introduction

The data collected from the respondent is analyzed as a fact-finding of this project.

Use case modeling such as use case diagram and use case descriptions are

constructed according to the fact-finding and literature review in CHAPTER 2 to

formalize the function overview of this application. The functional and non-

functional requirements are listed to clearly identify the basic requirements of users

while the detailed requirements could be defined during the prototype iteration

process.

73

4.2 Use Case Modelling

4.2.1 Application’s Use Case Diagram

Figure 4.1: Use Case Diagram

74

4.2.2 Use Case Description

Table 4.1: Description of Use Case - Register New Account

Use Case: Register new account

Use Case ID: UCD-1

Related Stakeholders:

Unregistered tutor seeker – Student or parent that wants to create a new account in

finding a tutor.

General Use Case Description:

Describe how an unregistered tutor seeker creates a new account before starting to

find a tutor by using the application.

Triggering Activity: A unregistered tutor seeker wants to create an account to find

an ideal tutor by using the application.

Relationships between Use Case / Stakeholders:

 Association: Unregistered tutor seeker

 Include: Login account

Basic Flow of Use Case:

1. The unregistered tutor seeker downloads the intelligent mobile private tutor

finder’s application.

2. The unregistered tutor seeker wants to create a new account.

3. The unregistered tutor seeker is required to enter their basic personal

details, email, username, and password.

If the email is present in the database

 Perform exceptional flow E-1.

4. A new account is created successfully, account information is created in the

database.

5. Perform Login account use case.

Exceptional Flow of Use Case:

E-1

1. Unregistered tutor seeker re-enters the email and presses the “create”

button again.

75

Table 4.2: Description of Use Case - Login Account

Use Case: Login account

Use Case ID: UCD-2

Related Stakeholders:

Tutor seeker – Student or parent that want to login a registered account in finding a

tutor.

Admin – Admin that wants to log in to a registered account before starting to

manage tutors’ details.

Registered tutor – Registered tutor that wants to log in to a registered account

before starting to manage the demo class requests.

General Use Case Description:

Describe how the registered tutor seeker, admin, and registered tutor to log in their

registered account to achieve different purposes.

Triggering Activity: A registered tutor seeker, admin, or registered tutor wants to

log in before performing different tasks by using the application.

Relationships between Use Case / Stakeholders:

 Association: Tutor seeker, Admin, Registered tutor

Basic Flow of Use Case:

1. The registered tutor seeker, admin, or registered tutor wants to log in to

their account.

2. The registered tutor seeker, admin, or registered tutor is required to enter

their email and password.

If the email or password are not validate

 Perform exceptional flow E-1.

3. The registered tutor seeker, admin, or registered tutor login successfully

and be directed to their home page respectively.

Exceptional Flow of Use Case:

E-1

1. The tutor seeker, admin, or tutor re-enter the email and password.

76

Table 4.3: Description of Use Case - Edit Profile

Use Case: Edit profile Use Case ID: UCD-3

Related Stakeholders:

Registered tutor seeker – Tutor seeker that registered an account manages to

change his/her profile detail.

Registered tutor – Tutor that registered an account manages to change his/her

profile detail.

General Use Case Description:

This use case describes how the registered tutor seeker or registered tutor modifies

their basic profile details.

Triggering Activity: A registered tutor seeker or registered tutor wants to change

their basic information that is outdated or incorrect.

Relationships between Use Case / Stakeholders:

 Association: Registered tutor seeker, Registered tutor

Basic Flow of Use Case:

1. The registered tutor seeker or registered tutor wants to modify his/her basic

personal information in his/her profile.

2. The registered user or registered tutor press the “profile” option to view

their profile details.

3. The registered user or registered tutor press the “edit” option to edit their

basic personal information.

4. The registered user or registered tutor enters the new basic personal

information such as contact number, username, and so on.

5. The registered tutor seeker or registered tutor presses the “save” option

after changing the details.

If invalid fields exist and an alert message is shown by the system.

 Perform exceptional flow E-1.

If all fields are valid and correct.

 The system update the profile details to database.

Exceptional Flows of Use Case:

E-1

1. The registered tutor seeker or registered tutor reenters the invalid fields and

presses on “save” button again.

77

Table 4.4: Description of Use Case - Search Tutor

Use Case: Search tutor

Use Case ID: UCD-4

Related Stakeholders:

Registered tutor seeker – Tutor seeker that registered an account to search their

ideal tutor according to their preference.

General Use Case Description:

This use case describes how the registered tutor seeker searches their preference

tutor based on their learning preference.

Triggering Activity: A registered tutor seeker wants to search for a tutor that

matches their learning preference within a short period.

Relationships between Use Case / Stakeholders:

 Association: Registered user

 Extend: View tutor’s profile

Basic Flow of Use Case:

1. The registered tutor seeker presses the ‘search’ option to search for a

private tutor.

2. The registered tutor seeker enters the details of their preference tutor’s

criteria such as teaching experiences, teaching styles, teaching languages,

and so on.

3. The system displays a list of tutors that are matched the criteria selected by

the registered tutor seeker in descending order of similarity (from highest

similarity to lowest similarity).

4. The registered tutor seeker browses through the list.

If registered tutor seeker press into a tutor’s profile

 Perform View tutor’s profile use case

78

Table 4.5: Description of Use Case - View Tutor’s Profile

Use Case: View tutor’s profile

Use Case ID: UCD-5

Related Stakeholders:

Registered tutor seeker – Tutor seeker that registered an account views the profile

details of a tutor and performs different functions.

General Use Case Description:

This use case describes how the registered tutor seeker views the profile details of

a tutor they are interested in.

Triggering Activity: A registered tutor seeker wants to view the profile details of a

tutor from the tutor list after performing the search tutor use case.

Relationships between Use Case / Stakeholders:

 Extend: Raise demo class request, Book demo class, Initiate chat

Basic Flow of Use Case:

1. The registered tutor seeker presses on the tutor profile he/her interested in

from the tutor list that is displayed.

2. The system displays the profile details of the tutor such as name, education

level, teaching subjects, and so on.

3. The registered user browses through the profile of the tutor.

4. If the registered user presses the “raise demo class” option

 Perform exceptional flow S-1.

5. If the registered user presses the “book formal class” option

 Perform exceptional flow S-2.

6. If the registered user presses the “chat with tutor” option

 Perform Initiate chat use case

Sub Flow of Use Case:

S-1

1. The system displays a registration column to the registered tutor seeker for

filling in the demo class details.

2. The registered tutor seeker enters his/her preferred subject, syllabus, and

approach of the demo class.

3. The registered tutor seeker presses on the “submit” option and waits for

approval from the tutor.

If invalid fields exist and an alert message is shown by the system.

 Perform exceptional flow E-1.

If same class record exisit or more than 2 demo classes is raised from the

the same registered tutor seeker to the registered tutor.

 Perform exceptional flow E-2.

If all fields and validation are passed.

 The system create record in database.

79

S-2

1. The system displays a registration column to the registered user for filling

in the formal class details.

2. The registered tutor seeker enters his/her preferred syllabus, subject,

approach, and the ideal fee of a formal class.

3. The registered tutor seeker presses on the “submit” option and waits for the

arrangement of the tutor.

If invalid fields exist and an alert message is shown by the system.

 Perform exceptional flow E-1.

If same class record exisit in database.

 Perform exceptional flow E-2.

If all fields and validation are passed.

 The system create record in database.

Exceptional Flows of Use Case:

E-1

1. The registered tutor seeker reenters the invalid fields and presses on

“submit” button again.

E-2

1. The system displays related alert message to the registered tutor seeker.

80

Table 4.6: Description of Use Case – Initiate chat

Use Case: Initiate chat

Use Case ID: UCD-6

Related Stakeholders:

Registered tutor seeker – Tutor seeker who initiates the chat with the tutor he/her

interested in.

Registered tutor – Registered tutor who initiate the chat with the tutor seeker who

raised the classes requests.

General Use Case Description:

This use case describes how the registered tutor seeker or registered tutor initiates

the chat between one to another.

Triggering Activity: A registered tutor seeker wants to discuss the class details or

tutor’s teaching details with the tutor he/her interested in. A registered tutor wants

to discuss the class details with the registered tutor seeker who raised the demo

class or formal class request.

Relationships between Use Case / Stakeholders:

 Include: Notify user

Basic Flow of Use Case:

1. The system directs the registered tutor seeker or the registered tutor to a

chat box between themselves with the selected user.

2. The registered tutor seeker or registered tutor enters a message.

3. The registered tutor seeker or registered tutor presses on the send icon to

initiate the chat between one to another.

4. Perform Notify user use case.

81

Table 4.7: Description of Use Case - View Class Detail

Use Case: View class detail

USE CASE ID: UCD-7

Related Stakeholders:

Registered tutor seeker – Tutor seeker that registered an account to view the class

details.

General Use Case Description:

This use case describes how the registered tutor seeker to view the details of the

class he/her requested.

Triggering Activity: A registered tutor seeker wants to view the status or details of

the requested demo class or details of the booked formal class.

Relationships between Use Case / Stakeholders:

 Association: Registered tutor seeker

Extend: Rate and review tutor

Basic Flow of Use Case:

1. The registered tutor seeker presses the ‘history’ option to check the classes’

details.

2. The system displays the options of “demo class” and “formal class” for

user selection.

If registered tutor seeker swipe to “demo class”

2.1 The system displays the list of demo class requests that are raised by

the registered tutor seeker with class details such as status

(approved/rejected/pending), tutor’s name, subject, syllabus, and so on.

If registered tutor seeker presses on “rate and review” option

 Perform exceptional flow S-1.

If registered tutor seeker swipe to “formal class”

2.2 The system displays the list of formal class bookings that are done by

the registered tutor seeker with class details such as syllabus, subject,

tutor’s name, and so on.

If registered tutor seeker presses on “rate and review” option

 Perform exceptional flow S-1.

Sub Flow of Use Case:

S-1

1. The system displays the tutor’s profile picture, name, rate column, and

review column.

2. The registered tutor seeker gives a rate and review to the chosen tutor.

3. The registered tutor seeker presses the “submit” button to upload the rate

and reviews on the tutor’s profile.

If invalid fields exist and an alert message is shown by the system.

 Perform exceptional flow E-1.

If all fields are valid and correct.

 Create or update rate and review records in the database.

Exceptional Flows of Use Case:

E-1

1. The registered tutor seeker reenters the invalid fields and presses on

“submit” button again.

82

Table 4.8: Description of Use Case - Manage Demo Class Request

Use Case: Manage demo class request

USE CASE ID: UCD-8

Related Stakeholders:

Registered tutor – Registered tutor to manage the demo class request.

General Use Case Description:

This use case describes how the registered tutor manages the demo class requests

that are raised by the registered tutor seeker.

Triggering Activity: A registered tutor wants to manage the demo class request by

rejecting or accepting it.

Relationships between Use Case / Stakeholders:

 Association: Registered tutor

Extend: Initiate chat

Basic Flow of Use Case:

1. The registered tutor presses the ‘demo class’ option to check the raised

demo class details and manage the requests.

2. The system displays the list of demo class requests that are raised by the

registered tutor seeker.

3. The registered tutor browses through the demo class requests with basic

information such as syllabus, subject, and so on.

4. The registered tutor proceeds to read the demo class details such as the

registered user’s details and decides to accept, reject the requests or chat

with the registered tutor seeker.

If the registered tutor decides to accept the demo class request

4.1 Registered tutor presses the “accept” option.

If the registered tutor decides to reject the demo class request.

4.2 Registered tutor presses the “reject” option.

If the registered tutor decides to chat with the registered tutor seeker.

4.3 Perform Initiate chat use case.

83

Table 4.9: Description of Use Case - View Formal Class Booking

Use Case: View formal class booking

USE CASE ID: UCD-9

Related Stakeholders:

Registered tutor – Registered tutor to view the formal class booking.

General Use Case Description:

This use case describes how the registered tutor views the formal class booking

that is done by the registered tutor seeker.

Triggering Activity: A registered tutor wants to view the formal class booking that

is done by the registered tutor seeker.

Relationships between Use Case / Stakeholders:

 Association: Registered tutor

Extend: Initiate chat

Basic Flow of Use Case:

1. The registered user presses the ‘formal class’ option to check the formal

class booking details.

2. The system displays the list of formal class booking that is raised by the

registered tutor seeker.

3. The registered tutor browses through the formal class booking with basic

information such as syllabus, subject, and registered user’s information.

If the registered tutor decides to chat with the registered tutor seeker.

3.1 Perform Initiate chat use case.

84

Table 4.10: Description of Use Case - View Chat

Use Case: View chat

USE CASE ID: UCD-10

Related Stakeholders:

Registered tutor seeker – Registered tutor seeker to view the chat list.

Registered tutor – Registered tutor to view the chat list.

General Use Case Description:

This use case describes how the registered tutor seeker or the registered tutor views

his/her chat list with registered tutors or registered tutor seekers respectively.

Triggering Activity: A registered tutor seeker or registered tutor wants to check

their chat list and reply to the new messages after being acknowledged by the push

notification.

Relationships between Use Case / Stakeholders:

 Association: Registered tutor seeker, Registered tutor

Extend: Reply message

Basic Flow of Use Case:

1. The registered tutor seeker or the registered tutor presses the ‘chat’ option

to check the recent chat lists.

2. The system displays the list of chats that are arranged by message sending

time in descending order (from the latest to the oldest).

3. The registered tutor seeker or the registered tutor browses through the chat

list.

If the registered tutor seeker or registered tutor decides to search specified

user chatbox by name.

3.1 The registered tutor seeker or registered tutor enters the name of the

specified user.

3.2 The system displays the specified user chat column on the chat list.

3.3 The registered tutor seeker or registered tutor selects the chat column.

3.4 Perform Reply message use case

If the registered tutor seeker or registered tutor found a specified user’s

message.

3.5 The registered tutor seeker or registered tutor selects the chat column.

3.6 Perform Reply message use case.

85

Table 4.11: Description of Use Case – Reply Message

Use Case: Reply message

USE CASE ID: UCD-11

Related Stakeholders:

Registered tutor seeker – Registered tutor seeker to reply to the chat from other

users.

Registered tutor – Registered tutor to reply to the chat from other users.

General Use Case Description:

This use case describes how the registered tutor seeker or the registered tutor reply

his/her chat from other users.

Triggering Activity: A registered tutor seeker or registered tutor wants to reply to

the new messages after being acknowledged by the push notification.

Relationships between Use Case / Stakeholders:

Include: Notify user

Basic Flow of Use Case:

1. The system directs the registered tutor seeker or the registered tutor to the

chatbox of himself/herself with the selected user.

2. The registered tutor seeker or the registered tutor reads the messages from

the respective user in the chatbox.

3. The registered tutor seeker or the registered tutor enters the reply messages

and presses send icon to reply to the respective user.

4. Perform Notify user use case.

86

Table 4.12: Description of Use Case – Notify User

Use Case: Notify user

USE CASE ID: UCD-12

Related Stakeholders:

Registered tutor seeker – Registered tutor seeker receives the push notification

from the application due to incoming messages.

Registered tutor – Registered tutor receives the push notification from the

application due to incoming messages.

General Use Case Description:

This use case describes how the registered tutor seeker or the registered tutor

receives their push notification on the phone when a message is sent to his/her

account.

Triggering Activity: A message is sent to the registered tutor seeker or registered

tutor by the registered tutor or the registered tutor seeker respectively via the

application.

Relationships between Use Case / Stakeholders:

Basic Flow of Use Case:

1. The system sends a message to the registered tutor seeker or registered

tutor.

2. The system shows a push notification on the registered tutor seeker’s or the

registered tutor’s phone with the message and sender’s name displayed.

87

Table 4.13: Description of Use Case - Create Tutor’s Account

Use Case: Create tutor’s account

USE CASE ID: UCD-13

Related Stakeholders:

Admin – Admin is responsibles to create an account for the new tutor.

General Use Case Description:

This use case describes how the admin creates a tutor account.

Triggering Activity: An admin wants to create a tutor account for the newly

participated tutor on this platform after verifying their professional and teaching

information.

Relationships between Use Case / Stakeholders:

 Association: Admin

Basic Flow of Use Case:

1. The admin presses the “add tutor” option to create an account for the tutor.

2. The admin uploads the profile picture that is submitted by the new tutor.

3. The admin enters the registered tutor’s information which is verified

accordingly.

4. The admin presses the “create” button to create a new account for the

registered tutor.

If invalid fields exists and an alert message is shown by the system.

 Perform exceptional flow E-1.

If all fields are valid and correct.

 The record is created in the database.

Exceptional Flows of Use Case:

E-1

1. The admin reenters the invalid fields and presses on “create” button again.

88

Table 4.14: Description of Use Case – Update Tutor’s Profile

Use Case: Manage tutor’s profile

USE CASE ID: UCD-14

Related Stakeholders:

Admin – Admin is responsibles to update the registered tutor’s profile.

General Use Case Description:

This use case describes how the admin updates the registered tutor’s profile.

Triggering Activity: An admin wants to update the professional information of the

registered tutor in their profiles after the information is verified.

Relationships between Use Case / Stakeholders:

 Association: Admin

Basic Flow of Use Case:

1. The admin presses the “update tutor” option to update the registered tutor

profile.

2. The system displays a list of registered tutors with some basic information

as a profile column such as name, email, contact number, and so on.

3. The admin searches the specified registered tutor by entering the tutor’s

name.

4. The system shows the matched tutor profile columns as a list.

5. The admin presses on the profile column.

6. The system directs to the screen that shows the existing professional

information of the chosen tutor.

7. The admin enters the updated information.

8. The admin presses the “save” button to update the professional information

of the tutor on his/her tutor profile.

If invalid fields exists and an alert message is shown by the system.

 Perform exceptional flow E-1.

If all fields are valid and correct.

 The record is created in the database.

Exceptional Flows of Use Case:

E-1

1. The admin reenters the invalid fields and presses on “save” button again.

89

Table 4.15: Description of Use Case - View User List

Use Case: View user list

USE CASE ID: UCD-15

Related Stakeholders:

Admin – Admin responsible to manage and maintain the system by viewing the

user’s information during customer feedback or support process.

General Use Case Description:

This use case describes how the admin views the registered tutor seekers’

information.

Triggering Activity: A registered tutor wants to retrieve the information of a

registered user to conduct a customer support process.

Relationships between Use Case / Stakeholders:

 Association: Admin

Basic Flow of Use Case:

1. The admin presses the “student list” option to check the registered tutor

seeker’s information.

2. The system displays the search bar and list of registered tutor seekers with

personal information such as name, id, contact number, and so on.

3. The admin browses through the list.

If the admin wants to search a specified registered user

3.1 The admin enters a “search key” in the search bar which is the name.

3.2 The system displays the matched registered user details in a list.

90

Table 4.16: Description of Use Case – Delete Account

Use Case: Delete Account

USE CASE ID: UCD-16

Related Stakeholders:

Registered Tutor Seeker – Registered tutor seeker who does not want to use this

application anymore.

General Use Case Description:

This use case describes how the registered tutor seeker deletes their existing

account on this application.

Triggering Activity: A registered tutor wants to delete an existing account.

Relationships between Use Case / Stakeholders:

 Association: Registered tutor seeker

Basic Flow of Use Case:

1. The registered tutor seeker presses the “profile” option to view their profile

details.

2. The registered tutor seeker presses the “delete account” button to delete the

existing account

3. The system displays an alert message to make double confirmation with the

registered tutor seeker.

4. The registered tutor seeker presses the “Yes” button.

5. The system deletes the existing user in the database and authentication

account list.

6. The system displays an alert message “your account has been deleted” and

directs the tutor seeker to the login screen.

91

4.3 System Requirements

4.3.1 Functional Requirements

1) The system shall allow the registered tutor seeker (student and parent) to

search the tutors according to his/her preference such as teaching experiences,

teaching styles, teaching languages, education level, teaching approach, and

so on.

2) The system shall allow the registered tutor seeker to view the tutor profiles’

details such as rates, reviews, basic personal information, and so on.

3) The system shall allow the registered tutor seeker to raise a demo class

request to the tutor he/her interested in.

4) The system shall allow the registered tutor seeker to book a formal class.

5) The system shall allow the registered tutor seeker to view the class details

which are the demo class requests’ information and formal class bookings’

information.

6) The system shall allow the registered tutor seeker to post a rate and review of

a registered tutor after attending the class.

7) The system shall allow the registered tutor to accept or reject a demo class

request that is raised by the registered tutor seeker.

8) The system shall allow the registered tutor to view the formal class booking

that is requested by the registered tutor seeker.

9) The system shall allow the admin to view the registered user list.

10) The system shall allow the admin to manage and update the registered tutors.

11) The system shall allow the registered tutor seeker and registered tutor to view

and edit their basic personal profile details.

12) The system shall allow the registered tutor seeker and registered tutor to chat

to discuss their class details such as price, time, and so on.

13) The system shall send a push notification to the phone of the registered tutor

seeker or registered tutor once the message is sent from the others to him/her.

14) The system shall allow first-time tutors seeker to register a new account.

15) The system shall allow users to log in with their username and password.

92

4.3.2 Non-functional Requirements

1) The system shall be able to be used by the users easily without conducting a

training session.

2) The system shall be accessible 24 hours a day and 7 days a week with a stable

internet connection.

3) The system shall protect the users’ information under the privacy policy and

not leaked to unrelated parties without users’ consent.

4.4 Fact Findings

4.4.1 Overview of Responses

A survey is conducted to investigate and analyze the main concern criteria of users in

choosing an ideal private tutor. The questionnaire had been sent to intended users

(students and parents) with different backgrounds such as different ages, education

levels, marital status, and so on. There are 50 respondents are involved in this survey.

The overview results of some main questions are briefly explained below.

Figure 4.2: Distribution of Parents and Students

The main goal of this application is to help the students in finding the ideal

tutors that are more concerned with the students’ preferences instead of parents.

Therefore, 86% of the respondents is a student while 14% of the respondents is a

parent that has children.

93

Figure 4.3: Tutor Selection Criteria (Tutors’ Criteria)

Figure 4.4: Tutor Selection Criteria (External Criteria)

94

Table 4.17: Count of Rating in Tutor Criteria Selection

Criteria

Count of Rating (Number of Respondents)

1

Less

Importan

t

2

Slightly

importan

t

3

Importan

t

4

Fairly

Importan

t

5

Most

Importan

t

Gender 26 10 7 6 1

Race 22 9 14 5 0

Religion 31 9 8 2 0

Education Level 1 4 8 17 20

Attended

School/College/Universit

y

1 5 14 20 10

Certificate Obtained 1 5 12 19 13

Teaching Experiences 0 3 3 15 29

Teaching Languages 0 4 9 17 20

Teaching Styles 0 3 5 20 22

Teaching Approach 0 7 6 16 21

Employment Status 1 8 14 14 4

Tuition Type 4 9 13 14 10

Location 1 2 16 16 15

Tuition Fee 1 3 15 16 15

Number of Students 6 11 19 12 2

Rate and Review 1 2 10 20 17

From the count of rating of different criteria by the respondents, most of the

respondents treat gender, race, and religion as the less important criteria that they

will not consider in selecting their ideal tutors. In contrast, the teaching experiences,

teaching languages, teaching styles, teaching approaches, and the rate and review are

the main concern of respondents while selecting their ideal tutors.

95

Figure 4.5: Tutor Selection Criteria (External Criteria)

There are some new criteria (excluded from the list) are suggested by the

respondents that they always consider while selecting a tutor are as follow:

i. Environment condition (clean and comfortable environment)

ii. Patience of tutors

iii. Personality and reliability of tutors

iv. Quality of teaching material that is provided by the tutors

v. Tuition time match the schedule of student

4.4.2 Data Analysis

Figure 4.6: Overall Average Score of Tutor Selection Criteria

96

The average score (both parents and students respondents) of each criterion is

calculated and displayed in a bar chart in ascending order. According to Figure 4.5,

teaching experiences get the highest average score of 4.40 which indicates that most

of the respondents treat the teaching experiences criteria as the fairly important

criteria in selecting the ideal tutors. There are 6 criteria that get an average score of

more than 4.0, most of the criteria are related to the teaching aspects of the tutors

such as teaching language, teaching approaches, and teaching styles. This indicates

that most of the respondents treat the teaching aspect as the main concern in finding a

tutor instead of the background of the tutors and the external factors.

 Besides that, an analysis of tutor selection criteria is conducted by separating

the average score of parents and students to investigate the main concern of different

roles in selecting the ideal tutors. Sometimes, the main concern of parents may be

different with the students (children) in selecting an ideal tutor.

Figure 4.7: Average Score of Tutor Selection Criteria (Parents)

97

Figure 4.8: Average Score of Tutor Selection Criteria (Students)

As a comparison between the top 6 criteria of students and parents in

selecting an ideal tutor, students tend to concern about the teaching aspect of the

tutors. However, parents are not only concern about the teaching aspect but also the

educational background of the tutors such as certificate obtained, education level,

and attended institution. The criteria od certificate obtained and attended institution

are located at the 9th and 10th places from the students’ perspectives respectively

while it located at the 3rd and 6th places from the parent's perspective.

In conclusion, the top 11 overall criteria will be selected and implemented in

the searching function of this application to fulfill both requirements of parents and

students in finding their ideal tutors. The selected criteria are teaching experiences,

teaching styles, teaching languages, education level, teaching approach, rate and

review, location, tuition fee, certificate obtained, attended school/college/university,

and tuition type.

98

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

The system design is shown and explained in this chapter from frontend to backend.

The first part includes the system architecture design to explain the flow of data and

activity between one to another in the system while followed by the explanation of

data model design that describes the data structure and data type in the database. The

last part involves the displays of the user interface which is the frontend design of

this application.

5.2 System Architecture Design

5.2.1 Three-tier Architecture

Figure 5.1: Three-tier Architecture Diagram

A three-tier architecture design is applied in this application in performing the

activities. Three-tier architecture is a software architecture that distributes the

application into three physical and logical computing tiers which are presentation tier,

application tier, and data tier. The presentation tier is considered as the

communication layer and interaction layer between the users and system which is the

user interface of the application. The presentation tier is significant in displaying the

information to users while also collecting the information (user input) to the

application and data tier. The application tier is being called the logic or middle tier

which is the main tier in processing the collected information from the presentation

99

tier by applying the business logic. At the same time, the data create, retrieve, update,

delete (CRUD) actions in the data tier also be called in this tier. Therefore, the

application tier is called the heart of the application. Next, the data tier is also known

as the database tier or backend which is important in storing and managing the

processed information from the application tier (IBM Cloud Education, 2020).

The main objectives in applying three-tier architecture in this application are

security improvement and performance improvement. Three-tier architecture

improved the security of this application by preventing the direct commutation

between the user interface with the database in order to eliminate SQL injections and

other malicious exploits. The similarity measure calculation API compares the

similarity of the ideal tutor of the user with all tutors in the database. If this action is

performed in the presentation tier will have a high risk of letting malicious hackers

get all the tutor’s information on this platform. Besides, the three-tier architecture

improved the application’s performance by reducing the workloads of users’ phones.

The similarity measure calculation involves many processes in calculating the

similarity metrics of all tutors in the database, the heavy workload will be increased

with the increase of registered tutors on this platform which may cause low

performance in application in the future such as low speed in getting a searching

result.

100

5.2.2 System Architecture Diagram

Figure 5.2: System Architecture Diagram

101

This application applied the three-tier architecture in performing the activities. React

Native is used to develop a user interface which is the presentation tier in this

application. Express.js is implemented as the application tier which performs the

business logic in triggering the create, retrieve and update (CRU) actions while also

applying algorithms in calculating the similarity measure calculation. Firestore is

chosen as the data tier in storing and managing the application’s data such as users’,

tutors, classes’ information that will be listed in the following sections.

 Firebase authentication serves as a third-party service in performing the

account validation action in this application. Firebase authentication receives the

email and password from the presentation tier and checks whether the email and

password are valid or invalid. The validation status will be sent back to the

presentation tier. Firebase also provides Firebase Storage as a service in storing

photos instead of storing the photo in Firestore. Therefore, the functions that involve

photo uploading use this service at the presentation tier to upload the photo and get

the photo as a link such as the sign-up and edit profile function in this application.

Users who are authenticated could perform their activities via the

presentation tier. The HTTP requests are sent to the application tier (server) to call

the Application Programming Interface (API) in performing the real actions. The

server could perform CRU actions toward the data tier while the data tier returns the

required data or CRU status back to the server to indicate whether the action is

completed or errors are raised. Last, the server returns the result as a response in

JSON format back to the presentation tier which can be displayed as an action’s

result to the users.

For the chat and push notification functions in this application, which

involves the applying of Firestore and Firebase Cloud Messaging (FCM) service.

The presentation tier could only access the chat collection in Firestore to create and

retrieve chat documents. The presentation tier could trigger the creation and update

FCM token actions while also sending and receiving a message by using the FCM

service. Therefore, FCM can be used to receive a message while Notifee (a library)

displays the push notification on the receiver's phone. The details of chat

implementation will be explained in chapter 6.

The third-party services are linked with the presentation tier directly without

going through the application tier which could improve the performance of the

102

services and application while security issues are handled by the third-party service

without direct accessing our data tier. However, the chat collection in the data tier is

directly linked with the presentation tier in creating and retrieving the chat data due

to the efficiency of the application. The listener in the presentation tier should keep

listening to the oncoming chat and reload the chatbox displays cause the frequent

accessing the chat collection in the database. Therefore, it is not efficient to call API

continuously to listen and display the ongoing chatting data. In order to keep the

efficiency and security of the application, the firestorm rules are identified to deny

any read and write from the presentation tier towards all collections except chat

collection.

Figure 5.3: Firestore Access Rules

 Authenticated users from the presentation tier only can access chat collection

in Firestore while using the chat function. Admin right is needed in accessing other

collections while admin right only is assigned in the server. In simple words,

authenticated users from the presentation tier do not have the right in accessing

directly the other collections’ data while also the efficiency in creating and retrieving

chat data can be conserved.

103

5.2.3 Context Diagram

Figure 5.4: Context Diagram

104

5.2.4 Data Flow Diagram

Figure 5.5: DFD - Level 0

105

5.2.5 Activity Diagram

Figure 5.6: Activity Diagram – Register New Account

106

Figure 5.7: Activity Diagram – Login Account

107

Figure 5.8: Activity Diagram – Edit Profile

108

Figure 5.9: Activity Diagram – Search Tutor

109

Figure 5.10: Activity Diagram – View Tutor’s Profile

110

Figure 5.11: Activity Diagram – Initiate Chat

111

Figure 5.12: Activity Diagram – View Class Detail

112

Figure 5.13: Activity Diagram – Manage Demo Class Request

113

Figure 5.14: Activity Diagram – View Formal Class Booking

114

Figure 5.15: Activity Diagram – View Chat

115

Figure 5.16: Activity Diagram – Reply Message

116

Figure 5.17: Activity Diagram – Notify User

117

Figure 5.18: Activity Diagram – Create Tutor’s Account

118

Figure 5.19: Activity Diagram – Update Tutor’s Profile

119

Figure 5.20: Activity Diagram – View User List

120

5.3 Data Model Design

Firestore is used as the cloud database in this application which applied NoSQL to

store the application’s data. There are 6 collections and each collection consists of

many documents which are the data records in this application. The data model

design’s explanation is shown in the logical data model (LDM), physical data model

(PDM), data schema, and data dictionary.

5.3.1 Logical Data Model (LDM)

Figure 5.21: Logical Data Model Diagram

121

5.3.2 Physical Data Model (PDM)

Figure 5.22: Physical Data Model Diagram

122

Figure 5.23: Data Schema

123

5.3.3 Data Dictionary

Table 5.1: Data Dictionary (Users Collection)

Field

Name

Data

Type

Description Key

(PK/

FK)

FK Reference

Collection

Null

able

id string Document id which is

unique for each user

PK - No

contactNo string Contact number of user - - No

email string Email address of user - - No

fcmToken string Firebase Cloud

Messaging Token of

user (unique in each

device’s application)

- - No

gender string Gender of user - - No

name string Name of user - - No

role string Application role of

user

- - No

Table 5.2: Data Dictionary (Tutor Info Collection)

Field Name Data

Type

Description Key

(PK/

FK)

FK

Refere

nce

Collecti

on

Nullable

id string Document id which is

unique for each tutor

information

PK - No

attdIns string Attended institution

of tutor

- - No

attdInsCat string Attended institution

category of tutor

(local or oversea)

- - No

attdPgm string Attended program of

tutor in his/her

attended institution

- - No

certObt string Professional

education certificate

obtained of tutor

- - Yes

eduLvl string Highest education

achievement of tutor

- - No

124

minFee number Minimum tuition fee

per hour of the tutor

(Malaysia Ringgit)

- - No

tchApproach Array

of

string

Teaching approaches

of tutor

- - No

tchArea Array

of

string

Teaching areas of

tutor

- - No

tchExperience number Teaching experience

of tutor (in years)

- - No

tchLanguage Array

of

string

Teaching languages

of tutor

- - No

tchStyle string Teaching style of

tutor

- - No

tchSubject map of

array

Teaching subjects of

tutor according to

syllabus:

- “PBD”: array of

subjects in string

- “PT3”: array of

subjects in string

- “SPM”: array of

subjects in string

- “UEC”: array of

subjects in string

- - No

(If no string

in the key, the

key will not

exist. E.g.,

tutor only

teach SPM

only have

SPM key in

the map)

userId string User’s collection’s

document id which is

respective to the tutor

information

FK users No

Table 5.3: Data Dictionary (Demo Class Registration Collection)

Field Name Data

Type

Description Key

(PK/

FK)

FK

Reference

Collection

Null

able

id string Document id which is unique

for each demo class

registration

PK - No

status string Status of demo class

registration

- - No

tchApproac

h

string Teaching approach of demo

class that is selected by tutor

seeker

- - No

125

tchSubject string Teaching subject of demo

class that is selected by tutor

seeker

- - No

tchSyllabus string Teaching syllabus of demo

class that is selected by tutor

seeker

- - No

tutorId string User’s collection’s document

id of the tutor

FK users No

userId string User’s collection’s document

id of the tutor seeker

FK users No

Table 5.4: Data Dictionary (Formal Class Registration Collection)

Field Name Data

Type

Description Key

(PK/

FK)

FK

Reference

Collection

Null

able

id string Document id which is

unique for each demo class

registration

PK - No

IdealFee number Ideal tuition fee of tutor

seeker to pay to the tutor for

per hour class (in Malaysia

Ringgit)

- - No

tchApproac

h

string Teaching approach of demo

class that is selected by tutor

seeker

- - No

tchSubject string Teaching subject of demo

class that is selected by tutor

seeker

- - No

tchSyllabus string Teaching syllabus of demo

class that is selected by tutor

seeker

- - No

tutorId string User’s collection’s document

id of the tutor

FK users No

userId string User’s collection’s document

id of the tutor seeker

FK users No

Table 5.5: Data Dictionary (Rate Review Collection)

Field Name Data

Type

Description Key

(PK/

FK)

FK

Reference

Collection

Null

able

id string Document id which is

unique for each demo

class registration

PK - No

126

rate number Rate that is given by the

tutor seeker to the tutor

(from 1 to 5)

- - No

rateReview

Date

timestamp Create time of the rate

review document

- - No

review string Review that is given by

the tutor seeker to tutor

- - Yes

tutorId string User’s collection’s

document id of the tutor

FK users No

userId string User’s collection’s

document id of the tutor

seeker

FK users No

Table 5.6: Data Dictionary (Chat Collection)

Field

Name

Data

Type

Description Key

(PK

/FK

)

FK

Reference

Collection

Null

able

id string Document id which is

unique for each chat

PK - No

_id string A unique id that is used in

react-native-gifted-chat to

identify each chat

message

- - No

createdAt timestamp Create time for the chat

message

- - No

recipientId string User’s collection’s

document id of the

receiving user

- - Yes

text string Chat text in the message - - No

user Map of

string

Map to store sender’s

information:

- “_id”: user’s id string

FK users No

127

5.4 User Interface Design

5.4.1 Navigation Model

The navigation diagrams show the navigation between screens and stacks. The

switch navigator in App.js is the main controller to handle the navigation in the

application. The student interface, tutor interface, and admin interface indicate tutor

seeker user interface, tutor user interface, and admin interface respectively. There are

separated into different tab that includes different stacks that consist of the different

screens for user interface displays. The initial stack indicates the first accessing stack

while the initial screen is the first display screen when accessing the stack. The

bidirectional arrow indicates the navigation between stack and screen is allowed (as

an accessing gate) in this application.

Figure 5.24: Navigation Model Diagram (Overview)

128

Figure 5.25: Navigation Model Diagram (Student Interface)

129

Figure 5.26: Navigation Model Diagram (Tutor Interface)

Figure 5.27: Navigation Model Diagram (Admin Interface)

130

5.4.2 User Interface Display

5.4.2.1 Login Interface

Figure 5.28: UI – Sign in

Figure 5.29: UI – Sign up

131

5.4.2.2 Student Interface

Figure 5.30: UI – Tutor Seeker Home

Figure 5.31: UI – Tutor Seeker Class Requests History

132

Figure 5.32: UI – Tutor Seeker Rate and Review

Figure 5.33: UI – Tutor Seeker Chat History

133

Figure 5.34: UI – Tutor Seeker Chat Box

Figure 5.35: UI – Tutor Seeker Push Notification (From Tutor)

134

Figure 5.36: UI – Tutor Seeker Search Tutor

Figure 5.37: UI – Tutor Seeker Search Result (Manhattan Distance)

135

Figure 5.38: UI – Tutor Seeker Search Result (Euclidean Distance)

Figure 5.39: UI – Tutor Seeker Search Result (Minkowski Distance)

136

Figure 5.40: UI – Tutor Seeker Search Result (Jaccard Similarity Coefficient)

Figure 5.41: UI – Tutor Seeker Search Result (Cosine Similarity)

137

Figure 5.42: UI – Tutor Seeker Tutor Profile

Figure 5.43: UI – Tutor Seeker Demo and Formal Class Registration

138

Figure 5.44: UI – Tutor Seeker Profile and Profile Edit

5.4.2.3 Tutor Interface

Figure 5.45: UI – Tutor Home

139

Figure 5.46: UI – Tutor Demo Class Manage

Figure 5.47: UI – Tutor Formal Class Manage

140

Figure 5.48: UI – Tutor Chat History

Figure 5.49: UI – Tutor Chat Box

141

Figure 5.50: UI – Tutor Push Notification (From Tutor Seeker)

Figure 5.51: UI – Tutor Profile

142

Figure 5.52: UI – Tutor Profile Edit

143

5.4.2.4 Admin Interface

Figure 5.53: UI – Admin Home

144

Figure 5.54: UI – Admin Add Tutor

145

Figure 5.55: UI – Admin Update Tutor

Figure 5.56: UI – Admin Student List

146

5.4.2.5 Informative Feedback Design (IFD)

There are some informative feedback designs are applied in the user interface as a

hint for users in improving the user friendliness of this application. For example, text

helpers (let user know error input existing), activity indicator (while loading for data

to let user waiting for result), password visibility toggle (easier to identify when enter

wrong password), empty record display (improved new user experience), alert

messages (informing users what they have perform incorrect or invalid) and so on.

The figures below shown part of the informative feedback design in this application.

Figure 5.57: IFD – Helper Text (Input Error Handling)

147

Figure 5.58: IFD – Activity Indicator

Figure 5.59: IFD – Password Visibility Toggle

148

Figure 5.60: IFD – Empty Record Display

149

Figure 5.61: IFD – Alert Messages

150

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Introduction

The system implementation is explained in this chapter which includes the API

endpoint description, functions, and third parties service implementation. The

implementations are explained with section codes to have a deeper understanding of

the working of the functions. The implemented functions are categorized according

to the different users’ roles which are registered tutor seeker side, registered tutor

side, and admin side. Last,

6.2 Application Programming Interface (API) Endpoint

There are 21 API endpoints is created in the server (Express.js) while the APIs are

called by the presentation tier which is the user interface action (React Native). Some

APIs could be reused in performing similar activities in different modules or

functions while not only being used in performing only one function or module. The

APIs are created for this application usage for performance and security purpose

while not a well developed API from external developer or organisation.

151

Table 6.1: API Endpoint List

API Route Method Parameters / Raw Body Description

/api/retrieveProfileInfo/:userId/:role GET - userId

- role

- Retrieve tutor teaching and basic information.

(Confidential information only be returned when

admin or tutor side call this API)

/api/retrieveClass/:userId GET - userId - Retrieve requested demo classes and formal

classes information with the tutors’ basic

information.

/api/retrievePopularTutor/:category GET - category - Retrieve basic information of popular tutors

according to school categories.

/api/retrieveRateReview/:tutorId GET - tutorId - Retrieve rates and reviews of the tutor.

- Calculate and return the average rates of the tutor

for displaying.

/api/retrieveTutorFormalClass/:userId GET - userId - Retrieve requested formal classes information with

the tutor seekers’ basic information.

/api/retrieveTutorDemoClass/:userId GET - userId - Retrieve requested demo classes information with

the tutor seekers’ basic information.

/api/retrieveUserList/:role GET - role - Retrieve users’ basic information according to the

user role.

/api/retrieveChatUserList/:userId GET - userId - Retrieve chat users’ basic information for the chat

history list displaying.

/api/deleteAccount/:userId GET - userId - Delete the existing account in the ‘users’

collection.

/api/similarityMeasure POST - similarityMtd - Calculate the similarity percentage of all tutors in

152

- tchSyllabus

- tchSubject

- tchArea

- tchLanguage

- tchStyle

- tchExperience

- tchApproach

- eduLvl

- classType

- minFee

- attdInsCat

- certObt

the database with the ideal tutor of tutor seeker.

- Calculation applied Euclidean distance,

Minkowski distance, Manhattan distance, Cosine

Similarity, and Jaccard Similarity Coefficient

algorithms.

- Retrieve 20 tutors’ basic information with the

highest similarity percentage.

/api/registerDemoClass POST - userId

- tutorId

- tchSyllabus

- tchSubject

- tchApproach

- Create demo class registration document.

/api/registerFormalClass POST - userId

- tutorId

- tchSyllabus

- tchSubject

- tchApproach

- Create formal class registration document.

/api/rateReview POST - userId

- tutorId

- rate

- Create a rate review document (for new record)

- Update rate review document (for existing record)

153

- review

/api/registerBasicAcc POST - name

- email

- contactNo

- gender

- profilePic

- role

- fcmToken

- Create a users document with student role (tutor

seeker role)

/api/updateBasicProfile POST - userId

- name

- contactNo

- profilePic

- Update basic information of users document.

/api/updateBasicTutorInfo POST - tutorDocId

- tchSubject

- tchLanguage

- tchArea

- tchApproach

- classType

- tchStyle

- minFee

- Update tutor information document (exclude

professional information, professional information

updating is handled in another API)

/api/updateProfessionalTutorInfo POST - tutorDocId

- attdIns

- attdInsCat

- attdPgm

- eduLvl

- Update professional information of tutor

information document.

154

- certObt

/api/createTutorInfo POST - userId

- attdIns

- attdPgm

- attdInsCat

- certObt

- eduLvl

- tchSubject

- tchLanguage

- tchStyle

- tchArea

- tchApproach

- classType

- minFee

- tchExperience

- Create tutor information document.

/api/updateFCMToken POST - userId

- fcmToken

- Update fcmToken value users document.

155

6.3 Application Implementation

The implementation of the application is explained according to activities in different

screens while the activities are grouped by the role of users which is tutor seeker side,

tutor side, and admin side. The section codes are inserted as figures with the display

result in explaining the implementation of API, library, third-parties services, and so

on.

6.3.1 Sign Up Activity

Tutor seeker is allowed to sign up for an account with his/her email address while the

tutor’s account only can be created by the admin which will be explained in the

following part.

Figure 6.1: Upload Profile Picture

156

Figure 6.2: Sign Up Tutor Seeker Account

 There is an upload image activity in the signup function that involves the

implementation of external libraries, API, and third-party services before proceeding

to sign up for an account. The external library 'react-native-actionsheet' is imported,

the upload account image action sheet is displayed to tutor seeker in order to take

their profile picture by using the phone’s camera or select from their gallery. The

external library 'react-native-image-picker' enables the application to access the

phone’s camera and gallery to get the photo. The input validation is handled and will

be explained in the flowing section.

157

Figure 6.3: Section Code (Front-end) – Sign Up Tutor Seeker Account

Figure 6.4: Section Code (Server API) – Sign Up Tutor Seeker Account

158

 The upload photo action, create account action will be triggered when the

“Sign Up” button is pressed. As the figure above shown, auth() –

createUserWithEmailAndPassword function is called from the third party service

(Firebase Authentication) to create an account record in the user list of the linked

Firebase Authentication. Then, the uploaded new photo from the phone is stored to

Firebase Storage while the filename is the email address of the tutor seeker (default

profile picture is used if no photo is uploaded by the tutor seeker). Next, the

"/api/registerBasicAcc" API is called to insert the new tutor seeker’s information into

the ‘users’ collection as a new document. Redirecting the tutor seeker to sign up

screen after the server created the ‘users’ document and return a 200 status back to

the front-end.

6.3.2 Sign In Activity

A registered tutor seeker, registered tutor, and admin are allowed to sign in to the

application via the same sign-in screen.

Figure 6.5: Sign In Account

159

Figure 6.6: Section Code (Front-end) – Sign In Account

Figure 6.7: Section Code (Server API) – Retrieve Basic Profile

160

 A third-party service – Firebase Authentication is applied to check the

authentication of the input email address. The "/api/retrieveUserBasicProfile/:email"

API is called after validating the email is authenticated. API is used to retrieve the

basic information of the authenticated user from the ‘users’ collection in Firestore

according to the email. Then, data is returned to the front-end in JSON format with

status. The returned information is passed to the home screen for the following

function. Besides, the role data that is returned from the server identifies the

respective redirected tab which is the student, tutor, or admin tab that is shown in

CHAPTER 5.

6.3.3 Registered Tutor Seeker Side

6.3.3.1 Home Activities

The home stack on the registered tutor seeker side displays the popular tutor

according to a primary and secondary school group. At the same time, the home

screen is responsible for handling AsyncStorage, Firebase Cloud Messaging (FCM)

token and push notification display settings.

Figure 6.8: Home (Registered Tutor Seeker)

161

Figure 6.9: Section Code (Server API) – Retrieve Popular Tutor Part 1

Figure 6.10: Section Code (Server API) – Retrieve Popular Tutor Part 2

162

 For popular tutor displaying, the "/api/retrievePopularTutor/:category" API is

called every didFocus is invoked (focus on the home screen). Each invokes calls the

API with ‘primary’ and ‘secondary’ category values. The data is retrieved from

‘formalClassRgst’ collection according to the school category which is the teaching

syllabus in the collection. Then, applying the reduce method to count the number of

the registered classes of the tutor in the collection to identify the popular tutor (the

higher count indicates the more popular). The server returns the information of the

top 5 tutors from the highest registered class count to the lowest count.

Figure 6.11: Section Code (Front-end) – Home AsynStorage Activity

 For AsyncStorage handling, the user’s information that is passed from the

sign-in screen is stored by using the AsyncStorage feature in React-Native, the

Async data is retrieved in different screens to perform their functions which are

explained in the following section.

Figure 6.12: Push Notification

163

Figure 6.13: Section Code (Front-end) – Home Push Notification Activity

 For push notification handling, the external library called Notifee is applied

to display the push notification on the phone when the FCM received a message from

the other user by using the onMessage function.

Figure 6.14: Section Code (Server API) – Update FCM Token

 For updating the FCM token, the "/api/updateFCMToken" API is called to

update the fcmToken value in the ‘users’ document when the onTokenRefresh

function detects there is an update on the FCM token (FCM token will be updated

when the application is restored on a new device, the application is uninstalled and

reinstalled, and the application’s data is cleared). Besides, this API enables registered

tutors could receive their message on their device after they first sign in to the

164

application with their device due to their account being created by the admin after the

information has been verified.

6.3.3.2 History Activities

The main focus of history stack is to display demo class requests and formal class

booking that is raised by the registered tutor seeker to check the requested demo

classes’ status and the requested classes’ information. Besides, history stack also

handles the other related activities such as rate and review activity.

Figure 6.15: History (Demo Class and Formal Class)

Figure 6.16: Section Code (Front-end) – History Tab View

165

 The external library called 'react-native-tab-view' is imported to generate tab

view in displaying the demo class requests and formal class requests that are raised

by the registered tutor seeker in demo view tab and formal view tab respectively.

Registered tutor seeker could swipe left or right to interchange the demo and formal

view.

Figure 6.17: Section Code (Server API) – Retrieve Class Part 1

166

Figure 6.18: Section Code (Server API) – Retrieve Class Part 2

 For displaying the demo and formal class requests’ information, the userId is

get by applying the AsynStorage and the userId is used as parameter in calling the

"/api/retrieveClass/:userId" API in server. The API get data from ‘demoClassRgst’

and ‘formalClassRgst’ according to the userId parameter. Then, the basic

information of the tutor of each matched class is pushed into the array while the

arrays are sorted according to the status (demo class) or name (formal class). Last,

the arrays are returned to the front-end in JSON format.

167

Figure 6.19: History (Rate and Review)

Figure 6.20: Section Code (Server API) – Rate Review

168

 The rate and review activity only can be performed by the registered tutor

seeker to the registered tutor after the formal class is raised (assumed the formal class

is conducted) or the demo class request is approved (assumed the demo class is

conducted). The profile picture and name of the tutor are passed to the rate and

review screen while the "/api/rateReview" API is triggered when the registered tutor

seeker presses the “Submit” button. The API checks the existence of the same record

(same userId and tutorId) in ‘rateReview’ collection. Then, creating a new document

if no same record is found or updating the existing document if the same record is

found.

6.3.3.3 Chat Activities

The significant role of chat stack is to handle the chat between the registered tutor

seeker and registered tutor. Push notification is displayed when receive a new

message from the other users (it is explained in home activities). The chat activities

can be conducted by accessing the “chat with tutor” button on the tutor profile screen

Figure 6.21: Chat (Chat History List)

 Every time didFocus is triggered invoked the readProfile function which is

AsyncStorage in getting the user’s information. The

"/api/retrieveChatUserList/:userId" API is called directly after getting the user’s

information from AsyncStorage while the response from API also be returned as a

169

parameter to call retrieveChat function at front-end. The retrieveChat is a function

that accesses the ‘chat’ collection in getting chat data. The concerns of direct linking

front-end to the database is explained in CHAPTER 5.

Figure 6.22: Section Code (Server API) – Retrieve Chat User List

 The API retrieve related chat document from database according to the userId

and push the sender or recipient id (except id that is same with userId) into an array

to retrieve the basic information in ‘users’ collection and return to the front-end.

170

Figure 6.23: Section Code (Front-end) – Retrieve Chat List Activity

 The basic information from the server is a parameter in the retrieve chat

function at the front-end. In figure 6.23, the onSnapshot function in Firestore enables

the application to keep listening to the ‘chat’ collection in querying the latest chat

document. Then, push the latest chat history into the chatList. In figure 6.28, the

matched user’s profile information is inserted into the respective object in chatList.

Last, sort the chatList with creating time from the latest to the oldest. The same

implementation is applied in retrieving the chat history when the user is in a sender

role. All latest chat data is pushed into chatList and the chat list is displayed from the

latest to oldest in the chat history screen. The user is directed to the respective

chatbox screen when the user press the respective chat history column.

171

Figure 6.24: Chat (Chat Box)

Figure 6.25: Section Code (Front-end) – Chat Box Activities Gifted Chat

172

Figure 6.26: Section Code (Front-end) – Retrieve Chat Activity

 The AsyncStorage and retrieve chat function when entering the chatbox

screen. The retrieve chat function is similar to the function applied in the chat history

screen to retrieve the chat text in the ‘chat’ collection and display it according to the

created time. The difference between the function applied in the chat history screen

and chatbox screen is only retrieving the chat between the user with the respective

tutor in the chatbox screen instead of all tutors in the chat history screen.

Figure 6.27: Section Code (Front-end) – Send Notification Activity

173

 For sending a message, an external library called 'react-native-gifted-chat' is

imported to handle the user interface design of the chatbox while the onSend

function is triggered to create a chat document into the database when the user press

the send icon. Then, the sendNotification function is invoked to trigger the FCM in

sending a message and push notification on the recipient’s device. The FCM will

send the message to the recipient and a push notification will be popped out

according to the FCM token that is passed from the chat history screen (passed from

the server).

6.3.3.4 Search Activities

The main focus of this application is to help the tutor seekers in finding their ideal

tutors which is the main role of the search stack. The search stack is a nested stack

(shown in CHAPTER 5). Search stack handles the search activity with the

application of similarity measures, view tutor’s profile activity, raising demo class

activity, and book formal class activity.

Figure 6.28: Search (Input and Result)

174

Figure 6.29: Section Code (Server API) – Similarity Measure Part 1

 The "/api/similarityMeasure" API is called after the registered seeker press

the “Search” button and navigates to the search result screen. The flow overview of

this API is shown in figure 6.37. First, process the data from the front-end and

database by converting the criteria into 2 set arrays of integers. Then, calculating the

similarity percentages between each tutor in the database that fulfilled the minimum

requirement (matched syllabus and subject) with the ideal tutor of the registered tutor

seeker. Last, filter and choose the top 20 tutor with the highest similarity percentage

as result in responding to the front-end.

175

Figure 6.30: Section Code (Server API) – Similarity Measure Part 2

 Figure 6.38 to figure 6.44 show the flow in processing the data from Firestore

into integers and insert the integers into the dataTutor array while processing the data

from front-end and inserting the data into the idealTutor array. Different fields in the

‘tutorInfo’ document are processed in different methods.

176

Figure 6.31: Section Code (Server API) – Similarity Measure Part 3

Figure 6.32: Section Code (Server API) – Similarity Measure Part 4

177

Figure 6.33: Section Code (Server API) – Similarity Measure Part 5

Figure 6.34: Section Code (Server API) – Similarity Measure Part 6

178

Figure 6.35: Section Code (Server API) – Similarity Measure Part 7

Figure 6.36: Section Code (Server API) – Similarity Measure Part 8

179

Figure 6.37: Section Code (Server API) – Similarity Measure Part 9

 The similarity between 2 sets of numbers is calculated by applying different

similarity measures according to the user result selection in the front-end. The

similarity measures include Manhattan distance, Euclidean distance, Minkowski

distance, Jaccard Similarity Coefficient, and Cosine similarity. In order to get a more

accurate result display, the similarity measures method will be reduced to three or

even the only one similarity measure after conducting the user acceptance testing

(UAT) and receiving the rates from users.

180

Figure 6.38: Section Code (Server API) – Similarity Measure Part 10

 Last, insert the tutor’s information from the ‘users’ and ‘tutorInfo’ collection

which is not included in the similarity calculation. The array is sorted according to

the similarity percentage from the highest to the lowest and the top 20 tutor’s

information is returned in JSON format to the front-end as the search result list

displayed in figure 6.36.

181

Figure 6.39: Search (View Tutor Profile)

 The "/api/retrieveProfileInfo/:userId/:role" API and

"/api/retrieveRateReview/:tutorId" API are called when entering the tutor profile

screen to retrieve the tutor’s information and tutor’s rate and review respectively.

The view tutor profile activity can be conducted from the home screen and history

screen as the navigation diagram in CHAPTER 5.

182

Figure 6.40: Section Code (Server API) – Retrieve Rate Review

 The retrieve rate review API is responsible in returning the related rate and

reviews and average rate of the tutor to the front-end after the calculation. The data is

retrieved with the descending order of time and the time is converted into display

string. Therefore, the array list that is returned to the front-end is ready to be used

without requiring the process of sorting and processing to display the rate and

reviews according to descending order.

183

Figure 6.41: Section Code (Server API) – Retrieve Profile Information

The retrieve profile information API is used to retrieve the tutor’s information

for displaying purposes which is similar to the basic profile retrieval API. The

difference is a different role in accessing this API will cause API to return different

information. As the figure above shown registered tutor and admin could get the

contact number and document id of the tutor while not the registered tutor seeker.

184

Figure 6.42: Search (Demo and Formal Class Request Status)

185

Figure 6.43: Section Code (Server API) – Register Demo Class Part 1

186

Figure 6.44: Section Code (Server API) – Register Formal Class

 For demo class and formal class registration, the "/api/registerDemoClass"

API or "/api/registerFormalClass" API is called when the “Submit” button is pressed

in their respective screen. For register demo class API, the demo class documents

whose status is pending or approved in ‘demoClassRgst’ collection is retrieved and

conducted 2 validations checking before creating the new demo class document.

Validation 1 is used to validate the same registered tutor seeker is only allowed to

register 2 demo classes to the same registered tutor. Validation 2 is used to validate

the registered seeker is not allowed to send the same class request to the same tutor.

For formal class registration, only validation 2 in demo class registration is applied

while the flow of API is similar. Last, the create action status will be returned to the

front-end and an alert message is displayed to the registered tutor seeker in figure

6.39.

6.3.3.5 Profile Activities

The profile stack is the main in handling the profile editing activity which includes

the upload photo activity that is explained above. Besides, the sign-out and delete

account activity also is handled in the profile stack.

187

Figure 6.45: Profile (Display Profile, Edit Profile, Sign Out Account)

Figure 6.46: Section Code (Server API) – Update Basic Profile

Figure 6.47: Section Code (Front-end) – Sign Out Account

188

Figure 6.48: Section Code (Server API) – Delete Account

Figure 6.49: Section Code (Front-end) – Delete Account

 The registered tutor seeker’s profile information is retrieved when signing in

and be saved into AsyncStorage. Therefore, AsyncStorage is applied for displaying

the profile while the text input is changed to editable when the registered tutor seeker

presses the ‘Edit Profile’ text. The "/api/updateBasicProfile" API is called to update

the ‘users’ document when the registered tutor seeker press the ‘Save’ button after

modifying the name or mobile number. Besides, the application will ‘memorize’ the

sign-in status of the user and redirect the user to their home screen when opening the

application. The user will be redirected to the sign-in screen and sign out the account

(will not sign in automatically when next open the application) after the ‘Loguot’

button is pressed. The "/api/deleteAccount" API is called to delete the ‘users’

document while the account also is removed from the authentication user list in

Firebase authentication when the “delete account” button is pressed and confirm to

delete the account.

6.3.4 Registered Tutor Side

6.3.4.1 Home Activities

189

The home stack is responsible for displaying some information without calling API

while the side activities such as AsyncStorage, Firebase Cloud Messaging (FCM)

token, and push notification display settings also be handled in the registered tutor

side’ home stack as similar in registered tutor seeker side. Implementations are

explained in the home activities of the registered tutor seeker side above.

Figure 6.50: Home (Registered Tutor)

6.3.4.2 Demo Class Activities

The demo class stack handles the displaying information of the demo class from the

registered tutor seeker and updating the demo class’s status activity while it also

involves the chat activities which is explained in the section above.

190

Figure 6.51: Demo Class (Display and Manage Demo Class Requests)

Figure 6.52: Section Code (Server API) – Update Demo Class Status

191

Figure 6.53: Section Code (Server API) – Retrieve Demo Class

 The AsyncStorage is applied in getting the userId as the parameter to call the

"/api/retrieveTutorDemoClass/:userId" API. The API returns the list of information

that includes the demo class’s information and the registered tutor seeker’s

information. The "/api/updateDemoClassStatus" API is called when the registered

tutor press the approve or reject button to update the status value of the

‘demoClassRgst’ document.

6.3.4.3 Formal Class Activities

The formal class stack handles the displaying information of the formal class from

the registered tutor seeker while it also involves the chat activities which is explained

in the section above.

192

Figure 6.54: Formal Class (Display Formal Class Requests)

193

Figure 6.55: Section Code (Server API) – Retrieve Formal Class

The AsyncStorage is applied in getting the userId as the parameter to call the

"/api/retrieveTutorFormalClass/:userId" API. The API returns the list of information

that includes the formal class’s information and the registered tutor seeker’s

information.

6.3.4.4 Chat Activities

The chat activities on a registered tutor side are the same as the chat activities on the

registered tutor seeker side while the only difference will be the activities access

screen. The chat activities can be accessed by using the bottom navigation tab and

the “Chat With Student” button on the demo class screen and the formal class screen

on the registered tutor side.

194

Figure 6.56: Chat (Registered Tutor)

6.3.4.5 Profile Activities

The profile stack is the main in handling the profile editing activity which includes

the upload photo activity that is explained on the registered tutor seeker side. Besides,

the sign-out account activity also is handled in the profile stack.

Figure 6.57: Registered Tutor Profile (Profile Display and Edit)

195

 The display of the registered tutor’s profile is similar to the view tutor profile

activity on the registered tutor seeker side. The "/api/retrieveProfileInfo/:userId/:role"

API and "/api/retrieveRateReview/:tutorId" API are called when entering the profile

screen to retrieve the tutor’s information and tutor’s rate and review respectively

while the implementation is explained on the registered tutor seeker side.

Figure 6.58: Section Code (Front-end) – Edit Tutor Profile Part 1

Figure 6.59: Section Code (Front-end) – Edit Tutor Profile Part 2

196

Figure 6.60: Section Code (Front-end) – Edit Tutor Profile Part 3

Figure 6.61: Section Code (Server API) – Update Tutor Basic Information

197

 The registered tutor is directed to the edit screen when pressing the “Edit

Profile” button. The componentDidMount in the edit profile screen will first check

the values in the variable and assign true to the variable boolean if the value matched

with the key of boolean as the figure 6.56 in different multiple values variable (array).

Then, the checkbox component is rendered according to the boolean in the variable

as the ticked box or unticked box (figure 6.57). The format of the values in the

checkbox is converted into the original format of the variable when the “Save”

button is pressed and ready to call the "/api/updateBasicProfile" and

"/api/updateBasicTutorInfo" APIs to update the ‘users’ document and ‘tutorInfo’

document in Firestore. In addition, the upload photo activity is involved in this

activity which is explained in the above section.

6.3.5 Admin Side

6.3.5.1 Home Activities

The home activities on the admin side only applied the AsyncStorage in storing the

admin’s information while also the sign-out activity is accessible on the home screen.

The activities are explained in the above section.

Figure 6.62: Home (Admin)

198

6.3.5.2 Add Tutor Activities

The add tutor activities could be considered as the combination of upload photo

activity, modified edit profile activity (front-end), and sign-up activity. The front-end

of the edit profile activity checks the existing values of a variable and renders the

checkbox with tick and untick while the checkbox that is rendered in add tutor

activities is blank and set all as unticked as default.

Figure 6.63: Add Tutor

199

Figure 6.64: Section Code (Front-end) – Create Tutor Information

 The flow in adding a new tutor is similar to adding a new tutor seeker (sign

up). The sign-in function in Firebase Authentication is applied to check the existence

of the account, then proceed to upload the profile picture to Firebase Storage

followed by the APIs calls which are the "/api/createTutorInfo" and

"/api/registerBasicAcc" API. If all status is returned from the server, then create the

authenticated account by using the Firebase Authentication.

200

Figure 6.65: Section Code (Server API) – Create Tutor Information

201

6.3.5.3 Update Tutor Activities

The update tutor stack is used to update the professional information of the tutors

after the professional information that is submitted by the registered tutor is verified

by the admin.

Figure 6.66: Update Tutor

 The "/api/retrieveChatUserList/:userId" API is called when didFocus on the

update tutor tab to retrieve the user list with basic information according to the role

which is student or tutor for displaying purpose. The admin press the selected tutor

display column to navigate to tutor edit screen. The information is get from the

previous screen by using getParam function while the

"/api/updateProfessionalTutorInfo" API is triggered when the “Save” button is

pressed. The API updates the matched ‘tutorInfo’ document and the status will be

returned to the front-end.

202

Figure 6.67: Section Code (Server API) – Retrieve User List

Figure 6.68: Section Code (Server API) – Update Professional Tutor Info

203

6.3.5.4 User List Activities

The "/api/retrieveChatUserList/:userId" API is called when didFocus on the student

list tab to retrieve the user list with basic information according to the role which is

student or tutor for displaying purpose. The API is explained in the above section.

Figure 6.69: User List

204

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

The unit testing, API testing, usability testing, and User Acceptance Testing (UAT)

are conducted to test the fulfilment of functional and non-functional requirements of

this application. Automation testing is not applied in this application due to this

application is considered a small project that involves only one contributor without a

continuous integration process that needs automation testing.

7.2 Unit Testing

The unit testing is completed during the development process manually to ensure the

functionality of each activity in meeting the requirement specifications. The test case

with results is shown below.

205

Table 7.1: Unit Testing – Log In Account

Test Case ID UNT-001 Test Case Title Log In Account

Test Case

Description
Execution Steps Expected Result Actual Result Status

Log in with a

valid email and

password

1. Enter registered email and

password.

2. Press the “Sign In” button.

1. Log in successfully and

navigate to the home screen.

1. Log in successfully and

navigate to the home screen. Pass

Log in with an

invalid email or

password

1. Enter unregistered email or

wrong password.

2. Press the “Sign In” button.

1. System display alert message

“Incorrect email or password,

please try again”.

1. System display alert message

“Incorrect email or password,

please try again”.

Pass

Log in with

empty input

1. Press the “Sign In” button 1. System display alert message

“Please in both email and

password to login”.

1. System display alert message

“Please in both email and

password to log in”.

Pass

Log in with an

invalid format

email

1. Enter invalid email format

and password.

2. Press the “Sign In” button.

1. System display alert message

“Invalid email.”.

1. System display alert message

“Invalid email.”. Pass

206

Table 7.2: Unit Testing – Sign Up Account

Test Case ID UNT-002 Test Case Title Sign Up Account

Test Case Description Execution Steps Expected Result Actual Result Status

Sign up with a valid

input

1. Upload profile picture.

2. Enter valid format of username,

password, confirm password, email,

contact number, and gender.

3. Press the “Sign Up” button.

1. System display

alert message “sign

up successfully”

and navigate to the

login screen.

1. System display

alert message “sign

up successfully”

and navigate to the

login screen.

Pass

Sign up with invalid

input

1. Upload profile picture.

2. Enter invalid format of username,

password, confirm password, email,

contact number, or gender.

3. Press the “Sign Up” button.

1. System display

alert message

“ Please ensure the

required fields in a

valid format”.

1. System display

alert message

“ Please ensure the

required fields in a

valid format”.

Pass

Sign up with empty

input

1. Upload profile picture.

2. Missing of username, password,

confirm password, email or contact

number.

3. Press the “Sign Up” button.

1. System display

alert message

“Please fill in all

required fields”.

1. System display

alert message

“Please fill in all

required fields”.

Pass

207

Table 7.3: Unit Testing – Search Tutor

Table 7.4: Unit Testing – Send Message

Test Case ID UNT-003 Test Case Title Search Tutor

Test Case Description Execution Steps Expected Result Actual Result Status

Search tutor with

mandatory field selected

1. Select the mandatory search

fields and other optional

search fields.

2. Press the “Search” button.

3. Press result 1/2/3 randomly.

1. The system navigates to

the search result screen

and displays the result

accordingly

1. The system navigates to

the search result screen

and displays the result

accordingly

Pass

Search tutor with

mandatory field

unselected

1. Select the other optional

search fields, the mandatory

search field is empty.

2. Press the “Search” button.

1. The system displays the

alert message “ Please fill

in required fields as

minimum search criteria”

1. The system displays the

alert message “ Please fill

in required fields as

minimum search criteria”

Pass

Test Case ID UNT-004 Test Case Title Send Message

Test Case Description Execution Steps Expected Result Actual Result Status

Send chat message

1. View profile and press on “Chat

with tutor/student”.

2. Enter message and press send icon

1. The system sends chat

and a push notification

is displayed.

1. The system sends chat

and a push notification

is displayed.

Pass

208

Table 7.5: Unit Testing – Send Demo Class Request

Test Case ID UNT-005 Test Case Title Send Demo Class Request

Test Case Description Execution Steps Expected Result Actual Result Status

Send a new request with

mandatory fields selected

1. Press the “Free Demo Class”

button.

2. Select mandatory fields.

3. Press “Submit” button.

1. The system displays

alert message “Demo

class is registered and

wait for approving”

1. The system displays

alert message “Demo

class is registered and

wait for approving”

Pass

Send the same request

with mandatory fields

selected

1. Press the “Free Demo Class”

button.

2. Select mandatory fields that are

selected before.

3. Press “Submit” button.

1. The system displays

alert message “You

have raised this

request before, kindly

wait for approving”.

1. The system displays

alert message “You

have raised this

request before, kindly

wait for approving”.

Pass

Send a request to the same

tutor for the third time.

1. Press the “Free Demo Class”

button.

2. Select mandatory fields.

3. Press “Submit” button.

4. Repeat for 3 times.

1. The system displays

alert message “Your

demo class requests

are more than two,

kindly choose another

tutor”.

1. The system displays

alert message “Your

demo class requests

are more than two,

kindly choose another

tutor”.

Pass

209

Table 7.6: Unit Testing – Book Formal Class

Test Case ID UNT-006 Test Case Title Book Formal Class

Test Case Description Execution Steps Expected Result Actual Result Status

Send a new request with

mandatory fields selected

1. Press the “Book

Formal Class” button.

2. Select mandatory

fields and enter ideal

fee.

3. Press “Submit” button.

1. The system displays alert

message “Formal class is

registered and tutor will

approach you within 48

hours”

1. The system displays alert

message “Formal class is

registered and tutor will

approach you within 48

hours”

Pass

Send the same request

with mandatory fields

selected

1. Press the “Book

Formal Class” button.

2. Select same

mandatory fields and

enter ideal fee.

3. Press “Submit” button.

1. The system displays alert

message “ You have raised

same request before, kindly

approach the tutor if he/she

do not approach you within

48 hours”.

1. The system displays alert

message “ You have raised

same request before, kindly

approach the tutor if he/she

do not approach you within

48 hours”.

Pass

210

Table 7.7: Unit Testing – Rate and Review

Table 7.8: Unit Testing – Delete Account

Test Case ID UNT-007 Test Case Title Rate and Review

Test Case Description Execution Steps Expected Result Actual Result Status

Give rate and review to

tutor

1. View history of

requested class and

press “Rate and

Review” button.

2. Enter rate and

review.

3. Press “Submit”

1. The system displays alert

message “Thanks for giving

rate and review. Your rate

and review will be displayed

at the tutor's” and back to the

previous screen

1. The system displays alert

message “Thanks for giving

rate and review. Your rate

and review will be displayed

at the tutor's profile” and

back to the previous screen

Pass

Test Case ID UNT-008 Test Case Title Delete Account

Test Case Description Execution Steps Expected Result Actual Result Status

Delete existing account

1. Press “Delete

Account” button and

make confirmation.

1. The system displays alert

message “Account have

been deleted” and navigate

to sign in screen.

1. The system displays alert

message “Account have

been deleted” and navigate

to sign in screen.

Pass

211

Table 7.9: Unit Testing – Edit Profile

Table 7.10: Unit Testing – Manage Demo Class

Table 7.11: Unit Testing – View Formal Class

Test Case ID UNT-009 Test Case Title Edit Profile

Test Case Description Execution Steps Expected Result Actual Result Status

Update profile details with

all valid fields entered

1. Upload new profile

picture and modify

profile details.

1. The system displays alert

message “Profile have been

updated”.

1. The system displays alert

message “Profile have been

updated”.

Pass

Test Case ID UNT-010 Test Case Title Manage Demo Class

Test Case Description Execution Steps Expected Result Actual Result Status

Update request status

1. View the requested list.

2. Press accept or reject

button.

1. The system updates the

request status and display

the latest status of request.

1. The system updates the

request status and display

the latest status of request.

Pass

Test Case ID UNT-011 Test Case Title View Formal Class

Test Case Description Execution Steps Expected Result Actual Result Status

View formal class booking
1. Press “formal class”

navigation button

1. The system display booked

formal class list.

1. The system display booked

formal class list.
Pass

212

Table 7.12: Unit Testing – Add Tutor

Test Case ID UNT-012 Test Case Title Add Tutor

Test Case Description Execution Steps Expected Result Actual Result Status

Add new tutor with valid

details data

1. Enter all fields with

valid format of data.

2. Press “Create” button.

3. Press “Yes” to confirm

entered information

1. The system displays alert

message “Tutor have been

created” and navigate to

update tutor screen.

1. The system displays alert

message “Tutor have been

created” and navigate to

update tutor screen.

Pass

Add new tutor with invalid

details data.

1. Enter invalid fields with

invalid format of data.

2. Press “Create” button.

1. The system displays alert

message “Missing fields or

invalid format fields exist”.

1. The system displays alert

message “Missing fields or

invalid format fields exist”.

Pass

Add new tutor with

missing fields.

1. Enter details with some

missing fields

2. Press “Create” button.

1. The system displays alert

message “Missing fields or

invalid format fields exist”.

1. The system displays alert

message “Missing fields or

invalid format fields exist”.

Pass

Add existing tutor

1. Enter details with

existing email.

2. Press “Create” button.

1. The system displays alert

message “This email have

been registered, please use

another email”.

1. The system displays alert

message “ This email have

been registered, please use

another email”.

Pass

213

Table 7.13: Unit Testing – Update Tutor’s Professional Detail

Table 7.14: Unit Testing – View Tutor Seeker List

Test Case ID UNT-013 Test Case Title Update Tutor’s Professional Detail

Test Case Description Execution Steps Expected Result Actual Result Status

Update tutor’s

professional detail with

all fields filled in

1. Select tutor and view

existing data.

2. Enter and select the verified

professional data.

3. Press “Save” button.

1. The system displays alert

message “ Profile have

been updated” and

navigate to previous

screen.

1. The system displays alert

message “ Profile have

been updated” and

navigate to previous

screen.

Pass

Update tutor’s

professional detail with

some missing fields.

1. Select tutor and view

existing data.

2. Delete some existing data.

3. Press “Save” button.

2. The system displays alert

message “All fields should

have value and minimum

one selected item”.

2. The system displays alert

message “All fields should

have value and minimum

one selected item”.

Pass

Test Case ID UNT-014 Test Case Title View Tutor Seeker List

Test Case Description Execution Steps Expected Result Actual Result Status

View tutor seeker list
1. Enter name to search

related tutor seeker.

1. The system displays related

tutor seeker list.

1. The system displays related

tutor seeker list.
Pass

214

7.3 Application Programming Interface (API) Testing

The majority of the function in this application involved the API in the server

(Express.js). Therefore, API testing is conducted to verify the functionality of each

API in the server is complete and accurate by using Postman.

 Figure 7.15 is labelled with numbers to show the API testing information

located within the screenshot. The testing information in the figure within this

section is displayed in the same way.

Table 7.15: Testing Information Numbering

Number Testing Information

1 API method (GET/POST)

2 API route

3 Parameters (GET method)/ Raw body (POST method)

4 Response status (200 – success, 4XX – client error)

5 Response in JSON format

Figure 7.1: API Testing – Retrieve User Basic Profile

215

Figure 7.2: API Testing – Retrieve Profile Info

216

Figure 7.3: API Testing – Retrieve Class

Figure 7.4: API Testing – Retrieve Popular Tutor

217

Figure 7.5: API Testing – Retrieve Rate Review

Figure 7.6: API Testing – Retrieve Tutor Formal Class

Figure 7.7: API Testing – Retrieve Tutor Demo Class

218

Figure 7.8: API Testing – Retrieve User List

Figure 7.9: API Testing – Retrieve Chat User List

219

Figure 7.10: API Testing – Delete Account

Figure 7.11: API Testing – Similarity Measure (Manhattan)

220

Figure 7.12: API Testing – Similarity Measure (Euclidean)

Figure 7.13: API Testing – Similarity Measure (Minkowski)

221

Figure 7.14: API Testing – Similarity Measure (Jaccard)

Figure 7.15: API Testing – Similarity Measure (Cosine)

222

Figure 7.16: API Testing – Register Demo Class

Figure 7.17: API Testing – Register Formal Class

Figure 7.18: API Testing – Rate Review

223

Figure 7.19: API Testing – Register Basic Account

Figure 7.20: API Testing – Update Basic Profile

Figure 7.21: API Testing – Update Demo Class Status

224

Figure 7.22: API Testing – Update FCM Token

Figure 7.23: API Testing – Update Basic Tutor Information

Figure 7.24: API Testing – Update Professional Tutor Information

225

Figure 7.25: API Testing – Create Tutor Information

7.4 User Acceptance Testing (UAT)

There are 9 users who are invited to conduct UAT while there are 3 users for each

role activity testing which are tutor seeker, registered tutor, and admin. UAT test

cases template is shown below while the results are displayed in the appendix section.

The status of each action could be “pass”, “pass with help” or “fail”, pass with help

indicate that the user completes the task with the hints given by the test moderator.

The UAT is conducted virtually by using AnyDesk.

7.4.1 Tutor Seeker Side

Table 7.16: UAT – Create and Login Account

Test Case ID UAT-TS-001

Test Module Create and Login Account

Test Description Status Feedbacks

Able to upload a profile picture

Able to insert personal information

Able to submit the details to register an

account

Able to log in to the registered account

226

Table 7.17: UAT – Search and View Ideal Tutor

Test Case ID UAT-TS-002

Test Module Search and View Ideal Tutors

Test Description Status Feedbacks

Able to set learning preference

Able to search for a tutor

Able to select different search results (result

1, result 2, result 3, result 4, result 5) which

applied different similarity measure methods

Able to view different search results

Able to view tutor’s teaching and basic

profile details

Able to read tutor’s rates and reviews

Table 7.18: UAT – Chat With Tutor

Test Case ID UAT-TS-003

Test Module Chat With Tutor

Test Description Status Feedbacks

Able to initiate a chat with a tutor

Able to view chat list

Able to view chat history with tutors

Able to view push notifications from tutor’s

chat message

Able to reply to chat messages from tutor

Table 7.19: UAT – Register and View Classes

Test Case ID UAT-TS-004

Test Module Register and View Classes

Test Description Status Feedbacks

Able to raise demo class

Able to view the status of demo class

request

Able to book a formal class

Able to view the class details of formal class

227

Table 7.20: UAT – View and Edit Profile (Tutor Seeker)

Test Case ID UAT-TS-005

Test Module View and Edit Profile

Test Description Status Feedbacks

Able to view personal profile details

Able to upload a new profile picture

Able to modify personal details

Able to save a new profile

7.4.2 Registered Tutor Side

Table 7.21: UAT – Log In Account (Registered Tutor)

Test Case ID UAT-T-001

Test Module Log In Account

Test Description Status Feedbacks

Able to log in to the existing account from

the admin

Table 7.22: UAT – View and Edit Profile (Registered Tutor)

Test Case ID UAT-T-002

Test Module View and Edit Profile

Test Description Status Feedbacks

Able to view personal profile details

Able to view rates and reviews from tutor

seeker

Able to upload a new profile picture

Able to modify personal information

Able to modify teaching information

Able to edit profile successfully

Table 7.23: UAT – Manage Class

Test Case ID UAT-T-003

Test Module Manage Class

Test Description Status Feedbacks

Able to view demo class requests list

228

Able to view formal class bookings list

Able to accept or reject demo class request

Table 7.24: UAT – Chat With Tutor Seeker

Test Case ID UAT-T-004

Test Module Chat With Tutor Seeker

Test Description Status Feedbacks

Able to initiate a chat with tutor seeker

Able to view chat list

Able to view chat history with tutor seeker

Able to view push notifications from tutor

seeker’s chat message

Able to reply chat messages from tutor

seeker

7.4.3 Admin Side

Table 7.25: UAT – Log In Account (Admin)

Test Case ID UAT-A-001

Test Module Log In Account

Test Description Status Feedbacks

Able to log in to an existing account

Table 7.26: UAT – Manager Tutor

Test Case ID UAT-A-002

Test Module Manage Tutor

Test Description Status Feedbacks

Able to upload a profile picture of tutor

Able to insert personal and teaching details

of the tutor

Able to create an account for a tutor by

submitting the details

Able to search for a tutor

Able to view the tutor list and the tutor

profile

Able to modify tutor’s professional details

Able to edit tutor profile by submitting the

new professional details

229

Table 7.27: UAT – View Tutor Seeker

Test Case ID UAT-A-003

Test Module View Tutor Seeker

Test Description Status Feedbacks

Able to view tutor seeker list

Able to search tutor seekers by name

Able to view tutor’s seeker details

7.5 Usability Testing

Usability testing is conducted with the same end-user in user acceptance testing

which are 3 tutor seekers, 3 registered tutors, and 3 admin. Besides testing the

usability of the function in this application usability testing played the main role in

identifying the best similarity measure method which could meet the expectation of

the tutor seeker. The usability testing is conducted virtually by using AnyDesk.

7.5.1 Usability Testing Scenario

7.5.1.1 Tutor Seeker Side

Table 7.28: Usability Testing Scenario – Tutor Seeker

ID Test Scenario Scenario Description

1 Register account

- Scenario:

- You are a tutor seeker who wishes to find your

ideal tutor by using this application. You want to

register an account for this application when first

entering this application.

Task:

- Sign up for an account

2 Login account

Scenario:

- You wish to log in to the account that you have

registered in scenario 1.

Task:

- Log in to your registered account.

3

Search ideal tutor

and book a formal

class

Scenario:

- You wish to search for your ideal tutor based on

your learning preferences. Once you found the

tutor matched your ideal tutor criteria you book a

formal class with the tutor.

Task:

- Search for the ideal tutor according to your

230

preference.

- Browse the 5 results generated from the

application.

- View the profile of the tutor that you are interested

in after getting the search result.

- Register a formal class with the tutor that matched

your ideal tutor criteria.

4 Send message

Scenario:

- You wish to ask about the available teaching time

of the tutor that you have booked a formal class

with him/her.

Task:

- Send a message to the tutor that you have booked

a formal class with him.

5

Raise demo class

requests and check

request history.

Scenario:

- You browse the popular tutor on the home screen

and wish to try the demo class from one of the

tutors on the list that you are interested in.

Task:

- Browse popular tutors.

- Raise a demo class on one of the tutors that you

are interested in on the popular list.

- View the status of the demo class request and

formal class details that you have raised just now.

6 Reply message

Scenario:

- You received a push notification that stated a

message is replied from the tutor that you raised a

formal class in scenario 3.

Task:

- View the chat list and find the message box.

- Reply to a message from the tutor.

7 Edit profile

Scenario:

- You decide to modify your personal information

and let the tutor get your latest profile.

Task:

- Edit your profile information.

Chat Message: Hi, I have booked a formal

class with you, may I know your teaching

time?

Chat Message: I see, I will let you know

ASAP.

231

7.5.1.2 Registered Tutor Side

Table 7.29: Usability Testing Scenario – Registered Tutor

ID Test Scenario Scenario Description

1 Login account

Scenario:

- You are a registered tutor of the application who

wants to log in to your registered account to

perform activities.

Task:

- Log in to your registered account.

2 Mange demo class

Scenario:

- You have received some demo class requests from

registered tutor seekers and wish to approve or

reject the requests after viewing the request list.

Task:

- Approve or reject the pending request from

“Carmen”.

3
Arrange formal

class

Scenario:

- You have received some formal class bookings

from registered tutor seekers and wish to discuss

with them the class details such as time and price

via chat after viewing the booking list.

Task:

- View formal class booking list.

- Discuss class details with “Carmen”

4 Reply message

Scenario:

- You received a push notification that stated you

have a message from “Christine Leong”, and you

wish to reply to her message.

Task:

- Reply message from “Christine Leong”.

Email : clement123@gmail.com

Password: Clement123#

Chat Message: Hi you have registered my

class, my teaching time will be every weekday

from 8am to 5pm. Kindly let me know your

preferred time.

Chat Message: For your case, it should be

RM70 per hour.

232

5 Edit profile

Scenario:

- You have read the rate and review from the

student who attended your class and feels that you

are not suitable to teach BM. You decide to

remove BM from your teaching subject and

modify your personal information as well.

Task:

- View the rate and review from the student.

- Edit your profile by removing BM from the

teaching syllabus and any one of your personal

information.

7.5.1.3 Admin Side

Table 7.30: Usability Testing Scenario – Admin

ID Test Scenario Scenario Description

1 Login account

Scenario:

- You are an admin of the application who wants to

log in to your registered account to perform

activities.

Task:

- Log in to your registered account.

2

Add tutor Scenario:

- A new tutor who joined this platform, and you are

responsible to register an account for him/her.

Task:

- Register a new tutor with verified information.

3 Update tutor

Scenario:

- The tutor that you registered in scenario 2 has

submitted his/her updated professional

information. You have verified the information

and proceed to update his/her professional

information in your profile.

Task:

- Update the listed information to the profile that

Email : chongperngsia@hotmail.com

Password: Chongperng123#

Attended Institution : Universiti Malaya (UM)

Attended Instituition Category : Local

Highest Education Level : Bachelor’s Degree

233

you just created in scenario 2.

4
View registered

tutor seeker

Scenario:

- You have received a complaint from “Carmen” in

reporting a registered tutor violating the

platform’s rules by charging a non-reasonable

tuition fee. You have to write a report to

management with the complainer’s profile

information of her such as name, contact number,

and user id.

Task:

- View the profile information of “Carmen”.

7.5.2 User Satisfaction Survey Form

Figure 7.26: User Satisfaction Survey Form – Tutor Seeker (Part 1)

Attended Institution : Stanford University

Attended Instituition Category : Oversea

Highest Education Level : Master’s Degree

234

Figure 7.27: User Satisfaction Survey Form – Tutor Seeker (Part 2)

235

Figure 7.28: User Satisfaction Survey Form – Admin and Registered Tutor

236

7.5.3 Usability Test Result Analysis

Figure 7.29: SUS of Participant on Application

Figure 7.30: SUS of Participant on Application

The System Usability Scale is the metric to indicate the usability of an application

toward the users while the passing SUS shall equal to and above 68. The figure

above shows the SUS of 9 participants on this intelligent mobile private tutor finders

application and an average SUS of different user roles on the application. Each SUS

achieved a minimum of 68 while the average SUS from users achieved 93.33 which

indicates that this application possesses features of high usability and user-

92.5
90

95 95 95
97.5

95
100

80

0

10

20

30

40

50

60

70

80

90

100

TS1 TS2 TS3 T1 T2 T3 A1 A2 A3

S
y
st

em
 U

sa
b

il
it

y
 S

ca
le

 (
S

U
S

)

Participants

SUS of Particiapant on Application

93.33

92.5

95.83

91.67

89.00 90.00 91.00 92.00 93.00 94.00 95.00 96.00 97.00

Overall

Tutor Seeker

Registered Tutor

Admin

Average SUS

U
se

r
R

o
le

Average SUS of Different User Role on

Application

237

friendliness. The SUS of the admin role which is 91.67 is lower when compared with

the registered tutor and tutor seeker which are 95.83 and 92.5 respectively. Therefore,

the feedbacks from the admin have to be prioritized in order to improve the usability

within the admin role while the other users’ feedback should not be neglected. The

results of the usability test from participants are attached as an appendix to this report.

Table 7.31: Matching Rate of Similarity Measures’ Search Results

Participant
Top 5 Result Top 10 Result

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

TS1 2 2 2 2 4 4 4 4 4 8

TS2 3 3 2 2 4 4 4 4 5 7

TS3 3 3 2 3 4 4 3 3 4 7

R1: Result 1 (Manhattan Distance)

R2: Result 2 (Euclidean Distance)

R3: Result 3 (Minkowski Distance)

R4: Result 4 (Jaccard Similarity Coefficient)

R5: Result 5 (Cosine Similarity)

 The 3 participants in conducting the usability testing of the tutor seeker role

fulfilled the targeted user criteria which are a parent, primary school student, and,

secondary school student. These 3 types of targeted users chose result 5 as the result

that suits their expectations the most which there are more tutors on the returned

result list that suit their ideal tutor’s criteria. Result 5 is generated by applying the

Cosine similarity measures which calculate the angle differences between two

objects’ coordinates. Cosine similarity measure has an obvious outstanding matched

result than the other 4 similarity measures while the other 4 similarity measures

perform similarly without a huge difference that is shown as the matched result

above. Jaccard performs better when compared with Manhattan, Euclidean, and

Minkowski in the top 10 results. As the literature review stated, Manhattan

performed better than Euclidean when handling high dimension data (more features)

comparison. Therefore, the priority (high to low) in applying the similarity measures

methods in the searching function in this application should be Cosine Similarity,

Jaccard Similarity Coefficient, Manhattan Distance, Euclidean Distance, and,

Minkowski Distance.

238

CHAPTER 8

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In conclusion, the objectives and requirements that are set at the initial stage of this

project are achieved. The intelligent mobile private tutor finders application is

developed while it enables the tutor seeker to search their ideal tutor according to

their learning preferences. The searching function applied the similarity measures

method while eliminating the SQL exact matching method to provide a more

quantitative metric to tutor seekers in choosing their ideal tutor. The SUS of this

application achieved an average of 93.33.

 According to the literature review that is conducted, the similarity measures

method is selected as the solution to improve the accuracy of search results which

includes Manhattan Distance, Euclidean Distance, Minkowski Distance, and Jaccard

Coefficient Similarity, and Cosine Similarity. Then, the application is planned to be

developed by using a prototyping model. At the same time, an online survey is

conducted to collect the tutor selection criteria of users from different age-group.

After the analysis is implemented on the collected data, there are 11 criteria is

applied as the search criteria in this application to easier tutor seeker in finding the

real match ideal tutor which includes teaching syllabus, teaching language, teaching

style, teaching experience, teaching area, teaching approach, education level, class

type, tuition fee, attended institution and certificate obtained. The application is

designed as a three-tier architecture to separate the presentation tier, application tier,

and data tier. After the application is developed, unit testing, API testing, UAT, and

usability testing are conducted to test the functionality and non-functionality

performance of the application.

According to the feedback from testing, Cosine Similarity, Jaccard Similarity

Coefficient, and Manhattan are selected as the final similarity measure method in the

search function of this application. Tutor seekers could use this application to search

for tutors, chat with a tutor, and raise for a demo or formal class request. Tutors

could treat this application as a platform to expose themselves and manage their

classes.

239

8.2 Limitations and Future Enhancement

There are some limitations is found after receiving feedback from end-user that could

be fixed and enhanced in the future for this project.

i. Only focus on tutor searching

There is a suggestion from a tutor seeker some enhancement features such as online

teaching, and monitoring students system could be integrated into this application as

an online teaching platform that helps in finding tutors and conducting classes, and

monitoring assignments from tutors for both parent and tutor side.

ii. Lack of payment handling

This application only provides a platform to contact the tutor while payment

handling is not included. This could give a chance for the malicious user in getting

the bank account of the tutor to perform a malicious action. Therefore, payment

handling should be provided to guarantee the benefits of the tutor and tutor seeker.

The tutor seekers could make payments by using the application without asking for

the account number of the tutor.

iii. Lack of data visualization display

The admin side only provides a basic CRUD action to manage the users while lacks

data visualization to track the data of the application. For example, the class

registration rate could be collected with the tutor and tutor seeker data and displayed

in a graph after being analyzed by using an algorithm. This analysis graph could help

the admin track the popularity of tutors, usage of the application, and so on to

implement strategies to target more users to use the application.

 In a nutshell, the enhancement can be implemented and integrated in the

future. After these enhancements are conducted, this application can be considered a

one-stop online tutoring system that provides the services of finding tutors,

purchasing classes, conducting classes, and monitoring classes. Besides, the admin

side could have a more systematic analysis and controls on the users in order to

attract more users and make it a profit platform by charging a commission on each

transaction that is conducted via this platform.

240

REFERENCES

Accurate Reviews, 2020. The best free Agile Software. [online] Available at:

<https://www.accuratereviews.com/free-agile-software/> [Accessed 9 Jul. 2021].

Aggarwal, C.C., Hinneburg, A. and Keim, D.A., 2001. On the surprising behavior of

distance metrics in high dimensional space. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 1973(June), pp.420–434.

Alshamrani, A. and Bahattab, A., 2015. A Comparison Between Three SDLC

Models Waterfall Model, Spiral Model, and Incremental/Iterative Model. IJCSI

International Journal of Computer Science Issues, [online] 12(1), pp.106–111.

Available at:

<https://www.academia.edu/10793943/A_Comparison_Between_Three_SDLC_Mod

els_Waterfall_Model_Spiral_Model_and_Incremental_Iterative_Model> [Accessed

8 Jul. 2021].

Awad, M.A., 2005. A Comparison between Agile and Traditional Software

Development Methodologies. [online] Global Journal of Computer Science and

Technology. Crawley. Available at:

<https://www.academia.edu/38895564/A_Comparison_between_Agile_and_Traditio

nal_Software_Development_Methodologies> [Accessed 7 Jul. 2021].

Babich, N., 2019. Top 7 Usability Testing Methods. [online] Available at:

<https://xd.adobe.com/ideas/process/user-testing/top-7-usability-testing-methods/>

[Accessed 10 Jul. 2021].

Balaji, S. and Murugaiyan, D.M.S., 2012. Waterfall vs v-model vs agile : A

comparative study on SDLC. WATEERFALL Vs V-MODEL Vs AGILE : A

COMPARATIVE STUDY ON SDLC, [online] 2(1), pp.26–30. Available at:

<https://mediaweb.saintleo.edu/Courses/COM430/M2Readings/WATEERFALLVs

V-MODEL Vs AGILE A COMPARATIVE STUDY ON SDLC.pdf> [Accessed 8

Jul. 2021].

Berger, H., Beynon-Davies, P. and Cleary, P., 2004. The Utility of a Rapid

Application Development (RAD) Approach for a Large Complex Information

Systems Development. In: ECIS 2004 Proceedings. [online] Wales: European

Conference on Information Systems (ECIS).p.7. Available at:

<http://aisel.aisnet.org/ecis2004/7/> [Accessed 9 Jul. 2021].

Bora, M.D.J. and Gupta, D.A.K., 2014. Effect of Different Distance Measures on the

Performance of K-Means Algorithm: An Experimental Study in Matlab. [online] 5(2),

pp.2501–2506. Available at: <http://arxiv.org/abs/1405.7471> [Accessed 3 Jul.

2021].

241

Bray, M., 1999. The shadow education system: private tutoring and its implications

for planners. 2nd ed. [online] Economics of Education Review. French: UNESCO

International Institute for Educational Planning (IIEP). Available at:

<https://www.researchgate.net/publication/44839572_The_Shadow_education_syste

m_private_tutoring_and_its_implications_for_planners> [Accessed 18 Jun. 2021].

Brooke, J., 1995. SUS: A ‘Quick and Dirty’ Usability Scale. Usability Evaluation In

Industry, [online] (July), pp.207–212. Available at:

<https://www.researchgate.net/publication/228593520_SUS_A_quick_and_dirty_usa

bility_scale> [Accessed 13 Jul. 2021].

Brownlee, J., 2020. No Title4 Distance Measures for Machine Learning. [online]

Available at: <https://machinelearningmastery.com/distance-measures-for-machine-

learning/> [Accessed 3 Jul. 2021].

Carew, J., 2020. How to choose between a rules-based vs. machine learning system.

[online] Available at: <https://www.techtarget.com/searchenterpriseai/feature/How-

to-choose-between-a-rules-based-vs-machine-learning-system> [Accessed 8 May

2022].

Chandra, V., 2015. Comparison between Various Software Development

Methodologies. International Journal of Computer Applications, [online] 131(9),

pp.7–10. Available at:

<https://www.ijcaonline.org/research/volume131/number9/chandra-2015-ijca-

907294.pdf> [Accessed 9 Jul. 2021].

DeepAI, 2016. What is the Jaccard Index? [online] Available at:

<https://deepai.org/machine-learning-glossary-and-terms/jaccard-index> [Accessed 4

Jul. 2021].

Department of Statistics Malaysia, 2021. Principal Statistics of Tuition Centres by

State. [online] Available at:

<https://www.data.gov.my/data/ms_MY/dataset/principal-statistics-of-tuition-

centres-by-state> [Accessed 18 Jun. 2021].

Despa, M.L., 2014. Comparative Study on Agile software development

methodologies. Database Systems Journal, [online] 5(3), pp.37–56. Available at:

<https://dbjournal.ro/archive/17/17_4.pdf> [Accessed 1 Jul. 2021].

Dima, A.M. and Maassen, M.A., 2018. From waterfall to agile software:

Development models in the IT sector, 2006 to 2018. impacts on company

management. Journal of International Studies, [online] 11(2), pp.315–326. Available

at: <https://jois.eu/files/21_557_Dima.pdf> [Accessed 9 Jul. 2021].

Dubey, M.A., Jain, M.A. and Mantri, M.A., 2015. Comparative Study: Waterfall V/S

Agile Model. International Journal of Engineering Sciences & Research Technology,

[online] 4(3), pp.70–75. Available at:

242

<https://www.academia.edu/11483288/COMPARATIVE_STUDY_WATERFALL_

V_S_AGILE_MODEL> [Accessed 9 Jul. 2021].

Elastic NV, 2021. SQL Limitations. [online] Available at:

<https://www.elastic.co/guide/en/elasticsearch/reference/current/sql-limitations.html>

[Accessed 2 Jul. 2021].

Esplin, C., 2016. What is Firebase? [online] Available at:

<https://howtofirebase.com/what-is-firebase-fcb8614ba442> [Accessed 1 Jul. 2021].

Fatimah, D.D.S., Supriatna, A.D. and Kurniawati, R., 2018. Design of personnel

information systems using rapid application development method. In: MATEC Web

of Conferences. [online] Garut: MATEC Web of Conferences. Available at:

<https://www.matec-

conferences.org/articles/matecconf/abs/2018/56/matecconf_aasec2018_03016/matec

conf_aasec2018_03016.html> [Accessed 9 Jul. 2021].

Firebase, 2021a. Firebase Realtime Database. [online] Available at:

<https://firebase.google.com/docs/database>.

Firebase, 2021b. Privacy and Security in Firebase. [online] Available at:

<https://firebase.google.com/support/privacy> [Accessed 1 Jul. 2021].

Gallagher, A., Dunleavy, J. and Reeves, P., 2019. The Agile Method: Everything you

need to know. [online] Available at:

<https://developer.ibm.com/devpractices/devops/articles/agile-method-everything-

you-need-to-know/> [Accessed 9 Jul. 2021].

Gatsou, C., Politis, A. and Zevgolis, D., 2013. Exploring inexperienced user

performance of a mobile tablet application through usability testing. In: 2013

Federated Conference on Computer Science and Information Systems, FedCSIS

2013. [online] Krakow: IEEE.pp.557–564. Available at: <https://search-ebscohost-

com.libezp2.utar.edu.my/login.aspx?direct=true&db=edseee&AN=edseee.6644056&

site=eds-live&scope=site> [Accessed 11 Jul. 2021].

Grootendorst, M., 2021. 9 Distance Measures in Data Science. [online] Available at:

<https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa>

[Accessed 4 Jul. 2021].

Han, J., Kamber, M. and Pei, J., 2012. Getting to Know Your Data. In: D. Cerra, ed.

Data mining: Data mining concepts and techniques, 3rd ed. [online] Waltham:

Morgan Kaufmann.pp.39–82. Available at: <https://doi.org/10.1016/B978-0-12-

381479-1.00002-2> [Accessed 4 Jul. 2021].

Harrison, O., 2018. Machine Learning Basics with the K-Nearest Neighbors

Algorithm. [online] Available at: <https://towardsdatascience.com/machine-learning-

basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761> [Accessed 4 Jul.

243

2021].

Helland, P., 2016. The singular success of SQL. Communications of the ACM, 59(8),

pp.38–41.

hotjar, 2021. The different types of usability testing methods for your projects.

[online] Available at: <https://www.hotjar.com/usability-testing/methods/>

[Accessed 10 Jul. 2021].

IBM Cloud Education, 2020. Three-Tier Architecture. [online] Available at:

<https://www.ibm.com/cloud/learn/three-tier-architecture> [Accessed 22 Mar. 2022].

Islam, M.R., Islam, M.R. and Mazumder, T.A., 2010. Mobile application and its

global impact. International Journal of Engineering & …, [online] 10(06), pp.104–

111. Available at: <http://ijens.org/107506-0909 IJET-IJENS.pdf> [Accessed 17 Jun.

2021].

Javatpoint, 2021. K-Nearest Neighbor(KNN) Algorithm for Machine Learning.

[online] Available at: <https://www.javatpoint.com/k-nearest-neighbor-algorithm-

for-machine-learning> [Accessed 4 Jul. 2021].

Kenayathulla, H.B. and Ubbudari, M., 2017. Private Tutoring in Malaysia: the Nexus

Between Policy, People and Place. Malaysian Online Journal of Educational

Management, [online] 5(2), pp.42–59. Available at:

<http://mojem.um.edu.my/filebank/published_article/11335/(page 42-59) PRIVATE

TUTORING .pdf> [Accessed 18 Jun. 2021].

Lu, W., Zhao, X., Sun, C., Chen, R. and Duan, G., 2020. A Novel Weighted

Integration Dynamic Time Regularization and Euclidean Distance Optimization

Algorithm for Power Data Mining. In: 2020 IEEE 6th International Conference on

Computer and Communications, ICCC 2020. [online] Cheng Du: IEEE.pp.2033–

2037. Available at: <https://ieeexplore-ieee-

org.libezp2.utar.edu.my/document/9345154/authors#authors> [Accessed 3 Jul. 2021].

M.Barnum, C., 2021. Establishing the essentials. In: A. Akeh and C. Hockaday, eds.

Usability Testing Essentials: Ready, Set ...Test! [online] Cambridge: Elsevier

Inc.pp.9–31. Available at: <https://books.google.com.my/books?hl=zh-

CN&lr=&id=L6_SDwAAQBAJ&oi=fnd&pg=PP1&dq=usability++testing+&ots=k

AcKU6C6zd&sig=iNYoVZQYE1RslbY2KfP6hO66DwA#v=onepage&q=usability

testing&f=false> [Accessed 10 Jul. 2021].

Moran, K., 2019. Usability Testing 101. [online] Available at:

<https://www.nngroup.com/articles/usability-testing-101/> [Accessed 10 Jul. 2021].

Myalapalli, V.K. and Teja, B.L.R., 2015. High Performance PL / SQL Programming.

[online] Pune: IEEE. Available at: <https://ieeexplore-ieee-

org.libezp2.utar.edu.my/document/7087001/authors#authors> [Accessed 2 Jul. 2021].

244

Netguru, 2021. What Is React Native? Complex Guide for 2021. [online] Available at:

<https://www.netguru.com/glossary/react-native#benefits-of-react-native> [Accessed

16 Jul. 2021].

Nishanthi, R., 2020. Understanding of the Importance of Mother Tongue Learning.

ISSN: 2456-6470, [online] 5(1), pp.77–80. Available at:

<https://www.ijtsrd.com/humanities-and-the-arts/sociology/35846/understanding-of-

the-importance-of-mother-tongue-learning/rajathurai-nishanthi> [Accessed 18 Jun.

2021].

Niwattanakul, S., Singthongchai, J., Naenudorn, E. and Wanapu, S., 2013. Using of

jaccard coefficient for keywords similarity. In: Lecture Notes in Engineering and

Computer Science. [online] Hong Kong: International Association of Engineers

(IAENG).pp.380–384. Available at:

<http://www.iaeng.org/publication/IMECS2013/IMECS2013_pp380-384.pdf>

[Accessed 4 Jul. 2021].

OECD, 2020. Strengthening online learning when schools are closed. Tackling

Coronavirus (COVID-19): Contributing to a global effort, [online] pp.1–14.

Available at: <https://www.oecd.org/coronavirus/policy-responses/strengthening-

online-learning-when-schools-are-closed-the-role-of-families-and-teachers-in-

supporting-students-during-the-covid-19-crisis-c4ecba6c/#boxsection-d1e29>

[Accessed 8 May 2022].

playbook ux, 2021. 10 Popular Usability Testing Methods. [online] Available at:

<https://www.playbookux.com/10-popular-usability-testing-methods/> [Accessed 10

Jul. 2021].

Polamuri, S., 2015. FIVE MOST POPULAR SIMILARITY MEASURES

IMPLEMENTATION IN PYTHON. [online] Available at:

<https://dataaspirant.com/five-most-popular-similarity-measures-implementation-in-

python/> [Accessed 3 Jul. 2015].

Ragunath, P., Velmourougan, S., Davachelvan, P., Kayalvizhi, S. and Ravimohan, R.,

2010. Evolving A New Model (SDLC Model-2010) For Software Development Life

Cycle (SDLC). International Journal of Computer Science and Network Security,

[online] 10(1), pp.112–119. Available at:

<http://paper.ijcsns.org/07_book/201001/20100115.pdf> [Accessed 8 Jul. 2021].

Rahim, S., Chowdhury, A.E., Nandi, D. and Rahman, M., 2018. ScrumFall: A

Hybrid Software Process Model. International Journal of Information Technology

and Computer Science, [online] 10(12), pp.41–48. Available at: <http://www.mecs-

press.org/ijitcs/ijitcs-v10-n12/v10n12-6.html> [Accessed 9 Jul. 2021].

Sauro, J., 2011. Measuring Usability with the System Usability Scale (SUS). [online]

Available at: <https://measuringu.com/sus/> [Accessed 13 Jul. 2021].

245

scikit-learn, 2020. sklearn.neighbors.DistanceMetric. [online] Available at:

<https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html#sklearn.n

eighbors.DistanceMetric> [Accessed 4 Jul. 2021].

Sharma, N., 2019. Importance of Distance Metrics in Machine Learning Modelling.

[online] Available at: <https://towardsdatascience.com/importance-of-distance-

metrics-in-machine-learning-modelling-e51395ffe60d> [Accessed 3 Jul. 2021].

Shirkhorshidi, A.S., Aghabozorgi, S. and Ying Wah, T., 2015. A Comparison study

on similarity and dissimilarity measures in clustering continuous data. PLoS ONE,

[online] 10(12), pp.1–20. Available at:

<https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144059#sec001>

[Accessed 3 Jul. 2021].

Simelane, L. and Zuva, T., 2019. Decision Support Framework for the Adoption of

Software Development Methodologies. In: Proceedings - 2019 International

Multidisciplinary Information Technology and Engineering Conference, IMITEC

2019. [online] Vanderbijlpark: IEEE. Available at: <https://search-ebscohost-

com.libezp2.utar.edu.my/login.aspx?direct=true&db=edseee&AN=edseee.9015859&

site=eds-live&scope=site> [Accessed 7 Jul. 2021].

Snyder, H., 2019. Literature review as a research methodology: An overview and

guidelines. Journal of Business Research, [online] 104(August), pp.333–339.

Available at: <https://doi.org/10.1016/j.jbusres.2019.07.039> [Accessed 21 Jul.

2021].

Susanto, A. and Meiryani, 2019. System Development Method with The Prototype

Method. International Journal of Scientific and Technology Research, [online] 8(7),

pp.141–144. Available at: <http://www.ijstr.org/final-print/july2019/System-

Development-Method-With-The-Prototype-Method.pdf> [Accessed 9 Jul. 2021].

The Government of Malaysia, 2019. Mendapat Pendidikan Formal. [online]

Available at: <https://www.malaysia.gov.my/portal/content/29545> [Accessed 18

Jun. 2021].

tutorialspoint, 2021. SDLC - RAD Model. [online] Available at:

<https://www.tutorialspoint.com/sdlc/sdlc_rad_model.htm> [Accessed 9 Jul. 2021].

Uniqtech, 2020. No TitleUnderstand Jaccard Index, Jaccard Similarity in Minutes.

[online] Available at: <https://medium.com/data-science-bootcamp/understand-

jaccard-index-jaccard-similarity-in-minutes-25a703fbf9d7> [Accessed 4 Jul. 2021].

usability.gov, 2021a. System Usability Scale (SUS). [online] Available at:

<https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html>

[Accessed 13 Jul. 2021].

246

usability.gov, 2021b. Usability Testing. [online] Available at:

<https://www.usability.gov/how-to-and-tools/methods/usability-testing.html>

[Accessed 10 Jul. 2021].

W3Schools, 2021a. Introduction to SQL. [online] Available at:

<https://www.w3schools.com/sql/sql_intro.asp> [Accessed 2 Jul. 2021].

W3Schools, 2021b. SQL GROUP BY Statement. [online] Available at:

<https://www.w3schools.com/sql/sql_groupby.asp> [Accessed 2 Jul. 2021].

APPENDICES

APPENDIX A: Questionnaire

252

APPENDIX B: Gantt Chart

253

254

255

256

APPENDIX C: Usability Test Result

257

258

259

260

261

262

263

264

265

266

267

268

APPENDIX D: User Acceptance Testing Results

269

270

271

272

273

274

275

276

277

278

279

280

2

281

282

