

EVALUATING DEEP TRANSFER LEARNING MODELS FOR FACE MASK

DETECTION

GOH PEI JIN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2022

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Goh Pei Jin

ID No. : 1802410

Date : 21/4/2022

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “EVALUATING DEEP TRANSFER

LEARNING MODELS FOR FACE MASK DETECTION” was prepared by

GOH PEI JIN has met the required standard for submission in partial fulfilment of

the requirements for the award of Bachelor of Science (Hons) Software Engineering

at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Khor Kok Chin

Date : 21/4/2022

Signature :

Co-Supervisor :

Date :

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2022, Goh Pei Jin. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my research supervisor,

Dr. Khor Kok Chin for his invaluable advice, guidance and enormous patience

throughout the development of the research. His enthusiasm, vision, sincerity and

motivation have greatly influenced me. He has taught me the methodology for

conducting the research and presenting the findings as clearly as possible.

Working and learning under his guidance was a tremendous pleasure and honour.

I am grateful for everything he has provided me. I would also want to thank him

for his companionship, understanding and wonderful sense of humour, which

made the research experience more enjoyable.

In addition, I would also like to express my gratitude to my loving parents

and friends who had helped and encouraged me. With the generous support and

assistance of many individuals, this project will be completed successfully. I

would like to express my heartfelt gratitude to every one of them.

vi

ABSTRACT

Due to the fast transmission of coronavirus and the severe sequela of COVID-19, which

has no specific cure, the world is facing a massive health crisis. According to the World

Health Organization (WHO), wearing a mask in public locations and crowded locations

is the most effective prevention of COVID-19. In Malaysia, wearing a face mask is

mandatory in public areas. However, it is impossible to detect all passers-by manually as

it requires much manpower. This research proposes an automation approach to mask-

wearing detection by identifying people who are (i) not wearing a mask, (ii) wearing a

mask, (ii) incorrect mask-wearing, and (ii) wearing double masks. Transfer learning

methods were adopted by using five pre-trained models: (i) VGG, (ii) MobileNet, (iii)

ResNet, (iv) Inception and (v) Xception models. These models were trained based on

2000 real-life data sets collected from various sources with a data augmentation

technique. The research results show that the pre-trained ResNet152 model outperformed

the other models by achieving 0.8667 accuracy on the testing data set (120 images from

the other distribution) and 0.8447 accuracy on the videos captured using a smartphone.

.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER

1 INTRODUCTION 16

1.1 Background 16

1.2 Problem Statement 17

1.3 Project Objectives 17

1.4 Scope of the Project 17

2 LITERATURE REVIEW 18

2.1 Introduction 18

2.2 Traditional Machine Learning 18

2.3 Deep Learning Overview 19

2.4 Transfer Learning 21

2.4.1 Visual Geometry Group (VGG) 22

2.4.2 MobileNet 24

2.4.3 ResNet 27

2.4.4 Inception 32

2.4.5 Xception 37

viii

2.5 Techniques in coding 40

2.5.1 Data augmentation 40

2.5.2 Transfer learning 40

2.5.3 Optimisation method to improve deep learning

performance 41

2.6 The existing method in face mask detection 44

3 METHODOLOGY AND WORK PLAN 51

3.1 The Proposed Model Workflow 51

3.2 Data Preparation 52

3.2.1 Data Collection 52

3.2.2 Data Finalisation 55

3.3 Data Pre-processing 56

3.4 Data Augmentation 56

3.5 Training, Validation and Testing 57

3.6 Feature Extraction 57

3.7 Hyperparameter Tuning 58

3.8 Model Evaluation 59

3.9 Pseudocode for this project 60

3.10 Work Breakdown Structure of the Project 62

3.11 Gantt Chart of Project 63

4 RESULTS AND DISCUSSIONS 64

4.1 Introduction 64

4.2 Grid Search Result 64

4.3 Model Evaluation 68

4.3.1 Test set from the same distribution (200 images) 68

4.3.2 Test set from other distribution (120 images) 69

4.3.3 Test set from video frame (12 videos – 3 videos per

category) 71

4.4 Result summary 73

4.5 Deploy the best model on a webcam 74

ix

5 CONCLUSIONS AND RECOMMENDATIONS 75

5.1 Conclusions 75

5.2 Limitation 75

5.2.1 Poor performance when detecting individuals from

far 75

5.2.2 Poor performance in detecting double masks

wearing 75

5.3 Recommendations for future work 75

5.3.1 Gather more data set 75

5.3.2 Improve performance of detecting double masks 76

5.3.3 Explore more transfer learning model 76

REFERENCES 77

APPENDICES 82

x

LIST OF TABLES

Table 2.1: Comparison of VGG-16 and VGG-19 (Tsai, 2019) 23

Table 2.2: Comparison summary for the 5 deep learning model 39

Table 2.3: The overview of Reviewed Paper 46

Table 3.1: Artificially created doubled mask data 55

Table 3.2: Confusion Matrix for 4 classes 59

Table 4.1: Grid search result for MobileNetV2 64

Table 4.2: Grid search result for VGG-16 65

Table 4.3: Grid search result for ResNet-50 65

Table 4.4: Grid search result for ResNet-152 66

Table 4.5: Grid search result for Inception-v3 67

Table 4.6: Grid search result for Xception 67

Table 4.7: Results tested on test set (same distribution) 68

Table 4.8: Confusion matrix (same distribution) 68

Table 4.9: Results tested on test set (other distribution) 69

Table 4.10: Confusion matrix (other distribution) 70

Table 4.11: Results tested on test set (video frame) 71

Table 4.12: Confusion matrix (video frame) 72

Table 4.13:Grid Search Result Summary 73

Table 4.14: Model Evaluation Summary 73

xi

LIST OF FIGURES

Figure 2.1: Comparison of Machine Learning and Deep Learning 19

Figure 2.2: Lower-level features progressively combine to form

higher-level features (Asghar et al., 2019) 20

Figure 2.3: Neural Network of Deep Learning (IBM Cloud

Education, 2020) 20

Figure 2.4: Transfer Learning idea 21

Figure 2.5: VGG-16 and VGG-19 architecture 22

Figure 2.6: VGG-16 architecture’s visualisation (Frossard, 2016) 23

Figure 2.7: Standard convolution 24

Figure 2.8: Depthwise separable convolution 24

Figure 2.9: Overview of MobileNetV2 architecture (Sinha, 2018) 25

Figure 2.10: MobileNetV2 Bottleneck residual block (Sandler et

al., 2019) 26

Figure 2.11: Bottleneck residual block visualisation 26

Figure 2.12: MobileNetV2 architecture (Sandler et al., 2019) 27

Figure 2.13: Training (left) and test (right) error on CIFAR-10

(He et al., 2016) 28

Figure 2.14: Residual building block 28

Figure 2.15: ResNet-34 architecture (Right) 30

Figure 2.16: ResNet architectures 31

Figure 2.17: Top-5 err (%) on ImageNet validation set 31

Figure 2.18: Naive version of inception module (Szegedy et al.,

2015) 32

Figure 2.19: Inception-v3 architecture (Tsang, 2018) 33

xii

Figure 2.20: Updated Module by replacing 5x5 convolution

(Tsang, 2018) 34

Figure 2.21: Updated Module by replacing 7x7 convolution

(Tsang, 2018) 34

Figure 2.22: Updated Module by expending filter bank (Tsang,

2018) 35

Figure 2.23: Auxiliary Classifier (Tsang, 2018) 35

Figure 2.24: Efficient Grid Size Reduction (Tsang, 2018) 36

Figure 2.25: Xception architecture (Chollet, 2017) 37

Figure 2.26: Performance of Xception with non-linearity 38

Figure 2.27: Before and after data augmentation 40

Figure 2.28: Base model 40

Figure 2.29: Feature extraction 41

Figure 2.30: Frozen type in the base model 42

Figure 3.1: Face mask Recognition Model Workflow Summary 51

Figure 3.2: Face mask detection technique 52

Figure 3.3: samples of data from MM 53

Figure 3.4: Samples of data from MAFA 53

Figure 3.5: Incorrectly masked face 54

Figure 3.6: FMD sample1 54

Figure 3.7: FMD sample2 54

Figure 3.8: Sample training data set 56

Figure 3.9: Augmented data 57

Figure 3.10: Flattening of the multidimensional array 58

Figure 3.11: Work Breakdown Structure of the Project 62

Figure 3.12: Gantt Chart of the Overall Project 63

Figure 4.1: Sample data for test set (other distribution) 69

xiii

Figure 4.2: Sample videos captured 71

Figure 4.3: Sample data from the video frame 71

Figure 4.4: video frame for double mask detection (ResNet-152) 72

Figure 4.5: No mask-wearing 74

Figure 4.6: Incorrect mask-wearing 74

Figure 4.7: Single mask-wearing 74

Figure 4.8:Double mask-wearing 74

xiv

LIST OF SYMBOLS / ABBREVIATIONS

AI Artificial Intelligence

AP Average Precision

CNNs Convolutional Neural Networks

COVID-19 Corona Virus Disease 2019

FPS Frame per second

LR Learning rate

MCO Movement Control Order

RNNs Recurrent Neural Networks

SGD Stochastic gradient descent

SSD Single-Shot Detector

VGG Visual Geometry Group

WHO World Health Organization

xv

LIST OF APPENDICES

APPENDIX A: Detailed of the Gantt Chart in Project 1 82

APPENDIX B: Detailed of the Gantt Chart in Project 2 83

16

CHAPTER 1

1 INTRODUCTION

1.1 Background

COVID-19 pandemic has made an unprecedented change in our day-to-day life and

has disturbed the world economy and society. According to the World Health

Organisation’s (WHO) official Dashboard, on 18 June 2021, COVID-19 has infected

approximately 176.95 million people and caused approximately 3.84 million deaths

in the world (World Health Organization, 2021). People infected with the COVID-19

may have fever, joint and chest pain, headache, difficulty breathing and depression.

The infection may also cause one’s life (Mayo Foundation for Medical Education

and Research, 2021). The whole world is now combating COVID-19, including

Malaysia.

In Malaysia, the first wave of pandemics occurred from 25 January to 16

February 2020. The second wave that happened from 27 February to 30 June 2020

forced the Malaysian government to take various Movement Control Order (MCO)

phases to handle the spreading of COVID-19. The third wave began on 8 September

2020 due to the Sabah state election, which has caused the confirmed cases of

COVID-19 to soar up until today, and thousands of cases are reported daily (Rampal

and Liew,2021). Therefore, precautions like wearing a mask, social distancing,

washing hands, avoiding the crowd and disinfection are important to protect us

against COVID-19 (Centers for Disease Control and Prevention, 2021).

Wearing a mask is one important approach to prevent COVID-19. Therefore,

we need to ensure everyone is wearing a mask throughout the whole pandemic when

going outside their home. To ensure everyone is masked needs much manpower from

enforcement agencies. Autodetect mask-wearing needs to be implemented to solve

the cumbersome workload of manual detection. To detect a face mask, a deep

learning technique shall be used to incrementally learn high-level features

automatically of data by first recognising pixels, lines, edges and then parts of the

object, and finally, the whole object (Mahapatra, 2018). Thousands of masked,

unmasked, improper masked wearing, double mask images data shall be used to train

deep learning models. The models shall assist the enforcement agencies in

performing real-time detection on passers-by.

17

1.2 Problem Statement

The process of manually detecting whether or not someone is wearing a mask is

tedious and inefficient. It is impossible for a human to detect all the passers-by in a

location. Moreover, there is not enough manpower to be placed everywhere.

1.3 Project Objectives

a. To detect mask-wearing automatically using deep learning.

b. To evaluate pre-trained deep learning models and select the best in detecting

mask-wearing.

1.4 Scope of the Project

The problems can be solved by developing a deep learning model for face mask

detection. Jupyter Notebook shall be used for coding purposes.

User Scope Coverage

The target users of this face mask detection using deep learning are those who pass

by the sensor of detection to ensure the presence of a face mask.

Research Scope Coverage

The research used deep learning libraries like Keras, OpenCV, TensorFlow, and cv2

to preprocess the data and develop the deep learning model for detecting the mask-

wearing. Besides, matplotlib is used for visualising the statistical results.

Scope Not Coverage

The deep learning model cannot detect surgical masks, such as N95.

18

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

The practice of wearing face masks in public has become essential during the

pandemic to protect us from infection. However, some self-centered individuals do

not obey the regulation. Therefore, robust face mask detection must be developed to

solve this situation. Global scientific collaboration has risen to unprecedented levels

as a result of the coronavirus outbreak. Machine learning and deep learning-based

artificial intelligence (AI) have the potential to aid in the battle against Covid-19 in a

variety of capacities (Loey et al., 2021). Deep learning enabled researchers and

doctors to anticipate COVID-19 distribution by evaluating huge amounts of data. It

also can help to ensure the social distancing and detection of the facemask.

Several kinds of the literature review are done to understand about:

1. Traditional Machine Learning

2. Deep Learning Overview

3. Transfer Learning

4. Techniques in coding

5. The existing method in face mask detection

2.2 Traditional Machine Learning

The traditional machine learning process requires feature extraction, which implies

that the feature engineer must specify which features the machine learning should

look for to distinguish the picture. The methods like Harris Corner Detection,

Oriented FAST and Rotated BRIEF (ORB), etc., will be used to descript the feature

in object detection. Feature extraction may also require computer vision algorithms

like edge and corner detection (O’Mahony et al., 2019). When unstructured data is

used, pre-processing must be done to arrange it into a structured format. The

challenge with traditional machine learning is determining which features are

significant in each image. Feature extraction gets increasingly difficult as the number

of classes grows. It became a lengthy trial and error process to determine which

19

features best describe various object types (O’Mahony et al., 2019). Deep learning

innovation has overcome the difficulties of traditional machine learning.

2.3 Deep Learning Overview

Figure 2.1: Comparison of Machine Learning and Deep Learning

Deep learning is getting more popular due to the big data era since it has a higher

accuracy when trained with a massive amount of data (Sharma, Sharma and Jindal,

2021). Big data may be derived from social media, the internet, search engines, e-

commerce platforms, and online movies. Often, this data is unstructured and so large

that it takes humans decades to extract the features (Sivarajah et al., 2017). Figure

2.1 shows the algorithm in deep learning has eliminated some of the data pre-

processing or feature extraction needed in traditional machine learning. Deep

learning is capable of ingesting and processing unstructured data such as text and

images. Additionally, it can automate feature extraction because it uses hierarchical

neural networks like convolutional neural networks (CNNs) or recurrent neural

networks (RNNs). CNNs are used to classify images, while RNNs are used to

recognise natural language and speech recognition (Sharma, Sharma and Jindal,

2021). The hierarchical structure enables it to adopt a non-linear approach,

processing data across a series layer and gradually extracting more complex data

features (Shrestha and Mahmood, 2019).

20

Figure 2.2: Lower-level features progressively combine to form higher-level features

(Asghar et al., 2019)

In image recognition, the deep learning system recognises the pixel first,

followed by the line and edge. In the next layer, it will recognise more complex

shapes, such as eyes and noses, and in the deeper layer, it will learn which shapes

and objects may be used to identify a human face as shown in Figure 2.2. Thus, the

prediction model gets more complex and accurate with each iteration.

Figure 2.3: Neural Network of Deep Learning (IBM Cloud Education, 2020)

Deep learning simulates the human brain by combining data input, weights,

bias or threshold, and an output; the fundamental formula is 𝑍 = ∑ 𝑊𝑖𝑋𝑖 + 𝑏𝑚
𝑖=1 . X

represents the non-linear activation function at each layer, W represents the weight

between two adjoining unit layers, and b represents the bias, the minimal number

21

required to pass the threshold. Z will be the output; the output will then be predicted

by summing these three inputs together. If the output is greater than the specified

bias, the node will activate and transmit data to the network’s next layer; otherwise,

no data will be transmitted. Since neural networks contain many hidden layers, the

process will be performed several times for a single decision. Every hidden layer

contains its own activation function, which may be used to transfer information

across layers. Once all outputs are produced from the hidden layers, the outputs are

used as inputs to compute the neural network’s final output (Shrestha and Mahmood,

2019; IBM Cloud Education, 2020). This computation across the network is known

as forward propagation. Deep learning also includes backpropagation, which uses an

algorithm like gradient descent to allow the function to move backwards through the

layers to enhance the model by adjusting the weights and biases when the prediction

is incorrectly computed (Shrestha and Mahmood, 2019). By forward and

backpropagation, the neural network can generate predictions and fix the error,

making the algorithm more accurate.

In short, deep learning trains a computer to learn like a human brain. It can

learn high-level features incrementally, which has eliminated the need for feature

engineers and can easily achieve incredible accuracy. However, deep learning

requires a massive quantity of data and processing power to reach an acceptable

degree of accuracy, but this is easily achievable in today’s big data and cloud

computing era. Hence, it has become the primary option among others.

2.4 Transfer Learning

Figure 2.4: Transfer Learning idea

22

Deep learning is highly dependent on huge data sets compared to traditional learning

methods since it needs a large amount of data to discover hidden patterns in data

because the size of the model and the quantity of data have a roughly linear

correlation (Tan et al., 2018). If a small data set is used to train from scratch,

overfitting will occur. Therefore, transfer learning is essential to deep learning due to

the scarcity of data and a large amount of time needed, as training may take days or

weeks from scratch. Transfer learning is the application of a previously trained

model to a new issue. In transfer learning, the knowledge learned in the previous

model will be passed to the new training model, so that the new network model can

start with pre-trained weights (Krishna and Kalluri, 2019). Figure 2.4 shows a set of

small data sets with previously unknown classifications that can be trained via

transfer learning by adjusting the internal network, and the resulting new model can

recognise the new class. The pre-trained models studied in this literature review are

VGG, MobileNet, and YOLO.

2.4.1 Visual Geometry Group (VGG)

Figure 2.5: VGG-16 and VGG-19 architecture

The most common VGG networks are VGG-16 and VGG-19. The numbers 16 and

19 represent the weight layers in VGG. This network is unique in its simplicity, as it

employs only 3x3 convolutional layers stacking on each other to increase the depth.

Max pooling will handle the volume reduction. Then end with two 4096 nodes fully

connected layers and a softmax classifier. VGG-19 has three additional convolutional

layers compared with VGG-16. By using multiple 3x3 filters, it has eliminated the

need for large size kernels, allowing us to extract complex features at a low cost

(Krishna and Kalluri, 2019).

23

Figure 2.6: VGG-16 architecture’s visualisation (Frossard, 2016)

VGG networks use convolution layers with a 3x3 filter, a stride of 1, and

equal padding. The max pooling layers were 2x2 filters with a stride of 2. Figure 2.6

illustrates a 224x224 size of the image as the input with 3 filters representing RGB.

The first two convolutional layers contain 64 filters, so it ends up with 224x224x64

volume. Then the max pooling layer reduces the height and width from 224 to 112,

and the following convolutional layers contain 128 filters, resulting in 112x112x128

dimensions. The process will continue till we get a final 7x7x512 into fully

connected layers with a softmax output of 1000 classes.

Table 2.1: Comparison of VGG-16 and VGG-19 (Tsai, 2019)

Model Memory Size
Accuracy

Top-1 Top-5

VGG-16 528MB 0.72 0.910

VGG-19 549MB 0.759 0.929

VGG-19 performs slightly better than VGG-16, but it requires more memory

size (Shu, 2019). So, many users prefer VGG-16 as it performs almost as well as

VGG-19. However, the VGG network has the disadvantage of being very slow to

train and having high architectural weights in terms of disc or bandwidth. VGG

requires more than 500MB of memory size due to its depth and amount of fully

connected nodes. Therefore, deploying VGG takes a long time, which is why smaller

network architectures are typically chosen (Rosebrock, 2017).

24

2.4.2 MobileNet

A MobileNet model is intended for usage in mobile applications and devices with

limited computing capacity. The ability to operate deep networks on mobile devices

enhances user experience by providing anytime, everywhere access, as well as extra

security, privacy, and energy conservation. So, this neural network developed is

entirely lite, as mobile devices cannot afford a large GPU to operate in the

background due to space and restriction. Furthermore, MobileNet employs

depthwise separable convolutions, including depthwise and pointwise convolutions.

Compared to alternative architectures with the same depth in the network, this has

substantially reduced the number of parameters. So, MobileNet is a lightweight

network (Sandler et al., 2019). This literature study will go over MoblieNetV2 in

more detail.

Depthwise separable Convolution:

Figure 2.7: Standard convolution

Figure 2.8: Depthwise separable convolution

Depthwise separable convolution is more efficient than standard convolution as it

divides the kernels into smaller parts. From Figure 2.7, 128 of 3x3x3 kernels are

used, and each move 5x5 times. So, standard convolution has a total of

25

128𝑥3𝑥3𝑥3𝑥5𝑥5 = 86,400 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠. In Figure 2.8, the first kernel has 3 of

3x3x1 size that moves 5x5 times. And the second kernel has 128 of 1x1x3 size that

moves 5x5 times. The total is 3𝑥3𝑥3𝑥1𝑥5𝑥5 + 128𝑥1𝑥1𝑥3𝑥5𝑥5 =

10275 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. So, it only has 10275 multiplication which only costs 11.89%

of the standard convolution. The simplified formula for standard convolution is

𝐷𝑘
2𝑚𝑛𝐷𝑓

2 . In contrast, the formula for Depthwise separable convolution is

𝐷𝑘
2𝑚𝐷𝑓

2 + 𝑚𝑛𝐷𝑓
2 where m is the input channels’ number, n is the output channels’

number, Dk is the size of the kernel, and Df is the size of the feature map. Therefore,

with Depthwise separable convolution, it can deduct standard convolution costs by

1

𝑛
+

1

𝐷𝑘
2 (Howard et al., 2017).

MoblieNetV2:

Figure 2.9: Overview of MobileNetV2 architecture (Sinha, 2018)

26

Figure 2.10: MobileNetV2 Bottleneck residual block (Sandler et al., 2019)

MobileNetV2 uses an inverted residual structure with depth separable convolution. It

has an architecture that starts with a full convolution layer of 32 filters and 19

residual bottleneck layers. Figure 2.10 shows there are two types of bottleneck

residual block, which are stride 1 and stride 2. Stride 2 is used for downsizing the

input size, and it does not have a residual connection. There are 3 layers in these

blocks. The first layer has 1x1 convolution with ReLU6, the second layer contains

depthwise convolution, and the last layer is linear 1x1 convolution. ReLU6 was

chosen as a non-linearity because of its robustness in low-precision computation.

Every layer contains a batch normalisation layer and an activation function, except

the final layer, which does not include ReLU6 since the output form in this layer has

low dimension and non-linearity would reduce its performance (Sandler et al., 2019).

Figure 2.11: Bottleneck residual block visualisation

27

In MobileNetV2, the expansion factor(t) of 6 is used. If the input tensor is 24

channels, the expansion layer, the first layer in the residual block, will convert it into

a new tensor, 144 channels. Then, depthwise convolution will apply its filter to that

144-channel tensor, and finally, the projection layer will project the filter back to 24

channels. These layers are known as bottleneck layers because it lowers the amount

of data flowing across the network. The residual connection in MobileNetV2 is only

used when the number of channels entering the block equals the number of channels

coming out of it, which is the stride of 1. The stride of 2 will not pass through the

block residual connection.

Figure 2.12: MobileNetV2 architecture (Sandler et al., 2019)

Figure 2.12 shows the complete architecture of MobileNetV2, where t is the

channel expansion rate, c is the number of output channels, n is block repetition time,

and s is the stride. MobileNetV2 begins with a standard 3x3 convolution with 32

channels, followed by 17 bottleneck blocks. It ends with a regular 1x1 convolution.

Before classification, a global average pooling layer is used, then only followed by

the classification layer. The MobileNetV2 achieved a top-5 accuracy of 0.901 when

training on 2.5 million parameters. Due to Depthwise separable Convolution,

MobileNet requires less computation and parameters, allowing it to perform better in

size, latency, and accuracy (Sandler et al., 2019).

2.4.3 ResNet

ResNet is a robust deep neural network that achieved 1st price in the ILSVRC 2015

classification competition with 3.57%. of top-5 error rate. ResNet architectures exist

many variants, each with the same basic idea but a different number of layers. The

28

most popular architectures are ResNet-34, ResNet-50, ResNet-101 and ResNet-152.

The digit indicates the number of neural network layers of the Resnet.

In a neural network, several additional layers are often placed in Deep Neural

Networks when dealing with complicated problems to increase accuracy and

performance. This is because adding additional layers allow that layer gradually

learn more complex features. However, He et al. (2016) found that the conventional

CNN model has a depth threshold limit.

Figure 2.13: Training (left) and test (right) error on CIFAR-10 (He et al.,

2016)

From Figure 2.13, He et al. (2016) show that the deeper network will

generate greater training and test error. As a result, putting extra layers on top of a

network reduces its performance. Because the massive layer in networks is prone to

data overfitting. Deep networks are extremely hard to train because of the problem of

vanishing gradient, which claims that when a gradient is backpropagated to previous

layers, repeated multiplication may cause the gradient to become endlessly tiny.

Therefore, its performance degrades as the network becomes deeper. This difficulty

has been solved by the invention of ResNet, or residual networks, which are made up

of Residual Blocks.

Figure 2.14: Residual building block

In the residual block, there is a direct connection that bypasses some layers in

between. This is known as a ‘skip connection’, or identity mapping. There are no

29

parameters in the skip connection, so the output from the previous layer is just added

to the next layer. The layer’s output is no longer identical as a result of this skip

connection. In the absence of a skip connection, the input ‘x’ is multiplied by the

layer weights and added with a bias 𝑦 = 𝑓(𝑥, {𝑤𝑖} + 𝑏) 𝑜𝑟 𝑦 = 𝑓(𝑥, {𝑤𝑖}). When

skip connection is used, there are two equations:

1st Equation:

 𝑦 = 𝑓(𝑥, {𝑤𝑖}) + 𝑥 (2.1)

2nd Equation:

 𝑦 = 𝑓(𝑥, {𝑤𝑖}) + 𝑤𝑠𝑥 (2.2)

where

y = output of data

x = input of data

f (x, {wi}) = residual mapping to learn

Ws = linear projection

Normally, when a skip connection is employed, the 1st Equation is used.

However, x and F(x) do not always have the same dimension. When the dimensions

of the input vary from those of the output, this approach will have some issues.

Therefore, there are two approaches to address the issue:

1. To enhance the dimensions, the skip connection is padded with additional

zero padding. (1st Equation is used)

2. To match the dimension, the projection approach is used, which is achieved

by adding 1x1 convolutional layers to the input (2nd Equation is used)

30

Figure 2.15: ResNet-34 architecture (Right)

31

Figure 2.15 shows the ResNet with 34 layers, ResNet baselines influenced

mostly by VGG networks. To match the dimensions of the inputs, the dotted skip

connections in the picture above reflect multiplying the identity mapping by 2nd

Equation (He et al.,2016).

Figure 2.16: ResNet architectures

Figure 2.16 shows the architecture 50-layer above is modified due to

concerns about training time, and the building block is redesigned as a bottleneck

design for the 50 layers above. Instead of using two levels for each residual function,

a three-layer stack is implemented. The three layers are 1 x 1 convolutions, 3 x 3

convolutions, and 1 x 1 convolutions. The first and last 1 x1 layers have the

responsibility for lowering and subsequently raising (restoring) dimensions, leaving

the 3 x 3 layer as a bottleneck with reduced input or output dimensions. The 34-layer

network is modified by switching from a two-layer bottleneck block to a three-layer

bottleneck block, resulting in a ResNet of 50 layers. This approach results in more

efficient models.

Figure 2.17: Top-5 err (%) on ImageNet validation set

32

Although the FLOPs and depth rise in all 50/101/152-layer ResNets, they are

more accurate than the 34 layers and do not suffer from deterioration as the error

rates decrease when going deeper (He et al., 2016).

2.4.4 Inception

The Inception network was complex because it used several methods to enhance

speed and accuracy. Its ongoing development resulted in the formation of many

network versions such as v1, v2, v3, and so on. The Inception network has

implemented a method to employ varied filter sizes within its convolutional layers.

Figure 2.18: Naive version of inception module (Szegedy et al., 2015)

Before the emergence of Inception, researchers had to figure out which filter

sizes to use in deep convolutional neural networks to get the best results. Inception

eliminates the necessity for such selections by using several filter sizes 1x1, 3x3, and

5x5 together. 1x1 convolutions will minimise the dimensions of data travelling

through the network. It is also able to increase the network’s breadth and depth and

learn patterns throughout the depth of the input. Furthermore, the use of 3x3 and 5x5

convolutions allows the network to learn a variety of spatial patterns at different

scales. In the naive inception model, it performs convolution on an input, using these

3 kinds of filters and a max-pooling layer. Before the costly filter sizes of

convolutions, the 1x1 was employed to compute reduction (Szegedy et al., 2015).

The outputs are then concatenated and passed to the next inception module. The

pooling layer downsamples the input data by producing a smaller output with a lower

height and width. Padding will be added to the pooling layer to ensure that the

pooling layer’s output can be concatenated with the output of the convolution layers.

33

Inception-v3 is reviewed in this literature study. It has a 42-layer deep learning

network and a low error rate, making it the first runner-up in ILSVRC 2015 (Szegedy

et al., 2016).

Figure 2.19: Inception-v3 architecture (Tsang, 2018)

Few improvements have been done in Inception-v3:

1. Convolution factorisation

The goal of convolution factorisation is to decrease the number of

connections and parameters while maintaining network efficiency. There are

3 types of factorisation techniques (Szegedy et al., 2016):

a. Factorisation into smaller convolutions

This method is accomplished by substituting two 3x3 convolutions for the

5x5 convolution. This strategy is able to reduce the number of parameters

by 28%. Because when using the 5x5 convolution, the number of

parameters is 5 𝑥 5 = 25 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 . When using two 3x3

convolutions, the parameters will be (3 𝑥 3) 𝑥 2 = 18 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.

So, the modules will be updated to the following:

34

Figure 2.20: Updated Module by replacing 5x5 convolution (Tsang, 2018)

b. Factorisation into asymmetric convolutions

This method is done by replacing n x n convolution with n x 1

convolution and 1 x n convolution. With this method, the number of

parameters is reduced by 33%. Assume using a 3x3 convolution, the

number of parameters is 3 𝑥 3 = 9 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. When using the 1 x 3

and 3 x 1 convolution, the number of parameters will be (1 × 3) +

(3 × 1) = 6 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.

So, the modules will be updated to the following:

Figure 2.21: Updated Module by replacing 7x7 convolution (Tsang, 2018)

c. Expend filter bank

To eliminate the representational bottleneck, the filter banks in the

module were expanded. 1x1 convolution is used to make the module

wider rather than deeper to encourage the high-dimensional

35

representations. As the dimensions of the module would be dramatically

decreased if it were made deeper, resulting in information loss.

So, the modules will be updated to the following:

Figure 2.22: Updated Module by expending filter bank (Tsang, 2018)

2. Auxiliary Classifier

Figure 2.23: Auxiliary Classifier (Tsang, 2018)

Auxiliary classifiers are used in Inception-v1 to have a deeper network.

However, in Inception-v3, the authors observed that auxiliary classifiers did

not make a significant contribution until the completion of the training.

Therefore, the Auxiliary Classifier serves as the regularisers in Inception-v3

and there is only one auxiliary classifier used in the model, which is placed

on top of the final 17x17 layer (Szegedy et al., 2016).

36

3. Efficient Grid Size Reduction

Figure 2.24: Efficient Grid Size Reduction (Tsang, 2018)

Traditionally, feature map reduction in networks has been performed through

the use of max pooling. However, it is extremely greedy if max pooling is

followed by convolution, and excessively expensive if convolution is

followed by max pooling. As a result, a method for efficiently reducing the

grid size is proposed. With this approach, convolution with stride 2 generates

320 feature maps, while max pooling produces another 320. Next, both

feature maps are concatenated to create 640 feature maps. All generated

feature maps will then forward to the following module level (Szegedy et al.,

2016).

4. Label smoothing

A regularising component is introduced to the loss formula to prevent the

network from getting overconfident toward a class, which prevents

overfitting (Szegedy et al., 2016).

Due to the design of the Inception network, which enables the use of variable

convolutional filter sizes, the Inception network is capable of extracting features

from input data at varied scales. This enables the inception network to attain

excellent performance while maintaining a low computation cost.

37

2.4.5 Xception

Xception stands for extreme inception, which is a more advanced version of

Inception. The Xception architecture uses the same amount of parameters as

Inception-v3 but performs better due to more efficient usage of model parameters

(Chollet, 2017).

Figure 2.25: Xception architecture (Chollet, 2017)

In Xception, the data will move through three flows: first, the ‘input flow,’ second,

the ‘middle flow,’ and it will be repeated eight times, and at the end, the ‘exit flow’.

In Xception, batch normalisation is performed in all Convolution and Separable

Convolution layers. Then, a depth multiplier of one is used by all Separable

Convolution layers. Xception outperformed Inception-v3 due to two significant

changes: updated depthwise separable convolutions and a modification of the non-

linearity (Chollet, 2017).

1. Modified depthwise separable convolutions

Normally, depthwise separable convolution is performed first, followed by

pointwise convolution. The phrase depthwise convolution refers to the n x n

spatial convolution channel-wise. If there are three channels, we will have

three spatial convolutions of size n x n x 1. Then, the 1 x 1 convolution that is

used to modify the dimension is called pointwise convolution. The Xception

38

model has updated the depthwise separable convolutions by reordering the

depthwise and pointwise convolutions, which implies that pointwise

convolutions will be performed first, followed by depthwise convolutions.

This modification is motivated by the fact that Inception-v3’s module

conducts 1 x 1 convolution before doing any n x n spatial convolutions.

However, Chollet mentioned that this is irrelevant for performance

improvement, since when it is employed in a stacked configuration, only

minor differences occur at the beginning and end of Inception modules

(Chollet, 2017).

2. Non- linearity

In Inception, ReLU non-linearity is used in the operations. However,

depthwise separable convolutions are often done without non-linearity.

Figure 2.26: Performance of Xception with non-linearity

As seen in the above figure, the Xception with no intermediate activation has

the greatest accuracy when compared to those that use ELU or ReLU (Chollet,

2017).

39

Table 2.2: Comparison summary for the 5 deep learning model

 Version Used

Advantages

Disadvantages

VGG

(Simonyan

and

Zisserman,

2014)

VGG-16

- Network simplicity

- Eliminated the need for

large size kernel

- Slow to train

- High architectural

weights (549MB for

VGG-16)

MobileNet

(Sandler et

al., 2019)

MobileNetV2

- Lightweight (Depthwise

separable Convolution)

- Small storage required

- High speed

- Suitable in mobile

- Depends on

optimization strategy

- Tuning problem

ResNet (He

et al.,

2016)

ResNet-50,

ResNet-152

- Allows you to build a

deeper network (skip

connection)

- Tackling the vanishing

gradient problem (skip

connection)

- deeper network usually

requires weeks for

training

- making it practically

infeasible in real-world

applications.

Inception

(Szegedy et

al., 2016)

Inception-v3

- Eliminated the need of

selecting filter size

(employ various

convolutional filter

parallelly)

- Improve performance

while maintaining low

computation cost

- Convolution

factorisation

- require a lot of memory

when performing

computation due to the

width of the convolution

layer

Xception

(Chollet,

2017)

Xception

- More efficient use of

model parameters

(modified depthwise

separable convolution and

non-linearity)

- require a lot of memory

when performing

computation due to the

width of the convolution

layer

The model chosen in this research is shown in the table above. The model's unique

characteristics have resulted in the model's advantages, which is why the model was

chosen in this research.

40

2.5 Techniques in coding

2.5.1 Data augmentation

Figure 2.27: Before and after data augmentation

A large quantity of data sets is required during training; to address the insufficient

amount of data, the data augmentation method can be employed. It may create

several variations of the same picture by rotating, flipping, zooming, shearing, and

shifting (Nagrath et al., 2021). This exposes the model to various aspects of the

training data, reducing overfitting (Jiang et al., 2021).

2.5.2 Transfer learning

1. Create a base model

Figure 2.28: Base model

The initial stage in transfer learning is to build a base model using CNN

architectures, and weight must be assigned in the model (e.g. weights=

“imagenet”). If no weight is given, the model will be trained from scratch

using that architecture. Figure 2.28 shows that when creating a base

model, the final output layer must be removed by “include_top=False”,

41

and a new output layer suitable for the new problems must be created and

attached to the base model.

2. Feature extraction (freeze layers) and add new trainable layers

Figure 2.29: Feature extraction

The layers from the pre-trained model must be frozen by setting

base_model.trainable = False. This is done to prevent reinitialising the

weights in those layers. If the weight is lost, the model will be trained

from scratch. So, freezing the layers enables the new data set to pass

through the previously trained convolutional base and the new classifier

needs to be added on top for training, so the new prediction can be made.

The stacked classifier may be a stack of fully connected layers or a single

global pooling layer. Both classifiers are followed by a dense layer with

softmax. Using a global pooling layer is recommended to reduce

overfitting as there are no parameters to tune in this layer (Lin, Chen and

Yan, 2013).

2.5.3 Optimisation method to improve deep learning performance

1. Fine-tuning the learning rate

42

Figure 2.30: Frozen type in the base model

To improve the model performance, we can fine-tune the model. It is

done by unfreezing the whole base model or portion of it, and it will be

training the whole model again on the entire data set. The code is

base_model.trainable = True or by specific layers which is

layer.name.startswith(‘name’).trainable = True. The learning rate

assigned must be low, as it will enhance the model’s performance and

prevent overfitting as a low learning rate ensures the weight of the pre-

trained model will not distort. A high learning rate will cause the risk of

losing prior knowledge to increase. To prevent the consumption of time, a

callback can be used to monitor the training loss. If 5 consecutive epochs

do not improve the model, Keras will terminate the training.

2. Batches

The batch size determines the number of samples that will be sent to the

network at once. If a total of 100 images are used with a batch size of 10, a

complete epoch needs to iterate 10 times. The equation is

𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑒𝑝𝑜𝑐ℎ =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
. The bigger the batch size, the

faster the model completes each epoch. The model’s quality may degrade as a

larger batch size is used, and larger batch sizes require massive computing

resources to process all images in parallel. So, it is necessary to fine-tune the

batch size during training. Gradient descent is an optimisation method used to

determine the weights of deep learning. It enables the model to make

43

predictions on training data and utilise the prediction error to update the

model to enhance performance. There are three learning algorithms in batches:

i. Batch Gradient Descent (BGD)

batch size = size of image in training set OR batch size = per

epoch

This algorithm computes the error for each training data set or per

epoch. It only updates the model after evaluating all training data.

It is more computationally efficient since it has fewer updates. The

reduced update frequency produces a more stable error gradient

and convergence. On the other hand, the stable error gradient may

lead the model to prematurely cover a set of less ideal parameters.

It also needs the whole training data set to be kept in memory so

that it will become slow with a large data set.

ii. Stochastic Gradient Descent (SGD)

batch size =1

This algorithm provides immediate feedback on model

performance and improvement rate. It is also simple to apply and

comprehend. A higher update frequency may result in faster

learning on certain problems and prevent premature convergence.

However, frequent updates require high computation capacity and

a longer time to train the model. It may also cause higher variance

over training epochs.

iii. Mini-Batch Gradient Descent

1 < batch size < size of image in training set

44

Mini-Batch Gradient descent is the most used algorithm in deep

learning. The most popular batch sizes are 32, 64, and 128. This

algorithm allows the model to update more often, resulting in

more robust convergence and avoiding premature convergence. It

is more computationally efficient than SGD and does not need all

training data stored in memory like BGD.

3. Epochs

Epoch is a hyperparameter that has a connection to batches size. It determines

the number of times the training algorithm iterates through the whole

provided training data set. When a single epoch is used, every data in the data

set will have a chance to update the parameters of the internal model. As

mentioned in “b. Batches”, an epoch may contain one or more batches. Often,

the epochs used are large, like 100 or 1000 times, allowing the training

algorithm to run until the model’s error is sufficiently minimised. There are

no standard epochs. With every iteration, the loss will continue to decrease.

The validation loss will first reduce, but it will increase when the model starts

overfitting. Therefore, the lowest validation loss is an ideal endpoint.

2.6 The existing method in face mask detection

This study investigates a total of 20 works of literature. There are several methods

for identifying the presence or absence of a face mask in deep learning in these

existing models. For example, training a CNN, using transfer learning of the CNN

model like VGG, Inception, ResNet, MobileNet or using an object detection model

which has a CNN backbone. In an object detection model, there are two types of

frameworks: region proposal based, which is a two-stage object detector like RCNN,

Faster RCNN, and so on, and another framework is regression or classification based,

which is a one-stage detector like YOLO, SSD, and so on. One-stage detector

regresses the bounding boxes in a single step. However, the two-stage detector will

produce region proposals first. Then the proposals will be subsequently fine-tuned in

the second stage. Therefore, a two-stage detector has a better performance, but a

slower speed than a one-stage detector. The most common model employed in these

20 papers is a one-stage detector, followed by the CNN model, a two-stage detector

45

model, and training a new CNN model. Several problems have been resolved,

including face with a mask, face without a mask, improper mask wear, detect

occlusion on the face, type of mask, and social distancing. Mostly only solved faces

with a mask and without a mask. Different evaluation metrics are used to evaluate

performance like testing or training accuracy, F1 score, average precision, and frame

per second (FPS). This review will cover techniques used, problem solved, best

tuned hyperparameter, strength and limitation, performance, and future work. Table

2.2 will show the overview of these 20 models.

The majority of these 20 existing methods are mostly focused on the

classifications of no mask wearing, single mask wearing, and inappropriate mask

wearing. In May 2021, Tan Sri Dr Noor Hisham Abdullah, the Director General of

Health Malaysia, encouraged Malaysians to use double face masks because they may

limit COVID-19 transmissions by up to 96.4 percent (Rashvinjeet and Jo, 2021).

Since wearing a double masks is important in Malaysia, I decided to try a new

approach in this research which is detecting double masks. As a result, this will be a

new challenge for this research.

46

Table 2.3: The overview of Reviewed Paper

No Authors Techniques used Problem solved Hyperparameter Strength/ Limitation – [author no. mention] xxx Performance Future Work

1 Chowda

ry, et al.,

2020

- InceptionV3

- Data augmentation

- With mask

- without mask

- Epochs: 80, each 42 steps

- Can be used in surveillance cameras

- Cannot detect improper mask wear

- Training

accuracy:

99.9%

- Testing

accuracy:

100%

- Identify mask type

- Facial recognition

- Identify person with mask on

2 Loey, et

al.,

2021a

- Hybrid method

- Feature extraction: ResNet-

50

- Detection/ Classification:

SVM, decision tree and

ensemble (SVM highest

accuracy)

- With mask

- without mask

- - [7] Cannot detect improper mask wear

- [12] easy to deploy

- [12] Limit the scenario to one person in each

picture, with the face covering most of the image.

- [12, 18] Complex training process

- [16] High computational costs

- [18] High computation, unsuitable for real-time

processing

- Testing

accuracy

(SVM):

99.64%

- Use deep learning in neutrosophic

categorization domain feature

extraction

3 Loey, et

al.,

2021b

- Feature Extraction: ResNet-

50

- Detection: YOLOv2

- Data augmentation

- With mask

- without mask

- Epochs: 60

- Batch size: 64

- Learning rate (LR): 0.001

- Optimizer: SGDM

- The detection will specifically detect for medical

mask

- Cannot detect improper mask wear

- [12] Reasonable number of anchor box

- [12] High speed

- [12] Medium performance

- [12] Low confidence for predicted results

Average

Precision (AP):

61%

- Detect masked face in image and

video-based

- Epochs: 60

- Batch size: 64

- LR: 0.001

- Optimizer: Adam

AP: 81%

4 Nagrath,

et al.,

2021

SSDMNV2

- Backbone: Single Shot

Multibox Detector (SSD)

Object Detection Model and

ResNet10

- With mask

- without mask

- Weight: Imagenet

- Epochs: 100

- Optimizer: Adam

- Lightweight

- Allow less resources used in real-time detection

- Can integrate in surveillance cameras and devices

like Raspberry Pi

- Cannot detect improper mask wear

Accuracy score:

92.64%

F1 score: 93%

Without data

- Face recognition, facial landmark,

and facial part detection

47

- Classifier: MobilenetV2

- Data augmentation

- [16] Too complex aug: accuracy

score is 87.51%

5 Jiang,

Fan and

Yan,

2020

RetinaFaceMask (Single stage

object detector):

- Backbone: MobileNet

- Neck: feature pyramid

network FPN

- Head: novel context

attention module

- With mask

- without mask

- Able to detect the

occlusion on face

- Input image: 840x 840

- Epochs: 250

- Batch size: 2

- Weight: Imagenet

- SGD with LR: 0.001 and

momentum: 0.9

- Comparable in speed and accuracy as two-stage

detector

- MobileNet backbone may be used in both high and

low computation with accuracy trade off.

- [7] Cannot detect improper mask wear

- [12] Strong ability in extracting robust features

- [12] Efficient

- [12] More training times

- [12] Post-processing is difficult and sensitive to

related hyper-parameters.

- [18] No suitable in low power devices due to

compute and memory requirements

Face precision:

83%

Mask precision:

82.3%

-

Single stage object detector

(RetinaFaceMask):

- Backbone: ResNet

- Neck: feature pyramid

network FPN

- Head: context attention

module

- Input image: 640x 640

- Epochs: 250

- Batch size: 32

- Weight: Imagenet

- SGD with LR: 0.001 and

momentum: 0.9

Face precision:

91.9%

Mask precision:

93.4%

6 Sethi,

Kathuria

and

Kaushik,

2021

- Two stages (TS) and single

stages (SS) detector

- Backbone: ResNet50

- Neck: Image complexity

predictor for face detection

1. Soft images (TS) -

MobileNer-SSD

2. Hard image (SS) -

ResNet50

- Head: Identity predictor

- Data augmentation

- Detect mask over

face

- Able to detect the

occlusion on face

- Identify person

violating mask norm

- Solve high

computation time in

two-stage detector

- SGD with LR: 0.03

- Lose function: cross-

entropy loss

- Fast inference

- Require less memory

- Easy to deploy

- Cannot detect improper mask wear

- 11.07% and 6.44% higher precision and recall

compared to RetinaFaceMask [5] due to optimized

face detector used

Accuracy: 98.2% - Integrate into high resolution video

surveillance device and not restricted

to mask detection only

- Detect facial landmarks with a mask

on for biometric purposes

7 Jiang, et

al., 2021

Squeeze and Excitation

YOLOv3 (SE-YOLOv3)

- Backbone: YOLOv3 + SE

- With mask

- Without mask

- Incorrect mask

- Initial learning rate (ILR):

0.0005 (100 epochs)

- Optimizer: Adam

- Increased accuracy with negligible additional

computational cost

- Able to embed in Raspberry Pi, etc.

Image size

416x416:

- AP50: 98.6%

- Collect more data to balance the data

- Deploy SE-YOLOv3 on lightweight

device

48

block

- Data augmentation (image

and mixup augmentation)

- Able to detect the

occlusion on face

- Exponential decay

(attenuation of 0.9 for

ILR/100 epochs)

- Batch size:1

- Lose function: categorical

cross-entropy

- AP75: 86.3%

- mAP: 71.9%

- Detection time:

43.2ms

8 Wang,

Zhao

and

Chen,

2021

Two stages method:

- Prediction: Faster RCNN

with InceptionV2

- Verification: BLS

- Correct mask

- Incorrect mask

- Mask only

converging chin

- Mask cover mouth

and chin

- - Fail to detect small objects

- Fail to detect face occlusion by protective clothing

or mask with goggles

- F1: 94.19 % - Apply image super-resolution to

solve the lack of features

9 Ge, et

al., 2017

LLE-CNNs - Detect simple mask

- Complex mask

- Human body cover

the mask position

- Mask with eyes

occluded glasses

- - Poor performance in heavy occlusion face (4

regions are occluded)

- Any type of mask will detect as masked face

- [3] Detect any face mask as medical mask

- AP: 76.1% - Predict mask type and occlusion

degree

10 Rahman,

et al.,

2020

Deep learning architecture

with 17 layers

- With mask

- Without mask

- Notify the

appropriate

authorities of a non-

masked person’s

location

- Epochs: 100 - Able embedded in CCTV and alert authority when

detecting a non-masked face.

- Difficult to classify occluded face by hands

- Unable to track a person in transportation

- Need convert image into grayscale

- Cannot detect improper mask wear

- [8] only able to process 64x64 size image

- Accuracy:

98.7%

- Social distancing

11 Militant

e and

Dionisio

, 2020

RTFR

- VGG-16

- Data augmentation

- With mask

- Without mask

- Generate alarm

- Input image: 224x 224

- Epochs: 100

- Batch size: 64

- Optimizer: Adam

- LR: 0.0001

- Can send alarm and voice notice if notice a non-

masked face

- Able to be embedded in Raspberry Pi, etc.

- [12] Easy to deploy

- [12] Highly depend on preprocessing

- Accuracy: 97% - Social distancing

49

- [12] Will result in mistakes in some complicated

situations as only local feature were used

12 Zhang,

et al.,

2021

Context-Attention R-CNN

- Backbone: VGG-16

- With mask

- Without mask

- Incorrect mask

- Able to detect the

occlusion on face

- Input size: 600x1000

- Batch size: 1 for 11 epochs

- Optimizer: SGD 0.9

momentum

- ILR: 0.001 (decrease 10

factors after 10 epochs)

- Strong capability in extracting the distinguish

feature map

- Simplicity in implementation (including training

and testing) and deployment

- mAP: 84.1% - Investigate the imbalance issue and

improve attention architecture.

- Investigate hyperparameter

optimization as CNN-based detector

sensitive to hyperparameter

13 Qin.and

Li, 2020

SCRNet - With mask

- Without mask

- Incorrect mask

- - Only detects 10 images per second, doesn’t meet

basic video frame of 24fps

- [12] good performance on low quality image

- [12] complicated training process

- Accuracy:

98.7%

- 0.03s

- Collect more image and video type

data set

- Identify wearing condition of face

mask

14 Mercald

and

Santone,

2021

- MobileNetV2 - With mask

- Without mask

- Epochs: 20 - Can operate on limited-resource devices - Accuracy: 98% - Improve performance through

exploiting series of transfer learning

15 Hussain,

et al.,

2021

SSDWG (2 model – mask

detection and type of mask)

- 1. VGG-16

- With mask

- Without mask

- Incorrect mask

- Type of mask

(surgical and N-95)

- ILR: 0.001 (decrease 0.1

factor every 7 epochs)

- Lose function: cross-

entropy

- May not be effective in real time detection due to

noisy data used in training

- Accuracy:

99.81% (mask

detection)

- 98.17% (type)

- Social distancing

- Detect transparent face mask

- 2. MobileNetV2 - Accuracy:99.6

% (mask

detection)

- 97.37% (type)

16 Yu and

Zhang,

2021

- Backbone: YOLO-v4 - With mask

- Without mask

- Incorrect mask

- Activation function: H-

swish

- Lowe training cost

- Low model complexity

- No consider in insufficient of light

- AP50: 98.3%

- AP75: 98.5%

- mAP: 84.7%

- FPS: 54.57

- Training time:

2.834h

- Data set expansion based on standard

mask wearing condition

50

17 Cao, et

al..,

2020

MaskHunter

- Backbone: YOLOv4 with

backbone of CSPDarknet19

- Neck: SSPP, FPN, PAN

- With mask

- Without mask

- Neck activation function:

Mish

- Fast operating speed

- Good performance

- Able to perform in a low-light situation

- AP: 94.0%

- FPS: 74

-

18 Said, Y.,

2020.

Pynq-YOLO-net

- MobileNet V2 + YOLO

- With mask

- Without mask

 - Able to embed in low power devices

- Small model size and rapid processing

- Low computational complexity

- Accuracy: 97% - To implement on video surveillance

system to be tested on real conditions

19 Fan, X.,

Jiang,

M. and

Yan, H.,

2021.

Single shot lightweight face

mask detector (SL-FMDet)

- Backbone: MobileNet

- Learn more discrimination

features: synthesized

Gaussian heatmap

regression (SGHR)

- With mask

- Without mask

- Non-mask occlusion

 - Effective on small or blur faces

- Heatmap generation requires more computation.

- mAP: 93.8%

- Improper mask wearing detection

- Use zero-shot learning to train the

model detect improper mask wearing

20 Yadav,

S., 2020.

Single shot Detector Multibox

(SSD – it used VGG-16)

- Backbone: MobileNet V2

- Data augmentation

- With mask

- Without mask

- Social distancing

- ILR: 0.0001

- Epochs: 20

- BS: 32

- Binary cross-entropy

- Adam optimizer with 100

steps

- Able to embed in Raspberry PI 4 but its power

consumption is too high

- mAP: 91.2%

- FPS: 28.07

- Coughing and sneezing detection

- Temperature screening

51

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 The Proposed Model Workflow

Figure 3.1: Face mask Recognition Model Workflow Summary

The architectural design of the proposed detector model is shown in Figure 3.1. The

data set is labelled with three types of labels: (i) faces without a mask, (ii) faces with

a single mask, (iii) incorrect mask-wearing and (iv) faces with double masks. Before

feeding the data set to the neural network, some data pre-processing and data

augmentation will be performed to ensure that all the data sets are labelled accurately

and prevent overfitting. The model is typically developed with a pre-trained model

based on convolutional neural networks (CNN) - MobileNetV2, VGG-16, ResNet-50,

ResNet-152, Inception-v3 and Xception. Transfer learning is used to preserve the

weight of earlier training; this technique is used due to a lack of data and has the

ability to save time and computational cost. Transfer learning behaves as a feature

extractor, extracting image features for use in network training. The convolutional

base will be frozen for the feature extraction, and a classifier will append at the top of

the pre-trained model to build a new model. The new model will then be used to fit

the training data set for training. After finishing training, the model will be used to

52

predict the test data set. The performance of the model will be evaluated and printed

out. A grid search approach is used to fine-tune the six models to identify the

optimum combination of hyperparameters to tune this model. After founding the best

model, the models will be evaluated using images and deployed on a webcam to test

real-time detection.

Figure 3.2: Face mask detection technique

During real-time detection, the face mask detection approach is proposed. Video

frames are captured and sent to a DNN face detector to extract the faces; the

extracted faces are then scaled and pre-processed according to the pre-trained model.

The processed image of the faces is then sent to the trained model for prediction.

3.2 Data Preparation

3.2.1 Data Collection

The data set for training, validation, and testing was prepared by collecting four

different mask-wearing images from various online resources because only one

resource is not able to collect a balanced data set. 4 main resources were used to

collect data sets. In addition, some data were collected from search engines, social

media and artificially created. Each class contains 500 images, and 4 classes have

2,000 images. This was done to produce a balanced class across the data set, as

unbalanced data will lead to bias toward the class labelled with the majority of the

data.

53

1. Medical mask (MM) data set (https://humansintheloop.org/mask-dataset-

download/?submissionGuid=add801a1-b11b-4e08-8825-3f3a1d2cce2c)

Figure 3.3: samples of data from MM

This data set contains 6024 images, with single and multiple people per

image. This data set includes annotation files. Following the extraction of the

faces from the photos, there are a total of 2,068 faces with no mask data,

6,715 faces with single mask data and 235 incorrect face mask wear data.

2. MAFA data set (https://www.kaggle.com/datasets/rahulmangalampalli/mafa-

data)

Figure 3.4: Samples of data from MAFA

This data set contains 30,811 images. These data sets are divided into three

categories: faces without masks, faces with single masks, and incorrect face

mask wear. To balance the data set, some incorrect mask data is extracted

here.

3. MaskedFace-Net (https://github.com/cabani/MaskedFace-Net)

https://humansintheloop.org/mask-dataset-download/?submissionGuid=add801a1-b11b-4e08-8825-3f3a1d2cce2c
https://humansintheloop.org/mask-dataset-download/?submissionGuid=add801a1-b11b-4e08-8825-3f3a1d2cce2c
https://www.kaggle.com/datasets/rahulmangalampalli/mafa-data
https://www.kaggle.com/datasets/rahulmangalampalli/mafa-data
https://github.com/cabani/MaskedFace-Net

54

Figure 3.5: Incorrectly masked face

This data set is generated based on the FFHQ

(https://github.com/NVlabs/ffhq-dataset). The data set is artificially created as

there is currently no publicly accessible large data set of masked face images

that can be used to determine whether a person has been properly wearing a

mask (Cabani et al., 2021).

4. FMD data set (https://www.kaggle.com/andrewmvd/face-mask-detection)

Figure 3.6: FMD sample1 Figure 3.7: FMD sample2

This data set contains 853 images with 3 labels. It comes with an annotations

file that draws a coordinate box to determine the person’s face and with a

label. To use this data set, the image needs to be cropped and extract the label

from the annotations file. It has a total of 4072 data in those 853 images,

which are 717 for no mask-wearing, 3232 for single mask, and 123 for

incorrect mask-wearing.

Due to a scarcity of online double mask images, different search engines were

applied to obtain them, and artificially made double mask images were created.

There were a total of 471 doubled masks collected, with the remaining 29 produced

artificially as training data.

https://github.com/NVlabs/ffhq-dataset
https://www.kaggle.com/andrewmvd/face-mask-detection

55

Table 3.1: Artificially created doubled mask data

Input

Mask

Output

3.2.2 Data Finalisation

FMD data set was used as testing data because the data in FMD is largely from

candid photos and seems more real-life. Each category extracted 30 photographs

from the FMD for different distribution data testing. However, the 30 double mask

testing images were still collected from the search engine. For the training data set,

450 faces with mask and single mask data were taken from the MM data set, and all

incorrect mask wear was used. Some of the incorrect mask wear data come from

MAFA and MaskedFace-Net. According to Assawiel (2019), it is crucial for the

training data set to be similar to where you want the model to predict. So, the FMD

data set, which looks like a real-life data set, will extract 50 cropped images for each

class to shuffle in the training data set to make the model more robust in prediction.

Before data pre-processing, all data must be cropped 1 person per picture. As a result,

the final data for each class look like this:

56

Figure 3.8: Sample training data set

3.3 Data Pre-processing

In data pre-processing, all images will be cropped into one person per image, and the

data set will then convert from RGB to BGR as OpenCV read image in BGR format.

Then all the images will be resized to according to the trained size of pretrained

model, which are 224x224 for MobileNetV2, ResNet50, ResNet152 and VGG, and

229 for Inception-v3 and Xception. Firstly, the without mask will be labelled with 0,

the single mask face will be labelled with 1, the incorrect mask wear will be labelled

with 2 and the doubled mask wear will be labelled with 3. Then the label will be

converted to categorical. Next, the image will be pre-processed by importing the

model-specific preprocess_input method. Finally, the data augmentation method will

be applied to the data set to increase the images number in the training stage.

3.4 Data Augmentation

Data augmentation was carried out with 0.1 zoom range, 25 rotation range, 0.1 width

shift range, 0.1 height shift range, 0.15 shear range, flip horizontally and with nearest

fill mode.

57

Figure 3.9: Augmented data

3.5 Training, Validation and Testing

To train a deep learning model, the data set with 2000 images will be divided into

three categories, which is training, validation, and testing. Due to the small data set

size used in this project, the ratio chosen to divide the data set is 80:10:10. The

model learns and fits the parameters using the training data set. Then, the validation

data sets were used to tune the model’s hyperparameters as it was able to provide an

unbiased evaluation of the model. Furthermore, the testing data set which comes

from that 10% will be used to evaluate the final model as the same distribution

testing.

In this research, two other testing data sets which come from other

distributions and video captured from real life will be used to evaluate the model’s

performance further.

3.6 Feature Extraction

In feature extraction, a pre-trained model was used to train a new model in the

project. The pre-trained model used is MobileNetV2, VGG-16, ResNet-50, ResNet-

152, Inception-v3 and Xception. Since all models are available in Keras, they can be

imported directly from the Keras framework. These pre-trained models will be used

by freezing the entire convolutional base as only a small data set is used to train the

model. Weight must be assigned in the model to prevent it from training from scratch.

In these two pre-trained models, ImageNet was selected as the weight to train the

model.

58

Figure 3.10: Flattening of the multidimensional array

The pre-trained classifier will then be removed and replaced with a new

classifier. A flatten layer is added to make the image flat, which is into a 1-

dimensional array as it is a multidimensional array, as shown in Figure 3.9. Then, a

dense layer with Relu activation is added since relu deals better with images. To

avoid overfitting the model, a dropout layer will be added. Lastly, a dense layer with

softmax activation will be added to the final layer. Softmax is used as the data set is a

multi-classification as softmax needs to be applied when there are more than two

classes. The neuron for the last layer will be set to 4 as only 4 classes will be

predicted.

3.7 Hyperparameter Tuning

To train a deep learning model more efficiently, hyperparameter tuning is essential

and should not be ignored. Therefore, a Grid search CV will be used to find the

appropriate hyperparameter for MobileNetV2, VGG-16, ResNet-50, ResNet-152,

Inception-v3 and Xception. The learning rate and dropout rate are the

hyperparameters that will be tuned in this project. A ParameterGrid will be used to

assign the desired hyperparameter, and a loop will be created to loop the

hyperparameter and generate the accuracy of the model. Using the desired learning

rate will prevent the pre-trained model from distorting, so an appropriate learning

rate is important; the learning rate used to tune will be 0.1, 0.01, 0.001, 0.0001 and

0.00001. Dropout is a technique in which randomly selected neurons are ignored

during training, with 1 indicating no dropout and 0 indicating no output will transmit

to the subsequent layer; the dropout values used in this model will be 0.3 and 0.5.

59

The Grid Search will be used to determine the best combination of learning rate and

dropout rate.

3.8 Model Evaluation

To evaluate the model, a training and validation loss graph will be plotted to see the

model’s behaviour with different hyperparameters and pre-trained models. And, to

evaluate the model’s performance, the classification report class will be used to

evaluate each model’s performance by examining the accuracy, precision, recall, and

the f1-score. In this project, the outcome is 4 classes. Therefore, a confusion matrix

will be 4x4, which is shown in Table 3.2 below.

Table 3.2: Confusion Matrix for 4 classes

 Predicted Class

 No

mask

Single

 mask

Incorrect

wear

Double

mask

FN

 No mask TP1 a b c a + b + c

Actual
Single mask d TP2 e f d + e + f

Incorrect wear g h TP3 i g + h + i

 Double mask j k l TP4 j + k + l

 FP d + g + j a + h + k b + e + l c + f + i

The precision, recall and F1-score for each class can be calculated by (where n =

class type):

Precision:

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 =
𝑇𝑃𝑛

𝑇𝑃𝑛+𝐹𝑃
 (3.1)

where

n = 1,2,3

Recall:

 𝑅𝑒𝑐𝑎𝑙𝑙𝑛 =
𝑇𝑃𝑛

𝑇𝑃𝑛+𝐹𝑁
 (3.2)

where

n = 1,2,3

60

F1-score:

 𝐹1𝑛 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙𝑛

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛+𝑅𝑒𝑐𝑎𝑙𝑙𝑛
 (3.3)

where

n = 1,2,3

The accuracy can be calculated by:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃1+𝑇𝑃2+𝑇𝑃3

𝑇𝑜𝑡𝑎𝑙
 (3.4)

3.9 Pseudocode for this project

The algorithm below shows the pseudocode to train and test the model:

This pseudocode has covered all the methods explained in the previous section like

reading data sets, data processing, data augmentation, feature extraction, network

training, hyperparameter tuning and performance measurement for each model.

1. def read_dataset(img_size, preprocess_input)

a. read image from directory

b. process the images using preprocess_input

c. return images, labels

2. def dataset_train_test_split(images,labels)

a. split data set to 8:1:1

b. return x_train,y_train,x_test,y_test,x_val,y_val

3. Define an ImageDataGenerator for data augmentation

4. def return_create_model(pretrained_model)

a. def create_model (learning_rate, dropout_rate,optimizer)

i. Define a base model from Keras library using

pretrained_model

ii. For layer in the base model, assign trainable to false

iii. Define a head model by flatten, dense layer, dropout_rate

and dense layer with class number and softmax activation

function

iv. Define an optimizer with learning_rate

v. Compile the appended model with the loss of

categorical_crossentropy, optimizer and metrics of accuracy

61

vi. return model

b. return create_model

5. def grid_search (create_mode)

a. define KerasClassifier

b. define param_grid dict with learning_rate and dropout_rate

c. define GridSearchCV with cv =3

d. Fit the grid with x train and y train

e. Store all grid search result in excel

f. return best_param

6. def train_model_with_best_param(best_param, create_mode)

a. create model with best param

b. define callback with checkpoint and early stopping

c. Fit the model with the train and validation set, batch_size=32,

epoch=20, and ImageDataGenerator

d. Plot the loss and accuracy

e. Save the model as .h5

f. return trained_model

7. Define models (MobileNetV2, ResNet50, ResNet152, InceptionV3,

Xception, VGG16)

8. For each model:

a. read_dataset

b. dataset_train_test_split

c. define create_model function

d. grid_search(create_model)

e. train_model_with_best_param(best_param, create_model)

f. load the best trained model

g. Predict the model with the test set (same distribution)

h. Print the classification_report

i. Predict the model with the test set (different distribution)

j. Print the classification_report

k. Predict the model with framed based testing data set

l. Print the classification_report

9. End

62

3.10 Work Breakdown Structure of the Project

Figure 3.11: Work Breakdown Structure of the Project

63

3.11 Gantt Chart of Project

Figure 3.12: Gantt Chart of the Overall Project

The WBS and Gantt Chart for this study are shown in the figure above. Project 1 is more concerned with the preparatory phase, planning,

analysis, and data collection, while Project 2 is more concerned with modelling, evaluation, and testing. During the preliminary phase, some

background research will be conducted to get an idea of the research issue and to complete the project overview. Then, during the design stage,

literature review is conducted to better understand deep learning, transfer learning models, coding techniques, and current face mask detection

models. This is to get a concept of how to build the model for the research. Following that, data collection will be carried out in order to gather

data for the training model in Project 2. To discover the optimum model, Project 2 will repeat the modelling, evaluation, and testing.

64

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Introduction

The goal of this research is to predict face mask detection using the transfer learning

approach that was selected. MobileNetV2, VGG-16, ResNet-50, ResNet-152,

Inception-v3, and Xception were selected as transfer learning methods. The model

will initially use grid search to tune the hyperparameter. Then, the optimal parameter

will use to further training the model, and the best-trained model will be used to

predict the testing data set. These models will be evaluated based on their accuracy

and recall. The results that will be discussed in this chapter are:

1. Grid Search Result

2. Model Evaluation

3. Result Summary

4. Deploy the best model on a webcam

4.2 Grid Search Result

To discover the optimal combination of hyperparameters, a grid search with 3 cv

approach is used. Due to computing resource constraints, the batch size 32 and

epochs 5 are fixed during the gird search. In grid search, the Adam optimizer,

learning rate (0.1, 0.01, 0.001, 0.0001, and 0.00001), and dropout rate (0.3 and 0.5)

are all examined. The optimal parameters will then be chosen to retrain for 20 epochs

with early stopping and checkpoints, allowing the best-tuned model to load for

evaluation.

1. MobileNetV2

Table 4.1: Grid search result for MobileNetV2

Optimiser Dropout rate Learning rate Mean test score Ranking

Adam 0.3 0.1 0.384995 10

0.01 0.660586 7

0.001 0.784368 3

65

0.0001 0.802497 1

0.00001 0.756243 5

0.5 0.1 0.436202 9

0.01 0.658127 8

0.001 0.768129 4

0.0001 0.794369 2

0.00001 0.750005 6

The optimal combination for MobileNetV2 is dropout rate 0.3, learning rate

0.0001, Adam optimiser.

2. VGG-16

Table 4.2: Grid search result for VGG-16

Optimiser Dropout rate Learning rate Mean test score Ranking

Adam 0.3 0.1 0.450674 10

0.01 0.728709 5

0.001 0.767509 4

0.0001 0.768115 3

0.00001 0.655638 8

0.5 0.1 0.468105 9

0.01 0.710597 6

0.001 0.773747 1

0.0001 0.77314 2

0.00001 0.664377 7

The optimal combination for VGG-16 is dropout rate 0.5, learning rate 0.001,

Adam optimiser.

3. ResNet-50

Table 4.3: Grid search result for ResNet-50

Optimiser Dropout rate Learning rate Mean test score Ranking

Adam 0.3 0.1 0.332394 10

66

0.01 0.766859 7

0.001 0.828746 4

0.0001 0.851248 1

0.00001 0.81499 5

0.5 0.1 0.424952 9

0.01 0.67939 8

0.001 0.833741 3

0.0001 0.850622 2

0.00001 0.809365 6

The optimal combination for ResNet-50 is dropout rate 0.3, learning rate

0.0001, Adam optimiser.

4. ResNet-152

Table 4.4: Grid search result for ResNet-152

Optimiser Dropout rate Learning rate Mean test score Ranking

Adam 0.3 0.1 0.471253 9

0.01 0.803747 7

0.001 0.846255 2

0.0001 0.851248 1

0.00001 0.82312 4

0.5 0.1 0.418745 10

0.01 0.769994 8

0.001 0.822498 5

0.0001 0.838128 3

0.00001 0.817501 6

The optimal combination for ResNet-152 is dropout rate 0.3, learning rate

0.0001, Adam optimiser.

67

5. Inception-v3

Table 4.5: Grid search result for Inception-v3

Optimiser Dropout rate Learning rate Mean test score Ranking

Adam 0.3 0.1 0.323773285 10

0.01 0.686288019 7

0.001 0.784381847 5

0.0001 0.811258435 1

0.00001 0.799388905 3

0.5 0.1 0.346856534 9

0.01 0.685632189 8

0.001 0.781872094 6

0.0001 0.805006862 2

0.00001 0.796892007 4

The optimal combination for Inception-v3 is dropout rate 0.3, learning rate

0.0001, Adam optimiser.

6. Xception

Table 4.6: Grid search result for Xception

Optimiser Dropout rate Learning rate Mean test score Ranking

Adam 0.3 0.1 0.446293 10

0.01 0.753734 8

0.001 0.81562 5

0.0001 0.819369 4

0.00001 0.835003 1

0.5 0.1 0.496907 9

0.01 0.763772 7

0.001 0.80063 6

0.0001 0.826262 2

0.00001 0.823751 3

The optimal combination for Inception-v3 is dropout rate 0.3, learning rate

0.00001, Adam optimiser.

68

According to the results, a learning rate 0.1 will always contribute to the last ranking,

and most learning rates selected are usually low, indicating that when the learning

rate is too high, it is very difficult for the neural network to learn because high

learning rate will cause the model to quickly converge on a suboptimal solution,

therefore the scores for high learning rate is always unsatisfactory.

4.3 Model Evaluation

4.3.1 Test set from the same distribution (200 images)

200 images are extracted from the training data set to evaluate the pretrained model

in the same distribution

Table 4.7: Results tested on test set (same distribution)

Model MobileNetV2
VGG-

16

ResNet-

50

ResNet-

152

Inception-

v3
Xception

Accuracy 0.8250 0.8200 0.8350 0.8300 0.8350 0.8450

Testing time (ms/step) 20 53 44 102 52 92

0 (no mask-

wearing)

precision 0.89 0.92 0.94 0.96 0.89 0.92

recall 0.84 0.90 0.92 0.88 0.94 0.94

F1 0.87 0.91 0.93 0.92 0.91 0.93

1 (single

mask)

precision 0.73 0.66 0.73 0.76 0.75 0.78

recall 0.76 0.80 0.64 0.70 0.72 0.72

F1 0.75 0.72 0.68 0.73 0.73 0.75

2 (incorrect

mask

wearing)

precision 0.76 0.9 0.78 0.72 0.85 0.80

recall 0.78 0.70 0.84 0.78 0.78 0.88

F1 0.77 0.79 0.81 0.75 0.81 0.84

3 (double

mask)

precision 0.92 0.86 0.89 0.89 0.85 0.88

recall 0.92 0.88 0.94 0.96 0.90 0.84

F1 0.92 0.87 0.91 0.92 0.87 0.86

Table 4.8: Confusion matrix (same distribution)

Confusion matrix

(MobileNetV2)

Confusion matrix

(VGG-16)

Confusion matrix

(ResNet-50)

69

Confusion matrix

(ResNet-152)

Confusion matrix

(Inception-v3)

Confusion matrix

(Xception)

When we evaluate the model using data from the same distribution, we can

see that the accuracy of six models is pretty good, with results that are over 80%

accurate. Among the other models, the Xception had the best accuracy. We can also

see that all models perform well in identifying no mask-wearing class.

4.3.2 Test set from other distribution (120 images)

This data set has 30 images from each class. The FMD data set

(https://www.kaggle.com/andrewmvd/face-mask-detection) is used to extract the

classes 0 (no mask mask-wearing), 1 (single mask), and 2 (incorrect mask wear).

Due to the scarcity of double mask images in the data set, the double mask data

obtained from the search engine was used. This testing set will be used to examine

the model’s performance in evaluating data for other distributions.

Sample Data:

Figure 4.1: Sample data for test set (other distribution)

Table 4.9: Results tested on test set (other distribution)

Model MobileNetV2
VGG-

16

ResNet-

50

ResNet-

152

Inception-

v3
Xception

Accuracy 0.7500 0.7000 0.8333 0.8667 0.8583 0.8250

Testing time (ms/step) 22 57 46 101 58 96

0 (no

mask-

wearing)

precision 0.69 0.69 0.92 0.96 0.96 0.90

recall 0.73 0.83 0.77 0.90 0.87 0.90

F1 0.71 0.76 0.84 0.93 0.91 0.90

1 (single

mask)

precision 0.71 0.59 0.76 0.80 0.89 0.81

recall 0.73 0.73 0.83 0.80 0.80 0.70

F1 0.72 0.66 0.79 0.80 0.84 0.75

70

2 (incorrect

mask

wearing)

precision 0.63 0.62 0.69 0.77 0.80 0.81

recall 0.63 0.27 0.73 0.80 0.80 0.73

F1 0.63 0.37 0.71 0.79 0.80 0.77

3 (double

mask)

precision 1.00 0.85 1.00 0.94 0.81 0.78

recall 0.90 0.97 1.00 0.97 0.97 0.97

F1 0.95 0.91 1.00 0.95 0.88 0.87

Table 4.10: Confusion matrix (other distribution)

Confusion matrix

(MobileNetV2)

Confusion matrix

(VGG-16)

Confusion matrix

(ResNet-50)

Confusion matrix

(ResNet-152)

Confusion matrix

(Inception-v3)

Confusion matrix

(Xception)

When the model was evaluated using data from different distributions,

ResNet-152 had the greatest accuracy, followed by Inception-v3 and RestNet-50.

When MobileNetV2 and VGG-16 predict data from different distributions, their

accuracy drops dramatically. We can see that the double mask data work very well in

this case since the data used is gathered in the same way as the training data set due

to the scarcity of the data.

71

4.3.3 Test set from video frame (12 videos – 3 videos per category)

Total 12 videos are captured and collected by recording around the university and

condominium. Every frame of the video is processed, and the faces are extracted

using the DNN face detector model. The incorrect faces discovered by the DNN face

detector are manually removed to ensure that no incorrect data is sent into the face

mask detection model.

Sample video:

Figure 4.2: Sample videos captured

Sample cropped data from video frame:

Figure 4.3: Sample data from the video frame

Table 4.11: Results tested on test set (video frame)

Model MobileNetV2
VGG-

16

ResNet-

50

ResNet-

152

Inception-

v3
Xception

Accuracy 0.7090 0.6104 0.7252 0.8447 0.7998 0.6763

Testing time (ms/step) 22 57 49 110 62 97

0 (no

mask-

wearing)

precision 0.81 0.56 0.63 0.98 0.91 0.64

recall 0.94 0.97 0.98 0.96 0.95 0.97

F1 0.87 0.71 0.77 0.97 0.93 0.77

1 (single

mask)

precision 0.56 0.53 0.64 0.64 0.60 0.64

recall 0.31 0.56 0.82 0.88 0.87 0.72

F1 0.40 0.54 0.72 0.74 0.71 0.68

2 (incorrect

mask

wearing)

precision 0.71 0.84 0.88 0.92 0.88 0.74

recall 0.94 0.57 0.69 0.99 0.95 0.68

F1 0.81 0.68 0.77 0.95 0.91 0.71

3 (double precision 0.57 0.36 0.86 0.76 0.78 0.65

72

mask) recall 0.30 0.24 0.30 0.26 0.07 0.15

F1 0.39 0.28 0.45 0.38 0.14 0.24

Table 4.12: Confusion matrix (video frame)

Confusion matrix

(MobileNetV2)

Confusion matrix

(VGG-16)

Confusion matrix

(ResNet-50)

Confusion matrix

(ResNet-152)

Confusion matrix

(Inception-v3)

Confusion matrix

(Xception)

When using the real-life video frame for model evaluation, all model

accuracy is dropped. ResNet-152 outperformed the other 5 models and achieved 0.96

recall for no mask-wearing, which is quite satisfactory as no mask-wearing is the

most serious in the pandemic It also achieves 0.88 recall for single mask, 0.99 recall

for incorrect mask wear but only 0.26 for double mask.

Figure 4.4: video frame for double mask detection (ResNet-152)

73

The recall for double masks is quite poor. This is because when the detected

face is far away, the ResNet-152 model may not be able to identify the double mask;

the model will only work effectively when the face is close enough to the lens.

According to the confusion matrix of ResNet-152 and Inception-v3, double mask

data is more likely to be predicted as single mask data.

4.4 Result summary

Table 4.13:Grid Search Result Summary

Model Learning rate Dropout rate Mean test score

MobileNetV2 0.0001 0.3 0.8025

VGG-16 0.001 0.5 0.7737

ResNet-50 0.0001 0.5 0.8512

ResNet-152 0.0001 0.3 0.8512

Inception-v3 0.0001 0.3 0.8112

Xception 0.00001 0.3 0.8350

Table 4.14: Model Evaluation Summary

Model

Test set

200 images, from

same distribution

120 images, from

other distribution

Total 12 videos – 3

videos per category

Accuracy

Testing

time

(ms/step)

Accuracy

Testing

time

(ms/step)

Accuracy

(Frame

based)

Testing

time

(ms/step)

MobileNetV2 0.8250 20 0.7500 22 0.7090 22

VGG-16 0.8200 53 0.7000 57 0.6104 57

ResNet-50 0.8350 44 0.8333 46 0.7252 49

ResNet-152 0.8300 102 0.8667 101 0.8447 110

Inception-v3 0.8350 52 0.8583 58 0.7998 62

Xception 0.8450 92 0.8250 96 0.6763 97

Table 4.14 shows that ResNet-152 performed well in all three types of test sets, with

an accuracy of 0.8447 when dealing with video frame prediction. It is the most stable

model across the three test sets, making it the most robust model. ResNet-152, on the

other hand, has the longest testing duration due to the depth of the model. In this

research, the second-best model is Inception-v3, followed by ResNet-50. The

MobileNetV2 has the shortest testing time; however, it only predicts video frames

74

with 0.7090 accuracy. Since the testing time is still in milliseconds, the ResNet-152

remains the best model as the testing time is so small that it may be negligible.

4.5 Deploy the best model on a webcam

The best model (ResNet-152) is deployed on a webcam to determine if the model is

able to work on a webcam.

Result:

Figure 4.5: No mask-wearing

Figure 4.6: Incorrect mask-wearing

Figure 4.7: Single mask-wearing

Figure 4.8:Double mask-wearing

75

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Transfer learning with 6 deep learning models MobileNetV2, VGG-16, ResNet-50,

ResNet-152, Inception-v3 and Xception are trained and evaluated on the detection of

mask-wearing in 4 classes: no wearing, single mask, improper mask-wearing and

double mask. The research has achieved all the objectives as the proposed transfer

learning model is able to detect the mask-wearing automatically by predicting the 4

classes. All trained models were evaluated, and the ResNet152 model performed the

best in this research. ResNet152 has achieved the highest accuracy scores in both

testing images and videos frame, which are 0.8867 and 0.8447, respectively.

5.2 Limitation

5.2.1 Poor performance when detecting individuals from far

When detecting an individual from a far distance, the trained model will fluctuate

throughout classification due to data gathering that is mostly close to the lens.

5.2.2 Poor performance in detecting double masks wearing

The double masks wearing in this research have achieved the lowest performance

which is only 0.26 recall for the ResNer-152 model, this is because the model always

identifies the double masks as a single mask when the individual is far from the lens.

This is due to the lack of real-life data sets for double masks wearing are used in

training.

5.3 Recommendations for future work

5.3.1 Gather more data set

Recently, the proposed model only works well when the faces are closed to the lens.

To enhance the performance, more data sets shall be gathered in the future and used

in training models to improve the model’s ability to detect masks from far.

76

5.3.2 Improve performance of detecting double masks

The double mask detection performance in the real-life data set is quite poor. This is

due to the fact that the images of the double mask are mostly obtained from social

media (Instagram), and the majority of photos collected are the face close to the lens

and come with a full-frontal face. Therefore, real-world shooting should be carried

out in order to capture more realistic data for the double mask in order to increase its

performance.

5.3.3 Explore more transfer learning model

The transfer learning model adopted for this research is mostly the Keras pre-trained

model. Several other models, such as two-stage object detectors (eg. RCNN and

Faster RCNN) and one-stage object detectors (eg. YOLO and SSD), may be

implemented to achieve the research objectives and improve performance.

REFERENCES

Asghar, M.Z., Abbas, M., Zeeshan, K., Kotilainen, P. and Hämäläinen, T., 2019.

Assessment of deep learning methodology for self-organizing 5g networks.

Applied Sciences, 9(15), p.2975.

Assawiel, N., 2019. What to do when your training and testing data come from

different distributions. [online] Available at: <

https://www.kdnuggets.com/2019/01/when-your-training-testing-data-

different-distributions.html> [Accessed 21 April 2022].

Cabani, A., Hammoudi, K., Benhabiles, H. and Melkemi, M., 2021. MaskedFace-

Net–A dataset of correctly/incorrectly masked face images in the context of

COVID-19. Smart Health, 19, p.100144.

Cao, Z., Shao, M., Xu, L., Mu, S. and Qu, H., 2020. MaskHunter: real-time object

detection of face masks during the COVID-19 pandemic. IET Image

Processing, 14(16), pp.4359-4367.

Centers for Disease Control and Prevention, 2021. How to Protect Yourself & Others.

[online] Available at: < https://www.cdc.gov/coronavirus/2019-ncov/prevent-

getting-sick/prevention.html> [Accessed 19 June 2021].

Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions.

In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 1251-1258).

Chowdary, G.J., Punn, N.S., Sonbhadra, S.K. and Agarwal, S., 2020, December.

Face mask detection using transfer learning of inceptionv3. In International

Conference on Big Data Analytics (pp. 81-90). Springer, Cham.

Fan, X., Jiang, M. and Yan, H., 2021. A Deep Learning based Light-weight Face

Mask Detector with Residual Context Attention and Gaussian Heatmap to

Fight Against COVID-19. IEEE Access.

Frossard, D., 2016. VGG in TensorFlow. [online] Available at:

<https://www.cs.toronto.edu/~frossard/post/vgg16/> [Accessed 18 July 2021].

Ge, S., Li, J., Ye, Q. and Luo, Z., 2017. Detecting masked faces in the wild with lle-

cnns. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 2682-2690).

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 770-778).

https://www.kdnuggets.com/2019/01/when-your-training-testing-data-different-distributions.html
https://www.kdnuggets.com/2019/01/when-your-training-testing-data-different-distributions.html

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M. and Adam, H., 2017. Mobilenets: Efficient convolutional

neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861.

Hussain, S., Yu, Y., Ayoub, M., Khan, A., Rehman, R., Wahid, J.A. and Hou, W.,

2021. IoT and Deep Learning Based Approach for Rapid Screening and Face

Mask Detection for Infection Spread Control of COVID-19. Applied

Sciences, 11(8), p.3495.

IBM Cloud Education. 2020. Neural Networks. [online] Available at:

<https://www.ibm.com/cloud/learn/neural-networks> [Accessed 1 July 2021].

Jiang, M., Fan, X. and Yan, H., 2020. Retinamask: A face mask detector. arXiv

preprint arXiv:2005.03950.

Jiang, X., Gao, T., Zhu, Z. and Zhao, Y., 2021. Real-Time Face Mask Detection

Method Based on YOLOv3. Electronics, 10(7), p.837.

Krishna, S.T. and Kalluri, H.K., 2019. Deep learning and transfer learning

approaches for image classification. International Journal of Recent

Technology and Engineering (IJRTE), 7(5S4), pp.427-432.

Lin, M., Chen, Q. and Yan, S., 2013. Network in network. arXiv preprint

arXiv:1312.4400.

Loey, M., Manogaran, G., Taha, M.H.N. and Khalifa, N.E.M., 2021a. A hybrid deep

transfer learning model with machine learning methods for face mask

detection in the era of the COVID-19 pandemic. Measurement, 167,

p.108288.

Loey, M., Manogaran, G., Taha, M.H.N. and Khalifa, N.E.M., 2021b. Fighting

against COVID-19: A novel deep learning model based on YOLO-v2 with

ResNet-50 for medical face mask detection. Sustainable cities and society, 65,

p.102600.

Mahapatra, S., 2018. Why deep learning over traditional machine learning. Towards

Data Science.

Mayo Foundation for Medical Education and Research, 2021. COVID-19

(coronavirus): Long-term effects. [online] Available at: <

https://www.mayoclinic.org/diseases-conditions/coronavirus/in-

depth/coronavirus-long-term-effects/art-20490351> [Accessed 18 June 2021].

Mercaldo, F. and Santone, A., 2021. Transfer learning for mobile real-time face

mask detection and localization. Journal of the American Medical Informatics

Association.

Militante, S.V. and Dionisio, N.V., 2020, August. Real-time facemask recognition

with alarm system using deep learning. In 2020 11th IEEE Control and

System Graduate Research Colloquium (ICSGRC) (pp. 106-110). IEEE.

Nagrath, P., Jain, R., Madan, A., Arora, R., Kataria, P. and Hemanth, J., 2021.

SSDMNV2: A real time DNN-based face mask detection system using single

shot multibox detector and MobileNetV2. Sustainable cities and society, 66,

p.102692.

O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V.,

Krpalkova, L., Riordan, D. and Walsh, J., 2019. Deep learning vs. traditional

computer vision. In Science and Information Conference (pp. 128-144).

Springer, Cham.

Qin, B. and Li, D., 2020. Identifying facemask-wearing condition using image super-

resolution with classification network to prevent COVID-19. Sensors, 20(18),

p.5236.

Rahman, M.M., Manik, M.M.H., Islam, M.M., Mahmud, S. and Kim, J.H., 2020,

September. An automated system to limit COVID-19 using facial mask

detection in smart city network. In 2020 IEEE International IOT, Electronics

and Mechatronics Conference (IEMTRONICS) (pp. 1-5). IEEE.

Rashvinjeet, S. and Jo, T.B., 2021. Covid-19: Wearing of double face masks

recommended, says Health DG. [online] Available at:

<https://www.thestar.com.my/news/nation/2021/05/22/covid-19-wearing-of-

double-facemasks-recommended-says-health-dg> [Accessed 11 May 2022].

Rampal, L. and Liew, B.S., 2021. Malaysia’s third COVID-19 wave-a paradigm shift

required. The Medical Journal of Malaysia, 76(1), pp.1-4.

Rosebrock, A., 2017. ImageNet: VGGNet, ResNet, Inception, and Xception with

Keras. [online] Available at: <

https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-

 inception-xception-keras/> [Accessed 19 July 2021].

Said, Y., 2020. Pynq-YOLO-Net: An Embedded Quantized Convolutional Neural

Network for Face Mask Detection in COVID-19 Pandemic Era. International

Journal of Advanced Computer Science and Applications, 11(9).

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C., 2018.

Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 4510-4520).

Sharma, N., Sharma, R. and Jindal, N., 2021. Machine Learning and Deep Learning

Applications-A Vision. Global Transitions Proceedings, 2(1), pp.24-28.

Sethi, S., Kathuria, M. and Kaushik, T., 2021. Face mask detection using deep

learning: An approach to reduce risk of coronavirus spread. Journal of

Biomedical Informatics, 120, p.103848.

Shrestha, A. and Mahmood, A., 2019. Review of deep learning algorithms and

architectures. IEEE Access, 7, pp.53040-53065.

Shu, M., 2019. Deep learning for image classification on very small datasets using

transfer learning.

Sinha, S., 2018. Why Google’s MobileNetV2 Is A Revolutionary Next Gen On-

Device Computer Vision Network. [online] Available at:

<https://analyticsindiamag.com/why-googles-mobilenetv2-is-a-revolutionary-

next-gen-on-device-computer-vision-network/> [Accessed 19 July 2021].

Sivarajah, U., Kamal, M.M., Irani, Z. and Weerakkody, V., 2017. Critical analysis of

Big Data challenges and analytical methods. Journal of Business Research,

70, pp.263-286.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V. and Rabinovich, A., 2015. Going deeper with convolutions.

In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 1-9).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z., 2016. Rethinking

the inception architecture for computer vision. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 2818-2826).

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C. and Liu, C., 2018, October. A

survey on deep transfer learning. In International conference on artificial

neural networks (pp. 270-279). Springer, Cham.

Tsai, C.Y., Chou, Y.S., Wong, C.C., Lai, Y.C. and Huang, C.C., 2019. Visually

Guided Picking Control of an Omnidirectional Mobile Manipulator Based on

End-to-End Multi-Task Imitation Learning. IEEE Access, 8, pp.1882-1891.

Tsang, S.H., 2018. Review: Inception-v3 — 1st Runner Up (Image Classification) in

ILSVRC 2015/ [online] Available at: < https://sh-tsang.medium.com/review-

https://sh-tsang.medium.com/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c

inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-

17915421f77c> [Accessed 20 April 2022].

Wang, B., Zhao, Y. and Chen, C.P., 2021. Hybrid Transfer Learning and Broad

Learning System for Wearing Mask Detection in the COVID-19 Era. IEEE

Transactions on Instrumentation and Measurement, 70, pp.1-12.

World Health Organization, 2021. WHO Coronavirus (COVID-19) Dashboard.

[online] Available at: <https://covid19.who.int/> [Accessed 18 June 2021].

Yadav, S., 2020. Deep learning based safe social distancing and face mask detection

in public areas for covid-19 safety guidelines adherence. International Journal

for Research in Applied Science and Engineering Technology, 8(7), pp.1368-

1375.

Yu, J. and Zhang, W., 2021. Face mask wearing detection algorithm based on

improved YOLO-v4. Sensors, 21(9), p.3263.

Zhang, J., Han, F., Chun, Y. and Chen, W., 2021. A Novel Detection Framework

About Conditions of Wearing Face Mask for Helping Control the Spread of

COVID-19. IEEE Access, 9, pp.42975-42984.

https://sh-tsang.medium.com/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c
https://sh-tsang.medium.com/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c

APPENDICES

APPENDIX A: Detailed of the Gantt Chart in Project 1

APPENDIX B: Detailed of the Gantt Chart in Project 2

