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ABSTRACT 

 

Due to the fast transmission of coronavirus and the severe sequela of COVID-19, which 

has no specific cure, the world is facing a massive health crisis. According to the World 

Health Organization (WHO), wearing a mask in public locations and crowded locations 

is the most effective prevention of COVID-19. In Malaysia, wearing a face mask is 

mandatory in public areas. However, it is impossible to detect all passers-by manually as 

it requires much manpower. This research proposes an automation approach to mask-

wearing detection by identifying people who are (i) not wearing a mask, (ii) wearing a 

mask, (ii) incorrect mask-wearing, and (ii) wearing double masks. Transfer learning 

methods were adopted by using five pre-trained models: (i) VGG, (ii) MobileNet, (iii) 

ResNet, (iv) Inception and (v) Xception models. These models were trained based on 

2000 real-life data sets collected from various sources with a data augmentation 

technique. The research results show that the pre-trained ResNet152 model outperformed 

the other models by achieving 0.8667 accuracy on the testing data set (120 images from 

the other distribution) and 0.8447 accuracy on the videos captured using a smartphone. 

.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background 

COVID-19 pandemic has made an unprecedented change in our day-to-day life and 

has disturbed the world economy and society. According to the World Health 

Organisation’s (WHO) official Dashboard, on 18 June 2021, COVID-19 has infected 

approximately 176.95 million people and caused approximately 3.84 million deaths 

in the world (World Health Organization, 2021). People infected with the COVID-19 

may have fever, joint and chest pain, headache, difficulty breathing and depression. 

The infection may also cause one’s life (Mayo Foundation for Medical Education 

and Research, 2021). The whole world is now combating COVID-19, including 

Malaysia. 

In Malaysia, the first wave of pandemics occurred from 25 January to 16 

February 2020. The second wave that happened from 27 February to 30 June 2020 

forced the Malaysian government to take various Movement Control Order (MCO) 

phases to handle the spreading of COVID-19. The third wave began on 8 September 

2020 due to the Sabah state election, which has caused the confirmed cases of 

COVID-19 to soar up until today, and thousands of cases are reported daily (Rampal 

and Liew,2021). Therefore, precautions like wearing a mask, social distancing, 

washing hands, avoiding the crowd and disinfection are important to protect us 

against COVID-19 (Centers for Disease Control and Prevention, 2021). 

Wearing a mask is one important approach to prevent COVID-19. Therefore, 

we need to ensure everyone is wearing a mask throughout the whole pandemic when 

going outside their home. To ensure everyone is masked needs much manpower from 

enforcement agencies. Autodetect mask-wearing needs to be implemented to solve 

the cumbersome workload of manual detection. To detect a face mask, a deep 

learning technique shall be used to incrementally learn high-level features 

automatically of data by first recognising pixels, lines, edges and then parts of the 

object, and finally, the whole object (Mahapatra, 2018). Thousands of masked, 

unmasked, improper masked wearing, double mask images data shall be used to train 

deep learning models. The models shall assist the enforcement agencies in 

performing real-time detection on passers-by. 
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1.2 Problem Statement 

The process of manually detecting whether or not someone is wearing a mask is 

tedious and inefficient. It is impossible for a human to detect all the passers-by in a 

location. Moreover, there is not enough manpower to be placed everywhere.  

 

1.3 Project Objectives 

a. To detect mask-wearing automatically using deep learning.  

b. To evaluate pre-trained deep learning models and select the best in detecting 

mask-wearing. 

 

1.4 Scope of the Project 

The problems can be solved by developing a deep learning model for face mask 

detection. Jupyter Notebook shall be used for coding purposes. 

User Scope Coverage 

The target users of this face mask detection using deep learning are those who pass 

by the sensor of detection to ensure the presence of a face mask. 

Research Scope Coverage 

The research used deep learning libraries like Keras, OpenCV, TensorFlow, and cv2 

to preprocess the data and develop the deep learning model for detecting the mask-

wearing. Besides, matplotlib is used for visualising the statistical results. 

Scope Not Coverage 

The deep learning model cannot detect surgical masks, such as N95. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The practice of wearing face masks in public has become essential during the 

pandemic to protect us from infection. However, some self-centered individuals do 

not obey the regulation. Therefore, robust face mask detection must be developed to 

solve this situation. Global scientific collaboration has risen to unprecedented levels 

as a result of the coronavirus outbreak. Machine learning and deep learning-based 

artificial intelligence (AI) have the potential to aid in the battle against Covid-19 in a 

variety of capacities (Loey et al., 2021). Deep learning enabled researchers and 

doctors to anticipate COVID-19 distribution by evaluating huge amounts of data. It 

also can help to ensure the social distancing and detection of the facemask.  

Several kinds of the literature review are done to understand about: 

1. Traditional Machine Learning  

2. Deep Learning Overview  

3. Transfer Learning 

4. Techniques in coding  

5. The existing method in face mask detection 

 

2.2 Traditional Machine Learning 

The traditional machine learning process requires feature extraction, which implies 

that the feature engineer must specify which features the machine learning should 

look for to distinguish the picture. The methods like Harris Corner Detection, 

Oriented FAST and Rotated BRIEF (ORB), etc., will be used to descript the feature 

in object detection. Feature extraction may also require computer vision algorithms 

like edge and corner detection (O’Mahony et al., 2019). When unstructured data is 

used, pre-processing must be done to arrange it into a structured format. The 

challenge with traditional machine learning is determining which features are 

significant in each image. Feature extraction gets increasingly difficult as the number 

of classes grows. It became a lengthy trial and error process to determine which 
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features best describe various object types (O’Mahony et al., 2019). Deep learning 

innovation has overcome the difficulties of traditional machine learning. 

2.3 Deep Learning Overview 

 

Figure 2.1: Comparison of Machine Learning and Deep Learning 

Deep learning is getting more popular due to the big data era since it has a higher 

accuracy when trained with a massive amount of data (Sharma, Sharma and Jindal, 

2021). Big data may be derived from social media, the internet, search engines, e-

commerce platforms, and online movies. Often, this data is unstructured and so large 

that it takes humans decades to extract the features (Sivarajah et al., 2017). Figure 

2.1 shows the algorithm in deep learning has eliminated some of the data pre-

processing or feature extraction needed in traditional machine learning. Deep 

learning is capable of ingesting and processing unstructured data such as text and 

images. Additionally, it can automate feature extraction because it uses hierarchical 

neural networks like convolutional neural networks (CNNs) or recurrent neural 

networks (RNNs). CNNs are used to classify images, while RNNs are used to 

recognise natural language and speech recognition (Sharma, Sharma and Jindal, 

2021). The hierarchical structure enables it to adopt a non-linear approach, 

processing data across a series layer and gradually extracting more complex data 

features (Shrestha and Mahmood, 2019). 
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Figure 2.2: Lower-level features progressively combine to form higher-level features 

(Asghar et al., 2019) 

In image recognition, the deep learning system recognises the pixel first, 

followed by the line and edge. In the next layer, it will recognise more complex 

shapes, such as eyes and noses, and in the deeper layer, it will learn which shapes 

and objects may be used to identify a human face as shown in Figure 2.2. Thus, the 

prediction model gets more complex and accurate with each iteration. 

 

Figure 2.3: Neural Network of Deep Learning (IBM Cloud Education, 2020) 

Deep learning simulates the human brain by combining data input, weights, 

bias or threshold, and an output; the fundamental formula is 𝑍 = ∑ 𝑊𝑖𝑋𝑖 + 𝑏𝑚
𝑖=1 . X 

represents the non-linear activation function at each layer, W represents the weight 

between two adjoining unit layers, and b represents the bias, the minimal number 
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required to pass the threshold. Z will be the output; the output will then be predicted 

by summing these three inputs together. If the output is greater than the specified 

bias, the node will activate and transmit data to the network’s next layer; otherwise, 

no data will be transmitted. Since neural networks contain many hidden layers, the 

process will be performed several times for a single decision. Every hidden layer 

contains its own activation function, which may be used to transfer information 

across layers. Once all outputs are produced from the hidden layers, the outputs are 

used as inputs to compute the neural network’s final output (Shrestha and Mahmood, 

2019; IBM Cloud Education, 2020). This computation across the network is known 

as forward propagation. Deep learning also includes backpropagation, which uses an 

algorithm like gradient descent to allow the function to move backwards through the 

layers to enhance the model by adjusting the weights and biases when the prediction 

is incorrectly computed (Shrestha and Mahmood, 2019). By forward and 

backpropagation, the neural network can generate predictions and fix the error, 

making the algorithm more accurate. 

In short, deep learning trains a computer to learn like a human brain. It can 

learn high-level features incrementally, which has eliminated the need for feature 

engineers and can easily achieve incredible accuracy. However, deep learning 

requires a massive quantity of data and processing power to reach an acceptable 

degree of accuracy, but this is easily achievable in today’s big data and cloud 

computing era. Hence, it has become the primary option among others. 

 

2.4 Transfer Learning  

 

Figure 2.4: Transfer Learning idea 
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Deep learning is highly dependent on huge data sets compared to traditional learning 

methods since it needs a large amount of data to discover hidden patterns in data 

because the size of the model and the quantity of data have a roughly linear 

correlation (Tan et al., 2018). If a small data set is used to train from scratch, 

overfitting will occur. Therefore, transfer learning is essential to deep learning due to 

the scarcity of data and a large amount of time needed, as training may take days or 

weeks from scratch. Transfer learning is the application of a previously trained 

model to a new issue. In transfer learning, the knowledge learned in the previous 

model will be passed to the new training model, so that the new network model can 

start with pre-trained weights (Krishna and Kalluri, 2019). Figure 2.4 shows a set of 

small data sets with previously unknown classifications that can be trained via 

transfer learning by adjusting the internal network, and the resulting new model can 

recognise the new class. The pre-trained models studied in this literature review are 

VGG, MobileNet, and YOLO. 

2.4.1 Visual Geometry Group (VGG) 

 

Figure 2.5: VGG-16 and VGG-19 architecture 

The most common VGG networks are VGG-16 and VGG-19. The numbers 16 and 

19 represent the weight layers in VGG. This network is unique in its simplicity, as it 

employs only 3x3 convolutional layers stacking on each other to increase the depth. 

Max pooling will handle the volume reduction. Then end with two 4096 nodes fully 

connected layers and a softmax classifier. VGG-19 has three additional convolutional 

layers compared with VGG-16. By using multiple 3x3 filters, it has eliminated the 

need for large size kernels, allowing us to extract complex features at a low cost 

(Krishna and Kalluri, 2019). 
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Figure 2.6: VGG-16 architecture’s visualisation (Frossard, 2016) 

VGG networks use convolution layers with a 3x3 filter, a stride of 1, and 

equal padding. The max pooling layers were 2x2 filters with a stride of 2. Figure 2.6 

illustrates a 224x224 size of the image as the input with 3 filters representing RGB. 

The first two convolutional layers contain 64 filters, so it ends up with 224x224x64 

volume. Then the max pooling layer reduces the height and width from 224 to 112, 

and the following convolutional layers contain 128 filters, resulting in 112x112x128 

dimensions. The process will continue till we get a final 7x7x512 into fully 

connected layers with a softmax output of 1000 classes. 

 

Table 2.1: Comparison of VGG-16 and VGG-19 (Tsai, 2019) 

Model Memory Size 
Accuracy 

Top-1 Top-5 

VGG-16 528MB 0.72 0.910 

VGG-19 549MB 0.759 0.929 

 

VGG-19 performs slightly better than VGG-16, but it requires more memory 

size (Shu, 2019). So, many users prefer VGG-16 as it performs almost as well as 

VGG-19. However, the VGG network has the disadvantage of being very slow to 

train and having high architectural weights in terms of disc or bandwidth. VGG 

requires more than 500MB of memory size due to its depth and amount of fully 

connected nodes. Therefore, deploying VGG takes a long time, which is why smaller 

network architectures are typically chosen (Rosebrock, 2017). 
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2.4.2 MobileNet 

A MobileNet model is intended for usage in mobile applications and devices with 

limited computing capacity. The ability to operate deep networks on mobile devices 

enhances user experience by providing anytime, everywhere access, as well as extra 

security, privacy, and energy conservation. So, this neural network developed is 

entirely lite, as mobile devices cannot afford a large GPU to operate in the 

background due to space and restriction. Furthermore, MobileNet employs 

depthwise separable convolutions, including depthwise and pointwise convolutions. 

Compared to alternative architectures with the same depth in the network, this has 

substantially reduced the number of parameters. So, MobileNet is a lightweight 

network (Sandler et al., 2019). This literature study will go over MoblieNetV2 in 

more detail. 

 

Depthwise separable Convolution: 

 

Figure 2.7: Standard convolution 

 

 

Figure 2.8: Depthwise separable convolution 

Depthwise separable convolution is more efficient than standard convolution as it 

divides the kernels into smaller parts. From Figure 2.7, 128 of 3x3x3 kernels are 

used, and each move 5x5 times. So, standard convolution has a total of 
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128𝑥3𝑥3𝑥3𝑥5𝑥5 = 86,400 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠. In Figure 2.8, the first kernel has 3 of 

3x3x1 size that moves 5x5 times. And the second kernel has 128 of 1x1x3 size that 

moves 5x5 times. The total is 3𝑥3𝑥3𝑥1𝑥5𝑥5 + 128𝑥1𝑥1𝑥3𝑥5𝑥5 =

10275 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛. So, it only has 10275 multiplication which only costs 11.89% 

of the standard convolution. The simplified formula for standard convolution is 

𝐷𝑘
2𝑚𝑛𝐷𝑓

2 . In contrast, the formula for Depthwise separable convolution is 

𝐷𝑘
2𝑚𝐷𝑓

2 + 𝑚𝑛𝐷𝑓
2 where m is the input channels’ number, n is the output channels’ 

number, Dk is the size of the kernel, and Df is the size of the feature map. Therefore, 

with Depthwise separable convolution, it can deduct standard convolution costs by 

1

𝑛
+

1

𝐷𝑘
2 (Howard et al., 2017). 

MoblieNetV2: 

 

Figure 2.9: Overview of MobileNetV2 architecture (Sinha, 2018) 
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Figure 2.10: MobileNetV2 Bottleneck residual block (Sandler et al., 2019) 

MobileNetV2 uses an inverted residual structure with depth separable convolution. It 

has an architecture that starts with a full convolution layer of 32 filters and 19 

residual bottleneck layers. Figure 2.10 shows there are two types of bottleneck 

residual block, which are stride 1 and stride 2. Stride 2 is used for downsizing the 

input size, and it does not have a residual connection. There are 3 layers in these 

blocks. The first layer has 1x1 convolution with ReLU6, the second layer contains 

depthwise convolution, and the last layer is linear 1x1 convolution. ReLU6 was 

chosen as a non-linearity because of its robustness in low-precision computation. 

Every layer contains a batch normalisation layer and an activation function, except 

the final layer, which does not include ReLU6 since the output form in this layer has 

low dimension and non-linearity would reduce its performance (Sandler et al., 2019).  

 

Figure 2.11: Bottleneck residual block visualisation 
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In MobileNetV2, the expansion factor(t) of 6 is used. If the input tensor is 24 

channels, the expansion layer, the first layer in the residual block, will convert it into 

a new tensor, 144 channels. Then, depthwise convolution will apply its filter to that 

144-channel tensor, and finally, the projection layer will project the filter back to 24 

channels. These layers are known as bottleneck layers because it lowers the amount 

of data flowing across the network. The residual connection in MobileNetV2 is only 

used when the number of channels entering the block equals the number of channels 

coming out of it, which is the stride of 1. The stride of 2 will not pass through the 

block residual connection. 

 

Figure 2.12: MobileNetV2 architecture (Sandler et al., 2019) 

Figure 2.12 shows the complete architecture of MobileNetV2, where t is the 

channel expansion rate, c is the number of output channels, n is block repetition time, 

and s is the stride. MobileNetV2 begins with a standard 3x3 convolution with 32 

channels, followed by 17 bottleneck blocks. It ends with a regular 1x1 convolution. 

Before classification, a global average pooling layer is used, then only followed by 

the classification layer. The MobileNetV2 achieved a top-5 accuracy of 0.901 when 

training on 2.5 million parameters. Due to Depthwise separable Convolution, 

MobileNet requires less computation and parameters, allowing it to perform better in 

size, latency, and accuracy (Sandler et al., 2019). 

 

2.4.3 ResNet 

ResNet is a robust deep neural network that achieved 1st price in the ILSVRC 2015 

classification competition with 3.57%. of top-5 error rate. ResNet architectures exist 

many variants, each with the same basic idea but a different number of layers. The 
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most popular architectures are ResNet-34, ResNet-50, ResNet-101 and ResNet-152. 

The digit indicates the number of neural network layers of the Resnet.  

In a neural network, several additional layers are often placed in Deep Neural 

Networks when dealing with complicated problems to increase accuracy and 

performance. This is because adding additional layers allow that layer gradually 

learn more complex features. However, He et al. (2016) found that the conventional 

CNN model has a depth threshold limit. 

 

Figure 2.13: Training (left) and test (right) error on CIFAR-10 (He et al., 

2016) 

From Figure 2.13, He et al. (2016) show that the deeper network will 

generate greater training and test error. As a result, putting extra layers on top of a 

network reduces its performance. Because the massive layer in networks is prone to 

data overfitting. Deep networks are extremely hard to train because of the problem of 

vanishing gradient, which claims that when a gradient is backpropagated to previous 

layers, repeated multiplication may cause the gradient to become endlessly tiny. 

Therefore, its performance degrades as the network becomes deeper. This difficulty 

has been solved by the invention of ResNet, or residual networks, which are made up 

of Residual Blocks. 

 

Figure 2.14: Residual building block  

In the residual block, there is a direct connection that bypasses some layers in 

between. This is known as a ‘skip connection’, or identity mapping. There are no 
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parameters in the skip connection, so the output from the previous layer is just added 

to the next layer. The layer’s output is no longer identical as a result of this skip 

connection. In the absence of a skip connection, the input ‘x’ is multiplied by the 

layer weights and added with a bias 𝑦 = 𝑓(𝑥, {𝑤𝑖} + 𝑏) 𝑜𝑟 𝑦 = 𝑓(𝑥, {𝑤𝑖}). When 

skip connection is used, there are two equations: 

1st Equation: 

 𝑦 = 𝑓(𝑥, {𝑤𝑖}) + 𝑥 (2.1) 

 

2nd Equation: 

 𝑦 = 𝑓(𝑥, {𝑤𝑖}) + 𝑤𝑠𝑥 (2.2) 

where 

y = output of data 

x = input of data 

f (x, {wi}) = residual mapping to learn 

Ws = linear projection 

Normally, when a skip connection is employed, the 1st Equation is used. 

However, x and F(x) do not always have the same dimension. When the dimensions 

of the input vary from those of the output, this approach will have some issues. 

Therefore, there are two approaches to address the issue: 

1. To enhance the dimensions, the skip connection is padded with additional 

zero padding. (1st Equation is used) 

2. To match the dimension, the projection approach is used, which is achieved 

by adding 1x1 convolutional layers to the input (2nd Equation is used) 
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Figure 2.15: ResNet-34 architecture (Right) 
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Figure 2.15 shows the ResNet with 34 layers, ResNet baselines influenced 

mostly by VGG networks. To match the dimensions of the inputs, the dotted skip 

connections in the picture above reflect multiplying the identity mapping by 2nd 

Equation (He et al.,2016). 

 

Figure 2.16: ResNet architectures 

Figure 2.16 shows the architecture 50-layer above is modified due to 

concerns about training time, and the building block is redesigned as a bottleneck 

design for the 50 layers above. Instead of using two levels for each residual function, 

a three-layer stack is implemented. The three layers are 1 x 1 convolutions, 3 x 3 

convolutions, and 1 x 1 convolutions. The first and last 1 x1 layers have the 

responsibility for lowering and subsequently raising (restoring) dimensions, leaving 

the 3 x 3 layer as a bottleneck with reduced input or output dimensions. The 34-layer 

network is modified by switching from a two-layer bottleneck block to a three-layer 

bottleneck block, resulting in a ResNet of 50 layers. This approach results in more 

efficient models. 

 

Figure 2.17: Top-5 err (%) on ImageNet validation set 
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Although the FLOPs and depth rise in all 50/101/152-layer ResNets, they are 

more accurate than the 34 layers and do not suffer from deterioration as the error 

rates decrease when going deeper (He et al., 2016). 

 

2.4.4 Inception 

The Inception network was complex because it used several methods to enhance 

speed and accuracy. Its ongoing development resulted in the formation of many 

network versions such as v1, v2, v3, and so on. The Inception network has 

implemented a method to employ varied filter sizes within its convolutional layers. 

 

Figure 2.18: Naive version of inception module (Szegedy et al., 2015) 

Before the emergence of Inception, researchers had to figure out which filter 

sizes to use in deep convolutional neural networks to get the best results. Inception 

eliminates the necessity for such selections by using several filter sizes 1x1, 3x3, and 

5x5 together. 1x1 convolutions will minimise the dimensions of data travelling 

through the network. It is also able to increase the network’s breadth and depth and 

learn patterns throughout the depth of the input. Furthermore, the use of 3x3 and 5x5 

convolutions allows the network to learn a variety of spatial patterns at different 

scales. In the naive inception model, it performs convolution on an input, using these 

3 kinds of filters and a max-pooling layer. Before the costly filter sizes of 

convolutions, the 1x1 was employed to compute reduction (Szegedy et al., 2015). 

The outputs are then concatenated and passed to the next inception module. The 

pooling layer downsamples the input data by producing a smaller output with a lower 

height and width. Padding will be added to the pooling layer to ensure that the 

pooling layer’s output can be concatenated with the output of the convolution layers. 



33 

 

 

Inception-v3 is reviewed in this literature study. It has a 42-layer deep learning 

network and a low error rate, making it the first runner-up in ILSVRC 2015 (Szegedy 

et al., 2016). 

 

 

Figure 2.19: Inception-v3 architecture (Tsang, 2018) 

Few improvements have been done in Inception-v3: 

1. Convolution factorisation 

The goal of convolution factorisation is to decrease the number of 

connections and parameters while maintaining network efficiency. There are 

3 types of factorisation techniques (Szegedy et al., 2016): 

 

a. Factorisation into smaller convolutions 

This method is accomplished by substituting two 3x3 convolutions for the 

5x5 convolution. This strategy is able to reduce the number of parameters 

by 28%. Because when using the 5x5 convolution, the number of 

parameters is 5 𝑥 5 = 25 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 . When using two 3x3 

convolutions, the parameters will be (3 𝑥 3) 𝑥 2 = 18 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.  

So, the modules will be updated to the following: 
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Figure 2.20: Updated Module by replacing 5x5 convolution (Tsang, 2018) 

b. Factorisation into asymmetric convolutions 

This method is done by replacing n x n convolution with n x 1 

convolution and 1 x n convolution. With this method, the number of 

parameters is reduced by 33%. Assume using a 3x3 convolution, the 

number of parameters is 3 𝑥 3 = 9 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. When using the 1 x 3 

and 3 x 1 convolution, the number of parameters will be (1 × 3) +

(3 × 1) = 6 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.  

So, the modules will be updated to the following: 

 

Figure 2.21: Updated Module by replacing 7x7 convolution (Tsang, 2018) 

c. Expend filter bank 

To eliminate the representational bottleneck, the filter banks in the 

module were expanded. 1x1 convolution is used to make the module 

wider rather than deeper to encourage the high-dimensional 
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representations. As the dimensions of the module would be dramatically 

decreased if it were made deeper, resulting in information loss. 

So, the modules will be updated to the following: 

 

Figure 2.22: Updated Module by expending filter bank (Tsang, 2018) 

2. Auxiliary Classifier 

 

Figure 2.23: Auxiliary Classifier (Tsang, 2018) 

Auxiliary classifiers are used in Inception-v1 to have a deeper network. 

However, in Inception-v3, the authors observed that auxiliary classifiers did 

not make a significant contribution until the completion of the training. 

Therefore, the Auxiliary Classifier serves as the regularisers in Inception-v3 

and there is only one auxiliary classifier used in the model, which is placed 

on top of the final 17x17 layer (Szegedy et al., 2016). 
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3. Efficient Grid Size Reduction 

 

Figure 2.24: Efficient Grid Size Reduction (Tsang, 2018) 

Traditionally, feature map reduction in networks has been performed through 

the use of max pooling. However, it is extremely greedy if max pooling is 

followed by convolution, and excessively expensive if convolution is 

followed by max pooling. As a result, a method for efficiently reducing the 

grid size is proposed. With this approach, convolution with stride 2 generates 

320 feature maps, while max pooling produces another 320. Next, both 

feature maps are concatenated to create 640 feature maps. All generated 

feature maps will then forward to the following module level (Szegedy et al., 

2016). 

 

4. Label smoothing 

A regularising component is introduced to the loss formula to prevent the 

network from getting overconfident toward a class, which prevents 

overfitting (Szegedy et al., 2016). 

Due to the design of the Inception network, which enables the use of variable 

convolutional filter sizes, the Inception network is capable of extracting features 

from input data at varied scales. This enables the inception network to attain 

excellent performance while maintaining a low computation cost. 
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2.4.5 Xception 

Xception stands for extreme inception, which is a more advanced version of 

Inception. The Xception architecture uses the same amount of parameters as 

Inception-v3 but performs better due to more efficient usage of model parameters 

(Chollet, 2017). 

 

Figure 2.25: Xception architecture (Chollet, 2017) 

In Xception, the data will move through three flows: first, the ‘input flow,’ second, 

the ‘middle flow,’ and it will be repeated eight times, and at the end, the ‘exit flow’. 

In Xception, batch normalisation is performed in all Convolution and Separable 

Convolution layers. Then, a depth multiplier of one is used by all Separable 

Convolution layers. Xception outperformed Inception-v3 due to two significant 

changes: updated depthwise separable convolutions and a modification of the non-

linearity (Chollet, 2017). 

 

1. Modified depthwise separable convolutions 

Normally, depthwise separable convolution is performed first, followed by 

pointwise convolution. The phrase depthwise convolution refers to the n x n 

spatial convolution channel-wise. If there are three channels, we will have 

three spatial convolutions of size n x n x 1. Then, the 1 x 1 convolution that is 

used to modify the dimension is called pointwise convolution. The Xception 
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model has updated the depthwise separable convolutions by reordering the 

depthwise and pointwise convolutions, which implies that pointwise 

convolutions will be performed first, followed by depthwise convolutions. 

This modification is motivated by the fact that Inception-v3’s module 

conducts 1 x 1 convolution before doing any n x n spatial convolutions. 

However, Chollet mentioned that this is irrelevant for performance 

improvement, since when it is employed in a stacked configuration, only 

minor differences occur at the beginning and end of Inception modules 

(Chollet, 2017). 

 

2. Non- linearity 

In Inception, ReLU non-linearity is used in the operations. However, 

depthwise separable convolutions are often done without non-linearity. 

 

 

Figure 2.26: Performance of Xception with non-linearity 

As seen in the above figure, the Xception with no intermediate activation has 

the greatest accuracy when compared to those that use ELU or ReLU (Chollet, 

2017). 
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Table 2.2: Comparison summary for the 5 deep learning model 

 Version Used 

 

Advantages 

 

Disadvantages 

 

VGG 

(Simonyan 

and 

Zisserman, 

2014) 

VGG-16 

 

- Network simplicity 

- Eliminated the need for 

large size kernel 

 

- Slow to train 

- High architectural 

weights (549MB for 

VGG-16) 

 

MobileNet 

(Sandler et 

al., 2019) 

MobileNetV2 

 

- Lightweight (Depthwise 

separable Convolution) 

- Small storage required 

- High speed 

- Suitable in mobile 

 

- Depends on 

optimization strategy 

- Tuning problem 

 

ResNet (He 

et al., 

2016) 

ResNet-50, 

ResNet-152 

 

-  Allows you to build a 

deeper network (skip 

connection) 

- Tackling the vanishing 

gradient problem (skip 

connection) 

 

- deeper network usually 

requires weeks for 

training 

- making it practically 

infeasible in real-world 

applications. 

 

Inception 

(Szegedy et 

al., 2016) 

Inception-v3 

 

- Eliminated the need of 

selecting filter size 

(employ various 

convolutional filter 

parallelly) 

- Improve performance 

while maintaining low 

computation cost 

- Convolution 

factorisation 

 

- require a lot of memory 

when performing 

computation due to the 

width of the convolution 

layer 

 

Xception 

(Chollet, 

2017) 

Xception 

 

- More efficient use of 

model parameters 

(modified depthwise 

separable convolution and 

non-linearity) 

 

- require a lot of memory 

when performing 

computation due to the 

width of the convolution 

layer 

 

 

The model chosen in this research is shown in the table above. The model's unique 

characteristics have resulted in the model's advantages, which is why the model was 

chosen in this research. 
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2.5 Techniques in coding 

2.5.1 Data augmentation 

 

Figure 2.27: Before and after data augmentation 

A large quantity of data sets is required during training; to address the insufficient 

amount of data, the data augmentation method can be employed. It may create 

several variations of the same picture by rotating, flipping, zooming, shearing, and 

shifting (Nagrath et al., 2021). This exposes the model to various aspects of the 

training data, reducing overfitting (Jiang et al., 2021).  

 

2.5.2 Transfer learning 

1. Create a base model 

 

Figure 2.28: Base model 

The initial stage in transfer learning is to build a base model using CNN 

architectures, and weight must be assigned in the model (e.g. weights= 

“imagenet”). If no weight is given, the model will be trained from scratch 

using that architecture. Figure 2.28 shows that when creating a base 

model, the final output layer must be removed by “include_top=False”, 
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and a new output layer suitable for the new problems must be created and 

attached to the base model. 

 

2. Feature extraction (freeze layers) and add new trainable layers 

 

Figure 2.29: Feature extraction 

The layers from the pre-trained model must be frozen by setting 

base_model.trainable = False. This is done to prevent reinitialising the 

weights in those layers. If the weight is lost, the model will be trained 

from scratch. So, freezing the layers enables the new data set to pass 

through the previously trained convolutional base and the new classifier 

needs to be added on top for training, so the new prediction can be made. 

The stacked classifier may be a stack of fully connected layers or a single 

global pooling layer. Both classifiers are followed by a dense layer with 

softmax. Using a global pooling layer is recommended to reduce 

overfitting as there are no parameters to tune in this layer (Lin, Chen and 

Yan, 2013). 

 

2.5.3 Optimisation method to improve deep learning performance  

1. Fine-tuning the learning rate 
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Figure 2.30: Frozen type in the base model 

To improve the model performance, we can fine-tune the model. It is 

done by unfreezing the whole base model or portion of it, and it will be 

training the whole model again on the entire data set. The code is 

base_model.trainable = True or by specific layers which is 

layer.name.startswith(‘name’).trainable = True. The learning rate 

assigned must be low, as it will enhance the model’s performance and 

prevent overfitting as a low learning rate ensures the weight of the pre-

trained model will not distort. A high learning rate will cause the risk of 

losing prior knowledge to increase. To prevent the consumption of time, a 

callback can be used to monitor the training loss. If 5 consecutive epochs 

do not improve the model, Keras will terminate the training. 

 

2. Batches  

The batch size determines the number of samples that will be sent to the 

network at once. If a total of 100 images are used with a batch size of 10, a 

complete epoch needs to iterate 10 times. The equation is 

𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑒𝑝𝑜𝑐ℎ =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
. The bigger the batch size, the 

faster the model completes each epoch. The model’s quality may degrade as a 

larger batch size is used, and larger batch sizes require massive computing 

resources to process all images in parallel. So, it is necessary to fine-tune the 

batch size during training. Gradient descent is an optimisation method used to 

determine the weights of deep learning. It enables the model to make 
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predictions on training data and utilise the prediction error to update the 

model to enhance performance. There are three learning algorithms in batches: 

 

i. Batch Gradient Descent (BGD) 

 

batch size = size of image in training set OR batch size = per 

epoch 

 

This algorithm computes the error for each training data set or per 

epoch. It only updates the model after evaluating all training data. 

It is more computationally efficient since it has fewer updates. The 

reduced update frequency produces a more stable error gradient 

and convergence. On the other hand, the stable error gradient may 

lead the model to prematurely cover a set of less ideal parameters. 

It also needs the whole training data set to be kept in memory so 

that it will become slow with a large data set. 

 

ii. Stochastic Gradient Descent (SGD) 

 

batch size =1 

 

This algorithm provides immediate feedback on model 

performance and improvement rate. It is also simple to apply and 

comprehend. A higher update frequency may result in faster 

learning on certain problems and prevent premature convergence. 

However, frequent updates require high computation capacity and 

a longer time to train the model. It may also cause higher variance 

over training epochs. 

 

iii. Mini-Batch Gradient Descent  

 

1 < batch size < size of image in training set 
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Mini-Batch Gradient descent is the most used algorithm in deep 

learning. The most popular batch sizes are 32, 64, and 128. This 

algorithm allows the model to update more often, resulting in 

more robust convergence and avoiding premature convergence. It 

is more computationally efficient than SGD and does not need all 

training data stored in memory like BGD. 

 

3. Epochs 

Epoch is a hyperparameter that has a connection to batches size. It determines 

the number of times the training algorithm iterates through the whole 

provided training data set. When a single epoch is used, every data in the data 

set will have a chance to update the parameters of the internal model. As 

mentioned in “b. Batches”, an epoch may contain one or more batches. Often, 

the epochs used are large, like 100 or 1000 times, allowing the training 

algorithm to run until the model’s error is sufficiently minimised. There are 

no standard epochs. With every iteration, the loss will continue to decrease. 

The validation loss will first reduce, but it will increase when the model starts 

overfitting. Therefore, the lowest validation loss is an ideal endpoint. 

 

2.6 The existing method in face mask detection 

This study investigates a total of 20 works of literature. There are several methods 

for identifying the presence or absence of a face mask in deep learning in these 

existing models. For example, training a CNN, using transfer learning of the CNN 

model like VGG, Inception, ResNet, MobileNet or using an object detection model 

which has a CNN backbone. In an object detection model, there are two types of 

frameworks: region proposal based, which is a two-stage object detector like RCNN, 

Faster RCNN, and so on, and another framework is regression or classification based, 

which is a one-stage detector like YOLO, SSD, and so on. One-stage detector 

regresses the bounding boxes in a single step. However, the two-stage detector will 

produce region proposals first. Then the proposals will be subsequently fine-tuned in 

the second stage. Therefore, a two-stage detector has a better performance, but a 

slower speed than a one-stage detector. The most common model employed in these 

20 papers is a one-stage detector, followed by the CNN model, a two-stage detector 
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model, and training a new CNN model. Several problems have been resolved, 

including face with a mask, face without a mask, improper mask wear, detect 

occlusion on the face, type of mask, and social distancing. Mostly only solved faces 

with a mask and without a mask. Different evaluation metrics are used to evaluate 

performance like testing or training accuracy, F1 score, average precision, and frame 

per second (FPS). This review will cover techniques used, problem solved, best 

tuned hyperparameter, strength and limitation, performance, and future work. Table 

2.2 will show the overview of these 20 models. 

The majority of these 20 existing methods are mostly focused on the 

classifications of no mask wearing, single mask wearing, and inappropriate mask 

wearing. In May 2021, Tan Sri Dr Noor Hisham Abdullah, the Director General of 

Health Malaysia, encouraged Malaysians to use double face masks because they may 

limit COVID-19 transmissions by up to 96.4 percent (Rashvinjeet and Jo, 2021). 

Since wearing a double masks is important in Malaysia, I decided to try a new 

approach in this research which is detecting double masks. As a result, this will be a 

new challenge for this research. 
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Table 2.3: The overview of Reviewed Paper 

No Authors Techniques used Problem solved Hyperparameter Strength/ Limitation – [author no. mention] xxx Performance Future Work 

1 Chowda

ry, et al., 

2020 

- InceptionV3 

- Data augmentation 

 

- With mask 

- without mask 

- Epochs: 80, each 42 steps 

 

- Can be used in surveillance cameras 

- Cannot detect improper mask wear 

- Training 

accuracy: 

99.9% 

- Testing 

accuracy: 

100% 

- Identify mask type 

- Facial recognition 

- Identify person with mask on 

2 Loey, et 

al., 

2021a 

- Hybrid method 

- Feature extraction: ResNet-

50  

- Detection/ Classification: 

SVM, decision tree and 

ensemble (SVM highest 

accuracy) 

- With mask 

- without mask 

- - [7] Cannot detect improper mask wear  

- [12] easy to deploy 

- [12] Limit the scenario to one person in each 

picture, with the face covering most of the image. 

- [12, 18] Complex training process 

- [16] High computational costs  

- [18] High computation, unsuitable for real-time 

processing 

- Testing 

accuracy 

(SVM): 

99.64%  

- Use deep learning in neutrosophic 

categorization domain feature 

extraction 

 

 

 

3 Loey, et 

al., 

2021b 

- Feature Extraction: ResNet-

50 

- Detection: YOLOv2 

- Data augmentation 

- With mask 

- without mask 

- Epochs: 60 

- Batch size: 64 

- Learning rate (LR): 0.001 

- Optimizer: SGDM 

 

- The detection will specifically detect for medical 

mask 

- Cannot detect improper mask wear  

- [12] Reasonable number of anchor box 

- [12] High speed 

- [12] Medium performance  

- [12] Low confidence for predicted results 

Average 

Precision (AP): 

61% 

- Detect masked face in image and 

video-based 

- Epochs: 60 

- Batch size: 64 

- LR: 0.001 

- Optimizer: Adam 

AP: 81% 

4 Nagrath, 

et al., 

2021 

SSDMNV2 

- Backbone: Single Shot 

Multibox Detector (SSD) 

Object Detection Model and 

ResNet10 

- With mask 

- without mask 

- Weight: Imagenet 

- Epochs: 100 

- Optimizer: Adam 

 

- Lightweight  

- Allow less resources used in real-time detection   

- Can integrate in surveillance cameras and devices 

like Raspberry Pi 

- Cannot detect improper mask wear  

Accuracy score: 

92.64% 

F1 score: 93% 

 

Without data 

- Face recognition, facial landmark, 

and facial part detection 
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- Classifier: MobilenetV2 

- Data augmentation 

- [16] Too complex aug: accuracy 

score is 87.51% 

5 Jiang, 

Fan and 

Yan, 

2020 

RetinaFaceMask (Single stage 

object detector): 

- Backbone: MobileNet 

- Neck: feature pyramid 

network FPN 

- Head: novel context 

attention module  

- With mask 

- without mask 

- Able to detect the 

occlusion on face 

- Input image: 840x 840 

- Epochs: 250 

- Batch size: 2 

- Weight: Imagenet 

- SGD with LR: 0.001 and 

momentum: 0.9 

 

- Comparable in speed and accuracy as two-stage 

detector 

- MobileNet backbone may be used in both high and 

low computation with accuracy trade off. 

- [7] Cannot detect improper mask wear  

- [12] Strong ability in extracting robust features 

- [12] Efficient 

- [12] More training times 

- [12] Post-processing is difficult and sensitive to 

related hyper-parameters. 

- [18] No suitable in low power devices due to 

compute and memory requirements  

Face precision: 

83% 

Mask precision: 

82.3% 

- 

Single stage object detector 

(RetinaFaceMask):  

- Backbone: ResNet 

- Neck: feature pyramid 

network FPN 

- Head: context attention 

module 

- Input image: 640x 640 

- Epochs: 250 

- Batch size: 32 

- Weight: Imagenet 

- SGD with LR: 0.001 and 

momentum: 0.9 

Face precision: 

91.9% 

Mask precision: 

93.4% 

6 Sethi, 

Kathuria 

and 

Kaushik, 

2021 

- Two stages (TS) and single 

stages (SS) detector  

- Backbone: ResNet50 

- Neck: Image complexity 

predictor for face detection 

1. Soft images (TS) -

MobileNer-SSD 

2. Hard image (SS) -

ResNet50 

- Head: Identity predictor 

- Data augmentation 

- Detect mask over 

face  

- Able to detect the 

occlusion on face  

- Identify person 

violating mask norm 

- Solve high 

computation time in 

two-stage detector 

- SGD with LR: 0.03  

- Lose function: cross-

entropy loss 

 

- Fast inference 

- Require less memory 

- Easy to deploy  

- Cannot detect improper mask wear  

- 11.07% and 6.44% higher precision and recall 

compared to RetinaFaceMask [5] due to optimized 

face detector used 

Accuracy: 98.2% - Integrate into high resolution video 

surveillance device and not restricted 

to mask detection only 

- Detect facial landmarks with a mask 

on for biometric purposes 

7 Jiang, et 

al., 2021 

Squeeze and Excitation 

YOLOv3 (SE-YOLOv3) 

- Backbone: YOLOv3 + SE 

- With mask 

- Without mask 

- Incorrect mask 

- Initial learning rate (ILR): 

0.0005 (100 epochs) 

- Optimizer: Adam 

- Increased accuracy with negligible additional 

computational cost 

- Able to embed in Raspberry Pi, etc. 

Image size 

416x416: 

- AP50:  98.6% 

- Collect more data to balance the data 

- Deploy SE-YOLOv3 on lightweight 

device   
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block 

- Data augmentation (image 

and mixup augmentation) 

- Able to detect the 

occlusion on face  

- Exponential decay 

(attenuation of 0.9 for 

ILR/100 epochs) 

- Batch size:1 

- Lose function: categorical 

cross-entropy  

- AP75: 86.3% 

- mAP: 71.9% 

- Detection time: 

43.2ms 

8 Wang, 

Zhao 

and 

Chen, 

2021 

Two stages method: 

- Prediction: Faster RCNN 

with InceptionV2 

- Verification: BLS 

 

- Correct mask 

- Incorrect mask 

- Mask only 

converging chin 

- Mask cover mouth 

and chin 

- - Fail to detect small objects  

- Fail to detect face occlusion by protective clothing 

or mask with goggles 

- F1: 94.19 %  - Apply image super-resolution to 

solve the lack of features 

9 Ge, et 

al., 2017 

LLE-CNNs - Detect simple mask 

- Complex mask 

- Human body cover 

the mask position 

- Mask with eyes 

occluded glasses  

- - Poor performance in heavy occlusion face (4 

regions are occluded) 

- Any type of mask will detect as masked face 

- [3] Detect any face mask as medical mask 

- AP: 76.1%  - Predict mask type and occlusion 

degree 

10 Rahman, 

et al., 

2020 

Deep learning architecture 

with 17 layers  

- With mask 

- Without mask 

- Notify the 

appropriate 

authorities of a non-

masked person’s 

location 

- Epochs: 100 - Able embedded in CCTV and alert authority when 

detecting a non-masked face. 

- Difficult to classify occluded face by hands 

- Unable to track a person in transportation 

- Need convert image into grayscale  

- Cannot detect improper mask wear  

- [8] only able to process 64x64 size image 

- Accuracy: 

98.7%   

- Social distancing  

11 Militant

e and 

Dionisio

, 2020 

RTFR 

- VGG-16 

- Data augmentation  

- With mask 

- Without mask 

- Generate alarm  

 

- Input image: 224x 224 

- Epochs: 100 

- Batch size: 64 

- Optimizer: Adam 

- LR: 0.0001  

- Can send alarm and voice notice if notice a non-

masked face 

- Able to be embedded in Raspberry Pi, etc. 

- [12] Easy to deploy 

- [12] Highly depend on preprocessing 

- Accuracy: 97% - Social distancing  
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- [12] Will result in mistakes in some complicated 

situations as only local feature were used 

12 Zhang, 

et al., 

2021  

Context-Attention R-CNN 

- Backbone: VGG-16 

- With mask 

- Without mask 

- Incorrect mask 

- Able to detect the 

occlusion on face 

- Input size: 600x1000 

- Batch size: 1 for 11 epochs 

- Optimizer: SGD 0.9 

momentum 

- ILR: 0.001 (decrease 10 

factors after 10 epochs) 

- Strong capability in extracting the distinguish 

feature map  

- Simplicity in implementation (including training 

and testing) and deployment 

- mAP: 84.1% - Investigate the imbalance issue and 

improve attention architecture. 

- Investigate hyperparameter 

optimization as CNN-based detector 

sensitive to hyperparameter 

13 Qin.and 

Li, 2020 

SCRNet - With mask 

- Without mask 

- Incorrect mask 

- - Only detects 10 images per second, doesn’t meet 

basic video frame of 24fps 

- [12] good performance on low quality image 

- [12] complicated training process 

- Accuracy: 

98.7% 

- 0.03s 

- Collect more image and video type 

data set 

- Identify wearing condition of face 

mask 

14 Mercald 

and 

Santone, 

2021 

- MobileNetV2 - With mask 

- Without mask 

- Epochs: 20 - Can operate on limited-resource devices - Accuracy: 98% - Improve performance through 

exploiting series of transfer learning  

15 Hussain, 

et al., 

2021 

SSDWG (2 model – mask 

detection and type of mask) 

 

- 1. VGG-16 

- With mask 

- Without mask 

- Incorrect mask 

- Type of mask 

(surgical and N-95) 

-  ILR: 0.001 (decrease 0.1 

factor every 7 epochs) 

- Lose function:  cross-

entropy  

 

- May not be effective in real time detection due to 

noisy data used in training  

- Accuracy: 

99.81% (mask 

detection) 

- 98.17% (type) 

- Social distancing  

- Detect transparent face mask 

- 2. MobileNetV2 - Accuracy:99.6

% (mask 

detection) 

- 97.37% (type) 

16 Yu and 

Zhang, 

2021 

- Backbone: YOLO-v4 - With mask 

- Without mask 

- Incorrect mask 

 

- Activation function: H-

swish 

- Lowe training cost 

- Low model complexity 

- No consider in insufficient of light 

- AP50:  98.3% 

- AP75: 98.5% 

- mAP: 84.7% 

- FPS: 54.57 

- Training time: 

2.834h 

- Data set expansion based on standard 

mask wearing condition 
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17 Cao, et 

al.., 

2020  

MaskHunter 

- Backbone: YOLOv4 with 

backbone of CSPDarknet19 

- Neck: SSPP, FPN, PAN 

- With mask 

- Without mask 

 

- Neck activation function: 

Mish 

- Fast operating speed 

- Good performance  

- Able to perform in a low-light situation 

- AP: 94.0% 

- FPS: 74 

- 

18 Said, Y., 

2020. 

Pynq-YOLO-net 

- MobileNet V2 + YOLO 

- With mask 

- Without mask 

 

 - Able to embed in low power devices  

- Small model size and rapid processing 

- Low computational complexity  

- Accuracy: 97% - To implement on video surveillance 

system to be tested on real conditions 

19 Fan, X., 

Jiang, 

M. and 

Yan, H., 

2021. 

Single shot lightweight face 

mask detector (SL-FMDet) 

- Backbone: MobileNet 

- Learn more discrimination 

features: synthesized 

Gaussian heatmap 

regression (SGHR) 

- With mask 

- Without mask 

- Non-mask occlusion 

 - Effective on small or blur faces 

- Heatmap generation requires more computation. 

- mAP: 93.8% 

 

- Improper mask wearing detection 

- Use zero-shot learning to train the 

model detect improper mask wearing 

20 Yadav, 

S., 2020. 

Single shot Detector Multibox 

(SSD – it used VGG-16)  

- Backbone: MobileNet V2 

- Data augmentation  

- With mask 

- Without mask 

- Social distancing 

- ILR: 0.0001 

- Epochs: 20 

- BS: 32 

- Binary cross-entropy  

- Adam optimizer with 100 

steps 

- Able to embed in Raspberry PI 4 but its power 

consumption is too high 

- mAP: 91.2% 

- FPS: 28.07 

 

- Coughing and sneezing detection 

- Temperature screening  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 The Proposed Model Workflow  

 

 

Figure 3.1: Face mask Recognition Model Workflow Summary 

The architectural design of the proposed detector model is shown in Figure 3.1. The 

data set is labelled with three types of labels: (i) faces without a mask, (ii) faces with 

a single mask, (iii) incorrect mask-wearing and (iv) faces with double masks. Before 

feeding the data set to the neural network, some data pre-processing and data 

augmentation will be performed to ensure that all the data sets are labelled accurately 

and prevent overfitting. The model is typically developed with a pre-trained model 

based on convolutional neural networks (CNN) - MobileNetV2, VGG-16, ResNet-50, 

ResNet-152, Inception-v3 and Xception. Transfer learning is used to preserve the 

weight of earlier training; this technique is used due to a lack of data and has the 

ability to save time and computational cost. Transfer learning behaves as a feature 

extractor, extracting image features for use in network training. The convolutional 

base will be frozen for the feature extraction, and a classifier will append at the top of 

the pre-trained model to build a new model. The new model will then be used to fit 

the training data set for training. After finishing training, the model will be used to 
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predict the test data set. The performance of the model will be evaluated and printed 

out. A grid search approach is used to fine-tune the six models to identify the 

optimum combination of hyperparameters to tune this model. After founding the best 

model, the models will be evaluated using images and deployed on a webcam to test 

real-time detection. 

 

Figure 3.2: Face mask detection technique 

During real-time detection, the face mask detection approach is proposed. Video 

frames are captured and sent to a DNN face detector to extract the faces; the 

extracted faces are then scaled and pre-processed according to the pre-trained model. 

The processed image of the faces is then sent to the trained model for prediction. 

 

3.2 Data Preparation 

3.2.1 Data Collection 

The data set for training, validation, and testing was prepared by collecting four 

different mask-wearing images from various online resources because only one 

resource is not able to collect a balanced data set. 4 main resources were used to 

collect data sets. In addition, some data were collected from search engines, social 

media and artificially created. Each class contains 500 images, and 4 classes have 

2,000 images. This was done to produce a balanced class across the data set, as 

unbalanced data will lead to bias toward the class labelled with the majority of the 

data. 
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1. Medical mask (MM) data set (https://humansintheloop.org/mask-dataset-

download/?submissionGuid=add801a1-b11b-4e08-8825-3f3a1d2cce2c) 

 

Figure 3.3: samples of data from MM 

This data set contains 6024 images, with single and multiple people per 

image. This data set includes annotation files. Following the extraction of the 

faces from the photos, there are a total of 2,068 faces with no mask data, 

6,715 faces with single mask data and 235 incorrect face mask wear data.  

2. MAFA data set (https://www.kaggle.com/datasets/rahulmangalampalli/mafa-

data)  

 

Figure 3.4: Samples of data from MAFA 

This data set contains 30,811 images. These data sets are divided into three 

categories: faces without masks, faces with single masks, and incorrect face 

mask wear. To balance the data set, some incorrect mask data is extracted 

here. 

3. MaskedFace-Net (https://github.com/cabani/MaskedFace-Net)  

https://humansintheloop.org/mask-dataset-download/?submissionGuid=add801a1-b11b-4e08-8825-3f3a1d2cce2c
https://humansintheloop.org/mask-dataset-download/?submissionGuid=add801a1-b11b-4e08-8825-3f3a1d2cce2c
https://www.kaggle.com/datasets/rahulmangalampalli/mafa-data
https://www.kaggle.com/datasets/rahulmangalampalli/mafa-data
https://github.com/cabani/MaskedFace-Net
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Figure 3.5: Incorrectly masked face 

This data set is generated based on the FFHQ 

(https://github.com/NVlabs/ffhq-dataset). The data set is artificially created as 

there is currently no publicly accessible large data set of masked face images 

that can be used to determine whether a person has been properly wearing a 

mask (Cabani et al., 2021). 

 

4. FMD data set (https://www.kaggle.com/andrewmvd/face-mask-detection) 

 

 

 

 

Figure 3.6: FMD sample1 Figure 3.7: FMD sample2 

This data set contains 853 images with 3 labels. It comes with an annotations 

file that draws a coordinate box to determine the person’s face and with a 

label. To use this data set, the image needs to be cropped and extract the label 

from the annotations file. It has a total of 4072 data in those 853 images, 

which are 717 for no mask-wearing, 3232 for single mask, and 123 for 

incorrect mask-wearing. 

 

Due to a scarcity of online double mask images, different search engines were 

applied to obtain them, and artificially made double mask images were created. 

There were a total of 471 doubled masks collected, with the remaining 29 produced 

artificially as training data.  

https://github.com/NVlabs/ffhq-dataset
https://www.kaggle.com/andrewmvd/face-mask-detection


55 

 

 

Table 3.1: Artificially created doubled mask data 

Input 

    

Mask 

   
 

Output 

    

 

 

3.2.2 Data Finalisation 

FMD data set was used as testing data because the data in FMD is largely from 

candid photos and seems more real-life. Each category extracted 30 photographs 

from the FMD for different distribution data testing. However, the 30 double mask 

testing images were still collected from the search engine. For the training data set, 

450 faces with mask and single mask data were taken from the MM data set, and all 

incorrect mask wear was used. Some of the incorrect mask wear data come from 

MAFA and MaskedFace-Net. According to Assawiel (2019), it is crucial for the 

training data set to be similar to where you want the model to predict. So, the FMD 

data set, which looks like a real-life data set, will extract 50 cropped images for each 

class to shuffle in the training data set to make the model more robust in prediction. 

Before data pre-processing, all data must be cropped 1 person per picture. As a result, 

the final data for each class look like this: 
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Figure 3.8: Sample training data set 

3.3 Data Pre-processing 

In data pre-processing, all images will be cropped into one person per image, and the 

data set will then convert from RGB to BGR as OpenCV read image in BGR format. 

Then all the images will be resized to according to the trained size of pretrained 

model, which are 224x224 for MobileNetV2, ResNet50, ResNet152 and VGG, and 

229 for Inception-v3 and Xception. Firstly, the without mask will be labelled with 0, 

the single mask face will be labelled with 1, the incorrect mask wear will be labelled 

with 2 and the doubled mask wear will be labelled with 3. Then the label will be 

converted to categorical. Next, the image will be pre-processed by importing the 

model-specific preprocess_input method. Finally, the data augmentation method will 

be applied to the data set to increase the images number in the training stage. 

 

3.4 Data Augmentation 

Data augmentation was carried out with 0.1 zoom range, 25 rotation range, 0.1 width 

shift range, 0.1 height shift range, 0.15 shear range, flip horizontally and with nearest 

fill mode. 
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Figure 3.9: Augmented data 

3.5 Training, Validation and Testing 

To train a deep learning model, the data set with 2000 images will be divided into 

three categories, which is training, validation, and testing. Due to the small data set 

size used in this project, the ratio chosen to divide the data set is 80:10:10. The 

model learns and fits the parameters using the training data set. Then, the validation 

data sets were used to tune the model’s hyperparameters as it was able to provide an 

unbiased evaluation of the model. Furthermore, the testing data set which comes 

from that 10% will be used to evaluate the final model as the same distribution 

testing.  

In this research, two other testing data sets which come from other 

distributions and video captured from real life will be used to evaluate the model’s 

performance further. 

3.6 Feature Extraction 

In feature extraction, a pre-trained model was used to train a new model in the 

project. The pre-trained model used is MobileNetV2, VGG-16, ResNet-50, ResNet-

152, Inception-v3 and Xception. Since all models are available in Keras, they can be 

imported directly from the Keras framework. These pre-trained models will be used 

by freezing the entire convolutional base as only a small data set is used to train the 

model. Weight must be assigned in the model to prevent it from training from scratch. 

In these two pre-trained models, ImageNet was selected as the weight to train the 

model. 
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Figure 3.10: Flattening of the multidimensional array 

The pre-trained classifier will then be removed and replaced with a new 

classifier. A flatten layer is added to make the image flat, which is into a 1-

dimensional array as it is a multidimensional array, as shown in Figure 3.9. Then, a 

dense layer with Relu activation is added since relu deals better with images. To 

avoid overfitting the model, a dropout layer will be added. Lastly, a dense layer with 

softmax activation will be added to the final layer. Softmax is used as the data set is a 

multi-classification as softmax needs to be applied when there are more than two 

classes. The neuron for the last layer will be set to 4 as only 4 classes will be 

predicted.  

 

3.7 Hyperparameter Tuning 

To train a deep learning model more efficiently, hyperparameter tuning is essential 

and should not be ignored. Therefore, a Grid search CV will be used to find the 

appropriate hyperparameter for MobileNetV2, VGG-16, ResNet-50, ResNet-152, 

Inception-v3 and Xception. The learning rate and dropout rate are the 

hyperparameters that will be tuned in this project. A ParameterGrid will be used to 

assign the desired hyperparameter, and a loop will be created to loop the 

hyperparameter and generate the accuracy of the model. Using the desired learning 

rate will prevent the pre-trained model from distorting, so an appropriate learning 

rate is important; the learning rate used to tune will be 0.1, 0.01, 0.001, 0.0001 and 

0.00001. Dropout is a technique in which randomly selected neurons are ignored 

during training, with 1 indicating no dropout and 0 indicating no output will transmit 

to the subsequent layer; the dropout values used in this model will be 0.3 and 0.5. 
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The Grid Search will be used to determine the best combination of learning rate and 

dropout rate. 

3.8 Model Evaluation 

To evaluate the model, a training and validation loss graph will be plotted to see the 

model’s behaviour with different hyperparameters and pre-trained models. And, to 

evaluate the model’s performance, the classification report class will be used to 

evaluate each model’s performance by examining the accuracy, precision, recall, and 

the f1-score. In this project, the outcome is 4 classes. Therefore, a confusion matrix 

will be 4x4, which is shown in Table 3.2 below. 

Table 3.2: Confusion Matrix for 4 classes 

  Predicted Class  

  No  

mask 

Single 

 mask 

Incorrect  

wear 

Double  

mask 

FN 

 No mask TP1 a b c a + b + c 

Actual 
Single mask d TP2 e f d + e + f 

Incorrect wear g h TP3 i g + h + i 

 Double mask j k l TP4 j + k + l 

 FP d + g + j a + h + k b + e + l c + f + i  

 

The precision, recall and F1-score for each class can be calculated by (where n = 

class type): 

Precision: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛 =
𝑇𝑃𝑛

𝑇𝑃𝑛+𝐹𝑃
 (3.1) 

where 

n =  1,2,3 

 

Recall: 

 𝑅𝑒𝑐𝑎𝑙𝑙𝑛 =
𝑇𝑃𝑛

𝑇𝑃𝑛+𝐹𝑁
 (3.2) 

where 

n =  1,2,3 
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F1-score: 

 𝐹1𝑛 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙𝑛

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛+𝑅𝑒𝑐𝑎𝑙𝑙𝑛
  (3.3) 

where 

n =  1,2,3 

 

The accuracy can be calculated by: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃1+𝑇𝑃2+𝑇𝑃3

𝑇𝑜𝑡𝑎𝑙
 (3.4) 

 

3.9 Pseudocode for this project 

The algorithm below shows the pseudocode to train and test the model: 

This pseudocode has covered all the methods explained in the previous section like 

reading data sets, data processing, data augmentation, feature extraction, network 

training, hyperparameter tuning and performance measurement for each model. 

1. def read_dataset(img_size, preprocess_input) 

a. read image from directory 

b. process the images using preprocess_input 

c. return images, labels 

2. def dataset_train_test_split(images,labels)  

a. split data set to 8:1:1 

b. return x_train,y_train,x_test,y_test,x_val,y_val 

3. Define an ImageDataGenerator for data augmentation 

4. def return_create_model(pretrained_model) 

a. def create_model (learning_rate, dropout_rate,optimizer) 

i. Define a base model from Keras library using 

pretrained_model 

ii. For layer in the base model, assign trainable to false 

iii. Define a head model by flatten, dense layer, dropout_rate 

and dense layer with class number and softmax activation 

function 

iv. Define an optimizer with learning_rate  

v. Compile the appended model with the loss of 

categorical_crossentropy, optimizer and metrics of accuracy 
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vi. return model 

b. return create_model 

5. def grid_search (create_mode) 

a. define KerasClassifier 

b. define param_grid dict with learning_rate and dropout_rate 

c. define GridSearchCV with cv =3 

d. Fit the grid with x train and y train 

e. Store all grid search result in excel 

f. return best_param 

6. def train_model_with_best_param(best_param, create_mode) 

a. create model with best param 

b. define callback with checkpoint and early stopping 

c. Fit the model with the train and validation set, batch_size=32, 

epoch=20, and ImageDataGenerator 

d. Plot the loss and accuracy 

e. Save the model as .h5  

f. return trained_model 

7. Define models (MobileNetV2, ResNet50, ResNet152, InceptionV3, 

Xception, VGG16) 

8. For each model: 

a. read_dataset 

b. dataset_train_test_split 

c. define create_model function  

d. grid_search(create_model) 

e. train_model_with_best_param(best_param, create_model) 

f. load the best trained model 

g. Predict the model with the test set (same distribution) 

h. Print the classification_report 

i. Predict the model with the test set (different distribution) 

j. Print the classification_report 

k. Predict the model with framed based testing data set 

l. Print the classification_report 

9. End 
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3.10 Work Breakdown Structure of the Project 

 

 

Figure 3.11: Work Breakdown Structure of the Project 



63 

 

 

3.11 Gantt Chart of Project  

 

Figure 3.12: Gantt Chart of the Overall Project 

The WBS and Gantt Chart for this study are shown in the figure above. Project 1 is more concerned with the preparatory phase, planning, 

analysis, and data collection, while Project 2 is more concerned with modelling, evaluation, and testing. During the preliminary phase, some 

background research will be conducted to get an idea of the research issue and to complete the project overview. Then, during the design stage, 

literature review is conducted to better understand deep learning, transfer learning models, coding techniques, and current face mask detection 

models. This is to get a concept of how to build the model for the research. Following that, data collection will be carried out in order to gather 

data for the training model in Project 2. To discover the optimum model, Project 2 will repeat the modelling, evaluation, and testing. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

The goal of this research is to predict face mask detection using the transfer learning 

approach that was selected. MobileNetV2, VGG-16, ResNet-50, ResNet-152, 

Inception-v3, and Xception were selected as transfer learning methods. The model 

will initially use grid search to tune the hyperparameter. Then, the optimal parameter 

will use to further training the model, and the best-trained model will be used to 

predict the testing data set. These models will be evaluated based on their accuracy 

and recall. The results that will be discussed in this chapter are: 

1. Grid Search Result 

2. Model Evaluation 

3. Result Summary 

4. Deploy the best model on a webcam 

 

4.2 Grid Search Result 

To discover the optimal combination of hyperparameters, a grid search with 3 cv 

approach is used. Due to computing resource constraints, the batch size 32 and 

epochs 5 are fixed during the gird search. In grid search, the Adam optimizer, 

learning rate (0.1, 0.01, 0.001, 0.0001, and 0.00001), and dropout rate (0.3 and 0.5) 

are all examined. The optimal parameters will then be chosen to retrain for 20 epochs 

with early stopping and checkpoints, allowing the best-tuned model to load for 

evaluation. 

1. MobileNetV2 

Table 4.1: Grid search result for MobileNetV2 

Optimiser Dropout rate Learning rate Mean test score Ranking  

Adam 0.3 0.1 0.384995 10 

0.01 0.660586 7 

0.001 0.784368 3 
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0.0001 0.802497 1 

0.00001 0.756243 5 

0.5 0.1 0.436202 9 

0.01 0.658127 8 

0.001 0.768129 4 

0.0001 0.794369 2 

0.00001 0.750005 6 

 

The optimal combination for MobileNetV2 is dropout rate 0.3, learning rate 

0.0001, Adam optimiser. 

 

2. VGG-16 

Table 4.2: Grid search result for VGG-16 

Optimiser Dropout rate Learning rate Mean test score Ranking  

Adam 0.3 0.1 0.450674 10 

0.01 0.728709 5 

0.001 0.767509 4 

0.0001 0.768115 3 

0.00001 0.655638 8 

0.5 0.1 0.468105 9 

0.01 0.710597 6 

0.001 0.773747  1 

0.0001 0.77314 2 

0.00001 0.664377 7 

 

The optimal combination for VGG-16 is dropout rate 0.5, learning rate 0.001, 

Adam optimiser. 

 

3. ResNet-50 

Table 4.3: Grid search result for ResNet-50 

Optimiser Dropout rate Learning rate Mean test score Ranking  

Adam 0.3 0.1 0.332394 10 
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0.01 0.766859 7 

0.001 0.828746 4 

0.0001 0.851248 1 

0.00001 0.81499 5 

0.5 0.1 0.424952 9 

0.01 0.67939 8 

0.001 0.833741 3 

0.0001 0.850622 2 

0.00001 0.809365 6 

 

The optimal combination for ResNet-50 is dropout rate 0.3, learning rate 

0.0001, Adam optimiser. 

 

4. ResNet-152 

Table 4.4: Grid search result for ResNet-152 

Optimiser Dropout rate Learning rate Mean test score Ranking  

Adam 0.3 0.1 0.471253 9 

0.01 0.803747 7 

0.001 0.846255 2 

0.0001 0.851248 1 

0.00001 0.82312 4 

0.5 0.1 0.418745 10 

0.01 0.769994 8 

0.001 0.822498 5 

0.0001 0.838128 3 

0.00001 0.817501 6 

 

The optimal combination for ResNet-152 is dropout rate 0.3, learning rate 

0.0001, Adam optimiser. 
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5. Inception-v3 

Table 4.5: Grid search result for Inception-v3 

Optimiser Dropout rate Learning rate Mean test score Ranking  

Adam 0.3 0.1 0.323773285 10 

0.01 0.686288019 7 

0.001 0.784381847 5 

0.0001 0.811258435 1 

0.00001 0.799388905 3 

0.5 0.1 0.346856534 9 

0.01 0.685632189 8 

0.001 0.781872094 6 

0.0001 0.805006862 2 

0.00001 0.796892007 4 

 

The optimal combination for Inception-v3 is dropout rate 0.3, learning rate 

0.0001, Adam optimiser. 

  

6. Xception 

Table 4.6: Grid search result for Xception 

Optimiser Dropout rate Learning rate Mean test score Ranking  

Adam 0.3 0.1 0.446293 10 

0.01 0.753734 8 

0.001 0.81562 5 

0.0001 0.819369 4 

0.00001 0.835003 1 

0.5 0.1 0.496907 9 

0.01 0.763772 7 

0.001 0.80063 6 

0.0001 0.826262 2 

0.00001 0.823751 3 

The optimal combination for Inception-v3 is dropout rate 0.3, learning rate 

0.00001, Adam optimiser. 
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According to the results, a learning rate 0.1 will always contribute to the last ranking, 

and most learning rates selected are usually low, indicating that when the learning 

rate is too high, it is very difficult for the neural network to learn because high 

learning rate will cause the model to quickly converge on a suboptimal solution, 

therefore the scores for high learning rate is always unsatisfactory. 

 

4.3 Model Evaluation 

4.3.1 Test set from the same distribution (200 images) 

200 images are extracted from the training data set to evaluate the pretrained model 

in the same distribution 

Table 4.7: Results tested on test set (same distribution) 

Model MobileNetV2 
VGG-

16 

ResNet-

50 

ResNet-

152 

Inception-

v3 
Xception 

Accuracy 0.8250 0.8200 0.8350 0.8300 0.8350 0.8450 

Testing time (ms/step) 20 53 44 102 52 92 

0 (no mask-

wearing) 

precision 0.89 0.92 0.94 0.96 0.89 0.92 

recall 0.84 0.90 0.92 0.88 0.94 0.94 

F1 0.87 0.91 0.93 0.92 0.91 0.93 

1 (single 

mask) 

precision 0.73 0.66 0.73 0.76 0.75 0.78 

recall 0.76 0.80 0.64 0.70 0.72 0.72 

F1 0.75 0.72 0.68 0.73 0.73 0.75 

2 (incorrect 

mask 

wearing) 

precision 0.76 0.9 0.78 0.72 0.85 0.80 

recall 0.78 0.70 0.84 0.78 0.78 0.88 

F1 0.77 0.79 0.81 0.75 0.81 0.84 

3 (double 

mask) 

precision 0.92 0.86 0.89 0.89 0.85 0.88 

recall 0.92 0.88 0.94 0.96 0.90 0.84 

F1 0.92 0.87 0.91 0.92 0.87 0.86 

 

Table 4.8: Confusion matrix (same distribution) 

   

Confusion matrix 

(MobileNetV2) 

Confusion matrix 

(VGG-16) 

Confusion matrix 

(ResNet-50) 
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Confusion matrix 

(ResNet-152) 

Confusion matrix 

(Inception-v3) 

Confusion matrix 

(Xception) 

 

When we evaluate the model using data from the same distribution, we can 

see that the accuracy of six models is pretty good, with results that are over 80% 

accurate. Among the other models, the Xception had the best accuracy. We can also 

see that all models perform well in identifying no mask-wearing class. 

 

4.3.2 Test set from other distribution (120 images) 

This data set has 30 images from each class. The FMD data set 

(https://www.kaggle.com/andrewmvd/face-mask-detection) is used to extract the 

classes 0 (no mask mask-wearing), 1 (single mask), and 2 (incorrect mask wear). 

Due to the scarcity of double mask images in the data set, the double mask data 

obtained from the search engine was used. This testing set will be used to examine 

the model’s performance in evaluating data for other distributions. 

Sample Data: 

        

Figure 4.1: Sample data for test set (other distribution) 

Table 4.9: Results tested on test set (other distribution) 

Model MobileNetV2 
VGG-

16 

ResNet-

50 

ResNet-

152 

Inception-

v3 
Xception 

Accuracy 0.7500 0.7000 0.8333 0.8667 0.8583 0.8250 

Testing time (ms/step) 22 57 46 101 58 96 

0 (no 

mask-

wearing) 

precision 0.69 0.69 0.92 0.96 0.96 0.90 

recall 0.73 0.83 0.77 0.90 0.87 0.90 

F1 0.71 0.76 0.84 0.93 0.91 0.90 

1 (single 

mask) 

precision 0.71 0.59 0.76 0.80 0.89 0.81 

recall 0.73 0.73 0.83 0.80 0.80 0.70 

F1 0.72 0.66 0.79 0.80 0.84 0.75 
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2 (incorrect 

mask 

wearing) 

precision 0.63 0.62 0.69 0.77 0.80 0.81 

recall 0.63 0.27 0.73 0.80 0.80 0.73 

F1 0.63 0.37 0.71 0.79 0.80 0.77 

3 (double 

mask) 

precision 1.00 0.85 1.00 0.94 0.81 0.78 

recall 0.90 0.97 1.00 0.97 0.97 0.97 

F1 0.95 0.91 1.00 0.95 0.88 0.87 

 

Table 4.10: Confusion matrix (other distribution) 

   

Confusion matrix 

(MobileNetV2) 

Confusion matrix 

(VGG-16) 

Confusion matrix 

(ResNet-50) 

   

Confusion matrix 

(ResNet-152) 

Confusion matrix 

(Inception-v3) 

Confusion matrix 

(Xception) 

 

When the model was evaluated using data from different distributions, 

ResNet-152 had the greatest accuracy, followed by Inception-v3 and RestNet-50. 

When MobileNetV2 and VGG-16 predict data from different distributions, their 

accuracy drops dramatically. We can see that the double mask data work very well in 

this case since the data used is gathered in the same way as the training data set due 

to the scarcity of the data. 
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4.3.3 Test set from video frame (12 videos – 3 videos per category) 

Total 12 videos are captured and collected by recording around the university and 

condominium. Every frame of the video is processed, and the faces are extracted 

using the DNN face detector model. The incorrect faces discovered by the DNN face 

detector are manually removed to ensure that no incorrect data is sent into the face 

mask detection model. 

Sample video: 

  

  
Figure 4.2: Sample videos captured 

Sample cropped data from video frame: 

        

Figure 4.3: Sample data from the video frame 

Table 4.11: Results tested on test set (video frame) 

Model MobileNetV2 
VGG-

16 

ResNet-

50 

ResNet-

152 

Inception-

v3 
Xception 

Accuracy 0.7090 0.6104 0.7252 0.8447 0.7998 0.6763 

Testing time (ms/step) 22 57 49 110 62 97 

0 (no 

mask-

wearing) 

precision 0.81 0.56 0.63 0.98 0.91 0.64 

recall 0.94 0.97 0.98 0.96 0.95 0.97 

F1 0.87 0.71 0.77 0.97 0.93 0.77 

1 (single 

mask) 

precision 0.56 0.53 0.64 0.64 0.60 0.64 

recall 0.31 0.56 0.82 0.88 0.87 0.72 

F1 0.40 0.54 0.72 0.74 0.71 0.68 

2 (incorrect 

mask 

wearing) 

precision 0.71 0.84 0.88 0.92 0.88 0.74 

recall 0.94 0.57 0.69 0.99 0.95 0.68 

F1 0.81 0.68 0.77 0.95 0.91 0.71 

3 (double precision 0.57 0.36 0.86 0.76 0.78 0.65 
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mask) recall 0.30 0.24 0.30 0.26 0.07 0.15 

F1 0.39 0.28 0.45 0.38 0.14 0.24 

 

 

Table 4.12: Confusion matrix (video frame) 

   

Confusion matrix 

(MobileNetV2) 

Confusion matrix  

(VGG-16) 

Confusion matrix 

(ResNet-50) 

   

Confusion matrix 

(ResNet-152) 

Confusion matrix 

(Inception-v3) 

Confusion matrix 

(Xception) 

 

When using the real-life video frame for model evaluation, all model 

accuracy is dropped. ResNet-152 outperformed the other 5 models and achieved 0.96 

recall for no mask-wearing, which is quite satisfactory as no mask-wearing is the 

most serious in the pandemic It also achieves 0.88 recall for single mask, 0.99 recall 

for incorrect mask wear but only 0.26 for double mask.  

 

Figure 4.4: video frame for double mask detection (ResNet-152) 
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The recall for double masks is quite poor. This is because when the detected 

face is far away, the ResNet-152 model may not be able to identify the double mask; 

the model will only work effectively when the face is close enough to the lens. 

According to the confusion matrix of ResNet-152 and Inception-v3, double mask 

data is more likely to be predicted as single mask data. 

 

4.4 Result summary 

Table 4.13:Grid Search Result Summary 

Model Learning rate Dropout rate Mean test score 

MobileNetV2 0.0001 0.3 0.8025 

VGG-16 0.001 0.5 0.7737 

ResNet-50 0.0001 0.5 0.8512 

ResNet-152 0.0001 0.3 0.8512 

Inception-v3 0.0001 0.3 0.8112 

Xception 0.00001 0.3 0.8350 

 

Table 4.14: Model Evaluation Summary 

Model 

Test set 

200 images, from 

same distribution 

120 images, from 

other distribution 

Total 12 videos – 3 

videos per category 

Accuracy 

Testing 

time 

(ms/step) 

Accuracy 

Testing 

time 

(ms/step) 

Accuracy 

(Frame 

based) 

Testing 

time 

(ms/step) 

MobileNetV2 0.8250 20 0.7500 22 0.7090 22 

VGG-16 0.8200 53 0.7000 57 0.6104 57 

ResNet-50 0.8350 44 0.8333 46 0.7252 49 

ResNet-152 0.8300 102 0.8667 101 0.8447 110 

Inception-v3 0.8350 52 0.8583 58 0.7998 62 

Xception 0.8450 92 0.8250 96 0.6763 97 

 

Table 4.14 shows that ResNet-152 performed well in all three types of test sets, with 

an accuracy of 0.8447 when dealing with video frame prediction. It is the most stable 

model across the three test sets, making it the most robust model. ResNet-152, on the 

other hand, has the longest testing duration due to the depth of the model. In this 

research, the second-best model is Inception-v3, followed by ResNet-50. The 

MobileNetV2 has the shortest testing time; however, it only predicts video frames 
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with 0.7090 accuracy. Since the testing time is still in milliseconds, the ResNet-152 

remains the best model as the testing time is so small that it may be negligible. 

 

4.5 Deploy the best model on a webcam 

The best model (ResNet-152) is deployed on a webcam to determine if the model is 

able to work on a webcam. 

Result:  

 

Figure 4.5: No mask-wearing 

 

Figure 4.6: Incorrect mask-wearing 

 

Figure 4.7: Single mask-wearing 

 

Figure 4.8:Double mask-wearing 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

Transfer learning with 6 deep learning models MobileNetV2, VGG-16, ResNet-50, 

ResNet-152, Inception-v3 and Xception are trained and evaluated on the detection of 

mask-wearing in 4 classes: no wearing, single mask, improper mask-wearing and 

double mask. The research has achieved all the objectives as the proposed transfer 

learning model is able to detect the mask-wearing automatically by predicting the 4 

classes. All trained models were evaluated, and the ResNet152 model performed the 

best in this research. ResNet152 has achieved the highest accuracy scores in both 

testing images and videos frame, which are 0.8867 and 0.8447, respectively.  

 

5.2 Limitation 

5.2.1 Poor performance when detecting individuals from far 

When detecting an individual from a far distance, the trained model will fluctuate 

throughout classification due to data gathering that is mostly close to the lens. 

 

5.2.2 Poor performance in detecting double masks wearing 

The double masks wearing in this research have achieved the lowest performance 

which is only 0.26 recall for the ResNer-152 model, this is because the model always 

identifies the double masks as a single mask when the individual is far from the lens. 

This is due to the lack of real-life data sets for double masks wearing are used in 

training. 

 

5.3 Recommendations for future work 

5.3.1 Gather more data set 

Recently, the proposed model only works well when the faces are closed to the lens. 

To enhance the performance, more data sets shall be gathered in the future and used 

in training models to improve the model’s ability to detect masks from far. 
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5.3.2 Improve performance of detecting double masks 

The double mask detection performance in the real-life data set is quite poor. This is 

due to the fact that the images of the double mask are mostly obtained from social 

media (Instagram), and the majority of photos collected are the face close to the lens 

and come with a full-frontal face. Therefore, real-world shooting should be carried 

out in order to capture more realistic data for the double mask in order to increase its 

performance. 

 

5.3.3 Explore more transfer learning model 

The transfer learning model adopted for this research is mostly the Keras pre-trained 

model. Several other models, such as two-stage object detectors (eg. RCNN and 

Faster RCNN) and one-stage object detectors (eg. YOLO and SSD), may be 

implemented to achieve the research objectives and improve performance. 
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APPENDIX A: Detailed of the Gantt Chart in Project 1 

 



 

 

 

APPENDIX B: Detailed of the Gantt Chart in Project 2 

 

 


