

A MOBILE APP FOR SUPERMARKET

CHECKOUT

SIEW SHUN YAO

UNIVERSITI TUNKU ABDUL RAHMAN

 ii

A MOBILE APP FOR SUPERMARKET CHECKOUT

SIEW SHUN YAO

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Hons.) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2022

 ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : SIEW SHUN YAO

ID No. : 1905076

 iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “A MOBILE APP FOR SUPERMARKET

CHECKOUT” was prepared by SIEW SHUN YAO has met the required standard

for submission in partial fulfilment of the requirements for the award of Bachelor of

Science (Hons) Software Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ms Chean Swee Ling

Date :

Signature :

Co-Supervisor :

Date :

30 Sept 2022

 iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2022, Siew Shun Yao. All right reserved.

 v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Ms Chean

Swee Ling for his invaluable advice, guidance and his enormous patience throughout

the development of the research.

In addition, I would also like to express my gratitude to my loving parents and friends

who had helped and given me encouragement throughout the process of completing

the report. There would be impossible to complete this project without their patient

and supporting given by them.

Lastly, I would like to thank all the authors and contributor of the

documentation and books I referred. Their research, findings and contributions had

provided me solutions when I encountered obstacles along with whole project.

 vi

ABSTRACT

Existing supermarket’s self-service technology requires a high cost when come to

installing a self-service machine together with maintaining cost in the future. Besides,

checkout manually at cashier counter in supermarket has resulted time consuming

especially during the peak hour and vacation day. This led to overall of time operation

consuming has caused stressful and contradiction due to be productivity which can

provide the best service to consumer’s need. Therefore, the goal of proposed project

aims to examine and investigate the situation’s underlying causes to offer a remedy.

The proposed system that involved ionic framework to build web application for

supermarket merchant and mobile application to checkout items themselves. Angular

js is used to build the frontend component while backend server has involved AWS

EC2 server to be API endpoints to communicate with frontend client and store data

into PostgreSQL database. Furthermore, iteration and incremental model methodology

was practiced throughout the project life cycle to achieve manage project timeline and

follow up the system progress. In addition, the proposed project involved various of

testing such as unit testing, integration testing and UAT testing, and all testing cases is

accepted and passed. The proposed system reduced the queuing time and operation

time of scanning item by cashier worker when mobile application provides self-service

of scanning items and checkout through online especially consumer with less items.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF SYMBOLS / ABBREVIATIONS xxii

LIST OF APPENDICES xxiii

CHAPTER

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background of the project 1

1.3 Problem Statement 2

1.3.1 Supermarket checkout app are not convenient for senior

consumers 2

1.3.2 Technical Issues 3

1.3.3 Threat of Theft 3

1.4 Project Objectives 3

1.5 Project Solution 4

1.6 Project Approach 6

1.7 Scope of the Project 7

1.7.1 Target User Scope 7

1.7.2 Target Merchant administrators Scope 7

1.7.3 Target security administrators Scope 7

1.7.4 System Scope 8

1.7.5 Modules Covered 8

1.7.6 Module Not Covered 10

viii

2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Review on Similar Self-checkout system 12

2.3 Review on Project Methodology 18

2.3.1 Waterfall 18

2.3.2 Spiral 19

2.3.3 Iterative and incremental model 19

2.3.4 Comparison of Methodology 20

2.4 Review on Backend Server Framework 21

2.4.1 Laravel 22

2.4.2 Node.js 22

2.4.3 Comparison of Backend Framework 23

2.5 Review on Frond-end Web Application Framework 24

2.5.1 Angular.js 24

2.5.2 Vue.js 24

2.5.3 Comparison of Front-end Web Application Framework 25

2.6 Review on Cross-platform Mobile Application Framework 26

2.6.1 Ionic Framework 26

2.6.2 React Native 27

2.6.3 Comparison of Cross-platform Mobile Application

Framework 27

2.7 Review on Cloud Computing Services 28

2.7.1 Firebase (Google cloud platforms) 28

2.7.2 AWS EC2 29

2.7.3 Comparison of Cloud Computing Services 29

3 METHODOLOGY AND WORK PLAN 31

3.1 Introduction 31

3.2 Development Methodology 31

3.3 Proposed Workplan 33

3.4 Technology and Development Tools Involved 39

3.4.1 Nodejs 39

3.4.2 Angular.js 39

ix

3.4.3 Ionic Framework 39

3.4.4 PostgreSQL 39

3.4.5 AWS EC2 40

3.4.6 Firebase 40

3.4.7 Visual Studio Code 40

3.4.8 Git 40

3.4.9 Figma 40

3.4.10 Trello 41

4 PROJECT INITIAL SPECIFICATION 42

4.1 Introduction 42

4.2 Fact-finding 42

4.2.1 Observation 42

4.2.2 Questionnaire 45

4.3 Requirement Specification 53

4.3.1 Customer-side mobile application 53

4.3.2 Merchant-side web application 54

4.3.3 Administrative web application 55

4.3.4 Non-Function Requirements 55

4.4 Use Case Modelling 56

4.4.1 Use Case Diagram 56

4.5 Use Case Description 64

4.5.1 Mobile Application for Supermarket Self-Checkout 64

4.5.2 Web-based application for Merchant Users 68

4.5.3 Web-based application for Administrator 73

5 SYSTEM DESIGN 77

5.1 Introduction 77

5.2 System Architecture 77

5.3 System Design Pattern 79

5.4 Database Design 81

5.4.1 Physical Entity Relationship Diagram 81

5.4.2 Logical Entity Relationship Diagram 82

x

5.4.3 Data Dictionary 83

5.5 User Interface Design 91

5.5.1 Web Application for Merchant 91

5.5.2 Supermarket Normal User 97

5.5.3 Supermarket senior user 107

6 SYSTEM IMPLEMENTATION 112

6.1 Backend Server 112

6.1.1 Overview backend server 112

6.1.2 Controller Layer 114

6.1.3 Service Layer 132

6.1.4 Model Layer 136

6.1.5 Other Integration 139

6.1.6 Available Endpoints 145

6.2 Mobile application for supermarket self-checkout 150

6.2.1 Overview of Mobile Application 150

6.2.2 Pages Hierarchy 153

6.2.3 Deployment 154

6.3 Web application for merchant side managements 155

6.3.1 Overview of Web Application 155

6.3.2 Pages Hierarchy 156

6.3.3 Deployment 157

6.4 Web application for administrative side managements 158

6.4.1 Overview of Web Application 158

6.4.2 Pages Hierarchy 159

7 SYSTEM TESTING 160

7.1 Introduction 160

7.2 Unit Testing 160

7.2.1 User Module 160

7.2.2 Merchant Module 164

7.3 Integration Testing 167

7.4 User Acceptance Testing 173

xi

8 CONCLUSIONS AND RECOMMENDATIONS 196

8.1 Conclusions 196

8.2 Limitations 197

8.3 Recommendations for future work 198

REFERENCES 199

APPENDICES 203

xii

LIST OF TABLES

Table 2.1: Table of comparison between various software
methodologies 20

Table 2.2: The comparison between Laravel and Node js backend
framework 23

Table 2.3: The comparison between Angular and Vue.js frontend
framework 25

Table 2.4: Table of comparison in Ionic framework and React
Native framework. 27

Table 2.5: Table of comparison between AWS EC2 and firebase. 30

Table 3.1: Project Schedule Summary 33

Table 6.1 Mobile Endpoints Listing 146

Table 6.2 Merchant Endpoints Listing 148

Table 7.1 Unit testing of user module 160

Table 7.2 Unit testing of merchant module 164

Table 7.3 Integration testing 167

Table 7.4: Register module for supermarket user 173

Table 7.5: Login module for supermarket user 174

Table 7.6: Profile module for supermarket user 175

Table 7.7: Notification module for normal user 176

Table 7.8: Cart module for supermarket user 177

Table 7.9: Order module for supermarket user 179

Table 7.10: Favourite module for normal user 179

Table 7.11: Feedback module for normal user 181

Table 7.12: Search module for normal user 182

Table 7.13: Login module for merchant user 183

xiii

Table 7.14: Manage product module for merchant user 184

Table 7.15: Feedback module for merchant user 186

Table 7.16: Notification module for merchant user 188

Table 7.17: Profile module for merchant user 190

Table 7.18: Advanced search module for merchant user 191

Table 7.19 User Acceptance Testing Summary Result
(Supermarket normal user) 193

Table 7.20 User Acceptance Testing Summary Result
(Supermarket senior user) 193

Table 7.21 User Acceptance Testing Summary Result (Merchant
user) 194

xiv

LIST OF FIGURES

Figure 1.1: Senior-Aged user interface in low fidelity. 4

Figure 1.2: Senior-Aged user interface in low fidelity. 5

Figure 1.3: Firebase. Figure 1.4: PostgreSQL. 6

Figure 1.5: Iterative and Incremental Model. 7

Figure 2.1: Lotus’ self-checkout Counter. 13

Figure 2.2: Lotus’ self-checkout hardware. 14

Figure 2.3: Scan with user QR code to sign into the store. 16

Figure 2.4: Make request for refund for eaten food. 17

Figure 2.5: Waterfall Model. 18

Figure 2.6: Spiral Model. 19

Figure 2.7: Iterative and incremental model. 20

Figure 2.8: Laravel framework. 22

Figure 2.9: Node js. 23

Figure 2.10: Angular js. 24

Figure 2.11: Vue.js. 25

Figure 2.12: Ionic Framework. 26

Figure 2.13: React Native. 27

Figure 2.14: Firebase. 29

Figure 2.15: Amazon EC2. 29

Figure 3.1: SDLC. 31

Figure 3.2: Gantt Chart for the project. 35

Figure 3.3: Gantt Chart for the project. 36

Figure 3.4: Work breakdown diagram of project. 37

xv

Figure 4.1: Pie chart of Gender of Respondents. 45

Figure 4.2: Pie chart of age group of Respondents. 46

Figure 4.3: Pie chart of paying at cashier counter related question. 46

Figure 4.4: Pie chart of experiencing self-checkout related
question. 47

Figure 4.5: Pie chart of experiencing self-checkout related
question. 47

Figure 4.6: Bar chart of place that done self-checkout related
question. 48

Figure 4.7: Bar chart of rating self-checkout related question. 49

Figure 4.8: Pie chart of self-checkout related question. 50

Figure 4.9: Bar chart of self-checkout related question. 51

Figure 4.10: Pie chart of self-checkout related question. 51

Figure 4.11: Bar chart of features of self-checkout related
question. 52

Figure 4.12: User checkout use case diagram 56

Figure 4.13: User activity history use case diagram 57

Figure 4.14: User account related use case diagram 58

Figure 4.15: Notification related use case diagram 59

Figure 4.16: Feedback related use case diagram 60

Figure 4.17: Manage products use case diagram 61

Figure 4.18: advance search function use case diagram 62

Figure 4.19: Manage merchant use case diagram 62

Figure 4.20: Manage customer news use case diagram 63

Figure 4.21: Location use case diagram 63

Figure 5.1: Overview of System Architecture 77

Figure 5.2: MVC architecture. 79

xvi

Figure 5.3: Physical Entity Relationship Diagram. 81

Figure 5.4: Logical Entity Relationship Diagram. 82

Figure 5.5: Merchant user login page screen. 91

Figure 5.6: Merchant user manage product page screen. 92

Figure 5.7: Merchant user add new product page screen. 92

Figure 5.8: Merchant user add new product continue page screen. 93

Figure 5.9: Merchant user manage feedback list page screen. 93

Figure 5.10: Merchant user manage specific feedback page screen.
 94

Figure 5.11: Merchant user Reply specific feedback page screen. 94

Figure 5.12: Merchant user manage notification page screen. 95

Figure 5.13: Merchant user create notification modal. 95

Figure 5.14: Merchant user edit profile page screen. 96

Figure 5.15: Merchant user edit notification page screen. 96

Figure 5.16: Login page screen. 97

Figure 5.17: Register page screen. 97

Figure 5.18: Home page screen. 98

Figure 5.19: Notification page screen 98

Figure 5.20: Cart page screen. 99

Figure 5.21: Profile page screen. 99

Figure 5.22: Edit profile page screen. 100

Figure 5.23: Order History page screen. 100

Figure 5.24: Favorite page screen. 101

Figure 5.25: Feedback page screen. 101

Figure 5.26: Feedback form page screen. 102

xvii

Figure 5.27: Feedback details page screen. 102

Figure 5.28: Scan item screen. 103

Figure 5.29: Add item page screen. 103

Figure 5.30: Order details page screen. 104

Figure 5.31: News details page screen. 104

Figure 5.32: Merchant List page screen. 105

Figure 5.33: Settings page screen. 105

Figure 5.34: Recover Password page screen. 106

Figure 5.35: Notification details page screen. 106

Figure 5.36: Senior user login page screen. 107

Figure 5.37: Senior user register page screen. 107

Figure 5.38: Senior user home page screen. 108

Figure 5.39: Senior user edit profile page screen. 108

Figure 5.40: Senior user cart page screen. 109

Figure 5.41: Senior user scan screen. 109

Figure 5.42: Senior user order history page screen. 110

Figure 5.43: Senior user order details page screen. 110

Figure 5.44: Senior user profile page screen. 111

Figure 5.45: Senior user settings page screen. 111

Figure 6.1: Overview the RESTful API request from mobile
application. 112

Figure 6.2: Overview the RESTful API request from web
application for merchant side. 113

Figure 6.3: Login Controller Authentication for User. 114

Figure 6.4: Login Controller Login Function for User. 114

Figure 6.5: Login Authentication for Merchant. 115

xviii

Figure 6.6: Register Controller Source Code. 116

Figure 6.7: Register for merchant account in Admin panel Source
Code. 117

Figure 6.8: Notification Controller code segment. 117

Figure 6.9: Create Notification function from merchant side
notification controller. 118

Figure 6.10: Cart Controller code segment. 119

Figure 6.11: Cart Controller checkout function source code. 120

Figure 6.12: Profile Controller code segment in user side. 121

Figure 6.13: Profile Controller code segment in user side. 121

Figure 6.14: Update function in edit profile controller in user side.
 122

Figure 6.15: Edit Profile Controller code segment in merchant
side. 122

Figure 6.16: Edit Profile Controller update function for merchant. 123

Figure 6.17: Feedback Controller code segment for user. 124

Figure 6.18: Feedback Controller create function in user side. 124

Figure 6.19: Feedback Controller code segment for merchant user.
 125

Figure 6.20: Feedback Details Controller code segment for
merchant user. 125

Figure 6.21: Feedback Details Controller function for merchant
user. 126

Figure 6.22: Feedback Details Controller function for merchant
user. 126

Figure 6.23: Order History Controller code segment for user. 126

Figure 6.24: Display Store Controller function. 127

Figure 6.25: Display Store Controller code segment. 128

xix

Figure 6.26: Display Store Controller favorite function source
code. 128

Figure 6.27: Tabs Controller code segment. 129

Figure 6.28: Tabs Controller function. 129

Figure 6.29: Tabs Controller Source Code. 130

Figure 6.30: Read news code segment in customer side. 130

Figure 6.31: Create news function code segment in admin side. 131

Figure 6.32: User service source code. 132

Figure 6.33: Feedback service source code. 133

Figure 6.34: Order service source code. 133

Figure 6.35: Product service source code. 134

Figure 6.36: Notification service source code. 134

Figure 6.37: News service source code. 135

Figure 6.38: User model source code. 136

Figure 6.39: Order model source code. 137

Figure 6.40: Feedback model source code. 137

Figure 6.41: Product model source code. 137

. 137

Figure 6.42: Notification model source code. 138

Figure 6.43: News model source code. 138

Figure 6.44: billplz api endpoints at server side. 139

Figure 6.45: billplz api code segment call from server side. 139

Figure 6.47: Firebase cloud messaging code segment in
app.component.ts. 141

Figure 6.48: Firebase cloud messaging fcm function in
app.component.ts. 141

xx

Figure 6.49: Notification send to topic ‘user’ when merchant
created a notification. 142

Figure 6.50: AWS S3 source code on backend. 142

Figure 6.51: s3.js on backend. 143

Figure 6.52: Upload file API endpoint on backend. 143

Figure 6.53: Edit profile’s upload image code segment. 144

Figure 6.54: AWS EC2 server. 145

Figure 6.55: Mobile application normal mode screen layout. 150

Figure 6.56: Mobile application simple mode screen layout. 151

Figure 6.57: Verify user code segment. 152

Figure 6.58: Switch case between normal mode and simple mode. 152

Figure 6.59: Login file. 152

Figure 6.60: Normal mode page hierarchy. 153

Figure 6.61: Simple mode page hierarchy. 154

Figure 6.62: Mobile application deployment. 154

Figure 6.63: Web application screen layout. 155

Figure 6.64: Home.page.html source code in collapse. 156

Figure 6.65: Pages Hierarchy of merchant side web application. 156

Figure 6.66: Pages Hierarchy of merchant side web application. 157

Figure 6.67: Administrative web application screen layout. 158

Figure 6.68: Home.page.html source code in collapse. 158

Figure 6.69: Pages hierarchy of administrative side. 159

Figure 7.1: Jasmine Framework V3.8.0 – Karma test runner
V6.3.20. 162

Figure 7.2: Testing providers and imports for unit testing. 162

xxi

Figure 7.3: Code segment of display news http test in news
service. 163

Figure 7.4: Unit test results of mobile user. 163

Figure 7.5: Jasmine Framework V3.8.0 – Karma test runner
V6.3.20. 165

Figure 7.6: Testing providers and imports for unit testing. 165

Figure 7.7: Dummy product in unit testing for product service. 166

Figure 7.8: Code segment of create product http test in product
service. 166

Figure 7.9: Unit test results of merchant module. 167

Figure 7.10: Karma framework test debug result. 170

Figure 7.11: Integration test suite source code collapse. 171

Figure 7.12: Feedback test suite code segment. 172

Figure 7.13: Integration test performance. 172

xxii

LIST OF SYMBOLS / ABBREVIATIONS

SST self-service technology

SSM maximum allowable pressure, kPa

PIC person in charge

SDLC software development life cycle

SKU stock keeping unit

ORM object-relational mapping

MVC model view controller

MVVM model view view-model

DOM document object model

OOPS object-oriented programming

UI user interface

UX user experience

HTML hyperlink text markup language

SCSS sassy cascading style

IT information technology

API application programming interface

REST representational state transfer

UID unique identifier

VH view height

VW view width

SDK software development kit

SQL structured query language

CLI command line interface

SRS software requirement specification

HTTP hypertext transfer protocol

CRUD create, read, update, delete

URL uniform resource locator

AWS amazon web services

FCM firebase cloud messaging

UAT user acceptance testing

QR quick response

xxiii

LIST OF APPENDICES

APPENDIX A: Observation 203

APPENDIX B: Questionnaire Form 205

APPENDIX C: Supervisor and Moderator Comments on Project
Plan 208

APPENDIX D: Project Progress (Trello Web Application) 211

1

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

The purpose of designing a supermarket checkout mobile application is to reduce the

waiting time or queuing time. It also purposed to reduce of manpower and training

time. However, this mobile application is also managed stock categories and stock

control. It provides bulk upload services which can greatly reduce product creation

time.

1.2 Background of the project

In this urban life, technology is evolved rapidly as it can reduce the engagement of

manpower which brings the focus to business flow. In common, as we all know a

hypermarket have cashier which is the service provider that can serve consumers

(Hassan, Sade and Rahman, 2013). From the report, the researcher has stated that a

hypermarket cashier is able to handle items which between five hundred to one

thousand and fill more than 80 bags per hour (Hassan, Sade and Rahman, 2013).

 In a hypermarket, cashier should follow standard working flow and it come to

repetitive. The cashier might lead to stressful and contradiction due to be

productivity which can provide the best service to consumer’s need. The time-

consuming during products checkout is taking long when there are many consumers.

While time is perceived differently by various customers, time restrictions cause

consumers to be more concerned with the duration of the activity.

(Chetthamrongchai and Davies, 2000). In the report, it stated that, there is a waiting

time which is include, selection time, queue time and transaction time. The operation

of cashier activities taken 60% of overall activities which one is scan the items that

occupied 20%, to packing the purchased items which in 18% and payment is 22%.

The others time is accounted for other service such as changing items, asking

direction and so on. As a result, the cost of service is out of balance compared to cost

of waiting in hypermarket. (Hassan, Sade and Rahman, 2013).

 A marketing checkout is a mobile application which a SST (self-service

checkout technology). The purpose of this mobile application is to reduce the

manpower in hypermarket which also to reduce the service time and waiting time. It

also can improve the checkout efficiency. In the perspective of merchant, this

2

application helps to manage stock categories and stock control. It provides bulk

upload services which can greatly reduce product creation time.

 In this case, consumers can have a self-service for items checkout which

means it can be reduced the physical checkout counter and replace with items verify

counter. Items verify counter is to verify consumer’s checkout items is match with

the cart checkout list to prevent dishonest behaviour during checkout process. In the

physical cashier service counter, it possible to have long queuing or some consumer

would carry a lot of items in their trolley which could taking long processing time.

With this application, it can reduce the waiting time and processing time which

designed for impatient consumer and urgent consumer to have a self-checkout and

leave. For the consumer that carry a lot of items, they can choose to wait for physical

counter to checkout, by this, the physical checkout operation will be smooth, and

both is having a balanced time. The verify checkout counter has standardised the

workflow and allows hypermarkets to hire non-skilled staff who can be trained in a

short amount of time. (Bernard, 2007).

1.3 Problem Statement

1.3.1 Supermarket checkout app are not convenient for senior consumers

Supermarket checkout application might be a complication and trouble for those who

cannot adopt a new technology in this new era (Hassan, Sade and Rahman, 2013).

Although there are several applications available that cater to the diverse demands of

senior citizen users, there is a lack of awareness of how the usability functions of

these apps impact their adoption among senior consumer (Thamutharam, Mustafa,

Musthafa, Tajudeen, 2021). Some of senior consumer might not educated in their era

unlike nowadays children at least to graduate in secondary school in Malaysia. As a

result, the senior age has a negative inclination for using self-service technology

owing to a lack of confidence, fewer human interaction, and the features of self-

service technology. In the report, the researcher found that degree to which human

interaction is missed for middle-aged customer is occupied 4.95% in total of 234

persons and elder age customer is occupied 5.98% in total of 251 persons, by this, it

can be concluded that elder customer is having few confidences to using self-

checkout technology while middle-aged customer is comfortable to have less human

interaction. (Dean, 2008)

3

1.3.2 Technical Issues

Some technical issues that might not be avoided which an unreadable barcode on a

product is possible. In the report, the researcher found that barcode unreadable or not

able be scanned for students occupied 63.16% which 12 persons among 20 persons,

while non-students occupied 79.49% which 31 persons among 39 persons. It also

stated that scanning the products with unusual forms and textures can be problematic.

Sometimes It will need attendant to assist those customers who face scanning issues

(Mendat and Mayhorn, 2007). Self-checkout service might not be stable on hardware

and customer behaviors. Reason of unstable is system is depending on the hardware

respond speed. When implementing self-checkout service might have a high

investment cost for purchasing hardware, it might not be able to have any extra

hardware as possible to prevent any situations happen. Self-checkout service would

cause a lot of confusion as it will chain up his impatient and affecting others

consumer. A consumer, on the other hand, who encounters checkout failure may

struggle to deal with the issue, especially if there are no personnel there. (iStrategy

Conference, 2021)

1.3.3 Threat of Theft

Self-checkout service might not be secure to merchant. Main reason is the system

relying on the behavior of the consumer when it is checking out his cart, as they

should be responsible to the purchasing flow. This makes chance to shoplift while

the shopper has a dishonest behavior, it might be purposely not to scan some of the

item or directly perform a shoplift. When consumer has carries large amount of items

system will not be able to verify the consumer had paid according to his/her checkout

list. (Dwyer, 2019) The researcher found out that at merchants in the United States,

the United Kingdom, and Europe and discovered that retailers who use self-checkout

service had a loss rate of around 4%, which is approximately double the industry

average. (Insider Intelligence, 2016).

1.4 Project Objectives

1. To investigate the current problem of supermarket checkout process time when

dealing a huge number of customers.

2. To analyze the public acceptance of self-checkout service in supermarket.

4

3. To develop a supermarket self-checkout mobile application which provides self-

payment service that helps supermarket to reduce the labor costs and checkout

process time.

1.5 Project Solution

To resolve the problem stated above, there are a few solutions can be executed.

Creating two types of user interface which can be differentiate with elder citizens and

normal user. Elder citizen interface can be designed with easy step to checkout which

has fewer functions can be executed. By creating this interface whoever user if

he/she can understand the language, he/she should be able to operate the system very

easily. Physically adding verify counter, it is used to verify each receipt that items is

matched with the consumer’s cart to prevent any dishonest behavior, the checkout

flow is faster than a normal physical counter as they need to scan, packing and

payment all by the counter. When it comes to unreadable barcode, the proposed

solution is that system will use QR code instead of using barcode. The barcode

sometimes not suited with phone scanner as there are various types of barcodes

whereas QR code is more easily to scan with phone scanner. QR code is a kind of

barcode that a digital device can read easily and that encodes data as a series of

pixels in a grid of squares. Besides, when consumer encountered other kind of

technical issues, they can write feedback to merchant side through mobile app or

consult physically with the personnel around the validation counter.

Figure 1.1: Senior-Aged user interface in low fidelity.

5

Figure 1.2: Senior-Aged user interface in low fidelity.

As diagram shown, simplified interface which has lesser functions, but it is

easy to understand. This is suitable for all age users which include elder citizens. If

they need any supports while operating the system, supermarket employee can

explain each button easy. For the full functions interface, there is much more

functions user can be discovered, like checking history, all item list, or merchant

nearby. To consider elder citizen doesn’t really use for the functions, in the simplify

interface will not display the functions, but if some of the citizen wish to use the

function, they can change the interface with a button by time to time.

All the information will store on our PostgreSQL Database. Comparing to

Firebase Database which provide by Google, costs will greatly reduce while there are

many users and data with Postgres. Some of the module will use the Firebase to

make it more flexible. Firebase will mainly use on the authentication, FCM (Firebase

Cloud Messaging), Website hosting and Cloud Server hosting. By the combination of

2 services, the system can take most of the scenarios and even secure for any further

upgrade.

6

Figure 1.3: Firebase. Figure 1.4: PostgreSQL.

1.6 Project Approach

In this project, the software development approach applies iterative and incremental

model. Iterative and incremental model is defined as cyclical process model. Each

iterative process is initial with a simple planning and implementation of the software

requirements. It supports iteratively enhancement of the system versions until the

completed versions is implemented. The iterative model supports modifications at

each iterative level which can add new functional capabilities or changes of system

design. This model is basically to develop a system within a cycling flow with a

smaller portion at a time (Airbrake, 2016). It called as evolutionary acquisition

approach since more than one iterative may be processed in once. During the

incrementation, whole process is run separately. Each iteration will consider

requirement, analysis, design, development, and validation which individually brings

along with a mini project (Kananke, 2020). Each succeeding module release adds

functionality to the preceding iteration. The method is repeated until the entire

system meets the requirements. (tutorialspoint, n.d.)

7

Figure 1.5: Iterative and Incremental Model.

1.7 Scope of the Project

This mobile application is limited to supermarket customer, supermarket merchant,

and application administrator only. This mobile application can access using mobile

devices on android platform only. This project will deliver three interfaces which

customer-side is using a mobile application, while merchant-side and administrator-

side is using a web application.

1.7.1 Target User Scope

In this project, supermarket customer play role as end-users which they are allowed

to scan and pay through self-checkout application. They also allowed to search and

view history and get notification if any update events in the application.

1.7.2 Target Merchant administrators Scope

Supermarket manager and staff play role as the merchant admin which they are

administrator that can manage upload categories of items, organize the products, or

add price for each product.

1.7.3 Target security administrators Scope

Security administrations play role as the security management which they can

manage merchant accounts such as manage merchant side security information and

also view list of all registered merchant.

8

1.7.4 System Scope

System target on android devices. Programming language will mainly use on IONIC

which is a hybrid platform, this will secure further upgrade when it expands to iOS

application. Visual Studio Code will take part as the development tools to develop

the full functions web application. This web application allows user to scan & pay

through the application which will have 2 interface to separate elders and youth.

Merchant dashboard shall be able to manage supermarket products and create

notification to users.

1.7.5 Modules Covered

The modules listed below are to meet the project’s objectives. Basically, split into 2

web application and 1 mobile application.

Customer-side mobile application

1.7.5.1 User Scan & Cart Module (Mobile Application)

User can open camera and scan the product QR code. After scanning the codes, it

will display the product details and add it into cart. By adding into cart, user may

checkout current item available in cart and proceed to payment.

1.7.5.2 User Activities log & Transaction History (Mobile Application)

User can track the item that they scanned before from activities log. This can be

ensured users doesn’t duplicate scan on the items, may also prevent any argument on

the verify table with duplicate scan. Transaction history displays user purchase

history.

1.7.5.3 User profile (Mobile Application)

User can be easily registered their account with personal information, name, contact,

date of birth, email, address etc. User can update their profile information in

applications.

1.7.5.4 Product Specific on location Module (Mobile Application)

User can detect nearby merchant by using locations. Once the user entered a shop

with the service subscriptions, product list will auto display based on the merchant

nearby. Inside application will display a list of the merchant’s registered product

9

(SKU). If there are multiple merchants nearby, the system will pop up a list that

asked user to select the merchant that he/she entered.

1.7.5.5 Search Function (Mobile Application)

User can search the specific item or specific merchant by merchant name. It is also to

create a chance for merchant to expose itself to the market, so user may notice the

shop and the brand. This provide a chance for mini market to be known lately.

1.7.5.6 Notification (Mobile Application)

User can receive notification while merchant publish a promotion or an event. When

user is interested on the promotion or the event, user can go to the shop made an

order. User can easily receive feedback respond when the notification will always

notify user immediate when merchant user has replied to the feedback. This helps

merchant to do marketing on its own strategy.

1.7.5.7 Feedback (Mobile Application)

User can send feedback for complain with images and text. The feedback will send to

merchant side. User can view feedback history and delete the feedback anytime.

Merchant-side web application

1.7.5.8 Manage supermarket products with CRUD operation (Web Application)

Supermarket checkout merchant is allowed to upload supermarket products with

price, product’s details, and product images. Each of products will need to input a

product SKU which represent a barcode so that when customer scan the product

barcode, it will identify which product be scanned and display the information. The

product information will then display on customer-side application. The supermarket

checkout merchant application is also allowed admin to create category for each

product. Through this function, admin can perform search function with categories

for all uploaded products. After creating a product, merchant is also allowed to

update product details or even to delete the products.

1.7.5.9 Listing and delisting product (Web Application)

Except a CRUD operation in merchant-side web application, it also provides listing

and delisting function. Supermarket checkout merchant can make the product in live

10

mode and to make the product in non-live mode. The reason of this functions is

allowed merchant to delist the product without deleting it, the product is still can be

modified without any effect of all information but in customer-side, the product is

not shown.

1.7.5.10 Advanced Search Function (Web Application)

Supermarket checkout merchant can use advanced search function to search

uploaded products. Merchant will easily search all uploaded products with category

or even one alphabet character to search any uploaded products.

1.7.5.11 Merchant Profile (Web Application)

Merchant will need to contact admin to creating an account with subscription fees.

This will store merchant information example like email, name, SSM, PIC name,

PIC contact, subscription package, etc. Merchant will also need to get its own

location by using geolocation, it let user to detect nearby merchant.

1.7.5.12 Manage Customer Feedback (Web Application)

Merchant can receive customer’s feedback and reply to the feedback through the

application. Customer-side will receive the merchant reply through the checkout

mobileapp.

Administrator-side web application

1.7.5.13 Manage Merchant (Web Application)

Admin can create & edit merchant account so that merchant can access the web app

by using the account. Admin having the authority to direct ban the merchant account.

1.7.5.14 Manage News (Web Application)

Admin can create, edit, delete customer news through the web app. Customer-side

will update news on home page at mobile application and is able to read the news

description.

1.7.6 Module Not Covered

There is a module cannot be complete due to business model and time constraints.

Stock control which known as the warehouse management system, this system

11

should be able to trace the quantity of the item by the orders. However, there is a

scenario that can cause the stock control not accurate. For the scenario, when the

consumer is paid by cash so the order is never created on our system, it is not logical

if we asked the merchant to key in the order and the items inside the order, by this

means the stock will be not accurate while this scenario happen. This may cause user

to saw this product available while they are comparing prices. But when the time

they reach the merchant places and found out the item out of stocks. This will affect

merchant’s repudiations also the same with the system repudiations. To resolve this

problem, merchant should implement full set of the systems which include the

payment machine set, this will be connected to the same database and so that each

record can be stock accurately and performing a perfect stock control. But the full

system will need a big amount of development time, so this module will not be

covered in this project.

12

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

A supermarket checkout system is a self-service technology for consumer to save

time for queue up in traditional way and if with a less item to purchase. Apart from

this, with the pandemic in the past few years, a global slogan “social distancing”

spread all over in marketplace. A self-checkout system will be more suitable and

benefit into nowadays’ situation since it resulted more hygiene and more efficient.

However, there are a lot of bad feedback on the system which the system possible

brings slower process than a traditional payment cashier due to external technical

issues such as bar code not scanning, network failure cause slow payment processing

etc. In this chapter, multiple existing self-checkout system has been discussed and

reviewed to obtain inspirations and ideas. Besides, an evaluation and comparison

between various software development methodology had been discuss in below and

the final decision of methodology is iterative model. There are more system

architecture and framework has been discussed and compared such as backend,

frontend, cloud services provider.

2.2 Review on Similar Self-checkout system

Several evaluations and reviewed will be conducted on similar self-checkout system

accessible through online to develop a supermarket self-checkout mobile application

that meets and satisfy the system criteria and features. There are three titles been

discussed in this section.

2.2.1 Local-based System

Most of the self-checkout system with physical hardware it takes a huge amount of

development fund to complete and yet to make it secure. By the generation now,

most of the young generation prefer checkout by themselves rather than wait the

slow queue on the counter. Hence the physical hardware must be very powerful to

make everything smooth and functions, this will rise a problem which to too hard to

use, and some of the instruction is not clear on the checkout flow.

13

2.2.2 Lotus’s checkout system

Lotus’s Malaysia provides Self-Checkout machine which allow consumer conduct

items checkout at self-checkout counter. Inside the Self-Checkout areas, there is only

2 employees to giving control and support for the whole area. This is greatly reduced

the cost of Lotus’s labour cost, the time for consumer to checkout and the stress of

the checkout lane. Although this service seems like no-cons at all, but there is still

some scenario that some of the customer may easily shoplifting while in the self-

checkout lane.

Figure 2.1: Lotus’ self-checkout Counter.

For the user-friendly part, it appears the instruction is not clear for the service

interface. Although it supports multiple languages interface, most of the citizen may

not really know how to operate the machine for the first time. This may cause the

checkout queuing time is longer than the normal checkout counter.

14

Figure 2.2: Lotus’ self-checkout hardware.

By the last field visits, we have observed the citizen which is willing to use self-

checkout machine for the 2 hours. Most of the customer appears age between 18 ~ 50.

Between these customers, there is only few people with many items to pay in the

checkout area. By this situation can observe, most of customer think that self-

checkout small number of items is way faster than normal checkout lane.

Through the field visit at Lotus self-checkout technology on 27 February 2022,

the feature and flow has been identified:

Features:

• Scan – Scan items barcode through scanning device

• Weight detector – System will require the scanned items place on the weight

detector platform. If doesn’t, the system cannot be proceeded.

• Payment – The payment method can be E-wallet, card payment by card

reader, and cash.

• Cart – Cart contain scanned items and able to edit items.

15

Flow:

• User wants to check out the items.

• User goes to the self-checkout counter.

• User selects the language.

• User starts scan items.

• User uses the barcode scanner device to scan the barcode.

• Monitor shows to put the scanned item to the left weight platform.

• User continue the remain items.

• User selects checkout method.

• User complete payment by the checkout method.

• Machine generates receipt to the user.

• User collects the item from the weight machine and leave.

16

2.2.3 Amazon’s self-checkout store

Amazon Go Grocery is a cashier-less store launch by Amazon on January 22, 2018.

It is an e-commerce app that allows consumer to ‘Grab n Go’. Basically, it is

concepted with no queuing line, no checkout with register. It has sensor technology

and machine vision to capture human motion to detect whether it is taking off or

putting back to the item rack. The system uses machine learning (Artificial

Intelligence) to recognition and uses video surveillance technology which capture a

human activity by time to time. By the review of 2 youtuber videos, shoplifting is

allowed by default in Amazon Go. As the video can observed, both youtuber has

trying to perform shop lifting in the Amazon Go, but both youtubers failed to steal

anything from the store. One of the youtuber make a bold choice, he finished the

food after walking out the grocery and made request for refund after 3 hours,

surprisingly, the requested refund action has been approved. The reviewer stated that

Amazon Go Grocery business model is totally based on customer loyalty and

behaviour. On the other hand, it provides the environment for shop lifter.

Figure 2.3: Scan with user QR code to sign into the store.

17

Figure 2.4: Make request for refund for eaten food.

After reviewed on both Amazon go grocery review video, the features and flow

has been identified at following:

Features:

• Scan to login

• Human recognition

• Motion Sensor

• Purchase history

Flow:

• User open his/her user QR code and place on scanner to identify his/her

identity.

• User grab items.

• User walks out the store.

• Order completes within an hour.

• User can make refund when wrong item added in payment lists.

18

2.3 Review on Project Methodology

Choose a suitable project methodology is a critical for every success software project.

A software project can be small, medium, or large. A software projects can be

expanded to large from a small project. In this case, to maintain or building for

project incrementally in a success way, a right methodology is needed. SDLC

(Software Development Life Cycle) models is the methodology that called as

techniques for design, struct, or to maintain for a software project (Alshamrani and

Bahattab 2015). SDLC models includes waterfall model, Scrum, V-Shape Model,

Iterative and incremental Models and Spiral Models etc. SDLC has 7 process flow

which is planning stage, analysis stage, design stage, development stage, testing

stage, integration stage and maintenance stage.

2.3.1 Waterfall

Waterfall methodology is a well-known development methodology. It is the first

methodology which invented by Dr Winston W. Royce in 1970 (Hughey, 2009). This

development methodology is goes by sequential flow, it usually used in large project,

and government project. In waterfall models, all steps are required goes by

sequentially and without backward to previous stage if there are any mistake

encounter. This usually costly and time consuming as it required quality control for

every intensive documentation and planning at the beginning of stage which to

ensure the software project goes according to plan and requirement.

Figure 2.5: Waterfall Model.

19

2.3.2 Spiral

A spiral model is not the first invented SDLC models. It has a combination of

iterative development and small element of waterfall development for a software

project which focus on risk assessment and risk management (Alshanarani and

Bahattab, 2015). This model can be used whenever meet an unclear requirement

from client as all projects can be breaking into a small element of easier for change

process. The spiral models begin with centre point then it goes traversals with

clockwise (Rastogi, 2016). Despite that each point is unclear defined deliverable, the

first traversals might be a requirement phase. Spiral model is also defined as meta-

model as mentioned above it combine both waterfall model and iterative model

(GeeksforGeeks, 2022). In spiral model, it uses prototyping model to deal when risk

occurs. Each risk management will rely on prototype at each stage with the defined

scale in the spiral model of SLDC.

Figure 2.6: Spiral Model.

2.3.3 Iterative and incremental model

The iterative model is using several iteration or version to compose the SDLC. For

the initial level, a clearly defined requirement is required which to perform the stage

using iterative model (Kananke, 2020). An iterative model has a waterfall model

element which it contains a sequential procedure and allow further incremental. For

the very first iteration, it usually conducting the basic modules or functionality. In

this condition, iterative model is allowed to add more and more function which

comes to iteration 2, iteration 3 etc. Each of the previous version will contain a new

function for a new release. After each iteration is deployed, feedback is considered

20

vital information to proceed a next iteration (Rastogi, 2015). This model is turning all

project into a small element and process accordingly, hence, this can be applied when

software developer team is learning the new technology during taking part in the

project.

Figure 2.7: Iterative and incremental model.

2.3.4 Comparison of Methodology

To ensure the quality control of software development, it always need a formulation

process model to control the process of every project stage. A suitable methodology

with well-defined process will result a software project resulted to success. Every

methodology model has its pros and cons. The model feature some is time

consuming, or some is high cost to apply in the pathway of using the model. The

study has done by Chandra (2015) perform comparison for different SLDC

methodologies. Based on the study of Chandra (2015), in this project, present the

parameter with various of methodologies. The table below shows the comparison of

different software methodologies models which considered in this project:

Table 2.1: Table of comparison between various software methodologies

Model Feature Waterfall Spiral Model Iterative Model

Clear

Requirement and

Specification

Initial Level Low Intermediate

Client feedback No Yes Yes

Time needed Low High Low

Risk Factor High No High

21

Cost Low High Low

Usability Basic Less Normal

Resource needed Less Many Less

Flexibility No Less No

 According to the data from the table above, Iterative methodology is defined

to be more suitable for supermarket checkout mobile application. There are reasons

to choose this methodology in this project, which only prioritized requirement

needed. Besides, Iterative model may turn into incremental model if add more

functionality that required by user lately. In this case, this model is easier to

implement for required change process and always need feedback for user. This will

lead to user satisfactory since each deploy will involve user activity and user

feedback so that each version will involve more interaction between user and

technical team. Due to its low cost and less time consuming if the project is not

considered large, the iterative model is suitable for the project. As a result, after

considering the model feature, iterative model is chosen to be the software

methodologies in this supermarket checkout project.

2.4 Review on Backend Server Framework

Backend server is a must to all the applications and software, it is the connection of

worldwide developers. Before building a backend server, framework is the key to

make backend server mor e functions and flexible. Server is mainly contained the

APIs (application programming interface) which to make connection between

Database, Web Application, Mobile Application. By choosing the right framework to

develop the backend server, it should be able to handle a thousand request in a

second. Framework choosing can be flexible, it based on the needs of the projects

and developers.

Framework can be differentiated with the programming language, and the

features/plugins they provide. Different language provides different handle HTTP

request in a mean time, some of it provide more features and plugins but with slower

handling.

22

2.4.1 Laravel

Laravel is one of the best PHP Framework that developed smooth and stable web

application which can be a difficult project. Advantage of Laravel as it can perform

simplification to the complicated tasks. Laravel has the latest features of PHP that

reduce the limitations of the web application. It has the great documentation makes

Laravel developer-friendly, all Laravel update comes with standard documentations,

you can explore the world of Laravel by yourself with all the detail explanations.

Besides, it also has a large community. One of the Laravel community name

LARACASTS, on the community there is a lot of expert developer always sending

tutorial videos for various functions.

The following is features of Laravel framework:

• Easy to do authentication

• ORM in Laravel easy to do query with PHP only.

• Library supports Bcrypt hashing, CSRF protection.

• Provide unit testing.

• It a MVC Architecture.

Figure 2.8: Laravel framework.

2.4.2 Node.js

Nodejs is a JavaScript based framework. JavaScript known as server-side only

concept before the introduction of Nodejs. Nodejs expand JavaScript concept to web

app development, it is extremely simple, light cost and efficiency. Nodejs has its

advantages of scalability and multitasking to web application. For example, Nodejs

can handle a huge amount of request at the same time while it can still proceed all the

API request on a significant speed. There is a big community in Github which

23

providing NPM installer package plugins that makes programming more efficient

and light weight. The vibrant community is backed up with Amazon, Google,

Facebook, and Netflix. Nodejs also easy to learn as JavaScript is one of the most

common programming languages in community.

The following is features of node js:

• NPM (Node package manager) contains a large library in “./node_modules/”.

It required to call the package with command line for package installation.

• It can combine with Angular js to create a full stack of typescript application.

• High speed performs which can run several requests in the same time.

Figure 2.9: Node js.

2.4.3 Comparison of Backend Framework

Table 2.2: The comparison between Laravel and Node js backend framework

Parameters Laravel Node js

Popularity Yes Yes

Performance Average Excellent

Development Tools and

Package Management

Average Excellent

ORM Eloquent Sequelize

Framework

Architecture

MVC architecture - PHP Open-Source platform-

V8 engine

Community Average Excellent

 According to the above table matrix shown, Laravel and Nodejs has their own

characteristics which some is good, and some is consider average. Nodejs has the

24

high-speed performance and for a checkout app, it requires a fast performance

platform and smooth to provide a flexibility and efficiency when perform task.

Despite that Laravel has a strong database management backup itself but it is strong

and capable for web application only. Nodejs also has an open-source platform

which allow to combine other framework to create a full stack application no matter

in web app or mobile app. In this case, Nodejs is more suitable in this project.

2.5 Review on Frond-end Web Application Framework

2.5.1 Angular.js

Angular.js is a JavaScript based open-source framework initially introduced by

Google Corporation in 2012, it is using MVC (Model-View-Controller) concept.

Angular allows user to create Directives which use to create custom tags in HTML

(sitepoint, 2018). Compared to original HTML5, Angular.js have the advantage of

send asynchronous HTTP request by using unique component FormControl. It is

very developer friendly and easy to learn comparing to others front-end framework.

For example, it has the unique Ng directive which can interact with HTML and TS, it

is way more convenient than the normal Script Writing way (sitepoint, 2018).

Figure 2.10: Angular js.

2.5.2 Vue.js

Vue was invented by Evan You which is an ex-Google employee. It invented in 2014

and it is also called as a progressive framework (SYSTANGO, 2018). Vue itself is

fast, lightweight, and simple to work with, it is a framework for who want to work

for building user interfaces. Vue has a similarity with Angular in syntax, but the use

case is totally different. Vue is using MVVM (Model-View-ViewModel) architecture

while Angular is using MVC(Model-View-Controller) as its architecture.

ViewModel is consider the middleware which a connection between view and model

(ButterCMS, 2019). It is more efficient if work for single page web app since the

core of its libraries is focus on the view case (HBuilder, n.d).

25

Figure 2.11: Vue.js.

2.5.3 Comparison of Front-end Web Application Framework

Table 2.3: The comparison between Angular and Vue.js frontend framework

Parameters Angular Vue.js

Community Large Small

Architecture MVC MVVM

Code Scalability Yes No

Performance High High

Built-in libraries Many Less

According to the table above, few parameters and feature between Angular js

and Vue.js is in a tie condition. Despite that Angular is restricted to use TypeScript

and OOPS, but compared to Vue.js, Angular has more built-in libraries. The results

shown that Angular has large community worldwide while Vue.js has a smaller

community worldwide that shows reliability range is small. The weakness of

Angular is it has a regular DOM while compared to Vue.js it has a virtual DOM

which faster than Angular. However, the code scalability of Angular is better since it

is a mature and it support for a large project. In the nutshell, Angular will be chosen

as the front-end development framework for the Merchant and admin web app in this

project.

26

2.6 Review on Cross-platform Mobile Application Framework

Cross-platform framework can call as a hybrid framework. Hybrid platform

performance might slow a little bit compared to native framework which is a single-

target platform framework. Hybrid framework can build web application, android

application, iOS application and computer software with a same source code and

dependency.

Ionic and React Native typically similar. Both is the common and popular

JavaScript Based framework in Global Developer. The different between 2

framework is Ionic have way more programming language choices to develop an

application, for example like Angular.js, React, Vue.js. But React Native have only

one choice which is react. By comparing the library, both framework shas almost the

same plugin and features, but the UI component library may be various, both have

owned their own style on UI designs.

2.6.1 Ionic Framework

Ionic is a hybrid multiple framework acceptance platform which can be write in

Angular.js, Vue.js, React. It is built with Apache Cordova. Cordova is an open-

source framework that allows user to build mobile application on various mobile

platform, for example like Android, iOS (Dunka, Emmanuel and Oyerinde, 2017).

Ionic creator can build a wonderful user interface that combines animations, intuition

interaction which can brings a benefit for this framework. The different between

react native and ionic is react native is run based on dynamic runtime while ionic is

run based on web view wrapper. Ionic uses HTML and SCSS to render the user

interface which is benefit for basic learner. As mentioned above, ionic framework

can be written in angular, react, and Vue.js, this has become one of the advantages of

ionic framework itself.

Figure 2.12: Ionic Framework.

27

2.6.2 React Native

React Native is a hybrid JavaScript Based platform that make hybrid application

rendered like native application for Android and iOS. Developer can create an

application to both platform with the same source code. React Native was founded

by Facebook in 2015 as an open-source project. After a few years, the world trending

mobile apps like Facebook, Instagram, Skype was developed in React Native. React

Native has its own JavaScript library which is built on top of React. Although React

Native is a JavaScript Based Platform, but it is not easy to learn. On the UI side, the

HTML code was needed to write in JavaScript format.

Figure 2.13: React Native.

2.6.3 Comparison of Cross-platform Mobile Application Framework

There is a difference between both hybrid mobile application framework no matter in

characteristics or even the features and structural. To have a better choice of hybrid

mobile development framework in developing a supermarket self-checkout mobile

application, a comparison between Ionic and React native is discussed in below table.

Table 2.4: Table of comparison in Ionic framework and React Native framework.

Characteristics Ionic React Native

Learning Curve Easier to learn Need to familiar with CSS.

Stack Structure Hybrid framework Native framework

Performance

benchmarking

Lower than React Native Perform better

Developer Convenient Convenient Need prior knowledge on

React js

Application Size 3.2 MB 8.5 MB

28

Time consuming Lesser time Time consumed than ionic

Third party libraries Easy to integrate with

multiple third-party

libraries

Need to rely with mind-

boggling

Cost of development Cheaper More expensive

According to the table above, Ionic is easier to learn and time saver compared to

React native. There is the reason of Ionic is easy to install with Cordova and it

automatically provide a rich pack of collection of Angular.js extensions and its

services. Besides, ionic has online academy lesson which provide rich information

and ionic lesson in steps which makes learning and implementation easier. Ionic

build is 3.2 MB while React Native is 8.5 MB which ionic having a minimal size

application to be created compared to react native. In drawback, Ionic has a slower

performance speed when comes to develop a cross-platform app. However, ionic has

a cheaper cost when comes to development of mobile application and more

convenient for developer since react native will need to be more experience in React

js and need to be more familiar with CSS. In nutshell, after considering the features

of both frameworks, Ionic will be used to develop the supermarket self-checkout

mobile application.

2.7 Review on Cloud Computing Services

Cloud Computing Service is a service that provide extra features for your

applications. It includes Database, Website Hosting, Deep Linking, Mobile

notification, etc… Comparing to the old method for creating everything by the

developers, it appears convenient ways to manage external service to your

applications. All the costs for the services are pay-as-you-go, it means the cost is

totally based on the user usage. There are only a few providers which for the cloud

service.

2.7.1 Firebase (Google cloud platforms)

Firebase was founded by James Templin and Andrew in 2011, after 2014 it officially

acquired by Google. Firebase become a unified platform for mobile application in

2016. Firebase has the service of Real-Time Database, Google Ads, Catalytic,

Website Hosting, Function Hosting, Cloud Messaging which is totally all suitable for

29

mobile applications (javaTpoint, n.d). Firebase is developer-friendly and easy to

implement into your application.

Figure 2.14: Firebase.

2.7.2 AWS EC2

AWS (Amazon web service) introduce in 2006, it begins with offering IT

infrastructure services. It provides highly reliable, scalability and low-cost service.

For example, services that require to an IT infrastructure like Website Hosting,

Server Hosting, Database Storage, Cloud Messaging etc. It provides a virtual-servers,

developer may create a APIs with any server language and make it host to public

(Amazon, 2022).

Figure 2.15: Amazon EC2.

2.7.3 Comparison of Cloud Computing Services

Cloud computing services has become the indispensable for every type of business.

In the worldwide, Cloud services is uses to store data and is utilised 85 percent of

businesses. Cloud computing services includes documentation form editing sharing,

calendars sharing, and messaging service are all uses in most of business model. In

the development of software application, each of cloud computing services has its

suitability for each software that wish to be developed. A comparison between AWS

EC2 and firebase be discussed below.

30

Table 2.5: Table of comparison between AWS EC2 and firebase.

Parameters AWS EC2 Firebase

Cost Less expensive More expensive

Strength Application is flexible Quick, easy to setup and

integration

Core features Virtual Machine Realtime Database

API REST & GraphQL REST

Documentation Well-written Well-written

According to the table above, AWS EC2 is more flexible and experience that brings

solution and has more complete services to business organization compared to

Firebase service provider. Besides, compare to the origin price, AWS EC2 reduces

the price point up to 80 percent (SFAppWorks, 2021). However, both are using

REST for API but AWS EC2 has more option which also uses GraphQL. Anyway,

firebase also have its benefit which have a quick setup, easy to integrate and provides

wide range services and features (GLOWID, 2021). There is no final best option for

projects when it comes to cloud computing service. In this case, both cloud

computing services can be utilized with their services and features that might fit and

suitable for the project. After the comprehensive comparison of both cloud

computing service, AWS EC2 will be used to store all the data information and

firebase will be served as get a real-time data service in this project. Firebase also

will be served as server hosting in this project.

31

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, the methodology of the project and project activities along a timeline

will be discussed. SDLC (software development lifecycle) helps to result a

successful software project. In choosing the right software methodology, it needs to

identify which methodology are suitable to according to software project with plenty

of software development methodology framework that will be implemented by flows

with SDLC. Hence, this project will utilize iterative models for the software

development.

Besides, there are Gantt chart and work breakdown structure diagram has

been described in this chapter which to provide outline and guidance along with the

project development. Lastly, it has also mentioned the project development tools

involved in this project and briefing with all tools.

3.2 Development Methodology

Methodology that I’ve selected for this project is the SDLC (Systems development

life cycle) with Iterative and Incremental Model.

 SDLC is a development process that use to developer and design quality

software. Whereas agile methodology aims to develop software that fulfilled or

exceeds the client expectations within the estimated times and costs.

Figure 3.1: SDLC.

32

SDLC development methodology is focus on primary, simple execution,

which will rise a profits complication and increase a system quality to the ultimate

execution. It has the idea of given a huge development techniques, methodologies

and tools, to solve each of software project complication that carry out the best

solution till the end of project. These methodologies given different processes that

allow software developer to follow accordingly are planning phase, defining phase,

design phase, implementing phase, deployment phase and maintenance phase. SLDC

usually provide solution to which project is consider large and final objective is carry

out a high-quality product to the client.

 By applying Iterative Model from SDLC, Iterative Incremental Model have

the strengths on fast development for the whole flow of the project. As the customer

can get the main function early by comparing to other methodology. This model is

main perform module by module, so it won’t be stuck in the middle for recap the

whole development flow. Iterative model which can also called as Incremental

Model, it performs break down all large project task into the smaller module to

develop. It creates the less error chaining by breaking all task into smaller module for

each process.

33

3.3 Proposed Workplan

In this section, the proposed workplan for this project be analyzed and designed. This

will provide an overview to all task with detailed in this project.

Table 3.1: Project Schedule Summary

34

35

Figure 3.2: Gantt Chart for the project.

36

Figure 3.3: Gantt Chart for the project.

37

Figure 3.4: Work breakdown diagram of project.

38

Iterative model will be the development methodology for this project, it follows the 5

process to complete the primary module and repeating the process to make the flow

more stable and consistent. Every module can be added into the project if there is

more requirement from the client. Each workflow will be explained below:

1. Requirement

In the first phase of the model, the benefit of the iterative model is it can be enhanced

the module in next iteration after the main flow was done. Sometimes, client may not

clarify their concern or their needs at the initial state. This may constraints in the

business model and along with the development flow. Developer will collect all the

information from the client side and make a requirement list. Developer can also

gather other information like public acceptance for this software by using

questionnaires, public interview etc. The person in charge of this role must be agile

and good communication skill as it will relate the whole development afterwards.

2. Analysis

After gather all requirements and information from the client and online survey,

developer will conduct an analysis regarding how the application will be work as

public acceptance such as module, and UI/UX of the application. Developer follows

the rules of the model to plan which requirement prioritized in developing the

application.

3. Design

After the analysis report was carried out, this phase based on the report which to

construct database, the system workflow, and the UI/UX design based on the report

suggest. Developer will need to draw several diagrams towards their team in

understanding the flow of the application. For example, UML diagram, data flow

diagram, use case diagram etc. In this phase, developer should identify all the

requirement specification and module planning will be conducted in analysis phase.

Developer should understand all the module needs according to the requirements that

had been gathered in the early stage.

4. Coding

After all system design diagrams and required module was defined, it proceeds to the

implementation phase, which is code with programming language in coupling the

whole application by following the information gathered. By this phase, developer

team will need to keep updating the progress to project manager. In the end of this

phase, to ensure all features has implemented in the application is compulsory.

39

3.4 Technology and Development Tools Involved

3.4.1 Nodejs

Node.js will take part as a middleware for the project, it will used to create APIs and

make database connection to the application. Node.js have many plugins inside the

NPM, it can build a lot of features of APIs with the plugins. Inside node.js will take

include Firebase to provide the create account authentication, FCM (Firebase Cloud

Message) for the project. For example, it can build an API that use Firebase.auth().

createUserWithEmailAndPassword() make a UID and put the data into the database.

3.4.2 Angular.js

Angular.js will be the front-end language of the web application and mobile

application. Angular.js has the benefit of combination with NPM which is Node.js,

with the NPM it reduced a lot of limitations inside the application. Angular.js is easy

to code and the source code is totally reusable for every module and pages.

Angular.js can cater responsive element easily with the unique ngStyle, ngClass. The

output of the UI may follow the VW (View Width) and VH (View Height) changed

by size to size.

3.4.3 Ionic Framework

Ionic will be the main platform that contain Angular.js source code and build android

and iOS application with Apache Cordova. Ionic have the benefit of accepting any

SDK and any executable source code with a correct plugin. With Ionic application

further upgrade or adding in new module will not be a problem unless it matched its

limitations. For example, Ionic can accept Angular.js, Vue.js, React source code at a

time, but it still can build Mobile Application through Apache Cordova.

3.4.4 PostgreSQL

PostgreSQL will be the database language in the project, PostgreSQL is one of the

SQL languages that with a great interface PgAdmin, and it is easy linking to

middleware. Compare with other SQL, PostgreSQL is easy to learn, and it have a

very clean sight data view.

40

3.4.5 AWS EC2

AWS EC2 will take part as database server in this project. EC2 is a virtual server that

allows developer to install any programming tools. This server will contain Database,

Function Server (Middleware), AWS EC2 database cost is a lot cheaper if compared

to Firebase Database. It can also mock the URL to the public APIs like

api.xxxxx.com by using other domain service.

3.4.6 Firebase

Firebase will take part as Service Provider in this project. Firebase has the service of

FCM (Firebase Cloud Messaging) which is sending notification to the targeted

mobile applications. it will use for hosting the web application. Firebase has the

benefits of many service that can use for a mobile application development. For

example, firebase authentication for user signs up and login, firebase deep link which

is used to click the URL and links you into the target application.

3.4.7 Visual Studio Code

Visual Studio Code will take part as the main tools of coding in this project. VS

Code is the one of the top tools for coding in the world. It has the advantage of

extension in the tools. For examples, developer can install snippets for more

convenient coding while in the development process. VS code could edit any

programming language if it had installed the language CLI.

3.4.8 Git

Git will take part as the project management tools in this project. Git can store source

code and merge it by the git editor. Git editor will automatically detect the

constraints inside the source code and declare whether it can be merge by

automatically or need to manually resolve the constraints. It can be split branch for

each user, it can be used to split module by module for each developer who are

participate in this project.

3.4.9 Figma

Figma will take part as the interface design tools in this project. It provides tools

such as design frame templates with various of device size. It available for phone,

tablet, desktop, watch etc. It given a friendly interface for UI/UX designer to assist to

41

design wireframes, prototype with multiple type of image file extension, as for

website wireframes, figma brings a benefit in exporting svg file. Besides, it also

provides interaction tools which each can animate or interact between each frame to

become a prototype. As for this project, Figma is utilized as UI design role which to

draw the prototype to display the plan of UI design for the supermarket self-checkout

mobile application.

3.4.10 Trello

Trello served as the collaborative project and work management tools which bring a

purpose on tracking team projects or self-reminder project. For team project, Trello

allows team lead to assign the team member to their role and show their details of

works to achieve completion. Trello is relying to Kanban principles that visualize all

tasks in one sight. It visualizes with board, cards or even list. The board created with

a title then it indicates list which are the progress details. In this project, it used to

create specific tasks to act as backlog to show which module has been done in time

and which does not. It is also can reminds developers to follow along with tasks and

submit before deadlines which to avoid do things at eleven o’clock. It also can ensure

customer satisfaction as product can be delivered on time. It is one of the good

practices when come to a real working environment.

42

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter describes fact-finding which uses online survey questionnaire and

observation to identify and comprehend the requirements. It obtains the information

and suggestions of supermarket consumers. Supermarket consumers can be anyone,

it classified in three group of age which is youth age, middle age and senior age. The

questionnaire focused to gather the acceptance of implementation of self-checkout

technology/system nowadays. The online survey is applied google form which to

collect data from supermarket consumer. There are 30 of respondents filled in the

survey and 30 responses has been collected and be evaluated below. There are use

case diagrams and use case descriptions conducted in this section. Lastly, screen

flow and screen capture of prototype will be displayed.

4.2 Fact-finding

Fact-finding in this chapter will be conducted by data gathering method in

questionnaire and observation.

4.2.1 Observation

Date Conducted: 27-2-2022

Time: 2 pm to 4 30 pm

Location: Lotus’s Puchong

The Purposes of data gathering is to collect data information ensuring data that be

collected has a sufficient information to perform the project and system that will be

implemented. In this project, the data collection type is qualitative data collection

which include questions that provide to those respondents and to collect each opinion

that resulted what is primary and what is secondary features in the proposed system.

During the field visit of lotus in Puchong, through the observation, it found

that number of consumers that uses self-checkout machine is consider average. The

majority of self-checkout user is youth-aged user and middle-aged user. The self-

checkout area is monitored by at least one assistant worker which to assist the

43

customer when they encounter any problem during self-checkout. During the

observation, there are out of 7 middle-aged users will need guide and assist during

the self-checkout.

The lotus is considering a large organizational supermarket which currently

have 64 stores located in Malaysia. The approximate year of Lotus introduced the

self-checkout is in 2015. According to the report, the purpose of introduce the self-

checkout system in Lotus, is to propose a solution for customer who complaint and

feedback that long queuing time to open cashier.

SST in Lotus having total of 6 of the self-checkout machines. During the first

observation in Lotus, 2 out of 6 self-checkout machines cannot be perform due to

machine errors and unknown problem which cause time consuming and bring

inconvenient than paying at the cashier counter. To maintain and fix the self-

checkout machine whenever it broke which is always a high budget in long term. It

has been avoided in this project which is the objective and goals that has been stated

in early stage.

The purpose observation is to view and having a reference of the process and

workflow of existing SST in Malaysia. It also contributes to the problem identified in

the proposed system. Threat of theft is one of the problems that been identified in

this project. The project solution is focused to eliminate the risk toward the lowest

possibility rate. The observation of checkout event in Lotus which has provide

inspiration for solution of the problem. There are at least one or two workers will be

patrol around at self-checkout machine. One of the purposes is to assist those

customers who encounter problem when using the self-checkout machine. The most

important is to monitor those who having dishonest behavior during the checkout

process.

In this fact-finding, observation has been conducted through second field visit at

lotus supermarket on 2 April 2022. The processes/step found in the observation is

following:

1. Customer with items queue for the self-checkout machine slot.

2. Customers go to the self-checkout machine slot.

3. Customers click scan item button.

4. Customers start scan their items.

44

5. Customer put the scanned item to the weight detector,

6. Customers repeat the scanning.

7. Customers click checkout button

8. Customers select payment method for checkout.

9. Customers use the payment method to checkout his items.

10. Customer pack his item from the weight detector.

11. Customer leaves the area.

Above are the second-round observations of SST at Lotus. The workflows and

process are being determined through the second field visit. There are some features

and service are being referred to the proposed project. The main features are

scanning the items barcode, items cart, payment method and customer service. These

features are important and will be implemented in proposed project.

The field visit at Lotus of self-checkout related photos is attached in appendix part as

“Appendix A”.

45

4.2.2 Questionnaire

In this section, questionnaire is conducted using google forms which given a list of

questions with a purpose of data gathering from supermarket consumer. The total

question of the questionnaire is 14 questions.

Figure 4.1: Pie chart of Gender of Respondents.

 The chart above shows the gender type of respondents which from 30

responses in pie chart visualization.

According to the pie chart shows in figure 4.1, there are 56.7% of

respondents is male. Besides, there are 43.3% of respondents is female.

46

Figure 4.2: Pie chart of age group of Respondents.

The above pie chart displayed the percentage of age group of respondents in

visualization. The age group classified in three group which is youth-aged that

between 15 years old to 24 years old, middle-aged between 25 years old to 64 years

old, and senior-aged is 65 above. According to the pir chart, the majority respondents

are from youth group which occupied 73.3%. Middle-aged and senior-aged has

equally shown in pie chart.

Figure 4.3: Pie chart of paying at cashier counter related question.

The above pie chart visualised the percentage of paying at cashier counter

related question. There are 86.7% respondents thinks that paying at cashier counter

will be more time consuming. However, there are respondents (13.3%) has no

objection towards time taken during whole process of physical cashier counter from

queuing up until paying at cashier counter.

47

Figure 4.4: Pie chart of experiencing self-checkout related question.

The above pie chart visualized the percentage of respondents who ever

experience self-checkout by using a mobile app or device. There are 66.7% of

respondents experienced self-checkout system by using a mobile app or device.

However, there are 33.3% never experience any self-checkout system by using any

mobile app or device.

Figure 4.5: Pie chart of experiencing self-checkout related question.

The above pie chart visualized the percentage of respondent’s result is based

on question 7. According to the pie chart, there are 75% of respondents seldom use

the self-checkout system to pay for their item. However, there are 25% of

respondents are often use the self-checkout system. It can be concluded that the self-

checkout system is still in developing form, it considers less popular in one of the

payment methods.

48

Figure 4.6: Bar chart of place that done self-checkout related question.

The above bar chart visualized the percentage of respondent’s result is based

on question 7. The above bar chart shown location that respondents has experience

self-checkout before. There are 75% of respondents which 15 people out of 30

people has experienced self-checkout at supermarket. There are 35% of respondents

which 7 people out of 30 people has experience self-checkout at groceries store.

However, the other data shows 10% of respondents experience at minimarket, while

there are each 5% experience self-checkout at hotel place and IKEA.

49

Figure 4.7: Bar chart of rating self-checkout related question.

The above bar chart visualized the percentage of respondent’s result is based

on question 7. The above bar chart of respondents gives a rating of experience in

using the self-checkout application in a scale 1 to 5. The result shows there are

majority (80%) of respondents is in a satisfactory range by experiencing self-

checkout system. However, there are 20% of respondents are gives a normal rating in

experience the self-checkout system. The self-checkout system is still can be

improved and become known by everyone in the future.

50

Figure 4.8: Pie chart of self-checkout related question.

The above pie chart visualized the percentage of respondent’s result is based

on question 7. There are 40% of respondents refused to experience the self-checkout

system if available. This may bring a reason that user may not clear and understand

what a self-checkout system is. Besides, the other reason may be that they are less

confident to use the self-checkout system since they never used it before, and also

that they will think that the self-checkout system will consume more time to learn

and operate which it possibly takes longer time than queuing up at physical cashier

counter. However, there are 60% of respondents are still wanting to experience the

self-checkout system if available.

51

Figure 4.9: Bar chart of self-checkout related question.

The above bar chart visualized the percentage of respondent that situation led

them to apply self-checkout when doing transaction. There is majority (80%) of

respondents would apply the self-checkout system to do the transaction while it can

allow them to pay their item faster than queue up at cashier counter. Besides, there

are 36.7% of respondents would apply self-checkout system when pay for less items.

Lastly, there are 33.3% of respondents would apply self-checkout system because

they think that is cleaner and hygiene compared to physical cashier counter.

Figure 4.10: Pie chart of self-checkout related question.

The above pie chart visualized the 90% of respondents is agree that self-

checkout application is more convenient to pay for their items. Besides, there are 10%

of respondents is disagree.

52

Figure 4.11: Bar chart of features of self-checkout related question.

The above bar chart shows that content of categorization is majority (66.7%)

needs for respondents. The second features that might needs from respondents is

advance search function which occupied 56.7%. History will be the third (50%)

needs from respondents that shows in the bar chart. However, profile is dispensable

for respondents (36.7%) which is not the necessary features for the application.

Lastly, there are 70% of respondents think that notification might be not necessary to

apply in the application.

 In the other question, an open-ended question has been conducted with a

purpose of collect the suggestion of respondents regarding the other features of self-

checkout application that respondents would like to provide. An opinion and

suggestion are important from a supermarket user to carry out a user friendly and

user experience self-checkout application. Their suggestions are vital which may be

possible to generate some inspiration of what is primary and secondary features that

user might need throughout the implementation of application. Based on the response,

some respondents may think that customer service is needed. Besides, some

respondents provide suggestion of poster, news and chat features may need to

implement in the self-checkout application.

In nutshell, above questionnaire practice is to determine whether the

supermarket self-checkout application will bring a benefit and convenience to

supermarket consumer. The practice also identifies the extent of acceptance in

53

supermarket self-checkout application from the respondents. Besides, the

questionnaire practice also helps to analyse primary modules and features that expect

to be implemented in the supermarket self-checkout application.

4.3 Requirement Specification

In this section, software requirement specification (SRS) will be conducted. The SRS

documentation describes the details of what will be implemented in the application

and deliver it for approval.

4.3.1 Customer-side mobile application

This section describes the software requirements for modules of customer-side

mobile application.

4.3.1.1 User checkout

1. Supermarket user shall be able to scan product with barcode into cart.

2. Supermarket user shall be able to remove unwanted product from the cart.

3. Supermarket user shall be able to checkout all products in the cart by using

online transaction.

4. Supermarket user shall be able to receive the payment e-receipt.

4.3.1.2 User activity history

1. Supermarket user shall be able to view payment history.

2. Supermarket user shall be able to request for refund.

3. Supermarket user shall be able to add previous set of orders into cart from

user activity history.

4.3.1.3 Account

1. Supermarket user shall be able to log in to the application with user credential.

2. Supermarket user shall be able to edit their profile information such as name,

address, phone number etc.

3. Supermarket user shall be able to log out from the application.

4. Supermarket user shall be able to recover their application password.

54

4.3.1.4 Notification

1. Supermarket user shall be able to receive notification with new event, poster,

promotion, feedback reply etc.

2. Supermarket user shall be able to view details of notification.

3. Supermarket user shall be able to mute the notification.

4.3.1.5 Feedback

1. Supermarket user shall be able to send feedback.

2. Supermarket user shall be able to update feedback.

3. Supermarket user shall be able to receive feedback retrieved from merchant

user.

4. Supermarket user shall be able to delete specific feedback.

4.3.2 Merchant-side web application

4.3.2.1 Manage products

1. Merchant user shall be able to add supermarket products into application.

2. Merchant user shall be able to edit supermarket products.

3. Merchant user shall be able to remove supermarket products.

4. Merchant user shall be able to update supermarket products.

5. Merchant user shall be able to live and unlive specific product or category of

products with listing and delisting.

4.3.2.2 Advanced search function

1. Merchant user shall be able to search all products in the application.

2. Merchant user shall be able to search with product name or category in the

application.

3. Merchant user shall be able to search products with only one single alphabet

in the application.

4. Merchant user shall be able to choose specific product category to search the

product.

4.3.2.3 Feedback

1. Merchant user shall be able to view all feedbacks from supermarket user-side.

2. Merchant user shall be able to view details of each feedback.

3. Merchant user shall be able to reply feedback to specific user.

4.3.2.4 Notification

1. Merchant user shall be able to view all created notification.

55

2. Merchant user shall be able to create notification by insert title, content and

image.

3. Merchant user shall be able to delete specific notification.

4.3.3 Administrative web application

4.3.3.1 Manage Merchant Account

1. Administrator shall be able to add new merchant user account.

2. Administrator shall be able to update merchant user account information.

3. Administrator shall be able to switch status of specific merchant user account.

4. Administrator shall be able to view list of all merchant user account.

4.3.3.2 Manage Customer News

1. Administrator shall be able to add new news into application.

2. Administrator shall be able to update news details into application.

3. Administrator shall be able to delete news from application.

4. Administrator shall be able to view list of all news from application.

4.3.4 Non-Function Requirements

1. The mobile application shall allow users to access when there is having an

internet connection only.

2. The mobile application shall allow android users to access the application

only.

3. The mobile application shall be able to access by users at any time.

4. The mobile application shall be available a specific user layout for senior

citizen.

56

4.4 Use Case Modelling

4.4.1 Use Case Diagram

4.4.1.1 User Checkout

Figure 4.12: User checkout use case diagram

57

4.4.1.2 User Activity History

Figure 4.13: User activity history use case diagram

58

4.4.1.3 User Account Related

Figure 4.14: User account related use case diagram

59

4.4.1.4 Notification Related

Figure 4.15: Notification related use case diagram

60

4.4.1.5 Feedback Related

Figure 4.16: Feedback related use case diagram

61

4.4.1.6 Manage Products

Figure 4.17: Manage products use case diagram

62

4.4.1.7 Advanced Search Functions

Figure 4.18: advance search function use case diagram

4.4.1.8 Manage Merchant

Figure 4.19: Manage merchant use case diagram

63

4.4.1.9 Manage Customer News

Figure 4.20: Manage customer news use case diagram

4.4.1.10 Location

Figure 4.21: Location use case diagram

64

4.5 Use Case Description

4.5.1 Mobile Application for Supermarket Self-Checkout

Use case name Scan item

Actor Supermarket user

Description Supermarket user scan item using the phone scanner

integrated into the mobile application.

Flow of Events

1. Supermarket user accepts grand access for scanning and current location.

2. Supermarket user scan item with item barcode.

3. Supermarket user adds quantity for the existing scanned item.

4. Supermarket user confirm add item into cart.

5. System display add item succeeded.

Alternative Flow of Events:

2.1 QR scan failed

 2.1.1 Scan process terminates.

Use case name Checkout items

Actor Supermarket user

Description Supermarket user checkout all items in the cart.

Flow of Events

1. System calculates total amount of items in the cart.

2. Supermarket user select pay for all items in the cart.

3. Supermarket user selects payment method to pay for the items.

4. System sends request to server to verify the payment.

5. System display payment is succeeded.

6. System generates e-receipt.

7. System displays generated e-receipt.

Alternative Flow of Events:

4.1 Payment failed

 4.1.1 Payment process terminates.

65

Use case name Log in

Actor Supermarket user

Description Supermarket user login to the system.

Flow of Events

1. Supermarket user inserts email and password to log in to the system.

2. System verifies the supermarket user authentication.

3. System display supermarket user login succeeded.

Alternative Flow of Events:

2.1 Invalid email or password.

 2.1.1 Supermarket user authentication failed.

 2.1.1.1 System login terminated.

Use case name Log out

Actor Supermarket user

Description Supermarket user logout from the system.

Flow of Events

1. Supermarket user presses the log out button.

2. System display notice of confirmation of log out process.

3. System display log out is succeeded.

Use case name Recover password

Actor Supermarket user

Description Supermarket user recover their account forgotten

password.

Flow of Events

1. Supermarket user click the forgot password at login page.

2. Supermarket user input the email of their account.

3. System sends a recovery verify code to the email account.

4. Supermarket user copy the verify code and paste to recovery the account

password.

5. Supermarket user redirect to web page to reset the password.

6. System display password is changed successfully.

66

Use case name Change password

Actor Supermarket user

Description Supermarket user changes their account password.

Flow of Events

1. Supermarket user is entering profile page.

2. System displays the personal information.

3. Supermarket user selects change password button.

4. System displays new password and confirm new password to merchant user.

5. Supermarket user fills in the new password and confirm new password.

6. Supermarket user select confirm change password button.

7. System display confirmation message to supermarket user.

8. System displays new password updated successfully.

Use case name Update profile

Actor Supermarket user

Description Supermarket user updates their personal information

Flow of Events

1. Supermarket user enters profile page.

2. System displays the personal information.

3. Supermarket user edits their information.

4. Supermarket user confirms edited information.

5. System displays personal information updated successfully.

Use case name View notification

Actor Supermarket user

Description Supermarket user updates their personal information

Flow of Events

1. Supermarket user clicks notification tab.

2. System displays the list of notifications.

3. Supermarket user selects a notification detail.

4. System displays the notification details.

67

Use case name Create feedback

Actor Supermarket user

Description Supermarket user creates and submit feedback.

Flow of Events

1. Supermarket user selects feedback on home page.

2. Supermarket user creates new feedback.

3. Supermarket user fills in the information which include feedback, details,

subject etc.

4. Supermarket user press create button to create current feedback.

5. System display confirmation message for creating the feedback.

6. Supermarket user agrees to create feedback by pressing the confirm button.

7. System display feedback is submitted successfully.

Use case name Update feedback

Actor Supermarket user

Description Supermarket users update specific feedback.

Flow of Events

1. Supermarket user selects feedback on homepage.

2. Supermarket user selects specific feedback to update.

3. Supermarket user selects update button.

4. System display confirmation message for update the feedback.

5. Supermarket user agrees update action by pressing the confirm button.

6. System display feedback is updated successfully.

Use case name Delete feedback

Actor Supermarket user

Description Supermarket user deletes specific feedback.

Flow of Events

1. Supermarket user selects feedback on homepage.

2. Supermarket user selects specific feedback to delete.

3. Supermarket user slides the feedback to left.

4. System display delete button.

5. Supermarket user press delete button.

68

6. System display confirmation message for deleting the feedback.

7. Supermarket agrees the delete action by pressing the confirm button.

8. System display feedback is deleted successfully.

Use case name View Order History

Actor Supermarket user

Description Supermarket user view order history.

Flow of Events

1. Supermarket user views all order history on homepage.

2. System display array of order history.

3. Supermarket user presses specific order history to view details.

4. System displays specific order history details.

Use case name Grand Access Location

Actor Supermarket user

Description Supermarket user’s location is granted to access.

Flow of Events

1. Supermarket user login into application with credential.

2. System request location permission from supermarket user.

3. Supermarket user accepts the permission.

4. System track user current location to find nearest merchant store.

5. System display nearest merchant profile picture.

4.5.2 Web-based application for Merchant Users

Use case name Create product

Actor Merchant user

Description Merchant user creates products to the supermarket

self-checkout application.

Flow of Events

1. Merchant user select add product button.

2. Merchant user inserts all information by inputting product name, product

category, product description, product promotion price, product original

thumbnail, image etc.

69

3. Merchant user chooses to publish with delisting the product.

4. Merchant user confirms all the information is correct then choose to publish

live product.

5. System display product is uploaded successfully.

Alternative Flow of Events:

3.1 Publish failed

3.1.1 Display error message.

3.1.2 Merchant user input empty field.

3.1.3 Repeat again from flow 3.

Use case name Edit and update product

Actor Merchant user

Description Merchant user edits and updates product in the

supermarket self-checkout mobile application.

Flow of Events

1. Merchant user selects specific product.

2. System display product details.

3. Merchant user select edit button.

4. Merchant user edits existing product information.

5. Merchant user chooses to update with delisting the product.

6. Merchant users confirm all the information is correct then choose to publish

live product.

7. System display product is updated successfully.

Alternative Flow of Events:

3.2 Publish failed

3.2.1 Display error message.

3.2.2 Merchant user input empty field.

3.2.3 Repeat again from flow 3.

Use case name Delete product

Actor Merchant user

Description Merchant user deletes product from the supermarket

self-checkout mobile application.

70

Flow of Events

1. Merchant user selects specific product.

2. System display product details.

3. Merchant user select delete button.

4. System display confirmation message.

5. Merchant user confirms to delete the product.

6. System display product is deleted successfully.

Use case name Log in

Actor Merchant user

Description Merchant user login to the system.

Flow of Events

1. Merchant user inserts email and password to log in to the system.

2. System verifies the supermarket user authentication.

3. System display merchant user login succeeded.

Alternative Flow of Events:

1.1 Invalid email or password.

1.1.1 Merchant user authentication failed.

1.1.2 System login terminated.

Use case name Log out

Actor Merchant user

Description Merchant user logout from the system.

Flow of Events

1. Merchant user presses the log out button.

2. System display notice of confirmation of log out process.

3. System display log out is succeeded.

Use case name Recover password

Actor Merchant user

Description Merchant user recover their account forgotten

password.

Flow of Events

71

7. Merchant user click the forgot password at login page.

8. Merchant user input the email of their account.

1. System sends a recovery verify code to the email account.

2. Merchant user copy the verify code and paste to recovery the account

password.

3. Merchant user redirect to web page to reset the password.

4. System display password is changed successfully.

Use case name Update profile

Actor Merchant user

Description Merchant user updates their personal information

Flow of Events

1. Merchant user is entering profile page.

2. System displays the personal information.

3. Merchant user is editing their information.

4. Merchant user confirms edited information.

5. System displays personal information updated successfully.

Use case name Change password

Actor Merchant user

Description Merchant user change their account password.

Flow of Events

9. Merchant user is entering profile page.

10. System displays the personal information.

11. Merchant user selects change password button.

12. System displays new password and confirm new password to merchant user.

13. Merchant user fills in the new password and confirm new password.

14. Merchant user select confirm change password button.

15. System display confirmation message to merchant user.

16. System displays new password updated successfully.

Use case name Create notification

72

Actor Merchant user

Description Merchant user creates a notification to supermarket

user.

Flow of Events

1. Merchant user goes to manage user tab.

2. Merchant user select create notification

3. Merchant user fills in the information by inputting title and description.

4. Merchant user click create notification to fire up the notification to all users.

5. System display notification has been sent successfully.

Use case name Update notification

Actor Merchant user

Description Merchant user update existing notification to

supermarket user.

Flow of Events

1. Merchant user goes to manage user tab.

2. Merchant user selects an existing notification.

3. Merchant user edits the information.

4. Merchant user click update notification and send to all users.

5. System display notification has been sent successfully.

Use case name Delete notification

Actor Merchant user

Description Merchant user deletes existing notification.

Flow of Events

1. Merchant user goes to notification tab.

2. Merchant user selects an existing notification.

3. Merchant user deletes the existing notification.

4. System display notification has been deleted successfully.

Use case name View feedback

Actor Merchant user

Description Merchant user view existing feedback from

73

supermarket user.

Flow of Events

1. Merchant user goes to feedback tab.

2. Merchant user selects user feedback.

3. System displays a list of user feedback.

4. Merchant user clicks specific user feedback.

Use case name Update feedback

Actor Merchant user

Description Merchant user update/follow up the user feedback.

Flow of Events

1. Merchant user enter feedback tab.

2. Merchant user selects specific notification.

3. Merchant user select follow up button.

4. Merchant user input all information.

5. Merchant user click send to the user.

6. System display feedback has been sent successfully.

Use case name Advanced Search

Actor Merchant user

Description Merchant user uses advanced search to full searching

for products.

Flow of Events

1. Merchant user manages product page.

2. Merchant user selects search bar.

3. Merchant user search products by inputting keyword under product name,

category, listing and delisting etc.

4. System displays all the related products by search results.

4.5.3 Web-based application for Administrator

Use case name Create merchant account

Actor Administrator

Description Administrator creates account for merchant user.

74

Flow of Events

1. Administrator requests email address from merchant user.

2. Merchant user provides email address to administrator.

3. Administrator select manage merchant tab.

4. Administrator select create account.

5. Administrator fills in all information by inputting merchant name, merchant

contact, merchant email, merchant address, merchant default password etc.

6. System displays merchant account in the merchant list.

Use case name Edit Merchant Account

Actor Administrator

Description Administrator edits merchant account.

Flow of Events

1. Administrator selects the merchant details.

2. Administrator edits merchant details.

3. Administrator selects update button.

4. System updated merchant information and display on the merchant list.

Use case name Manage Merchant Status

Actor Administrator

Description Administrator manages merchant subscription status.

Flow of Events

1. Administrator selects the merchant details.

2. Administrator switches merchant status.

3. Administrator selects the update button.

4. System updated the merchant status.

Use case name Reset Password

Actor Administrator

Description Administrator reset merchant account password.

Flow of Events

1. Administrator selects the merchant details.

2. Administrator selects the reset password button.

75

3. System prompt confirmation for the reset to default password process.

4. Administrator agrees the reset password process.

5. System reset merchant password into default password.

Use case name Create News

Actor Administrator

Description Administrator creates supermarket user side’s news.

Flow of Events

1. Administrator press create button.

2. System pops up create news page modal.

3. Administrator key in news details by inputting news title, news description

and news photo.

4. Administrator press create button in create news page.

5. System prompt confirmation for creating the current news.

6. Administrator agrees create news action.

7. System displays the added a news.

Use case name Edit News

Actor Administrator

Description Administrator edits supermarket user side’s news.

Flow of Events

1. Administrator press edit button on specific news.

2. System pops up edit news page modal.

3. Administrator edits news details.

4. Administrator press edit button in edit news page.

5. System prompt confirmation for updating the current news details.

6. Administrator agrees editing news action.

7. System updates the current news details.

Use case name Delete News

Actor Administrator

Description Administrator deletes supermarket user side’s news.

Flow of Events

1. Administrator press edit button on specific news.

76

2. System pops up edit news page modal.

3. Administrator press delete button at bottom of the modal.

4. System prompt confirmation for deleting the current news.

5. Administrator agrees delete action.

6. System deletes the current news.

77

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter focused on system design phase which include system architecture,

system design pattern and database design. Besides, there are three user interfaces

will be visualized in this chapter which are senior user interface, normal user

interface and also the merchant side user interface.

5.2 System Architecture

Figure 5.1: Overview of System Architecture

78

 In this project, the system architecture involved multiple subnets and layers

of its services. The overview of system architecture that shows above, subnet 1 have

back-end server and subnet have two frond-end clients.

 AWS Elastic Beanstalk is a framework which provide cloud service within

AWS for deployment and auto scaling the web applications. Elastic Beanstalk will

handle deployment from capacity provisioning, load balancing and auto scaling when

developer uploading the software code to the provided services environment as it

acts as a service (PaaS). In short, a central or fully stacked panel for hosting the

applications, AWS Elastic Beanstalk is taking part on it. Other than this, there is no

cost for creating an Elastic Beanstalk environment, but it cost for using their

resources such as run application with their ES3 storage services. In this project, it

will be using their storage services in the application to store JSON files, thumbnail,

images, merchant data and also customer data.

 Auto Scaling group act as logical grouping that helps auto scaling and

manage services which contains collection of EC2 instances. It is provided more

convenient to developer to maintain their application which search for the

availability and auto scale such as add and remove EC2 instances which performed

by the conditions of developer defined. Additionally, developer can add or remove

EC2 instances using the auto scaling features such as dynamic and predictive scaling

features. In shorts, auto scaling group helps developer with their server which are

always accessible which it ensures efficiently and dynamically using the least

amount of resources and reduce the overall cost.

 Security group is one of important part must be involved in this project. It can

include user personal information, merchant personal information within this

application. The security group served as a virtual firewall and monitoring the traffic

of server. In EC2 instance, the security group handles inbound and outbound traffic

and request. A default security group is built if create a VPC. Rules and Regulations

can be added to control the traffic based on the networks and there are inbound and

outbound which the sets of rules have been separated.

79

5.3 System Design Pattern

The system design pattern in this project is apply using MVC (Model-View-

Controller) architecture. The concept of MVC design pattern is separates into three

logical components which is model, view and controller. Each of components is

handle its important task which results an application. The presentation layer and

business logic are separated by MVC design patterns. Historically, it was applied for

desktop GUIs (Graphical User Interfaces). Nowadays, it is quite popular to be

applied in developing a web application and also developing a mobile application.

Figure 5.2: MVC architecture.

The figure above visualizes the MVC architecture with flows. First of all, model play

an important role as component that stores data and data-oriented logic that operated

by user. It is a representation of any business logic or data being passed between

controller components. The view component is served as the presentation of data.

The view can be represented the data from charts, diagram and also tables which all

is display as customer view that include all UI components such as icon, buttons,

toggles or even sliders. The role of controller component is to handles the request

from client side and manipulate request data or even update data from model. The

80

controller is the input from user that uses mouse and keyboard to inform model and

view to perform accordingly.

 MVC architecture has bring up the benefit when come to the software

development. It has easy code maintenance when the project is required to extend or

maintain. In MVC architecture, each of component is allowed to separately test by

developer. When developer wanted to test specific software component, this

architecture has allowed them to test separately and would not affect each other.

Besides, MVC also advantages in developing an object-oriented software since it

facilitates rapidly and can be performed parallelly that helps to avoid complexity.

Additionally, developer can rely on MVC which are widely recognised as solution to

recurrent issues and are employed to create scalable, reusable, and modular system. It

works fine for web development which supports a larger team of developer to work

together.

 In this project, to build an application of supermarket checkout, it uses the

framework of Ionic which also build with MVC design pattern. In ionic framework,

AngularJS will detect the changes of model and updates the view which represent a

two-way data binding. The view is interacted with user which to input data to

controller and controller will manipulate the model and interact API then render to

view.

81

5.4 Database Design

In this section, database design is including physical entity relational diagram and

logical relational diagram. Both ERD diagram shows the relationship between

entities. Besides, data dictionary for each of database table are describes which to

show the relationship of attributes with each of table.

5.4.1 Physical Entity Relationship Diagram

Figure 5.3: Physical Entity Relationship Diagram.

82

5.4.2 Logical Entity Relationship Diagram

Figure 5.4: Logical Entity Relationship Diagram.

83

5.4.3 Data Dictionary

5.4.3.1 Merchants

Attribute Data type Constraint Description Acceptance

Values

Example Values

merchant_id SERIAL Primary Key Unique identifier of merchant

user

0-9999999 1

uid VARCHAR (16) Not null Authentication for merchant Firebase generate jBvq9xEqhHON79ivyHMJN6S0kaX2

name VARCHAR (50) Not null Name of merchant user * KayShop

status BOOLEAN Not null The status of merchant user boolean True, False

description TEXT Null The description of merchant

user

* (.*?)

longitude FLOAT Not null The longitude of the merchant

location

number 101.12312312

latitude FLOAT Not null The latitude of the merchant

location

number 101.12312312

email VARCHAR Not null The email of merchant user Character and

number

Testing3251@gmail.com

password TEXT Not null The password of merchant user * Hello!2345

84

address VARCHAR Null The address of merchant user A-Z, 0-999999 No 1, jln friend

state VARCHAR Null The state of merchant user A-Z Selangor

postcode BIGINT Null The postcode of merchant user 0-999999 37410

contact VARCHAR (20) Not null The contact number of merchant

user

0-9 60123456789

date BIGINT Not null The merchant account created

date

System generates 16000000000

85

5.4.3.2 Products

Attribute Data type Constraint Description Acceptance Values Example Values

product_id SERIAL Primary Key Unique identifier of product 0-9999999 234673473214

merchant_id VARCHAR (30) Foreign Key Merchant id Foreign key 1

name VARCHAR (120) Not null Name of product A-Z KayShop

status BOOLEAN Not null The status of product boolean True, False

description TEXT Null The description of product * New Fresh Vege

photo JSON Not null Photo of products Array to json “[{‘name’:

‘link’}]”

date BIGINT Not null Date product input System generates 160000000

qty BIGINT Not null Product capacity 0-9 2000

price NUMERIC (30,2) Not null Product price 0-9 200

category VARCHAR (100) Not null Product category A-Z meat

86

5.4.3.3 Orders

Attribute Data type Constraint Description Acceptance Values Example Values

order_id SERIAL Primary Key Unique identifier of order 0-9999999 234673473214

product_id BIGINT Foreign Key Id of the product Foreign key 1

user_id BIGINT Foreign Key Id of the user Foreign key 1

cart_id VARCHAR Not null Id of the cart Firebase generates -

N5a6KEt85lv8CTpD4mv

name TEXT Not null Name of product A-Z KayShop

status BOOLEAN Not null The status of order boolean True, False

description TEXT Null The description of product * New Fresh vege

photo JSON Not null The photo of product Array to JSON “[{‘name’: ‘link’}]”

date BIGINT Not null The date of order System generates 160000000

qty BIGINT Not null The qty of order 0-9 5

price NUMERIC (30,2) Not null The price of product 0-9 30

87

5.4.3.4 Users

Attribute Data type Constraint Description Acceptance Values Example Values

user_id INT Primary Key Unique identifier of user 0-9999999 234673473214

uid VARCHAR Not null Firebase generated user id 0-9999999, a-z BHJF34SA45Q2J

name TEXT Not null Name of user A-Z KayShop

email TEXT Not null The email of user * user@gmail.com

status BOOLEAN Not null The status of user boolean True, False

description TEXT Null The description of user * Hello World,

photo JSON Not null The profile photo of user Array to JSON “[{‘name’: ‘link’}]”

date BIGINT Not null The user account created date System generates 160000000

dob BIGINT Not null The date of birth of user Timestamp 160000000

address VARCHAR Not null Address of user 0-9999999, a-z No 1, jln friend

state VARCHAR Not null State of user A-Z Selangor

postcode BIGINT Not null Postcode of user 0-999999 37410

contact BIGINT Not null Contact number of user 0-9 012345689

gender TEXT Not null The gender of user * Male

longitude FLOAT Not null The longitude of user location Number 101.11203333

latitude FLOAT Not null The latitude of user location Number 101.11203333

88

5.4.3.5 Feedbacks

Attribute Data type Constraint Description Acceptance

Values

Example Values

feedback_id SERIAL Primary Key Unique identifier of feedback 0-9999999 234673473214

user_uid BIGINT Foreign Key Unique identifier of user 0-9999999 234673473214

merchant_uid VARCHAR Foreign Key Unique identifier of merchant Foreign key 1

status BOOLEAN Not null The status of user boolean True, False

description TEXT Null The description of user * Hi I am user

title VARCHAR Not null The title of feedback a-z,A-Z, 0-

99999…

The product is

broken

date BIGINT Not null The feedback created date Timestamp 02-12-2021

respond TEXT Not null The respond details of feedback * Hi, user, thank your

for your feedback!

photo JSON Null The feedback photo Array to JSON “[{‘name’: ‘link’}]”

type VARCHAR Not null The type of feedback * general

respond_photo JSON Null The merchant reply feedback photo Array to JSON “[{‘name’: ‘link’}]”

respond_date BIGINT Not null The feedback reply date Timestamp 05-12-2021

respond_title VARCHAR Not null The feedback reply subject a-z,A-Z, 0- Return and refund

89

99999…

5.4.3.6 Notifications

Attribute Data type Constraint Description Acceptance Values Example Values

notification_id SERIAL Primary Key Unique identifier of notification 0-9999999 234673473214

user_id INT Foreign Key Unique identifier of user 0-9999999 234673473214

merchant_id VARCHAR Foreign Key Unique identifier of merchant Foreign key 1

status BOOLEAN Not null The status of notification boolean True, False

description TEXT Null The description of notification * Hola, we got a big

promotion today!

title VARCHAR Not null The title of notification A-Z, a-z ,0-99999 Promotion 11.11

date BIGINT Not null The notification created date timestamp 16000000

photo JSON Null The notification photo Array to JSON “[{‘name’: ‘link’}]”

90

5.4.3.7 News

Attribute Data type Constraint Description Acceptance Values Example Values

new_id SERIAL Primary

Key

Unique identifier of news 0-9999999 1

status BOOLEAN Not null The status of news boolean True, False

description TEXT Null The description of news * Today is promotion day!

title VARCHAR Not null The title of news A-Z,a-z,0-9 Follow our store to get discount!

date BIGINT Not null The news created date timestamp 16000000

photo JSON Not null The photo of news Array to JSON “[{‘name’: ‘link’}]”

5.5 User Interface Design

In this section, shows the user interface design of proposed system. The user

interface (UI) is drafted using the figma. The user interface design is present by

screen prototyping which provide a blueprint for development stage. The user

interface is drafted and meets the project expectations and support the software

component. Besides, with the first draft of UI, it helps complete the project with

shorter time. In this project, the total of user interfaces is 3 which one is web

application for merchant-side. Mobile applications for normal supermarket user and

mobile applications for senior supermarket user.

5.5.1 Web Application for Merchant

5.5.1.1 Merchant User Login Page

Figure 5.5: Merchant user login page screen.

5.5.1.2 Merchant User Manage Product Page

Figure 5.6: Merchant user manage product page screen.

5.5.1.3 Merchant User Add New Product Page

Figure 5.7: Merchant user add new product page screen.

5.5.1.4 Merchant User Add New Product continue Page

Figure 5.8: Merchant user add new product continue page screen.

5.5.1.5 Merchant User Manage Feedback List Page

Figure 5.9: Merchant user manage feedback list page screen.

5.5.1.6 Merchant User Manage Specific Feedback Page

Figure 5.10: Merchant user manage specific feedback page screen.

5.5.1.7 Merchant User Reply Specific Feedback Page

Figure 5.11: Merchant user Reply specific feedback page screen.

5.5.1.8 Merchant User Manage Notification Page

Figure 5.12: Merchant user manage notification page screen.

5.5.1.9 Merchant User Create Notification Modal

Figure 5.13: Merchant user create notification modal.

5.5.1.10 Merchant User Edit Profile Page

Figure 5.14: Merchant user edit profile page screen.

5.5.1.11 Merchant User Edit Notification Page

Figure 5.15: Merchant user edit notification page screen.

5.5.2 Supermarket Normal User

5.5.2.1 Supermarket User Login Page

Figure 5.16: Login page screen.

5.5.2.2 Supermarket User Sign Up Page

Figure 5.17: Register page screen.

5.5.2.3 Supermarket User Home Page

Figure 5.18: Home page screen.

5.5.2.4 Supermarket User Notification Page

Figure 5.19: Notification page screen

5.5.2.5 Supermarket User Cart Page

Figure 5.20: Cart page screen.

5.5.2.6 Supermarket User Profile Page

Figure 5.21: Profile page screen.

5.5.2.7 Supermarket User Edit Profile Page

Figure 5.22: Edit profile page screen.

5.5.2.8 Supermarket User Order History Page

Figure 5.23: Order History page screen.

5.5.2.9 Supermarket User Favourite Page

Figure 5.24: Favorite page screen.

5.5.2.10 Supermarket User Feedback Page

Figure 5.25: Feedback page screen.

5.5.2.11 Supermarket User Feedback Form Page

Figure 5.26: Feedback form page screen.

5.5.2.12 Supermarket User Feedback Details Page

Figure 5.27: Feedback details page screen.

5.5.2.13 Supermarket User Scan Item Page

Figure 5.28: Scan item screen.

5.5.2.14 Supermarket User Add Item Page

Figure 5.29: Add item page screen.

5.5.2.15 Supermarket User Order History Details Page

Figure 5.30: Order details page screen.

5.5.2.16 Supermarket User News Details Page

Figure 5.31: News details page screen.

5.5.2.17 Supermarket User Merchant List Page

Figure 5.32: Merchant List page screen.

5.5.2.18 Supermarket User Settings Page

Figure 5.33: Settings page screen.

5.5.2.19 Supermarket User Recover Password Page

Figure 5.34: Recover Password page screen.

5.5.2.20 Supermarket User Notification Details Page

Figure 5.35: Notification details page screen.

5.5.3 Supermarket senior user

5.5.3.1 Supermarket Senior-Age User Login Page

Figure 5.36: Senior user login page screen.

5.5.3.2 Supermarket Senior-Age User Register Page

Figure 5.37: Senior user register page screen.

5.5.3.3 Supermarket Senior-Age User Home Page

Figure 5.38: Senior user home page screen.

5.5.3.4 Supermarket Senior-Age User Edit Profile Page

Figure 5.39: Senior user edit profile page screen.

5.5.3.5 Supermarket Senior-Age User Cart Page

Figure 5.40: Senior user cart page screen.

5.5.3.6 Supermarket Senior-Age User Scan Page

Figure 5.41: Senior user scan screen.

5.5.3.7 Supermarket Senior-Age User Order History Page

Figure 5.42: Senior user order history page screen.

5.5.3.8 Supermarket Senior-Age User Order Details Page

Figure 5.43: Senior user order details page screen.

5.5.3.9 Supermarket Senior-Age User Profile Page

Figure 5.44: Senior user profile page screen.

5.5.3.10 Supermarket Senior-Age User Profile Page

Figure 5.45: Senior user settings page screen.

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Backend Server

The node.js backend server is resided in this project. In this backend system, there

are three layers which is controller layer, model layer and service layer. As

mentioned in previous chapter, the system is relied upon MVC architecture and when

come to backend server, service is taking part as code reuse, it can inject single piece

function across many controllers. This section will discuss the overview of backend

system.

6.1.1 Overview backend server

Figure 6.1: Overview the RESTful API request from mobile application.

Figure 6.2: Overview the RESTful API request from web application for merchant

side.

The figure shown above is regarding the HTTP request and HTTP response

flow from client to the backend server. The HTTP request handled by controller and

controller will then proceed the request by using model and update to Postgres

database in AWS server. For example, login controller will receive request from

view, and it will manipulate the data through user model and get data from the

database. Once tasks are completed successfully, HTTP response shall be sent back

from login controller and render the information to view and send the view result to

client.

6.1.2 Controller Layer

In this project, the controller layer is generated automatically when the page is

generated through the CLI. The controller itself can handle request from client and

will process the data entry then return the data back to client. The controller using

model to perform the business logic and declare the association from database to

perform the CRUD operation.

6.1.2.1 Login Controller

Customer Side

Figure 6.3: Login Controller Authentication for User.

Figure 6.4: Login Controller Login Function for User.

In the “Login Controller”, the authentication function will check the user

account whether that has been signed in before. After checking the user with recent

sign in status, the system will check the interface (Normal or Simple) that user last

signed in. The login function will work when user push the login button. The system

will check whether user is filling every field, if not, the error dialog will pop up and

show the error description to user.

Merchant Side

Figure 6.5: Login Authentication for Merchant.

In auth controller of merchant side is same with the user authentication. In the

initial state, it will call merchant verify API from server side to identify the merchant

credential.

6.1.2.2 Register Controller

Customer Side

Figure 6.6: Register Controller Source Code.

The figure shown above is “Register Controller'” create function. The

function will check whether user is filling every field that required on the interface. If

all has been filling, the user information will push to database and if not, the error

will pop up to show the error description. The user can create their account by push

the create button.

Admin Side

Figure 6.7: Register for merchant account in Admin panel Source Code.

In admin panel, it manages merchant accounts. Merchant account is first

created by security administrator side which include all merchant information and

created date are recorded in administrative side. Administrative side can decide the

merchant account status such as to off or on the merchant account in admin panel.

6.1.2.3 Notification Controller

Customer Side

Figure 6.8: Notification Controller code segment.

In notification controller, it requests notification api through the notification

service from the server side and return back to user interface.

Merchant Side

Figure 6.9: Create Notification function from merchant side notification controller.

In merchant side notification controller, create function will bind the ngmodel

from view to get both title and content input then check if both are filled. If all inputs

ar filled, the swal message will pop up for create confirmation. “temp” will push

through notification service to server-side database and also “temp2” is push to api

and user will receive a notification pop up.

6.1.2.4 Cart Controller

Customer Side

Figure 6.10: Cart Controller code segment.

The above figure shows code segment of cart controller. The “temp” is a

formatter of changing array to object. The parent is change to product id. Besides, the

cart items are store into local storage. The cart id is generated during each set of

orders and cart id is generated using the first four user id with timestamps which to

ensure cart id will never repeated.

Figure 6.11: Cart Controller checkout function source code.

The above figure shows the checkout function in cart page. The sweet alert

confirmation message will pop up when user push the checkout button. “Swal” is

abbreviation of sweet alert. The sweet alert component such as icon, title, text and

buttons will display to user screen while button choice will affect the result. If user is

press confirm button, the system will check the length of cart and proceed next step.

The http called the order service and insert order into server-side database.

6.1.2.5 Profile Controller

Customer Side

Figure 6.12: Profile Controller code segment in user side.

The above figure is code segment of profile controller. In the function, to sign

out a user account is basically using firebase authentication backend service which is

easy to implement and security.

Figure 6.13: Profile Controller code segment in user side.

The above figure shown api call through user service from the server side

which to request the specific user data by posting specific user id.

Figure 6.14: Update function in edit profile controller in user side.

For profile controller in user side, the controller detects user input and

execute the change action. “Ng model” is directive binding view into model and

contact with controller. The controller gets the data from view and process the data

then called a http from user service to update the data according to the user_id.

Merchant Side

Figure 6.15: Edit Profile Controller code segment in merchant side.

The above figure shown api call through merchant user service from the

server side which to request the specific merchant user data by posting specific

merchant id.

Figure 6.16: Edit Profile Controller update function for merchant.

For profile controller in merchant side, the controller detects merchant user

input and execute the change action. “Ng model” is directive binding view into

model and contact with controller. The controller gets the data from view and

process the data then called a http from merchant service to update the data

according to the merchant_id.

6.1.2.6 Feedback Controller

Customer Side

Figure 6.17: Feedback Controller code segment for user.

The figure above shows code segment of feedback controller for user side.

The firebase authentication will check the status of current user. If it is verified, it

will get http from feedback service to call the server side which to display feedback

details according to feedback id.

Figure 6.18: Feedback Controller create function in user side.

The figure above shows code segment of feedback create controller. The

“feedbackcreate” function will check the view whether it given all information that is

necessary to fill in or it will return error message to view. The merchant id is

according to the selection of user. After all is verified, it will call http from feedback

service and push the data into database.

Merchant Side

Figure 6.19: Feedback Controller code segment for merchant user.

The figure above shows code segment of feedback controller for merchant

side. The firebase authentication will check the status of current merchant user. If it

is verified, it will get http from feedback service to call the server side which to

display feedback details according to feedback id.

Merchant Side

Figure 6.20: Feedback Details Controller code segment for merchant user.

In this controller, to get the feedback details, it need get the feedback id

before return the feedback details to user.

Figure 6.21: Feedback Details Controller function for merchant user.

The above figure shown the feedback data function called after the feedback

id is identified.

Figure 6.22: Feedback Details Controller function for merchant user.

The above figure shown modal controller to feedback reply page. The modal

is called when the feedback id is passed.

6.1.2.7 Order Controller

Customer Side

Figure 6.23: Order History Controller code segment for user.

The figure above shows code segment of order history controller. As

mentioned above, the firebase authentication onAuthStateChanged function will

check user account status. Both user service and order service are called from the

controller which to post http to the view.

6.1.2.8 Display Store Controller

Customer Side

Figure 6.24: Display Store Controller function.

The figure above shown the display store controller function. Once the carter

function is called, the sequence will go with “swal” function which rendering

confirmation message to user, when the system gets the response, it will proceed the

responded action. If confirms, it will push current product into local storage and

display into cart page.

6.1.2.9 Favourite Controller

Customer Side

Figure 6.25: Display Store Controller code segment.

The figure above shown code segment of display store controller. The storage

named “cart” is called whenever the page is entered. Besides, it also called the

products by product id. Lastly, there are also code segment of returning user data by

verifying their id and display the favorite items according to user id.

Figure 6.26: Display Store Controller favorite function source code.

The figure above shown the favorite function source code. The favorite action

is depending on the product id to perform add favorite and remove from favorite. The

default display is unfavorite from product. If user favorite the product, dialog

message will pop up and display success message.

6.1.2.10 Tabs Controller

Figure 6.27: Tabs Controller code segment.

In this controller, a loading function is injected from service component

which the loading animation will pop up before the page is ready.

Figure 6.28: Tabs Controller function.

The “Tabs Controller” will handle the tabs function (home tab, notification

tab, cart tab and profile tab).

Figure 6.29: Tabs Controller Source Code.

The figure above shown the scan function from tabs controller. The scanner is

ionic plugin, it can customize its settings with options. The scanner will detect QR

code and display the relevant data and pass product id to “display store” page.

6.1.2.11 News Controller

Customer Side

Figure 6.30: Read news code segment in customer side.

The figure above shown read news code segment in customer side. The news

http is called when the page is loaded.

Admin Side

Figure 6.31: Create news function code segment in admin side.

The figure above shown the create news function in admin side. The admin

required to enter title, description and image to create news for customer side. If

successful, the dialog message will pop up and display success message.

6.1.3 Service Layer

During the whole code implementation, the service layer is one of the important

layers which to carry api client that provides root url to controller. To get http

response from the remote server, the module needs to import Httpclient provider to

make sure the service is work. After injecting HttpClient, the communication

between remote server and services layer is connected and are able to send Http

Method such as POST, GET, PUT and DELETE requests. In this project, it only uses

two http method which is POST and GET method and details is discussed as below.

6.1.3.1 User Service

Figure 6.32: User service source code.

As figure shown above, one of the examples of user service is contained user

http client which include getuser, updateuser, getuserverify and insertuser. There are

pipeable operators which is error catcher that is like mapping operators. If the http

request is failed, the error object will catch and retrieve the source observable. “User

[]” is model which exported from interface models.

6.1.3.2 Feedback Service

Figure 6.33: Feedback service source code.

6.1.3.3 Order Service

Figure 6.34: Order service source code.

6.1.3.4 Product Service

Figure 6.35: Product service source code.

6.1.3.5 Notification Service

Figure 6.36: Notification service source code.

6.1.3.6 News Service

Figure 6.37: News service source code.

6.1.4 Model Layer

In this project, all of the user's data-related logic is represented by the Model

component. The data that related to a business logic or data is required from

controller to pass to view is manipulated by model component. Model also can

interact with database server to retrieve data or update data into database storage.

Besides, model also process data into data structure such as deserialization and

serialization.

6.1.4.1 User Model

For example, the interface user is a model which all variable is declare with specific

type for user service component which then return to controller component. To

declare the type of each role and return to controller respectively instead of declare

using “as any”. Each model is exported, and it can be imported into service

component when define http client method.

Figure 6.38: User model source code.

The below is models source code in this project which include order, feedback,

product, notification and news.

6.1.4.2 Order Model

Figure 6.39: Order model source code.

6.1.4.3 Feedback Model

Figure 6.40: Feedback model source code.

6.1.4.4 Product Model

Figure 6.41: Product model source code.

.

6.1.4.5 Notification Model

Figure 6.42: Notification model source code.

6.1.4.6 News Model

Figure 6.43: News model source code.

6.1.5 Other Integration

There are two other integrations be integrated to the backend system which to reach

more advancing and functionality in this system. The integrations are Bill Plz and

Firebase Cloud Messaging.

6.1.5.1 Billplz

Billplz is a payment checkout platform that allow customer to perform checkout

function and do transaction through online. For example, customer can check out

their orders in the cart and pay through online transaction in mobile application.

Figure 6.44: billplz api endpoints at server side.

Figure 6.45: billplz api code segment call from server side.

Figure above shown billplz api code segment call from server side. The code

segment above is resided on checkout function which the billplz api will call once

user checkout the items in cart. “window.open(a[‘url’])”, the “url” represent the

billplz link that stated in server side that shown in figure 6.54.

Figure 6.46: billplz payment gateway.

 Figure above shown is an example of billplz payment gateway after checkout

the cart items. The payment method is allowed online payment with various of bank.

6.1.5.2 Firebase Cloud Messaging

Firebase Cloud Message is a notification platform that be used in this project to send

real time notification to all customer mobile application. The customer is able to see

updates announcement, feedback respond, news etc from merchant site.

Figure 6.47: Firebase cloud messaging code segment in app.component.ts.

The figure above shown Firebase cloud messaging code segment in

appcomponent. At initial stage, it will detect whether the notification is on, in the

user settings, this lead to determine the notification will enter into individual or not.

Besides, notification can only be received when user is using android devices, as the

platform is declared to “android” only. This.fcm.subcribeToTopic is allowed this

device to retrieve notification from specific topic.

Figure 6.48: Firebase cloud messaging fcm function in app.component.ts.

As the figure above shown, once the notification is sent to a device, the

notification will pop up to phone. If the notification is tapped, it will display the

notification details on the application. When the notification is notified but not been

tapped, it will be appeared until it be swapped away by user. The notification will

display title and description on the phone.

Figure 6.49: Notification send to topic ‘user’ when merchant created a notification.

The figure above shown the notification send function’s code segment when

merchant created a notification. The notification details will go to a topic and push to

all user once merchant created a notification on merchant dashboard.

6.1.5.3 Amazon S3 Storage Service

The abbreviation of Amazon S3 Storage Service is AWS S3 which is integrated into

the backend system. It provides the service to store user data such as video, images

etc. For example, the QR code that generated once merchant created a product will

be store at AWS bucket.

Figure 6.50: AWS S3 source code on backend.

The figure above shown the AWS S3 upload image source code which

resided on server side. The region, bucket name, API key and secret access key will

generate once the service has created. All above is defined as stated above and

upload function is written for user or merchant user to upload image into S3 bucket.

Figure 6.51: s3.js on backend.

Figure 6.52: Upload file API endpoint on backend.

The figure above shown the upload file API endpoint resided at server side.

The upload module is exported from s3.js and imported into the index.js (API

endpoint resided), the upload file function from s3.js is called to define the upload

file API for client.

Figure 6.53: Edit profile’s upload image code segment.

The figure above shown the upload image function resided in edit profile.

The file change function (upload image) will open the local image gallery and allow

user to upload image which image size is lower than 8MB to S3 bucket. The image

file is JSON format and it post to http client and store into S3 bucket database.

6.1.6 Available Endpoints

API endpoints is the communication point that led two applications to

communication and connect to each other. API is abbreviation of application

program interface which will work when sending a request to grab specific

information from a web server and if is successful, it will be receiving a success

response. There are total of 24 API endpoint that in this project.

Figure 6.54: AWS EC2 server.

6.1.6.1 Mobile Endpoints

Mobile endpoints are written in a file of remote server which called “index js”, the

server that is subscribed plan with Amazon EC2 server and region in southeast.

There is total of 12 API endpoint in mobile side which to provide a point that mobile

side user could request the information that perform CRUD operation and retrieve

information from PostgreSQL database.

Table 6.1 Mobile Endpoints Listing

User Endpoint

No Method Route Descriptions

1 POST upload To upload image

2 POST ‘/getuser, uid’ To get specific user data with user

uid

3 POST ‘/insertuser’ Register process for user

4 POST ‘/updateuser, uid’ To update specific user profile

information with user uid

5 POST ‘/changepassword, uid’ Update changed password with

user uid

6 POST ‘/getuserverify, uid’ Verified the user with user uid

7 POST ‘getalltruemerchant,

status’

Retrieve all merchant with status is

true

Feedback Endpoint

No Method Route Descriptions

8 POST ‘/getfeedback,

feedback_id’

Display specific feedback

9 POST ‘/getuserfeedbacks,

user_id’

Display user feedbacks with user id

10 POST ‘/insertfeedback’ Create new feedback

11 DELETE ‘/deletefeedback,

feedback_id’

Delete specific feedback with

feedback id

Order Endpoint

No Method Route Descriptions

12 POST ‘/getorders, order id’ Retrieve specific order history with

order_id

13 POST ‘/getalluserorders, user_id’ Retrieve all user’s users with

user_ids

14 POST ‘/insertorders’ User checkout product

Product Endpoint

No Method Route Descriptions

15 POST ‘/getproducts, product id’ Retrieve specific product with

product id after scan the QR code

16 GET ‘/getalltrueproduct’ Retrieve all product with status is

true

Notification Endpoint

No Method Route Descriptions

17 POST ‘getnotification,

notification_id’

Retrieve specific notification with

notification id

18 GET ‘/getalltruenotification’ Retrieve all notification with status

is true

News Endpoint

No Method Route Descriptions

19 GET ‘/getnews’ Retrieve news

6.1.6.2 Merchant Endpoints

Merchant endpoints are written in a file of remote server which called “index js”, the

server that is subscribed plan with Amazon EC2 server and region in southeast.

There is total of 12 API endpoint in merchant side which to provide a point that

merchant dashboard user could request the information that perform CRUD

operation and retrieve information from PostgreSQL database.

Table 6.2 Merchant Endpoints Listing

Merchant Endpoint

No Method Route Descriptions

1 POST upload To upload image

2 POST ‘getmerchant, uid’ To get specific merchant data

3 POST ‘updatemerchants,

merchant_id’

To update specific merchant profile

information with merchant id

4 POST ‘getmerchantverify, uid’ Verify merchant with merchant uid

Feedback Endpoint

No Method Route Descriptions

5 POST ‘getfeedback, feedback_id’ Display specific feedback with

feedback id

6 POST ‘/getallvendorfeedback,

merchant_id’

Retrieve all merchant’s feedbacks

with merchant id

7 POST ‘insertfeedbackrespond,

feedback id’

Respond user feedback according

feedback id

Product Endpoint

No Method Route Descriptions

8 POST ‘insertproducts’ Create new product for user mobile

side

9 POST ‘updateproduct, product

id’

Update specific product with

product id

10 POST ‘getproducts, product id’

Retrieve specific product after scan

the QR code

11 POST ‘getalltrueproduct, product

id’

Retrieve product in cart

12 DELETE ‘deleteproduct,

product_id’

Delete specific product with

product id

Notification Endpoint

No Method Route Descriptions

13 GET ‘getnotification,

notification_id’

Retrieve specific notification with

notification id

14 POST ‘Insertnotification’ Create new notification

15 POST ‘getmerchantnotification,

merchant_id’

Retrieve all merchant’s notification

with merchant id

16 DELETE ‘deletenotification,

notification_id’

Delete specific notification with

notification id

6.2 Mobile application for supermarket self-checkout

In this project, mobile applications for supermarket self-checkout are implemented

with angular js, it will become a customer user interface to checkout supermarket

items. The main function of mobile application is for customer to scan item with QR

code, add to cart and checkout efficiently. Angular js is taking part of front-end client

within overall system.

6.2.1 Overview of Mobile Application

Building the mobile application is using Ionic framework with angular js as front-end

client. The screen is separated into two part which is main screen and navigation tabs

which stick at bottom. The main tabs are home tab which to display profile name,

main features, news slider and also order history. Other tabs such as notification, cart

and profile will discuss in this section. Besides, senior user interface will not contain

navigation tabs as it mainly simple screen layout and only given main function. The

simple mode can be switch through login screen, which to switch into simple mode

and perform login, or can change in normal mode settings if user wish to use simple

mode to perform checkout.

Figure 6.55: Mobile application normal mode screen layout.

Figure 6.56: Mobile application simple mode screen layout.

There are two different screens for supermarket user as two figures shown above.

Both home page will display only if the account is logged in or the screen will

prompt to login screen. This action is to ensure that user having their credential and

valid logging. The authentication will detect user verify status and last login interface.

If the user registers the date of birth that is above 60 years old, the login screen will

lead to simple mode and recommended for user to login with simple mode. If user

wish to switch back to normal mode, there also can be changed in settings.

Figure 6.57: Verify user code segment.

As mentioned above, verify user is done in login controller which verify user status.

Figure 6.58: Switch case between normal mode and simple mode.

The above figure shows the switch case between normal mode and simple mode

using angular language “ngIf”.

Figure 6.59: Login file.

The view folder of mobile application of ionic framework default is wrapped all of

component together. For example, in login folder, it default generated routing

module, module, page for html,scss, page for testing and also controller. It

automatically generates and wrapped up when we call from CLI, such as “ionic g

page login”.

6.2.2 Pages Hierarchy

Figure 6.60: Normal mode page hierarchy.

 At first phase, the mobile application entry screen is login screen. It will

prompt to home page if account is logged in. It also can navigate to register screen

through login screen. Besides, to switch to simple mode can also perform through

login. After logging in, it will prompt to Tab 1 which is “Home page”. The home

page contains news, edit profile, and order history. In tab 2 (Notification) page, it

will get notification from merchant side, such as feedback respond. Scan is function

that allow to scan using mobile camera on QR code of items. The screen then will

prompt to product details. The products details are specific product and allow to add

into cart with quantity. Tab 3 is cart page; it contains order details and payment.

Lastly, Tab 4 is profile screen, it contains settings, edit profile, feedback, favorite and

order history.

Figure 6.61: Simple mode page hierarchy.

In simple mode, the first screen will be login page. It also will verify user status and

last login of user. It can also provide function to switch back to normal mode. After

login to account, there are no navigation tabs for simple mode. The screen will only

contain main function which is stated as important.

6.2.3 Deployment

Figure 6.62: Mobile application deployment.

The above figure shown the supermarket user mobile application deployment using

ionic framework.

6.3 Web application for merchant side managements

In this project, web application for merchant side management is implemented with

angular js too, it will become a merchant user interface to manage supermarket items

or products for customer user to scan and checkout individually. The main function

of web application is to create products, and each come out with QR code for

customer to scan item, add to cart and checkout efficiently. Angular js is taking part

of front-end client within overall system.

6.3.1 Overview of Web Application

In this project, web application play role as managing product for supermarket. The

web application using Ionic framework with angular js as front-end development.

The screen is separated into two part which is main screen and navigation bar which

stick at left section. “Home.page.html” are home page which contains all content

includes manage, feedback, notification and profile. For example, as figure shown

below, “Home.page.html” include both navigation bar area and main content area.

The content area is used to display content such as feedback-details, notification

details and product create page, etc.

Figure 6.63: Web application screen layout.

Figure 6.64: Home.page.html source code in collapse.

 The figure above shown, the home.page.html contains two section which is

content area and navigation bar section (left section). As mentioned above,

navigation bars are used as menu to select tabs. The right section is to render tabs

content. For example, if tab is feedback, the content area will render feedback

content.

6.3.2 Pages Hierarchy

Figure 6.65: Pages Hierarchy of merchant side web application.

The login page is entrance of the page’s hierarchy. After merchant account is

verified, page will prompt to home page. In home page, manage, feedback,

notification and profile are resided in content area. Besides, merchant user can

navigate to other page such as create product, edit product through manage tab. Other

tab such as feedback and notification are also can navigate to respective page to

perform the tasks.

6.3.3 Deployment

Figure 6.66: Pages Hierarchy of merchant side web application.

The figure above shown the merchant side web application deployment using

firebase hosting service.

6.4 Web application for administrative side managements

In this project, web application for administrative side management is implemented.

It will become an admin user interface to manage merchant account and manage

news in customer mobile interface. The main purpose of admin web application is to

create, edit new merchant efficiently. Angular js is taking part of front-end client

within overall system.

6.4.1 Overview of Web Application

Figure 6.67: Administrative web application screen layout.

Figure 6.68: Home.page.html source code in collapse.

The figure above shown the home.page.html resided in administrative side in

collapse. It has the same structure with merchant web application layout, which are

separated in two sections, one is navigation bar, and one is rendering the content.

6.4.2 Pages Hierarchy

Figure 6.69: Pages hierarchy of administrative side.

The login page is entrance of the page’s hierarchy. After admin account is

verified, page will prompt to home page. In home page, manage and news are resided

in content area. Besides, admin user can navigate to other page such as create

merchant account, edit merchant account through manage merchant tab. Other tab

such as news can navigate to respective page to perform the tasks.

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

The testing phase is one of the important phases in iterative modelling. There various

types of testing strategic involved in this chapter such as unit testing, integration

testing and user acceptance testing. Both unit test and integration test are performed

with automated testing by using JASMINE testing framework with KARMA test

runner. For unit testing, it is test for single piece of a module, it is using httpMock

Object which to simulate object that mimic the real-world object in service. Besides,

it also using fixture to wrap the component. For integration testing, it is deal with test

suite which to ensure modules is work fine together with another module. Integration

testing is using jest spyOn library and Fakeasync library to test the test suite in real

time.

7.2 Unit Testing

This section will carry out unit testing for both user module and merchant module.

Testing using JASMINE JavaScript testing framework. KARMA test runner is to

debug the unit test results. The user module tests with service of “user” while

merchant module tests with service of “merchant”.

7.2.1 User Module

There total of 11 test cases of unit testing involved in user module.

Table 7.1 Unit testing of user module

Auth Service
TC ID Test Case Descriptions Parameters Expected Results Result
001 Login process • Email

• Password
The warning message
will display if entering
wrong email or
password.

Pass

002 Create user account • Name
• Email
• Gender
• Contact
• Address
• State

The result should return
success with 200 status
code.

Pass

• Postcode
• Photo

Product Service
TC ID Test Case Descriptions Parameters Expected Results Result
003 Display specific items

data
• Product_id The result should return

success with 200 status
code and specific items
data.

Pass

Notification Service
TC ID Test Case Descriptions Parameters Expected Results Result
004 List all notifications The result should return

success with 200 status
code and array of
notification.

Pass

User Service
TC ID Test Case Descriptions Parameters Expected Results Result
005 List user information

accordingly
• Name
• User id
• Address

The result should return
success with 200 status
code and user
information.

Pass

006 Update user
information

• Name
• User id
• Address

The result should return
success with 200 status
code and updated user
information.

Pass

Feedback Service
TC ID Test Case Descriptions Parameters Expected Results Result
007 Get specific feedback • User id

• Merchant id
• Feedback id

The result should return
success with 200 status
code and specific
feedbacks.

Pass

008 List all feedback • Feedback id

The result should return
success with 200 status
code and array of
feedbacks.

Pass

009 Add new feedback • User id
• Title
• Description

The result should return
success with 200 status
code and new feedback.

Pass

Order Service
TC ID Test Case Descriptions Parameters Expected Results Result
010 Display order history • Order_id The result should return

success with 200 status
code and array of order
history.

 Pass

News Service
TC ID Test Case Descriptions Parameters Expected Results Result
011 Display news • news_id The result should return

success with 200 status
code and latest news.

Pass

The user module unit test is performed using Jasmine framework version

3.8.0. To initial the testing, it required to import httptestingmodule, httpClient and

HttpTestingController before the unit test. Each of the unit test case will implement

with automated test.

Figure 7.1: Jasmine Framework V3.8.0 – Karma test runner V6.3.20.

Figure 7.2: Testing providers and imports for unit testing.

The below figure 7.3 is code segment of display product http test in news service.

The mock test is using httpMock which declare at earlier. The mock test is setup with

dummyNews which to mock the scenario.

Figure 7.3: Code segment of display news http test in news service.

The test scenario is to mock the display news scenario and return success status. The

http mock will detect the method of http then send data to user. The http response

will return success of 200 status code with the assert (expect) called. If http is able to

call and get all data, the test is considered as pass.

Figure 7.4: Unit test results of mobile user.

7.2.2 Merchant Module

There total of 10 test cases of unit testing involved in merchant module.

Table 7.2 Unit testing of merchant module

Product Service
TC ID Test Case Descriptions Parameters Expected Results Result
001 Display all vendor

product
• Product_id
• Merchant_id

The result should
return success with
200 status code and
vendor items data.

Pass

002 Create a product • Name
• Product_id
• Price
• Stock
• Description
• Category
• Merchant_id

The result should
return success with
200 status code and
product data.

Pass

Notification Service
TC ID Test Case Descriptions Parameters Expected Results Result
003 List all merchant

notifications
• Notification_id The result should

return success with
200 status code and
all merchant
notification.

Pass

004 Create a notification • Notification_id
• Title
• Description

The result should
return success with
200 status code and
created notification
data.

Pass

005 Delete a notification • Notification_id

The result should
return success with
200 status code.

Pass

Merchant Service
TC ID Test Case Descriptions Parameters Expected Results Result
005 Get merchant profile

data
• Name
• Merchant_id
• Email
• Contact

The result should
return success with
200 status code and
merchant profile data.

Pass

006 Update merchant
information

• Name
• Merchant id
• Contact
• Email

The result should
return success with
200 status code and
updated merchant
information.

Pass

007 Verify merchant • Merchant_id The result should
return success with
200 status code and
merchant profile data.

Pass

Feedback Service

TC ID Test Case Descriptions Parameters Expected Results Result
008 Get specific feedback • User id

• Merchant id
• Feedback id

The result should
return success with
200 status code and
specific feedbacks.

Pass

009 List all merchant
feedback

• Feedback id

The result should
return success with
200 status code and
array of feedbacks.

Pass

010 Update feedback • User id
• Feedback id
• Merchant id
• Title
• Description

The result should
return success with
200 status code and
updated feedback
data.

Pass

The merchant module unit test is performed using Jasmine framework

version 3.8.0. To initial the testing, it required to import httptestingmodule,

httpClient and HttpTestingController before the unit test. Each of the unit test case

will implement with automated test.

Figure 7.5: Jasmine Framework V3.8.0 – Karma test runner V6.3.20.

Figure 7.6: Testing providers and imports for unit testing.

The below figure 7.6 is code segment of display product http test in product service.

The mock test is using httpMock which declare at earlier. The mock test is setup with

dummyProduct which to mock the scenario.

Figure 7.7: Dummy product in unit testing for product service.

Figure 7.8: Code segment of create product http test in product service.

The test scenario is to mock the create merchant product scenario and return success

status. The http mock will detect the method of http then send data to merchant user.

The http response will return success of 200 status code with the assert (expect)

called. If http is able to call and get all data, the test is considered as pass.

Figure 7.9: Unit test results of merchant module.

7.3 Integration Testing

Integration testing in this project was using jasmine framework which same as unit

testing. The methodology of an integration testing is using spyOn library and also

fakeAsync library to perform test in real environments. Unlike unit testing, as

mentioned above, unit testing is basically test for single modules within application

in isolation, in short, no dependencies between other component such as login page’s

display UI, email and password verification token test and etc. While integration

testing is testing the group of different modules that added up together by ensuring is

working as expected. There is total 6 test suite tested in this section.

Table 7.3 Integration testing

Merchant Test Suite
Test suite ID: 1
Step
no#

Step Details Parameters Expected Results Result

1 Admin creates
new merchant
account

• Email
• Password
• Merchant Name
• Address
• Postcode
• Contact

The result should return
success with 200 status code
and merchant data.

Pass

2 Merchant gets
verify into
application with
created account

• Merchant ID

The result should return
success with 200 status code
when merchant is verified
and return merchant data.

Pass

Notification Test Suite
Test suite ID: 2
Step
no#

Step Details Parameters Expected Results Result

1 Merchant creates
new notification

• Title
• Descriptions
• Merchant Name
• Merchant ID

The result should return
success with 200 status code
when notification is created
and return notification data.

Pass

2 Customer user
read notification

• Notification ID The result should return
success with 200 status code
and notification data.

Pass

Feedback Test Suite
Test suite ID: 3
Step Step Details Parameters Expected Results Result

no#
1 Customer creates

new feedback
• Title
• Description
• Username
• User ID
• Date
• Status
• Merchant ID

The result should return
success with 200 status code
and created feedback data.

Pass

2 Merchant update
the feedback
progress

• Feedback ID
• Title
• Description
• Merchant ID
• User ID
• Date
• Status

The result should return
success with 200 status code
and updated feedback data.

Pass

Product Test Suite
Test suite ID: 4
Step
no#

Step Details Parameters Expected Results Result

1 Merchant create
new product items

• Product ID
• Merchant ID
• Product Name
• Price
• Descriptions
• Status
• Date

The result should return
success with 200 status code
and created product data.

Pass

2 Customer scan to
read specific
product

• Product ID
• Merchant ID
• Product Name
• Price
• Descriptions
• Status

The result should return
success with 200 status code
and scanned product data.

Pass

3 Customer add
product into cart

 The result should return
success.

Pass

Order Test Suite
Test suite ID: 5
Step
no#

Step Details Parameters Expected Results Result

1 Customer read
orders in cart

 The result should return
success

Pass

2 Customer read
checkout orders

• Product ID
• Order ID
• User ID
• Cart ID
• Product Name
• Price
• Descriptions
• Status
• Quantity
• Date

The result should return
success with 200 status code
and array of all current
orders in order history.

Pass

Profile Test Suite
Test suite ID: 6
Step
no#

Step Details Parameters Expected Results Result

1 Customer register
a new account

• User ID
• Username
• Contact
• Status
• Email
• Address
• Postcode
• State
• Date

The result should return
success with 200 status code
and created customer data.

Pass

2 Customer get
verify into
application with
created account

• User ID

The result should return
success with 200 status code
when is verified and
customer data.

Pass

3 Customer update
personal
information

• Username
• Contact
• Email
• Address
• Postcode
• State
• User ID

The result should return
success with 200 status code
and updated customer data.

Pass

 There are total of 6 test suites are being tested. The main describe function is

contained suite definition and injection module such as provider and imports. Each of

test suite is tested under one aspect. Besides, each aspect is using consistent structure

of a test to easily implement the test such as Arrange, Act and Assert.

Figure 7.10: Karma framework test debug result.

The figure above shown the test debug result using jasmine framework. The

jasmine is act as test-driven development that’s supports proposed project to carry

out testing practices. To run jasmine test manually is using KARMA test runner by

refreshing the browser each time the test changes. The test debug using angular

command line if “ng test”. It can be defined specifically within one service or many

with command line. For example, “ng test –include

src/app/integration.service.spec.ts”, which run only one single specification

typescript page.

Figure 7.11: Integration test suite source code collapse.

The figure above shown integration test suite source code in collapse. There

are several libraries need to import before writing the test suite such as

“Testbed”,HttpClientTestingModule ,“HttpTestingController” and etc. All under test

api is written on integration service, in this case, the spec environment must import

or call before each http is used to test respectively. As mentioned above, there

several tasks need to be done in structural way to carry out a complete test which is

using AAA (Arrange, Act, Assert) pattern. Arrange is a setup at a start of test case

such as object that will go under test, beforeEach, beforeAll, afterEach and afterAll

function. Act is target on test behaviour which will have sort of response on test

debug. For example, in jasmine framework there would be spyOn, httpresponse,

event(), flush() and etc. Lastly, assert is kind of expect outcomes such as expect

object to equal some result. This can determine whether the test case is success of

fail.

Figure 7.12: Feedback test suite code segment.

The figure above shown integration test on feedback test suite code segment.

There are two test case be carried out respectively.

Figure 7.13: Integration test performance.

7.4 User Acceptance Testing

User acceptance testing will be conducted in this project. It is different compared to unit testing and integration testing as customer or merchant

will involve in UAT. UAT does not require any programming or coding skill as it is an end user testing for ensure whether the application such

as flow, performance and etc, that is meeting the business requirement. In this section, the user acceptance testing template is carried out. The

user acceptance testing template is referenced from CSTE CBOK which is a Certification Guide for testing.

Tables below shown lists for supermarket user and merchant of user acceptance testing test cases:

Table 7.4: Register module for supermarket user

Module 1: Register Module

Test

ID

Test

Description

Pre-

conditions

Test Steps Input Data Expected Result Actual

Result

1.1 Register

Process

N/A In login page, press “register here” to

register the user account.

N/A Prompt to register page.

Fill in all information (Name, contact,

email, address, date of birth, password

etc).

 Input box can input text

and selection box is able to

select the choice.

Press “register” button. N/A Validation warning will

display if (email not in

correct format) or (not fill

all the field).

Once above all is meet, it

will display success

message.

Check if prompt to login once

successful register the account.

N/A Go back to login page.

Table 7.5: Login module for supermarket user

Module 2: Login Module

Test

ID

Test

Description

Pre-

conditions

Test Steps Input Data Expected Result Actual Result

2.1 Login Process Have an

account

Fill in all information (Email and

password).

 Input box can

input text.

Press “login” button. N/A Validation

warning will

display if (email

not in correct

format) or (not fill

all the field).

Once above is

meet, it will

display welcome

message

Check if prompt to homepage once

successful login the account.

N/A Prompt to home

page.

Table 7.6: Profile module for supermarket user

Module 3: Profile Module

Test

ID

Test Description Pre-conditions Test Steps Input Data Expected Result Actual Result

3.1 Update Profile

Process

Login into

account

In home page, press the profile

photo to enter account or press

profile at tabs and press edit profile.

N/A Enter the edit profile page.

Update profile information. Input box can edit the text.

Press update button. N/A Validation warning will

display if (email not in

correct format) or (not fill

all the field).

Once above is meet, it will

display welcome message.

Check if profile is updated.

N/A Updated the user profile

information.

Table 7.7: Notification module for normal user

Module 4: Notification Module

Test

ID

Test Description Pre-conditions Test Steps Input Data Expected Result Actual Result

4.1 Read

notifications

Login into

account

In home page, press the notification

tab at bottom of the screen.

N/A Enter the notification page.

Check if notification is existed. N/A View array of notification.

4.2 Read specific

notification

details

Login into

account, at

least one

notification

In home page, press the notification

tab at bottom of the screen

N/A Enter the notification page.

Press any notification to enter the

full page.

N/A The full page of specific

notification details will be

seen.

Table 7.8: Cart module for supermarket user

Module 5: Cart Module

Test

ID

Test Description Pre-conditions Test Steps Input Data Expected Result Actual Result

5.1 Scan item Login into

account

In home page, press scanner icon at

the bottom tab.

N/A Enter scanning mode.

Scan QR code. N/A Scan successful.

Check if the item details page is

display.

N/A Item details page is

display.

5.2 Add item Login into

account

In home page, press scanner icon at

the bottom tab.

N/A Enter scanning mode.

Add and minus quantity. N/A Default quantity is 1

Add and minus must work

fine.

Press add item. N/A Item added into cart and

direct prompt to cart page.

5.3 Delete item Login into

account

In home page, press cart tab to

enter cart page.

N/A Display cart page.

In cart page, select any item to

perform delete, swipe to left to

delete.

N/A The delete icon display on

each array of items.

Press delete icon to delete an item. N/A The current item is

deleted.

Check if the total price and total

checkout number is correct

according to current state.

N/A The total price and total

checkout number is

correct.

5.4 Checkout item Login into

account

Have an online

account/credit

card/debit card

In home page, press cart tab to

enter cart page.

N/A Display cart page.

Press checkout button. N/A Display payment method

page.

Select payment method. Prompt to payment page.

Input all required bank information. Verify the bank info.

Confirm to pay. Payment successful and

display payment

successful message.

Table 7.9: Order module for supermarket user

Module 6: Order Module

Test

ID

Test Description Pre-conditions Test Steps Input Data Expected Result Actual Result

6.1 View all order

history

Login into

account, atleast

checkout one

item

In home page, at order history,

press view all.

N/A Enter order history page.

Check if the order history is

display.

N/A Order history are display.

6.2 View specific

order history

details

Login into

account, at

least one

checkout item

In home page, at order history,

press view all.

N/A Enter order history page.

Select specific order history. N/A Display specific order

history details.

Table 7.10: Favourite module for normal user

Module 7: Favourite Module

Test Test Description Pre-conditions Test Steps Input Data Expected Result Actual Result

ID

7.1 Add to favorite Login into

account

In home page, press scanner icon at

the bottom tab.

N/A Enter scanning mode.

Scan QR code. N/A Scan successful.

Check if the item details page is

display.

N/A Item details page is

display.

At top right corner, press “heart

icon” to bookmark the item.

N/A Pop up successful

message.

7.2 View favorite Login into

account, at

least one

favorite item

In home page, press favorite. N/A Enter favorite page.

Check if favorite items are

displayed.

N/A Favorite items are

displayed.

Table 7.11: Feedback module for normal user

Module 8: Feedback Module

Test

ID

Test Description Pre-conditions Test Steps Input Data Expected Result Actual Result

8.1 Create feedback Login into

account

In home page, press feedback to

enter feedback page.

N/A Enter feedback page.

Press create button at top right

corner.

N/A Feedback form page is

display.

Fill in required information

(Choose merchant, enter title,

choose type, enter description, add

image(optional)).

 Validation warning will

display if required

information is not filled.

Press submit button. N/A Pop up successful

message.

8.2 Read feedback Login into

account, at

least one

feedback

In home page, press feedback to

enter feedback page.

N/A Enter feedback page.

Check if feedback lists are

displayed.

N/A Feedback lists are

displayed.

 Press any feedback to view details. N/A Feedback details are

displayed.

8.3 Delete feedback Login into

account, at

least one

feedback

In home page, press feedback to

enter feedback page.

N/A Enter feedback page.

Select one feedback, swipe to left. N/A Delete icon displayed.

Press delete icon to delete

feedback.

N/A Pop up successful

message.

Table 7.12: Search module for normal user

Module 9: Search Module

Test

ID

Test Description Pre-

conditions

Test Steps Input Data Expected Result Actual Result

9.1 Search by

merchant name

Have a

user

account

Login into user account. N/A Enter home page.

Select merchant at home page. N/A Enter merchant store page.

Input merchant name at search bar. Display merchant.

Check if input keyword is match with

display merchant.

N/A Keyword is match with

display merchant.

Table 7.13: Login module for merchant user

Module 1: Login Module

Test

ID

Test Description Pre-

conditions

Test Steps Input Data Expected Result Actual Result

1.1 Login Process Have an

account

Fill in all information (Email and

password).

 Input box can input text.

Press “login” button. N/A Validation warning will

display if (email not in

correct format) or (not fill

all the field).

Once above is meet, it will

display welcome message.

Check if prompt to homepage once

successful login the account.

N/A Prompt to home page.

Table 7.14: Manage product module for merchant user

Module 2: Manage Product Module

Test

ID

Test Description Pre-

conditions

Test Steps Input Data Expected Result Actual Result

2.1 Add Product Have a

merchant

account

Login into merchant account. N/A Enter home page.

Default tab (manage).

Press add button. N/A Go to add product first

page.

Enter product name and choose

category.

 The input length is not

more than 120 words

The chosen product

category will display at

below

Press next button. N/A Display next page of

create product.

Enter product image, price, stock and

product description.

N/A The input box can input

text.

The image can be

uploaded from device.

Press publish button. N/A Display successful

message.

Check if the product is added at manage

product tab.

Check if the QR code can be displayed.

N/A Product is added

QR code can be displayed.

2.2 Edit product Have a

merchant

account.

Have at

least one

product.

Login into merchant account. N/A Enter home page.

Default tab (manage).

Choose specific product to edit. N/A Enter the product edit

page.

Choose next page to continue edit. N/A Enter next page of edit

page.

Press publish button. N/A Pop up successful

message.

Check if the product is edited at manage

product tab.

N/A Product is edited.

2.3 Delete product Have a

merchant

Login into merchant account and

homepage.

N/A Default tab is managed

product tab.

account.

Have at

least one

product.

Select specific product to delete. N/A Enter edit product page.

Press delete button. N/A Pop up confirmation

message.

Press confirm button. N/A Pop up successful

message.

Check if the deleted product is removed. N/A Product has been removed.

Table 7.15: Feedback module for merchant user

Module 3: Feedback Module

Test

ID

Test Description Pre-

conditions

Test Steps Input Data Expected Result Actual Result

3.1 Preview

feedback details

Have a

merchant

account

and have

user

feedback

Login into merchant account. N/A Enter homepage.

Default tab (manage).

Select feedback tab. N/A It shows preview button

when tab on any feedback

and prompt to feedback

details page.

Press preview button at right of specific N/A Enter feedback details.

feedback.

Check if the feedback details is display

Check if the photo can be displayed in

modal.

N/A Feedback is displayed

Photo can be displayed in

modal.

3.2 Reply feedback Have a

merchant

account

and have

user

feedback

Login into merchant account. N/A Enter homepage.

Default tab (manage).

Select feedback tab. N/A Enter feedback page.

Choose incomplete feedback. N/A Preview button is

displayed.

Press preview button. N/A Enter feedback details

page.

Press reply button. N/A Reply feedback form

modal pop up.

Fill in title, description, or image

(optional).

 Input box can input text

Image can upload from

device.

Press send button. N/A Pop up confirmation

message.

Press confirm button. N/A Pop up successful

message.

Check if feedback status become

“Completed”.

N/A Feedback status become

“Completed”.

Table 7.16: Notification module for merchant user

Module 4: Notification Module

Test

ID

Test Description Pre-

conditions

Test Steps Input Data Expected Result Actual Result

4.1 Create

notification

Have a

merchant

account

Login into merchant account and go to

homepage.

N/A Default tab is managed

product tab.

Select notification tab. N/A Enter notification page.

Press create button. N/A A create notification

modal is pop up.

Enter title, description. The input box can input

text.

The image can be

uploaded from device.

Press create button. N/A Display successful

message.

Check if the notification is added at

notification page.

N/A Notification is added.

4.2 View

notification

details

Have a

merchant

account

and one

notification

Login into merchant account and go to

homepage.

N/A Default tab is managed

product tab.

Select notification tab. N/A Enter notification page.

Press any notification. N/A A notification details

modal is pop up.

Check if the notification details is

correct.

N/A Notification details is

correct.

4.3 Delete

notification

Have a

merchant

account

and one

notification

Login into merchant account and go to

notification page.

N/A Enter notification page.

Select specific notification to delete. N/A Enter notification details

page.

Press delete button. N/A Pop up confirmation

message.

Press confirm button. N/A Pop up successful

message.

Check if notification is removed from N/A Notification has been

notification page. removed from notification

page.

Table 7.17: Profile module for merchant user

Module 5: Profile Module

Test

ID

Test Description Pre-

conditions

Test Steps Input Data Expected Result Actual Result

5.1 Edit merchant

profile

Have a

merchant

account

Login into merchant account and go to

profile.

N/A Enter profile page.

Edit profile information (any info). Input box can input text.

The image can be

uploaded from device.

Press update button. N/A Pop up confirmation

message.

Press confirm button. N/A Pop up successful

message.

Check if profile information is updated. N/A Profile information is

updated.

Table 7.18: Advanced search module for merchant user

Module 6: Advanced Search Module

Test

ID

Test Description Pre-

conditions

Test Steps Input Data Expected Result Actual Result

6.1 Search by

product name

Have a

merchant

account, at

least one

product

Login into merchant account. N/A Enter home page.

Default tab (manage).

Select product name at search option. N/A Enter search product name

mode.

Input product name. Display product.

Check if input keyword is match with

display product’s name.

N/A Keyword is match with

display product’s name.

6.2 Search by

product

category

Have a

merchant

account, at

least one

product

Login into merchant account. N/A Enter home page.

Default tab (manage).

Select product category at search option. N/A Enter search category

mode.

Input category name. Display list of categories.

Select category. Display product.

Check if selected category is match with N/A Selected category is match

display product. with display product.

Table 7.19 User Acceptance Testing Summary Result (Supermarket normal user)

No Acceptance Requirement Critical Test Result

(Number of people)

Yes No Accept Reject

1.1 Register process  3 0

2.1 Login process  3 0

3.1 Update profile process  3 0

4.1 Read notifications  3 0

4.2 Read specific notification

details

 3 0

5.1 Scan item  3 0

5.2 Add item  3 0

5.3 Delete item  3 0

5.4 Checkout item  3 0

6.1 View order history  3 0

6.2 View specific order history

details

  3 0

6.1 Add to favourite  3 0

6.2 View favourite  3 0

7.1 Create feedback  3 0

7.2 Read feedback  3 0

7.3 Delete feedback  3 0

8.1 Search by merchant name  3 0

Table 7.20 User Acceptance Testing Summary Result (Supermarket senior user)

No Acceptance Requirement Critical Test Result

(Number of people)

Yes No Accept Reject

1.1 Register process  2 0

2.1 Login process  2 0

3.1 Update profile process  2 0

5.1 Scan item  2 0

5.2 Add item  2 0

5.3 Delete item  2 0

5.4 Checkout item  2 0

6.1 View order history  2 0

6.2 View specific order history

details

  2 0

Table 7.21 User Acceptance Testing Summary Result (Merchant user)

No Acceptance Requirement Critical Test Result

(Number of people)

Yes No Accept Reject

1.1 Login process  2 0

2.1 Add product  2 0

2.2 Edit product  2 0

2.3 Delete product  2 0

3.1 Preview feedback details  2 0

3.2 Reply feedback  2 0

4.1 Create notification  2 0

4.2 View notification details  2 0

4.3 Delete notification  2 0

5.1 Edit merchant profile  2 0

6.1 Search by product name  2 0

6.2 Search by product category  2 0

CHAPTER 8

8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The proposed project, “A mobile app for supermarket checkout” is developed based

on the early planning and research to reach the project goals and objectives. Iterative

methodology was practiced throughout the project life cycle to achieve manage

project timeline and follow up the system progress. Besides, the combination of

different framework such as angular.js and ionic framework to develop a mobile app

and web app. Furthermore, the proposed system has done various of validation and

testing which include unit testing, integration testing and UAT (user acceptance

testing) to ensure is meeting the project requirements that stated earlier. The

objectives achieved has been fulfilled that listed at below:

i. To investigate the current problem of supermarket checkout process time

when dealing a huge number of customers.

ii. To analyze the public acceptance of self-checkout service in supermarket.

iii. To develop a supermarket self-checkout mobile application which provides

self-payment service that helps supermarket to reduce the labour costs and

checkout process time.

According to the objective list above, the first objectives have been achieved in this

project. The system invented to tackle the problem for customer of queuing up at

cashier counter by just purchasing less items. The mobile application is allowed to

checkout item individually by scanning the product using product QR code and add

into cart in mobile application. Customer then is able to checkout their items by

online transaction and leave the supermarket. The second objectives have been

achieved on this project. There are several analyses and testing are accomplished

such as user acceptance testing, questionnaire or survey, observation has been done

to analyse the public acceptance of proposed system. Lastly, the third objectives

achieved as there is reduces the labour costs and checkout process time when the

mobile application can provide a self-service for customer to checkout products. In

addition, similar and existing system research and literature review were evaluated

and come out main features as listed below:

Customer side:

i. Supermarket user authentication and authorization

ii. Scan module

iii. Image upload

iv. Item checkout

v. Responsive user interface

vi. Search function

vii. Feedback module

viii. Notification module

ix. Favorite/ bookmark module

x. Order activity

xi. Profile

xii. Geolocation of supermarket user

xiii. Two interface available (senior and normal)

Merchant side:

i. Merchant user authentication and authorization

ii. Image upload

iii. Responsive user interface

iv. Advanced search function

v. Manage product for supermarket user

vi. Manage notification for supermarket user

vii. Manage supermarket user feedback

viii. Profile

ix. Geolocation of merchant user

8.2 Limitations

There are some limitations found in this project. Although the main objectives are

saved time during the checkout operation compared to pay items at cashier counter,

novice user which perform scan and checkout may need to try out a few times to

familiar with the operation, this may cause the time-consuming rate higher than pay

items at cashier counter. Nevertheless, the high rate of relying on the behavior of

customer when it is checking out their cart has raised up the possibility of threatening

of treat. The proposed solution is based on the merchant side decision, there is no

way can be avoided from technical side when requirements are to reduce the

installation cost.

8.3 Recommendations for future work

There are some future implementations in this project. This project is underlying

with iterative model, and it can boost and work with incremental development model

which can breaks down into pieces of workflow. Each of the refined work is built on

previous version as it can improve step by step. The project can do adjustment and

transform into service that provides a product management platform for supermarket,

retail store or groceries.

 For the merchant management side, the merchant has considered 1 role and

separate into multiple staff account. The merchant manages product to perform bulk

upload at the same time to manage staff status and view product sales in visualization.

Each staff member has their account credentials and their position. The platform is

also can have subscription plan which to join the platform as merchant with selected

subscription plan, e.g., subscription premium plan to get more service. In

organization, which is administrative side, it manages merchandise account and their

subscription status.

 In customer side, the mobile application can implement reward system which

allow customers to claim points and discount voucher to apply it on specific

merchant store. Besides, customer side mobile application also has a social share

such as using referral code to refer a new friend to join the supermarket self-checkout

mobile application. This action is beneficial to existing user and new user which both

will get a reward point as act as rewards for active sharer and also for a new joiner

user.

REFERENCES

Thamutharam, Y.N., Peer Mustafa, M.B, Musthafa, F.N and Tajudeen, F.P, 2021.

Usability Features to Improve Mobile Apps Acceptance among the Senior Citizens in

Malaysia. Journal of Science, [e-journal], vol. 16, pp. 1-3.

https://doi.org/10.32802/asmscj.2021.686.

Hassan, H., Sade, A.B. and Rahman, M.S., 2013. Self-service Technology for

Hypermarket Checkout Stations. Journal of Asian Social Science, [e-journal], vol. 10,

no. 1, pp. 61-63. http://dx.doi.org/10.5539/ass.v10n1p61.

Mendat, C.C., Mayhorn, C.B., 2007. An Evaluation of Self-Checkout Systems.

Journal of proceedings of the Human Factors and Ergonomics Society Annual

Meeting, [e-journal] 51(17), pp. 2-4. 10.1177/154193120705101703.

Bwyer, B., 2019. Self-Checkout: Should You Implement It? [online] Available at: <

https://www.cardfellow.com/blog/self-checkout-should-you-implement-it/>

[Accessed 19 February 2022].

Insider Intelligence, 2016. Retailers face threat of theft with self-service checkouts.

[online] Available at: < https://www.businessinsider.com/retailers-face-threat-of-

theft-with-self-service-checkouts-2016-8 > [Accessed 6 March 2022].

Dean, D.H, 2008. Shopper age and the use of self-service technologies. Managing

Service Quality: An International Journal, [e-journal], vol. 18 no. 3, pp. 225-238.

https://doi.org/10.1108/09604520810871856.

Bernard, S., 2007. Cashiers’ work- time: Between a productivity mentality and a

service mentality. Journal of Sociology of Work, [e-journal], 49(supp-S2), pp. e129-

e144. https://doi.org/10.1016/j.soctra.2007.10.001.

iStrategy Conference, 2021. Self-checkout: Why Technology Still Has a Long Way

to Go in Retail. [online] Available at: <https://www.istrategyconference.com/self-

checkout-technology-long-way-to-go-retail/> [Accessed 6 March 2022].

https://doi.org/10.32802/asmscj.2021.686
http://dx.doi.org/10.5539/ass.v10n1p61
https://doi.org/10.1108/09604520810871856
https://doi.org/10.1016/j.soctra.2007.10.001

Kananke, T.S., 2020. A mobile application to enhanceshopping experience by

introducing self-service and self-checkout. Master. University of Colombo School of

Computing. Available at: <http://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/4493>

[Accessed 12 March 2022].

Airbrake, 2016. Iterative Model: What Is It And When Should You Use It? [online]

Available at: < https://airbrake.io/blog/sdlc/iterative-

model#:~:text=The%20iterative%20model%20is%20a,the%20final%20system%20is

%20complete.> [Accessed 12 March 2022].

Genius Learner. 2020. [image online] Available at: < https://genius-

learner.medium.com/iterative-model-software-engineering-b11a76da7895>

[Accessed 12 March 2022]

Rastogi, V., 2015. Software development life cycle models-comparison,

consequences. International Journal of Computer Science and Information

Technologies, 6(1), pp.168-172.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.9896&rep=rep1&typ

e=pdf

Hijazi, H., Khdour, T. and Alarabeyyat, A., 2012. A review of risk management in

different software development methodologies. International Journal of Computer

Applications, 45(7), pp.8-12.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.6705&rep=rep1&typ

e=pdf

ButterCMS, 2019. Angular vs. Vue: Which Framework Is Best for You? [Online]

Available at: < https://buttercms.com/blog/comparing-angular-vs-vue> [Accessed 24

March 2022].

https://airbrake.io/blog/sdlc/iterative-model#:%7E:text=The%20iterative%20model%20is%20a,the%20final%20system%20is%20complete
https://airbrake.io/blog/sdlc/iterative-model#:%7E:text=The%20iterative%20model%20is%20a,the%20final%20system%20is%20complete
https://airbrake.io/blog/sdlc/iterative-model#:%7E:text=The%20iterative%20model%20is%20a,the%20final%20system%20is%20complete
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.9896&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.9896&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.6705&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.6705&rep=rep1&type=pdf
https://buttercms.com/blog/comparing-angular-vs-vue

Sharma, Brij & Dubey, Shivendra & Jain, Neelesh & Syed, Habeebullah Hussaini.

(2020). A Review on Cloud Computing Services and issues. SSRN Electronic

Journal. 9(4), pp 1-6.

https://www.researchgate.net/publication/349521421_A_Review_on_Cloud_Comput

ing_Services_and_issues

SF AppWorks, 2021. COMPARING FIREBASE VS. AWS | SF APPWORKS.

[Online] Available at:<https://www.sfappworks.com/blogs/firebase-vs-aws-

comparision> [Accessed 27 March 2022].

Chandra, V., 2015. Comparison between various software development

methodologies. International Journal of Computer Applications, 131(9), pp.7-10.

https://www.ijcaonline.org/research/volume131/number9/chandra-2015-ijca-

907294.pdf

GLOWID, 2021. Firebase Vs AWS: Which One to Choose in 2022? [Online]

Available at: < https://aglowiditsolutions.com/blog/firebase-vs-aws/> [Accessed 28

March 2022].

SIMFORM, 2021. Laravel vs Node.js: Everything You Should Know Before

Ratifying Project Backend. [Online] Available at:

<https://www.simform.com/blog/laravel-vs-nodejs/> [Accessed 26 March 2022].

SIMFORM, 2020. React Native vs Ionic: Which Framework is best and Why?

[Online] Available at: < https://www.simform.com/blog/react-native-vs-ionic/>

[Accessed 27 March 2022].

Alshamrani, A. and Bahattab, A., 2015. A comparison between three SDLC models

waterfall model, spiral model, and Incremental/Iterative model. International Journal

of Computer Science Issues (IJCSI), 12(1), p.106.

Sitepoint, 2018. Angular Introduction: What It Is, and Why You Should Use It.

[Online] Available at: < https://www.sitepoint.com/angular-introduction/> [Accessed

25 March 2022]

https://www.researchgate.net/publication/349521421_A_Review_on_Cloud_Computing_Services_and_issues
https://www.researchgate.net/publication/349521421_A_Review_on_Cloud_Computing_Services_and_issues
https://www.sfappworks.com/blogs/firebase-vs-aws-comparision
https://www.sfappworks.com/blogs/firebase-vs-aws-comparision
https://www.ijcaonline.org/research/volume131/number9/chandra-2015-ijca-907294.pdf
https://www.ijcaonline.org/research/volume131/number9/chandra-2015-ijca-907294.pdf
https://aglowiditsolutions.com/blog/firebase-vs-aws/
https://www.simform.com/blog/laravel-vs-nodejs/
https://www.simform.com/blog/react-native-vs-ionic/
https://www.sitepoint.com/angular-introduction/

Dunka, Bakwa & Emmanuel, Edim & Oyerinde, Yinka., 2017. HYBRID MOBILE

APPLICATION BASED ON IONIC FRAMEWORK TECHNOLOGIES.

International Journal of Recent Advances in Multidisciplinary Research. 4(12), pp

3121-3130.

javaTpoint, n.d. Firebase Introduction. [Online] Available at: <

https://www.javatpoint.com/firebase-introduction> [Accessed 27 March 2022].

Amazon, 2022. Overview of Amazon Web Services. [Online] Available at: <

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html>

[Accessed 28 March 2022].

Hava, 2021. What is AWS Elastic Beanstalk? [Online] Available

at:<https://www.hava.io/blog/what-is-aws-elastic-beanstalk> [Accessed 29 June

2022].

Aws, n.d. Auto scaling groups. [Online] Available at:

<https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html>

[Accessed 29 June 2022].

Ionic DOCS, n.d. Testing. [Online] Available

at:<https://ionicframework.com/docs/angular/testing> [Accessed 3 July 2022].

https://www.javatpoint.com/firebase-introduction
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html
https://www.hava.io/blog/what-is-aws-elastic-beanstalk
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-groups.html
https://ionicframework.com/docs/angular/testing

APPENDICES

APPENDIX A: Observation

APPENDIX B: Questionnaire Form

APPENDIX C: Supervisor and Moderator Comments on Project Plan

Project title: A mobile app for supermarket checkout
Student Name SIEW SHUN YAO

Supervisor Chean Swee Ling

Moderator Hoo Meei Hao

Key Assessment for
Project Proposal

Supervisor
Comments/Remarks

Moderator
Comments/Remarks

Project Description
- Is the problem or need
to be addressed clearly
presented?
- Is the proposed
approach or solution
clearly presented and
justified?

No comment.

ok

Project Scope and
Objectives
- Is the scope of the
project clearly defined?
- Are the objectives of
the project clearly
specified?
- Are the project scope
and objectives
appropriate for a final
year project?

No comment.

These 2 objectives : To
minimize the queuing time
at physical cashier counter
in existing supermarket; To
improve overall smoothness
on the checkout flow while
purchasing a small number
of items - are unable to
measure its achievement.
Consider to remove these 2
objectives because it is the
expectation/ benefit after the
solution is implemented.

Literature Review /
Fact Finding for
Benchmarking /
Verification of Project
- Are sources for
literature review / fact
finding appropriate?
- Is information from
literature review / fact
finding relevant and
adequate?
- Is information from
literature review / fact
finding clearly
presented and
discussed?

No comment.

ok

Research/Development
Methodology and
Development Tools- Is
the methodology for the
project clearly described
and discussed?- Are the
required development
tools clearly described
and discussed?- Are the
stated methodology and
development tools
appropriate?

No comment.

avoid to use "I" in report
writing.The selected
methodology,iterative and
incremental must reflect in
the project schedule. Project
schedule does not show
which activities are in
incremental mode.What are
those activities involved in
the incremental model?

Project Plan
- Are the phases and
tasks of the project
properly defined and
planned?
- Are the phases and
tasks consistent with the
methodology of the

No comment.

tasks in the project schedule
is not consistent with the
methodology selected.
Tasks in the project
schedule just shows
structured way.

project?

Initial Deliverables-
Are deliverables (e.g.
use case diagrams and
descriptions) of initial
phases of the project
plan included in the
report?

No comment.

Explain the purpose of the
data gathering
performed.observation and
questionnaire were
conducted with reported
result. Relate the
observation result contribute
to the workflow in the
proposed system or to
support the problem
identified.Some results do
not show significant support
to the project (eg The result
shows there are majority
(80%) of respondents is in a
satisfactory range by
experiencing selfcheckout
system), and does not
support the proposal.Just
relate the result that deemed
necessary.How are the
attributes in the ERD being
identified? from forms /
receipt or existing system?

Report Structure and
References
- Is the report organised
in a logical structure?
- Are references listed
in accordance to
Harvard format?

No comment.

Language and Clarity
of Writing
- Are the sentences
concise and
understandable?
- Are there spelling and
grammar issues?

Grammar mistakes found
in the report.

APPENDIX D: Project Progress (Trello Web Application)

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Introduction
	1.2 Background of the project
	1.3 Problem Statement
	1.3.1 Supermarket checkout app are not convenient for senior consumers
	1.3.2 Technical Issues
	1.3.3 Threat of Theft

	1.4 Project Objectives
	1.5 Project Solution
	1.6 Project Approach
	1.7 Scope of the Project
	1.7.1 Target User Scope
	1.7.2 Target Merchant administrators Scope
	1.7.3 Target security administrators Scope
	1.7.4 System Scope
	1.7.5 Modules Covered
	1.7.5.1 User Scan & Cart Module (Mobile Application)
	1.7.5.2 User Activities log & Transaction History (Mobile Application)
	1.7.5.3 User profile (Mobile Application)
	1.7.5.4 Product Specific on location Module (Mobile Application)
	1.7.5.5 Search Function (Mobile Application)
	1.7.5.6 Notification (Mobile Application)
	1.7.5.7 Feedback (Mobile Application)
	1.7.5.8 Manage supermarket products with CRUD operation (Web Application)
	1.7.5.9 Listing and delisting product (Web Application)
	1.7.5.10 Advanced Search Function (Web Application)
	1.7.5.11 Merchant Profile (Web Application)
	1.7.5.12 Manage Customer Feedback (Web Application)
	1.7.5.13 Manage Merchant (Web Application)
	1.7.5.14 Manage News (Web Application)

	1.7.6 Module Not Covered

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Review on Similar Self-checkout system
	2.3 Review on Project Methodology
	2.3.1 Waterfall
	2.3.2 Spiral
	2.3.3 Iterative and incremental model
	2.3.4 Comparison of Methodology

	2.4 Review on Backend Server Framework
	2.4.1 Laravel
	2.4.2 Node.js
	2.4.3 Comparison of Backend Framework

	2.5 Review on Frond-end Web Application Framework
	2.5.1 Angular.js
	2.5.2 Vue.js
	2.5.3 Comparison of Front-end Web Application Framework

	2.6 Review on Cross-platform Mobile Application Framework
	2.6.1 Ionic Framework
	2.6.2 React Native
	2.6.3 Comparison of Cross-platform Mobile Application Framework

	2.7 Review on Cloud Computing Services
	2.7.1 Firebase (Google cloud platforms)
	2.7.2 AWS EC2
	2.7.3 Comparison of Cloud Computing Services

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Development Methodology
	3.3 Proposed Workplan
	3.4 Technology and Development Tools Involved
	3.4.1 Nodejs
	3.4.2 Angular.js
	3.4.3 Ionic Framework
	3.4.4 PostgreSQL
	3.4.5 AWS EC2
	3.4.6 Firebase
	3.4.7 Visual Studio Code
	3.4.8 Git
	3.4.9 Figma
	3.4.10 Trello

	CHAPTER 4
	4 PROJECT SPECIFICATION
	4.1 Introduction
	4.2 Fact-finding
	4.2.1 Observation
	4.2.2 Questionnaire

	4.3 Requirement Specification
	4.3.1 Customer-side mobile application
	4.3.1.1 User checkout
	4.3.1.2 User activity history
	4.3.1.3 Account
	4.3.1.4 Notification
	4.3.1.5 Feedback

	4.3.2 Merchant-side web application
	4.3.2.1 Manage products
	4.3.2.2 Advanced search function
	4.3.2.3 Feedback
	4.3.2.4 Notification

	4.3.3 Administrative web application
	4.3.3.1 Manage Merchant Account
	4.3.3.2 Manage Customer News

	4.3.4 Non-Function Requirements

	4.4 Use Case Modelling
	4.4.1 Use Case Diagram
	4.4.1.1 User Checkout
	4.4.1.2 User Activity History
	4.4.1.3 User Account Related
	4.4.1.4 Notification Related
	4.4.1.5 Feedback Related
	4.4.1.6 Manage Products
	4.4.1.7 Advanced Search Functions
	4.4.1.8 Manage Merchant
	4.4.1.9 Manage Customer News
	4.4.1.10 Location

	4.5 Use Case Description
	4.5.1 Mobile Application for Supermarket Self-Checkout
	4.5.2 Web-based application for Merchant Users
	4.5.3 Web-based application for Administrator

	CHAPTER 5
	5 SYSTEM DESIGN
	5.1 Introduction
	5.2 System Architecture
	5.3 System Design Pattern
	5.4 Database Design
	5.4.1 Physical Entity Relationship Diagram
	5.4.2 Logical Entity Relationship Diagram
	5.4.3 Data Dictionary
	5.4.3.1 Merchants
	5.4.3.2 Products
	5.4.3.3 Orders
	5.4.3.4 Users
	5.4.3.5 Feedbacks
	5.4.3.6 Notifications
	5.4.3.7 News

	5.5 User Interface Design
	5.5.1 Web Application for Merchant
	5.5.1.1 Merchant User Login Page
	5.5.1.2 Merchant User Manage Product Page
	5.5.1.3 Merchant User Add New Product Page
	5.5.1.4 Merchant User Add New Product continue Page
	5.5.1.5 Merchant User Manage Feedback List Page
	5.5.1.6 Merchant User Manage Specific Feedback Page
	5.5.1.7 Merchant User Reply Specific Feedback Page
	5.5.1.8 Merchant User Manage Notification Page
	5.5.1.9 Merchant User Create Notification Modal
	5.5.1.10 Merchant User Edit Profile Page
	5.5.1.11 Merchant User Edit Notification Page

	5.5.2 Supermarket Normal User
	5.5.2.1 Supermarket User Login Page
	5.5.2.2 Supermarket User Sign Up Page
	5.5.2.3 Supermarket User Home Page
	5.5.2.4 Supermarket User Notification Page
	5.5.2.5 Supermarket User Cart Page
	5.5.2.6 Supermarket User Profile Page
	5.5.2.7 Supermarket User Edit Profile Page
	5.5.2.8 Supermarket User Order History Page
	5.5.2.9 Supermarket User Favourite Page
	5.5.2.10 Supermarket User Feedback Page
	5.5.2.11 Supermarket User Feedback Form Page
	5.5.2.12 Supermarket User Feedback Details Page
	5.5.2.13 Supermarket User Scan Item Page
	5.5.2.14 Supermarket User Add Item Page
	5.5.2.15 Supermarket User Order History Details Page
	5.5.2.16 Supermarket User News Details Page
	5.5.2.17 Supermarket User Merchant List Page
	5.5.2.18 Supermarket User Settings Page
	5.5.2.19 Supermarket User Recover Password Page
	5.5.2.20 Supermarket User Notification Details Page

	5.5.3 Supermarket senior user
	5.5.3.1 Supermarket Senior-Age User Login Page
	5.5.3.2 Supermarket Senior-Age User Register Page
	5.5.3.3 Supermarket Senior-Age User Home Page
	5.5.3.4 Supermarket Senior-Age User Edit Profile Page
	5.5.3.5 Supermarket Senior-Age User Cart Page
	5.5.3.6 Supermarket Senior-Age User Scan Page
	5.5.3.7 Supermarket Senior-Age User Order History Page
	5.5.3.8 Supermarket Senior-Age User Order Details Page
	5.5.3.9 Supermarket Senior-Age User Profile Page
	5.5.3.10 Supermarket Senior-Age User Profile Page

	CHAPTER 6
	6 SYSTEM IMPLEMENTATION
	6.1 Backend Server
	6.1.1 Overview backend server
	6.1.2 Controller Layer
	6.1.2.1 Login Controller
	6.1.2.2 Register Controller
	6.1.2.3 Notification Controller
	6.1.2.4 Cart Controller
	6.1.2.5 Profile Controller
	6.1.2.6 Feedback Controller
	6.1.2.7 Order Controller
	6.1.2.8 Display Store Controller
	6.1.2.9 Favourite Controller
	6.1.2.10 Tabs Controller
	6.1.2.11 News Controller

	6.1.3 Service Layer
	6.1.3.1 User Service
	6.1.3.2 Feedback Service
	6.1.3.3 Order Service
	6.1.3.4 Product Service
	6.1.3.5 Notification Service
	6.1.3.6 News Service

	6.1.4 Model Layer
	6.1.4.1 User Model
	6.1.4.2 Order Model
	6.1.4.3 Feedback Model
	6.1.4.4 Product Model
	6.1.4.5 Notification Model
	6.1.4.6 News Model

	6.1.5 Other Integration
	6.1.5.1 Billplz
	6.1.5.2 Firebase Cloud Messaging
	6.1.5.3 Amazon S3 Storage Service

	6.1.6 Available Endpoints
	6.1.6.1 Mobile Endpoints
	6.1.6.2 Merchant Endpoints

	6.2 Mobile application for supermarket self-checkout
	6.2.1 Overview of Mobile Application
	6.2.2 Pages Hierarchy
	6.2.3 Deployment

	6.3 Web application for merchant side managements
	6.3.1 Overview of Web Application
	6.3.2 Pages Hierarchy
	6.3.3 Deployment

	6.4 Web application for administrative side managements
	6.4.1 Overview of Web Application
	6.4.2 Pages Hierarchy

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Unit Testing
	7.2.1 User Module
	7.2.2 Merchant Module

	7.3 Integration Testing
	7.4 User Acceptance Testing

	CHAPTER 8
	8 CONCLUSIONS AND RECOMMENDATIONS
	8.1 Conclusions
	8.2 Limitations
	8.3 Recommendations for future work

	REFERENCES
	APPENDICES

