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ABSTRACT 

 

This project aims to study the relationship between ring theory and graph theory, 

specifically the study of nil-clean graph rings. Rings are those that satisfy the 

property of being an abelian group under addition and being closed under 

multiplication. Graphs are structures that consist of a vertex set and an edge set 

which together, will form various types of connections. Using these concepts, a 

nil-clean ring 𝑅 is defined such that for each element 𝑥 ∈ 𝑅, it is the sum of a 

nilpotent 𝑛  and an idempotent 𝑒 . Together with a brief review of previous 

literature, the properties of nil clean graphs of rings are discussed in the main 

reference article by Basnet an Bhattacharyya (2017), where two vertices 𝑥 and 

𝑦 are considered adjacent if and only if 𝑥 + 𝑦 is a nil clean element in R. This 

concept is then extended into 𝑔(𝑥)-nil clean rings which are defined such that 

for each element 𝑟 ∈ 𝑅, it is the sum of a nilpotent an a root of g(x). For the 

purpose of this project, 𝑔(𝑥) = 𝑥 − 3𝑥 is chosen, which yields a 𝑥(𝑥 − 3)-nil 

clean ring. Subsequently, the graphs of 𝑥(𝑥 − 3)-nil clean rings are generated 

and visualized with respect to ℤ and the properties of these graphs are 

generalised according to connectedness and presence of Hamiltonian cycles an 

paths.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background 

In order to study the properties of g(x)-nil clean graphs of rings effectively, the 

foundation to this research involves the understanding of two main components, 

namely rings and graphs.   

 

1.1.1      Rings 

Rings are algebraic structures that generalize fields, such that any ring is a set 𝑅 

equipped with two binary operations, which are + and ∙ . It follows a few basic 

properties listed below: 

I. 𝑅 forms an abelian group under addition, whereby the addition is always 

commutative, and that there is also an additive identity, which we will 

usually denote by 0.   

II. 𝑅  is closed under multiplication. A ring displaying multiplicative 

identity is called a ring with unity, whereas a ring that obeys 

multiplicative commutativity is known as a commutative ring. 

We can use exponents to denote compounded multiplication and 

associativity can assure that the usual exponential rules are still applicable. It is 

important to note that for the purpose of this research, only finite commutative 

rings that are commutative with identity are studied.  

 

1.1.2     Graphs 

A graph 𝐺 is defined to be a pair (𝑉(𝐺), 𝐸(𝐺)), where 𝑉(𝐺) is a non-empty 

finite set of elements called vertices, and 𝐸(𝐺) a finite set of unordered pairs of 

elements of 𝑉(𝐺) called edges. 𝑉(𝐺) is known as the vertex-set of 𝐺 and 𝐸(𝐺) 

is the edge-set of 𝐺. An edge {𝑣, 𝑤} is said to join the vertices 𝑣 and 𝑤, and is 

usually abbreviated to 𝑣𝑤. The number of vertices in 𝐺 is often called the order 

of 𝐺, while the number of edges is referred to as its size. Generally, these graphs 

can be classified as directed or undirected, weighted or unweighted as well as 

cyclic or acyclic.  
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For this project, the concepts of graphs and rings are to be consolidated when 

analyzing the main properties and graphical components of commutative nil 

clean graphs as discussed in the main article of reference by Basnet and 

Bhattacharyya (2017). 

 

1.2 Aim and Objectives 

For the duration of Project I, the objective of this project is to understand the 

basic properties of graphs and rings and link them together in the study of nil 

clean graphs of rings for the analysis of mathematical proofs based on the 

publication by Basnet and Bhattacharyya (2017).  

            As for the duration of Project II, the objective of this project is to apply 

and extend the concepts of general nil-clean graphs of rings to 𝑥(𝑥 − 3)-nil 

clean graphs of rings, with the intended aim of using programming to visualize 

such graphs. 

 

1.3 Scope of the Study 

The first stage of the project focuses on analysis of finite commutative rings 

with respect to certain properties in the field of Graph Theory, namely 

dominating sets, girth and diameter, with an emphasis on simple undirected 

graphs. 

            The second stage of the project would apply similar graph properties to 

a more specific set of graphs of rings. Once the first stage of the project has been 

completed, it would provide a suitable setting to specify the scope of the next 

phase. 
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1.4 Project Timeline 

The schedule for working on the project is shown in the Gantt Chart below: 

TASKS 
WEEK 

01 02 03 04 05 06 07 08 09 10 11 12 13 

Title registration               

Preliminary discussion with supervisor              

Sourcing study and research materials               

Biweekly report submissions              

Compilation of materials for literature review              

Project proposal submission              

Continuous project analysis               

Proposal mock presentation              

Report writing and final revision              

Interim report submission              

Project oral presentation               

 

Table 1(a): Schedule for Project I during the January 2021 Trimester 

TASKS 
WEEK 

01 02 03 04 05 06 07 08 09 10 11 12 13 

Project Discussion with Supervisor                

Continue research and material compilation              

Submission of Mid-Semester Monitoring Form              

Project Poster Preparation              

Final Report Preparation              

Project Poster submission              

Final Report submission              

Project oral presentation              

 

Table 1(b): Schedule for Project II during the May 2021 Trimester 

 

This timeline above had been strictly adhered to, which allowed for sufficient 

time to complete the necessary tasks to accomplish the goals of this project. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This section showcases some relevant literature referenced in the research paper 

by Basnet and Bhattacharyya (2017). The preliminary work done by previous 

mathematicians serve as an introduction to the comprehensive concepts 

presented in the primary article of research.  

 

2.2 Review of Literature in Primary Article  

Let 𝑅 be a commutative ring. Consider 𝑅 as a simple graph whose vertices are 

the elements of 𝑅, such that two different elements 𝑥 and 𝑦 are adjacent if and 

only if 𝑥𝑦 = 0. Let 𝑎 be an element of a ring 𝑅. It has been established that 𝑎 

is: 

1. nilpotent if 𝑎  =  0  for some 𝑘 ∈  ℕ ; in any ring, 0 is a nilpotent 

element and is generally known as a trivial nilpotent. 

2. idempotent if 𝑎 =  𝑎. 

3. a unit if 𝑎 has a multiplicative inverse, i.e., if an element 𝑏 exists in 𝑅 

such that  𝑎𝑏 = 1 = 𝑏𝑎;  

4. a zero divisor if there exists a non-zero element 𝑏 ∈ 𝑅  such that                           

𝑎𝑏 = 𝑏𝑎 = 0 where 𝑎 ≠  0. 

            Using the concept of chromatic number of a graph, the idea of finitely 

coloured commutative rings was first highlighted by Beck (1988). Soon after, 

the concept of unit rings was highlighted in studies conducted by Ashrafi (2010). 

For any ring 𝑅, let 𝑈(𝑅) be the set of unit elements of 𝑅. The unit graph of 𝑅, 

denoted 𝐺(𝑅), is the graph obtained by setting all the elements of 𝑅  to be 

distinct vertices such that 𝑥 and 𝑦 are adjacent if and only if 𝑥 +  𝑦 ∈  𝑈(𝑅). If 

the word “distinct” was omitted in the definition, a closed unit graph denoted 

𝐺(𝑅) is obtained, whereby the graph may contain loops – which is out of the 

scope of study. 

            To explain the idempotency and nilpotency of a ring, let the sets of 

idempotents and nilpotents of 𝑅  to be denoted by 𝐼𝑑(𝑅)  and 𝑁𝑖𝑙(𝑅) 
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respectively. Nicholson (1977) has defined that an element 𝑥 in 𝑅 is said to be 

clean if there exist an 𝑒 ∈  𝐼𝑑(𝑅) such that 𝑥 −  𝑒 is a unit of 𝑅. In a more 

generalized manner, presented by Han & Nicholson (2001), an element 𝑥 in 𝑅 

is called clean if it can be expressed as the sum of an idempotent and a unit in 

𝑅. The ring 𝑅 is called a clean ring if every element of 𝑅 is clean. 

            A more specified outlook was introduced by Diesl (2013), which are nil 

clean rings and strongly nil clean rings. A ring 𝑅 is called nil clean ring if for 

each 𝑥 ∈  𝑅 such that 𝑥 =  𝑛 +  𝑒, for some 𝑛 ∈  𝑁𝑖𝑙(𝑅) and 𝑒 ∈  𝐼𝑑(𝑅). A 

study by Danchev and McGovern (2015) further branched into weakly nil clean 

ring. An element 𝑥 ∈ R is called weakly nil clean if 𝑥 =  𝑛 −  𝑒 or 𝑥 =  𝑛 +

 𝑒 for some 𝑛 ∈  𝑁𝑖𝑙(𝑅) and 𝑒 ∈  𝐼𝑑(𝑅). The above result was also visible in 

a study from Kosan & Zhou (2016). However, Danchev and McGovern (2015) 

also mentions that an element in a ring is unipotent if it can be written as 1 +  𝑏 

for some nilpotent 𝑏 ∈  𝑅. It is imperative to examine that any given ring is 

weakly nil clean if and only if every element can be written as either the sum of 

a nilpotent and an idempotent, or of a unipotent and an idempotent.  

 

2.3 Further Concepts  

If considering the graph of a nil clean ring 𝑅, denoted by 𝐺 (𝑅), it is defined 

by applying 𝑅 as a vertex set. Two distinct vertices 𝑥 and 𝑦 are adjacent if 𝑥 +

 𝑦 is a nil clean element in R, not taking into consideration loops at a particular 

vertex.  

    Firstly, there are some important information to consider for the 

duration of this project. For instance, the number of edges joined to a vertex on 

a graph G, where 𝑥 ∈ 𝑉(𝐺) can be identified as the degree of the vertex, 𝑑𝑒𝑔(𝑥). 

In addition, the neighbourhood of a vertex 𝑥 is defined as 𝑁 (𝑥) = {𝑦 ∈ 𝑉(𝐺) ∶

𝑥  and  𝑦  are adjacent} , where 𝑁 [𝑥] = 𝑁 (𝑥) ∪ {𝑥}. Also, it is important to 

understand the concept of a complete graph, whereby every pair of distinct 

vertices within the graph are connected by an edge that is unique.        
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  As described in the scope of this project, some Graph Theory properties 

that will be considered are chromatic index, diameter and girth. For instance, 

girth would refer to the length of the shortest cycle in the graph. Using the 

𝐺𝐹(25)  graph, a finite field of 25 elements, illustrated by Basnet and 

Bhattacharyya (2017) as an example to show the application of girth: 

 

 

Figure 1: The nil clean graph of 𝐺𝐹(25) 

 

            By looking at the above nil-clean graph figure, it can be seen that the 

length of the shortest cycle is 10, hence indicative of the girth of 𝐺𝐹(25) which 

is 10. 

            Another important concept to be studied in relation to the project is the 

chromatic index. It refers to the minimum number of colours needed to make a 

proper colouring for a graph G such that for any two adjacent edges 𝑥, 𝑦 ∈

𝐸(𝐺), the colour of 𝑥 and 𝑦 will not be the same (Chartrand et. al., 2009) . In 

the case of nil clean graphs of rings, we assume ∆ to be the maximum vertex 

degree of  𝐺 (𝑅). According to Vizing’s Theorem, ∆ ≤ 𝜒 𝐺 (𝑅) ≤ ∆ + 1 

and it further classifies graphs into class 1 and 2 for graphs that satisfy the 

conditions 𝜒 𝐺 (𝑅) = ∆  and 𝜒 𝐺 (𝑅) = ∆+1 respectively. To illustrate 

the colouring concept further, we can examine the diagram below: 
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Figure 2: Part of the nil clean graph of 𝐺𝐹(25) 

 

             Based on the diagram above, it can be seen that vertex 1 is connected to 

three other vertices, namely 0, 3 and 4 via edges 𝑒 , 𝑒 and 𝑒  respectively. From 

the definition, these three edges cannot be coloured with the same colour. 

However, since 𝑒  and 𝑒  are not adjacent, these edges may have the same 

colouring. In addition, the maximum vertex degree belongs to vertices 1 and 4, 

with a degree of 3. Hence, according to Vizing’s theorem, ∆ = 3, satisfying the 

condition 3 ≤ 𝜒 𝐺 (𝑅) ≤ 4.  

            Another important property that will be studied in this project is the 

diameter of a graph 𝐺 (𝑅). Firstly, it is important to note that the distance 

between two vertices 𝑥 and 𝑦, 𝑑(𝑥, 𝑦) is referred to as the number of edges that 

lie on the shortest path between the two vertices. If there is no established path 

between the vertices, then 𝑑(𝑥, 𝑦)  =  ∞. The maximum distance of all distinct 

vertex pairs within a graph is referred to as the diameter, 𝑑𝑖𝑎𝑚(𝐺 (𝑅) (Chen & 

Garfinkel, 1982).  

 

 

e1 

e2 

e3 

e4 
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CHAPTER 3 

 

3 PRELIMINARY RESULTS 

 

3.1 Methodology 

The majority of this project requires working on the chosen research article by 

Basnet and Bhattacharyya (2017) with a critical and analytical outlook as well 

as a systematic collection of relevant information from other similar material 

and articles.  

Considering the nature of this project to be more theoretical, the project 

will require extensive research and acquisition of materials pertaining ring 

theory, graph theory as well as linear algebra fundamentals. With this basic 

understanding, a proper analysis of the main research article can be conducted 

thoroughly. This would include breaking down the proofs presented in each 

section to firmly establish the properties of nil-clean ring graphs. 

.  

 

3.2 Basic Properties of the Nil Clean Graphs 

This section examines the theories that develop the fundamental properties of 

the nil-clean graph of a finite commutative ring. 

 

Theorem 3.1. The nil clean graph GN(R) is considered complete if and only if 

R is a nil clean ring.  

 

Proof: (⇒): For a ring 𝑅, let 𝐺 (𝑅) be a complete nil clean graph. For all 𝑟 ∈ 𝑅, 

if 𝑟 and 0 are adjacent to each other, there exists a path connecting 𝑟 and 0 such 

that 𝑟 +  0 =  𝑟. This implies that the nil clean property is satisfied, hence, 𝑅 

is considered to be nil clean. 

(⇐): The converse is true by the nil clean graph definition. Suppose 𝑅 is a nil 

clean ring. For any elements 𝑥, 𝑦 ∈ 𝑅, they are connected to each other if and 

only if 𝑥 +  𝑦 is nil clean. It implies that distinct element pairings of the ring 

are to form a unique edge set. Hence 𝐺 (𝑅)  is said to be a complete nil clean 

graph.  
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Lemma 3.2. Let 𝑅 be a ring and idempotents lift modulo 𝑁𝑖𝑙(𝑅). If elements 

𝑥 +  𝑁𝑖𝑙(𝑅)  and 𝑦 +  𝑁𝑖𝑙(𝑅)  are adjacent in 𝐺 (𝑅/𝑁𝑖𝑙(𝑅)) , then the 

adjacency of the elements 𝑥 +  𝑁𝑖𝑙(𝑅) and 𝑦 +  𝑁𝑖𝑙(𝑅) holds true in the nil 

clean graph of 𝐺 (𝑅). 

 

Proof: If the idempotents lift modulo 𝑁𝑖𝑙(𝑅), it implies that for any ring element 

𝑥  =  𝑥 ∈ 𝑅/𝑁𝑖𝑙(𝑅), there exists an idempotent 𝑒 = 𝑒 ∈ 𝑅 such that 

𝑒 –  𝑥 ∈ 𝑅/𝑁𝑖𝑙(𝑅). Subsequently, we have  

𝑥 +  𝑁𝑖𝑙(𝑅)  +  𝑦 + 𝑁𝑖𝑙(𝑅) =  𝑛 +  𝑒 +  𝑁𝑖𝑙(𝑅) 

                          𝑥 +  𝑁𝑖𝑙(𝑅)  +  𝑦 + 𝑁𝑖𝑙(𝑅) =  𝑒 +  𝑁𝑖𝑙(𝑅),  as 𝑛 ∈ 𝑁𝑖𝑙(𝑅) 

   (𝑥 +  𝑦)  +  𝑁𝑖𝑙(𝑅) =  𝑒 +  𝑁𝑖𝑙(𝑅) 

Thus, we have 

 𝑥 + 𝑦 + 𝑛 = 𝑓 +  𝑛 , where 𝑛 , 𝑛  ∈ 𝑁𝑖𝑙(𝑅) and 𝑓 ∈ 𝑅. 

Hence, 

 𝑥 + 𝑦 = 𝑓– 𝑛 + 𝑛 = 𝑓 +  𝑛’, where 𝑛’ = – 𝑛 + 𝑛   

The above result implies that 𝑥 +  𝑦  ∈ 𝑅, generalized from the idea that 

𝑥 +  𝑦 ∈ 𝑅/𝑁𝑖𝑙(𝑅).  

  

Lemma 3.3. Let 𝐺 (𝑅) be the nil clean graph of a ring 𝑅. For 𝑥 ∈  𝑅 we have 

the following: 

(i)  If 2𝑥 is nil clean, then 𝑑𝑒𝑔(𝑥) = |𝑁𝐶(𝑅)| − 1. 

(ii) If 2𝑥 is not nil clean, then 𝑑𝑒𝑔(𝑥) = |𝑁𝐶(𝑅)|. 

 

Proof: Suppose 𝑥 ∈  𝑅 and it is evident that 𝑥 +  𝑅 =  𝑅. Hence there exists a 

unique element 𝑥  ∈  𝑅 for each 𝑦 ∈  𝑁𝐶(𝑅) such that 𝑥 +  𝑥  =  𝑦.  

So, 𝑑𝑒𝑔(𝑥)  ≤  |𝑁𝐶(𝑅)|. 

To show (i): Suppose {𝑥 , 𝑥 , 𝑥 , … , 𝑥}  ⊆ 𝑅  and {𝑥 +  𝑥 , 𝑥 +  𝑥 , 𝑥 +

𝑥 , … , 2𝑥} ⊆ 𝑁𝐶(𝑅). An illustration of the graph is shown below, by taking into 

account that the graph has no loops and multiple edges.  
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Figure 3: Nil clean graph of 𝑥 elements – including 𝑥 

 

Since 𝑁 ( )(𝑥) comprises of a set of elements 𝑦 ⊆ 𝑉(𝐺 (𝑅) ) such that 𝑥 and 

𝑦 are adjacent to each other and that y = {𝑥 , 𝑥 , 𝑥 , … , 𝑥}, we can note a clear 

one-to-one correspondence. Therefore, 

𝑑𝑒𝑔(𝑥)  =  | 𝑁 ( )(𝑥)|  =  |𝑁 ( )[𝑥]| –  1 =  |𝑁𝐶(𝑅)| –  1. 

To show (ii): Suppose {𝑥 , 𝑥 , 𝑥 , … , 𝑥 , 𝑥}  ⊆ 𝑅  and {𝑥 +  𝑥 , 𝑥 +  𝑥 , 𝑥 +

𝑥 , … , 𝑥 + 𝑥 } ⊆ 𝑁𝐶(𝑅) but 2𝑥 is no longer nil clean. Leaning into the same 

prerequisites as Figure 3, we can show the following illustration: 

 

 

Figure 4: Nil clean graph of 𝑥 elements – not including 𝑥 
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Similar to case (i), 𝑁 ( )(𝑥) comprises of a set of elements 𝑦 ⊆ 𝑉(𝐺 (𝑅) ) 

such that 𝑥 and 𝑦 are adjacent to each other and that y = {𝑥 , 𝑥 , 𝑥 , … , 𝑥 }. 

Therefore,  

𝑑𝑒𝑔(𝑥)  =  | 𝑁 ( )(𝑥)|  =  |𝑁 ( )[𝑥]  =  |𝑁𝐶(𝑅)|. 

 

Lemma 3.4. A reduced ring 𝑅  is finite commutative with no non-trivial 

idempotents if and only if 𝑅 is a finite field. 

 

Proof: For any reduced ring 𝑅 that is finite commutative, it implies that 𝑅 only 

has zero nilpotent elements. Hence, we assume the nilpotent to be 0 and the 

idempotents to be 0 and 1.  

(⇒): Suppose 0  ≠ 𝑥 ∈ 𝑅 . We have a finite set {𝑥 }, where 𝑘  is a natural 

number. There exists a value  𝑚 ≥  𝑙 , such that 𝑥 = 𝑥 . Using a specific 

example, we study the field of ℤ  = {0, 1, 2, 3} using 𝑥 = 5 as an example.  

If 𝑙 = 1 and 𝑚 = 2, the following result is obtained: 

5  =  5 𝑚𝑜𝑑 4 =  1 and 5  =  25 𝑚𝑜𝑑 4 =  1. 

Hence, 5  =  5  (𝑚 >  𝑙, proven). 

 

In more general terms: 

𝑥 = 𝑥   = 𝑥   = 𝑥 ∙ 𝑥 = 𝑥 ∙ 𝑥 = 𝑥( ) = 𝑥 ( )  

This can continue to generalise into 𝑥 ( ) , where 𝑘 is a natural number. 

We now have 𝑥 ( )  

= 𝑥 ( ) ∙ 𝑥 ( ) 

= 𝑥 ( ) ( )  

= 𝑥 ( ) ∙ 𝑥 ( )  

= 𝑥 ∙ 𝑥 ( )  (since 𝑥 = 𝑥 ( ) ) 

= 𝑥 ( )  

= 𝑥 ( ) 

The above result indicates that 𝑥 ( )  is an idempotent of ring 𝑅 . Hence, 

𝑥 ( )= 1, implying that 𝑥 is a unit. Also, since 𝑥 ( )= 𝑥 ∙ 𝑥 ( )  = 1, 𝑥 

will have an inverse, which is 𝑥 ( ) . Since an inverse exists, 𝑅 is therefore, 

a finite field.  
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(⇐): Let 𝑅 be a finite field. It implies that an inverse will exist for all 𝑥 ∈ 𝑅. 

Assume 𝑥 is a non-zero nilpotent element in 𝑅. So, 𝑥  = 0 for some n ∈ ℕ. The 

presence of an inverse would indicate that 𝑥  (𝑥 )  = 0(𝑥 ) , implying 

that 𝑥 = 0. This is a contradiction since 𝑥 is assumed to be non-zero. Hence, 𝑅 

cannot have any non-zero nilpotents.  

 

3.3 Invariants of Nil Clean Graphs 

This section examines the proofs of nil clean graph properties in relation to 

graph theory invariants. 

 

3.3.1      Girth  

Theorem 3.5. The statements below are true for the nil clean graph 𝐺 (𝑅): 

(i)  If 𝑅 is not a field, then the girth of 𝐺 (𝑅)  = 3 

(ii) If 𝑅 is a field, then  

 (a) the girth of 𝐺 (𝑅)= 2p if 𝑅 ≅ GF(pk) (the field of order pk), where  

                    p is an odd prime number and k > 1; and  

 (b) otherwise, the girth of 𝐺 (𝑅)  is infinite, making 𝐺 (𝑅) a path. 

 

Proof: To show (i): Based on Lemma 3.4., if a ring 𝑅 is not a field, then it cannot 

be considered commutative with trivial idempotents. Hence, it implies that 𝑅 

must contain a minimum of one non-trivial nilpotent or idempotent. Consider a 

non-trivial idempotent 𝑒 ∈ 𝑅, there exists a cycle of length 3 in 𝐺 (𝑅) as shown 

below: 

 

 

Figure 5: A cycle of length 3 for a non-trivial idempotent 
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The diagram above implies the girth of 𝐺 (𝑅)  to be 3. Alternatively, we may 

consider a non-trivial nilpotent 𝑛 ∈ 𝑅, there exists a cycle of length 3 in 𝐺 (𝑅)  

as show below: 

 

 

Figure 6: A cycle of length 3 for a non-trivial nilpotent 

 

To show (ii): For a finite field, the nil clean set of elements is defined as {0, 1}. 

Hence the nil clean graph for ℤ  , for any prime number p is illustrated below: 

  

Figure 7: The nil clean graph of ℤ  

 

It is evident from the above figure that 𝐺 (ℤ ) possesses an infinite girth, thus 

rendering statement (ii)(b) to be true. It can be implied that the nil clean graph 

of 𝐺𝐹(𝑝 ), where 𝑝 > 2 , is disconnected based on how finite field are 

categorized. Moreover, the graph of 𝐺𝐹(𝑝 ) is made up of a path of length 𝑝 

containing  2𝑝-cycles. Consider 𝐺𝐹(𝑝 ) =ℤ [𝑋]/〈𝑓(𝑥)〉, 𝑓(𝑥) being an 

irreducible polynomial of degree k over ℤ . Suppose 𝐵 ⊆ 𝐺𝐹(𝑝 ), where 𝐵 is 

made up of linear combinations of 𝑥, 𝑥 , … , 𝑥  consisting of coefficients from 

ℤ . Taking these facts into consideration, if 𝑔(𝑥) +  〈𝑓(𝑥)〉 ∈ 𝐵, then –  𝑔(𝑥) +  

〈𝑓(𝑥)〉 ∉ 𝐵. Hence, 𝐵 can be described as follows: 

𝐵 = {𝑔 (𝑥) =  𝑔 (𝑥) + 〈𝑓(𝑥)〉 ∶ 1 ≤ 𝑖 ≤  } 
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This produces a nil clean graph of 𝐺𝐹(𝑝 ) as follows:  

 

Figure 8: The nil clean graph of 𝐺𝐹(𝑝 ) 

 

Based on the graph, we have the following: 

 

 

3.3.2       Chromatic Index 

Theorem 3.6.  If R is a finite commutative ring, then nil clean graph of R is of 

class 1. 

 

Proof: An edge 𝑎𝑏 is coloured by the colour 𝑎 + 𝑏. By this technique, it can be 

said that any two distinct edges 𝑎𝑏  and 𝑎𝑐  would be coloured differently. 

Suppose a set of colours 𝐶 = {𝑎 +  𝑏 ∶  𝑎𝑏 is an edge in 𝐺 (𝑅)}.  
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To illustrate this concept, let {𝑥, 𝑥 , 𝑥 , … , 𝑥 } ⊆ 𝑅  where 𝐶 =  {𝑥 + 𝑥 , 𝑥 +

𝑥 , … , 𝑥 + 𝑥 } ⊂ 𝑁𝐶(𝑅).  The graph below is obtained: 

 

 

Figure 9: The graph of 𝐺 (𝑅) containing (𝑛 + 1) elements 

 

The above graph would contain a |𝐶| -edge colouring, implying that 

𝜒′(𝐺 (𝑅)) ≤  𝐶. As established, 𝐶 ⊆ 𝑁𝐶(𝑅) and so, |𝐶|  ≤  |𝑁𝐶(𝑅)|. Hence, 

𝜒′(𝐺 (𝑅)) ≤  |𝑁𝐶(𝑅)|. From Lemma 3.3, it is clear that 𝑑𝑒𝑔(𝑥) ≤ |𝑁𝐶(𝑅)| 

and 𝑑𝑒𝑔 ≤ |𝑁𝐶(𝑅)| –  1. It would then imply that 𝑑𝑒𝑔(𝑥)  ≤  𝑑𝑒𝑔(𝑥)  +  1 ≤

 |𝑁𝐶(𝑅)|. So, for 𝑑𝑒𝑔(𝑥) = ∆ = |𝐶| and ∆ ≤  |𝑁𝐶(𝑅)|. By Vizing’s Theorem, 

𝜒′(𝐺 (𝑅) )  ≥ ∆ = |𝑁𝐶(𝑅)| . Hence, 𝜒′(𝐺 (𝑅) ) = |𝑁𝐶(𝑅)| = 1 . In other 

words, 𝐺 (𝑅)  is of class 1.  

 

3.3.3      Diameter 

Lemma 3.7. A ring R is a nil clean ring if and only if 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) = 1. 

 

Proof: (⇒): Suppose 𝑅 is a nil clean ring. It implies that all elements within the 

ring must be nil clean elements. It is a fact that the nil clean elements are the 

sum of a nilpotent and an idempotent, resulting in the diameter of 𝐺 (𝑅) to be 

1, as illustrated below: 

 

 

Figure 10: The nil clean graph for the nilpotent and idempotent 
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(⇐): Suppose 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) = 1, where the maximum distance of each pair of 

distinct vertices in 𝐺 (𝑅) is 1. For any nil clean elements 𝑥, 𝑦 ∈ 𝑅, 𝑥 + 𝑦 must 

be nil clean as well. Following this, it implies all elements in 𝑅 must be nil-

clean, which indicates that 𝑅 must be a nil clean ring.  

 

Theorem 3.8. If R is a weakly nil clean ring with no non-trivial idempotents, 

but not nil-clean, then 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) = 2. 

 

Proof: Assume 𝑅 as weakly nil clean with no non-trivial idempotents, taking 

𝑥 =  𝑛  –  1, 𝑛 , 𝑛  +  1 and 𝑦 =  𝑛   –  1, 𝑛  , 𝑛   +  1 , where 𝑥, 𝑦 ∈ 𝑅  for 

some 𝑛 , 𝑛  ∈ 𝑁𝑖𝑙(𝑅). We will have nine possible combination of distances 

𝑑(𝑥, 𝑦) as follows: 

 

𝐺 (𝑅) 𝑑(𝑥, 𝑦) 

[𝑛 ] ▬▬ [𝑛 ] 1 

[𝑛 ] ▬▬ [𝑛 +1] 1 

[𝑛 ] ▬▬ [1] ▬▬ [𝑛  – 1] 2 

[𝑛 +1] ▬▬ [𝑛 ] 1 

[𝑛 +1] ▬▬ [-1] ▬▬ [𝑛  + 1] 2 

[𝑛 +1] ▬▬ [𝑛  – 1] 1 

[𝑛  –1] ▬▬ [1] ▬▬ [𝑛 ] 2 

[𝑛  –1] ▬▬ [𝑛  + 1] 1 

[𝑛 –1] ▬▬ [1] ▬▬ [𝑛  – 1] 2 

 

Table 2: The possible values of 𝑑(𝑥, 𝑦) for each 𝐺 (𝑅) 

 

The table clearly shows that 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) ≤ 2. But since 𝑅 is weakly nil clean 

and not nil clean, there is at least one 𝑥 ∈ 𝑅 which is not considered nil clean. 

In other words, 𝑥 =  𝑛 –  1 but 𝑥 ≠  𝑛 +  1. This would indicate 𝑑(0, 𝑥) = 2 as 

[0] ▬▬ [1] ▬▬ [n – 1], thus making 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) ≥ 2. The combination of 

the two results shows that 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) = 2.  
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Theorem 3.9. Let R = A×B such that A is nil clean and B weakly nil clean with 

no non-trivial idempotents. Then 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) = 2. 

 

Proof: From the above, we can say that 𝐼𝑑(𝑅) = {(𝑒, 0 ), (𝑒, 1 ) : 𝑒 ∈ 𝐼𝑑(𝐴)} 

since 𝐴 is nil clean with no non-trivial idempotents. Suppose (𝑎 , 𝑏 ), (𝑎 , 𝑏 ) 

∈ 𝑅. If (𝑎 , 𝑏 ) + (𝑎 , 𝑏 ) is nil clean, then 𝑑((𝑎 , 𝑏 ), (𝑎 , 𝑏 )) = 1 in 𝐺 (𝑅). 

However, if (𝑎 , 𝑏 ) + (𝑎 , 𝑏 ) is not nil clean, it can be said that 𝑏 + 𝑏  is not 

nil clean.  

To assess further, let 𝑏  = 𝑛  – 1, 𝑛 , 𝑛  + 1 and 𝑏  = 𝑛 − 1, 𝑛 , 𝑛  +1. We 

can study the occurrences in four separate cases as follows: 

 

𝑏  𝑏  Path formed 𝑑((𝑎1, 𝑏1), (𝑎2, 𝑏2)) 

𝑛  𝑛 − 1 
[a1, b1] ▬▬ [0,1] ▬▬ [a2, 

b2] ≤ 2 
𝑛 − 1 𝑛  

𝑛 − 1 𝑛 − 1 

𝑛 + 1 𝑛 + 1 [a1, b1] ▬▬ [0,-1] ▬▬ [a2, b2] 

 

Table 3: The distance for each case in the idempotent set where 𝑏 + 𝑏  is not 

               nil clean. 

 

The table clearly shows that 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) ≤ 2. However, since 𝑅 is not nil 

clean, 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) ≥ 2. As such, 𝑑𝑖𝑎𝑚(𝐺 (𝑅)) = 2. 

 

 

 

 

 

 

 

 

 

 



18 

3.4 Contradiction in Proof of Theorem 

This section discusses an inconsistency in the proof of a theorem published by 

Basnet and Bhattacharyya (2017). 

 

Theorem: Let R be a weakly nil clean ring such that R has no non-trivial 

idempotents. Then {1, 2} is a dominating set for 𝐺 (𝑅). 

The authors assume R to be a weakly nil clean ring with only trivial idempotents, 

where 𝐼𝑑(𝑅) = {0,1}. Since a weakly nil clean ring can be defined as 𝑛 –  𝑒 or 

𝑛 +  𝑒, it implies that for any 𝑎 ∈ 𝑅, it can be defined as: 

(i)   𝑎 =  𝑛 –  0 =  𝑛 +  0 =  𝑛 

(ii)  𝑎 =  𝑛 +  1 

(iii) 𝑎 =  𝑛 –  1. 

We can prove that {1} is a dominating set element of 𝐺 (𝑅). 

Case (i): If 𝑎 =  𝑛, then 𝑎 +  1 =  𝑛 +  1 ∈ 𝑁𝐶(𝑅) 

Case (ii): If 𝑎 =  𝑛 +  1, then 𝑎 –  1 =  (𝑛 +  1) –  1 =  𝑛 ∈ 𝑁𝐶(𝑅) 

Case (iii): If 𝑎 =  𝑛 –  1, then 𝑎 +  1 =  (𝑛 –  1)  +  1 =  𝑛 ∈ 𝑁𝐶(𝑅) 

The above three cases imply that 𝑎 is connected to 1.  

 

However {2} being a dominating set element of 𝐺 (𝑅) is not necessarily true 

as indicated by the article. For an initial assumption of 2 = 𝑛 +1 for some 

nilpotent 𝑛 ∈ 𝑅, it implies that 𝑛  = 1. Based on the definition of a nilpotent, 

the above implication is false since 1 ≠  0  for any value of 𝑛 . Hence, it 

disproves {2} from being a dominating set element of 𝐺 (𝑅). 
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CHAPTER 4 

 

4 𝒈(𝒙)-NIL CLEAN GRAPHS 

 

4.1 Introduction 

For any ring 𝑅 , let 𝐶(𝑅)  br the center of the ring with 𝑔(𝑥)  as a fixed 

polynomial in 𝐶(𝑅)[𝑥]. An element 𝑟 ∈ 𝑅 is said to be 𝑔(𝑥)-nil clean if every 

element in 𝑅 is the sum of a nilpotent and a root of 𝑔(𝑥). In other words,  𝑟 =

𝑛 + 𝑠, where 𝑛 ∈ 𝑁𝑖𝑙(𝑅) and 𝑠 ∈ 𝑅 such that 𝑔(𝑠) = 0 (Handam & Khashan, 

2017). If every element in 𝑅 is 𝑔(𝑥)-nil clean, then the ring R is classified as 

𝑔(𝑥)-nil clean.  

 Let 𝐺 ∗(𝑅) denote the 𝑔(𝑥)-nil clean graph of ring R, where the set of 

𝑔(𝑥)-nil clean elements of ring R denote by 𝑁∗(𝑅). For any two distinct vertices 

𝑥 and 𝑦 which are the elements from the 𝑔(𝑥)-nil clean ring 𝑅, it is said that 𝑥 

and 𝑦 are adjacent if and only if 𝑥 + 𝑦 ∈ 𝑁∗(𝑅).     

 

4.2 The 𝒙(𝒙 − 𝟑)-nil clean graphs  

Throughout the rest of the study, a specific 𝑔(𝑥) is chosen to be studied, where 

𝑔(𝑥) = 𝑥 − 3𝑥  ∈ 𝐶(𝑅)[𝑥] . It implies that the roots of 𝑔(𝑥)  are 0  and 3 . 

Hence, some properties and examples of such 𝑔(𝑥)-nil clean graphs of rings 

will be analyzed in the subsequent sections.  

 

4.2.1 The graph of GF(25) as a 𝒙(𝒙 − 𝟑)-nil clean graph 

In section 2.3, it has been previously established that 𝐺𝐹(25) is a finite field 

containing 25 elements and is nil-clean. However, 𝐺𝐹 (25) is also 𝑥(𝑥 − 3)-nil 

clean as shown below. 
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Figure 11: 𝑔(𝑥)-nil clean graph of 𝐺𝐹(25) 

 

4.2.2  ℤ𝒏 graphs as 𝒙(𝒙 − 𝟑)-nil clean graphs 

In section 3.3.1, ℤ  graphs have been established as nil-clean. However, the 

graphs of ℤ  are also 𝑥(𝑥 − 3) -nil clean. The following set of diagrams 

illustrate all graphs of ℤ  where the vertex set of ℤ , denoted by  𝑉(ℤ ) =

{0, 1, 2, … , 𝑛 − 1} for 3 ≤ 𝑛 ≤ 40.  

A sample of the code used is shown in the screenshot below. The codes 

in the figure below are specific to ℤ . However, all values of 𝑛 were changed 

manually to print out the graphs within the range studied. 
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Figure 12: Coding screenshot for the generation of  G ∗(ℤ ) 

 

Graph of ℤ  Graph of ℤ  

 

 

 

Graph of ℤ  Graph of ℤ  
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Graph of ℤ  Graph of ℤ  

  

 

 

Graph of ℤ  Graph of ℤ  

 

 

 

Graph of ℤ  Graph of ℤ  
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Graph of ℤ  Graph of ℤ  

  

 

 

 

Graph of ℤ  Graph of ℤ  

  

 

Graph of ℤ  Graph of ℤ  
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Graph of ℤ  Graph of ℤ  

  

 

 

 

Graph of ℤ  Graph of ℤ  

  

 

Graph of ℤ  Graph of ℤ  
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Graph of ℤ  Graph of ℤ  

  

 

 

 

Graph of ℤ  Graph of ℤ  

  

 

Graph of ℤ  Graph of ℤ  
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Graph of ℤ  Graph of ℤ  

  

 

 

 

Graph of ℤ  Graph of ℤ  

  

 

Graph of ℤ  Graph of ℤ  
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Graph of ℤ  Graph of ℤ  

  

 

 

Graph of ℤ  Graph of ℤ  

  

 

Figure 13: 𝑔(𝑥)-nil clean graphs of  ℤ  where 3 ≤ 𝑛 ≤ 40 

 

It is important to note that for each of these graphs, all the possible 

nilpotents besides 0 were calculated. In other words, a general code was created 

to fulfil the conditions of a nilpotent element by considering vertices 𝑥 and 𝑦 

such that (𝑥 + 𝑦 − 0)  or (𝑥 + 𝑦 − 3)  for some 𝑘 ∈  ℕ, seeing as the roots of 

𝑔(𝑥) are 0 and 3. The nilpotent outputs from the Python coding are shown 

below: 
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Figure 14: Coding and output of set of nilpotent elements of G ∗(ℤ ) 
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An interesting pattern is observed upon finding the set of nilpotents 

for each ℤ . If n is expressed as a product of their prime factors, the set of 

nilpotent elements are such that they are multiples of the prime factor product 

without including the power of the prime factor.  

In other words, if 𝑛 = 𝑝 𝑝 … 𝑝  such that 𝑝 , 𝑝 , … , 𝑝  are prime 

factors for 𝑖 = 1,2,3, … , then the set of nilpotent elements are the multiples of 

𝑝 × 𝑝 × … × 𝑝  less than 𝑛. 

 

4.3         Some properties of 𝑮𝑵∗(ℤ𝒏) 

This section examines some of the generalised properties of the 𝑔(𝑥)-nil clean 

graphs of ℤ  in relation to graph theory invariants. 

 

4.3.1 Connectedness of 𝐺 ∗(ℤ ) 

In general, the connecteness of the 𝑔(𝑥)-nil clean graphs of ℤ  can be studied 

based on two major categories – where 𝑛  is either a multiple of 3 or not a 

multiple of 3. Each of these categories can be further subdivided based on their 

behaviour of 𝑛.  

 

Theorem 4.1 The following properties hold for 𝐺 ∗(ℤ ), where 𝑛 > 3: 

(I) If 𝑛 = 3𝑚 for all 𝑚 ∈ ℕ, then 𝐺 ∗(ℤ ) is a disconnected graph. If 

𝑛  is expressed as a product of prime factors where 𝑛 =

3 𝑝 𝑝 … 𝑝  such that 𝑝 , 𝑝 , … , 𝑝  are prime factors other 

than 3: 

(A)  If at least one of 𝑎, 𝑏 , 𝑏 , … , 𝑏 > 1 , then the graph is 

disconnected in two parts – one complete graph made up of 

vertices that are multiples of 3 and one complete bipartite graph 

made up of vertices that are not multiples of 3. 

(B)  If 𝑎 =  𝑏 = 𝑏 = ⋯ = 𝑏 = 1, then the graph is disconnected 

in two parts – one linear graph made up of vertices that are 

multiples of 3 and one cycle made up of vertices that are not 

multiples of 3.  
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(II) If 𝑛 ≠ 3𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ ℕ , then 𝐺 ∗(ℤ )  is a single connected 

graph. 

(A)  If 𝑛 = 2  for all 𝑚 ∈ ℕ  where 𝑚 ≥ 2 , then the graph is 

complete, 𝐾  . 

(B)  If 𝑛 is an odd prime, then the graph is linear. 

(C)  If 𝑛 is a non-prime where 𝑛 = 𝑝 𝑝 … 𝑝  such that 𝑝  is a 

prime number other than 3: 

(i)  If every 𝑏 = 1, then the graph is linear.  

(ii) If at least one 𝑏 > 1, then the graph is connected such that   

      𝑥 +  𝑦 < 2𝑛 and 𝑥 +  𝑦 are all possible nilpotents of 

      𝐺 ∗(ℤ ). 

Proof: 

Case (I): Consider 𝑛 as being a multiple of 3. In other words, 𝑛 = 3𝑚, where 

𝑚 = 1,2,3 …  for each G ∗(ℤ ).   

(A): Let 𝐾  be a complete graph and 𝐾 ,  be a complete bipartite graph. For 

each G ∗(ℤ ) that falls in this category, it is displayed as one 𝐾 and one 𝐾 ,  

in the following pattern: 

 

 

Figure 15: The graphs of G ∗(ℤ ) for case (I)(A) 
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Graphs of G ∗(ℤ ) that fall within this that fall in this category are such that 

𝑛 = 3 𝑝 𝑝 … 𝑝  where 𝑝 , 𝑝 , … , 𝑝  are prime factors other than 3 and at 

least one 𝑎, 𝑏 , 𝑏 , … , 𝑏 > 1. Such examples are indicated below: 

 ℤ  where 𝑛 = 3  

 ℤ  where 𝑛 = 3 × 2  

 ℤ  where 𝑛 = 3 × 2 

 ℤ  where 𝑛 = 3 × 2  

 ℤ  where 𝑛 = 3  

 ℤ  where 𝑛 = 3 × 2  

In each case, there is always at least one power of the prime factor that satisfies 

the condition of “greater than one”.  

 

(B): Let 𝐶  be a cycle with 2𝑚 vertices. For each G ∗(ℤ ) that falls in this 

category, it is displayed as one 𝐶  and one linear graph with 𝑚 vertices in the 

following pattern: 

 

 

 

Figure 16: The graphs of G ∗(ℤ ) for case (I)(B) 

 

Graphs of G ∗(ℤ ) that fall within this that fall in this category are such 

that 𝑛 = 3 𝑝 𝑝 … 𝑝  where 𝑝 , 𝑝 , … , 𝑝  are prime factors other than 3 

and 𝑎 =  𝑏 = 𝑏 = ⋯ = 𝑏 = 1. Such examples are indicated below: 

 ℤ  where 𝑛 = 3 × 2 

 ℤ  where 𝑛 = 3 × 5 

 ℤ  where 𝑛 = 3 × 7 

 ℤ  where 𝑛 = 3 × 2 × 5 

 ℤ  where 𝑛 = 3 × 11 

ℤ  where 𝑛 = 3 × 13 
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For the linear sequence, it is important to note that for even values of 

𝑛, the vertex sequence ends when 𝑘 = . Such examples include graphs of  ℤ  

and ℤ . However, in the case of odd values of 𝑛, the vertex sequence ends 

when 𝑛 − 𝑘 of the previous pair of vertices is equal to 𝑘 of the next pair of 

vertices. The said vertex only appears once as all graphs of G ∗(ℤ )  are 

assumed to contain no loops. Such examples include the graphs of ℤ  and ℤ . 

As for the cycle, the vertex sequence ultimately reaches a point where 𝑘 = 𝑛 −

1. Hence, 𝑛 − 𝑘 = 1. This implies a connection of the vertex 𝑘 to vertex 1, 

resulting in the formation of a cycle. The graph of ℤ  is used to illustrate the 

above phenomenon.  

 

Case (II): Now, we consider 𝑛 as not being a multiple of 3 for each G ∗(ℤ ).   

(A): If 𝑛 = 2  for all 𝑚 ∈ ℕ where 𝑚 ≥ 2, then the graph is complete, 𝐾 . 

Since the set of nilpotents for G ∗(ℤ ) are multiples of 2, all distinct vertex 

pairs 𝑥 + 𝑦 subject to the roots 0 and 3 will yield zero when raised to any power 

of 𝑛.  

 

(B) If 𝑛 is an odd prime, then the graph is linear in the following sequence: 

 

Figure 17: The graphs of G ∗(ℤ ) for case (II)(B) 

 

(C) If 𝑛  is a non-prime where 𝑛 = 𝑝 𝑝 … 𝑝  such that 𝑝  is a prime 

number other than 3, one of two possible outcomes will be obtained: 

(i): A linear graph is generated if every 𝑏 = 1 according to the pattern below: 



33 

 

Figure 18: The graphs of G ∗(ℤ ) for case (II)(C)(i) 

 

Such examples of G ∗(ℤ ) are indicated below: 

ℤ  where 𝑛 = 2 × 5 

 ℤ  where 𝑛 = 2 × 7 

 ℤ  where 𝑛 = 2 × 11 

 ℤ  where 𝑛 = 2 × 13 

 ℤ  where 𝑛 = 2 × 17 

ℤ  where 𝑛 = 2 × 19 

 

(ii)  If at least one 𝑏 > 1, then the graph is connected such that  𝑥 +  𝑦 < 2𝑛 

and 𝑥 +  𝑦 are all possible nilpotents of  𝐺 ∗(ℤ ). Such examples of G ∗(ℤ ) 

are indicated below: 

ℤ  where 𝑛 = 5 × 2  

 ℤ  where 𝑛 = 5  

 ℤ  where 𝑛 = 7 × 2  

 ℤ  where 𝑛 = 5 × 2  

 

Upon analysis, there are two noteworthy occurences for the above set 

of graphs. Firstly, there is at least one additional nilpotent element besides 0 for 

each graph. Secondly, these graphs use smaller ℤ  graphs as building blocks in 

achieving their pattern and structure.  

Consider the multiplication of the prime factors of the above examples 

of 𝑛 without the attached power. The information on the trend is displayed in 

the table below: 
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ℤ  Prime factor product  

(without powers) 

Set of nilpotent 

elements 

Linear graph with 

similar pattern 

ℤ  5 × 2 = 10 {0, 10} ℤ  

ℤ  5 {0, 5, 10, 15, 20} ℤ  

ℤ  7 × 2 = 14 {0, 14} ℤ  

ℤ  5 × 2 = 10 {0, 10, 20, 30} ℤ  

 

Table 4: Identification of smaller linear graph with similar patterns and its 

relationship to the set of nilpotent elements. 

 

Observe the following illustration for the sequence of vertex connections of 

𝐺 ∗(ℤ ) and 𝐺 ∗(ℤ ) below. 

 

 

Figure 19: The graph of 𝐺 ∗(ℤ ) 

 

 

Figure 20: The graph of 𝐺 ∗(ℤ ) 

 

We can see that the bottom row of elements are generated through the 

sum of each vertex with the extra nilpotent 10. Additionally, only the end 

vertices in each row will connect with each other as they fulfil the condition that 

(𝑥 + 𝑦 − 0)  or (𝑥 + 𝑦 − 3)  for some 𝑘 ∈  ℕ. This concept can be extended 

to ℤ  having 5 nilpotent elements and hence 5 similar rows of elements, while 

ℤ  having 4 nilpotent elements and hence 4 similar rows of elements.  
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In general, for any ℤ  in this category having a similar pattern structure 

as ℤ , where 𝑝 is the product of prime factors of 𝑛 (excluding the power) and 

having 𝑞 nilpotent elements, the graph will be made up of 𝑞 rows of vertices, 

each consisting 𝑝 vertices. The general structure of the graph can be illustrated 

as follows: 

 

 

Figure 21: General pattern of G ∗(ℤ ) as per case (II)(C)(ii) 

 

Note that the dotted red box are vertices of equivalent value with 

respect to the nilpotents. This can be achieved since the pattern in each row is 

identical. 
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4.3.2 Hamiltonian paths and cycles of 𝐺 ∗(ℤ ) 

A graph is said to contain a Hamiltonian path if it visits each vertex in the graph 

only once. Furthermore, if the said path is able to return to its starting vertex 

without passing through another vertex more than once, it forms a cycle. Hence 

it will be called a Hamiltonian cycle. In this section, we investigate the presence 

of Hamiltonian paths and cycles with reference to the classification from 

Theorem 4.1. 

 

Theorem 4.2 The following properties hold for 𝐺 ∗(ℤ ), where 𝑛 > 3: 

(I) If 𝑛 = 3𝑚  for all 𝑚 ∈ ℕ , then 𝐺 ∗(ℤ )  will not contain a 

Hamiltonian path since it contains two distinct connected 

components. However if the structures are studied separately and  𝑛 

is expressed as a product of prime factors where 𝑛 =

3 𝑝 𝑝 … 𝑝  such that 𝑝 , 𝑝 , … , 𝑝  are prime factors other 

than 3: 

(A)  If at least one of 𝑎, 𝑏 , 𝑏 , … , 𝑏 > 1 , then both distinct 

structures form Hamiltonian cycles. 

(B)  If 𝑎 =  𝑏 = 𝑏 = ⋯ = 𝑏 = 1, then one of the structures is a 

Hamiltonian cycle and the other is a Hamiltonian path.  

 

(II) If 𝑛 ≠ 3𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ ℕ , then 𝐺 ∗(ℤ )  is a single connected 

graph. 

(A)  If 𝑛 = 2  for all 𝑚 ∈ ℕ where 𝑚 ≥ 2, then the graph will have 

a Hamiltonian cycle. 

(B)  If 𝑛 is an odd prime, then the graph will have a Hamiltonian 

path. 

(C)  If 𝑛 is a non-prime where 𝑛 = 𝑝 𝑝 … 𝑝  such that 𝑝  is a 

prime number other than 3: 

(i)  If every 𝑏 = 1, then the graph will have a Hamiltonian path.  

(ii) If at least one 𝑏 > 1, then the graph will have a  Hamiltonian 

cycle 

 

. 



37 

Proof: 

(I): By Theorem 4.1, the graphs are disconnected, hence will not have a 

Hamiltonian path if looked at as a whole structure. But if studied separately: 

The structures in case (A) will be considered Hamiltonian cycles since both 

complete graphs and complete bipartite graphs are considered cyclic.  

 

Figure 22: The Hamiltonian cycles of ℤ  

 

The structures in case (B) which consists of a linear graph and a cycle will have 

a Hamiltonian path and cycle respectively due to its obvious nature. 

 

(II): By theorem 4.1, the graphs are connected, hence should contain at least a 

Hamiltonian path. To specify, in case (A) it has been established that all graphs 

in this category are complete and hence will contain a Hamiltonian cycle. In 

case (B) and C(i), the graphs have already been defined as linear and hence will 

have a Hamiltonian path. In case (C)(ii), the graphs may be a derivation of an 

odd prime linear graph or a non-prime linear graph. When combined as several 

rows, the first and last columns of vertices resemble a complete graph with each 

vertex connecting to every other vertex in the column whereas the second 

column until the penultimate column  resemble connections that of a complete 

bipartite graph. Hence, there will always exist at least one clear path that passes 

through each vertex once and being able to return to its original start vertex.  
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Figure 23: The Hamiltonian cycle of ℤ  

 

 

 

 

 



39 

 

CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This project encompassed a comprehensive theoretical requirement that 

involved sourcing out the necessary information to make sense of the 

information pertaining nil clean graphs of rings in the main research paper by 

Basnet and Bhattacharyya (2017). The proofs discussed in Chapter 3 were 

essential to proceed as some of these properties have been applied to the 

generation of the 𝑔(𝑥)-nil clean ring graphs in the second part of this project 

discussed in Chapter 4.  

Using programming, we have been able to visualise and categorise 

𝑥(𝑥 − 3) -nil clean graphs of rings based on common and generalizable 

properties. Most importantly, we have used some of the concepts from the 

reference article to establish a few original theorems and findings about the 

connectedness of the graphs of rings as well the presence of Hamiltonian cycles 

and paths.  

 

5.2 Recommendations for future work 

There are many more properties to be studied within this specified 𝑥(𝑥 − 3)-nil 

clean graphs of rings. Properties such as diameter, chromatic number and 

adjacency matrices are some of the areas that could possibly be looked into to 

see if generalizable properties can be theorized. Besides, there are many 

different polynomial functions for 𝑔(𝑥)  can could be considered by future 

researchers to compare and contrast the properties. 

 Theoretical analysis and proving techniques as per the attempt in this 

project should be looked into further to widen the horizon and understanding of 

the concept of 𝑔(𝑥)-nil clean graphs of rings. There are still not many sources 

of literature on the subject, therefore it could be a potential field to explore.
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