
A STUDY ON MATRIX FACTORIZATION AND ITS APPLICATIONS

TANG WEN KAI, ADRIAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Applied Mathematics with Computing

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2021



i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name :

ID No. :

Date :

Tang Wen Kai, Adrian

17UEB05957

26/08/2021



ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “A STUDY ON MATRIX FACTOR-

IZATION AND ITS APPLICATIONS” was prepared by TANG WEN KAI,

ADRIAN has met the required standard for submission in partial fulfilment of

the requirements for the award of Bachelor of Science (Honours) Applied Math-

ematics with Computing at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Ng Wei Shean

26/8/2021



iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2021, TANG WEN KAI, ADRIAN. All rights reserved.



iv

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to my supervisor, Dr Ng Wei Shean

for giving me the opportunity to do research related to matrix factorizations and

their application in real-world problem. She guides and gives advice that help

in completing the research and report. She also introduced Latex to me, so that

I could use it for writing mathematical report.

Besides, I also would like to thank Dr Liew How Hui for guiding and

advising me regarding Python coding.

Lastly, I would like to thank my family for the financial support. If not I

would not be able to complete this final year project.



v

ABSTRACT

Matrix factorizations are methods used to factorise a matrix into a product of
two or more matrices. Each matrix factorizations have their own properties re-
spectively. Matrix factorization is mostly used in image processing and recom-
mendation systems. Both applications use high dimension matrices to calculate
the result. This is where matrix factorizations are used to reduce dimension of
the data set that help in reducing the computational power. In this project, we
focus on Singular Value Decomposition (SVD) and Non-Negative Matrix Fac-
torization (NMF) applied in Latent Semantic Indexing (LSI).

In order to carry out the project, we first read intensively on other re-
search papers to increase the knowledge related to SVD and NMF. We study
the computational steps, properties and application in the real-world problems.
Computational steps are important as it serves the basic knowledge to code it
in Python. Python also consists of libraries that can be used to calculate the
approximated matrix with some parameter tuning.

In this project, the application that we focus on is LSI algorithm. LSI
is a search algorithm where it returns a set of documents that is related to the
keywords that the user searches. It required high computational power to do
matrix multiplication. To solve this, we used SVD and NMF methods to reduce
the matrix dimension and thus reduce the computational power. SVD performed
better than NMF because SVD has the appropriate method to find the dimension
to reduce whereas NMF does not have that kind of method. In the future, we
can find methods that can improve the current results.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The notations that are used in this project are listed unless otherwise specified.

We let Rn×m be the set of all n×m real matrices. For the case when n = m we

denote Rn×n the set of all n×n real matrices. For the all matrix A ∈ Rn×m, we

let AT be the transpose matrix of A. A = AT implies that A is symmetric.

When there exists an invertible matrix, S such that U = S−1V S, then

n × n matrices U and V are similar. The null space of a matrix A is the set

of vectors BBB where ABBB = 0. A matrix A is a non-singular matrix when its

determinant is not equal to zero which also implies that the inverse matrix of A

exists. When A is a singular matrix, the determinant of A is equal to zero and

hence the inverse matrix ofA does not exist. Sparse matrix is a matrix where the

number of zero entries is more than the number of nonzero entries in the matrix.

Diagonal matrix is a matrix which the entries except the main diagonal

are all zeros elsewhere. It is possible that the main diagonal entries to take the

value zero. Thus, an n×m matrix A = (aij) is diagonal if:

aij = 0 if i 6= j for all i ∈ {1, 2, . . . , n} , j ∈ {1, 2, . . . ,m} .

Let A = [aij] ∈ Rn×m be a diagonal matrix. Then,

(i) when n = m, we have A =



a11 0 · · · 0 0

0 a22 · · · 0 0
...

... . . . ...
...

0 0 · · · an−1,n−1 0

0 0 · · · 0 ann


.

(ii) when n < m, we haveA =


a11 0 · · · 0 0 · · · 0

0 a22 · · · 0 0 · · · 0
...

... . . . ...
... · · · ...

0 0 · · · anm 0 · · · 0

.
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(iii) when n > m, we have A =



a11 0 · · · 0

0 a22 · · · 0

0 0 · · · amm

0 0 · · · 0
...

... · · · ...

0 0 · · · 0


.

The identity matrix or unit matrix is a square matrix with ones at the

main diagonal and zeros elsewhere. Its notation is denoted as In or I when the

size n is not important to show. An orthogonal matrix is a real square matrix A

when the transpose of A, AT is equal to its inverse A−1 that is:

ATA = AAT = I =⇒ AT = A−1.

When a square matrix A is a normal matrix if it commutes with its transpose

AT , that is:

AAT = ATA

When a matrix is an orthogonal matrix, this implies that the matrix is also a

normal matrix, but a normal matrix is not necessarily an orthogonal matrix. If

P is an orthogonal matrix and B = PAP T , then B is orthogonally similar to A.

1.2 General Information

In the study of linear algebra, matrix factorization is a technique of splitting

a matrix into 2 or more matrices. There are many different types of matrix

factorization techniques and each with its own properties. For example, LU

factorization is a matrix factorization technique that splits an n×n square matrix

A into two matrices namely a lower triangular matrix L and an upper triangular

matrix U where all the elements in matrix A, matrix L and matrix U can be real

or complex numbers. Below is an example of an LU factorization of a 4 × 4
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matrix:
7 6 −0.5 1

3.5 −6 7.75 20.5

−35 −120 84 202

15.75 −49.5 50.375 131.25

 =


1 0 0 0

0.5 1 0 0

−5 10 1 0

2.25 7 −3 1




7 6 −0.5 1

0 −9 8 20

0 0 1.5 7

0 0 0 10

 .

LU factorization is a popular factorization technique and it is easy to implement.

Other than square matrix, rectangular matrix is another form of matrix

that appear frequently in real-world application. A rectangular matrix is anm×n

matrix, where m can be larger than n or n can be larger than m. There are

some matrix factorization techniques that are used in solving rectangular ma-

trices such as Singular Value Decomposition (SVD), QR decomposition, rank

factorization and many more.

Brownlee (2018a) stated that some computers are not able to solve large

matrix efficiently. In order to solve it, matrix factorization is introduced as it

reduces the large matrix into 2 or more simpler matrices that make the computa-

tion easier and increase the processing speed of the computation. In mathemat-

ics, matrix factorization is used to solve a system of linear equations, whereas

in computer science, matrix factorization is used in compressing image, rec-

ommendation system, text extraction and many other applications in different

fields. Beside solving complex problem, matrix factorization is also used in find-

ing the determinant and the inverse of a matrix. Thus, knowing only one type of

matrix factorization technique is not enough to solve the real-world problem.

1.3 Problem Statement

In this project, we focus on applying matrix factorization to solve real-world

problems. Before we apply matrix factorization, we need to ask ourselves that

"How matrix factorization techniques are carried out?". This is important as

some problems can be solved effectively by using certain type of matrix fac-

torization. This also shows us that each matrix factorization has a different

structure and properties. For example, Non-Negative Matrix Factorization can

be used when the values in each entry of a matrix is positive. Next, we also
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can ask ourselves that "Why are matrix factorization techniques are used in var-

ious applications?". By solving this problem statement, we can perform matrix

factorization by using Python. Besides, we can learn the disadvantages and ad-

vantages of matrix factorization techniques to solve a particular problem. Thus,

we need to construct a matrix from the problem that we want to solve and study

the properties of the constructed matrix to choose a suitable matrix factorization

technique.

1.4 Objective

In this project, we study the structure of matrix factorization and the applications

in text extraction and other applications.

The first objective of the project is to identify different types of the ma-

trix factorization techniques and its properties. The properties of a matrix factor-

ization help us to determine whether the matrix factorization techniques can be

used to solve the problems by using a simpler method. As an example, Cholesky

Factorization and Completely Positive matrix are not commonly used in solv-

ing linear equations as both matrix factorization techniques require the original

matrix to be a symmetric matrix where A = AT

The second objective is to obtain relations between different types of

matrix factorization techniques used in information extraction and other appli-

cations. We can use the accuracy and the time taken to measure the efficiency of

the matrix factorization techniques used in information extraction and other ap-

plications. For example, application of matrix factorization techniques in solv-

ing a system of 1000 linear equations with 1000 unknowns in second:

Table 1.1: (Ng and Tan (2021)) Computation time for solving system of 1000
linear equations with 1000 unknowns in second.

Types of factorization Real Hermitian Complex Complexity

LU 0.0210 0.0198 0.0801 O(2
3
n3)

QR 0.1344 0.1446 0.3619 O(4
3
n3)

Inverse 0.0866 0.0935 0.2268 O(n3)

Cholesky N/A 0.0152 N/A O(1
3
n3)

SVD 0.6369 0.6240 1.5364 N/A
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According to Ng and Tan (2021), we see that LU Factorization has used

the least amount of time to solve the linear system as compared to other matrix

factorization techniques in Table 1.1.

1.5 Scope

In this project, we investigate various types of matrix factorization such as

Singular Value Decomposition (SVD) and Non-Negative Matrix Factorization

(NMF). We study the properties of the matrix factorizations and compare their

application in text extraction and other applications.

1.6 Motivation

Currently, the dimension of the matrix is getting larger and more complex as

compared to the past few years. We do need to use the advantage of matrix

factorization technique to reduce the dimension and make the computation and

analysis process easier. Other uses of matrix factorization are image compress-

ing and text mining. Since the data and image can be represented in matrix

form.

To have a clearer thought, we look into the example of the matrix factor-

ization technique applied in image compression. Nowadays, people send images

to their friends and family. When the image exceeds the maximum bytes size we

are unable to send the image. To solve this, we use Singular Value Decomposi-

tion (SVD) which reduce the image dimension. As stated by Pandey and Umrao

(2019) that SVD factorization keeps the important information of the original

image by using lesser memory from the computer. Let A be a n×m rectangular

matrix. SVD is to factorise A as follows:

A = UΣV T ,

where the columns of U are eigenvectors of matrix AAT , the columns of V are

eigenvectors of matrix ATA and the matrix Σ is the diagonal matrix where its

diagonal entries consist the square roots of the eigenvalues of either AAT or

ATA and the eigenvalues are arranged decreasingly on the main diagonal.

To get the compressed image, we use the following steps as show in
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Figure 1.1:

Figure 1.1: Compress image calculation when k = 1.

When k = 1, we choose the first column of matrix U , the first diagonal

value of the matrix Σ and the first row of matrix V . Then we perform mul-

tiplication to get the compressed image of matrix A. We tune the value of k

where 0 < k < rank(A) = min(n,m), until the image is visible without losing

important information.

In general, matrix factorization helps us in reducing complicated prob-

lems to a simple problem that is easy to solve. People should learn and appre-

ciate that matrix factorization helps to ease the process of analysing. From this

project, one can understand the use of matrix factorization in text extraction and

other applications.

1.7 Methodology

At the beginning of the project, we collect journals and articles concerning ma-

trix factorization techniques. After extensive reading, we study how the factor-

ization can be implemented by using the Python.

Figure 1.2: Flow chart to code.

From Figure 1.2, the first step to code is to find a data set. Then, we
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proceed to the second step where we remove unused columns, stop words and

accents. Beside that, we also apply lemmatization which is a process to change

words back to their corresponding words. For example, “went”, “going” and

“goes” are changed to “go”. Next, we proceed to the third step where we apply

matrix factorization to get the approximated matrix. Finally, we use the approx-

imated matrix with Latent Semantic Indexing (LSI) to get the results. After the

result is produced, we can compare the accuracy and time usage between two

matrix factorizations.

1.8 Schedule

The duration in this project last for two long trimesters. Figure 1.2 shows the

duration needed to complete Project 1 in January 2021 Trimester whereas Figure

1.3 shows the duration needed to complete Project 2 in May 2021 Trimester.

Table 1.2: Gantt Chart Final Year Project 1.

Week 1 2 3 4 5 6 7 8 9 10 11 12 13
Find title and supervisor

Literature Review
Biweekly Report

Proposal
Interim Report

Mock Presentation
Oral Presentation

Table 1.3: Gantt Chart Final Year Project 2.

Week 1 2 3 4 5 6 7 8 9 10 11 12 13
Literature Review

Submit Mid-Semester
Monitoring Form

Continue writing report
Submit draft report

Submit Poster and Presentation
and Presentation

Submit all the form
Oral Presentation
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CHAPTER 2

LITERATURE REVIEW

2.1 Matrix Factorization

2.1.1 Singular Value Decomposition (SVD)

According to Stewart (1993), SVD was discovered in two different approaches.

In the approach of linear algebra, it was founded by Eugenio Beltrami, Camille

Jordan and James Joseph Sylester. The other approach is in integral equation,

which was founded by Erhard Schmidt and Herman Weyl.

Theorem 2.1.1 (Horn and Johnson (2013)). LetA ∈ Rn×m, p = min(n,m) and

rank(A) = r, then

A = UΣV T ,

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices and a square diago-

nal matrix:

Σp =


σ1 · · · 0
... . . . ...

0 · · · σp

 ,
such that σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σp in which:

(i) Σ = Σp if m = n,

(ii) Σ =
[
Σp 0

]
∈ Rn×m if m > n,

(iii) Σ =

Σp

0

 ∈ Rn×m if m < n.

Proof:

Case 1: n = m.

Let A1 = ATA and A2 = AAT where A1, A2 ∈ Rn×n. Then A1 and A2 are

symmetric matrices, this means that A1 and A2 have the same eigenvalues, so

they are orthogonally by similar. Let S be an orthogonal matrix, then we have

ATA = S(AAT )ST that is:

(SA)T (SA) = ATSTSA = ATA = S(AAT )ST = (SA)(SA)T .
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Hence, SA is a normal matrix.

Let λ1 = |λ1|, λ2 = |λ2|, . . . , λn = |λn| be the eigenvalues of SA, that is

|λ1| > |λ2| > · · · > |λn|. Let rank(A) = rank(SA) = r, where r is the number

of nonzero eigenvalues in SA. So that |λr| > 0 and |λr+1| = |λr+2| · · · =

|λn| = 0. Let Σp = diag (|λ1|, |λ2|, . . . , |λn|). Let X be an orthogonal matrix,

that is:

SA = XΣpX
T

=⇒ A = S−1XΣpX
T

=⇒ A = (S−1X)Σp(X
T )

=⇒ A = UΣpV
T ,

where U = S−1X and V T = XT are orthogonal matrices, where the inverse

of an orthogonal matrix and a product of two orthogonal matrices are still or-

thogonal matrices. Let the diagonal entries of Σp which are σi = |λi| for all

i = 1, 2, . . . , r.

Case 2: n < m.

We have rank, r ≤ n. There exists a null space ofAwith dimension n×(m−n).

LetX2 =
[
x1 x2 · · · xm−n

]
∈ Rn×(m−n) where xi for all i = 1, 2, . . .m−

n are the set of orthonormal vectors in the null space of A. Let X =
[
X1 X2

]
∈ Rn×m be the orthogonal matrix, that is:

AX =
[
AX1 AX2

]
=⇒ AX =

[
AX1 A

[
x1 x2 · · · xm−n

]]
=⇒ AX =

[
AX1 0

]
.

We have AX1 ∈ Rn×n. From Case 1, we have AX1 = UΣnV
T where U, V ∈
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Rn×n are orthogonal matrices and Σn = diag(σ1, σ2, . . . , σn). Then, we have

A =
[
AX1 0

]
XT

=
[
UΣnV

T 0
]
XT

= U
[
Σn 0

]V T 0

0 Im−n

XT

= U1ΣV
T
1 ,

where U1 = U , Σ =
[
Σn 0

]
and V T

1 =

V T 0

0 Im−n

 XT .

Case 3: n > m.

We have rank, r ≤ m. There exists a null space of A with dimension (n−m)×

m. Let X2 =
[
x1 · · · xn−m

]T
∈ R(n−m)×m be the orthogonal matrix, that

is:

AX =

AX1

AX2



=⇒ AX =


AX1

A


x1

...

xn−m




=⇒ AX =

AX1

0

 .
We have AX1 ∈ Rm×m. From case 1, we have AX1 = UΣmV

T where U, V ∈

Rm×m are orthogonal matrices and Σm is denoted as Σm = diag(σ1, σ2, . . . , σm).
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Then, we have

A =

AX1

0

XT

=

UΣmV
T

0

XT

= U

Σm

0

V T 0

0 In−m

XT

= U2ΣV
T
2 ,

where U2 = U , Σ =

Σm

0

 and V T
2 =

V T 0

0 In−m

XT .

Next, to find the eigenvalues. We use the factorization ofA = UΣV T . We know

that rank(A) = rank(Σ) as U and V are non-singular matrices. Now we can

calculate as follows:

AAT = (UΣV T )(UΣV T )T

= UΣV tV ΣTUT

= UΣΣTUT .

We can say that AAT is orthogonally similar to ΣΣT .

If n = m, then ΣΣT = Σ2
p = diag(σ2

1, σ
2
2, . . . , σ

2
n). If n > m, then ΣΣT =[

Σm 0
]Σm

0

 = Σ2
m. Finally, n < m, then ΣΣT =

Σn

0

[Σn 0
]

=Σ2
n 0

0 0m−n

. Each of the cases, the nonzero eigenvalues ofAAT are σ2
1, σ

2
2, . . . , σ

2
r .

Example 2.1.2.

Let A =


1 3 4

5 7 9

11 3 1

4 5 7

 .
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Next we find matrix AAT and matrix ATA

AAT =


26 62 24 47

62 155 85 118

24 85 131 66

47 118 66 90

 , A
TA =


163 91 88

91 92 113

88 113 147

 .

Columns of U are eigenvectors of matrix AAT , Columns of V are eigenvectors

of matrix ATA and matrix Σ is the square roots of the eigenvalues of both AAT

and ATA. Therefore, we have:
1 3 4

5 7 9

11 3 1

4 5 7



=


−0.25 −0.26 0.50 0.79

−0.67 −0.34 0.36 −0.56

−0.48 0.87 0.07 0.09

−0.51 −0.25 −0.79 0.25




18.17 0 0

0 8.46 0

0 0 0.36

0 0 0



−0.60 0.78 −0.18

−0.52 −0.21 0.83

−0.61 −0.59 0.53


T

.

2.1.2 Non-Negative Matrix Factorization (NMF)

Definition 1 (Zurada et al. (2013)). Let A ∈ Rn×m be an n × m matrix such

that every element in matrix A is positive, factorize A into matrix W ∈ Rn×r

and matrix H ∈ Rr×m with r ≤ min(m,n) such that:

A ≈ WH.

where the entries in matrices W and H are non-negative. This factorization is

called Non-Negative Matrix Factorization (NMF).

There are many applications of NMF. For example, NMF is used in face recog-

nition, bioinformatics, text mining and audio (speech) recognition. There are

many different methods to calculate the matrices W and H . Each of the meth-

ods produces different W and H .

According to Zurada et al. (2013), the most commonly used method is
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Euclidean distance measure starting with random initialisation of the values of

W and H . Multiplicative update rules are used to minimize the error function

as below:

Hij ← Hij
(W TA)ij

(W TWH)ij
,

Wij ← Wij
(AHT )ij

(WHHT )ij
.

The multiplicative update rules can prevent the error function from increasing

and when the last 4 decimal figures of the last two iterations are the same then

we stop the iterations. Another method is by projecting gradient descent and

alternating least squares as this method converges in a faster pace.

Example 2.1.3. Let A be a 6× 3 positive matrix as follows which is randomly

generated by using Python:

A =



5 18 14

16 6 18

2 18 2

3 13 17

6 3 5

0 6 10


.

We then use Python to approximate matrix W and matrix H:

W =



1.72 1.76

4.35 0

0 1.81

2.15 1.26

1.34 0.09

0.60 1.74


and H =

3.23 1.25 4.49

0 9.11 3.33

 .
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Hence we have the factorization as below:

5 18 14

16 6 18

2 18 2

3 13 17

6 3 5

0 6 10


≈



1.72 1.76

4.35 0

0 1.81

2.15 1.26

1.34 0.09

0.60 1.74



3.23 1.25 4.49

0 9.11 3.33

 .

2.2 Application of Matrix Factorization in Text Extraction

2.2.1 Latent Semantic Indexing (LSI)

In this section, we look into Latent Semantic Indexing which is an information

retrieval. It is to retrieve the document requested by the user. Vasireddy (2009)

stated that there are n words and m documents in a particular database, where

all the common words like "a", "the" , "an", "this" and many more are removed

from each of the documents. Then it can be written as a matrix A where rows of

A represent words and columns of A represent documents.

In Latent Semantic Indexing, SVD is used. According to Deerwester et

al. (1990), SVD is used in reducing the dimension of the original matrix. The

data in the original matrix contains useless data that can affect the accuracy of

the text extraction algorithm. The original matrix is factored into 3 matrices

by using SVD. Hence, we create another matrix that is an approximation of

the original matrix which contains less useless data. Thus, the accuracy of the

algorithm can be increased.

According to Vasireddy (2009), problems faced if LSI is used are syn-

onymy and polysemy. Synonymy is defined to be a set of different words that

have the same meaning and polysemy is defined to be a word that has many

meanings. LSI can only be used on smaller document database, something like

World Wide Web is not applicable.

2.2.2 Hyper-Link Induced Topic Search

Kleinberg (1999) developed the search algorithm name Hyper-Link Induced

Topic Search (HITS) and the title of the article is Authoritative Sources in a
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Hyperlinked Environment in 1997. HITS algorithm is used to extract link struc-

ture text in the World Wide Web (WWW) database.

As the number of years increases, the number of hyper-linked documents

increases as well. Two new terms introduced are authority and hubs. Authority

is a website that has authority to post or discuss a particular subject. For ex-

ample, "www.utar.edu.my". While hubs mean a web-page that links to many

related authority pages.

When we type "UTAR" on the search bar, "www.utar.edu.my" should be

the most authoritative page. However, the website "www.utar.edu.my" does not

use the word "UTAR" as often as other pages in WWW. We can say that most

of the authority pages do not use the term frequently. Therefore, this affected

the web-page does not rank the highest in the search list. As stated by Vasireddy

(2009), simple text-based search engine is not workable in hyper-linked docu-

ment as it finds the relevant document based on the number of appearances of

the same term on that page.

Kleinberg (1999) states that the authority and hub scores are used to

determine which are the pages that have good authority and hub. Given a large

graph that contains vertices and lines that connect the vertices. We need to

find a subgraph, Gσ which contains relevant pages based on the user input. An

iterative algorithm is used to update and maintain the authority score and hub

score for each of the pages. Authority and hub score are non-negative values.

We continue the iteration until the score is the same with the previous iteration

value and normalize the value where the sum of squares equal to 1. The better

authority pages and hub pages are determined by the highest authority score and

hub score.

2.2.3 Document Clustering with NMF

Zurada et al. (2013) did a report to compare different methods to calculate NMF

which are Euclidean distance and corr-entropy. 20-newsgroup data set, which

is a popular data set in text clustering and classification. This data set contains

about 20,000 documents and 20 different newsgroups.

Entropy measure is to evaluate clustering performance. Below is the

formula for total entropy. Let A be the total entropy for a set of clusters, k be
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the weighted mean of the entropies of each cluster weighted and 1 is the size of

each cluster:

A =
k

l
.

First, the value of distribution for each cluster data is calculated. Let pij be the

probability cluster i belong to class j:

pij =
mij

mi

,

where mij is the number of class i in cluster j and mi is the number of elements

in cluster i. Next, the value for entropy of each cluster i is calculated using the

formula which is shown below:

ei = −
L∑
j=1

pij log2(pij),

where L is the total number of classes. Final step, the value for entropy is

calculated using the formula which is shown as below:

e =
K∑
i=1

mi

m
ei.

Then result in Table 2.1 is obtained:

Table 2.1: (Zurada et al. (2013)) Entropy of 20-Newsgroups data set with
NMF-PGD(EucD) and NMF-Corr.

Number of NMF-PGD NMF-Corr NMF-Corr NMF-Corr
Clusters (k) (EucD) (σ = 1) (σ = 0.5) (σ = 0.01)

r = 2 3.84 3.86 3.85 4.30
r = 3 3.86 3.79 3.58 4.27
r = 4 3.78 3.49 3.50 4.27
r = 5 3.74 3.60 3.38 4.24
r = 6 3.49 3.36 3.30 4.23
r = 7 3.44 3.28 3.26 4.20
r = 8 3.30 3.26 2.94 4.19
r = 9 3.30 3.34 3.13 4.18
r = 10 3.16 3.23 2.93 4.20
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Figure 2.1: (Zurada et al. (2013)) Entropy comparison for NMF-PGD(EucD)
and NMF-Corr.

When we look into the entropy values, the lowest entropy has better

clustering performance. From Table 2.1 and Figure 2.1 we observe that NMF-

Corr (σ = 0.5) has lower entropy value as compared to NMF-PGD (EucD).

NMF-Corr means that the matrices of W and H are calculated by using Corr-

entropy similarity measure and the formula is shown as below:

Corr (A,WH) =
∑
i,j

exp

(
−(Aij − (WH)ij)

2

2σ2

)
,

where σ act as a parameter for corr-entropy similarity measure.

According to Ensari, Choroski and Zurada (2012), Corr-entropy is a lo-

calized similarity measure between two random variables. Thus it is used as

a objective function for NMF to compute the similarity between the original

matrix and approximated matrix. Based on the goal of the given problems, the

objective function is either maximized or minimized.

2.2.4 Discovering Relations using Matrix Factorization Methods

As stated by Cergani and Miettinen (2013), the main purpose of information ex-

traction is to extract facts from the free-form text in the Web database. Free-form

text is a text that has no fixed form. In an old-fashioned information extraction,
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we ourselves need to define the extraction rules or training example that the user

is interested in. Therefore, Cergani and Miettinen (2013) introduced the method

of matrix factorization, that is, Non-negative Matrix Factorization (NMF) and

Boolean Matrix Factorization (BMF).

In the approach of NMF, they first build a context-by-context co-occurrence

matrix O for each pair of (C1, C2) where C1 and C2 are the category of words.

O(i, j) contain the number of Noun Entity (NE) pairs. For example, NE that

has the teacher-school relation are grouped together. Next, normalizing the ma-

trix O so that the sum of each row is 1, where each row is divided by non-zero

value in the particular row. Then both non-negative co-occurrence matrix O and

integer, k are calculated. Next, finding the non-negative matrices W and H of k

rows and columns, minimizing objective function, ||O −WH||2F . Columns of

matrix W are the raw candidate relations as it gives us the non-negative weights

between each context and candidate relations. In order to get the final candidate

cluster, rounding matrix W to binary and if W (i, j) = 1, then context i is the

candidate relations of j.

The next approach is using BMF. We have a matrix C as a Boolean

Product of binary factorization matrices A and B, where C ≈ A ◦ B. Boolean

product is defined as (A ◦B)i,j =
∨l
k=1 (ai,k ∧ bk,j), where ∨ is the logical OR

operator and ∧ is the logical AND operator. BMF is used in minimizing the

Hamming Distance between C and A ◦B that is the number of places where C

and A ◦ B differ. Matrix C is the context patterns-by-instance pairs, matrix A

is the context patterns to candidate relation and matrix B is the instance pairs to

candidates relation. At the end, context corresponding row of C which is closest

to the kth row of B is selected as the relation’s name.
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CHAPTER 3

PRELIMINARY RESULTS

In this chapter, two examples are presented as the preliminary results of the two

methods mentioned in literature review, which are Latent Semantic Indexing

(LSI) and Hyper-Link Induced Topic Search (HITS). Each of the examples is

computed with two methods. Matrix factorization techniques is not used in one

of the methods whereas the other is using matrix factorization techniques. The

aim of using two methods is to show that the matrix factorization gives the same

results as the method that does not use matrix factorization.

3.1 Latent Semantic Indexing (LSI)

Suppose there are three documents, as follows:

(i) Document 1: I see a cat. That cat sat.

(ii) Document 2: I can pat the cat.

(iii) Document 3: I have a mat.

Next, we calculate the number of the same word appear in each document. Then,

we convert the information obtained to a matrix in such a way that is shown in

Table 3.1

Table 3.1: Conversion of documents to a matrix.

Document 1 Document 2 Document 3

I 1 1 1
see 1 0 0
cat 2 1 0
sat 1 0 0
can 0 1 0
pat 0 1 0

have 0 0 1
mat 0 0 1
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Then, we obtain

A =



1 1 1

1 0 0

2 1 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


that represents the 3 documents.

After A is found, we need an m × 1 matrix y which is the input of the

user to find related documents. Next, we use the formula x = Ay to calculate

matrix x, where x is used to rank the documents. The value of (k, 1)-entry of x

is the number of words searched by the user that appear in document k, where

k = 1, 2, 3.

As an example, if a user input, "I see a cat sat." The vector y has the

value as in Table 3.2:

Table 3.2: Conversion of user input to a matrix.

User input

I 1
see 1
cat 1
sat 1
can 0
pat 0

have 0
mat 0
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and hence

y =



1

1

1

1

0

0

0

0



.

Then

x =


1 1 2 1 0 0 0 0

1 0 1 0 1 1 0 0

1 0 0 0 0 0 1 1





1

1

1

1

0

0

0

0



=


5

2

1

 .

From the computation, we see that Document 1 has the highest value followed

by Document 2 and Document 3. Then the order of the ranking is Document 1,

Document 2 and Document 3. This ranking is presented to the user based on the

similarity with the user input.

From the previous computation, we did not apply any matrix factoriza-

tion techniques. The next computation, matrix factorization technique is used in

reducing the dimension of the matrix A. By Theorem 2-1.1 (Horn and Johnson

(2013)), let A ∈ Rn×m, then A can be factorized into three different matrices
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that is A = UΣV T . Then

A =



1 1 1

1 0 0

2 1 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1



,

U =



−0.517 −0.441 0 −0.096 −0.167 −0.167 −0.487 −0.487

−0.272 0.232 0.289 −0.386 0.554 0.554 −0.112 −0.112

−0.717 0.318 0 −0.194 −0.242 −0.242 0.339 0.339

−0.272 0.232 0.289 0.87 0.096 0.096 −0.08 −0.08

−0.172 −0.147 −0.577 0.145 0.704 −0.296 0.074 0.074

−0.172 −0.147 −0.577 0.145 −0.296 0.704 0.074 0.074

−0.072 −0.526 0.289 0.048 0.083 0.083 0.743 −0.257

−0.072 −0.526 0.289 0.048 0.083 0.083 −0.257 0.743



,

Σ =



3.027 0 0

0 1.685 0

0 0 1.414

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



,

V T =


−0.825 −0.522 −0.218

0.391 −0.248 −0.886

0.408 −0.816 0.408

 .
Matrices U , Σ and V T are computed and we reconstruct matrix A. Let Uk be

the matrix that contains the first k columns of U , let Σk be the sub-matrix that

contains the first k rows and the first k columns of Σ where the diagonal entries
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are square roots of the corresponding eigenvalues of AAT or ATA and let V T
k

be the matrix that contains the first k rows of V T where k = 1, 2, 3. First, we

take k = 1, we have:

U1 =



−0.517

−0.272

−0.717

−0.272

−0.172

−0.172

−0.072

−0.072



, Σ1 =
[
3.027

]
and V T

1 =
[
−0.825 −0.522 −0.218

]
.

We construct the matrix A using the matrices above, that is:

A =



−0.517

−0.272

−0.717

−0.272

−0.172

−0.172

−0.072

−0.072



[
3.027

] [
−0.825 −0.522 −0.218

]

=



1.291 0.817 0.341

0.679 0.43 0.179

1.791 1.133 0.473

0.679 0.43 0.179

0.43 0.272 0.113

0.43 0.272 0.113

0.18 0.114 0.048

0.18 0.114 0.048



.
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Then, by using the user’s input matrix y, we have

x =


1.291 0.679 1.791 0.679 0.43 0.43 0.18 0.18

0.817 0.43 1.133 0.43 0.272 0.272 0.114 0.114

0.341 0.179 0.473 0.179 0.113 0.113 0.048 0.048





1

1

1

1

0

0

0

0



=


4.44

2.81

1.172

 .

Next, we repeat the process for k = 2, 3. Then the following table is constructed:

Table 3.3: Comparison of methods.

Basic Method SVD (k = 1) SVD (k = 2) SVD (k = 3)

Document 1 5 4.44 4.665 4.999
Document 2 2 2.81 2.667 1.999
Document 3 1 1.172 0.664 0.998

From Table 3.3, we observe that Document 1 has the highest value as compared

to the other documents. Therefore, a ranking list of Document 1 followed by

Document 2 and then Document 3 is presented to the user which are highly

compatible with the user’s input.

3.2 Hyper-Link Induced Topic Search (HITS)

The implementation steps of HITS algorithm are shown as follows:

(i) We need to prepare a World Wide Web data set.

(ii) We convert the data set to a finite number of vertices and di-

rected edges connecting the vertices.

(iii) User input is required.
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(iv) A sub-graph is extracted from the data set and contain what the

user wants to search.

(v) An adjacency matrix A is obtain from the sub-graph.

(vi) Two methods are used to calculate the ranking. Method 1 is not

using matrix factorization techniques while method 2 is using

matrix factorization techniques.

(vii) We used method 1 to cross-check with method 2 to see if the

same result is produced.

(viii) The ranking list is generated.

World Wide Web data set can be represented in a graph with finite number of

vertices and directed edges connecting the vertices. This is also known as a

directed graph as the edges show the direction from one vertex to another vertex.

Vertices in the graph represent websites. The directed edges represent links from

a website to another website. After a directed sub-graph, which contain user’s

input is obtained such as Figure 3.1.

Figure 3.1: Sub-graph extracted from World Wide Web data set.

We obtain the adjacency matrix A from the sub-graph above

A =


0 1 1 1

0 0 1 1

1 0 0 1

1 0 0 0

 .
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Then,

AT =


0 0 1 1

1 0 0 0

1 1 0 0

1 1 1 0

 .

Method 1 is used to calculate the scores without applying matrix factorization

techniques. Let uuu be the hub scores vector and vvv be the authority scores vector

where hub score is the sum of the authority scores of each node that is pointed

to it and authority score is the sum of the hub scores of each node that is pointed

to it. We apply

vkvkvk = ATuk−1uk−1uk−1 and ukukuk = Avkvkvk,

where k is the number of iterations.

First, we choose an initial vector, u0u0u0 =
[
1 1 1 1

]T
. When k = 1,

v1v1v1 =


0 0 1 1

1 0 0 0

1 1 0 0

1 1 1 0




1

1

1

1

 =


2

1

2

3

 ,

u1u1u1 =


0 1 1 1

0 0 1 1

1 0 0 1

1 0 0 0




2

1

2

3

 =


6

5

5

2

 .

We construct the following table from v1v1v1 and v2v2v2.

Table 3.4: Hub and Authority scores when k = 1.

k = 1 Hub Scores Authority Scores

V1 6 2
V2 5 1
V3 5 2
V4 2 3
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Next, we calculate the new authority scores by using the value from k = 1:

u2u2u2 =
1√

62 + 52 + 52 + 22


6

5

5

2

 =


0.63246

0.52705

0.52705

0.21082

 ,

v2v2v2 =
1√

22 + 12 + 22 + 32


2

1

2

3

 =


0.4714

0.2357

0.4714

0.70711

 .

We continue to construct the following table

Table 3.5: Hub and Authority scores when k = 2.

k = 2 Hub Scores Authority Scores

V1 0.63246 0.4714
V2 0.52705 0.2357
V3 0.52705 0.4714
V4 0.21083 0.70711

Since the value of hub scores and authority scores in Table 3.4 and Table 3.5 are

different. Therefore, we need to calculate the value for k = 3. Then we have the

result as below:

Table 3.6: Hub and Authority scores when k = 3.

k = 3 Hub Scores Authority Scores

V1 0.63246 0.4714
V2 0.52705 0.2357
V3 0.52705 0.4714
V4 0.21083 0.70711

When, we get the same hub scores and authority scores from Table 3.5 and Table

3.6. We stop the iteration. From the result, we can see that V1 is a good hub as

the score is the highest and V4 is a good authority as the score is the highest. A

good hub means that it links to many other websites, whereas a good authority
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means that many websites are linked to it. V1 and V4 rank the highest in the

ranking list.

Next, Method 2 is used to calculate the scores by using Theorem 2-1.1

(Horn and Johnson (2013)) where A ∈ Rn×m, then A can be expressed in the

form, A = UΣV T where the columns of U are eigenvectors of matrix AAT , the

columns of V are eigenvectors of matrix ATA and the matrix Σ is the diagonal

matrix where its diagonal entries consist the square roots of the eigenvalues of

either AAT or ATA and the eigenvalues are arranged decreasingly on the main

diagonal. Then

A =


0 1 1 1

0 0 1 1

1 0 0 1

1 0 0 0

 ,

U =


−0.69994 −0.35162 −0.61348 0.1004

−0.56593 −0.18516 0.68243 −0.42394

−0.42394 0.68243 0.18516 0.56593

−0.1004 0.61348 −0.35162 −0.69994

 ,

Σ =


2.28533 0 0 0

0 1.45341 0 0

0 0 0.68804 0

0 0 0 0.43757

 ,

V T =


−0.22944 −0.30628 −0.55391 −0.73942

0.89164 −0.24193 −0.36933 0.10021

−0.24193 −0.89164 0.10021 0.36966

−0.30628 0.22944 −0.73942 0.55391

 .

The hub scores can be obtained from the first column in matrix U and authority
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scores can be obtained from the first row of V T . We have the vectors as below.

uuu =


−0.69994

−0.56593

−0.42394

−0.1004

 , vvv =


−0.22944

−0.30628

−0.55391

−0.73942

 .

The hub scores and authority scores are used to rank the vertices. Ranking is

an ordinal data where the value less than or equal to zero does not hold any

meaning. So, we take the absolute value. Then, we have the following table:

Table 3.7: Calculation of hub and authority scores using SVD.

Hub Scores Authority Scores

V1 0.69994 0.22944
V2 0.56593 0.30628
V3 0.42394 0.55391
V4 0.1004 0.73942

Form the Table 3.7 above, we conclude that V4 is the best authority

website and V1 is the best hub website. In the ranking list, V4 and V1 rank the

highest. This shows both methods have the same result.
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CHAPTER 4

MAIN RESULTS

4.1 Data Introduction

In this project, we the Blog Authorship Corpus data set from Kaggle created by

Tatman (2017). This data set consists of 19320 bloggers from blogger.com in

August 2014. We have a total of 681288 posts with over 140 million words. The

blog is placed on a separate file, which consists of blogger id as name, gender,

age, industry, astrological sign. The data set can be separated into 40 different

categories.

In this project, as the number of words is large, we are not able to use

all the data due to lack of random-access memory (RAM). Instead of taking the

whole data, we take the number of posts which is denoted by n per category and

so we have 40n posts. The number n can be increase based on the computer’s

RAM.

4.2 Data Setup

Before the data can be used for information extraction, we need to do some data

cleaning and customization. Appendix A contains the code for customize the

data and cleaning the data. In this section, we remove the punctuations in the

sentences and reduce the word back to their root form respectively. For example,

“goes”, “went” and “going” are change to go.

After the cleaning process, we then convert the clean data and the user

data into data frame where the column is the number of document and the rows

is the words exists in all the document. Appendix B is the code of converting

the clean data whereas Appendix C is the code of converting the user data.

In this project, we use 3 different sizes of data set which are 400, 800

and 1200 rows of data.

4.3 Latent Semantic Indexing (LSI) with Singular Value Decomposition

(SVD)

In this section, SVD is used as the matrix factorization techniques. We refer

the code written by Brownlee (2018b). The formula of truncated SVD is A =
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UkΣkV
T
k , where k = 1, 2, . . . , rank(A). This technique uses a smaller size of

U , Σ and V T to approximate the original matrix A corresponding to the value

of k. The goal is to find the best value of k.

To find the best k, we use two different objective functions. The first

objective function is, ∑k
i=1 σ

2
i∑r

i=1 σ
2
i

≈ ξ, (4.1)

where σ2
i is the eigenvalue of AAT , k is the minimum value use to approximate

the original matrix, r is the total number of eigenvalues from the original matrix

and ξ is the ratio. In the above function we can change the value of ξ. In this

project, we let ξ to be 0.85, 0.90 and 0.95. This means that we are keeping 85%,

90% and 95% of the eigenvalues.

The second objective function is to use Frobenius norm which is,

||A−B||Fro =

√√√√ n∑
i=1

m∑
j=1

|aij − bij|2,

where matrix B is the approximated matrix from UkΣkV
T
k . Both the objective

functions are used for minimizing the value of k, to get a better approximated

matrix of the original matrix.

Table 4.1: Result of 400 rows data.

Rank LSI LSI (SVD) LSI (SVD) LSI (SVD) LSI (SVD)
ξ = 0.85 ξ = 0.90 ξ = 0.95 Frobenius Norm

1 Doc 201 Doc 201 Doc 201 Doc 201 Doc 201
2 Doc 220 Doc 220 Doc 220 Doc 220 Doc 220
3 Doc 168 Doc 303 Doc 388 Doc 168 Doc 168
4 Doc 303 Doc 388 Doc 303 Doc 303 Doc 303
5 Doc 388 Doc 168 Doc 168 Doc 359 Doc 388
6 Doc 359 Doc 359 Doc 359 Doc 388 Doc 359
7 Doc 165 Doc 306 Doc 306 Doc 165 Doc 165
8 Doc 13 Doc 13 Doc 13 Doc 13 Doc 126
9 Doc 37 Doc 165 Doc 165 Doc 306 Doc 37

10 Doc 72 Doc 230 Doc 123 Doc 72 Doc 306
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Table 4.2: Result of 800 rows data.

Rank LSI LSI (SVD) LSI (SVD) LSI (SVD) LSI (SVD)
ξ = 0.85 ξ = 0.90 ξ = 0.95 Frobenius Norm

1 Doc 401 Doc 401 Doc 401 Doc 401 Doc 401
2 Doc 98 Doc 154 Doc 98 Doc 98 Doc 98
3 Doc 39 Doc 430 Doc 430 Doc 430 Doc 39
4 Doc 154 Doc 98 Doc 154 Doc 154 Doc 154
5 Doc 430 Doc 768 Doc 603 Doc 328 Doc 430
6 Doc 38 Doc 603 Doc 768 Doc 768 Doc 38
7 Doc 325 Doc 606 Doc 328 Doc 603 Doc 768
8 Doc 603 Doc 23 Doc 612 Doc 709 Doc 709
9 Doc 328 Doc 574 Doc 574 Doc 612 Doc 328

10 Doc 612 Doc 767 Doc 606 Doc 38 Doc 612

Table 4.3: Result of 1200 rows data.

Rank LSI LSI (SVD) LSI (SVD) LSI (SVD) LSI (SVD)
ξ = 0.85 ξ = 0.90 ξ = 0.95 Frobenius Norm

1 Doc 955 Doc 601 Doc 601 Doc 601 Doc 955
2 Doc 601 Doc 224 Doc 955 Doc 955 Doc 601
3 Doc 144 Doc 640 Doc 138 Doc 144 Doc 144
4 Doc 138 Doc 138 Doc 224 Doc 138 Doc 138
5 Doc 49 Doc 906 Doc 640 Doc 640 Doc 49
6 Doc 640 Doc 955 Doc 144 Doc 224 Doc 640
7 Doc 224 Doc 1148 Doc 903 Doc 488 Doc 224
8 Doc 48 Doc 652 Doc 1148 Doc 903 Doc 48
9 Doc 485 Doc 903 Doc 1191 Doc 1148 Doc 1042

10 Doc 488 Doc 59 Doc 906 Doc 1059 Doc 1059
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In Tables 4.1 to 4.3, documents locate on rank 1 row are documents that rank

the highest corresponding to the each method used. As an example, Doc 201

is the first and Doc 220 is the second in the ranking where LSI method is used

in Table 4.1. The third, fourth and fifth columns from the tables above are the

results calculated using equation (4.1). The sixth column is the result calculated

using Frobenius norm.

From the tables above, we used the code from Appendix D to get the LSI

result without applying SVD. This result is useful in determining whether the

approximation matrix can obtain similar result. From the tables, when ξ = 0.85,

the top 10 highest documents are different from LSI column in Table 4.3, only

the first is the same in Table 4.2 and the first two are the same in Table 4.1.

This is due to lack of data to have a better approximation of the original data.

When we start to increase the ratio, ξ to 0.90, it is the same as inserting more

data. Unfortunately, in Table 4.1 and Table 4.2 only the first two documents are

the same as in LSI column while in Table 4.3 all are different but it is getting

closer to the original result. Next, we increase the ratio, ξ to 0.95. The similarity

pattern is starting to form in Tables 4.2 and 4.3, whereas Table 4.1 having top 4

to be the same. The equation (4.1) is use to get the best approximation and the

code is shown in Appendix E.

After looking into third to fifth columns, we are unable to get similar

result. This due to the inappropriate value of k is chosen. In order to get a better

value of k we used Frobenius norm as our objective function. This method we

do not need to guess the value as it directly gives the most suitable value of k.

The code can be referred to in Appendix E. From the result, we get the first

seven that are similar to LSI column in Table 4.1, the first six and the last two

are similar in Table 4.2 and the first eight are similar in Table 4.3. From the

tables, we found that this method is 70% to 80% accurate.

4.4 Latent Semantic Indexing (LSI) with Non-Negative Matrix Factor-

ization (NMF)

In this section, we are going to discuss NMF applied in LSI. We are using NMF

model from Scikit-learn.org (2019) where the objective function is shown as
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below:

0.5 ||A−WH||2loss + αl1ratio ||vec(W )||1 + αl1ratio ||vec(H)||1

+ 0.5α(1− l1ratio) ||W ||
2
Fro + 0.5α(1− l1ratio) ||H||

2
Fro ,

where

||A||2Fro =
∑
ij

A2
ij (Frobenius norm),

||vec(A)||1 =
∑
ij

abs(Aij) (elementwise L1 norm).

In this model, we have a few parameters that we can tune such as “init”,

“solver” and “beta_loss”. In the parameter “init”, we use two different meth-

ods to initialise the matrix W and matrix H which are non-negative random

matrices, scaled with
√

X.mean()
n_components and non-negative double singular value de-

composition as this method is better for sparseness. These methods are used to

initialize both W and H matrices. Next, we look into the parameter “solver”

which has two methods to update the matrix W and matrix H which are coor-

dinates descent and multiplicative update. These methods are used to calculate

new W and H matrices. Finally, we look into the parameter “beta_loss” where

we use two different methods which are Frobenius norm and Kullback-Leibler

divergence. These methods are used as the objective function to minimize the

errors between the previous updated matrix and new updated matrix. When the

value of the objective functions is stable then the loop to run the update methods

stops.

Table 4.4: Parameter tuning for 400 rows data.

No Parameter Parameter Parameter ||A−WH||2Fro
“init” “solver” “beta_loss”

1 random cd Frobenius 31.84471
2 random mu Frobenius 44.47370
3 random mu Kullback-Leibler 67.52773
4 nndsvd cd Frobenius 33.25570
5 nndsvd mu Frobenius 92.91888
6 nndsvd mu Kullback-Leibler 238.21473
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Table 4.5: Parameter tuning for 800 rows data.

No Parameter Parameter Parameter ||A−WH||2Fro
“init” “solver” “beta_loss”

1 random cd Frobenius 57.96992
2 random mu Frobenius 110.47584
3 random mu Kullback-Leibler 123.33882
4 nndsvd cd Frobenius 51.54955
5 nndsvd mu Frobenius 139.66458
6 nndsvd mu Kullback-Leibler 262.12321

Table 4.6: Parameter tuning for 1200 rows data.

No Parameter Parameter Parameter ||A−WH||2Fro
“init” “solver” “beta_loss”

1 random cd Frobenius 57.96992
2 random mu Frobenius 110.47584
3 random mu Kullback-Leibler 123.33882
4 nndsvd cd Frobenius 51.54955
5 nndsvd mu Frobenius 139.66458
6 nndsvd mu Kullback-Leibler 262.12321

In Table 4.4, Table 4.5 and Table 4.6 are different combination of pa-

rameters with their respective Frobenius norm. The lower the Frobenius norm

is, the smaller the error between matrix A and matrix WH is. The code can

be viewed in Appendix F. In each of the tables, we can see that combination

1 and combination 4 have a smaller Frobenius norm as compared to the other

combinations.

Next, we use these combinations to approximate matrix W and matrix

H and use it in LSI. The results are tabulated in Table 4.7.
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Table 4.7: LSI results using NMF.

Rank LSI LSI NMF LSI LSI NMF LSI LSI NMF
400 400 800 800 1200 1200

1 Doc 201 Doc 201 Doc 401 Doc 401 Doc 601 Doc 601
2 Doc 220 Doc 220 Doc 98 Doc 98 Doc 955 Doc 955
3 Doc 165 Doc 168 Doc 39 Doc 39 Doc 144 Doc 144
4 Doc 168 Doc 303 Doc 154 Doc 430 Doc 138 Doc 138
5 Doc 303 Doc 388 Doc 430 Doc 154 Doc 49 Doc 224
6 Doc 359 Doc 359 Doc 38 Doc 38 Doc 224 Doc 49
7 Doc 388 Doc 165 Doc 325 Doc 709 Doc 640 Doc 640
8 Doc 13 Doc 306 Doc 328 Doc 328 Doc 48 Doc 1059
9 Doc 37 Doc 13 Doc 603 Doc 603 Doc 485 Doc 1148

10 Doc 72 Doc 37 Doc 612 Doc 612 Doc 488 Doc 912

From the above table, we can see which document ranks the highest cor-

responding to the method used. For example, Doc 201 is the first and Doc 220

is the second in the ranking when LSI is used with 400 data rows. From the re-

sults in Table 4.7, we can see that applying NMF in LSI did not perform well as

compared to SVD. We still can see the trend as compared to the original result

and the accuracy is increasing when we increase the number of data rows. In

400 data rows the accuracy is about 20%, the accuracy in 800 data rows is about

30% and 1200 data rows the accuracy is about 40%. The difficulty in using

NMF is that we are not able to estimate the best dimension to reduce. In com-

puter science, NMF is categorized as an NP-hard problem. Non-deterministic

polynomial (NP) is defined as the solution can be guessed and verified in poly-

nomial time; non-deterministic means that no particular rule is followed to make

the guess. In this case, we are using the previous section’s estimated dimension

in the NFM model. In this model, the approximated matrix W and matrix H are

not always the same. To ensure that the matrices are the same when running the

code for the second time, we need to set parameter, “random_state” to be the

same in the form of integers.

In Appendix F, we look into another analysis that we can do using NMF.

In previous case, the parameter “n_components” is the best dimension to ap-

proximate matrix W and matrix H . Now, in this part, we let “n_components”

be the number of topics. The data set that we use consists of 40 topics, then we

set “n_components” to 40. Next, we set parameter “init” be “random”, “solver”
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be “cd”, “beta_loss” be “Frobenius” and “random_state” be 0 for all 400, 800

and 1200 data rows. Since the combinations of parameters for 400, 800 and 1200

are the same, thus we get the same W and H matrices for all three cases. The

matrix W is the document-topic matrix whereas matrix H is the topic-words

matrix. Matrix W is used to assign each topic to a title. Matrix H is used

to identify the most used words in a particular topic. For example, we choose

Topic 30 which is Sports-Recreation and the top 5 words from this topic are

“last”, “season”, “game”, “hr” and “good”. These top 5 words are the common

words related to Sports-Recreation.

4.5 Time comparison between Singular Value Decomposition (SVD) and

Non-Negative Matrix Factorization (NMF)

In this section, we compare the time needed for the matrix factorizations to

calculate the approximated matrix. This comparison is between SVD and NMF.

The time result is tabulated in Table 4.8 and 4.9.

Table 4.8: Time needed to calculate approximated matrix using SVD.

Number of data row Time usage using Time usage using
original matrix (second) sparse matrix (second)

400 0.85436 0.76629
800 4.06100 3.75967

1200 11.12663 10.21182

Table 4.9: Time needed to calculate approximated matrix using NMF.

Number of data row Time usage using Time usage using
original matrix (second) sparse matrix (second)

400 481.57546 455.14909
800 1271.99165 1182.60352

1200 2842.28285 2655.21590

The code for getting the results of Table 4.8 and Table 4.9 can be viewed

in Appendix G. In these results, we also use another type of sparse matrix. A

sparse matrix is a matrix where most of its entries are zero. From the two meth-

ods, when we increase the number of data rows the time needed has increased
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as well. When sparse matrix is used we obtain the same pattern of results when

the number of data row is increased. But, the time needed is less as compared

to when using the original size of matrix. In Python, there are codes that help

to compress the dimension of sparse matrix by discarding the zero entries. The

computation speed increases when dealing with smaller size of input matrix.
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CHAPTER 5

CONCLUSION

This report shows the application of Singular Value Decomposition (SVD) and

Non-Negative Matrix Factorization (NMF) in Latent Semantic Analysis (LSI).

LSI is an important algorithm for searching a document by using keywords as

input to return the document that has the highest similarity with the keywords.

From the results, we conclude that SVD performs better than NMF in LSI. This

is mainly because SVD has a way to find a suitable dimension, k, to reduce

the dimension of the matrix whereas NMF does not have such a way to find

the value of k. In future, we plan to find a better method which have a better

approximation of k. Besides, in this project, we use only 400, 800 and 1200

data rows. This can be extended to more than 1200 data rows. From the result

in Section 4.3, we have accuracy 70% to 80% when comparing the result be-

tween LSI without matrix factorization and LSI with matrix factorization. The

accuracy may increase or reduce when we increase the data rows. It is too early

to assume that as we have only used 1200
681288

= 0.00176137 ≈ 0% of the whole

data. Furthermore, sparse matrices shall be used to reduce the dimension of the

matrix and more data rows shall be included to have a better result. There are

some other methods that we have yet to explore that may help to improve the

accuracy and time usage of the algorithm.
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APPENDICES

APPENDIX A: Customize and Clean DataFrame
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APPENDIX B: Convert the Dataframe
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APPENDIX C: Change user input to word-document DataFrame
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APPENDIX D: LSI without Matrix Factorization
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APPENDIX E: Applying SVD in LSI
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APPENDIX F: Applying NMF in LSI
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APPENDIX G: Compare the time taken of SVD and NMF to find the

approximate matrix
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