

BUILDING AUTOMATION THROUGH WEB INTERFACE

CHEAH JUN HONG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor (Hons.) of Electrical and Electronic Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2012

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

CHEAH JUN HONG

08UEB04686

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “BUILDING AUTOMATION THROUGH

WEB INTERFACE” was prepared by CHEAH JUN HONG has met the required

standard for submission in partial fulfilment of the requirements for the award of

Bachelor of Engineering (Hons.) Electrical and Electronic Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Mr. See Yuen Chark

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2012, Cheah Jun Hong. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Mr. See

Yuen Chark for his invaluable advice, guidance and his enormous patience

throughout the development of the project.

In addition, I would also like to express my gratitude to my loving parents

who have financially supportive and friends who had helped and given me ideas and

encouragement throughout the project.

vi

BUILDING AUTOMATION THROUGH WEB INTERFACE

ABSTRACT

Many times people are forgetful when it comes to switching off appliances that are

no longer in used. By the time we remember that the appliance has not been switched

off, the switch may be too far away, out of immediate reach. With building

automation and remote control, appliances can be switched on or off without

physically switching them on by their switches. In this project an embedded web

server is developed to achieve remote control of switches and autonomous control

with predefined rules. Web server is used instead of conventional approach where the

controls of switches are performed through the web browser via local area network

or the internet. The embedded server is developed from a Microchip

PIC24FJ256GB106 16-bit microcontroller together with an Ethernet controller

ENC28J60 using TCP/IP stack provided by Microchip and utilize USB flash drive as

storage medium. This report discusses on the testing of components that make up the

system, together with problems encountered and methods to solve the problems.

Performance of the embedded webserver is obtained and documented. Optimizations

were performed to increase the system’s performance. The system is designed to use

JavaScript to emulate HTTP digest authentication by using a one way hash function

to encode the salted username and password for user authentication purpose. Power

control modules were designed and developed to control AC power devices. AC light

bulbs were used to demonstrate the capability of the system to operate in AC

environment.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Motivation and Problem Statements 2

1.3 Project Scope 3

1.4 Project Objectives 3

2 LITERATURE REVIEW & UNDERLYING TECHNOLOGIES 5

2.1 Building Automation 5

2.2 Communication Medium 7

2.2.1 X10 7

2.2.2 INSTEON 8

2.2.3 Universal Powerline Bus 8

2.2.4 ZigBee 9

viii

2.3 TCP/IP 9

2.4 Embedded Web Server 10

3 METHODOLOGY / PROPOSED SYSTEM 12

3.1 Hardware 12

3.1.1 Microcontroller 13

3.1.2 Ethernet Module 14

3.1.3 MagJack 15

3.1.4 Data Storage 16

3.2 Software 17

3.3 Flowcharts 18

4 RESULTS AND DISCUSSIONS 21

4.1 Testing 21

4.1.1 Microcontroller 21

4.1.2 Ethernet Module 22

4.1.3 TCP/IP Stack 23

4.1.4 Web Server 25

4.1.5 USB 26

4.1.6 Dimmer Circuit 27

4.2 Results 29

4.2.1 Performance 29

4.2.2 User Interface 31

4.2.3 Dimmer 37

4.2.4 Power Consumption 39

4.3 Discussions 40

4.3.1 HTTP 40

4.3.2 HTML 41

4.3.3 SPI 42

4.3.4 Authentication and Authorisation 43

4.3.5 Input Capture and Output Compare Module 45

4.3.6 Encryption 45

4.3.7 Event Logging 46

ix

4.3.8 Dimmer Circuit 47

4.3.9 Relay Module 49

4.3.10 Optimizations 49

4.4 Design and Development Flow 50

4.5 Cost 52

5 CONCLUSION AND RECOMMENDATIONS 54

5.1 Conclusion 54

5.1.1 Personal Breakthrough 55

5.2 Recommendations 55

5.2.1 Real-time Clock 55

5.2.2 HTTP Redirection 56

5.2.3 TCP/IP Stack Modifications 56

5.2.4 Microchip dsPIC Microcontroller 57

5.2.5 Event logging 57

5.2.6 Social Network Integration 57

REFERENCES 58

APPENDICES 61

x

LIST OF TABLES

 TABLE TITLE PAGE

1.1 Electricity Consumption of Malaysia From Year

1971 to Year 2008 3

4.1 Page Loading Benchmark 30

4.2 Page Loading Benchmark After Optimization 30

4.3 Power Consumption 40

4.4 Comparison of Different Types of Authentication

Methods 43

4.5 Bill of Materials 52

xi

LIST OF FIGURES

 FIGURE TITLE PAGE

2.1 Example of X10 binary 1 and 0 signal 7

2.2 Four Layers of TCP/IP Model 10

3.1 PIC24F Architecture Block Diagram 13

3.2 ENC28J60 Ethernet Termination and External

Connections 15

3.3 Schematic Diagram of RJ-45 Ethernet MagJack 16

3.4 General Operation Flowchart 19

3.5 User Authorisation Process 20

4.1 Schematic Diagram to Test Microcontroller 21

4.2 Schematic Diagram to Test Ethernet Module 23

4.3 Schematic Diagram to Test Ethernet Module 24

4.4 Screenshot of Ping Result 25

4.5 State Diagram of Microchip USB stack 27

4.6 Schematic Diagram of AC Dimmer circuit 27

4.7 Schematic Diagram of Zero-Crossing Detector 28

4.8 100Hz Zero Crossing Pulse 28

4.9 Firebug Showing Total Time Used to Load Timer

Page 29

4.10 Maximum Download Speed 31

4.11 Screenshot of Login Page 33

xii

4.12 Screenshot of Status Page 34

4.13 Screenshot of Setup Page 34

4.14 Screenshot of Control Page 35

4.15 Screenshot of Timer Page 35

4.16 Screenshot of Advanced Settings Page 36

4.17 Screenshot of Logout Page 36

4.18 Zero Crossing Detector Output with Mains

Sinusoid 37

4.19 Phase Trigger Waveform for Minimum Light

Intensity 37

4.20 Light Bulb at Minimum Intensity 38

4.21 Phase Trigger Waveform for 50% Intensity 38

4.22 Light Bulb at 50% Intensity 38

4.23 Phase Trigger for Maximum Intensity 39

4.24 Light Bulb at 100% Intensity 39

4.25 AC Dimmer Circuit with PC123 Opto-isolator 48

4.26 AC Dimmer Circuit with Transistor 48

4.27 Relay Circuit with Transistor 49

4.28 Design and Development Work Flow 51

xiii

LIST OF SYMBOLS / ABBREVIATIONS

API Application programming interface

BAS Building automation system

BPSK Binary Phase Shift Keying

EEPROM Electrically Erasable Programmable Read-Only Memory

DHCP Dynamic Host Configuration Protocol

HTML Hypertect Markup Language

HTTP Hypertex Transport Protocol

I/O Input Output

I2C Inter-Intergrated Circuit

ICMP Internet Control Message Protocol

LAN Local Area Network

PHP Hypertext Pre-processor

POSIX Portable Operating System Interface

REST Representational state transfer

SD Secure Digital

SPI Serial Peripheral Interface Bus

TCP/IP Transmission Control Protocol and Internet Protocol

TQFP Thin Quad Flat Pack

URL Uniform resource locator

USB Universal Serial Bus

WAN Wide Area Network

XML Extensible markup language

xiv

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Programme Listing 61

B Schematic Diagram 83

C Pictures of Product 84

CHAPTER 1

1 INTRODUCTION

1.1 Background

Building automation system (BAS) also referred to as intelligent building system.

Intelligent building generally consists of Communications Networks and Office

Automation, Building Management System, and Integrated Services Infrastructure

(Afra Technical Solutions Est., 2009). BAS is an example of distributed control

system where the control unit is not centralized at one central location. Each

component sub-system is being controlled by one or more controllers. These

controllers are then connected through networks for communication. These

controllers have different capabilities to control devices in a building such as

lightings, air handlers, alarms, public address system, or sensors.

Currently there are many manufacturers of building automation systems

specialized in different types of equipment such as Alerton Technologies for heating,

ventilation and air conditioning equipment(Honeywell International, 2008), Crestron

Electronics, Inc. in lighting and audio/video (Essig, 2011), and Priva P.V. In

Horticulture (Priva).

Communication between devices is done through wired connection or

wireless connection. Examples of wired connections used by current technology are

X10 and Universal Powerline Bus. Wireless communication such as Infrared, Z-

Wave, Zigbee and INSTEON are also used in building automation. X10 currently

dominates the majority of home automation market (Anthony, 2009a).

2

1.2 Motivation and Problem Statements

Building automation technologies are well established in different field of

application such as automation of lighting control, alarm and security system.

Building automation existed in exhibitions (Messe Frankfurt, 2011) and popular in

science fiction, however due to its complexity, start-up cost, multiple incompatible

standards, has resulted in limited adoption (Park Associates, 2006; Nunes, 2004) in

modern buildings.

Electricity consumption is ever increasing with consumption in Malaysia

grew by 27 times since year 1971 to year 2008 (International Energy Agency, 2010;

Barrientos). About 50% of world's energy is estimated to be consumed by buildings

("Intelligent Building Automation conference and exibition,"). Simple step to switch

off unused appliances, to switch off lights in an empty room and reduce cooling

requirement on cool weather can effectively reduce energy consumption and thus

reducing utility bills. However, this might negatively impact productivity level and

leads to comfort complaints.

Currently, a low cost web power switch produced by Digital Loggers, INC. is

being sold at USD 119 (Digital Loggers) or approximately MYR 380. This project

aims to produce a low cost building automation system and energy efficient system

by utilizing existing infrastructure. Besides, Microchip provided a free licensed

TCP/IP stack for its microcontroller, implementing an embedded web server can be

low cost.

With web pages as control interface, it can be accessed by wide range of

devices, such as mobile phones, tablet PCs, game consoles, smart televisions or

desktop computers. It is essentially platform independent.

http://www.digital-loggers.com/lpc.html

3

Table 1.1: Electricity Consumption of Malaysia from Year 1971 to Year 2008

Year
Value

(GWh)
Year

Value

(GWh)
Year

Value

(GWh)
Year

Value

(GWh)

1971 3,464 1981 9,901 1991 23,976 2001 69,198

1972 3,933 1982 10,789 1992 27,550 2002 71,187

1973 4,347 1983 11,642 1993 30,572 2003 74,827

1974 4,752 1984 12,588 1994 36,048 2004 78,804

1975 5,229 1985 13,655 1995 41,518 2005 81,460

1976 5,819 1986 14,676 1996 46,220 2006 86,311

1977 6,790 1987 15,788 1997 53,923 2007 93,552

1978 7,525 1988 17,552 1998 58,496 2008 94,278

1979 8,453 1989 19,215 1999 59,478

1980 9,224 1990 21,323 2000 63,826

1.3 Project Scope

This project aims to develop a smart building automation system. The system

includes embedded web server with microcontroller and a standalone Ethernet

controller which serves as a HTML web based user interface building automation

control panel. The system will enable user to remotely control switches through web

browser via computer network.

1.4 Project Objectives

The goal of this project is to develop an affordable web based control panel for

building automation through embedded web server. Other objectives of this project

are:

 To research on existing building automation technology.

 To develop an embedded web server with microcontroller for the control system.

 To develop an embedded web server with free licensed Microchip TCP/IP stack.

 To develop HTML user control interface for power devices controls.

 To develop an energy efficient building automation controller.

4

 To utilize existing local area network infrastructure for the control system with

minimal modification to reduce total system implementation cost.

 To allow remote power switching from any devices with a web browser and

Internet access.

CHAPTER 2

2 LITERATURE REVIEW & UNDERLYING TECHNOLOGIES

2.1 Building Automation

Automation has been utilized in different sectors, from domestic sectors to industrial

sectors, ranging from a typical household living room to sophisticated factories (Han

& Hwang, 2005). Applications of automation include lighting, security, HVAC,

audio and video systems, energy managements, cleaning etc. (Ryan, 1989). It is

estimated that by 2011 the number of home automation systems installed would

reach 200 million (Alkar, Roach, & Baysal, 2010).

Building automation products not only being developed by specialized

automation developers but also software developer such as Microsoft Corporation. A

new feature of Windows Media Player 12 bundled in most version of Windows 7

allows remote streaming of multimedia files over the local network or internet to

supported remote devices such as XBOX 360 game console, other computer running

Windows 7 and other compatible devices (Microsoft, 2009). Multimedia files can be

streamed and controlled all over the building by each node connected to the network.

Building automation was made for certain purposes. There is home

automation made to assist elderly and disabled at home. Review shows that elderly

or disabled have needs, problems or difficulties such as loneliness, preparing food,

eating, cleaning, memory losses and etc. (Harmo, Taipalus, Knuuttila, Vallet, &

Halme, 2005) These problems may be addressed by various form of home

automation. Some problem faced by the elderly may exists in the younger generation

6

with busy life such as cleaning and memory problem. Home automation in the form

of cleaning robot may solve cleaning problem in a building. There is gesture

recognition type of home automation to assist elderly and disabled with their daily

life, for example, switching on the television, closing the door, or switching a light

on with just a hand gesture as describe by (Starner, Auxier, Ashbrook, & Gandy,

2000) using wearable infrared camera to track user’s hand movement. To overcome

memory problem such as forgetting to switch off some devices, remote monitoring

and controlling system may be used to remotely switch on or off or simply to check

on the status of a device remotely. However, there are very few systems available

with price affordable by the public. Even if the system’s price is affordable, its

installation cost might be unbearable (Harmo et al., 2005).

Other usage of automation can be seen in industrial, such as pipe

measurement by automated camera to measure pipe length, bending, and quality

control as discussed by (Bösemann, 1996). “The optical tube measurement system is

a powerful tool for fast and precise 3-dimensional reconstruction of tubes of different

types and shapes.” Described by Bösemann. “The system is integrated in the

production line through a computer network for online process and quality control.”

Automation system through internet is the most efficient way to control or

monitor remote appliances like lighting, heating, cooling and etc. (Alkar et al., 2010).

Many building automation technology relies on a computer to coordinate the

whole system. While some system runs on Portable Operating System Interface

(POSIX) and utilize web technology (Alkar et al., 2010), some runs on Microsoft

Windows, requiring proprietary software to be installed (Acson). Java Virtual

Machine is also used as describe by (Corcoran & Desbonnet, 1997) , it requires java

to be installed and will also works on Set-Top Box or Web-TV. These types of

automation systems requires a computer running around the clock consuming modest

amount of power, ranging from tens of Watts to hundreds of Watts

7

2.2 Communication Medium

Communications between controllers are made through wired network,

wireless network or both. They use different types of protocols for communication.

Some of the common standards are X10, Universal Powerline Bus, and INSTEON.

There are also other types of communication method such as proprietary

communication protocol on twisted pair cables (Acson). Communication between

controller and devices is important to facilitate automation. Without communication,

individual devices can only act as a stand-alone device.

2.2.1 X10

X10 Power Line Carrier technology was invented in late 1970s by PICO Electronics.

X10 devices communicate without requiring additional control wiring, instead, the

power lines were used. Signals are transmitted as a 120 kHz coded signal. A binary

one is represented by a one millisecond burst of 120 kHz followed by absent of the

signal at the zero crossing point and a binary zero is the absent of the signal followed

by a one millisecond burst of 120kHz signal(X10).

 X10 communication is slow due to its architectural design, where a bit is only

transmitted during the zero crossing point of the power carrier waveform of 60Hz

sine wave providing 60 bps of data transfer rate.

Figure 2.1: Example of X10 binary 1 and 0 signal (euro X10 CentralCasa)

8

Generally, X10 is a one way communication where the control unit transmit

signal to receiver modules to perform remote commands as most of the X10 modules

do not support two way communications(Jay, 2010). That being said, X10

communication is not very reliable compared with other type of communication

method.

2.2.2 INSTEON

INSTEON was created by Smarthome. INSTEON devices can communicate

via power lines and radio frequency. There are two kinds of INSTEON message.

INSTEON standard message consists of 10 Bytes while INSTEON extended

message consists of 24 Bytes of data. 3 Bytes of data was allocated for device

address. Similarly to X10, INSTEON only transmit data during the zero crossing of

the power waveform. INSTEON signal are modulated onto a carrier at 131.65 kHz

through binary phase shift keying (BPSK) bit modulation. It uses 10 cycle of the

carrier signal for each bit. With a binary one begins with a positive-going carrier

cycle, and a binary zero begins with a negative-going carrier cycle. The raw data

transfer rate of INSTEON is 2880 bps which is 48 times faster than X10 (INSTEON,

2005).

2.2.3 Universal Powerline Bus

Universal Powerline Bus (UPB) developed by Powerline Control Systems,

Inc. also communicates through powerline. UPB transmits precisely timed electrical

pulses onto the AC power waveform. UPB transmits 2 pulses in an AC cycle. Each

pulse represents 2 bits of digital information (Powerline Control Systems, 2007).

Thus, UPB is capable of achieving raw bitrate of 240 bps. 99.9% of reliability can be

achieved by UPB communication compared to 70 to 80% of reliability achievable by

X10 communication (Anthony, 2009b).

9

2.2.4 ZigBee

ZigBee serves as a low cost option for wireless communication in building

automation. ZigBee is low cost and consume low power, it is capable of transmitting

data at up to 250 kbps at 2.4 GHz band using quadrature phase shift keying (O-

QPSK) (Ergen, 2004)that provides reliable communication at low signal to noise

ratio (SNR) environment (Ploeg). High data rate is the key to low power

consumption, the faster data can be transmitted, the more time can be spent idling

saving energy. Its transmission range can be up to 100 meters, however, range of up

to thousands of meters can be achieve by creating networks with many hops if

latency is not of essential parameter of the system.

2.3 TCP/IP

Transmission Control Protocol / Internet Protocol (TCP/IP) is the communication

protocol for the internet. It defines how computers communicate with each other over

the internet (W3Schools). TCP/IP communication consists of layers. The protocol is

defined in a series of documents known as Request for Comments (RFC). The

TCP/IP model is made up of four layers as defined in RFC1122 entitled host

requirement("RFC1122," 1989).

10

Figure 2.2: Four Layers of TCP/IP Model Note. Original artwork by Cburnett

IP is responsible for carrying packets of data from node to node. Each packet

is attached with its destination address, IP will move packets to its destination based

on the IP address specified("RFC1122," 1989). TCP on the other hand, is responsible

of ensuring correct data is delivered to its receiver. TCP splits data into IP packets

for transmission and joins IP packets when received. At the top of this

communication model is the application layer. Hypertext Transfer Protocol (HTTP)

is one of the protocols in the application layer. HTTP is used for sending and

receiving data between a web server and a client, often a web browser. HTTP is a

cross-platform protocol and is freely available. HTTP requests together with

Hypertext Markup Language (HTML) web pages allow communication between

client and server for remote device control from any web enabled devices.

2.4 Embedded Web Server

Web server runs on various platforms ranging from high performance rack server to

embedded devices to serve requests by clients. Web servers serve HTML documents

that can be parsed and displayed by web browsers. Development of a HTML web

11

interface is fast and easy compared to developing specialized client software for each

client’s platform running incompatible operating systems and environment.

Typical requirement of an embedded web server is to have small memory

footprint, and light CPU utilization. An embedded web server is specially designed

for its purpose without considering additional features due to limited resources such

as on board memory and processor packed into the device.

Embedded web server is sometimes packed into a device as an extension to

allow remote management over the internet. For example, embedded web server

embedded into a printer can serves user interface through the internet and can be

access with a web browser without requiring any special proprietary software to be

installed.

Embedded web server is small in size compared to a standard computer

acting as a server. The simplicity of an embedded web server with little components

means it is energy efficient, using only fractions of the energy required by a full size

computer. Energy efficiency is important in building automation as reducing energy

usage is one of the objectives of building automation (Ariane Controls).

Some of the advantages of running a building automation system on

embedded web server are that they are reliable with little to no maintenance required

(Ju, Choi, & Hong, 2000). There are no moving components in an embedded web

server running on a microcontroller, mechanical failure can be avoided. Embedded

web servers have low resource usage (Ju et al., 2000). Embedded web servers are

small in size, with its small footprint, positioning the system can be flexible.

Embedded web servers are often used to transmit working status of a system.

Embedded web server also relays user entered commands from web browsers to an

embedded system.

CHAPTER 3

3 METHODOLOGY / PROPOSED SYSTEM

3.1 Hardware

This project will address some of the issues such as reducing power consumption of

other building automation systems by building the system on microcontroller and an

Ethernet module instead of a computer. On the other hand, web based interface

increase compatibility for operation on multiple platforms.

The embedded web server will be able to serve Hypertext Markup Language

(HTML) together with Extensible Markup Language (XML) documents as user

interface to control and monitor device(s) operating status remotely via a web

browser.

Figure 3.1: System Block Diagram

13

3.1.1 Microcontroller

This project will build an embedded web server from Microchip PIC24F 16bit

microcontroller with low power consumption to serve as an alternative to computer

based web server used in other web based building automation systems.

Microcontroller acts as the central control unit, coordinating all operations in the

system, such as switching on or off a connected device, serving control interface to

user, and networking tasks.

Figure 3.2: PIC24F Architecture Block Diagram (Microchip)

PIC24F family microcontroller has maximum execution rate of up to 16MIPS

at 32MHz. Various peripherals are included in the microcontroller as shown in

Figure 3.1. Digital I/O only pins are 5.5V tolerant which is useful for interfacing with

5V devices. PIC24F series microcontroller has built-in I
2
C support, I

2
C driver

software does not have to be written. Multiple individual SPI modules are available,

this allows interfacing with multiple SPI devices on each port individually. Some of

the microcontrollers have deep sleep mode where the power consumption is in the

Nano Watt range during deep sleep mode. The microcontroller has built in 10-bit

analogue to digital converter, sensors which produce analogue signal output such as

14

LM34 temperature sensor may be connected directly to the microcontroller without

external converter circuit.

The system is expected to be able to switch on and off appliances such as

lamp, and fan through the use of digital I/O ports with external relays controlled by

web based interface over the network. PIC24FJ64GA002 with 64k bytes will be used

for preliminary design, it is available in dual in line through holes package where

prototyping can be made easy. Microcontroller with larger program memory space

such as PIC24FJ256GB106 available in Thin Quad Flat Pack (TQFP) packages will

be used when extra features were to be included into the system. Extra features such

as posting updates to social network, controlling lighting or cooling based on sensors

input or environmental conditions may be included.

3.1.2 Ethernet Module

A pre-built Ethernet module based on a 10Mbps Microchip standalone Ethernet

controller ENC28J60 will be used to interface the microcontroller to the network.

Communication between the module and the microcontroller is done through SPI.

The module contains all essential components for the Ethernet controller to function

properly and allow direct connection to the microcontroller through SPI connection.

15

3.1.3 MagJack

Figure 3.3: ENC28J60 Ethernet Termination and External Connections

According to Figure 3.3 provided in the datasheet of ENC28J60, external

connection for interfacing between the Ethernet controller and the RJ-45 socket

requires transformers and ferrite bead together with resistors and capacitors. By

using a suitable RJ-45 Ethernet MagJack which consists of a shielded RJ-45 socket

and built-in transformers which is necessary for Ethernet communication, the overall

construction can be simplified and ensures high quality communication compared to

self-constructed interfacing. The RJ-45 Etherner MagJack diagram is shown in

Figure 3.4.

16

Figure 3.4: Schematic Diagram of RJ-45 Ethernet MagJack

3.1.4 Data Storage

Storage medium is required to store web pages and operating parameters of a web

server. Several options such as EEPROM, internal flash memory, SD card, and USB

storage are available as storage medium for this application. USB storage was chosen

among the other available options due to some advantages of USB storage over the

other options.

Cost of EEPROM is low. However, its data storage size is smaller compared

to the others. 1Mbit is the largest available data storage space of SPI EEPROM

manufactured by Microchip. The up side of using EEPROM is that its driver memory

footprint is smaller compared to USB and SD card driver.

Limitation of the use of internal program flash memory to store web pages is

storage size. For example, PIC24FJ256GB106 has 256KB of internal flash memory,

however, this memory is intentioned for program storage, and there may not be

enough memory available to store web pages with multimedia contents. In addition,

if web page design were to be changed, the whole program will have to be

recompiled and reprogramed to update the changes done to the web pages.

SD card comes in 3 different form factors: the original size, the mini size and

the micro size. SD card are used in various types of portable devices as it is small in

17

size, relatively low cost and has huge data storage size. Editing of web pages can be

performed easily, and edited web pages can be deployed quickly without having to

reprogram the microcontroller if the editing does not involve dynamic pages. In this

project, it was not chosen as a storage medium because the Microchip's Memory

Disk Drive (MDD) File System Library only support SD card through SPI interface.

Some older SD cards do not have built in SPI support.

USB storage support from the Microchip TCP/IP stack together with USB

driver and Microchip's MDD File System allows the use of USB flash drives with

various data storage size together with the embedded server. Similar to SD storage

medium, web pages can be edited and stored back into the flash drive effortlessly.

Besides the use of USB flash drive, the stack supports the use of USB memory card

reader. The use of SD card is supported through the card reader. This does not limits

the type of memory cards that can be used with the system as universal memory card

reader supports different types of memory cards such as Memory Stick Micro M2,

miniSD card, microSD card and others. Therefore, usage of USB interface for

storage medium is a better choice comparing to the other options. The MDD file

system only support legacy 8.3 filename also known as short file name (SFN). The

file name can be at most 8 characters long together with a maximum of 3 characters

extension.

3.2 Software

Development will be completed on MPLAB by Microchip with C programming

language and compiles with C30 C Compiler. The free licensed TCP/IP stack

provided by Microchip will be used to implement TCP/IP protocol required for a

web server. The microcontroller may serves as a web server as well as a web client

made possible by the TCP/IP stack.

Although an embedded server does not support most server side scripts such

as Hypertext Pre-processor (PHP) scripts for server side data manipulations, however

these functions may be off-loaded to the client side through extensive use of

18

JavaScript on modern web browsers to generate dynamic webpages. The TCP/IP

stack also supports some extents of dynamic webpage generation. It is capable of

parsing HTML documents produce dynamic version of the HTML documents.

Unlike any other system which supports server side scripting, embedded

systems are designed for a designated purpose, any attempt to upgrade or change of

functionality will require rewriting and recompiling source codes which will then be

burnt into the microcontroller. Systems which support server side languages such as

PHP, Perl, Python do not requires as much work when upgrading where its source

code can be edited and deployed immediately.

3.3 Flowcharts

Figure 3.5 shows the general program flow of the system while Figure 3.6 shows the

user authentication process. The system will listen and wait for a connection from the

client and perform actions requested by authenticated users.

19

Figure 3.5: General Operation Flowchart

20

Figure 3.6: User Authentication Process

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Testing

4.1.1 Microcontroller

The microcontroller was tested initially to ensure it is in operational condition. The

schematic shows in Figure 4.1 shows the microcontroller being tested with an LED.

Figure 4.1: Schematic Diagram to Test Microcontroller

22

The microcontroller is configured to run with the primary external crystal

oscillator. An I/O pin was configured as an output and programmed to toggle at a

certain period. The LED connected to the output pin was observed. Blinking LED

indicates that the microcontroller is operational.

4.1.2 Ethernet Module

The Ethernet module includes RJ-45 Magjack. There are 2 LEDs attached to the RJ-

45 MagJack, they are labelled as LED A and LED B. The Ethernet module default

setting will set LED A to light up when Ethernet cable is connected and LED B will

blink if traffic is present. Based on the Ethernet Module datasheet, a 6.25MHz square

wave can be observed at the CLKOUT pin of the Ethernet module. The schematic

diagram of the Ethernet module is shown in Figure 4.2. Both LEDs were observed

when RJ-45 cable was plugged into the Ethernet module and a network router.

Traffic generated by standard TCP/IP protocol causes LED B to blink without user

generated traffic while LED A remain stable indicating that the connection is

established between the module and the network router.

23

Figure 4.2: Schematic Diagram to Test Ethernet Module

4.1.3 TCP/IP Stack

In this project, the version of TCP/IP stack being used is the latest as of 1
st
 January

2012 at version 5.36.4 released in October 2011. In order to test the stack, a working

circuit is required. The schematic in Figure 4.3 shows the circuit used to test the

stack and later further developed to the complete system.

24

Figure 4.3: Schematic Diagram to Test Ethernet Module

Some configurations were performed to the demo application included in the

Microchip Application Libraries to suit the circuitry designed as in Figure 4.3.

I/O pins were remapped according to the circuit, unused functions in the

TCP/IP stack such as the LCD, SPI EEPROM, and SPI Flash, were removed. The

TCP/IP demo application included additional functions that are not required to test

the circuit shown in Figure 4.3. The only functions used are the DHCP client,

NetBIOS Name Service Server, and the ICMP client. DHCP client is required to get

IP settings from the router, while NetBIOS Name Service Server is required to

resolve the server host name in the local area network. The ICMP client is required

for the server to response to ping request.

TCP/IP configurations were performed to enable the server to work in a

specific environment such as server host name, network address, subnet mask,

default gateway, and DNS servers. The configuration codes are shown in Appendix

A page 76.

By using ping function of a computer, pinging the host name of the server,

the computer will receive reply from the server. For this project, the embedded server

is configured to have “myserver” as its host name. The network router’s DHCP

25

server will assign the address 192.168.2.20 to the embedded server. Below is the

screenshot of the ping result.

Figure 4.4: Screenshot of Ping Result

4.1.4 Web Server

To enable the web server function, HTTP2 module of the TCP/IP stack is enabled. A

html document is written and stored into a USB flash drive. Before the page can be

served by the server, two binary index files have to be generated by a tool named

“Microchip MPFS Generator” provided by microchip. These generated binary index

files must be placed together with web pages in the USB flash drive due to the

operating nature of the HTTP2 module in the TCP/IP stack.

Pointing the browser to the host name of the server or the IP address of the

server, the browser will display the web page “index.htm”. At the same time, this test

proved that the USB storage medium is operational together with the MDD file

system.

26

4.1.5 USB

Based on USB standards, USB devices cannot communicate between each other

directly without a USB host. A full featured Host is required to support any device

connected to it with special driver software installed on the host. It is also a must that

the host is able to supply a minimum of 100mA current to the attached device.

However, for embedded host, the requirements are relaxed. Embedded host is

required to support only specific class of devices.

In this project, the microcontroller also acts as an USB embedded host. It is

configured to support USB mass storage medium or USB flash drives by specifying

the class through Targeted Peripheral List (TPL) in the USB stack configuration

shown in Appendix A page 76.

An USB device may act as a host or a device depending on its design. Here,

the microcontroller only acts as a host. The USB module requires a 48 MHz clock.

The microcontroller has a 96 MHz USB PLL to produce 96 MHz clock from 8 MHz

internal FRC oscillator. From the 96 MHZ PLL output, it is fed to a fixed divide-by-

2 frequency divider to generate the 48 MHz clock required by the USB module.

Meanwhile, the 96 MHz output is also fed into a dive-by-3 frequency divider to

produce 32 MHz clock for system clock.

The USB stack operates as a state machine, its state machine diagram is

shown in Figure 4.5.

27

Figure 4.5: State Diagram of Microchip USB stack

4.1.6 Dimmer Circuit

The dimmer circuit consists of a TRIAC, opto-isolator, and other common electronic

components.

Figure 4.6: Schematic Diagram of AC Dimmer circuit

28

In order to test the circuit in Figure 4.6, an incandescent light bulb was

connected to the circuit and the circuit is triggered by microcontroller I/O pin, when

a high signal is passed, the light bulb will light up, and turn off when the signal

passed is low.

To test the dimming functionality of the circuit, input capture and output

compare module of the microcontroller is needed.

Figure 4.7: Schematic Diagram of Zero-Crossing Detector

The zero crossing detector circuit will produce a pulse whenever a zero

crossing is detected at the main power supply. By connecting the output of the circuit

to an oscilloscope, a 100Hz pulse can be observed. The pulse is shown in Figure 4.8.

Figure 4.8: 100Hz Zero Crossing Pulse

29

4.2 Results

4.2.1 Performance

Page load time is determined by various factors. Times taken to serve and load each

of the pages were tested using Firebug. Firebug is a web development tool integrates

with Firefox browser to debug and develop web pages. It is capable of tracking page

load time with in depth details of the page loading process.

Figure 4.9: Firebug Showing Total Time Used to Load Timer Page

In Figure 4.9, Firebug shows that the timer page requires 6 HTTP requests to

the server. The total page load time is 2.33 seconds, total document size 24.4 KB. It

also shows the timeline of the page loading process.

Data obtained before optimization and after optimization were tabulated in

Table 4.1 and Table 4.2 respectively.

30

Table 4.1: Page Loading Benchmark

Page Number of

requests

Total document size

(KB)

Total page loading

time (ms)

Login 5 19.5 1010

Status 4 15.9 969

Setup 4 18.9 962

Control 4 18.7 940

Timer 6 24.4 2330

Advanced settings 5 24.3 1080

Logout 4 17.1 738

Table 4.2: Page Loading Benchmark After Optimization

Page Number of requests Total document

size (KB)

Total page loading

time (ms)

Login 2 12.3 572

Status 2 14.8 798

Setup 2 13.9 661

Control 2 12.7 637

Timer 4 19.2 1780

Advanced settings 2 18.0 674

Logout 1 0.8 114

Optimizations include removal of unused code such as unused JavaScript,

CSS selectors and unnecessary line breaks. Other than that, external JavaScript and

CSS style sheet were embedded as inline codes in the HTML files itself.

Average page load time before optimization was 1147ms and after

optimization was 748ms. Time required to load page was reduced by 34.79%.

Average page size before optimization was 19.83 KB and after optimization was

13.1 KB. Average page size was reduced by 33.94%.

31

The maximum transmission throughput of the embedded server is about

65kBytes/sec. This was tested by downloading a 3.5MB image file from the server.

Figure 4.10: Maximum Download Speed

4.2.2 User Interface

This project utilize web based control, therefore the user interface is made up of web

pages. Each page is an HTML file with file extension of “.htm”. Figure 4.11 to

Figure 4.17 show the web based user interfaces.

Login page shown in Figure 4.11 will be presented to unauthenticated user.

Users are required to login to use the system. User login is handled by JavaScript

dynamically in the background.

Once the user have successfully authenticate through the login page, the user

will be redirected to the status page shown in Figure 4.12. Here the name, type, and

status of the devices attached to the system are displayed. The web page will

continuously request the server for updated status every 2 seconds. This process is

performed by JavaScript to request for device status updates and preventing page

reloading every 2 seconds, conserving bandwidth.

Figure 4.13 shows the setup page, at this page, the user will be able to rename

the devices, and to change the device type. Types available for the use to choose are

32

“On/ off”, “Fan”, “Light”, and “Pulse Triggered”. Figure 4.14 shows the control page,

where the user is allowed to control the devices here. Different types of devices have

different control method. For “On/off” type, the user is able to switch the device

either on or off. This is more suitable to be used with the relay module. “Fan” type

will allow user to choose from 5 speeds, to control speed of fan or motor, it is used

with the dimmer module. “Light” will allow user to select from 10 step of intensity

when used with the dimmer module. Lastly, for “pulse triggered”, the device will

receive a 100ms pulse to either turn it on or off, some of the application of this is

door bell, computer power supply, and auto gate.

Figure 4.15 shows the timer page. There are 5 sets of timer for each device.

User will be able to set the device to perform a particular action such as to switch on,

or switch off, or adjusting fan speed, adjusting light intensity, and to send a pulse at

designated time.

Figure 4.16 shows the advanced setting page. In this page, the user will be

able to configure some advanced settings. User can reset the system to its default

configurations, select to turn off all devices at system startup, to change login

username, to change login password and to change the server time zone. Password

change requires the user to know the shared secret between the server and the user.

The new password will be transmitted in encrypted form using Corrected Block TEA

(XXTEA) algorithm, with the shared secret as encryption key. It is important to

maintain the secrecy of the shared secret as the exposure of the secret key will allow

hackers to gain access to the system and changing the password. The encrypted

string is encoded into pairs of hexadecimal characters and transmitted to the server.

In order to ensure the user encrypted the new password with the correct secret

key, the secret key entered by the user is encrypted with the entered secret key itself

and transmitted to the server. The server will first validate the encrypted secret key.

If the secret key is invalid, the new password will not be processed. This is

absolutely essential to prevent user from being locked out from the system when the

server decrypt the new password with an unmatched secret key.

33

Figure 4.17 shows the logout page, it is shown when user click on the logout

link. In this page, user can click on the button to return to the login page.

Figure 4.11: Screenshot of Login Page

34

Figure 4.12: Screenshot of Status Page

Figure 4.13: Screenshot of Setup Page

35

Figure 4.14: Screenshot of Control Page

Figure 4.15: Screenshot of Timer Page

36

Figure 4.16: Screenshot of Advanced Settings Page

Figure 4.17: Screenshot of Logout Page

37

4.2.3 Dimmer

Light intensity is varied by changing the firing angle or increasing the delay before

triggering the triac after a zero crossing is detected at the mains.

Figure 4.18: Zero Crossing Detector Output with Mains Sinusoid

Figure 4.19: Phase Trigger Waveform for Minimum Light Intensity

38

Figure 4.20: Light Bulb at Minimum Intensity

Figure 4.21: Phase Trigger Waveform for 50% Intensity

Figure 4.22: Light Bulb at 50% Intensity

39

Figure 4.23: Phase Trigger for Maximum Intensity

Figure 4.24: Light Bulb at 100% Intensity

4.2.4 Power Consumption

Power measuring conditions of the system is based on measurement from output of a

5V regulated switch mode power supply unit, without considering power

consumption by the power supply unit. Microcontroller clocked at 32MHz,

instruction execution rate of 16MIPS. Zero crossing module is running at all time

during the test.

40

Table 4.3: Power Consumption

Testing Condition Current (A) Power (W)

Without USB Flash Drive, Server Idle 0.16 0.80

With USB Flash Drive, Server Idle 0.21 1.05

With USB Flash Drive, Server Transmitting Data 0.22 1.10

With USB Flash Drive, One Dimmer Module

Activated

0.23 1.15

With USB Flash Drive, One Relay Module

Activated

0.24 1.20

4.3 Discussions

4.3.1 HTTP

Currently, Microchip’s TCP/IP stack only supports two types of HTTP request

methods. They are the GET method and POST method. There are limitations of GET

request imposed by the TCP/IP stack and the microcontroller resources. HTTP GET

method appends all data to the end of the request URL. The stack requires that the

URL to be stored in the buffer in order to be further processed. There is limitation on

available memory to be used as buffer for the URL. The default configuration of the

server can accommodate GET request up to 98 characters in length. Therefore,

another method shall be used if data to be transmitted to the web server is longer than

the maximum buffer length.

HTTP POST method is another method that a web browser may transmit data

to the web server. This method allows longer data length to be transferred to the

server from the client. The maximum length is limited only by the architecture of the

server implementation. The protocol does not specify any limit to the length of POST

request.

41

However, in Microchip’s TCP/IP stack, the content-length field of the HTTP

header is parsed as 9 bytes characters with theoretical maximum length of

999,999,999 bytes, just under 1GB.

In the TCP/IP stack, GET requests and POST requests are handled by

separate handlers, they are shown in Appendix A page 61 and page 66 respectively.

For GET request, if the request length exceeds the buffer length, the TCP/IP stack

will discard the request and response by transmitting an error message of “414

Request-URI Too Long” to the user.

For POST requests, the content is not put in the buffer immediately, but part

of it is temporarily put onto the buffer for processing. Raw data is received from the

TCP buffer. It is essential to keep track of how many bytes of data are received, how

many bytes of data are processed, and how many bytes of data are yet to be

processed manually. Therefore, the content-length field of each POST request is

important for POST request handler to work properly. Losing track of the number of

bytes remaining will cause data corruption of the next data received or server error of

“500 Internal Server Error: Expected data not present” if desired variable is not

received before all data have been received.

4.3.2 HTML

The web interface was developed and tested with modern browsers including

Microsoft Windows Internet Explorer 9, Mozilla Firefox 11, Opera 12.00 Alpha, and

Google Chrome 19. Interface was rendered slightly differently on different browsers,

but their functionality remains intact. Users will most likely not notice any difference

between the renderings from different browsers. The interface however is not

optimized for mobile devices with smaller screen size, but the interface is fully

functional as tested with Opera Mobile.

Webpage redirection performed using JavaScript works in all browsers

without any complications except Windows Internet Explorer 9 (IE9). In IE9, the

42

rendering engine treats unclosed comment tag invalid, causing the page to display

page content which was meant to be commented and failed to redirect. A fix was

introduced to every web page that might be redirected using JavaScript by adding a

pair of open and closing comment tag at the end of the HTML documents. This

solution came from the idea that multi-line comment cannot be nested by another

multi-line comment. Therefore the first open comment tag will match with the next

closing tag ignoring nested open comment tag with a condition where there shall not

be any other multi-line comment tags in the middle of the HTML document.

4.3.3 SPI

SPI communication is used between the microcontroller and the Ethernet controller.

The Ethernet controller accepts SPI clock rate up to 20MHz. However the maximum

SPI clock rate generated by PIC24F microcontroller is half of its maximum operation

frequency of 16MHz, therefore the maximum SPI clock frequency for the system is

8MHz.

SPI is design for communication between integrated circuit at close distance.

During prototype, the SPI connection between the microcontroller and the Ethernet

controller is long (around 9 cm). The long wires captured noises from the

environment causing the communication to be unreliable. Corrupted data were

received at both ends. In an attempt to rectify the problem, a ground wires were

twisted around the data lines to act as shielding, forming twisted pair’s cable. The

result is a more reliable communication, less data were corrupted. When corrupted

data were received at the microcontroller, it will cause the microcontroller to reset.

Therefore further reduction of the wire length was attempted. The cable was reduced

to 4 cm and a reliable communication was achieved at 8MHz.

43

4.3.4 Authentication and Authorisation

There are at least three options available for authenticating user. The three options

are basic access authentication, digest access authentication, and custom login form.

Microchip’s TCP/IP stack has built in support of basic access authentication.

Table 4.4: Comparison of Different Types of Authentication Methods

 Basic access

authentication

Digest access

authentication

Custom login

form

Design dependent on browser dependent on browser independent on

browser

Security Plain text with base64

encoding

Hashing of password

with salt and dynamic

variables

Custom

Method Handled in HTTP request

header

Handled in HTTP request

header

GET or POST

The authentication method chosen for this project is custom login form.

Unauthenticated users will be greeted by a login page containing login form. User

will be required to type in their username and password in order to be authenticated

by the server. The custom login method utilizes JavaScript to emulate digest access

authentication. When a login page (“login.htm”) is loaded at the client side,

JavaScript will dynamically request for a “login.xml” XML file with “REALM” and

“NONCE” values generated by the server. “NONCE” value will expire every 10

minute, when a new “login.xml” file is served or when a login attempt occurs,

whichever comes first. The method used is by appending multiple parameters into

one string with colon as separator, and hashing the string using MD5 algorithm. The

hashing is performed at the client side with JavaScript. The resulting hash string will

be sent back to the server, where the server will perform similar process internally to

generate a hash string to compare with the received hash string. Upon matching of

the hashes, an XML file is sent back to the client, where JavaScript will interpret the

file content to decide on which page to redirect user to. If the hash string does not

match, user will receive an alert popup and being redirected to the login page again,

44

else, the user will be redirected to the following page. Example of the login POST

request string is:

“user=user&res=89A55A3387DDCF5BAEFDEF0652AA8BAA&cnon=pic24fj256g

b106&nc=6543” where the “user” variable contains the username, “res” contains the

MD5 hash of the salted password, while “cnon” and “nc” are variables required to

calculate the password hash.

Due to the implementation of the TCP/IP stack, it is impossible to redirect

user to another page using HTTP codes such as 302 or 301 redirection headers to

redirect unauthenticated user to the login pages, or redirect authenticated users to the

content page without major rewriting of the TCP/IP stack. Other method of

redirection is the use of HTML Meta refresh or through the use of JavaScript

redirection. The use of either HTML Meta refresh or JavaScript redirection is

possible as this will only require manipulation of existing HTML files which is

possible through a callback by the TCP/IP stack during transmission of the file.

However, in this project, JavaScript redirection is used instead of HTML

Meta refresh. This is because the use of JavaScript is supposed to work as all the user

interface pages designed will require JavaScript support from the browsers to operate

correctly.

Although implementing redirection on client side is not secure as user is able

to interrupt the redirection process, the server is further secured by performing

checking on user authorization status before performing any requested actions that

require a user to be authenticated.

User IP is logged temporarily when a user logged in successfully with a

correct combination of username and password. Any user attempt to access the

control interface from another device with a different IP will be presented the login

screen. The system only allow one active session at any instance. For example, ‘User

A’ logged in from machine with IP of 192.168.0.2 and later ‘User B’ login to the

system from IP 192.168.0.3, ‘User A’ will be logged out upon successful login of

‘User B’. Other than that, a user will automatically be logged out if the session is

inactive for 10 minutes.

45

4.3.5 Input Capture and Output Compare Module

Input capture module and Output Compare modules were used to design dimmer

circuit. Preliminary design was to use an input capture module to capture an event

generated by the zero crossing circuit. The input capture module will generate an

interrupt on every occurrence of a rising edge at its mapped input pin. Output

compare modules may operate at different modes for different purposes. It may

operate as PWM signal generator, or a pulse generator. Output compare module is

able to be synced or triggered by other modules such as timer, input capture, and

ADC. The design will requires the input capture to automatically trigger output

compare module to start counting to its designated value to produce an output.

The delays before output compare produce an output is determined by the

user input. For example, if the user selected the lowest light intensity from the

control panel, the output compare module will be delayed longer before producing an

output.

However, the input capture module failed to trigger the output compare’s

timer through hardware automatically, therefore, another design was implemented to

trigger the output compare module manually by using interrupt service routine of the

input capture module by manually setting the trigger flag of the output compare

module.

4.3.6 Encryption

Hypertext Transfer Protocol Secure (HTTPS) may be used for secured transfer of

information between the server and the client. However, HTTPS functionality

requires the Data Encryption Libraries from Microchip, which is not bundled with

the TCP/IP stack due to United States export regulations on encryption technologies.

Therefore an encryption scheme is required when transmitting password that

user entered in the advanced setting page across the network through HTTP for

46

security reason. When choosing the correct encryption algorithm, the platform

capability is one of the deciding factors. In this project, XXTEA block cipher is

chosen, because the algorithm has a small memory footprint on both program

memory and working memory, this is most suitable for embedded devices with small

memory available. Other encryption algorithm requires higher program memory

space. The XXTEA encryption uses a 128-bit key to encrypt the password. The key

is pre-shared between the server and the user.

A chosen-plaintext attack as described by Elias Yarrkov in “Cryptanalysis of

XXTEA” is not possible for this system. This is because the attack method requires

that the system encrypt given plaintext with the secret key and returning the

ciphertext to the attacker. In this system, the encryption is performed at the browser

which the user is to enter the key manually, the system is unable to generate any

ciphertext on its own without user entering the key.

It is also not possible to request the server to encrypt any plaintext given, this

is due to the server is programmed to perform decryption only and the resulting

output is not returned to user.

4.3.7 Event Logging

Data logging is the process of recording events to provide information that can be

used for troubleshooting of errors and understanding the operations process.

In this project, the server is capable of logging the start-up event of the server.

The server will write the event into a log file in the USB flash drive. The server will

write the event title together with epoch timestamp into the file. File I/O operations is

made possible by the MDD file system. In the case if the log file is not available on

the flash drive, a new file will be created. If the log file is found, data will be

appended into the existing log file. Code snippet of the event logging function is

available in Appendix A page 77.

47

Besides that, the system will also send an update to Twitter. For Twitter

update, the time stamp is sent as human readable time format unlike epoch

timestamp logged in the server log file. This function is made possible by the HTTP

client function of the TCP/IP stack. Code excerpt of the HTTP client function is

shown in Appendix A page 78.

Due to the requirement of Twitter, OAuth user authentication is required, this

authentication method is not supported by the TCP/IP stack. Therefore a proxy is

required to authenticate the system, providing access to Twitter’s REST API

remotely without having to deal with OAuth at the microcontroller end.

In this project, GTAP, GAE Twitter API Proxy (a Twitter API proxy based

on Google App Engine) is used as the proxy software. The proxy is deployed onto

Google App Engine environment. GTAP is an open-source software written in

Python programming language. The main development purpose of GTAP is to allow

user to access Twitter’s API remotely without directly accessing Twitter and to allow

legacy software that do not support OAuth authorization to communicate with

Twitter.

The proxy requires some configuration including setup of OAuth parameters

such as ‘consumer key’, and ‘consumer secret’. Source code modification is required

for the proxy to better accommodate the TCP/IP stack capability. The proxy is

modified to convert a GET request sent from the automation system to the proxy

server to a POST request required to access Twitter’s API. The proxy code together

with modifications is shown in Appendix A page 81.

4.3.8 Dimmer Circuit

The initial design of the dimmer circuit is not as shown in Figure 4.6. In figure 4.6, a

photo triac output opto-isolator (MOC3023) is being used. In the initial design, a

transistor output opto-isolator (PC123) was used. The performance of the circuit is

poor, where the circuit is unable to trigger the triac due to insufficient current supply.

48

Figure 4.25: AC Dimmer Circuit with PC123 Opto-isolator

The circuit shown in Figure 4.25 does not work as predicted. When the phase

angle delay is small, the time of keeping the triac on is longer and requires more

energy. The energy stored in the 100µF capacitor may not be enough to supply to the

triac gate and to charge up for the next cycle. Thus, the intensity of the light bulb

connected to the circuit fluctuates. Attempt to rectify the problem by changing the

capacitor value to a higher value does not improve the condition. Other attempt such

as to reduce the resistor value from 47kΩ to lower values failed as the resistor failed

to cope with the additional current and began to heat up.

Transistor can only switch current in one direction. The extra components

were required because the output of PC123 is a transistor, they were designed to

work as rectifier and current limiter to charge up the capacitor.

Figure 4.26: AC Dimmer Circuit with Transistor

Another design as shown in Figure 4.26 was considered before switching to

use the circuit in Figure 4.5. In this cicuit, instead of using opto-isolator to isolate the

Mains and the DC, a transistor was used to switch on the triac with DC power. This

49

circuit is not used due to safety concern over the common ground between the mains

and the DC supply. Touching the circuit may cause electric shock.

4.3.9 Relay Module

Figure 4.27: Relay Circuit with Transistor

Figure 4.27 shows the circuit designed to switch AC current by using a relay and a

transistor. Relay is used to switch AC appliances through the microcontroller. A

transistor is used as current amplifier to drive the relay coil. This is required as the

microcontroller is unable to source enough current to drive the relay.

4.3.10 Optimizations

Optimization was performed to improve the overall system’s performance. Amount

of files required for the web server to access before able to serve a complete webpage

is reduced to reduce page load time. This is vital step to reduce overall time to load a

single page as the TCP/IP stack is capable of only serving one file at any moment.

Multiple requests sent simultaneously will cause the requests to be queued and wait

for the first request and response to be completed.

Other optimizations include reducing the HTML files size by removing

unnecessary white spaces, and minify CSS and JavaScript. However, these

50

optimizations are not recommended as the resulting HTML files code will be

difficult to be read and edited.

Other optimization of HTML documents includes server side compression

such as gzip compression. This is however not possible as the compression is

performed by the MPFS Generator for HTML documents to be stored in EEPROM

only and is unavailable for MDD file system.

4.4 Design and Development Flow

The project is split into different parts and designed and tested in stages. The main

part of the project is the implementation TCP/IP protocol on PIC24F microcontroller.

Figure 4.28 shows the development flow.

After the development of the embedded web server, the project proceeds to

the development of the automation system. Circuits for the web server and the

automation system were designed and developed.

51

Figure 4.28: Design and Development Work Flow

52

4.5 Cost

One of the objectives of this project is to develop an affordable building automation

system. By using lost cost components together with open development tools for

HTML development. As a comparison to proprietary software, many HTML

development tools are open source or available as freeware, this has saved

development cost, reducing total cost of end product. A simple text editing software

such as Notepad++ is adequate for HTML development.

Table 4.5: Bill of Materials

No. Parts Name Quantity

(pcs)

Unit Price

(MYR)

Amount

(MYR)

1 PIC24FJ256GB106 Microcontroller 1 22.80 22.80

2 ENC28J60 Ethernet Module 1 21.51 21.51

3 64/80 Pin TQFP to DIP Adapter 1 2.50 2.50

4 PCB 6 × 8 inch 1 5.10 5.10

5 Songle Relay 5VDC 2 2.00 4.00

6 BT136-600 TRIAC 1 1.15 1.15

7 1N4148 Diode 1 0.07 0.07

8 1N4004 Diode 4 0.20 0.80

9 PC123 Optocoupler 1 0.46 0.46

10 MOC3023 Optocoupler 1 2.02 2.02

11 P2N2222AG NPN Transistor 7 0.18 1.26

12 LED 3mm 1 0.20 0.20

13 Resistor 1/4W 270Ω 1 0.05 0.05

14 Resistor 1/4W 330Ω 7 0.05 0.35

15 Resistor 1/4W 1kΩ 2 0.10 0.20

16 Resistor 1/4W 10kΩ 1 0.05 0.05

17 Resistor 1/4W 22kΩ 1 0.05 0.05

18 Resistor 1/4W 100kΩ 2 0.05 0.10

19 Resistor 1/4W 120kΩ 1 0.05 0.05

20 Resistor 1/4W 330kΩ 2 0.05 0.10

21 Capacitor 220nF 275Vac 1 1.00 1.00

53

22 Capacitor 10µF 16V 2 0.30 0.60

23 Capacitor 0.22nF 1 0.30 0.30

24 Capacitor 22pF 2 0.30 0.60

25 Crystal 20.00MHz 1 2.00 2.00

26 Turn Pin Socket 40pins 2 2.00 4.00

27 Turn Pin Header 32pins 2 2.50 5.00

28 Molex Connector 2ways 5 0.45 2.25

29 Molex Connector 4ways 10 0.90 9.00

30 USB A Connector 1 1.50 1.50

31 Box Header 10pins 1 1.00 1.00

32 Header Socket 40 × 2 1 2.50 2.50

33 USB Flash Drive 1 14.00 14.00

 Subtotal 106.57

54

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The goal and objectives of this project are achieved. An affordable web based control

interface for building automation through embedded web server was developed. The

total cost of this project is MYR106.57.

Existing building automation technology was studied on. Most existing

automation system uses the X10 protocol to send and receive commands to

connected nodes. In this project, the control is centralized and performed by the

embedded web server. The embedded web server was built with a Microchip PIC24F

microcontroller for the control system. It was built on top of the latest version of free

licensed Microchip TCP/IP stack as of 1
st
 January 2012.

HTML user control interface was developed for power devices controls. Web

pages were designed with HTML, JavaScript and CSS style sheets. An energy

efficient building automation controller was developed. Power consumed by the

system when idling is 1.05W. Existing local area network infrastructure was utilized

for the control. Existing network does not require major modification to incorporate

the automation system. Remote power switching from any devices with a web

browser and Internet access was made possible by the embedded web server.

55

5.1.1 Personal Breakthrough

Networking knowledge was gained in the process of completing this project.

Computer networking was not introduced in curriculum activities. TCP/IP

configurations, router port forwarding configuration were performed. Soldering skill

was improved as there is little to no experience in soldering surface mount

components throughout the course. In this project, the microcontroller used is a

surface mount component. It comes in TQFP 64 package, with pitch of 0.3mm.

Besides that, I was given opportunity to design board layout using “EAGLE”

software, creating components library and developing PCB by myself. Circuits were

designed based on each component’s specification and their limitations.

5.2 Recommendations

There are some additional features not included in this project. Additional features

may be added in the future to further enhance the system.

5.2.1 Real-time Clock

In this project, NTP server is used to obtain time for the server’s operations. If the

internet connection is broken, the server will not be able to obtain time from the NTP

server, server time will be incorrect. This may cause some functionality to be

performed incorrectly.

Therefore, a real-time clock with secondary crystal oscillator is recommended

to be added as an additional feature to enhance the system time tracking capability. A

small battery can be used to keep the real-time clock running even after the system is

shut down.

56

5.2.2 HTTP Redirection

JavaScript is used in web pages to redirect user to a correct page. For example, a user

landed on a page which requires the user to be authenticated, the user will be

redirected to the login page if the user is not already been authenticated.

HTTP redirection can be performed using HTTP Meta refresh. It is similar to

JavaScript redirection as it is client side script and may be blocked by the user

through browsers setting. However, it is better to have a backup solution in case

JavaScript failed to redirect user to the correct page.

5.2.3 TCP/IP Stack Modifications

The implementation of TCP/IP protocol by Microchip is rigid. Modifications

requires rewrite of certain modules. There are two main reasons to modify the

TCP/IP stack. First is to perform HTTP redirection using HTTP header, either 302 or

301 redirections when user are required to be redirected to the login page. By using

HTTP header redirection, it is more secure as user intervention can be prevented. No

content is required to be sent to the client side, saving bandwidth and page

redirection time. HTTP header redirection is only available if HTTP basic access

authentication is used in the TCP/IP stack.

Next, the implementation of parsing HTML documents by the TCP/IP stack

may be modified to reduce an additional step required when deploying edited HTML

documents with dynamic variables contained in it. Whenever a HTML document is

modified, the location of variables in the documents might have changed and will

require the use of a tool provided by Microchip to re-index the document. If this step

is not performed, the server will fail to replace the variable name with the variable

value.

57

5.2.4 Microchip dsPIC Microcontroller

Currently used PIC24F has maximum system clock frequency of 16MHz and

maximum instruction execution rate of 16MIPS. The performance of the web server

can be improved by using dsPIC which has higher maximum instruction execution

rate. With dsPIC, the SPI communication between the microcontroller and the

Ethernet controller can be increased to 10MHz increasing maximum data throughput

of the system.

5.2.5 Event logging

Currently the server will log server startup events together with the startup timestamp

into the log file. Other events are not logged. Future improvement may include

logging of other events such as user login attempt, user IP, user actions, and server

errors. The log file is stored in the USB flash drive together with the web pages.

Further improvement may store logs into cloud server over the internet.

5.2.6 Social Network Integration

The web server may act as a client as well, the server may post logs or status to

social network such as Twitter. User with social network apps running on their

portable devices all the time will receive real-time event update on their devices

without having to login to the server interface with a browser. Currently, the server is

only capable of logging the server startup events, future improvement may include

update of other events to the social network.

58

REFERENCES

Acson (Producer). (2011). Network Control NIM. Intelligent Control Series.

Retrieved from

http://acson.com.my/sites/default/files/Intelligent_Control_Series_2.pdf

Agency, I. E. (Producer). (2010). Total primary energy supply. IEA Energy Statistics.

Retrieved from http://www.iea.org/stats/pdf_graphs/MYTPES.pdf

Alkar, A. Z., Roach, J., & Baysal, D. (2010). IP based home automation system.

Consumer Electronics, IEEE Transactions on, 56(4), 2201-2207.

America, P. N. Priva - Horticulture, from http://www.priva.ca/en/solutions-

products/horticulture/

Anthony. (2009a, 13/06). UPB Retrieved 01/08, 2011, from http://smart-home-

automation-guide.com/signal-relay/upb/

Anthony. (2009b, 13/06). UPB Pros and Cons Retrieved 23/07, 2011, from

http://smart-home-automation-guide.com/signal-relay/upb/upb-pros-and-cons/

Associates, P. (2006). Media Servers in the Digital Home. White Paper.

Barrientos, M. Malaysia - electric power consumption. Available from index mundi

Retrieved 05/08, from International Energy Agency

http://www.indexmundi.com/facts/malaysia/electric-power-consumption

Bösemann, W. (1996). The Optical Tube Measurement System OLM

Photogrammetric Methods used for Industrial Automation and Process Control.

International Archives of Photogrammetry and Remote Sensing, 31, 55-58.

Controls, A. Case Study: Building Automation.

Corcoran, P. M., & Desbonnet, J. (1997). Browser-style interfaces to a home

automation network. Consumer Electronics, IEEE Transactions on, 43(4), 1063-

1069.

Digital Loggers, I. (09/06/2010). Web Power Switch Retrieved 16/07, 2011, from

http://www.digital-loggers.com/lpc.html

Elias Yarrkov. (2010, 04/05). Cryptanalysis of XXTEA Retrieved 25/04, 2012, from

http://eprint.iacr.org/2010/254.pdf

http://acson.com.my/sites/default/files/Intelligent_Control_Series_2.pdf
http://www.iea.org/stats/pdf_graphs/MYTPES.pdf
http://www.priva.ca/en/solutions-products/horticulture/
http://www.priva.ca/en/solutions-products/horticulture/
http://smart-home-automation-guide.com/signal-relay/upb/
http://smart-home-automation-guide.com/signal-relay/upb/
http://smart-home-automation-guide.com/signal-relay/upb/upb-pros-and-cons/
http://www.indexmundi.com/facts/malaysia/electric-power-consumption
http://www.digital-loggers.com/lpc.html
http://eprint.iacr.org/2010/254.pdf

59

Ergen, S. C. (2004). ZigBee/IEEE 802.15.4 Summary.

Essig, J. (2011, 03/08/2011). Crestron Controls AV in Entourage Star's New Home

Theater Retrieved 01/08, 2011, from

http://www.crestron.com/about/press_room/press_releases/show_release.asp?press

_release_id=1657

Est., A. T. S. (2009). Pre Qualification Document Retrieved 01-08, 2011, from

http://www.afragroup.com/FinalPQD.pdf

Frankfurt, M. (2011). Welcome to Light+Building 2012 Retrieved 15/07, 2011, from

http://light-building.messefrankfurt.com/frankfurt/en/besucher/willkommen.html

Han, D., & Hwang, D. H. (2005). A novel stereo matching method for wide disparity

range detection. Image Analysis and Recognition, 643-650.

Harmo, P., Taipalus, T., Knuuttila, J., Vallet, J., & Halme, A. (2005). Needs and

solutions-home automation and service robots for the elderly and disabled.

Honeywell International, I. (2008). Alerton: Products: HVAC: BACtalk Retrieved

01-08, 2011, from http://www.alerton.com/s/Products/HVAC/BACtalk

INSTEON. (2005, 15/08). INSTEON: The Details, from

http://www.insteon.net/pdf/insteonthedetails.pdf

. Intelligent Building Automation conference and exibition. Retrieved 16/07, 2011,

from http://www.eepublishers.co.za/article/intelligent-building-automation-

conference-and-exhibition.html

Jay. (2010). X10 Device Support. Retrieved 09/08, from Perceptive Automation,

LLC. http://www.perceptiveautomation.com/wiki/doku.php?id=x10_devices

Ju, H. T., Choi, M. J., & Hong, J. W. (2000). An efficient and lightweight embedded

Web server for Web-based network element management. Int. J. Network Mgmt,

10, 261-275.

Microsoft. (2009). Play To - Windows 7 features - Microsoft Windows. Windows 7

features Retrieved 09/08, 2011, from http://windows.microsoft.com/en-

MY/windows7/products/features/play-to

Nunes, R. J. C. (2004). A Web-based approach to the specification and programming

of home automation systems.

Ploeg, J. ZIGBEE Specification Retrieved 08/08, 2011, from

http://www.specifications.nl/zigbee/zigbee_UK.php

. RFC1122. (1989) Requirement for Internet Hosts -- Communication Layers:

Internet Engineering Task Force.

http://www.crestron.com/about/press_room/press_releases/show_release.asp?press_release_id=1657
http://www.crestron.com/about/press_room/press_releases/show_release.asp?press_release_id=1657
http://www.afragroup.com/FinalPQD.pdf
http://light-building.messefrankfurt.com/frankfurt/en/besucher/willkommen.html
http://www.alerton.com/s/Products/HVAC/BACtalk
http://www.insteon.net/pdf/insteonthedetails.pdf
http://www.eepublishers.co.za/article/intelligent-building-automation-conference-and-exhibition.html
http://www.eepublishers.co.za/article/intelligent-building-automation-conference-and-exhibition.html
http://www.perceptiveautomation.com/wiki/doku.php?id=x10_devices
http://windows.microsoft.com/en-MY/windows7/products/features/play-to
http://windows.microsoft.com/en-MY/windows7/products/features/play-to
http://www.specifications.nl/zigbee/zigbee_UK.php

60

Ryan, J. (1989). Home automation. Electronics & communication engineering

journal, 1(4), 185-192.

Starner, T., Auxier, J., Ashbrook, D., & Gandy, M. (2000). The gesture pendant: A

self-illuminating, wearable, infrared computer vision system for home automation

control and medical monitoring.

Systems, P. C. (2007). UPB Technology Description version 1.4: Powerline Control

Systems.

W3Schools. TCP/IP Tutorial, from http://www.w3schools.com/tcpip/default.asp

X10, E. Transmission theory of X-10 signals, from

http://www.eurox10.com/Content/X10SignalTheory.htm

http://www.w3schools.com/tcpip/default.asp
http://www.eurox10.com/Content/X10SignalTheory.htm

61

APPENDICES

APPENDIX A: Programme Listing

HTTP GET Request Handler:

// HTTP GET method request handler function

HTTP_IO_RESULT HTTPExecuteGet(void)

{

 char *ptr,*ptr2;

 BYTE filename[15];

 FSFILE *pointer;

 temp=TCPGetRemoteInfo(sktHTTP); //Get client IP

 t3 = 0;

 // Load the file name

 BYTE I,j,cntr1=0,cntr2=0,filext=0;

 do

 {

 if(curHTTP.file->name[cntr2] != 0x20) //spacebar

 {

 filename[cntr1]=curHTTP.file->name[cntr2];

 cntr1++;

 }

 else if(filext!=TRUE)

 {

 filename[cntr1]=0x2E; //dot

 cntr1++;

 filext=TRUE;

62

 }

 cntr2++;

 }while(cntr2 !=FILE_NAME_SIZE);

 for(i=0;i<20;i++) //Convert filename to lower case

 if((filename[i] >= (BYTE)’A’) && (filename[i] <=

(BYTE)’Z’))

 filename[i] += ‘a’ – ‘A’;

if(!memcmppgm2ram(filename, “logout.htm”, 10))

{

 isauth=0; //de-authenticate user

 return HTTP_IO_DONE;

}

goodRequest=0; //reset flag to 0

if(isauth) //check if user is authenticated, if IP is same

if(clientIP.Val == (*temp).remote.IPAddr.Val)

{

 // If it is the update.xml file

 if(!memcmppgm2ram(filename, “update.xml”, 10))

 {

 if(ptr = HTTPGetROMArg(curHTTP.data, (ROM BYTE *)”id”))

 {

 switch(*ptr)

 {

 case ‘1’: i=1;

 break;

 case ‘2’: i=2;

 break;

 case ‘3’: i=3;

 break;

 case ‘4’: i=4;

 break;

 case ‘5’: i=5;

 break;

 default: //if no id, do nothing

 return HTTP_IO_DONE;

 }

 //if field “name” exists

63

 if(ptr2=HTTPGetROMArg(curHTTP.data, (ROM BYTE

*)”name”))

 { //copy name to internal variable

 for(j=0;j<21;j++)

 devices[i-1].dname[j]=*(ptr2++);

 goodRequest=1; //set flag

 //write new name to devices config file

 pointer=Fsfopen(“DEVSTAT.BIN”,”r+”);

 Fsfseek(pointer,(i-1)*22,SEEK_SET);

 Fsfwrite(&devices[i-1],1,22,pointer);

 Fsfclose(pointer);

 }

 else if(ptr2=HTTPGetROMArg(curHTTP.data, (ROM BYTE

*)”cat”)) //if “cat” exists

 { //check if “cat” value is changed

 if(((*ptr2)-0x30)!=devices[i-1].dtype)

 {

 if(devices[i-1].dstat!=0)

 {//if current device is on, turn off

 switch(devices[i-1].dtype)

 {

 case 1: toggle(I,0);

 break;

 case 2: fan(I,0);

 break;

 case 3: light(I,0);

 break;

 case 4: pulse(I,0);

 break;

 default: unsetpin(i);

 break;

 }

 }

 //set new category to the device

 devices[i-1].dtype=(*ptr2)-0x30;

 if(devices[i-1].dtype == 2 ||

 devices[i-1].dtype == 3)

 setpin(i); //map output compare

 else

 unsetpin(i);//unmap pin

64

 //clear timer of that device

 for(j=0;j<5;j++)

 devtimer[i-1].timer[j].isset=0;

 //write to file

 pointer=Fsfopen(“DEVSTAT.BIN”,”r+”);

 Fsfseek(pointer,(i-1)*22,SEEK_SET);

 Fsfwrite(&devices[i-1],1,22,pointer);

 Fsfclose(pointer);

 pointer=Fsfopen(“TIMER.BIN”,”r+”);

 Fsfseek(pointer,(i-1)*15,SEEK_SET);

 Fsfwrite(&devtimer[i-1],1,15,pointer);

 Fsfclose(pointer);

 }

 goodRequest=1; //set flag

 }

 else if(ptr2=HTTPGetROMArg(curHTTP.data, (ROM BYTE

*)”toggle”)) // on/off device?

 {

 toggle(I,atoi(ptr2));

 goodRequest=1;

 }

 else if(ptr2=HTTPGetROMArg(curHTTP.data, (ROM BYTE

*)”speed”)) //change fan speed?

 {

 if(devices[i-1].dtype==2)

 fan(I,atoi(ptr2));

 goodRequest=1;

 }

 else if(ptr2=HTTPGetROMArg(curHTTP.data, (ROM BYTE

*)”dim”)) //change light intensity?

 {

 if(devices[i-1].dtype==3)

 light(I,atoi(ptr2));

 goodRequest=1;

 }

 else if(ptr2=HTTPGetROMArg(curHTTP.data, (ROM BYTE

*)”pulse”)) //send a pulse?

 { //calibrated to 100ms pulse

 if(count==0 || count == 320)

 {

65

 if(devices[i-1].dtype==4)

 {

 if(i==1)

 DEVICE1_IO^=1;

 else if(i==2)

 DEVICE2_IO^=1;

 else if(i==3)

 DEVICE3_IO^=1;

 else if(i==4)

 DEVICE4_IO^=1;

 else if(i==5)

 DEVICE5_IO^=1;

 }

 }

 if(count<320) //calibrated to 100ms

 {

 count++;

 return HTTP_IO_WAITING;

 }

 else

 {

 devices[i-1].dstat^=1;

 count=0;

 goodRequest=1;

 }

 }

 }

 }

 //if GET request for “timer.xml”, clear all timer settings

 else if(!memcmppgm2ram(filename, “timer.xml”, 9))

 {

 for(i=0;i<5;i++)

 for(j=0;j<5;j++)

 devtimer[i].timer[j].isset=0;

 goodRequest=1;

 }

}

 return HTTP_IO_DONE;

}

66

HTTP POST Request Handler:

// HTTP POST method request handler function

HTTP_IO_RESULT HTTPExecutePost(void)

{

 BYTE filename[15];

 temp=TCPGetRemoteInfo(sktHTTP);

 t3 = 0; //reset timeout counter

 // Load the file name

 BYTE i,cntr1=0,cntr2=0,filext=0;

 do{

 if(curHTTP.file->name[cntr2] != 0x20)

 {

 filename[cntr1]=curHTTP.file->name[cntr2];

 cntr1++;

 }

 else if(filext!=TRUE)

 {

 filename[cntr1]=0x2E; //File extension starts

after this

 cntr1++;

 filext=TRUE;

 }

 cntr2++;

 }while(cntr2 !=FILE_NAME_SIZE);

 for(i=0;i<20;i++) //Convert file name to lower case

 if((filename[i] >= (BYTE)'A') && (filename[i] <=

(BYTE)'Z'))

 filename[i] += 'a' - 'A';

if(isauth) //check user authenticated, IP remain same?

if(clientIP.Val == (*temp).remote.IPAddr.Val)

{

 //if “timer.xml” process with timer processor function

 if(!memcmppgm2ram(filename, "timer.xml",9))

 return processTimerForm();

 //if “setting.xml” process with advanced setting function

 if(!memcmppgm2ram(filename, "setting.xml",11))

 return processAdvancedForm();

67

}

 //if user try to login, process login form

 if(!memcmppgm2ram(filename, "login2.xml", 10))

 return processLoginForm();

 return HTTP_IO_DONE;

}

68

Device Controls Code:

void toggle(BYTE i, BYTE onoff) //switch device on or off

{

 if(devices[i-1].dtype==1)

 {

 if(i==1)

 {

 OC1CON1bits.OCM = 0; //turn off OC1 module

 devices[i-1].dstat=DEVICE1_IO=onoff;

 }

 else if(i==2)

 {

 OC2CON1bits.OCM = 0; //turn off OC2 module

 devices[i-1].dstat=DEVICE2_IO=onoff;

 }

 else if(i==3)

 {

 OC3CON1bits.OCM = 0; //turn off OC3 module

 devices[i-1].dstat=DEVICE3_IO=onoff;

 }

 else if(i==4)

 {

 OC4CON1bits.OCM = 0; //turn off OC4 module

 devices[i-1].dstat=DEVICE4_IO=onoff;

 }

 else if(i==5)

 {

 OC5CON1bits.OCM = 0; //turn off OC5 module

 devices[i-1].dstat=DEVICE5_IO=onoff;

 }

 }

}

void fan(BYTE i, BYTE speed) //control fan speed

{

 if(devices[i-1].dtype==2)

 {

 devices[i-1].dstat = speed; //update status register

 if(i==1)

69

 {

 if(speed)

 {

 if(speed ==5)

 OC1R = 10;//OC1 first comparison point

 else

 OC1R = 18000-(speed*3000);

 OC1RS = 19000; //OC1 second comparison point

 OC1CON1 |= 0x4;

 //connect to OCx pin (1 cycle)

 asm volatile("BCLR OC1CON2,#5");

 }

 else

 {

 OC1CON1 &= 0xFFF8; //disable OC module

 // tristate OC pin (1 cycle)

 asm volatile("BSET OC1CON2,#5");

 }

 IFS0bits.OC1IF = 0;

 IEC0bits.OC1IE = 1;

 }

 else if(i==2)

 {

 if(speed)

 {

 if(speed ==5)

 OC2R = 10;

 else

 OC2R = 18000-(speed*3000);

 OC2RS = 19000;

 OC2CON1 |= 0x4;

 //connect to OCx pin

 asm volatile("BCLR OC2CON2,#5");

 }

 else

 {

 OC2CON1 &= 0xFFF8; //disable OC module

 //tristate OC pin

 asm volatile("BSET OC2CON2,#5");

 }

 IFS0bits.OC2IF = 0;

70

 IEC0bits.OC2IE = 1;

 }

 else if(i==3)

 {

 if(speed)

 {

 if(speed ==5)

 OC3R = 10;

 else

 OC3R = 18000-(speed*3000);

 OC3RS = 19000;

 OC3CON1 |= 0x4;

//connect to OCx pin

 asm volatile("BCLR OC3CON2,#5");

 }

 else

 {

 OC3CON1 &= 0xFFF8; //disable OC module

 //tristate OC pin

 asm volatile("BSET OC3CON2,#5");

 }

 IFS1bits.OC3IF = 0;

 IEC1bits.OC3IE = 1;

 }

 else if(i==4)

 {

 if(speed)

 {

 if(speed ==5)

 OC4R = 10;

 else

 OC4R = 18000-(speed*3000);

 OC4RS = 19000;

 OC4CON1 |= 0x4;

 //connect to OCx pin

 asm volatile("BCLR OC4CON2,#5");

 }

 else

 {

 OC4CON1 &= 0xFFF8; //disable OC module

71

 //tristate OC pin

 asm volatile("BSET OC4CON2,#5");

 }

 IFS1bits.OC4IF = 0; //clear interrupt flag

 IEC1bits.OC4IE = 1; //enable interrupt

 }

 else if(i==5)

 {

 if(speed)

 {

 if(speed ==5)

 OC5R = 10;

 else

 OC5R = 18000-(speed*3000);

 OC5RS = 19000;

 OC5CON1 |= 0x4;

 //connect to OCx pin

 asm volatile("BCLR OC5CON2,#5");

 }

 else

 {

 OC5CON1 &= 0xFFF8; //disable OC module

 //tristate OC pin

 asm volatile("BSET OC5CON2,#5");

 }

 IFS2bits.OC5IF = 0;

 IEC2bits.OC5IE = 1;

 }

 }

}

void light(BYTE i, BYTE dim)

{

 if(devices[i-1].dtype==3)

 {

 devices[i-1].dstat=dim;

 if(i==1)

 {

 if(dim)

72

 {

 if(dim ==10)

 OC1R = 10;

 else

 OC1R = 18000-(dim*1700);

 OC1RS = 19000;

 OC1CON1 |= 0x4;

 //connect to OCx pin

 asm volatile("BCLR OC1CON2,#5");

 }

 else

 {

 OC1CON1 &= 0xFFF8; //disable OC module

 //tristate OC pin

 asm volatile("BSET OC1CON2,#5");

 }

 IFS0bits.OC1IF = 0;

 IEC0bits.OC1IE = 1;

 }

 else if(i==2)

 {

 if(dim)

 {

 if(dim ==10)

 OC2R = 10;

 else

 OC2R = 18000-(dim*1700);

 OC2RS = 19000;

 OC2CON1 |= 0x4;

 //connect to OCx pin

 asm volatile("BCLR OC2CON2,#5");

 }

 else

 {

 OC2CON1 &= 0xFFF8; //disable OC module

 //tristate OC pin

 asm volatile("BSET OC2CON2,#5");

 }

 IFS0bits.OC2IF = 0;

73

 IEC0bits.OC2IE = 1;

 }

 else if(i==3)

 {

 if(dim)

 {

 if(dim ==10)

 OC3R = 10;

 else

 OC3R = 18000-(dim*1700);

 OC3RS = 19000;

 OC3CON1 |= 0x4;

 //connect to OCx pin

 asm volatile("BCLR OC3CON2,#5");

 }

 else

 {

 OC3CON1 &= 0xFFF8; //disable OC module

 //tristate OC pin

 asm volatile("BSET OC3CON2,#5");

 }

 IFS1bits.OC3IF = 0;

 IEC1bits.OC3IE = 1;

 }

 else if(i==4)

 {

 if(dim)

 {

 if(dim ==10)

 OC4R = 10;

 else

 OC4R = 18000-(dim*1700);

 OC4RS = 19000;

 OC4CON1 |= 0x4;

 //connect to OCx pin

 asm volatile("BCLR OC4CON2,#5");

 }

 else

 {

74

 OC4CON1 &= 0xFFF8; //disable OC module

 //tristate OC pin

 asm volatile("BSET OC4CON2,#5");

 }

 IFS1bits.OC4IF = 0;

 IEC1bits.OC4IE = 1;

 }

 else if(i==5)

 {

 if(dim)

 {

 if(dim ==10)

 OC5R = 10;

 else

 OC5R = 18000-(dim*1700);

 OC5RS = 19000;

 OC5CON1 |= 0x4;

 //connect to OCx pin

 asm volatile("BCLR OC5CON2,#5");

 }

 else

 {

 OC5CON1 &= 0xFFF8; //disable OC module

 //tristate OC pin

 asm volatile("BSET OC5CON2,#5");

 }

 IFS2bits.OC5IF = 0;

 IEC2bits.OC5IE = 1;

 }

 }

}

void pulse(BYTE i, BYTE p) //send pulse for pulse triggered device

{

 if(devices[i-1].dtype==4)

 {

 if(i==1){

 OC1CON1bits.OCM = 0;

 devices[i-1].dstat^=1;

 DEVICE1_IO=1;

75

 DelayMs(82); //100ms from logic analyzer

 DEVICE1_IO=0;

 }

 else if(i==2){

 OC2CON1bits.OCM = 0;

 devices[i-1].dstat^=1;

 DEVICE2_IO=1;

 DelayMs(82);

 DEVICE2_IO=0;

 }

 else if(i==3){

 OC3CON1bits.OCM = 0;

 devices[i-1].dstat^=1;

 DEVICE3_IO=1;

 DelayMs(82);

 DEVICE3_IO=0;

 }

 else if(i==4){

 OC4CON1bits.OCM = 0;

 devices[i-1].dstat^=1;

 DEVICE4_IO=1;

 DelayMs(82);

 DEVICE4_IO=0;

 }

 else if(i==5){

 OC5CON1bits.OCM = 0;

 devices[i-1].dstat^=1;

 DEVICE5_IO=1;

 DelayMs(82);

 DEVICE5_IO=0;

 }

 }

}

76

USB Targeted Peripheral List Configuration:

USB_TPL usbTPL[] =

{

{ INIT_CL_SC_P(8ul, 6ul, 0x50ul), 0, 0, {TPL_CLASS_DRV} }

};

TCP/IP Server Configurations:

#define MY_DEFAULT_HOST_NAME "MYSERVER" //NetBIOS host name

#define MY_DEFAULT_MAC_BYTE1 (0x00) //Server MAC address

#define MY_DEFAULT_MAC_BYTE2 (0x04)

#define MY_DEFAULT_MAC_BYTE3 (0xA3)

#define MY_DEFAULT_MAC_BYTE4 (0x00)

#define MY_DEFAULT_MAC_BYTE5 (0x10)

#define MY_DEFAULT_MAC_BYTE6 (0x05)

#define MY_DEFAULT_IP_ADDR_BYTE1 (192ul) //Preconfigure

#define MY_DEFAULT_IP_ADDR_BYTE2 (168ul) //Server

#define MY_DEFAULT_IP_ADDR_BYTE3 (2ul) //IP address

#define MY_DEFAULT_IP_ADDR_BYTE4 (20ul)

#define MY_DEFAULT_MASK_BYTE1 (255ul) //Preconfigure

#define MY_DEFAULT_MASK_BYTE2 (255ul) //Subnet

#define MY_DEFAULT_MASK_BYTE3 (255ul) //Mask

#define MY_DEFAULT_MASK_BYTE4 (0ul)

#define MY_DEFAULT_GATE_BYTE1 (192ul) //Preconfigure

#define MY_DEFAULT_GATE_BYTE2 (168ul) //default gateway

#define MY_DEFAULT_GATE_BYTE3 (2ul)

#define MY_DEFAULT_GATE_BYTE4 (1ul)

77

#define MY_DEFAULT_PRIMARY_DNS_BYTE1 (192ul) //Preconfigure

#define MY_DEFAULT_PRIMARY_DNS_BYTE2 (168ul) //Primary DNS

#define MY_DEFAULT_PRIMARY_DNS_BYTE3 (2ul) //server

#define MY_DEFAULT_PRIMARY_DNS_BYTE4 (1ul)

#define MY_DEFAULT_SECONDARY_DNS_BYTE1 (8ul) //Preconfigure

#define MY_DEFAULT_SECONDARY_DNS_BYTE2 (8ul) //Secondary

#define MY_DEFAULT_SECONDARY_DNS_BYTE3 (8ul) //DNS server

#define MY_DEFAULT_SECONDARY_DNS_BYTE4 (8ul)

Event Logging Function

if(firstrun == TRUE)

{

 time=SNTPGetUTCSeconds();

 if(time>600)

 {

 pointer = FSfopen ("SERVLOG.LOG","r");

 if(pointer==NULL)

 {

 pointer = FSfopen ("SERVLOG.LOG","w");

 FSfwrite("Startup ",1,8,pointer);

 FSfclose(pointer);

 }

 else

 {

 FSfclose(pointer);

 pointer = FSfopen ("SERVLOG.LOG","a");

 FSfwrite("Startup ",1,8,pointer);

 FSfclose(pointer);

 }

 ultoa(time,timebuf);

 pointer = FSfopen ("SERVLOG.LOG","a");

 FSfwrite(timebuf,1,strlen(timebuf),pointer);

 FSfwrite("\r\n",1,2,pointer);

 FSfclose(pointer);

 firstrun = FALSE;

78

 if(tweetit==TRUE)

 GenericTCPClient(); //send tweet

 }

}

if(tweetit==TRUE)

 GenericTCPClient(); //ensure tweet is sent

HTTP Client Function

// Defines the Twitter API proxy server name

static BYTE ServerName[] = "<ApplicationName>.appspot.com";

// Defines the port to be accessed for this application

static WORD ServerPort = 80;

// Defines the URL to be requested

static ROM BYTE RemoteURL[] =

"/api/1/statuses/update.xml?status=Server%20startup%20at%20";

static ROM BYTE RemoteMethod[] = "&met=1"; //required by API proxy

switch(GenericTCPClientState)

{

 case SM_HOME:

 // Connect a socket to the remote TCP server

 MySocket = TCPOpen((DWORD)&ServerName[0],

TCP_OPEN_RAM_HOST, ServerPort, TCP_PURPOSE_GENERIC_TCP_CLIENT);

 // Abort operation if no TCP socket of type

TCP_PURPOSE_GENERIC_TCP_CLIENT is available

 if(MySocket == INVALID_SOCKET)

 break;

 GenericTCPClientState++;

 Timer = TickGet();

 break;

79

 case SM_SOCKET_OBTAINED:

 // Wait for the remote server to accept our connection

request

 if(!TCPIsConnected(MySocket))

 {

 // Time out if too much time is spent in this

state

 if(TickGet()-Timer > 5*TICK_SECOND)

 {

 // Close the socket so it can be used by

other modules

 TCPDisconnect(MySocket);

 MySocket = INVALID_SOCKET;

 GenericTCPClientState--;

 }

 break;

 }

 Timer = TickGet();

 // Make certain the socket can be written to

 if(TCPIsPutReady(MySocket) < 400u)

 break;

// Place the application protocol data into the transmit buffer.

 TCPPutROMString(MySocket, (ROM BYTE*)"GET ");

 TCPPutROMString(MySocket, RemoteURL);

 TCPPutString(MySocket, hr);

 TCPPutROMString(MySocket, (ROM BYTE*)":");

 TCPPutString(MySocket, min);

 TCPPutROMString(MySocket, RemoteMethod);

 TCPPutROMString(MySocket,(ROM BYTE*)" HTTP/1.1\r\nHost:

");

 TCPPutString(MySocket, ServerName);

 TCPPutROMString(MySocket, (ROM BYTE*)"\r\nAuthorization:

Basic dXNlcjpwYXNzd29yZA==");

 TCPPutROMString(MySocket, (ROM BYTE*)"\r\nConnection:

close\r\n\r\n");

 // Send the packet

 TCPFlush(MySocket);

 GenericTCPClientState++;

 tweetit=FALSE;

80

 break;

 case SM_PROCESS_RESPONSE:

 // Check to see if the remote node has disconnected from

us or sent us any application data

 // If application data is available, write it to the

UART

 if(!TCPIsConnected(MySocket))

 {

 GenericTCPClientState = SM_DISCONNECT;

 // Do not break; We might still have data in the

TCP RX FIFO waiting for us

 }

 // Get count of RX bytes waiting

 w = TCPIsGetReady(MySocket);

 // Obtian and print the server reply

 i = sizeof(vBuffer)-1;

 vBuffer[i] = '\0';

 while(w)

 {

 if(w < i)

 {

 i = w;

 vBuffer[i] = '\0';

 }

 w -= TCPGetArray(MySocket, vBuffer, i);

 if(GenericTCPClientState == SM_PROCESS_RESPONSE)

 break;

 }

 break;

 case SM_DISCONNECT:

 // Close the socket so it can be used by other modules

 TCPDisconnect(MySocket);

 MySocket = INVALID_SOCKET;

 GenericTCPClientState = SM_DONE;

 break;

81

 case SM_DONE:

 GenericTCPClientState = SM_HOME;

 break;

}

Twitter API Proxy

#key requested from Twitter

CONSUMER_KEY = '6YqCEcBoqlA3LSiz2aIkQ'

CONSUMER_SECRET = 'Eu9rObgsKDLO1gzhQyajiOERZ2n5zOoLsyzP2nJ'

ACCESS_TOKEN = '62385041-0QDj5O1hicEkMBZjlqQXCL596kVCcVmcZ2Jq5Mucg'

ACCESS_TOKEN_SECRET = 'sZii9CUdsMZTfCgpJs8ClxCzA8y1WefcFQ6KehKRP'

USER_PASSWORD = 'password'

def do_proxy(self, method):

 orig_url = self.request.url

 orig_body = self.request.body

 new_url,new_path = self.conver_url(orig_url)

 if new_path == '/' or new_path == '':

 global gtap_message

 gtap_message = gtap_message.replace('#gtap_version#',

gtap_version)

 return success_output(self, gtap_message)

 username, password = self.parse_auth_header(self.request.headers)

 if password!=USER_PASSWORD :

 if username is not None :

 return error_output(self, 'Wrong password.')

 user_access_token = None

 callback_url = "%s/oauth/verify" % self.request.host_url

 client = oauth.TwitterClient(CONSUMER_KEY, CONSUMER_SECRET,

callback_url)

82

 if username is None :

 protected=False

 user_access_token, user_access_secret = '', ''

 else:

 protected=True

 user_access_token, user_access_secret = ACCESS_TOKEN,

 ACCESS_TOKEN_SECRET

 additional_params = dict([(k,v) for k,v in parse_qsl(orig_body)])

parme= dict([(k,v) for k,v in parse_qsl(orig_url)])

#set HTTP request method based on ‘met’ value

use_method = urlfetch.GET if (parme["met"]=='0') else

 urlfetch.POST

try :

#remove ‘met’ variable from the url before sending to Twitter

 new_url = new_url.replace("&met=1", "", 1)

 new_url = new_url.replace("met=1&", "", 1)

 data = client.make_request(url=new_url,

 token=user_access_token,

 secret=user_access_secret,

 method=use_method,

 protected=protected,

 additional_params = additional_params)

 except Exception,error_message:

 logging.debug(error_message)

 error_output(self, content=error_message)

 else :

 #logging.debug(data.headers)

 self.response.headers.add_header('GTAP-Version',

gtap_version)

 for res_name, res_value in data.headers.items():

 if is_hop_by_hop(res_name) is False and

res_name!='status':

 self.response.headers.add_header(res_name, res_value)

 self.response.out.write(data.content)

83

APPENDIX B: Schematic Diagram

Schematic Diagram of Complete System

84

APPENDIX C: Pictures of Product

Main Board

A Connectors to Appliances

B USB Connector

C 5V Power Supply Connector

D 3.3V Voltage Regulator

E Zero Crossing Detector Input Connector

F Ethernet Module SPI Connector

G Pin Headers to Microcontroller

H Reset Button

A

B C D

E

F

G

H

85

Components

A Microcontroller on TQFP to DIP Board

B USB Flash Drive

C Ethernet Module

Main Board with Components Attached

A

B

C

86

Dimmer Module

Relay Module

Zero Crossing Detector Module

87

Complete System - Test Configuration

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Background
	1.2 Motivation and Problem Statements
	1.3 Project Scope
	1.4 Project Objectives

	CHAPTER 2
	2 LITERATURE REVIEW & UNDERLYING TECHNOLOGIES
	2.1 Building Automation
	2.2 Communication Medium
	2.2.1 X10
	2.2.2 INSTEON
	2.2.3 Universal Powerline Bus
	2.2.4 ZigBee

	2.3 TCP/IP
	2.4 Embedded Web Server

	CHAPTER 3
	3 METHODOLOGY / PROPOSED SYSTEM
	3.1 Hardware
	3.1.1 Microcontroller
	3.1.2 Ethernet Module
	3.1.3 MagJack
	3.1.4 Data Storage

	3.2 Software
	3.3 Flowcharts

	CHAPTER 4
	4 RESULTS AND DISCUSSIONS
	4.1 Testing
	4.1.1 Microcontroller
	4.1.2 Ethernet Module
	4.1.3 TCP/IP Stack
	4.1.4 Web Server
	4.1.5 USB
	4.1.6 Dimmer Circuit

	4.2 Results
	4.2.1 Performance
	4.2.2 User Interface
	4.2.3 Dimmer
	4.2.4 Power Consumption

	4.3 Discussions
	4.3.1 HTTP
	4.3.2 HTML
	4.3.3 SPI
	4.3.4 Authentication and Authorisation
	4.3.5 Input Capture and Output Compare Module
	4.3.6 Encryption
	4.3.7 Event Logging
	4.3.8 Dimmer Circuit
	4.3.9 Relay Module
	4.3.10 Optimizations

	4.4 Design and Development Flow
	4.5 Cost

	CHAPTER 5
	5 CONCLUSION AND RECOMMENDATIONS
	5.1 Conclusion
	5.1.1 Personal Breakthrough

	5.2 Recommendations
	5.2.1 Real-time Clock
	5.2.2 HTTP Redirection
	5.2.3 TCP/IP Stack Modifications
	5.2.4 Microchip dsPIC Microcontroller
	5.2.5 Event logging
	5.2.6 Social Network Integration

	REFERENCES
	APPENDICES

