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AUTOMATED TRAFFIC COUNTING DATA COLLECTION AND 

ANALYSIS 

 

 

 

ABSTRACT 

 

 

 

The increase in the number of vehicles purchased over the years cause a high volume 

of vehicles on the road. This leads to traffic congestion especially in urban areas. This 

problem disrupts the daily life of many people. It is important to conduct traffic 

analysis and surveys to extract traffic information which would be useful for solving 

and evaluating the quality of transportation. Optimal traffic arrangements that reduce 

traffic congestion can be designed by engineers using the collected traffic data. Traffic 

data collection is also useful for other issues such as vehicle accidents, managing 

parking areas, speeding, vehicle theft detection and others. There have been many 

methods of traffic data collection proposed and implemented over the years, each with 

their own pros and cons. This project proposed an automated traffic counting data 

collection and analysis algorithm that is able to use computer vision to count and 

measure the speed of vehicles, while also able to classify vehicles into different 

categories using the power of deep learning and AI. The performance of the algorithm 

is determined by the counting, classification, and speed measuring accuracy. The 

factors affecting the performance of the algorithm is discussed. The system is able to 

performance the tasks when it is in the bright condition with the accuracy of more than 

95%. However, the accuracy is dropped to 50% when the condition is dark. This is due 

to the system is unable to detect the vehicle in such condition.   
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Traffic congestion especially in urban areas is an avoidable problem in Malaysia. This 

problem is especially evident daily during the morning when people are going to work, 

and in the evening, when people are coming home from work. This problem is 

especially serious  during the festive seasons in Malaysia such as Chinese New Year, 

Hari Raya Aidil Fitri, Thaipusam and many others. Other than that, traffic congestions 

also happen during unprecedented phenomena such as floods, accidents and others.  

 

Malaysia as a developing country going through urbanization and economic 

modernization activities. With development in different aspects such as economic, 

physical, social, politics, comes the increased demand of transportation for work, 

leisure, and other purposes. According to a market research agency called Nielsen 

(2014), it is found in 2014 that Malaysia has the third highest rate of private car 

ownership in the world, with 93 percent of households owning a car. This shows the 

heavy dependency of Malaysians on private vehicles for transport for daily activities, 

which results in a high number of vehicles on the road.  

 

Traffic congestion happens when there are too many cars on the road and the 

traffic flow is disrupted. Traffic congestion creates havoc on the road and disrupts 

drivers’ everyday routines. Time spent on the road has a different kind of negative 

consequences for productivity, social behaviour, the environment and the economy.  

 



 

Therefore, it is important to conduct traffic analysis and surveys to extract 

traffic information which would be useful for solving and evaluating the quality of 

transportation. With this traffic information, engineers are able to analyse the traffic 

situation and be able to solve and design an optimal traffic arrangement which 

minimizes traffic congestions. Traffic data collection and traffic surveys are designed 

to collect statistics that properly represent the area's real-world traffic condition. For 

example, traffic surveys may count the number of cars on a road or gather data on 

travel times, travel frequency, origin/destination for the trips and others.  

 

Other than that, vehicle counting, and traffic data collection can be useful for 

other uses such as vehicle accidents, managing parking areas, vehicle theft detection 

and others. 

 

Traffic counting and surveys are generally categorized into two different types, 

manual counting and automatic counting. There are two ways of manual counting. 

Firstly, an operator can stand by the side of the road and record the number of vehicles 

seen and category of car in a paper pad. Another way of manual counting is a camera 

is placed at an eagle’s eye point of view over the road, and a video of the road will be 

recorded. After that, an operator would review the video and count the vehicles passing 

by analysing the video. For automatic counting, it includes various ways such as radar, 

piezoelectric sensors (e.g., RADAR vehicle counter Sierzega SR4), pneumatic road 

tubes, and induction loops. Recently, machine learning and AI has started to become 

a hot topic in the technology industry, and one of the real-world problems people have 

been trying to solve using AI and machine learning is traffic counting. 

 

 

 

1.2 Problem Statements 

 

For many years, traffic counting has been conducted in various ways, such as manual 

counting and automatic counting.  

 

For manual counting, an operator has to be at the side of the road, constantly 

observing vehicles passing by the road, then write down the vehicle category and the 



 

time of the vehicle passing the road. Another way of manual counting is by recording 

the road that require traffic flow analysis, and then the operator will review that video 

and count the vehicles. The operator can use tally sheets or mechanical counters to aid 

their counting of vehicles. However, this method is not very effective because the 

quality or accuracy of the manual counts are affected by human error and visibility of 

the vehicles on road.  

 

For automatic counting, there a several methods such as piezo, pressure sensors, 

inductive and magneto-metric sensors, acoustic sensors, Lidar and Radar, photo/video 

and IR sensors (Yatskiv, et al., 2013). These sensors have been used to replace manual 

counting, however each of the method has its advantages and disadvantages.  For 

example, pressure, piezoelectric, inductive sensors have to be installed into the road 

surface which is cumbersome and requires special permission from the road owner. 

RADAR and LIDAR sensors have a major disadvantage where they are only able to 

detect the speed of one moving vehicle at a time. Acoustic sensors are prone to 

disruption by bad weather conditions and probabilistic noise according to Yatskiv, et 

al. (2013). It also does not measure several vehicles simultaneously.   

          

All traffic collection data methods reflect a trade-off between the method’s 

objectives, available resources, possible coverage, and the quantity of data to gather. 

Depending on the objectives, the associated expenses, and the required level of quality, 

one of the available traffic data collecting methods may be chosen. Overall, the best 

method so far has been using video and IR sensors to collect traffic data, because this 

method is relatively inexpensive compared to others due to low-cost electronic devices. 

By combining the overall best sensor to collect traffic data with the power of computer 

vision machine learning, an evolved and better version of traffic data collection 

method can be created. 

 

 

 

1.3 Aims and Objectives 

 

The objectives of this thesis are shown below: 

 



 

i. To construct a low-cost hardware system that is able to capture good quality 

video recording of vehicles on the road 

ii. To determine the best computer vision algorithm to be implemented in the 

traffic data collection system. 

iii. To construct a software program that is able to detect, track and count the 

vehicles in the video.  

iv. To construct a software program that is able to calculate the speed of every 

vehicle passing in the video  

v. To construct a software program that is able to classify the vehicles in the 

video.  
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Traffic Data Collection Systems 

2.1.1 Manual Traffic Data Collection 

 

Manual traffic data collection refers to the collection of traffic data through manual 

ways, which requires a human operator to examine vehicles on the road. Some 

examples of manual traffic data collection include counting vehicles at junctions, 

estimating average daily traffic, and calculating yearly average daily traffic (Adebisi, 

1987; Baker et al., 1982; Findley et al., 2011). Manual traffic data collection is 

generally done in two ways, on site (inspecting vehicles directly beside the road), or 

inspection through video recordings. The data is usually recorded by operators using 

tally sheets or mechanical counters (Zheng & Mike, 2012). The data are recorded for 

a time interval (e.g., 10 min), then the total is calculated and can be saved to the 

computer for later processing (Schumann, 2001; Wylie, 2010; Jalihal, et al., 2005). 

Manual counting is generally not able to capture complicated traffic patterns, and 

advance data like travel time. Zheng and Mike (2012) investigated the accuracy of 

manual traffic data collection by examining a video recording of the traffic in 

Southampton taken by Transportation Research Group (TRG) of University of 

Southampton. In the authors’ research, they used a computer-controlled VCR which 

can modify the playback speed of the video recording, ranging from 1 fps to 9 times 

the normal playback speed. The operator would press certain keys (L for long vehicle, 

S for short vehicle), then the time stamps and the vehicle category will be saved in a 

text file.  The result obtained from this method is highly accurate, but this method is 

more time consuming. The authors took the result and compared to the manual 
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counting done by students from TRG of University of Southampton on site. The 

research found that counting errors (counting number of vehicles on the road) is 

generally less than 1%, and classification errors (classifying the vehicle into two 

categories: long (more or equal than 5.2m in length) and short (less than 5.2m in 

length)) are more significant, at an average of 4% to 5%. This result is due to the 

difficulties of judging the vehicles’ length through the video recordings. 

 

The price for manual traffic collection is dependent on a few factors, such as 

number of traffic movements, number of vehicle classes or categories, and traffic 

density. In general, manual traffic collection provides a cheaper hourly rate for simple 

traffic scenes such as highways, but it gets much more expensive when locations with 

high volume of traffic and movements are required to be analysed (Stofan, 2020). 

 

Overall, manual traffic data collection is slow, prone to human errors, and it is 

only providing static traffic volume reports in Excel spreadsheets at best (Stofan 2020). 

 

 

 

2.1.2 Automatic Traffic Data Collection 

 

Automatic traffic data collection refers to all methods of traffic data collection that 

does not require a human operator to examine and manually count the vehicles on the 

road. Automatic traffic data collection includes LIDARs, RADARs, inductive loop 

sensors, acoustic sensors, pressure (piezoelectric) sensors and others. Different sensor 

technology comes with its own advantages and disadvantages.  

 

LIDAR (Light Detection and Ranging) sensors uses active optical systems that 

project light in the form of a pulsed laser onto the vehicle, and the laser will be reflected 

back into the system for information processing. The accuracy of the LIDAR sensor is 

highly dependent on the weather conditions (snow, rain and dust) according to Yatskiv 

et al. (2013). RADAR sensors are similar but uses radio waves instead of pulsed lasers 

to determine the distance, velocity of the vehicles. Both LIDAR and RADAR sensors 

have a major disadvantage which is they are only able to detect the velocity of a single 
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moving vehicle at a time. It is usually used for traffic enforcement camera to monitor 

compliance with speed limits by the police.  

 

Inductive loop sensors are a wire placed under the road surface and connected 

to a controller. When a vehicle passes the induction loop or stops on it, the vehicle’s 

ferrous body material increases the loop’s inductance, but the peripheral metal of the 

vehicle decreases inductance because of eddy currents produced. The decrease in 

inductance due to eddy currents offsets the increase in inductance due to ferrous metal, 

thus, an overall decrease in inductance is observed. Decrease in inductance results in 

the decrease of impedance in the loop, which will actuate the electronics unit output 

relay, which sends a signal to the controller to indicate the passing or presence of a 

vehicle. Induction looks can classify the type of vehicle depending on its iron mass, 

while it may also detect the velocity of the vehicle with an accuracy of ±1%. The main 

disadvantage is that it requires the destruction of the road surface to install the 

inductive loops.  

 

Pressure such as piezo electric sensors consist of two switch elements, which 

are both apart with a certain distance. The first switch element is triggered when the 

front wheel of the vehicle crosses it, which signals the timer to start. When the back 

wheel crosses the second element, it stops the timer. This sensor is able to record the 

velocity, weight and direction of the vehicles passing by (Batenko et al. 2011). The 

accuracy of the velocity measurement is less than 1%. The sensor also has to be 

installed into the road surface, and the measurements can be disrupted by weather 

conditions, such as temperature and ice.  
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Table 2. 1 Comparisons between different traffic counting methods (Yatskiv, et 

al., 2013) 

Technology Vehicle 

Counter 

Velocity 

measurement 

Accuracy 

(%) 

Real 

time 

data 

Additional 

data 

Affected 

by weather 

conditions 

Manual 

human 

counters 

Yes No No Vehicle 

Type 

Yes 

Pressure 

(piezoelectric) 

sensors 

Yes Yes, <1% Yes Weight, 

Vehicle 

Type 

No 

Inductive 

loop sensors 

Yes Yes, <1% Yes Vehicle 

Type 

No 

Ultrasonic 

sensors 

Yes No Yes Vehicle 

Type 

Yes 

RADAR and 

LIDAR 

sensors 

Yes Yes, < 3km/h Yes Vehicle 

Type  

No 

 

 

 

2.2 Computer Vision 

 

Computer vision is a field of artificial intelligence (AI) that allows computers and other 

systems to derive useful information for the end user from digital images, videos and 

other visual inputs. Computer vision can be said to be the eyes for a machine system, 

will the AI algorithm is the brain. Computer vision trains the computer to identify and 

distinguish objects, how far away the object is, whether the object is moving, or if 

something is wrong.  Computer vision requires a lot of data, much like machine 

learning. It requires repeated analysis of the different and unique datasets until it is 
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able to recognise the unique features of each object and finally identify the object in 

the photo or video.  

 

Currently, the most used technologies for computer vision is deep learning (a 

type of machine learning) and a convolution neural network (CNN). Machine learning 

uses different statistical algorithmic models to allow the computer to “learn” the 

patterns and unique features of an object from visual data. These algorithms enable the 

machine to run through the data and learn the features of the objects by itself, without 

the need for programmers to specifically program it to recognize the object (IBM, 

2020).  

 

There are a few tasks that can successfully be done by computer vision, which 

includes image classification, object detection, object tracking and content-based 

image retrieval.   

 

Image classification means the system is able to analyse an image and is able 

to classify the image based on the subject in the photo (human, animals, vehicles). The 

system capable of correctly predicting which class the image belongs to. This is 

especially useful in many cases where classifying the images into different groups is 

crucial. For example, a group of images of different animals can be classified into 

groups based on their species, such as dog, cat, mouse and others.  

 

Object detection refers to the system able to identify the object inside the image 

by finding similarities of the object with the available datasets. If enough similarities 

are found, the system is able to correctly identify the object in different images or 

videos. For example, quality inspection machines can use computer vision systems to 

identify defects or scratches on the products the system is inspecting, which is very 

useful for quality control.  

 

Object tracking refers to the computer vision system able to track the object 

after detecting it. This task requires a sequence of pictures or video streams as input 

data. For example, autonomous vehicles have to use object tracking to track people, 

other vehicles, road infrastructure and other things in motion to prevent accidents and 

comply with traffic regulations (Le, 2018). 
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2.3 Digital Image Processing 

 

Digital Image Processing is the “manipulation of images using digital computers 

according to Eduardo and Gelson (2005). If human vision is important to us humans, 

then digital image processing is one significant part of computer vision that allows the 

image to transform into data that is significant. It’s use is undoubtedly increasing 

exponentially over the years, following the rise of Artificial Intelligence and Machine 

Learning. It’s applications range from the medical sector, such as the 3D modelling in 

CT and MRI, to entertainment in the form of the Nintendo Wii remote which is able 

to use computer vision and image processing to track the player’s movements. 

Multimedia systems such as televisions and displays, rely heavily on digital image 

processing. 

 

The discipline of digital image processing is vast, which includes various 

different algorithms and techniques to manipulate images for different purposes. An 

image can be regarded as a function f(x,y) of two continuous variables x and y. A digital 

image consists of a matrix of numbers representing every single pixel in the image. 

Digital image processing consists of the manipulation of those finite precision numbers.  

 

Digital image processing can be divided into several classes: image 

enhancement, image restoration, image analysis, and image compression. In image 

enhancement, images are modified through heuristic methods, which allows useful 

data to be extracted from the images. Image restoration techniques is used for 

processing bad or corrupted images to remove degradation so that the clarity or 

features of the original image can be restored. Image analysis techniques are used to 

process the image in such a way that information can be automatically extracted from 

it and used for other purposes, such as quality inspection of a product. Examples of 

image analysis are image segmentation, edge extraction, and texture and motion 

analysis (Eduardo & Gelson, 2005). A digital image can contain huge amounts of 

information depending on it’s resolution, format and encoding. For example, a gray-

scale image of moderate resolution, say 512 × 512, needs 512 × 512 × 8 ≈ 2 × 

106 bits for its representation. Therefore, image compression is essential as a way to 

reduce the file size of an image for better storage and sharing of digital images. 
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2.3.1 Background Subtraction 

 

The task of marking foreground entities or objects plays an important role in the video 

pre-processing process as the initial phase of computer vision applications (Murzova, 

2021). These applications include vehicle detection, people tracking, animal tracking 

and others that require tracking, monitoring, recognition of objects. Background 

subtraction allows CV programs to obtain rough but rapid identifications (outlines) of 

objects that appear in the video stream (Murzowa, 2021). Figure 2.1 shows the input 

and output of passing an image through the background subtraction algorithm while 

Figure 2.2 shows the processes involved in background subtraction.  

 

 

Figure 2. 1 Input and Output of Background Subtraction 
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Figure 2. 2 Basic Background Subtraction process 

 

 

Background subtraction methods creates a background model to separate 

foreground from the background. The background subtraction process contains these 

phases: 

 

i. Background Generation: Processes multiple frames from video to obtain the 

background image 

 

ii. Background Modelling: Defines the model for background representation  

 

 

iii. Background Model Update: Any changes that occurs in the video will be 

processed here to update the Background Model 

 

iv. Foreground Detection: Divides the pixel into two groups, background, or 

foreground.  

 

The background subtraction algorithm then outputs an image which is a binary 

mask, with the foreground objects in white pixels while the background objects in 

black pixels.  
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2.3.1.1 Descriptors 

 

One important concept in background subtraction is descriptors, which is also known 

as features. Descriptors define the regions in an image that are marked according to 

the background model. This comparison allows the categorisation of region into the 

background or the foreground. Descriptors can be marked based on colour, texture or 

even edges. Popular pixel domain descriptors: 

 

i. Colour: Colour features are sensitive to illumination, shadows and anything 

which affects the appearance of moving objects. Therefore, algorithms usually 

combine this with other descriptors to achieve a more robust background 

subtraction model.  

 

ii. Edge: Edge features are great because they are unaffected to light variations 

and great for moving object detection. However, they are sensitive to both high 

and low textured objects.  

 

iii. Texture: Texture features provide spatial information. Texture descriptors are 

unaffected by different illumination and shadows.   

 

 

 

2.3.1.2 Background Modelling Algorithms 

 

The three available background modelling algorithms present in OpenCV are GMG, 

MOG and MOG2.  

 

The GMG algorithm is proposed by Godbehere, Matsukawa, and Goldberg in 

2012. GMG models the background with a combination of Bayesian Inference and 

Kalman Filters. Bayesian inference is a method in which the Bayes’ theorem is used 

to update the probability for a hypothesis as more information is obtained. This means 

newer observations are given more weight than older observations to compensate for 
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variable or changing illumination. The algorithm consists of two stages. In the first 

stage, the method accumulates for each pixel, weighted values based on how long a 

colour (pixel RGB value) stays at that position. When new frames are inserted to the 

algorithm, new observations are added into the model, thus effectively updating these 

weighted values. Colours that stay static for some amounts of time are considered 

background by the model. The second stage filters pixels in the foreground to reduce 

noise (Marcomini & Cunha, 2018).  

 

Mixture of Gaussians, also known as MOG, was first proposed by 

KaewTraKulPong and Bowden in 2002. A combination of k Gaussian distributions 

models each background pixel using this technique, with k values between 3 and 5. 

The authors make the assumption that distinct distributions correspond to distinct 

background and foreground hues. Each of the distributions utilised in the model has a 

weight proportionate to the amount of time each colour spends on that pixel. Therefore, 

when a pixel's weight distribution is small, it is classed as foreground. The MOG2 

technique was developed to address one of MOG's limitations: the fixed number of 

used distributions. MOG2 provides a more accurate depiction of the complexity of 

colours in each frame by using a configurable number of Gaussians distributions that 

are mapped pixel by pixel. 

 

 

 

2.4 Machine Learning  

 

Machine learning is an implementation of artificial intelligence (AI) that gives systems 

the ability to automatically learn and develop from experience without being 

specifically programmed. Machine learning focuses on the creation of computer 

systems that can access data and use it to learn about themselves. Traditional 

programming methods rely on hardcoded rules, which step-by-step set out how to 

solve a problem. In comparison, a task is set for machine learning programmes, and a 

vast volume of data is provided to use as examples of how this task can be performed 

or from which patterns can be found. The machine then discovers how the intended 

output will better be obtained. It can be viewed as narrow AI: provided a particular 
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collection of data to learn from, machine learning helps smart systems that are able to 

learn a specific purpose. 

 

While still not approaching the human-level knowledge that is typically 

synonymous with the term AI, opposed to conventional programming approaches, the 

ability to learn from data increases the amount and complexity of tasks that machine 

learning systems can perform. Machine learning can execute complex functions such 

that the desired outputs cannot be generated based on human programmed step-by-step 

procedures. The learning dimension also produces applications that can be flexible and 

increase the accuracy of their outcomes once they are implemented (Markoff, 2015). 

 

The three key methods of machine learning are supervised, unsupervised and 

reinforcement learning. 

 

Supervised learning is by using labelled datasets to train algorithms that either 

classify the data or predict outcomes based on the learning the patterns in the data. 

When the input data is inserted into the machine learning model, the weights in the 

machine learning algorithm will adjust until the model has fitted appropriately. This 

process ensures that the machine learning model does not overfit or underfit to the data.  

 

Unsupervised learning is different from supervised learning in the datasets used. 

For unsupervised learning, the datasets are not labelled, thus the algorithms have to 

analyse and cluster the data based on similarities on certain features or discover hidden 

patterns or groupings within the data without any supervision from humans. It’s able 

to discover similarities and differences which makes it great for data analysis, 

customer segmentation, image and pattern recognition. It can also be used to reduce 

dimensions in datasets for better results in the machine learning model. Algorithms 

used in unsupervised learning include principal component analysis (PCA) and 

singular value decomposition (SVD), neural networks, k-means clustering, 

probabilistic clustering methods and others (IBM, 2020).  

 

Reinforcement machine learning is similar to supervised learning, but the 

algorithm is not trained using sample data. Instead, the model learns through trial and 
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error. A series of successful results will be reinforced in order to create the most 

appropriate solution to a particular problem (IBM, 2020).  

 

 

2.5 Deep Learning  

 

Deep Learning is a subfield of machine learning and artificial intelligence concerned 

with algorithms inspired by the structure and function of the brain called artificial 

neural networks. These artificial neural networks are algorithms inspired by the human 

brain and learn from large amounts of data. Just like how humans learn from past 

experiences, deep learning algorithms would perform a task repeatedly, each time 

tweaking parameters in the algorithm a little to improve the outcome. These algorithms 

are referred as deep learning because the neural networks have various (deep) layers 

that enable learning. Any problem that requires thinking to solve is a problem that deep 

learning can learn to solve. However, to successfully create a deep learning neural 

network which produces good results, huge amounts of data have to be collected.  

 

The amount of data humans generates every day is astronomical - currently 

estimated at 2.6 quintillion bytes- and it’s the resource that makes deep learning 

possible. Since deep learning heavily relies on a ton of data to learn from, the increases 

in data creation in recent years is one of the reasons why deep learning capabilities 

have grown considerably. In addition to increase in data creation and collection, 

stronger computing power and also the growth of Artificial Intelligence as a Service 

benefitted deep learning too (Marr, 2018).  

 

In general, Deep learning allows computers to solve complex problems even 

when using a data set that is very diverse, unstructured and interconnected. The more 

deep learning algorithms learn, the better they perform. Figure 2.3 compares the 

performance and amount of training data needed for deep learning to other learning 

algorithms. 
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Figure 2. 3: Deep Learning vs other older machine learning algorithms 

 

 

2.5.1 YOLOv3 

 

YOLOv3 (You Only Look Once, Version 3) is a real-time object recognition algorithm 

that recognises particular items in videos, live streams, or images. YOLO detects 

objects using characteristics learnt by a deep convolutional neural network. Joseph 

Redmon and Ali Farhadi developed YOLO versions 1-3.YOLO's initial version was 

released in 2016, while the third version, was released two years later in 2018. 

YOLOv3 is a variant of YOLO and YOLOv2 that has been enhanced. YOLO is 

implemented using the deep learning packages Keras or OpenCV (Meel, 2021). Figure 

2.4 shows the processes involved in YOLO object detector.  

 

 

Figure 2. 4: Overview of YOLO object detector 
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As is customary for object detectors, the convolutional layers' learnt features 

are given to a classifier, which makes the detection prediction. The prediction in 

YOLO is built on a convolutional layer with 1×1 convolutions. YOLO stands for "you 

only look once" due to the fact that its prediction utilises 1×1 convolutions. the 

prediction map size is same to the feature map size before it. 

 

YOLO is a Convolutional Neural Network (CNN) that is capable of real-time 

object identification. CNNs are classifier-based systems capable of processing 

incoming pictures as organised arrays of data and finding correlations between them. 

YOLO has the benefit of being much quicker than other networks while maintaining 

the same level of accuracy. It enables the model to consider the whole picture at test 

time, ensuring that its predictions are influenced by the image's global context. YOLO 

and other convolutional neural network methods provide a numerical value to areas 

based on their similarity to preset classifications. High-scoring areas are labelled as 

positive detections of the class to which they most closely correspond. For instance, in 

a live traffic stream, YOLO may be used to distinguish between various types of cars 

based on which parts of the video score well in contrast to preset vehicle classifications 

(Meel, 2021). 

 

 

 

2.5.2 Faster R-CNN 

 

Faster R-CNN was first published in 2015 at NIPS. Following publication, it 

underwent many modifications.  Faster R-CNN is the third iteration of the R-CNN 

papers, which were co-authored by Ross Girshick. Everything began with the 2014 

publication of "Rich feature hierarchies for accurate object detection and semantic 

segmentation" (R-CNN), which utilised a technique called Selective Search to suggest 

areas of interest and a conventional Convolutional Neural Network (CNN) to 

categorise and modify them (Rey, 2018). It rapidly developed into Fast R-CNN, 

released in early 2015, where a method called Region of Interest Pooling enabled the 

model to run considerably faster by pooling costly calculations. Finally, there was 
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Faster R-CNN, which introduced the first completely differentiable model. Figure 2.5 

shows the process involved in Faster R-CNN.  

 

 

Figure 2. 5: Overview of Faster R-CNN 

 

 

Faster R-design CNN's is complex due to the presence of many moving 

components. It all begins with an image, the following information will be extracted: 

a list of bounding boxes, a label for each bounding box, and a probability for each label 

and bounding box. 

 

The input images are expressed as Height × Width × Depth tensors 

(multidimensional arrays), which are processed through a pre-trained CNN until 

reaching an intermediate layer, where they are transformed into a convolutional feature 

map. This is used as a feature extractor in the next section. Following that, is what is 

known as a Region Proposal Network (RPN, for short). It is used to discover up to a 

specified number of regions (bounding boxes) that may contain objects using the 

characteristics calculated by the CNN. The most challenging aspect of utilising Deep 

Learning (DL) for object identification is probably creating a variable-length list of 

bounding boxes. When deep neural networks are modelled, the final block is often a 

fixed-sized tensor output. For instance, in image classification, the output is a 

(N, ) shaped tensor, where N is the number of classes, and each scalar at location I 

denotes the probability of the image being labeli  (Rey 2018). 

 

The RPN solves the variable-length issue by using anchors: fixed-size 

reference bounding boxes that are evenly distributed across the source picture. Rather 

of attempting to determine the location of objects, the issue was divided into two 

components. Each anchor is examined to see whether it contains a relevant item and 

how the anchor could be modified to better suit the relevant object. Once a list of 
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potentially relevant items and their positions in the original picture is created, the issue 

becomes simpler to solve. Region of Interest (RoI) Pooling can be used to the CNN 

features and the bounding boxes of relevant items to extract the features that relate to 

the relevant objects into a new tensor. Finally, there is the R-CNN module, which 

utilises this information to: Classify the material included inside the bounding box (or 

reject it, using the label "background"), and update the bounding box coordinates 

to better fit the objects (Rey 2018). 

 

2.5.3 TensorFlow 

 

TensorFlow is an open-source machine learning platform that runs from start to finish. 

It features a large, flexible ecosystem of tools, libraries, and community resources that 

allow researchers to advance the state-of-the-art in machine learning and developers 

to quickly construct and deploy ML applications (TensorFlow, 2022). 

 

Google research scientists and software developers often construct cutting-

edge models and make them publicly accessible rather than keeping them private in 

order to improve the research community's capabilities. The COCO detection 

challenge, which focuses on recognising objects in pictures (estimating the possibility 

that an item is at this position) and their bounding boxes, was won by Google's in-

house object detection system in October 2016. The Google approach has not only 

been featured in a number of publications and used in a number of Google products 

(Nest Cam, Image Search, and Street View), but it has also been made available to the 

general public as an open-source framework based on TensorFlow. 

 

The TensorFlow object detection API provides a framework for building a 

deep learning network that can identify objects. The framework includes various 

important features, as well as five pre-trained models: SSD (Single Shot Detector) with 

MobileNets, Region-Based Fully Convolutional Networks (R-FCN), and Faster R-

CNN, as well as five pre-trained models. The quickest model is SSD, followed by R-

FCN, and lastly the faster R-CNN. The model's precision, on the other hand, is the 

inverse. 
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The regional proposal methods are used in all of these models. To construct a 

provisional enumeration of feasible bounding boxes in a picture, such algorithms 

employ image segmentation (that is, partitioning the image into regions based on the 

primary colour differences within areas themselves). The idea is that region proposal 

algorithms propose a small number of boxes to examine, far fewer than an exhaustive 

sliding windows method would propose. This enabled them to be used in the initial R-

CNNs, or region-based convolutional neural networks, which operated by using a 

region proposal technique to locate a few hundreds or thousands of areas of interest in 

an image. Each zone of interest is processed by a CNN to build features for each area, 

which are then used to categorise the region using a support vector machine and a 

linear regression to calculate more exact bounding boxes (Luca Massaron, 2018). 

 

Fast R-CNN used CNN to analyse the whole picture at once, transform it, then 

apply the region suggestion to the transformation. This reduced the number of calls 

processed by CNN from a few thousand to just one. Another aspect that made it 

quicker was that it employed a soft-max layer and a linear classifier instead of an SVM 

for classification, thereby extending the CNN rather than moving the input to a new 

model (Luca Massaron, 2018). 

 

R-FCN, on the other hand, are quicker than Faster R-CNN since they are fully 

convolutional networks with no fully connected layers following the convolutional 

layers. They're end-to-end networks, meaning they go from convolutional input to 

output. They become even quicker as a result of this (they have a much lesser number 

of weights than CNN with a fully connect layer at their end). However, their speed 

comes at a cost; they are no longer defined by image invariance (CNN can figure out 

the class of an object, no matter how the object is rotated). A position-sensitive score 

map, which is a means to assess whether sections of the original image processed by 

the FCN correspond to parts of the class to be categorised, is supplemented by a faster 

R-CNN (Luca Massaron, 2018). 

 

Finally, we have solid-state drives (SSD) (Single Shot Detector). Because the 

network anticipates the bounding box position and class as it analyses the picture, the 

performance is significantly faster here. By bypassing the region proposal step, SSD 

can calculate a large number of bounding boxes quickly. It only decreases heavily 



22 

overlapping boxes, but it still processes the most bounding boxes of any of the models 

we've discussed so far. Its speed is due to the fact that it classifies each bounding box 

as it delimits it: by performing everything in one shot, it has the quickest speed, yet it 

performs comparably (Luca Massaron, 2018). 

 

 

2.5.4 Performance metrics for deep learning  

 

The more popular performance metrics for deep learning is mAP (mean average 

precision) and average recall. However, to understand these two metrics, the concept 

of precision and recall must be established first.  

 

Precision measures the accuracy of the predictions. Recall measures how well 

the model find these positives.  The value of precision and recall is always between 0 

and 1. The calculation of precision and recall is shown in equation 2.1 and 2.2.   

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Eq. (2.1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Eq. (2.2) 

 

 

The precision of every prediction is calculated and averaged to get the mAP of 

the model. The recall calculated for every prediction and averaged which results in the 

average recall. To build a good object detection model the value should be as close to 

1 as possible for mAP and average recall.   
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2.6 Journal Reviews 

 

Marcomini and Cunha (2018) compared the performance between three different 

background modelling methods by using vehicle segmentation in highway traffic 

videos. The authors analysed seven videos of highway traffic videos, with a total video 

time of 2 hours. The authors measured how well each algorithm performs in detection 

and segmentation based on accuracy rate, processing time and precision rate. The three 

background modelling methods are GMG, Mixture of Gaussians (MOG) and Mixture 

of Gaussians 2 (MOG2). All three methods have comparable precision rate at above 

90%, however MOG and MOG2 have precision rates around 100%, while GMG has 

a precision rate between 60% and 80%. Comparing processing times, MOG2 is on 

average 3 times faster than MOG, while being 10 times faster than GMG. In conclusion, 

MOG2 is the best performer among the three background subtraction methods 

(Marcomini & Cunha, 2018).  

 

Li et al. (2014) proposed two different methods of real-time moving vehicle 

detection, tracking and counting system. One uses the pixel changes in histogram when 

a vehicle passes to count the vehicle, while the second method uses adaptive 

background subtraction in tandem with blob tracking. The first method is only able to 

count vehicles based on their presence. The second method is able to detect and count 

the vehicle, t it is able to track the path of the moving vehicle. The authors test this 

model by inserting a video of cars travelling in one single direction on the highway. It 

is found that the first method achieves an accuracy rate of 96%, while the second 

method have a higher accuracy rate of 98.4%. The results show that background 

subtraction with blob tracking is a more robust and accurate way of counting vehicles. 

 

Sorwar et al. (2017) proposed a real-time vehicle monitoring which is able to 

count the number of vehicles by using extended maxima and minima to detect cars. 

The authors crop the everything out of the video frame except the vehicle lane and 

uses extended minima and maxima to extract the area of cars, then uses the area of the 

vehicles as weights in a formula which estimates the number of cars in the frame. In 

broad daylight, the model achieves an accuracy rate of 91%, while during the night, 

the model is able to achieve an accuracy rate of 88%. The positive is this model is able 

to work in various different angles compared to other models. However, the model is 
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affected by streetlights, roadside objects, which will decrease the accuracy of the 

model if longer duration of datasets are tested.  

 

Tangkocharoen and Srisuphab (2017) uses Haar cascade classifier for their 

vehicle detection. This model uses AdaBoost in tandem with a cascade classifier to 

recognise the vehicles in frame. Haar feature-based cascade classifiers were first 

introduced by Paul Viola and Michael Jones in 2001, and it became an effective object 

detection method. The classifier is first trained with both positive and negative 

examples, which is a machine learning based approach (OpenCV 2016). This allows 

the classifier to construct a function that describes the relationship of the input (image) 

and output (binary mask). This training step requires a substantial amount of 

computational power, but once trained, the objects can be detected by the classifier 

rather instantaneously. The authors were able to detect vehicles under various lighting 

and illumination in images obtained from highway traffic videos in Bangkok. However, 

the author does not apply this model onto videos, and their model was only able to 

detect vehicles, but not count them.  

 

Faruque et al. (2019) proposed a program which is able to classify vehicles into 

6 different categories: bike, truck, car, van, bus and trailer.  These six types of vehicles 

are used by the Federal Highway Association (FHWA) to categorize different types of 

vehicles. The authors used Faster R-CNN and YOLOv3 deep learning methods to 

classify vehicles in several videos. There were several challenges that reduces the 

accuracy of vehicle classification, such as changes in environmental conditions, the 

background of the object, environment illumination, blur, motion and video resolution.  

The training sets were created manually from different traffic videos to train the deep 

learning classifiers, which is time consuming. The authors found that YOLO has faster 

training and testing rate compared to Faster R-CNN. YOLOv3 also has a higher 

accuracy rate at around 96.78% to 99.76%, while Faster R-CNN has an accuracy rate 

of around 95.91% to 97.93%. Deep learning methods are feasible for vehicle 

classification, however the training a deep learning model requires large datasets, 

which means the large computational operations in terms of memory that requires 

some amount of time and a powerful GPU to compute. Figure 2.6 shows the six 

categories of vehicles classified by Faruque et al. (2019) in his research.  
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Figure 2. 6: Six categories of vehicles based on FHWA 
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Proposed System Design 

 

 

Figure 3. 1: Proposed System Design  

 

 

The proposed system is able to complete three main functions, vehicle counting, 

vehicle speed measurement, and vehicle classification (shown in Figure 3.1). These 

important data from the vehicles will be stored in a file for further traffic data collection 

and analysis.   

 

The Raspberry Pi and Raspberry Pi Cam V2 is setup at an outdoor position 

where the video of the traffic is recorded. This makes up the hardware side of the 

proposed system.  

 

After that, the video is processed through software to extract useful traffic 

vehicle data from the video.  
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For vehicle counting and vehicle speed measurement, the system implemented 

background subtraction algorithm onto the input frames from the video which helps to 

separate and track moving objects from the background based on the particle filter 

algorithm. Tracked vehicles are counted based on a threshold that considers the area 

of the detected vehicles. The vehicle’s speed is counted by using the equations 3.1, 3.2 

and 3.3. The distance is calculated by finding the distance in pixels of two points P, 

dividing by c, which is constant which shows how many pixels per meter. To find c, 

the physical distance is measured between two points in the image and use Equation 

3.2. To calculate time, the frame rate of video and frames travelled when car travels 

between two points in the video is required.    

 

𝑆𝑝𝑒𝑒𝑑 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒
 

Eq. (3.1) 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
|𝑃𝑒𝑛𝑑 − 𝑃𝑠𝑡𝑎𝑟𝑡|

𝑐
 

Eq. (3.2) 

 

𝑇𝑖𝑚𝑒 =  
𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑚𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑

𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒
 

Eq. (3.3) 

 

 

For vehicle classification, a machine learning classifier to be built and trained 

following the process in Figure 3.2.   
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Figure 3. 2: Process of developing a deep learning classifier model  

 

 

Figure 3.2 shows the whole process of developing a machine learning classifier 

model. There are 5 steps in this process which is: Data Collection, Data Pre-processing, 

Model Implementation, Model Evaluation and Parameter Tuning. 

 

For the data collection, the data to train the deep learning classifier model have 

to be collected, and in this project’s application, the images of different classes of 

vehicles from the side view required.  A lot of images are required to create a large 

dataset which would be needed to train the deep learning classifier model. The data 

can be collected manually through videos of vehicles, or they can be obtained from 

websites like Google Image Search.  

 

Data pre-processing is where the datasets is processed in a way so that it is able 

to be understood by the deep learning classifier model. First, the objects in the images 

must be labelled by drawing bounding boxes over them and link them with an object 

class or category. This is a labour-intensive part of the process. This step is required 
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to allow the deep learning model to recognise each object and linking them to their 

respective classes. 

 

Model Implementation is training the algorithm in deep learning classifier 

models such as YOLO and R-CNN. These models consist of neural networks that 

learns a mapping function from inputs to outputs. This is accomplished by changing 

the network's weights in accordance to the model's errors on the training dataset. 

Adjustments are made to continuously decrease this error until a suitable model is 

discovered or the learning process becomes stuck and terminates. The process of 

training neural networks is by far the most time-consuming aspect of utilising the 

method in general, both in terms of configuration effort and computing complexity 

needed to perform the process (Brownlee 2021). 

 

 While training a model is critical, how the model generalises to unseen data is 

as critical and should be included into any deep learning process. One commonly used 

method of evaluation is cross-validation. Cross-validation is a statistical method that 

divides the original observation dataset into two sets, a training set for training the 

model and an independent set for evaluating the model. Metrics for model evaluation 

are needed in order to measure model performance. The evaluation metrics used are 

determined by the deep learning job at hand (such as classification, regression and 

clustering). Certain measures, such as precision-recall, are applicable to a variety of 

applications. The majority of deep learning applications use supervised learning 

problems such as classification and regression. Examples for classification metrics are 

classification accuracy, confusion matrix, logarithmic loss, f-measure and others.  

 

 When our model is having errors, such as bias or low accuracy, 

hyperparameters can be tuned to achieve better training for the deep learning classifier 

model which results in better prediction accuracy. There are quite a few 

hyperparameters and variables that can be tuned: 

 

i. Tune Learning Rate 

 

ii. Tune Regularization Parameter 
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iii. Tune Training Epoch 

 

iv. Use Different Cost functions 

 

v. Initialize weights differently 

 

 

 

3.2 Equipment 

 

 

Figure 3. 3: Equipment List for the Development of Proposed Automatic Traffic 

Counting System 

 

 

Figure 3.3 shows the list of equipment required for the development of the proposed 

automatic traffic counting system for this project. The equipment consists of both 

hardware and software. The hardware’s main purpose is to capture a video recording 

of the vehicles on the road, which is the data collection part of this project. The 

software part is the analysis and processing of the video data, such as object detection, 

tracking and classification.  
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3.3 Hardware Configuration 

 

Figure 3.4 shows the hardware configuration for the proposed automatic traffic 

counting system. It consists of the Raspberry Pi Cam V2 and the Raspberry Pi 4 Model 

B. The Raspberry Pi Cam V2 is an 8MP camera with a Sony IMX219 sensor that is 

able to capture high-resolution photos, and videos with resolution up to 1080p. The Pi 

Cam V2 is connected to the Raspberry Pi by inserting the Pi Cam’s flex cable into the 

CAMERA connector.  

 

 

 

Figure 3. 4: Hardware Configuration for the proposed Automatic Traffic 

Counting System 

 

 

 

3.4 Programming Language and Environment 

 

Programming language and programming environment forms an important part of the 

software of the proposed automatic traffic counting data collection and analysis system. 

Various image processing techniques and machine learning algorithms will be used in 

the proposed system. Thus, the best programming language and environment must be 

chosen to provide the best performance and codability for this project.  
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 Python is the preferred programming language for coding by many data 

scientists. Python is easy to learn and use because of its simplified syntax, which places 

a higher focus on natural language. Python can be easily written even by newcomers 

and executed faster than other programming languages. Python also has many open 

computer science related libraries such as Computer Vision, Machine Learning, Image 

Processing and others which makes it a great coding tool for computer science related 

projects and tasks.  

 

 Visual Studio Code is a code editor that combines a source code editor with 

powerful developer tools that eases the coding and debugging process, such as 

IntelliSense code completion and debugging. It’s simple to use interface allows for 

more time and effort spent on implementing ideas in the code, rather than struggling 

to setup the environment.  

 

 

3.5 Data Collection 

 

Data collection is to collect data that will be used for the vehicle detecting, tracking, 

counting, classification model. In this project, the data being collected is the video of 

the vehicles on the road. A video is captured when the Python program in Figure 3.6 

runs. The frame captured is shown in Figure 3.5. The video shot for this project is in 

H.264 format with a resolution of 640 x 480 and 25 frames per second (fps). H.264 is 

one of the most widely used codec in the world, with it being used in optical disc, 

broadcasts, and other video medias. H.264 cannot be directly viewed by most media 

players. Thus, it has to be incorporated into different container formats such as MEPG-

4, QuickTime, Flash and others. The resolution is set at 640 x 480 to save storage space 

as multiple hours of video have to be recorded and stored inside the 12GB microSD 

card. 25 fps is the standard for movies and TV shows, and it is the minimum speed 

needed to capture video that have realistic motion (Ozer, 2011).  
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Figure 3. 5: A frame from the traffic video  

 

 

 

Figure 3. 6: Python program to capture video on the Raspberry Pi 

 

 

After collecting the data (video), the data might not be in a form that is needed 

to be fitted into the vehicle detecting tracking, counting and classification model.  First, 

the video shot by the Raspberry Pi is in H.264 which is a video codec. The video has 

to be processed to be contained in a container such as MP4. To accomplish this, the 

video is converted from H.264 to MP4 using the Python program in Figure 3.7.  
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Figure 3. 7: Python program to convert video from H.264 to MP4 format 
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3.6 Bill of Materials 

 

The materials used, quantity, unit price, and total price are listed in Table 3.1. The total 

cost of the materials used for this project is RM415. 

 

Table 3. 1: Bill of Materials  

Material Quantity Unit Unit price 

(RM) 

Total price 

(RM) 

Raspberry Pi 4 Model B 1 1 174 174 

Official Case for Raspberry Pi 

4B (red/White) 

1 1 25 25 

16GB Micro SD Card with 

NOOBS for RPI 

1 1 36 36 

Raspberry Pi 8MP Camera 

Module V2 

1 1 115 115 

Power bank 1 1 50 50 

USB-C cable 1 1 15 15 

   Total Cost 

(RM) 

415 
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3.7 Project Management  

 

The project timeline for FYP 1 is shown in Table 3.1 while the project timeline for 

FYP 2 is shown in Table 3.2. 

 

Table 3. 2: Gantt Chart for FYP 1 

 

 

 

 

 

 

            Week 

Task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Project 

Selection 

              

Literature 

Review 

              

Methodology 

Research 

              

Hardware 

selection 

              

Configure 

Hardware 

              

Record  

footage for 

data 

              

Process data 

and build 

software 
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Table 3. 3: Gantt Chart for FYP 2 

 

 

 

 

 

 

 

 

            Week 

Task 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Build Speed 

Measuring 

Algorithm 

              

Debug and test 

Speed Measuring 

Algorithm 

              

Prepare training 

dataset for Deep 

Learning 

Classification 

              

Train Object 

Detection Model 

              

Finetune Object 

Detection Model 

              

Integrate all 

modules together 

              

Run tests and 

record results and 

discussion 
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CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Hardware setup 

 

The Raspberry Pi is connected to a display to view the viewfinder for the camera. 

Indoors, the Raspberry Pi is interfaced with a monitor through HDMI, however this is 

not to viable outdoors. To solve this issue, the Raspberry Pi can display its content and 

can be remote controlled on a smart phone when being placed outdoors. This is done 

by connecting the Raspberry Pi to an Android smart phone through VNC Server, which 

is completely free and is pre-installed on the Raspberry Pi by default. A direct 

connection can be established by having both devices connecting over the same private 

local network. Mobile data hotspot sharing is used to connect the smartphone with the 

Raspberry Pi. 
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Figure 4. 1: Setup of hardware to collect traffic data outdoors 

 

 

Once the Raspberry Pi is able to be remotely controlled, the Raspberry Pi is 

placed at a spot outdoor where the camera is able to get a good view of the road outside 

as seen in Figure 4.1. The camera is perpendicular to the road. The Raspberry Pi only 

requires power at this point, which is provided by the 20,000 mAh power bank.  

 

In Figure 4.2, the viewfinder for the camera is displayed on the smartphone 

after the Python program starts. The camera is placed perpendicular to the road, and it 

is able to get a clear side view of vehicles that pass by. Vehicles will move to the left 

on the nearby lane, while vehicles will move to the right on the further end lane.  
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Figure 4. 2: Remote view of the Raspberry Pi Interface 

 

 

4.2 Software Setup 

 

 

4.2.1 Vehicle Counting 

 

The video recorded in .mp4 format consists of 25 frames per second. The frames are 

extracted one by one to be applied with image processing to be able to detect the 

vehicles. Figure 4.3 to figure 4.8 shows the step by step processing done to the image 

by the algorithm.  
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Figure 4.3: Original Frame 

 

 

 

Figure 4. 4: Frame after applying MOG2BackgroundSubtractor 

 

 

After the frame is extracted, the background is subtracted by the frame using 

OpenCV’s MOG2 Background Subtractor function. The output image is the subject in 

white while the background is in black. 
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Figure 4. 5: Frame after applying binary image thresholding  

 

 

The resulting image is then applied with binary image thresholding to ensure 

that the image is entirely greyscale for further processing.  There are white specks in 

the black background and black specks in the white foreground which will have to 

remove to prevent OpenCV’s findContours function to mistake the white specks as 

our Region of Interest (ROI). To accomplish this, morphology opening, and closing is 

used in conjunction.  

 

 

Figure 4. 6: Frame after applying Morphology Opening 
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After morphology opening is applied, all the white and black specs are 

smoothened into the foreground and background. The rough edge of the white 

foreground is also smoothened out. The resulting image only has one foreground 

which is the vehicle to be detected.  

 

 

Figure 4. 7: Frame after applying Morphology Closing 

 

 

Applying morphology closing smoothens the edges further of the white 

foreground. The image is ready to be used to find contours by OpenCV’s findContours 

function.  
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Figure 4. 8: Contour detected by OpenCV findContours function 

 

 

OpenCV’s findContours function detects changes in image colour and marks 

it as a contour. The external retrieval mode of the function is used, which only stores 

the extreme outer contours, while inner contours are ignored (Shaikh, 2020). This is 

shown in Figure 4.9(Shaikh, 2020). 

 

 

Figure 4. 9: Example of external retrieval mode 

 

 

After the contours are found, contours with area between 2000 and 60000 px2 

are assumed to be vehicles. Since the parameters of the bounding rectangles are known, 

the centroid of the vehicle is found using the formula.  
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When the centroid is enters the range of left and right limit, the contour is 

registered as a new vehicle and the centroid coordinate are recorded. The next frame 

is extracted, and the same image processing happens. If it is a new car, the centroid 

will be registered as a new car. Else, it updates the coordinate of the old car. When the 

coordinate passes the middle lines, the code counts the vehicle. This is to ensure the 

object is travelling a certain distance before being counted as a vehicle. The code can 

determine whether the vehicle is heading to the right or to the left based on the 

direction the centroid is heading and count accordingly.   

 

 

4.2.2 Vehicle Speed Measuring 

 

The vehicles is detected and tracked using the algorithm in vehicle counting.  The 

output of the algorithm is the bounding rectangle and centroid of each vehicle in the 

current frame. For speed measuring, the vehicle centroid is used to calculate the speed 

of the vehicle.  

 

However, due to the camera’s field of view (Figure 4.10), the L increases as 

the distance of the object from the lens increases. Thus, c for vehicles going to the right 

is larger than the c for vehicles going to the left. To calculate time, the frame rate of 

video and frames travelled when car travels between two points in the video is required.    

 

 

Figure 4. 10: Camera’s field of view 
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The calculations for the speed measurements are using the formulas of Eq. (4.1), 

Eq. (4.2), Eq. (4.3) and Eq. (4.4).  

 

𝑚𝑒𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 = 𝑚𝑝𝑝 =  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑓𝑟𝑎𝑚𝑒 𝑤𝑖𝑑𝑡ℎ
 

Eq. (4.1) 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 =  𝑝𝐴𝐵 = | 𝑐𝑜𝑙𝐵 − 𝑐𝑜𝑙𝐴| 

Eq. (4.2) 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝐴𝐵 =  𝑑𝐴𝐵 = 𝑃𝐴𝐵 ∗ 𝑚𝑝𝑝 

Eq. (4.3) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 =  

𝑑𝐴𝐵

∆𝑡𝐴𝐵
+

𝑑𝐵𝐶

∆𝑡𝐵𝐶
+

𝑑𝐶𝐷

∆𝑡𝐶𝐷

3
 

Eq. (4.4) 

 

 

In equation Eq. (4.1), the distance constant is the physical distance of the frame 

width. This can be measured by standing at the left edge of the frame and measure the 

distance until the right edge of the frame. To do this measurement safely, the 

measurement is done one the near end pavement and far end pavement. The near end 

pavement measures in at 6.12m, while the far end pavement measures at 19.33m. The 

distance constant of vehicles going to the left (near end) is set at 13m while for vehicles 

going to the right (far end) is set at 15.1m.  
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Figure 4. 11: Method of speed estimation 

 

 

First, the vehicle’s centroid location is recorded at four points in the frame 

which are A, B, C and D respectively as shown in Figure 4.11 (Rosebrock, 2019). For 

vehicles going to the right, the location is collected sequentially from A, B, C to D. 

For vehicles going to the left, the location is collected sequentially from D, C, B to A.  

The algorithm will also record the time when the vehicle centroid is at that point. After 

that, the centroid location is grouped into (A, B), (B, C) and (C, D). The distance in 

pixels between the two points in these three groups are calculated using equation Eq. 

(4.2). After that, the distance in meters between the two points are calculated using 

equation Eq. (4.3). After that, the average speed of the vehicle is calculated by using 

equation Eq. (4.4).  

 

 

4.2.3 Vehicle Classification Model  

 

4.2.3.1 Annotate images 

 

After the data collection, data preparation is needed to convert image information into 

values that the deep learning algorithm can interpret. The objects in the video is being 

classified into 3 classes: car, motorcycle, and bicycle.  
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First, the video is needed to be converted into images or frames. This can be 

done by using a simple Python program made by Patel in 2019 using the OpenCV 

library. The program allows the user to set the frame capture rate of the program. For 

example, if the frame capture rate is set to 0.5, the program will capture one frame 

every 0.5 seconds, which means 2 frames will be captured each second. The frames 

are saved in a folder.  

 

After the frames are extracted from the video, images without objects inside is 

deleted as it is not needed to train the deep learning model. This process took around 

1 week.  

 

Labels are used to help the training model identify unlabelled objects in the 

data (Nelson, 2020). Data that has been accurately labelled is essential to successful 

deep learning. LabelImg is a free, open-source program for labelling pictures visually. 

It's developed in Python and has a graphical user interface built using PyQT. It's a 

quick and painless approach to identify a few hundred photographs for your next object 

detection project. Once LabelImg is opened, the user needs to draw a rectangle box 

over the object and enter the label for the object. The label is saved in a separate .xml 

file for each image. This process has to repeated for every image; thus, this process is 

time consuming since training the deep learning requires few thousands to tens of 

thousands of images.  

 

Around 4000 images extracted from videos captured is annotated for the 

project. The interface of LabelImg to label the images is shown in Figure 4.12.  
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Figure 4. 12: Annotating images using labelImg 

 

 

4.2.3.2 Partition the image dataset  

 

After annotating every image, the image dataset is partitioned into two folders, test and 

training. The ratio is 9:1, which means 90% of the images are placed into the training 

folder while 10% of the images are used for testing. The images are placed into the 

two folders with the .xml files.  

 

4.2.3.3 Create Label Map 

  

Tensorflow requires a label map, which maps the class labels to integer values. The 

label map is saved as a .pbtxt (protobuf text) file. The contents of the label map is 

shown in Figure 4.13.  

 



50 

 

Figure 4. 13: Label Map for the current project 

 

 

4.2.3.4 Create Tensorflow Records 

 

Tensorflow object detection API is not able to directly read each .xml file. The 

annotation data in the .xml files must be compiled into a TFRecord format. This can 

be accomplished by running a pre-written script that iterates through all .xml files in 

the train and test folder and outputs a .record file for each.  

 

 

4.2.3.5 Download Pre-Trained Model   

 

The main aim for training a neural network is using several forward and backward 

iterations to get the right weights for the neural network. 

 

For this project, transfer learning is used, which means using a pre-trained 

model and training the model with the self-collected data. By using pre-trained models 

that have been trained on large datasets, the weights and architecture previously learnt 

by the model can be used immediately to apply the learning to the car classification 

project’s problem statement. The learning from the model is “transferred” which saves 

a huge amount of time and effort (Analytics Vidhya, 2017). For example, ImageNet 

has 1.2 million images that are used to create a generalized object detection model. 

The model can classify the images into 1000 separate object classes. Through transfer 

learning, these pre-trained networks based on the model is able to generalize object 

classes from images rather accurately. 
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First, a pre-trained model is downloaded from the TensorFlow 2 Detection 

Model Zoo. The Model Zoo consists of various pre-trained models which differ in 

speed, mAP (mean average precision) and output. SSD MobileNet v2 320x320 is 

chosen as it is quick with a speed of 19ms and a respectable mAP of 20.2.  

 

 

4.2.3.6 Configure Training Pipeline 

 

After the pre-trained model is downloaded, the pipeline.config file consists of the 

parameters of the neural network training that can be changed. For this project, the 

number of classes is set to 3 since the objects are categorized into 3 classes. The batch 

size, which is the number of training examples that passed through the neural network 

in one iteration, is set to 4. This means 4 samples from the training dataset are taken 

to train the network each iteration until every sample is propagated through the 

network. Part of the pipeline.config is shown in Figure 4.14.  

 

 

Figure 4. 14: Part of the pipeline.config  
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4.2.3.7 Training the model  

 

To initiate the training process, the model_main_tf2.py script is run through the 

terminal with the command in Figure 4.15. The model directory, pipeline config path 

and number of training steps are parsed into the script as arguments. A training step is 

one gradient update, where one batch size of examples is processed (Tolotra Samuel, 

2018).   

 

 

Figure 4. 15: Command to initiate training 

 

 

Once training is initiated, the output is printed as in Figure 4.16. During the 

training, the current step, step time, classification loss, regularization loss, total loss 

and learning rate is shown.  
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Figure 4. 16: Printout during training 
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4.2.3.8 Evaluating the model 

 

Figure 4.17 to Figure 4.21 shows the graph of evaluation metrics used to evaluate how 

well the deep learning model is trained and performing.  

 

 

Figure 4. 17: Loss metric during the training of the model 

 

 

In deep learning, the main objective of the training of the neural network is to minimize 

error. This objective function is referred to as “loss”.  From Figure 4.17, the loss starts 

out at 0.56 during step 0, and it flactuates but the overall loss is decreasing. The loss 

reaches a decent 0.25 during the final step.   
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Figure 4. 18: Learning rate of the model 

 

Learning rate is defined as the number of weights that is updated during each 

step size when the model is training. Figure 4.18 shows the learning rate of the model 

against the number of steps during training.  

 

 

Figure 4. 19: Steps per second during training 
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Figure 4.19 shows the steps per second is directly correlated to the 

computational power of the GPU or CPU hardware used. The higher the computational 

power, the higher the steps per second.  

 

 

Figure 4. 20: mAP of the object detection model  

 

From Figure 4.20, the mAP of the model trained is 0.7372. This means that the 

model can accurately classify vehicles of various classes 73.72 times out of 100 

predictions. From Figure 4.21, the average recall of the model is 0.7795. The 

performance of the trained deep learning model is decent.  

 

 

Figure 4. 21: Average recall of the model  
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4.2.4 Data Logging 

 

 

Figure 4. 22: Example of Data Logged into XML file 

 

 

The data log file is saved in xml format. The date, time, vehicle ID, direction, class 

and speed is all recorded into the data log file. The date, time recording is especially 

useful when the algorithm is processing a live feed of the traffic.   

 

 

4.3 Vehicle Counting Evaluation  

 

 

4.3.1 Test samples 

 

To evaluate the algorithm, six 15 minutes videos of vehicles is recorded using the 

hardware setup in Chapter 4.1. The six videos are recorded on two days, with 3 videos 

each day. On the first day, the 3 videos are recorded in the morning, afternoon and 

evening. This step is repeated for the second day. The first day is a weekend day while 
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the second day is weekday. Figure 4.23 to Figure 4.26 shows the scenes recorded 

during the 6 videos. The scenes have varied lighting conditions.  

 

After the video is recorded, manual counting is used to accurately determine 

the total number of vehicles, total vehicles going to the right, total vehicles going to 

the left, and finally the class type of each vehicle.  

 

 

Figure 4. 23: Scene recorded in the morning 

 

 

 

Figure 4. 24: Scene recorded in the afternoon 
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Figure 4. 25: Scene recorded in the first night 

 

 

 

 

Figure 4. 26: Scene recorded in the second night 

 

 

The scene recorded in the morning and afternoon is in bright condition since 

the sun is still out. The vehicles are very visible even in motion. 
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 For the first night, the scene is recorded from 7pm to 7.15pm. The sun has set 

but there is still some light from the sky. The vehicles have lower visibility compared 

to the scenes recorded in the morning and afternoon. The vehicles have motion blur 

when moving, which would affect the classification of vehicles. 

 

For the second night, the scene is recorded from 7.45pm to 8.00pm. The sky is 

totally dark. The only light source in the scene is the road lamp. The vehicles body is 

dark, with the headlamps and backlights visible.  

 

 

4.3.2 Manual Counting results 

 

 

Figure 4. 27: Graph of total number of vehicles passing in respect to time 

(Manual Counting) 

 

 

From Figure 4.27, the peak time for vehicles passing the road is during the morning. 

The number of vehicles at night is slightly higher than number of vehicles in the 

afternoon. Weekend day has less vehicles than the weekday in the morning but has 

more vehicles in the afternoon and at night.  
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Figure 4. 28: Graph of number of vehicles going left vs going right in respect to 

time (Manual Counting) 

 

 

The total number of vehicles passing by the road is further broken down into two 

categories: vehicles going to the left and vehicles going to the right. From figure 4.28, 

the number of vehicles going to the right is higher in the morning and afternoon on 

both days, while there are more vehicles going to the left during the night on both days. 
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4.3.3 Manual Counting vs Algorithm Counting 

 

Table 4. 1: Total number of vehicles (manual vs algorithm) 

 

 

 

 

Figure 4. 29: Graph of manual counting vs algorithm counting for total number 

of vehicles 
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Day Time Manual Counting 

Algorithm 

counting Accuracy (%) 

1 Morning 220 235 93.18181818 

1 Afternoon 252 261 96.42857 

1 Night 160 161 99.375 

2 Morning 118 118 100 

2 Afternoon 184 194 94.56521739 

2 Night 126 162 71.42857143 
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Table 4.1 compares the number of vehicles counted manually and counted by the 

algorithm and the accuracy of the algorithm. Figure 4.29 compares the number of 

vehicles counted manually and counted by the algorithm using a bar chart. From table 

4.1, the accuracy during morning and afternoon is high from a range of 93.18% to 

100%.  The accuracy of the detection decreases to 71.43% during the night. The 

algorithm counting overcounts the total number of vehicles in most cases. 

 

Table 4. 2: Number of vehicles going to the left (manual vs algorithm) 

Day Time 

Manual 

Counting 

Algorithm 

Counting Accuracy (%) 

1 Morning 61 66 91.80327869 

1 Afternoon 80 81 98.75 

1 Night 66 65 98.48484848 

2 Morning 48 47 97.91666667 

2 Afternoon 116 122 94.82758621 

2 Night 68 84 76.47058824 
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Figure 4. 30: Graph of number of vehicles going to the left (manual vs 

algorithm) 

 

 

Table 4.2 compares the number of vehicles going to the left counted manually 

and counted by the algorithm and the accuracy of the algorithm. Figure 4.30 compares 

the number of vehicles going to the left counted manually and counted by the algorithm 

using a bar chart.  From Figure 4.30, the algorithm overcounts 4 times and undercounts 

2 times for vehicles going to the left. The accuracy for counting vehicles going to the 

left is at a minimum of 76.47% during the second night, while at a maximum of 98.48% 

on the first night. 

 

 

Table 4. 3: Number of vehicles going to the right (manual vs algorithm) 

Day Time Manual Counting 

Algorithm 

Counting Accuracy (%) 

1 Morning 159 169 93.71069 

1 Afternoon 171 180 94.73684 

1 Night 94 96 97.87234 

2 Morning 70 71 98.57143 

2 Afternoon 67 72 92.53731 

2 Night 58 78 65.51724 
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Figure 4. 31: Graph of number of vehicles going to the right (manual vs 

algorithm) 

 

 

Table 4.3 compares the number of vehicles going to the right counted manually 

and counted by the algorithm and the accuracy of the algorithm. Figure 4.31 compares 

the number of vehicles going to the right counted manually and counted by the 

algorithm using a bar chart. From Figure 4.31, the algorithm overcounts vehicles going 

to the right for the six tests. The accuracy is maximum at 98.57% during the second 

morning, and minimum at 65.51% during the second night.  
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4.3.4 Errors Found for Vehicle Counting 

 

4.3.4.1 Overlapping error 

 

 

Figure 4. 32: Overlap error part 1 

 

 

 

Figure 4. 33: Overlap error part 2 
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Figure 4. 34: Overlap error part 3 

 

 

The main issue with placing the camera perpendicular to the road is the unavoidable 

overlapping error. This overlapping error is shown in Figure 4.30, 4.31 and 4.32.  

Vehicle 35 is going to the left while vehicle 36 is going to the right. However, the two 

vehicles overlap at one point, vehicle 35 blocks vehicle 36 from view. When vehicle 

36 comes back to view, the algorithm registers it as a new vehicle since it suddenly 

appeared. This extra count happens when there are multiple vehicles in frame and the 

vehicle in near lane blocks the vehicle from the far lane. This confuses the tracker as 

it is treating the vehicle that was blocked and reappear as a new vehicle.  
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4.3.4.2 Detection error when scene is dark  

 

 

Figure 4. 35: Detection error when scene is dark 

 

 

The algorithm detects the body and the light shone by the car as two different objects. 

The light is counted as a vehicle by the algorithm.  

 

 

4.4 Vehicle Speed Measurement Evaluation 

 

The main parameter of tuning for the speed measurement algorithm is the distance in 

meters for the frame width. To ensure the speed measured of each vehicle is accurate, 

a car is driven passing by the camera. This calibration is shown in Figure 4.36. The 

speed of the car can be seen on the speedometer of the car. When going to the right, 

the car’s speed is around 30km/h. When going to the left, the car’s speed is around 

27km/h. After tuning the distance in meters of the algorithm, the algorithm can 

measure accurately the car’s speed. 
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Figure 4. 36: Car with known speed driven pass the camera 

 

 

Table 4. 4: Evaluation of speed measuring algorithm 

Day Time 

Error 

Measurements 

Total 

measurements Error (%) 

1 Morning 5 196 2.551020408 

1 Afternoon 1 145 0.689655172 

1 Night 4 87 4.597701149 

2 Morning 4 204 1.960784314 

2 Afternoon 1 118 0.847457627 

2 Night 2 33 6.060606061 

 

Table 4.4 shows the errors happening during speed measuring and the 

percentage of errors happening during the speed measuring. Error measurements 

happen when the speed of the vehicle cannot be measured, or the measured speed is 

above 100km/h. From the table, most errors happen in the morning. This is because 

there are many vehicles passing by in the morning, and this results in the overlapping 
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error. The algorithm tracks the vehicle, but when another vehicle overlaps with the 

vehicle, the algorithm tracks the other vehicle that is going to the opposite direction. 

The speed cannot be measured in this case. This overlapping error also results in 

measured speed of over 100km/h.   

 

Overall, the error for speed measurement ranges from 0.69% to 2.55% for well-

lit scenes and slightly higher at 4.60% to 6.06% for dark scenes.  

 

4.5 Vehicle Classification Evaluation  

 

Table 4. 5: Actual Cars vs Predicted Cars 

Day Time Actual Cars 

Predicted 

Cars Accuracy (%) 

1 Morning 171 156 91.22807018 

1 Afternoon 121 103 96.42857 

1 Night 124 77 62.09677419 

2 Morning 172 163 94.76744186 

2 Afternoon 85 81 95.29411765 

2 Night 91 28 30.76923077 

 

 

Figure 4. 37: Graph of Actual Cars vs Predicted Cars 
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Table 4.5 compares the actual cars in the video and the number of cars detected 

by the deep learning object detection model. Figure 4.37 plots the actual cars in the 

video and the number of cars detected by the deep learning object detection model. 

From Figure 4.35 and Table 4.5, the algorithm predicted cars decently during morning 

and afternoon, with a prediction accuracy ranging from 91.23% to 96.43%. However, 

the accuracy drops to 62.1% when the scene is darker in the first night. The accuracy 

drops drastically to 30.77% when the scene is totally dark with a single road lamp in 

the second night. 

 

Table 4. 6: Actual Motorcycles vs Predicted Motorcycles 

Day Time 

Actual 

Motorcycles 

Predicted 

Motorcycles Accuracy (%) 

1 Morning 49 40 81.63265306 

1 Afternoon 40 38 95 

1 Night 58 10 17.24137931 

2 Morning 57 41 71.92982456 

2 Afternoon 33 33 100 

2 Night 34 5 14.70588235 

 

 

 

Figure 4. 38: Graph of Actual Motorcycles vs Predicted Motorcycles 
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Table 4.6 compares the actual number of motorcycles in the video and the 

number of motorcycles detected by the deep learning object detection model and 

shows the object detection model’s accuracy. Figure 4.38 plots the actual number of 

motorcycles in the video and the number of motorcycles detected by the deep learning 

object detection model. From Figure 4.38 and Table 4.6, the prediction accuracy for 

motorcycles ranges from a low 71.93% to a high 100% during the morning and 

afternoon when the scene is bright. The prediction accuracy for motorcycles drops to 

17.24% and 14.71% when the scene is dark in the first and second night.  The object 

detection model is trained with images of vehicles in the morning and afternoon. The 

visibility of the vehicles is also significantly reduced at night. Thus, vehicle 

classification is poor at night (dark condition).  

 

4.6 Limitations 

 

After conducting several experiments, some limitations in the developed system can 

be noticed. First, the vehicle counting, speed measuring and classification has poor 

performance when the scene is dark. This happens when the system is used at night 

after the sky has become dark.  

 

Furthermore, when many vehicles pass by each other in the scene, the 

overlapping of vehicles result in extra vehicles being counted. This overlapping error 

also affects the vehicle speed measuring and vehicle counting function.  
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CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Conclusion 

 

The objective of this project is to implement a low-cost hardware system that is able 

to capture video recording of vehicles on the road and a software program to be able 

to count, calculate the speed and categorize the vehicles in the video. The developed 

system can count vehicles, calculate speed of vehicles, and classify vehicles in a real-

time video. The data collected is also logged into a csv file for future reference. This 

project aims to apply the power of computer vision and deep learning for the use of 

traffic data collection. 

 

 The system has been tested with 6 different video recordings recorded at 

different times. The number of vehicles, lighting condition of the video recordings are 

different. The performance of the system varies with different lighting condition. A 

summary for the analysis is the developed system performed well when the lighting 

condition is good in the morning and the afternoon. The counting and speed 

measurements still functions well when the scene is slightly dark but there is still light 

in the sky. However, the performance of vehicle counting, and speed measurements is 

poor when the scene is almost totally dark. The vehicle classification function also 

falls short when the lighting condition is dark at night with an accuracy of 30.77%.  
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5.2 Recommendation 

 

For vehicle counting, the overlapping error is due to the camera placement being 

perpendicular to the road. A better angle for the vehicle counting will be a top view of 

the road, where every vehicle is able to be detected without any overlapping. By having 

this view the accuracy of the vehicle counting can be increased.  

 

 For vehicle counting, speed measuring, vehicle classification during bad 

lighting conditions, an infrared camera can be used instead of a normal camera to 

capture video of the vehicles. Infrared camera can capture the invisible infrared light 

that is emitted from objects. Therefore, IR cameras is able to see objects in the dark 

clearly (Cremins, 2017).  

 

 Besides, the neural network can be trained with more datasets to make it more 

accurate, and able to classify vehicles in different conditions. Future work can also 

focus on classifying vehicles into more specific classes such as trucks, vans, buses and 

others.  

 

 Other than that, future work can focus on testing the system in different weather 

such as raining and snowing to test the viability of the system in different environments.  
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APPENDICES 

 

 

 

APPENDIX A: Coding 

 

 

 

Vehicle Counting Program  

from locale import format_string 

import cv2 

import numpy as np 

import time 

import vehicles 

import csv 

import tensorflow as tf 

import dlib 

import vehicles 

import centroidtracker  

from datetime import datetime 

import os 

from imutils.video import FPS 

import imutils 

import six 

 

from centroidtracker import CentroidTracker 

from vehicles import TrackableObject 

from tensorflow_detection import DetectionObj 

 

from object_detection.utils import label_map_util 

from object_detection.utils import ops as utils_ops 

from object_detection.utils import visualization_utils_modded as 

viz_utils 

from object_detection.builders import model_builder 

from object_detection.utils import config_util 

 

""" 

Object Detection 

""" 

paths = {'CHECKPOINT_PATH':"Tensorflow/workspace/models/my_ssd_mobnet"} 
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files = { 

    'PIPELINE_CONFIG': 

"Tensorflow/workspace/models/my_ssd_mobnet/pipeline.config", 

    'TF_RECORD_SCRIPT': "Tensorflow/scripts/generate_tfrecord.py",  

    'LABELMAP': "Tensorflow/workspace/annotations/label_map.pbtxt" 

} 

# Load pipeline config and build a detection model 

configs = 

config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG']) 

 

detection_model = model_builder.build(model_config=configs['model'], 

is_training=False) 

 

# Restore checkpoint 

ckpt = tf.compat.v2.train.Checkpoint(model=detection_model) 

ckpt.restore(os.path.join(paths['CHECKPOINT_PATH'], 'ckpt-

6')).expect_partial() 

 

category_index = 

label_map_util.create_category_index_from_labelmap(files['LABELMAP']) 

 

     

 

def vehicle_counting(): 

    frame_width = 640 

    frame_height = 480 

    videoSource = "C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP 

Project\\Code\\VideoSource\\Morning1.mp4" 

    videoName= videoSource[64:-4] 

    videoOut = f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP 

Project\\Code\\Result\\{videoName}_detection.mp4' 

    LogOutPath = 'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP 

Project\\Code\\Result' 

    csv_name = f"{videoName}.csv" 

    cap=cv2.VideoCapture(videoSource)     # Video Source 

    out = cv2.VideoWriter(videoOut,cv2.VideoWriter_fourcc(*'mp4v'), 25, 

(frame_width,frame_height)) #Write video to output file 

    fgbg=cv2.createBackgroundSubtractorMOG2(detectShadows=False,history

=200,varThreshold = 90)       # Create Foreground mask     

    kernalOp = np.ones((3,3),np.uint8) 

    kernalOp2 = np.ones((5,5),np.uint8) 

    kernalCl = np.ones((11,11),np.uint8) 

    font = cv2.FONT_HERSHEY_SIMPLEX 

    cars = [] 

    max_p_age = 5 

    pid = 1 

    cnt_left=0 

    cnt_right=0 

    cnt_left2=0 
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    cnt_right2=0 

    cnt_car = 0 

    cnt_motor = 0 

    cnt_bicycle = 0 

    cnt_nan = 0 

 

    # maximum consecutive frames a given object is allowed to be marked 

as "disappeared" until we need to deregister the object from tracking 

    max_disappear = 8 

    # maximum distance between centroids to associate an object if the 

distance is larger than this maximum distance we'll start to mark the 

object as "disappeared" 

    max_distance = 175 

    #number of frames to perform object tracking instead of object 

detection 

    track_object = 4 

    #minimum confidence 

    confidence = 0.4 

    #frame width in pixels 

    frame_width = 640 

    #dictionary holding the different speed estimation columns 

    speed_estimation_zone = (250,300, 350, 400) 

    #real world distance in meters 

    distance_left = 13  

    distance_right = 15.1 

    #speed limit in kmph 

    speed_limit = 50 

 

    #Meter Per Pixel 

    meterPerPixel_left = distance_left / frame_width 

    meterPerPixel_right = distance_right/ frame_width 

 

    # count the number of frames 

    frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) 

    # start the frames per second throughput estimator 

    fps_2 = int(cap.get(cv2.CAP_PROP_FPS)) 

     

    # calculate dusration of the video 

    seconds = int(frames / fps_2) 

    duration = float(seconds/3600) 

 

    print(f"frames: {frames} fps: {fps_2} seconds:{seconds} 

duration:{duration}") 

    print("Car counting and classification") 

 

    line_left=310 #320 dv 

    line_right=330 #450 dv 
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    left_limit=540 #470 for diagonal view (dv) 

    right_limit=60 #300 for diagonal view 

 

    # ---------------------------------- Speed Measurement Parameters -

-------------------------------------- 

    ct = CentroidTracker(maxDisappeared= max_disappear) 

    trackers = [] 

    trackableObjects = {} 

    # keep the count of total number of frames 

    frame_count = 0 

    # initialize the log file 

    logFile = None 

    # initialize the list of various points used to calculate the avg 

of 

    # the vehicle speed 

    points = [("A", "B"), ("B", "C"), ("C", "D")] 

     

     

 

    while(cap.isOpened()): 

        timez = float(frame_count/fps_2) 

        ret,frame=cap.read() 

        ts = datetime.now() 

        newDate = ts.strftime("%m-%d-%y") 

        rects = [] 

        centroidz = [] 

         

         

         

 

        if frame is None: 

            break 

 

        if logFile is None: 

            # build the log file path and create/open the log file 

            logPath = os.path.join(LogOutPath, csv_name) 

            logFile = open(logPath, mode="a") 

            # set the file pointer to end of the file 

            pos = logFile.seek(0, os.SEEK_END) 

            # if we are using dropbox and this is a empty log file then 

            # write the column headings 

            

            if pos == 0: 

                logFile.write("Year,Month,Day,Time, 

ObjectID ,Direction, Vehicle Class, Speed(km/h)\n") 
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        # Object Detection 

        image_np = np.array(frame) 

     

        input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 

axis=0), dtype=tf.float32) 

        detections = detect_fn(input_tensor) 

         

        num_detections = int(detections.pop('num_detections')) 

        detections = {key: value[0, :num_detections].numpy() 

                    for key, value in detections.items()} 

        detections['num_detections'] = num_detections 

 

        # detection_classes should be ints. 

        detections['detection_classes'] = 

detections['detection_classes'].astype(np.int64) 

 

        label_id_offset = 1 

        image_np_with_detections = image_np.copy() 

 

        class_label, rects2, _ = 

viz_utils.visualize_boxes_and_labels_on_image_array( 

                    image_np_with_detections, 

                    detections['detection_boxes'], 

                    detections['detection_classes']+label_id_offset, 

                    detections['detection_scores'], 

                    category_index, 

                    use_normalized_coordinates=True, 

                    max_boxes_to_draw=5, 

                    min_score_thresh=.8, 

                    agnostic_mode=False) 

 

        image_np_with_detections = cv2.resize(image_np_with_detections, 

(frame_width, frame_height)) 

             

 

        for i in cars: 

            i.age_one() 

        fgmask=fgbg.apply(frame) 

        # if frame_count == 1080: 

        #     cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FY

P Project\\Code\\Result\\maskSub_{frame_count}.png',fgmask) 

 

         

 

         

 

        if ret==True:  

            ret,imBin=cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY) 
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            # 

cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP 

Project\\Code\\Result\\image_thresh_{frame_count}.png',imBin) 

            mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kernalOp) 

            # 

cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP 

Project\\Code\\Result\\image_morphOp_{frame_count}.png',mask) 

            mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernalCl) 

            # 

cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP 

Project\\Code\\Result\\image_morphClose_{frame_count}.png',mask) 

 

            (countours0,hierarchy)=cv2.findContours(mask,cv2.RETR_EXTER

NAL,cv2.CHAIN_APPROX_NONE) 

            for cnt in countours0: 

                area=cv2.contourArea(cnt) 

               

 

                if (area>2000 and area < 60000): 

 

                    m=cv2.moments(cnt) 

                    cx=int(m['m10']/m['m00']) 

                    cy=int(m['m01']/m['m00']) 

                    x,y,w,h=cv2.boundingRect(cnt) 

 

                    rects.append((x, y, w, h)) 

                    centroidz.append((cx,cy)) 

                    # add the bounding box coordinates to the 

rectangles list 

                     

 

                    # use the centroid tracker to associate the (1) old 

object 

                    # centroids with (2) the newly computed object 

centroids 

 

                    new=True 

                    if cx in range(right_limit,left_limit): # If car 

within limit 

                        for i in cars: 

                            if abs(x - i.getX()) <= w and  abs(y - 

i.getY()) <= h :  #Check whether new car or old car that has moved 

                                new = False 

                                i.updateCoords(cx, cy) #Update 

Coordinate if car moves 

 

                                # Determine the direction of the car 
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                                if 

i.going_LEFT(line_right,line_left)==True: 

                                    cnt_left+=1 

 

                                    if to.vehicleClass == "car": 

                                        cnt_car+=1 

                                    elif to.vehicleClass 

=="motorcycle": 

                                        cnt_motor+=1 

                                    elif to.vehicleClass =="bicycle": 

                                        cnt_bicycle+=1 

                                    else: 

                                        cnt_nan+=1 

 

                                elif 

i.going_RIGHT(line_right,line_left)==True: 

                                    cnt_right+=1 

 

                                    if to.vehicleClass == "car": 

                                        cnt_car+=1 

                                    elif to.vehicleClass 

=="motorcycle": 

                                        cnt_motor+=1 

                                    elif to.vehicleClass =="bicycle": 

                                        cnt_bicycle+=1 

                                    else: 

                                        cnt_nan+=1 

 

                                break 

 

                            # If reach limit stop bounding rectangle 

                            if i.getState()=='1': 

                                if i.getDir()=='right'and 

i.getX()>right_limit: 

                                    i.setDone() 

                                elif i.getDir()=='left'and 

i.getX()<left_limit: 

                                    i.setDone() 

                            if i.timedOut(): 

                                index=cars.index(i) 

                                cars.pop(index) 

                                del i 

 

                        if new==True: 

                            p=vehicles.Car(pid,cx,cy,max_p_age) 

                            cars.append(p) 

                            pid+1 

                    cv2.circle(image_np_with_detections, (cx, cy), 2, 

(0, 0, 255), -1) # Draw the centroid of the car 
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                    img=cv2.rectangle(mask,(x,y),(x+w,y+h),(244,255,100

),2) # Draw rectangle over the car 

                    

                    if frame_count == 1080: 

                        frame=cv2.line(frame,(line_left,0),(line_left,4

80),(0,0,255),3,8) 

                        frame=cv2.line(frame,(left_limit,0),(left_limit

,480),(255,255,0),1,8) # Display left limit 

 

                        frame=cv2.line(frame,(right_limit,0),(right_lim

it,480),(255,255,0),1,8) # Display right limit 

                        frame = cv2.line(frame, (line_right, 0), 

(line_right, 480), (255, 0,0), 3, 8) 

                        cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR

\\Y3S1\\FYP 

Project\\Code\\Result\\imageFindcontour_{frame_count}.png',frame) 

 

 

 

            objects = ct.update(rects, centroidz) 

             

                     

            # loop over the tracked objects 

            for (objectID, centroid) in objects.items(): 

                # check to see if a trackable object exists for the 

current 

                # object ID 

                to = trackableObjects.get(objectID, None) 

                # print(f"Object ID:{objectID} centroid:{centroid}" ) 

                

                # if there is no existing trackable object, create one 

                if to is None: 

                    to = TrackableObject(objectID, centroid) 

                    to.vehicleClass = class_label 

                 

 

                    

                     

 

                # otherwise, if there is a trackable object and its 

speed has 

                # not yet been estimated then estimate it 

                elif not to.estimated: 

                    if to.vehicleClass is None or to.vehicleClass == 

"None": 

                        to.vehicleClass = class_label 
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                    # check if the direction of the object has been 

set, if 

                    # not, calculate it, and set it 

                    if to.direction is None or to.direction == 0: 

                        y = [c[0] for c in to.centroids] 

                        direction = centroid[0] - np.mean(y) 

                        to.direction = direction 

 

                        # print(f"npmeany: {np.mean(y)} direction: 

{direction}") 

 

                            # if the direction is positive (indicating 

the object 

                    # is moving from left to right) 

                    if to.direction > 0: 

                        # check to see if timestamp has been noted for 

                        # point A 

                        if to.timestamp["A"] == 0 : 

                            # if the centroid's x-coordinate is greater 

than 

                            # the corresponding point then set the 

timestamp 

                            # as current timestamp and set the position 

as the 

                            # centroid's x-coordinate 

                            if centroid[0] > speed_estimation_zone[0]: 

                                to.timestamp["A"] = timez 

                                to.position["A"] = centroid[0] 

                        # check to see if timestamp has been noted for 

                        # point B 

                        elif to.timestamp["B"] == 0: 

                            # if the centroid's x-coordinate is greater 

than 

                            # the corresponding point then set the 

timestamp 

                            # as current timestamp and set the position 

as the 

                            # centroid's x-coordinate 

                            if centroid[0] > speed_estimation_zone[1]: 

                                to.timestamp["B"] = timez 

                                to.position["B"] = centroid[0] 

                        # check to see if timestamp has been noted for 

                        # point C 

                        elif to.timestamp["C"] == 0: 

                            # if the centroid's x-coordinate is greater 

than 

                            # the corresponding point then set the 

timestamp 



89 

                            # as current timestamp and set the position 

as the 

                            # centroid's x-coordinate 

                            if centroid[0] > speed_estimation_zone[2]: 

                                to.timestamp["C"] = timez 

                                to.position["C"] = centroid[0] 

                        # check to see if timestamp has been noted for 

                        # point D 

                        elif to.timestamp["D"] == 0: 

                            # if the centroid's x-coordinate is greater 

than 

                            # the corresponding point then set the 

timestamp 

                            # as current timestamp, set the position as 

the 

                            # centroid's x-coordinate, and set the last 

point 

                            # flag as True 

                            if centroid[0] > speed_estimation_zone[3]: 

                                to.timestamp["D"] = timez 

                                to.position["D"] = centroid[0] 

                                to.lastPoint = True 

 

                    # if the direction is negative (indicating the 

object 

                    # is moving from right to left) 

                    elif to.direction < 0: 

                        # check to see if timestamp has been noted for 

                        # point D 

                        if to.timestamp["D"] == 0 : 

                            # if the centroid's x-coordinate is lesser 

than 

                            # the corresponding point then set the 

timestamp 

                            # as current timestamp and set the position 

as the 

                            # centroid's x-coordinate 

                            if centroid[0] < speed_estimation_zone[0]: 

                                to.timestamp["D"] = timez 

                                to.position["D"] = centroid[0] 

                        # check to see if timestamp has been noted for 

                        # point C 

                        elif to.timestamp["C"] == 0: 

                            # if the centroid's x-coordinate is lesser 

than 

                            # the corresponding point then set the 

timestamp 

                            # as current timestamp and set the position 

as the 
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                            # centroid's x-coordinate 

                            if centroid[0] < speed_estimation_zone[1]: 

                                to.timestamp["C"] = timez 

                                to.position["C"] = centroid[0] 

                        # check to see if timestamp has been noted for 

                        # point B 

                        elif to.timestamp["B"] == 0: 

                            # if the centroid's x-coordinate is lesser 

than 

                            # the corresponding point then set the 

timestamp 

                            # as current timestamp and set the position 

as the 

                            # centroid's x-coordinate 

                            if centroid[0] < speed_estimation_zone[2]: 

                                to.timestamp["B"] = timez 

                                to.position["B"] = centroid[0] 

                        # check to see if timestamp has been noted for 

                        # point A 

                        elif to.timestamp["A"] == 0: 

                            # if the centroid's x-coordinate is lesser 

than 

                            # the corresponding point then set the 

timestamp 

                            # as current timestamp, set the position as 

the 

                            # centroid's x-coordinate, and set the last 

point 

                            # flag as True 

                            if centroid[0] < speed_estimation_zone[3]: 

                                to.timestamp["A"] = timez 

                                to.position["A"] = centroid[0] 

                                to.lastPoint = True 

 

                    # check to see if the vehicle is past the last 

point and 

                    # the vehicle's speed has not yet been estimated, 

if yes, 

                    # then calculate the vehicle speed and log it if 

it's 

                    # over the limit 

                    if to.lastPoint and not to.estimated: 

                        # print(to.position["A"], to.position["B"], 

to.position["C"], to.position["D"]) 

                        # initialize the list of estimated speeds 

                        estimatedSpeeds = [] 

 

                        if to.vehicleClass is None or to.vehicleClass 

== "None": 
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                            # if class_label is None: 

                            #     to.vehicleClass = "motorcycle" 

                            #     cnt_motor += 1 

                            # else: 

                            to.vehicleClass = class_label 

 

                         

                        # loop over all the pairs of points and 

estimate the 

                        # vehicle speed 

                        for (i, j) in points: 

                            # calculate the distance in pixels 

                            d = to.position[j] - to.position[i] 

                            distanceInPixels = abs(d) 

                            # print(f"Distance In Pixel: 

{distanceInPixels}") 

                            # check if the distance in pixels is zero, 

if so, 

                            # skip this iteration 

                            if distanceInPixels == 0: 

                                continue 

                            # calculate the time in hours 

                            if to.timestamp[j] is str or 

to.timestamp[i] is str: 

                                estimatedSpeeds.append(100) 

                            else: 

                                # print(f"Timestamp J: 

{type(to.timestamp[j])} Timestamp I: {type(to.timestamp[i])}") 

                                timeInSeconds = abs(to.timestamp[j] - 

to.timestamp[i]) 

                             

                                # timeInSeconds = 

abs(t.total_seconds()) 

                                timeInHours = timeInSeconds / (60 * 60) 

                                # calculate distance in kilometers and 

append the 

                                # calculated speed to the list 

                                if direction > 0: 

                                    distanceInMeters = distanceInPixels 

* meterPerPixel_right 

                                elif direction < 0: 

                                    distanceInMeters = distanceInPixels 

* meterPerPixel_left 

 

                                distanceInKM = distanceInMeters / 1000 

                                estimatedSpeeds.append(distanceInKM / 

timeInHours) 
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                            # else:  

                            #     estimatedSpeeds.append(100) 

                        # calculate the average speed 

                        to.calculate_speed(estimatedSpeeds) 

                        # set the object as estimated 

                        to.estimated = True 

                        print(to.vehicleClass) 

                        print("[INFO] Speed of the vehicle that just 

passed"\ 

                            " is: {:.2f} KMPH {} 

{}".format(to.speedKMPH, objectID, to.direction)) 

                        # textz = "Speed: {:.2f}".format(to.speedKMPH) 

                        # cv2.putText(image_np_with_detections, textz, 

(centroid[0] - 15, centroid[1] - 10) 

                        # , cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 

2) 

                         

                # store the trackable object in our dictionary 

                trackableObjects[objectID] = to 

 

                # draw both the ID of the object and the centroid of 

the 

                # object on the output frame 

                text = "ID {}".format(objectID) 

                cv2.putText(image_np_with_detections, text, 

(centroid[0] - 10, centroid[1] - 10) 

                    , cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) 

                cv2.circle(image_np_with_detections, (centroid[0], 

centroid[1]), 4, 

                    (0, 255, 0), -1) 

 

                # check if the object has not been logged 

                if not to.logged: 

                    # check if the object's speed has been estimated 

and it 

                    # is higher than the speed limit 

                    if to.estimated: 

                        # set the current year, month, day, and time 

                        year = ts.strftime("%Y") 

                        month = ts.strftime("%m") 

                        day = ts.strftime("%d") 

                        time = ts.strftime("%H:%M:%S") 

                        if to.direction < 0: 

                            cardirection = "Left" 

                            cnt_left2 +=1 

                        elif to.direction > 0: 

                            cardirection = "Right" 

                            cnt_right2+=1 
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                        # if to.vehicleClass == "car": 

                        #     cnt_car+=1 

                        # elif to.vehicleClass =="motorcycle": 

                        #     cnt_motor+=1 

                        # elif to.vehicleClass =="bicycle": 

                        #     cnt_bicycle+=1 

                         

 

                     

                        # log the event in the log file 

                        info = 

"{},{},{},{},{},{},{},{:.2f}\n".format(year, month, day, time, 

to.objectID, cardirection, 

                            to.vehicleClass, to.speedKMPH) 

                        print(info) 

                        logFile.write(info) 

                        # set the object has logged 

                        to.logged = True 

 

                         

 

 

            #--------------------------Display info on video ----------

--------------------------------------------------- 

 

            str_left='Going Right: '+str(cnt_left) 

            str_right='Going Left: '+str(cnt_right) 

            cv2.putText(image_np_with_detections, str_left, (110, 40), 

font, 0.5, (0, 0, 255), 1, cv2.LINE_AA) 

            cv2.putText(image_np_with_detections, str_right, (110, 60), 

font, 0.5, (255, 0, 0), 1, cv2.LINE_AA) 

            

            out.write(image_np_with_detections) # Export frame to video 

            cv2.imshow('object detection',  image_np_with_detections) 

      

         

             

            #-----------------When to End Video----------------------- 

            frame_count += 1 

 

            if cv2.waitKey(10)&0xff==ord('q'): 

                break 

 

        else: 

            break 
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    cap.release() 

    out.release() 

    cv2.destroyAllWindows() 

 

    if logFile is not None: 

        infoz = "Total Vehicle: {},Total Left: {},Total Right: {},Total 

Cars: {}, Total Motorcycles: {}, Total Bicycles: {}\n".format((cnt_left 

+ cnt_right), cnt_right, cnt_left, cnt_car, cnt_motor, 

cnt_bicycle)            

        logFile.write(infoz) 

 

        logFile.close() 

 

 

 

def detect_video(): 

    detection = DetectionObj(model='my_ssd_mobnet') 

    detection.video_pipeline(video="C:\\Users\\anand\\Documents\\UTAR\\

Y3S1\\FYP Project\\Code\\VideoSource\\video5.2.mp4", audio=False) 

 

@tf.function 

def detect_fn(image): 

    image, shapes = detection_model.preprocess(image) 

    prediction_dict = detection_model.predict(image, shapes) 

    detections = detection_model.postprocess(prediction_dict, shapes) 

    return detections 

 

if __name__ == '__main__': 

    vehicle_counting() 
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Vehicle counting, speed measuring subprogram: vehicle.py  

from random import randint 

import time 

import numpy as np 

from scipy.spatial import distance as dist 

from collections import OrderedDict 

 

class Car: 

    tracks=[] 

    def __init__(self,i,xi,yi,max_age): 

        self.i=i 

        self.x=xi 

        self.y=yi 

        self.tracks=[] 

        self.done=False 

        self.state='0' 

        self.age=0 

        self.max_age=max_age 

        self.dir=None 

 

    def getTracks(self): 

        return self.tracks 

 

    def getId(self): #For the ID 

        return self.i 

 

    def getState(self): 

        return self.state 

 

    def getDir(self): 

        return self.dir 

 

    def getX(self):  #for x coordinate 

        return self.x 

 

    def getY(self):  #for y coordinate 

        return self.y 

 

    def updateCoords(self, xn, yn): 

        self.age = 0 

        self.tracks.append([self.x, self.y]) 

        self.x = xn 

        self.y = yn 

 

    def setDone(self): 

        self.done = True 

 

    def timedOut(self): 
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        return self.done 

 

    def going_LEFT(self, mid_start, mid_end): 

        if len(self.tracks)>=2: 

            if self.state=='0': 

                if self.tracks[-1][0]>mid_end and self.tracks[-

2][0]<=mid_end: # nested listing 

                    state='1' 

                    self.dir='left' 

                    return True 

                else: 

                    return False 

            else: 

                return False 

        else: 

            return False 

 

    def going_RIGHT(self,mid_start,mid_end): 

        if len(self.tracks)>=2: 

            if self.state=='0': 

                if self.tracks[-1][0]<mid_start and self.tracks[-

2][0]>=mid_start: 

                    start='1' 

                    self.dir='right' 

                    return True 

                else: 

                    return False 

            else: 

                return False 

        else: 

            return False 

 

    def age_one(self): 

        self.age+=1 

        if self.age>self.max_age: 

            self.done=True 

        return  True 

 

#Class2 

 

class MultiCar: 

    def __init__(self,cars,xi,yi): 

        self.cars=cars 

        self.x=xi 

        self.y=yi 

        self.tracks=[] 

        self.done=False 
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class TrackableObject: 

    def __init__(self, objectID, centroid): 

        # store the object ID, then initialize a list of centroids 

        # using the current centroid 

        self.objectID = objectID 

        self.centroids = [centroid] 

        # initialize a dictionaries to store the timestamp and 

        # position of the object at various points 

        self.timestamp = {"A": 0, "B": 0, "C": 0, "D": 0} 

        self.position = {"A": None, "B": None, "C": None, "D": None} 

        self.lastPoint = False 

        # initialize the object speeds in MPH and KMPH 

        self.speedMPH = None 

        self.speedKMPH = None 

        # initialize two booleans, (1) used to indicate if the 

        # object's speed has already been estimated or not, and (2) 

        # used to indidicate if the object's speed has been logged or 

        # not 

        self.estimated = False 

        self.logged = False 

        # initialize the direction of the object 

        self.direction = None 

        #initialize vehicle Class 

        self.vehicleClass = None 

 

    def calculate_speed(self, estimatedSpeeds): 

        # calculate the speed in KMPH and MPH 

        self.speedKMPH = np.average(estimatedSpeeds) 

        MILES_PER_ONE_KILOMETER = 0.621371 

        self.speedMPH = self.speedKMPH * MILES_PER_ONE_KILOMETER 
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Vehicle counting, speed measuring subprogram: centroidtracker.py  

 

# import the necessary packages 

from scipy.spatial import distance as dist 

from collections import OrderedDict 

import numpy as np 

 

class CentroidTracker(): 

    def __init__(self, maxDisappeared=50): 

        # initialize the next unique object ID along with two ordered 

        # dictionaries used to keep track of mapping a given object 

        # ID to its centroid and number of consecutive frames it has 

        # been marked as "disappeared", respectively 

        self.nextObjectID = 0 

        self.objects = OrderedDict() 

        self.disappeared = OrderedDict() 

        # store the number of maximum consecutive frames a given 

        # object is allowed to be marked as "disappeared" until we 

        # need to deregister the object from tracking 

        self.maxDisappeared = maxDisappeared 

 

    def register(self, centroid): 

        # when registering an object we use the next available object 

        # ID to store the centroid 

        self.objects[self.nextObjectID] = centroid 

        self.disappeared[self.nextObjectID] = 0 

        self.nextObjectID += 1 

         

    def deregister(self, objectID): 

        # to deregister an object ID we delete the object ID from 

        # both of our respective dictionaries 

        del self.objects[objectID] 

        del self.disappeared[objectID] 

 

    def update(self, rects, centroidz): 

        # check to see if the list of input bounding box rectangles 

        # is empty 

        if len(rects) == 0: 

            # loop over any existing tracked objects and mark them 

            # as disappeared 

            for objectID in list(self.disappeared.keys()): 

                self.disappeared[objectID] += 1 

                # if we have reached a maximum number of consecutive 

                # frames where a given object has been marked as 

                # missing, deregister it 

                if self.disappeared[objectID] > self.maxDisappeared: 

                    self.deregister(objectID) 

            # return early as there are no centroids or tracking info 
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            # to update 

            return self.objects 

 

        # initialize an array of input centroids for the current frame 

        inputCentroids = np.zeros((len(rects), 2), dtype="int") 

        # loop over the bounding box rectangles 

        for (i, (startX, startY, endX, endY)) in enumerate(rects): 

            # use the bounding box coordinates to derive the centroid 

            # cX = int((startX + endX) / 2.0) 

            # cY = int((startY + endY) / 2.0) 

            cX = centroidz[i][0] 

            cY = centroidz[i][1] 

            inputCentroids[i] = (cX, cY) 

 

        # if we are currently not tracking any objects take the input 

        # centroids and register each of them 

        if len(self.objects) == 0: 

            for i in range(0, len(inputCentroids)): 

                self.register(inputCentroids[i]) 

 

        # otherwise, are are currently tracking objects so we need to 

        # try to match the input centroids to existing object 

        # centroids 

        else: 

            # grab the set of object IDs and corresponding centroids 

            objectIDs = list(self.objects.keys()) 

            objectCentroids = list(self.objects.values()) 

            # compute the distance between each pair of object 

            # centroids and input centroids, respectively -- our 

            # goal will be to match an input centroid to an existing 

            # object centroid 

            D = dist.cdist(np.array(objectCentroids), inputCentroids) 

            # in order to perform this matching we must (1) find the 

            # smallest value in each row and then (2) sort the row 

            # indexes based on their minimum values so that the row 

            # with the smallest value is at the *front* of the index 

            # list 

            rows = D.min(axis=1).argsort() 

            # next, we perform a similar process on the columns by 

            # finding the smallest value in each column and then 

            # sorting using the previously computed row index list 

            cols = D.argmin(axis=1)[rows] 

         

            # in order to determine if we need to update, register, 

            # or deregister an object we need to keep track of which 

            # of the rows and column indexes we have already examined 

            usedRows = set() 

            usedCols = set() 

            # loop over the combination of the (row, column) index 
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            # tuples 

            for (row, col) in zip(rows, cols): 

                # if we have already examined either the row or 

                # column value before, ignore it 

                # val 

                if row in usedRows or col in usedCols: 

                    continue 

                # otherwise, grab the object ID for the current row, 

                # set its new centroid, and reset the disappeared 

                # counter 

                objectID = objectIDs[row] 

                self.objects[objectID] = inputCentroids[col] 

                self.disappeared[objectID] = 0 

                # indicate that we have examined each of the row and 

                # column indexes, respectively 

                usedRows.add(row) 

                usedCols.add(col) 

 

            # compute both the row and column index we have NOT yet 

            # examined 

            unusedRows = set(range(0, D.shape[0])).difference(usedRows) 

            unusedCols = set(range(0, D.shape[1])).difference(usedCols) 

 

            # in the event that the number of object centroids is 

            # equal or greater than the number of input centroids 

            # we need to check and see if some of these objects have 

            # potentially disappeared 

            if D.shape[0] >= D.shape[1]: 

                # loop over the unused row indexes 

                for row in unusedRows: 

                    # grab the object ID for the corresponding row 

                    # index and increment the disappeared counter 

                    objectID = objectIDs[row] 

                    self.disappeared[objectID] += 1 

                    # check to see if the number of consecutive 

                    # frames the object has been marked "disappeared" 

                    # for warrants deregistering the object 

                    if self.disappeared[objectID] > 

self.maxDisappeared: 

                        self.deregister(objectID) 

 

            # otherwise, if the number of input centroids is greater 

            # than the number of existing object centroids we need to 

            # register each new input centroid as a trackable object 

            else: 

                for col in unusedCols: 

                    self.register(inputCentroids[col]) 

        # return the set of trackable objects 

        return self.objects 
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