

AUTOMATED TRAFFIC COUNTING DATA COLLECTION AND

ANALYSIS

ANAND LOW HONG REN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Technology (Hons) Electronic Systems

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

May 2021

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : ANAND LOW HONG REN

ID No. : 18AGB01371

Date : 3rd SEPTEMBER 2021

Loh
Typewriter
23 April 2022

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “AUTOMATED TRAFFIC COUNTING

DATA COLLECTION AND ANALYSIS” was prepared by ANAND LOW HONG

REN has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Technology (Hons) Electronic Systems at

Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Lee Han Kee

Date : ___25/4/2022_____________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2021, ANAND LOW HONG REN. All right reserved.

v

Specially dedicated to

my beloved grandmother, grandfather, brother, mother and all my friends.

vi

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr. Lee

Han Kee for his invaluable advice, guidance and his enormous patience throughout the

development of the research.

In addition, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement to face every challenge and come

out better and wiser than before.

vii

AUTOMATED TRAFFIC COUNTING DATA COLLECTION AND

ANALYSIS

ABSTRACT

The increase in the number of vehicles purchased over the years cause a high volume

of vehicles on the road. This leads to traffic congestion especially in urban areas. This

problem disrupts the daily life of many people. It is important to conduct traffic

analysis and surveys to extract traffic information which would be useful for solving

and evaluating the quality of transportation. Optimal traffic arrangements that reduce

traffic congestion can be designed by engineers using the collected traffic data. Traffic

data collection is also useful for other issues such as vehicle accidents, managing

parking areas, speeding, vehicle theft detection and others. There have been many

methods of traffic data collection proposed and implemented over the years, each with

their own pros and cons. This project proposed an automated traffic counting data

collection and analysis algorithm that is able to use computer vision to count and

measure the speed of vehicles, while also able to classify vehicles into different

categories using the power of deep learning and AI. The performance of the algorithm

is determined by the counting, classification, and speed measuring accuracy. The

factors affecting the performance of the algorithm is discussed. The system is able to

performance the tasks when it is in the bright condition with the accuracy of more than

95%. However, the accuracy is dropped to 50% when the condition is dark. This is due

to the system is unable to detect the vehicle in such condition.

viii

ix

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS vi

ABSTRACT vii

TABLE OF CONTENTS ix

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATIONS xvi

LIST OF APPENDICES xvii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 2

1.3 Aims and Objectives 3

2 LITERATURE REVIEW 5

2.1 Traffic Data Collection Systems 5

2.1.1 Manual Traffic Data Collection 5

2.1.2 Automatic Traffic Data Collection 6

2.2 Computer Vision 8

2.3 Digital Image Processing 10

2.3.1 Background Subtraction 11

2.4 Machine Learning 14

2.5 Deep Learning 16

x

2.5.1 YOLOv3 17

2.5.2 Faster R-CNN 18

2.5.3 TensorFlow 20

2.5.4 Performance metrics for deep learning 22

2.6 Journal Reviews 23

3 METHODOLOGY 26

3.1 Proposed System Design 26

3.2 Equipment 30

3.3 Hardware Configuration 31

3.4 Programming Language and Environment 31

3.5 Data Collection 32

3.6 Bill of Materials 35

3.7 Project Management 36

4 RESULTS AND DISCUSSIONS 38

4.1 Hardware setup 38

4.2 Software Setup 40

4.2.1 Vehicle Counting 40

4.2.2 Vehicle Speed Measuring 45

4.2.3 Vehicle Classification Model 47

4.2.4 Data Logging 57

4.3 Vehicle Counting Evaluation 57

4.3.1 Test samples 57

4.3.2 Manual Counting results 60

4.3.3 Manual Counting vs Algorithm Counting 62

4.3.4 Errors Found for Vehicle Counting 66

4.4 Vehicle Speed Measurement Evaluation 68

4.5 Vehicle Classification Evaluation 70

4.6 Limitations 72

5 CONCLUSION AND RECOMMENDATIONS 73

5.1 Conclusion 73

xi

5.2 Recommendation 74

REFERENCES 75

APPENDICES 80

xii

LIST OF TABLES

 TABLE TITLE PAGE

 2.1 Comparisons between different traffic counting

methods 8

3. 1 Bill of Materials 35

3. 2 Gantt Chart for FYP 1 36

3. 3 Gantt Chart for FYP 2 37

4. 1 Total number of vehicles (manual vs algorithm) 62

4. 2 Number of vehicles going to the left (manual vs

algorithm) 63

4. 3 Number of vehicles going to the right (manual vs

algorithm) 64

4. 4 Evaluation of speed measuring algorithm 69

4. 5 Actual Cars vs Predicted Cars 70

4. 6 Actual Motorcycles vs Predicted Motorcycles 71

xiii

LIST OF FIGURES

 FIGURE TITLE PAGE

2. 1 Input and Output of Background Subtraction 11

2. 2 Basic Background Subtraction process 12

2. 3 Deep Learning vs other older machine learning

algorithms 17

2. 4 Overview of YOLO object detector 17

2. 5 Overview of Faster R-CNN 19

2. 6 Six categories of vehicles based on FHWA 25

3. 1 Proposed System Design 26

3. 2 Process of developing a deep learning classifier

model 28

3. 3 Equipment List for the Development of Proposed

Automatic Traffic Counting System 30

3. 4 Hardware Configuration for the proposed

Automatic Traffic Counting System 31

3. 7 A frame from the traffic video 33

3. 8 Python program to capture video on the Raspberry

Pi 33

3. 9 Python program to convert video from H.264 to

MP4 format 34

4. 1 Setup of hardware to collect traffic data outdoors 39

xiv

4. 2 Remote view of the Raspberry Pi Interface 40

4.3 Original Frame 41

4. 4 Frame after applying MOG2BackgroundSubtractor 41

4. 5 Frame after applying binary image thresholding 42

4. 6 Frame after applying Morphology Opening 42

4. 7 Frame after applying Morphology Closing 43

4. 8 Contour detected by OpenCV findContours

function 44

4. 9 Example of external retrieval mode 44

4. 10 Camera’s field of view 45

4. 11 Method of speed estimation 47

4. 12 Annotating images using labelImg 49

4. 13 Label Map for the current project 50

4. 14 Part of the pipeline.config 51

4. 15 Command to initiate training 52

4. 16 Printout during training 53

4. 17 Loss metric during the training of the model 54

4. 18 Learning rate of the model 55

4. 19 Steps per second during training 55

4. 20 mAP of the object detection model 56

4. 21 Average recall of the model 56

4. 22 Example of Data Logged into XML file 57

4. 23 Scene recorded in the morning 58

4. 24 Scene recorded in the afternoon 58

4. 25 Scene recorded in the first night 59

4. 26 Scene recorded in the second night 59

xv

4. 27 Graph of total number of vehicles passing in respect

to time (Manual Counting) 60

4. 28 Graph of number of vehicles going left vs going

right in respect to time (Manual Counting) 61

4. 29 Graph of manual counting vs algorithm counting for

total number of vehicles 62

4. 30 Graph of number of vehicles going to the left

(manual vs algorithm) 64

4. 31 Graph of number of vehicles going to the right

(manual vs algorithm) 65

4. 32 Overlap error part 1 66

4. 33 Overlap error part 2 66

4. 34 Overlap error part 3 67

4. 35 Detection error when scene is dark 68

4. 36 Car with known speed driven pass the camera 69

4. 37 Graph of Actual Cars vs Predicted Cars 70

4. 38 Graph of Actual Motorcycles vs Predicted

Motorcycles 71

xvi

LIST OF SYMBOLS / ABBREVIATIONS

RADAR Radio Detection and Ranging

LIDAR Light Detection and Ranging

IR Infrared

VCR videocassette recorder

AI Artificial Intelligence

CNN Convolution Neural Network

CT Computerized Tomography

MRI Magnetic Resonance Imaging

CV Computer Vision

MOG Mixture of Gaussians

YOLO You Only Look Once

VNC Virtual Network Computing

fps frames per second

xvii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A Coding 80

CHAPTER 1

1 INTRODUCTION

1.1 Background

Traffic congestion especially in urban areas is an avoidable problem in Malaysia. This

problem is especially evident daily during the morning when people are going to work,

and in the evening, when people are coming home from work. This problem is

especially serious during the festive seasons in Malaysia such as Chinese New Year,

Hari Raya Aidil Fitri, Thaipusam and many others. Other than that, traffic congestions

also happen during unprecedented phenomena such as floods, accidents and others.

Malaysia as a developing country going through urbanization and economic

modernization activities. With development in different aspects such as economic,

physical, social, politics, comes the increased demand of transportation for work,

leisure, and other purposes. According to a market research agency called Nielsen

(2014), it is found in 2014 that Malaysia has the third highest rate of private car

ownership in the world, with 93 percent of households owning a car. This shows the

heavy dependency of Malaysians on private vehicles for transport for daily activities,

which results in a high number of vehicles on the road.

Traffic congestion happens when there are too many cars on the road and the

traffic flow is disrupted. Traffic congestion creates havoc on the road and disrupts

drivers’ everyday routines. Time spent on the road has a different kind of negative

consequences for productivity, social behaviour, the environment and the economy.

Therefore, it is important to conduct traffic analysis and surveys to extract

traffic information which would be useful for solving and evaluating the quality of

transportation. With this traffic information, engineers are able to analyse the traffic

situation and be able to solve and design an optimal traffic arrangement which

minimizes traffic congestions. Traffic data collection and traffic surveys are designed

to collect statistics that properly represent the area's real-world traffic condition. For

example, traffic surveys may count the number of cars on a road or gather data on

travel times, travel frequency, origin/destination for the trips and others.

Other than that, vehicle counting, and traffic data collection can be useful for

other uses such as vehicle accidents, managing parking areas, vehicle theft detection

and others.

Traffic counting and surveys are generally categorized into two different types,

manual counting and automatic counting. There are two ways of manual counting.

Firstly, an operator can stand by the side of the road and record the number of vehicles

seen and category of car in a paper pad. Another way of manual counting is a camera

is placed at an eagle’s eye point of view over the road, and a video of the road will be

recorded. After that, an operator would review the video and count the vehicles passing

by analysing the video. For automatic counting, it includes various ways such as radar,

piezoelectric sensors (e.g., RADAR vehicle counter Sierzega SR4), pneumatic road

tubes, and induction loops. Recently, machine learning and AI has started to become

a hot topic in the technology industry, and one of the real-world problems people have

been trying to solve using AI and machine learning is traffic counting.

1.2 Problem Statements

For many years, traffic counting has been conducted in various ways, such as manual

counting and automatic counting.

For manual counting, an operator has to be at the side of the road, constantly

observing vehicles passing by the road, then write down the vehicle category and the

time of the vehicle passing the road. Another way of manual counting is by recording

the road that require traffic flow analysis, and then the operator will review that video

and count the vehicles. The operator can use tally sheets or mechanical counters to aid

their counting of vehicles. However, this method is not very effective because the

quality or accuracy of the manual counts are affected by human error and visibility of

the vehicles on road.

For automatic counting, there a several methods such as piezo, pressure sensors,

inductive and magneto-metric sensors, acoustic sensors, Lidar and Radar, photo/video

and IR sensors (Yatskiv, et al., 2013). These sensors have been used to replace manual

counting, however each of the method has its advantages and disadvantages. For

example, pressure, piezoelectric, inductive sensors have to be installed into the road

surface which is cumbersome and requires special permission from the road owner.

RADAR and LIDAR sensors have a major disadvantage where they are only able to

detect the speed of one moving vehicle at a time. Acoustic sensors are prone to

disruption by bad weather conditions and probabilistic noise according to Yatskiv, et

al. (2013). It also does not measure several vehicles simultaneously.

All traffic collection data methods reflect a trade-off between the method’s

objectives, available resources, possible coverage, and the quantity of data to gather.

Depending on the objectives, the associated expenses, and the required level of quality,

one of the available traffic data collecting methods may be chosen. Overall, the best

method so far has been using video and IR sensors to collect traffic data, because this

method is relatively inexpensive compared to others due to low-cost electronic devices.

By combining the overall best sensor to collect traffic data with the power of computer

vision machine learning, an evolved and better version of traffic data collection

method can be created.

1.3 Aims and Objectives

The objectives of this thesis are shown below:

i. To construct a low-cost hardware system that is able to capture good quality

video recording of vehicles on the road

ii. To determine the best computer vision algorithm to be implemented in the

traffic data collection system.

iii. To construct a software program that is able to detect, track and count the

vehicles in the video.

iv. To construct a software program that is able to calculate the speed of every

vehicle passing in the video

v. To construct a software program that is able to classify the vehicles in the

video.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Traffic Data Collection Systems

2.1.1 Manual Traffic Data Collection

Manual traffic data collection refers to the collection of traffic data through manual

ways, which requires a human operator to examine vehicles on the road. Some

examples of manual traffic data collection include counting vehicles at junctions,

estimating average daily traffic, and calculating yearly average daily traffic (Adebisi,

1987; Baker et al., 1982; Findley et al., 2011). Manual traffic data collection is

generally done in two ways, on site (inspecting vehicles directly beside the road), or

inspection through video recordings. The data is usually recorded by operators using

tally sheets or mechanical counters (Zheng & Mike, 2012). The data are recorded for

a time interval (e.g., 10 min), then the total is calculated and can be saved to the

computer for later processing (Schumann, 2001; Wylie, 2010; Jalihal, et al., 2005).

Manual counting is generally not able to capture complicated traffic patterns, and

advance data like travel time. Zheng and Mike (2012) investigated the accuracy of

manual traffic data collection by examining a video recording of the traffic in

Southampton taken by Transportation Research Group (TRG) of University of

Southampton. In the authors’ research, they used a computer-controlled VCR which

can modify the playback speed of the video recording, ranging from 1 fps to 9 times

the normal playback speed. The operator would press certain keys (L for long vehicle,

S for short vehicle), then the time stamps and the vehicle category will be saved in a

text file. The result obtained from this method is highly accurate, but this method is

more time consuming. The authors took the result and compared to the manual

6

counting done by students from TRG of University of Southampton on site. The

research found that counting errors (counting number of vehicles on the road) is

generally less than 1%, and classification errors (classifying the vehicle into two

categories: long (more or equal than 5.2m in length) and short (less than 5.2m in

length)) are more significant, at an average of 4% to 5%. This result is due to the

difficulties of judging the vehicles’ length through the video recordings.

The price for manual traffic collection is dependent on a few factors, such as

number of traffic movements, number of vehicle classes or categories, and traffic

density. In general, manual traffic collection provides a cheaper hourly rate for simple

traffic scenes such as highways, but it gets much more expensive when locations with

high volume of traffic and movements are required to be analysed (Stofan, 2020).

Overall, manual traffic data collection is slow, prone to human errors, and it is

only providing static traffic volume reports in Excel spreadsheets at best (Stofan 2020).

2.1.2 Automatic Traffic Data Collection

Automatic traffic data collection refers to all methods of traffic data collection that

does not require a human operator to examine and manually count the vehicles on the

road. Automatic traffic data collection includes LIDARs, RADARs, inductive loop

sensors, acoustic sensors, pressure (piezoelectric) sensors and others. Different sensor

technology comes with its own advantages and disadvantages.

LIDAR (Light Detection and Ranging) sensors uses active optical systems that

project light in the form of a pulsed laser onto the vehicle, and the laser will be reflected

back into the system for information processing. The accuracy of the LIDAR sensor is

highly dependent on the weather conditions (snow, rain and dust) according to Yatskiv

et al. (2013). RADAR sensors are similar but uses radio waves instead of pulsed lasers

to determine the distance, velocity of the vehicles. Both LIDAR and RADAR sensors

have a major disadvantage which is they are only able to detect the velocity of a single

7

moving vehicle at a time. It is usually used for traffic enforcement camera to monitor

compliance with speed limits by the police.

Inductive loop sensors are a wire placed under the road surface and connected

to a controller. When a vehicle passes the induction loop or stops on it, the vehicle’s

ferrous body material increases the loop’s inductance, but the peripheral metal of the

vehicle decreases inductance because of eddy currents produced. The decrease in

inductance due to eddy currents offsets the increase in inductance due to ferrous metal,

thus, an overall decrease in inductance is observed. Decrease in inductance results in

the decrease of impedance in the loop, which will actuate the electronics unit output

relay, which sends a signal to the controller to indicate the passing or presence of a

vehicle. Induction looks can classify the type of vehicle depending on its iron mass,

while it may also detect the velocity of the vehicle with an accuracy of ±1%. The main

disadvantage is that it requires the destruction of the road surface to install the

inductive loops.

Pressure such as piezo electric sensors consist of two switch elements, which

are both apart with a certain distance. The first switch element is triggered when the

front wheel of the vehicle crosses it, which signals the timer to start. When the back

wheel crosses the second element, it stops the timer. This sensor is able to record the

velocity, weight and direction of the vehicles passing by (Batenko et al. 2011). The

accuracy of the velocity measurement is less than 1%. The sensor also has to be

installed into the road surface, and the measurements can be disrupted by weather

conditions, such as temperature and ice.

8

Table 2. 1 Comparisons between different traffic counting methods (Yatskiv, et

al., 2013)

Technology Vehicle

Counter

Velocity

measurement

Accuracy

(%)

Real

time

data

Additional

data

Affected

by weather

conditions

Manual

human

counters

Yes No No Vehicle

Type

Yes

Pressure

(piezoelectric)

sensors

Yes Yes, <1% Yes Weight,

Vehicle

Type

No

Inductive

loop sensors

Yes Yes, <1% Yes Vehicle

Type

No

Ultrasonic

sensors

Yes No Yes Vehicle

Type

Yes

RADAR and

LIDAR

sensors

Yes Yes, < 3km/h Yes Vehicle

Type

No

2.2 Computer Vision

Computer vision is a field of artificial intelligence (AI) that allows computers and other

systems to derive useful information for the end user from digital images, videos and

other visual inputs. Computer vision can be said to be the eyes for a machine system,

will the AI algorithm is the brain. Computer vision trains the computer to identify and

distinguish objects, how far away the object is, whether the object is moving, or if

something is wrong. Computer vision requires a lot of data, much like machine

learning. It requires repeated analysis of the different and unique datasets until it is

9

able to recognise the unique features of each object and finally identify the object in

the photo or video.

Currently, the most used technologies for computer vision is deep learning (a

type of machine learning) and a convolution neural network (CNN). Machine learning

uses different statistical algorithmic models to allow the computer to “learn” the

patterns and unique features of an object from visual data. These algorithms enable the

machine to run through the data and learn the features of the objects by itself, without

the need for programmers to specifically program it to recognize the object (IBM,

2020).

There are a few tasks that can successfully be done by computer vision, which

includes image classification, object detection, object tracking and content-based

image retrieval.

Image classification means the system is able to analyse an image and is able

to classify the image based on the subject in the photo (human, animals, vehicles). The

system capable of correctly predicting which class the image belongs to. This is

especially useful in many cases where classifying the images into different groups is

crucial. For example, a group of images of different animals can be classified into

groups based on their species, such as dog, cat, mouse and others.

Object detection refers to the system able to identify the object inside the image

by finding similarities of the object with the available datasets. If enough similarities

are found, the system is able to correctly identify the object in different images or

videos. For example, quality inspection machines can use computer vision systems to

identify defects or scratches on the products the system is inspecting, which is very

useful for quality control.

Object tracking refers to the computer vision system able to track the object

after detecting it. This task requires a sequence of pictures or video streams as input

data. For example, autonomous vehicles have to use object tracking to track people,

other vehicles, road infrastructure and other things in motion to prevent accidents and

comply with traffic regulations (Le, 2018).

10

2.3 Digital Image Processing

Digital Image Processing is the “manipulation of images using digital computers

according to Eduardo and Gelson (2005). If human vision is important to us humans,

then digital image processing is one significant part of computer vision that allows the

image to transform into data that is significant. It’s use is undoubtedly increasing

exponentially over the years, following the rise of Artificial Intelligence and Machine

Learning. It’s applications range from the medical sector, such as the 3D modelling in

CT and MRI, to entertainment in the form of the Nintendo Wii remote which is able

to use computer vision and image processing to track the player’s movements.

Multimedia systems such as televisions and displays, rely heavily on digital image

processing.

The discipline of digital image processing is vast, which includes various

different algorithms and techniques to manipulate images for different purposes. An

image can be regarded as a function f(x,y) of two continuous variables x and y. A digital

image consists of a matrix of numbers representing every single pixel in the image.

Digital image processing consists of the manipulation of those finite precision numbers.

Digital image processing can be divided into several classes: image

enhancement, image restoration, image analysis, and image compression. In image

enhancement, images are modified through heuristic methods, which allows useful

data to be extracted from the images. Image restoration techniques is used for

processing bad or corrupted images to remove degradation so that the clarity or

features of the original image can be restored. Image analysis techniques are used to

process the image in such a way that information can be automatically extracted from

it and used for other purposes, such as quality inspection of a product. Examples of

image analysis are image segmentation, edge extraction, and texture and motion

analysis (Eduardo & Gelson, 2005). A digital image can contain huge amounts of

information depending on it’s resolution, format and encoding. For example, a gray-

scale image of moderate resolution, say 512 × 512, needs 512 × 512 × 8 ≈ 2 ×

106 bits for its representation. Therefore, image compression is essential as a way to

reduce the file size of an image for better storage and sharing of digital images.

11

2.3.1 Background Subtraction

The task of marking foreground entities or objects plays an important role in the video

pre-processing process as the initial phase of computer vision applications (Murzova,

2021). These applications include vehicle detection, people tracking, animal tracking

and others that require tracking, monitoring, recognition of objects. Background

subtraction allows CV programs to obtain rough but rapid identifications (outlines) of

objects that appear in the video stream (Murzowa, 2021). Figure 2.1 shows the input

and output of passing an image through the background subtraction algorithm while

Figure 2.2 shows the processes involved in background subtraction.

Figure 2. 1 Input and Output of Background Subtraction

12

Figure 2. 2 Basic Background Subtraction process

Background subtraction methods creates a background model to separate

foreground from the background. The background subtraction process contains these

phases:

i. Background Generation: Processes multiple frames from video to obtain the

background image

ii. Background Modelling: Defines the model for background representation

iii. Background Model Update: Any changes that occurs in the video will be

processed here to update the Background Model

iv. Foreground Detection: Divides the pixel into two groups, background, or

foreground.

The background subtraction algorithm then outputs an image which is a binary

mask, with the foreground objects in white pixels while the background objects in

black pixels.

13

2.3.1.1 Descriptors

One important concept in background subtraction is descriptors, which is also known

as features. Descriptors define the regions in an image that are marked according to

the background model. This comparison allows the categorisation of region into the

background or the foreground. Descriptors can be marked based on colour, texture or

even edges. Popular pixel domain descriptors:

i. Colour: Colour features are sensitive to illumination, shadows and anything

which affects the appearance of moving objects. Therefore, algorithms usually

combine this with other descriptors to achieve a more robust background

subtraction model.

ii. Edge: Edge features are great because they are unaffected to light variations

and great for moving object detection. However, they are sensitive to both high

and low textured objects.

iii. Texture: Texture features provide spatial information. Texture descriptors are

unaffected by different illumination and shadows.

2.3.1.2 Background Modelling Algorithms

The three available background modelling algorithms present in OpenCV are GMG,

MOG and MOG2.

The GMG algorithm is proposed by Godbehere, Matsukawa, and Goldberg in

2012. GMG models the background with a combination of Bayesian Inference and

Kalman Filters. Bayesian inference is a method in which the Bayes’ theorem is used

to update the probability for a hypothesis as more information is obtained. This means

newer observations are given more weight than older observations to compensate for

14

variable or changing illumination. The algorithm consists of two stages. In the first

stage, the method accumulates for each pixel, weighted values based on how long a

colour (pixel RGB value) stays at that position. When new frames are inserted to the

algorithm, new observations are added into the model, thus effectively updating these

weighted values. Colours that stay static for some amounts of time are considered

background by the model. The second stage filters pixels in the foreground to reduce

noise (Marcomini & Cunha, 2018).

Mixture of Gaussians, also known as MOG, was first proposed by

KaewTraKulPong and Bowden in 2002. A combination of k Gaussian distributions

models each background pixel using this technique, with k values between 3 and 5.

The authors make the assumption that distinct distributions correspond to distinct

background and foreground hues. Each of the distributions utilised in the model has a

weight proportionate to the amount of time each colour spends on that pixel. Therefore,

when a pixel's weight distribution is small, it is classed as foreground. The MOG2

technique was developed to address one of MOG's limitations: the fixed number of

used distributions. MOG2 provides a more accurate depiction of the complexity of

colours in each frame by using a configurable number of Gaussians distributions that

are mapped pixel by pixel.

2.4 Machine Learning

Machine learning is an implementation of artificial intelligence (AI) that gives systems

the ability to automatically learn and develop from experience without being

specifically programmed. Machine learning focuses on the creation of computer

systems that can access data and use it to learn about themselves. Traditional

programming methods rely on hardcoded rules, which step-by-step set out how to

solve a problem. In comparison, a task is set for machine learning programmes, and a

vast volume of data is provided to use as examples of how this task can be performed

or from which patterns can be found. The machine then discovers how the intended

output will better be obtained. It can be viewed as narrow AI: provided a particular

15

collection of data to learn from, machine learning helps smart systems that are able to

learn a specific purpose.

While still not approaching the human-level knowledge that is typically

synonymous with the term AI, opposed to conventional programming approaches, the

ability to learn from data increases the amount and complexity of tasks that machine

learning systems can perform. Machine learning can execute complex functions such

that the desired outputs cannot be generated based on human programmed step-by-step

procedures. The learning dimension also produces applications that can be flexible and

increase the accuracy of their outcomes once they are implemented (Markoff, 2015).

The three key methods of machine learning are supervised, unsupervised and

reinforcement learning.

Supervised learning is by using labelled datasets to train algorithms that either

classify the data or predict outcomes based on the learning the patterns in the data.

When the input data is inserted into the machine learning model, the weights in the

machine learning algorithm will adjust until the model has fitted appropriately. This

process ensures that the machine learning model does not overfit or underfit to the data.

Unsupervised learning is different from supervised learning in the datasets used.

For unsupervised learning, the datasets are not labelled, thus the algorithms have to

analyse and cluster the data based on similarities on certain features or discover hidden

patterns or groupings within the data without any supervision from humans. It’s able

to discover similarities and differences which makes it great for data analysis,

customer segmentation, image and pattern recognition. It can also be used to reduce

dimensions in datasets for better results in the machine learning model. Algorithms

used in unsupervised learning include principal component analysis (PCA) and

singular value decomposition (SVD), neural networks, k-means clustering,

probabilistic clustering methods and others (IBM, 2020).

Reinforcement machine learning is similar to supervised learning, but the

algorithm is not trained using sample data. Instead, the model learns through trial and

16

error. A series of successful results will be reinforced in order to create the most

appropriate solution to a particular problem (IBM, 2020).

2.5 Deep Learning

Deep Learning is a subfield of machine learning and artificial intelligence concerned

with algorithms inspired by the structure and function of the brain called artificial

neural networks. These artificial neural networks are algorithms inspired by the human

brain and learn from large amounts of data. Just like how humans learn from past

experiences, deep learning algorithms would perform a task repeatedly, each time

tweaking parameters in the algorithm a little to improve the outcome. These algorithms

are referred as deep learning because the neural networks have various (deep) layers

that enable learning. Any problem that requires thinking to solve is a problem that deep

learning can learn to solve. However, to successfully create a deep learning neural

network which produces good results, huge amounts of data have to be collected.

The amount of data humans generates every day is astronomical - currently

estimated at 2.6 quintillion bytes- and it’s the resource that makes deep learning

possible. Since deep learning heavily relies on a ton of data to learn from, the increases

in data creation in recent years is one of the reasons why deep learning capabilities

have grown considerably. In addition to increase in data creation and collection,

stronger computing power and also the growth of Artificial Intelligence as a Service

benefitted deep learning too (Marr, 2018).

In general, Deep learning allows computers to solve complex problems even

when using a data set that is very diverse, unstructured and interconnected. The more

deep learning algorithms learn, the better they perform. Figure 2.3 compares the

performance and amount of training data needed for deep learning to other learning

algorithms.

17

Figure 2. 3: Deep Learning vs other older machine learning algorithms

2.5.1 YOLOv3

YOLOv3 (You Only Look Once, Version 3) is a real-time object recognition algorithm

that recognises particular items in videos, live streams, or images. YOLO detects

objects using characteristics learnt by a deep convolutional neural network. Joseph

Redmon and Ali Farhadi developed YOLO versions 1-3.YOLO's initial version was

released in 2016, while the third version, was released two years later in 2018.

YOLOv3 is a variant of YOLO and YOLOv2 that has been enhanced. YOLO is

implemented using the deep learning packages Keras or OpenCV (Meel, 2021). Figure

2.4 shows the processes involved in YOLO object detector.

Figure 2. 4: Overview of YOLO object detector

18

As is customary for object detectors, the convolutional layers' learnt features

are given to a classifier, which makes the detection prediction. The prediction in

YOLO is built on a convolutional layer with 1×1 convolutions. YOLO stands for "you

only look once" due to the fact that its prediction utilises 1×1 convolutions. the

prediction map size is same to the feature map size before it.

YOLO is a Convolutional Neural Network (CNN) that is capable of real-time

object identification. CNNs are classifier-based systems capable of processing

incoming pictures as organised arrays of data and finding correlations between them.

YOLO has the benefit of being much quicker than other networks while maintaining

the same level of accuracy. It enables the model to consider the whole picture at test

time, ensuring that its predictions are influenced by the image's global context. YOLO

and other convolutional neural network methods provide a numerical value to areas

based on their similarity to preset classifications. High-scoring areas are labelled as

positive detections of the class to which they most closely correspond. For instance, in

a live traffic stream, YOLO may be used to distinguish between various types of cars

based on which parts of the video score well in contrast to preset vehicle classifications

(Meel, 2021).

2.5.2 Faster R-CNN

Faster R-CNN was first published in 2015 at NIPS. Following publication, it

underwent many modifications. Faster R-CNN is the third iteration of the R-CNN

papers, which were co-authored by Ross Girshick. Everything began with the 2014

publication of "Rich feature hierarchies for accurate object detection and semantic

segmentation" (R-CNN), which utilised a technique called Selective Search to suggest

areas of interest and a conventional Convolutional Neural Network (CNN) to

categorise and modify them (Rey, 2018). It rapidly developed into Fast R-CNN,

released in early 2015, where a method called Region of Interest Pooling enabled the

model to run considerably faster by pooling costly calculations. Finally, there was

19

Faster R-CNN, which introduced the first completely differentiable model. Figure 2.5

shows the process involved in Faster R-CNN.

Figure 2. 5: Overview of Faster R-CNN

Faster R-design CNN's is complex due to the presence of many moving

components. It all begins with an image, the following information will be extracted:

a list of bounding boxes, a label for each bounding box, and a probability for each label

and bounding box.

The input images are expressed as Height × Width × Depth tensors

(multidimensional arrays), which are processed through a pre-trained CNN until

reaching an intermediate layer, where they are transformed into a convolutional feature

map. This is used as a feature extractor in the next section. Following that, is what is

known as a Region Proposal Network (RPN, for short). It is used to discover up to a

specified number of regions (bounding boxes) that may contain objects using the

characteristics calculated by the CNN. The most challenging aspect of utilising Deep

Learning (DL) for object identification is probably creating a variable-length list of

bounding boxes. When deep neural networks are modelled, the final block is often a

fixed-sized tensor output. For instance, in image classification, the output is a

(N,) shaped tensor, where N is the number of classes, and each scalar at location I

denotes the probability of the image being labeli (Rey 2018).

The RPN solves the variable-length issue by using anchors: fixed-size

reference bounding boxes that are evenly distributed across the source picture. Rather

of attempting to determine the location of objects, the issue was divided into two

components. Each anchor is examined to see whether it contains a relevant item and

how the anchor could be modified to better suit the relevant object. Once a list of

20

potentially relevant items and their positions in the original picture is created, the issue

becomes simpler to solve. Region of Interest (RoI) Pooling can be used to the CNN

features and the bounding boxes of relevant items to extract the features that relate to

the relevant objects into a new tensor. Finally, there is the R-CNN module, which

utilises this information to: Classify the material included inside the bounding box (or

reject it, using the label "background"), and update the bounding box coordinates

to better fit the objects (Rey 2018).

2.5.3 TensorFlow

TensorFlow is an open-source machine learning platform that runs from start to finish.

It features a large, flexible ecosystem of tools, libraries, and community resources that

allow researchers to advance the state-of-the-art in machine learning and developers

to quickly construct and deploy ML applications (TensorFlow, 2022).

Google research scientists and software developers often construct cutting-

edge models and make them publicly accessible rather than keeping them private in

order to improve the research community's capabilities. The COCO detection

challenge, which focuses on recognising objects in pictures (estimating the possibility

that an item is at this position) and their bounding boxes, was won by Google's in-

house object detection system in October 2016. The Google approach has not only

been featured in a number of publications and used in a number of Google products

(Nest Cam, Image Search, and Street View), but it has also been made available to the

general public as an open-source framework based on TensorFlow.

The TensorFlow object detection API provides a framework for building a

deep learning network that can identify objects. The framework includes various

important features, as well as five pre-trained models: SSD (Single Shot Detector) with

MobileNets, Region-Based Fully Convolutional Networks (R-FCN), and Faster R-

CNN, as well as five pre-trained models. The quickest model is SSD, followed by R-

FCN, and lastly the faster R-CNN. The model's precision, on the other hand, is the

inverse.

21

The regional proposal methods are used in all of these models. To construct a

provisional enumeration of feasible bounding boxes in a picture, such algorithms

employ image segmentation (that is, partitioning the image into regions based on the

primary colour differences within areas themselves). The idea is that region proposal

algorithms propose a small number of boxes to examine, far fewer than an exhaustive

sliding windows method would propose. This enabled them to be used in the initial R-

CNNs, or region-based convolutional neural networks, which operated by using a

region proposal technique to locate a few hundreds or thousands of areas of interest in

an image. Each zone of interest is processed by a CNN to build features for each area,

which are then used to categorise the region using a support vector machine and a

linear regression to calculate more exact bounding boxes (Luca Massaron, 2018).

Fast R-CNN used CNN to analyse the whole picture at once, transform it, then

apply the region suggestion to the transformation. This reduced the number of calls

processed by CNN from a few thousand to just one. Another aspect that made it

quicker was that it employed a soft-max layer and a linear classifier instead of an SVM

for classification, thereby extending the CNN rather than moving the input to a new

model (Luca Massaron, 2018).

R-FCN, on the other hand, are quicker than Faster R-CNN since they are fully

convolutional networks with no fully connected layers following the convolutional

layers. They're end-to-end networks, meaning they go from convolutional input to

output. They become even quicker as a result of this (they have a much lesser number

of weights than CNN with a fully connect layer at their end). However, their speed

comes at a cost; they are no longer defined by image invariance (CNN can figure out

the class of an object, no matter how the object is rotated). A position-sensitive score

map, which is a means to assess whether sections of the original image processed by

the FCN correspond to parts of the class to be categorised, is supplemented by a faster

R-CNN (Luca Massaron, 2018).

Finally, we have solid-state drives (SSD) (Single Shot Detector). Because the

network anticipates the bounding box position and class as it analyses the picture, the

performance is significantly faster here. By bypassing the region proposal step, SSD

can calculate a large number of bounding boxes quickly. It only decreases heavily

22

overlapping boxes, but it still processes the most bounding boxes of any of the models

we've discussed so far. Its speed is due to the fact that it classifies each bounding box

as it delimits it: by performing everything in one shot, it has the quickest speed, yet it

performs comparably (Luca Massaron, 2018).

2.5.4 Performance metrics for deep learning

The more popular performance metrics for deep learning is mAP (mean average

precision) and average recall. However, to understand these two metrics, the concept

of precision and recall must be established first.

Precision measures the accuracy of the predictions. Recall measures how well

the model find these positives. The value of precision and recall is always between 0

and 1. The calculation of precision and recall is shown in equation 2.1 and 2.2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Eq. (2.1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Eq. (2.2)

The precision of every prediction is calculated and averaged to get the mAP of

the model. The recall calculated for every prediction and averaged which results in the

average recall. To build a good object detection model the value should be as close to

1 as possible for mAP and average recall.

23

2.6 Journal Reviews

Marcomini and Cunha (2018) compared the performance between three different

background modelling methods by using vehicle segmentation in highway traffic

videos. The authors analysed seven videos of highway traffic videos, with a total video

time of 2 hours. The authors measured how well each algorithm performs in detection

and segmentation based on accuracy rate, processing time and precision rate. The three

background modelling methods are GMG, Mixture of Gaussians (MOG) and Mixture

of Gaussians 2 (MOG2). All three methods have comparable precision rate at above

90%, however MOG and MOG2 have precision rates around 100%, while GMG has

a precision rate between 60% and 80%. Comparing processing times, MOG2 is on

average 3 times faster than MOG, while being 10 times faster than GMG. In conclusion,

MOG2 is the best performer among the three background subtraction methods

(Marcomini & Cunha, 2018).

Li et al. (2014) proposed two different methods of real-time moving vehicle

detection, tracking and counting system. One uses the pixel changes in histogram when

a vehicle passes to count the vehicle, while the second method uses adaptive

background subtraction in tandem with blob tracking. The first method is only able to

count vehicles based on their presence. The second method is able to detect and count

the vehicle, t it is able to track the path of the moving vehicle. The authors test this

model by inserting a video of cars travelling in one single direction on the highway. It

is found that the first method achieves an accuracy rate of 96%, while the second

method have a higher accuracy rate of 98.4%. The results show that background

subtraction with blob tracking is a more robust and accurate way of counting vehicles.

Sorwar et al. (2017) proposed a real-time vehicle monitoring which is able to

count the number of vehicles by using extended maxima and minima to detect cars.

The authors crop the everything out of the video frame except the vehicle lane and

uses extended minima and maxima to extract the area of cars, then uses the area of the

vehicles as weights in a formula which estimates the number of cars in the frame. In

broad daylight, the model achieves an accuracy rate of 91%, while during the night,

the model is able to achieve an accuracy rate of 88%. The positive is this model is able

to work in various different angles compared to other models. However, the model is

24

affected by streetlights, roadside objects, which will decrease the accuracy of the

model if longer duration of datasets are tested.

Tangkocharoen and Srisuphab (2017) uses Haar cascade classifier for their

vehicle detection. This model uses AdaBoost in tandem with a cascade classifier to

recognise the vehicles in frame. Haar feature-based cascade classifiers were first

introduced by Paul Viola and Michael Jones in 2001, and it became an effective object

detection method. The classifier is first trained with both positive and negative

examples, which is a machine learning based approach (OpenCV 2016). This allows

the classifier to construct a function that describes the relationship of the input (image)

and output (binary mask). This training step requires a substantial amount of

computational power, but once trained, the objects can be detected by the classifier

rather instantaneously. The authors were able to detect vehicles under various lighting

and illumination in images obtained from highway traffic videos in Bangkok. However,

the author does not apply this model onto videos, and their model was only able to

detect vehicles, but not count them.

Faruque et al. (2019) proposed a program which is able to classify vehicles into

6 different categories: bike, truck, car, van, bus and trailer. These six types of vehicles

are used by the Federal Highway Association (FHWA) to categorize different types of

vehicles. The authors used Faster R-CNN and YOLOv3 deep learning methods to

classify vehicles in several videos. There were several challenges that reduces the

accuracy of vehicle classification, such as changes in environmental conditions, the

background of the object, environment illumination, blur, motion and video resolution.

The training sets were created manually from different traffic videos to train the deep

learning classifiers, which is time consuming. The authors found that YOLO has faster

training and testing rate compared to Faster R-CNN. YOLOv3 also has a higher

accuracy rate at around 96.78% to 99.76%, while Faster R-CNN has an accuracy rate

of around 95.91% to 97.93%. Deep learning methods are feasible for vehicle

classification, however the training a deep learning model requires large datasets,

which means the large computational operations in terms of memory that requires

some amount of time and a powerful GPU to compute. Figure 2.6 shows the six

categories of vehicles classified by Faruque et al. (2019) in his research.

25

Figure 2. 6: Six categories of vehicles based on FHWA

26

CHAPTER 3

3 METHODOLOGY

3.1 Proposed System Design

Figure 3. 1: Proposed System Design

The proposed system is able to complete three main functions, vehicle counting,

vehicle speed measurement, and vehicle classification (shown in Figure 3.1). These

important data from the vehicles will be stored in a file for further traffic data collection

and analysis.

The Raspberry Pi and Raspberry Pi Cam V2 is setup at an outdoor position

where the video of the traffic is recorded. This makes up the hardware side of the

proposed system.

After that, the video is processed through software to extract useful traffic

vehicle data from the video.

27

For vehicle counting and vehicle speed measurement, the system implemented

background subtraction algorithm onto the input frames from the video which helps to

separate and track moving objects from the background based on the particle filter

algorithm. Tracked vehicles are counted based on a threshold that considers the area

of the detected vehicles. The vehicle’s speed is counted by using the equations 3.1, 3.2

and 3.3. The distance is calculated by finding the distance in pixels of two points P,

dividing by c, which is constant which shows how many pixels per meter. To find c,

the physical distance is measured between two points in the image and use Equation

3.2. To calculate time, the frame rate of video and frames travelled when car travels

between two points in the video is required.

𝑆𝑝𝑒𝑒𝑑 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒

Eq. (3.1)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝑃𝑒𝑛𝑑 − 𝑃𝑠𝑡𝑎𝑟𝑡|

𝑐

Eq. (3.2)

𝑇𝑖𝑚𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑚𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑

𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒

Eq. (3.3)

For vehicle classification, a machine learning classifier to be built and trained

following the process in Figure 3.2.

28

Figure 3. 2: Process of developing a deep learning classifier model

Figure 3.2 shows the whole process of developing a machine learning classifier

model. There are 5 steps in this process which is: Data Collection, Data Pre-processing,

Model Implementation, Model Evaluation and Parameter Tuning.

For the data collection, the data to train the deep learning classifier model have

to be collected, and in this project’s application, the images of different classes of

vehicles from the side view required. A lot of images are required to create a large

dataset which would be needed to train the deep learning classifier model. The data

can be collected manually through videos of vehicles, or they can be obtained from

websites like Google Image Search.

Data pre-processing is where the datasets is processed in a way so that it is able

to be understood by the deep learning classifier model. First, the objects in the images

must be labelled by drawing bounding boxes over them and link them with an object

class or category. This is a labour-intensive part of the process. This step is required

29

to allow the deep learning model to recognise each object and linking them to their

respective classes.

Model Implementation is training the algorithm in deep learning classifier

models such as YOLO and R-CNN. These models consist of neural networks that

learns a mapping function from inputs to outputs. This is accomplished by changing

the network's weights in accordance to the model's errors on the training dataset.

Adjustments are made to continuously decrease this error until a suitable model is

discovered or the learning process becomes stuck and terminates. The process of

training neural networks is by far the most time-consuming aspect of utilising the

method in general, both in terms of configuration effort and computing complexity

needed to perform the process (Brownlee 2021).

 While training a model is critical, how the model generalises to unseen data is

as critical and should be included into any deep learning process. One commonly used

method of evaluation is cross-validation. Cross-validation is a statistical method that

divides the original observation dataset into two sets, a training set for training the

model and an independent set for evaluating the model. Metrics for model evaluation

are needed in order to measure model performance. The evaluation metrics used are

determined by the deep learning job at hand (such as classification, regression and

clustering). Certain measures, such as precision-recall, are applicable to a variety of

applications. The majority of deep learning applications use supervised learning

problems such as classification and regression. Examples for classification metrics are

classification accuracy, confusion matrix, logarithmic loss, f-measure and others.

 When our model is having errors, such as bias or low accuracy,

hyperparameters can be tuned to achieve better training for the deep learning classifier

model which results in better prediction accuracy. There are quite a few

hyperparameters and variables that can be tuned:

i. Tune Learning Rate

ii. Tune Regularization Parameter

30

iii. Tune Training Epoch

iv. Use Different Cost functions

v. Initialize weights differently

3.2 Equipment

Figure 3. 3: Equipment List for the Development of Proposed Automatic Traffic

Counting System

Figure 3.3 shows the list of equipment required for the development of the proposed

automatic traffic counting system for this project. The equipment consists of both

hardware and software. The hardware’s main purpose is to capture a video recording

of the vehicles on the road, which is the data collection part of this project. The

software part is the analysis and processing of the video data, such as object detection,

tracking and classification.

31

3.3 Hardware Configuration

Figure 3.4 shows the hardware configuration for the proposed automatic traffic

counting system. It consists of the Raspberry Pi Cam V2 and the Raspberry Pi 4 Model

B. The Raspberry Pi Cam V2 is an 8MP camera with a Sony IMX219 sensor that is

able to capture high-resolution photos, and videos with resolution up to 1080p. The Pi

Cam V2 is connected to the Raspberry Pi by inserting the Pi Cam’s flex cable into the

CAMERA connector.

Figure 3. 4: Hardware Configuration for the proposed Automatic Traffic

Counting System

3.4 Programming Language and Environment

Programming language and programming environment forms an important part of the

software of the proposed automatic traffic counting data collection and analysis system.

Various image processing techniques and machine learning algorithms will be used in

the proposed system. Thus, the best programming language and environment must be

chosen to provide the best performance and codability for this project.

32

 Python is the preferred programming language for coding by many data

scientists. Python is easy to learn and use because of its simplified syntax, which places

a higher focus on natural language. Python can be easily written even by newcomers

and executed faster than other programming languages. Python also has many open

computer science related libraries such as Computer Vision, Machine Learning, Image

Processing and others which makes it a great coding tool for computer science related

projects and tasks.

 Visual Studio Code is a code editor that combines a source code editor with

powerful developer tools that eases the coding and debugging process, such as

IntelliSense code completion and debugging. It’s simple to use interface allows for

more time and effort spent on implementing ideas in the code, rather than struggling

to setup the environment.

3.5 Data Collection

Data collection is to collect data that will be used for the vehicle detecting, tracking,

counting, classification model. In this project, the data being collected is the video of

the vehicles on the road. A video is captured when the Python program in Figure 3.6

runs. The frame captured is shown in Figure 3.5. The video shot for this project is in

H.264 format with a resolution of 640 x 480 and 25 frames per second (fps). H.264 is

one of the most widely used codec in the world, with it being used in optical disc,

broadcasts, and other video medias. H.264 cannot be directly viewed by most media

players. Thus, it has to be incorporated into different container formats such as MEPG-

4, QuickTime, Flash and others. The resolution is set at 640 x 480 to save storage space

as multiple hours of video have to be recorded and stored inside the 12GB microSD

card. 25 fps is the standard for movies and TV shows, and it is the minimum speed

needed to capture video that have realistic motion (Ozer, 2011).

33

Figure 3. 5: A frame from the traffic video

Figure 3. 6: Python program to capture video on the Raspberry Pi

After collecting the data (video), the data might not be in a form that is needed

to be fitted into the vehicle detecting tracking, counting and classification model. First,

the video shot by the Raspberry Pi is in H.264 which is a video codec. The video has

to be processed to be contained in a container such as MP4. To accomplish this, the

video is converted from H.264 to MP4 using the Python program in Figure 3.7.

34

Figure 3. 7: Python program to convert video from H.264 to MP4 format

35

3.6 Bill of Materials

The materials used, quantity, unit price, and total price are listed in Table 3.1. The total

cost of the materials used for this project is RM415.

Table 3. 1: Bill of Materials

Material Quantity Unit Unit price

(RM)

Total price

(RM)

Raspberry Pi 4 Model B 1 1 174 174

Official Case for Raspberry Pi

4B (red/White)

1 1 25 25

16GB Micro SD Card with

NOOBS for RPI

1 1 36 36

Raspberry Pi 8MP Camera

Module V2

1 1 115 115

Power bank 1 1 50 50

USB-C cable 1 1 15 15

 Total Cost

(RM)

415

36

3.7 Project Management

The project timeline for FYP 1 is shown in Table 3.1 while the project timeline for

FYP 2 is shown in Table 3.2.

Table 3. 2: Gantt Chart for FYP 1

 Week

Task

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Project

Selection

Literature

Review

Methodology

Research

Hardware

selection

Configure

Hardware

Record

footage for

data

Process data

and build

software

37

Table 3. 3: Gantt Chart for FYP 2

 Week

Task

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Build Speed

Measuring

Algorithm

Debug and test

Speed Measuring

Algorithm

Prepare training

dataset for Deep

Learning

Classification

Train Object

Detection Model

Finetune Object

Detection Model

Integrate all

modules together

Run tests and

record results and

discussion

38

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Hardware setup

The Raspberry Pi is connected to a display to view the viewfinder for the camera.

Indoors, the Raspberry Pi is interfaced with a monitor through HDMI, however this is

not to viable outdoors. To solve this issue, the Raspberry Pi can display its content and

can be remote controlled on a smart phone when being placed outdoors. This is done

by connecting the Raspberry Pi to an Android smart phone through VNC Server, which

is completely free and is pre-installed on the Raspberry Pi by default. A direct

connection can be established by having both devices connecting over the same private

local network. Mobile data hotspot sharing is used to connect the smartphone with the

Raspberry Pi.

39

Figure 4. 1: Setup of hardware to collect traffic data outdoors

Once the Raspberry Pi is able to be remotely controlled, the Raspberry Pi is

placed at a spot outdoor where the camera is able to get a good view of the road outside

as seen in Figure 4.1. The camera is perpendicular to the road. The Raspberry Pi only

requires power at this point, which is provided by the 20,000 mAh power bank.

In Figure 4.2, the viewfinder for the camera is displayed on the smartphone

after the Python program starts. The camera is placed perpendicular to the road, and it

is able to get a clear side view of vehicles that pass by. Vehicles will move to the left

on the nearby lane, while vehicles will move to the right on the further end lane.

40

Figure 4. 2: Remote view of the Raspberry Pi Interface

4.2 Software Setup

4.2.1 Vehicle Counting

The video recorded in .mp4 format consists of 25 frames per second. The frames are

extracted one by one to be applied with image processing to be able to detect the

vehicles. Figure 4.3 to figure 4.8 shows the step by step processing done to the image

by the algorithm.

41

Figure 4.3: Original Frame

Figure 4. 4: Frame after applying MOG2BackgroundSubtractor

After the frame is extracted, the background is subtracted by the frame using

OpenCV’s MOG2 Background Subtractor function. The output image is the subject in

white while the background is in black.

42

Figure 4. 5: Frame after applying binary image thresholding

The resulting image is then applied with binary image thresholding to ensure

that the image is entirely greyscale for further processing. There are white specks in

the black background and black specks in the white foreground which will have to

remove to prevent OpenCV’s findContours function to mistake the white specks as

our Region of Interest (ROI). To accomplish this, morphology opening, and closing is

used in conjunction.

Figure 4. 6: Frame after applying Morphology Opening

43

After morphology opening is applied, all the white and black specs are

smoothened into the foreground and background. The rough edge of the white

foreground is also smoothened out. The resulting image only has one foreground

which is the vehicle to be detected.

Figure 4. 7: Frame after applying Morphology Closing

Applying morphology closing smoothens the edges further of the white

foreground. The image is ready to be used to find contours by OpenCV’s findContours

function.

44

Figure 4. 8: Contour detected by OpenCV findContours function

OpenCV’s findContours function detects changes in image colour and marks

it as a contour. The external retrieval mode of the function is used, which only stores

the extreme outer contours, while inner contours are ignored (Shaikh, 2020). This is

shown in Figure 4.9(Shaikh, 2020).

Figure 4. 9: Example of external retrieval mode

After the contours are found, contours with area between 2000 and 60000 px2

are assumed to be vehicles. Since the parameters of the bounding rectangles are known,

the centroid of the vehicle is found using the formula.

45

When the centroid is enters the range of left and right limit, the contour is

registered as a new vehicle and the centroid coordinate are recorded. The next frame

is extracted, and the same image processing happens. If it is a new car, the centroid

will be registered as a new car. Else, it updates the coordinate of the old car. When the

coordinate passes the middle lines, the code counts the vehicle. This is to ensure the

object is travelling a certain distance before being counted as a vehicle. The code can

determine whether the vehicle is heading to the right or to the left based on the

direction the centroid is heading and count accordingly.

4.2.2 Vehicle Speed Measuring

The vehicles is detected and tracked using the algorithm in vehicle counting. The

output of the algorithm is the bounding rectangle and centroid of each vehicle in the

current frame. For speed measuring, the vehicle centroid is used to calculate the speed

of the vehicle.

However, due to the camera’s field of view (Figure 4.10), the L increases as

the distance of the object from the lens increases. Thus, c for vehicles going to the right

is larger than the c for vehicles going to the left. To calculate time, the frame rate of

video and frames travelled when car travels between two points in the video is required.

Figure 4. 10: Camera’s field of view

46

The calculations for the speed measurements are using the formulas of Eq. (4.1),

Eq. (4.2), Eq. (4.3) and Eq. (4.4).

𝑚𝑒𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 = 𝑚𝑝𝑝 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑓𝑟𝑎𝑚𝑒 𝑤𝑖𝑑𝑡ℎ

Eq. (4.1)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 = 𝑝𝐴𝐵 = | 𝑐𝑜𝑙𝐵 − 𝑐𝑜𝑙𝐴|

Eq. (4.2)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑜𝑖𝑛𝑡 𝐴𝐵 = 𝑑𝐴𝐵 = 𝑃𝐴𝐵 ∗ 𝑚𝑝𝑝

Eq. (4.3)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 =

𝑑𝐴𝐵

∆𝑡𝐴𝐵
+

𝑑𝐵𝐶

∆𝑡𝐵𝐶
+

𝑑𝐶𝐷

∆𝑡𝐶𝐷

3

Eq. (4.4)

In equation Eq. (4.1), the distance constant is the physical distance of the frame

width. This can be measured by standing at the left edge of the frame and measure the

distance until the right edge of the frame. To do this measurement safely, the

measurement is done one the near end pavement and far end pavement. The near end

pavement measures in at 6.12m, while the far end pavement measures at 19.33m. The

distance constant of vehicles going to the left (near end) is set at 13m while for vehicles

going to the right (far end) is set at 15.1m.

47

Figure 4. 11: Method of speed estimation

First, the vehicle’s centroid location is recorded at four points in the frame

which are A, B, C and D respectively as shown in Figure 4.11 (Rosebrock, 2019). For

vehicles going to the right, the location is collected sequentially from A, B, C to D.

For vehicles going to the left, the location is collected sequentially from D, C, B to A.

The algorithm will also record the time when the vehicle centroid is at that point. After

that, the centroid location is grouped into (A, B), (B, C) and (C, D). The distance in

pixels between the two points in these three groups are calculated using equation Eq.

(4.2). After that, the distance in meters between the two points are calculated using

equation Eq. (4.3). After that, the average speed of the vehicle is calculated by using

equation Eq. (4.4).

4.2.3 Vehicle Classification Model

4.2.3.1 Annotate images

After the data collection, data preparation is needed to convert image information into

values that the deep learning algorithm can interpret. The objects in the video is being

classified into 3 classes: car, motorcycle, and bicycle.

48

First, the video is needed to be converted into images or frames. This can be

done by using a simple Python program made by Patel in 2019 using the OpenCV

library. The program allows the user to set the frame capture rate of the program. For

example, if the frame capture rate is set to 0.5, the program will capture one frame

every 0.5 seconds, which means 2 frames will be captured each second. The frames

are saved in a folder.

After the frames are extracted from the video, images without objects inside is

deleted as it is not needed to train the deep learning model. This process took around

1 week.

Labels are used to help the training model identify unlabelled objects in the

data (Nelson, 2020). Data that has been accurately labelled is essential to successful

deep learning. LabelImg is a free, open-source program for labelling pictures visually.

It's developed in Python and has a graphical user interface built using PyQT. It's a

quick and painless approach to identify a few hundred photographs for your next object

detection project. Once LabelImg is opened, the user needs to draw a rectangle box

over the object and enter the label for the object. The label is saved in a separate .xml

file for each image. This process has to repeated for every image; thus, this process is

time consuming since training the deep learning requires few thousands to tens of

thousands of images.

Around 4000 images extracted from videos captured is annotated for the

project. The interface of LabelImg to label the images is shown in Figure 4.12.

49

Figure 4. 12: Annotating images using labelImg

4.2.3.2 Partition the image dataset

After annotating every image, the image dataset is partitioned into two folders, test and

training. The ratio is 9:1, which means 90% of the images are placed into the training

folder while 10% of the images are used for testing. The images are placed into the

two folders with the .xml files.

4.2.3.3 Create Label Map

Tensorflow requires a label map, which maps the class labels to integer values. The

label map is saved as a .pbtxt (protobuf text) file. The contents of the label map is

shown in Figure 4.13.

50

Figure 4. 13: Label Map for the current project

4.2.3.4 Create Tensorflow Records

Tensorflow object detection API is not able to directly read each .xml file. The

annotation data in the .xml files must be compiled into a TFRecord format. This can

be accomplished by running a pre-written script that iterates through all .xml files in

the train and test folder and outputs a .record file for each.

4.2.3.5 Download Pre-Trained Model

The main aim for training a neural network is using several forward and backward

iterations to get the right weights for the neural network.

For this project, transfer learning is used, which means using a pre-trained

model and training the model with the self-collected data. By using pre-trained models

that have been trained on large datasets, the weights and architecture previously learnt

by the model can be used immediately to apply the learning to the car classification

project’s problem statement. The learning from the model is “transferred” which saves

a huge amount of time and effort (Analytics Vidhya, 2017). For example, ImageNet

has 1.2 million images that are used to create a generalized object detection model.

The model can classify the images into 1000 separate object classes. Through transfer

learning, these pre-trained networks based on the model is able to generalize object

classes from images rather accurately.

51

First, a pre-trained model is downloaded from the TensorFlow 2 Detection

Model Zoo. The Model Zoo consists of various pre-trained models which differ in

speed, mAP (mean average precision) and output. SSD MobileNet v2 320x320 is

chosen as it is quick with a speed of 19ms and a respectable mAP of 20.2.

4.2.3.6 Configure Training Pipeline

After the pre-trained model is downloaded, the pipeline.config file consists of the

parameters of the neural network training that can be changed. For this project, the

number of classes is set to 3 since the objects are categorized into 3 classes. The batch

size, which is the number of training examples that passed through the neural network

in one iteration, is set to 4. This means 4 samples from the training dataset are taken

to train the network each iteration until every sample is propagated through the

network. Part of the pipeline.config is shown in Figure 4.14.

Figure 4. 14: Part of the pipeline.config

52

4.2.3.7 Training the model

To initiate the training process, the model_main_tf2.py script is run through the

terminal with the command in Figure 4.15. The model directory, pipeline config path

and number of training steps are parsed into the script as arguments. A training step is

one gradient update, where one batch size of examples is processed (Tolotra Samuel,

2018).

Figure 4. 15: Command to initiate training

Once training is initiated, the output is printed as in Figure 4.16. During the

training, the current step, step time, classification loss, regularization loss, total loss

and learning rate is shown.

53

Figure 4. 16: Printout during training

54

4.2.3.8 Evaluating the model

Figure 4.17 to Figure 4.21 shows the graph of evaluation metrics used to evaluate how

well the deep learning model is trained and performing.

Figure 4. 17: Loss metric during the training of the model

In deep learning, the main objective of the training of the neural network is to minimize

error. This objective function is referred to as “loss”. From Figure 4.17, the loss starts

out at 0.56 during step 0, and it flactuates but the overall loss is decreasing. The loss

reaches a decent 0.25 during the final step.

55

Figure 4. 18: Learning rate of the model

Learning rate is defined as the number of weights that is updated during each

step size when the model is training. Figure 4.18 shows the learning rate of the model

against the number of steps during training.

Figure 4. 19: Steps per second during training

56

Figure 4.19 shows the steps per second is directly correlated to the

computational power of the GPU or CPU hardware used. The higher the computational

power, the higher the steps per second.

Figure 4. 20: mAP of the object detection model

From Figure 4.20, the mAP of the model trained is 0.7372. This means that the

model can accurately classify vehicles of various classes 73.72 times out of 100

predictions. From Figure 4.21, the average recall of the model is 0.7795. The

performance of the trained deep learning model is decent.

Figure 4. 21: Average recall of the model

57

4.2.4 Data Logging

Figure 4. 22: Example of Data Logged into XML file

The data log file is saved in xml format. The date, time, vehicle ID, direction, class

and speed is all recorded into the data log file. The date, time recording is especially

useful when the algorithm is processing a live feed of the traffic.

4.3 Vehicle Counting Evaluation

4.3.1 Test samples

To evaluate the algorithm, six 15 minutes videos of vehicles is recorded using the

hardware setup in Chapter 4.1. The six videos are recorded on two days, with 3 videos

each day. On the first day, the 3 videos are recorded in the morning, afternoon and

evening. This step is repeated for the second day. The first day is a weekend day while

58

the second day is weekday. Figure 4.23 to Figure 4.26 shows the scenes recorded

during the 6 videos. The scenes have varied lighting conditions.

After the video is recorded, manual counting is used to accurately determine

the total number of vehicles, total vehicles going to the right, total vehicles going to

the left, and finally the class type of each vehicle.

Figure 4. 23: Scene recorded in the morning

Figure 4. 24: Scene recorded in the afternoon

59

Figure 4. 25: Scene recorded in the first night

Figure 4. 26: Scene recorded in the second night

The scene recorded in the morning and afternoon is in bright condition since

the sun is still out. The vehicles are very visible even in motion.

60

 For the first night, the scene is recorded from 7pm to 7.15pm. The sun has set

but there is still some light from the sky. The vehicles have lower visibility compared

to the scenes recorded in the morning and afternoon. The vehicles have motion blur

when moving, which would affect the classification of vehicles.

For the second night, the scene is recorded from 7.45pm to 8.00pm. The sky is

totally dark. The only light source in the scene is the road lamp. The vehicles body is

dark, with the headlamps and backlights visible.

4.3.2 Manual Counting results

Figure 4. 27: Graph of total number of vehicles passing in respect to time

(Manual Counting)

From Figure 4.27, the peak time for vehicles passing the road is during the morning.

The number of vehicles at night is slightly higher than number of vehicles in the

afternoon. Weekend day has less vehicles than the weekday in the morning but has

more vehicles in the afternoon and at night.

220

160
184

252

118 126

0

50

100

150

200

250

300

Morning Afternoon Night

N
o

. o
f

ve
h

ic
le

s

Time of the day

Number of vehicles passing in respect to time

Day 1 Day 2

61

Figure 4. 28: Graph of number of vehicles going left vs going right in respect to

time (Manual Counting)

The total number of vehicles passing by the road is further broken down into two

categories: vehicles going to the left and vehicles going to the right. From figure 4.28,

the number of vehicles going to the right is higher in the morning and afternoon on

both days, while there are more vehicles going to the left during the night on both days.

61 66

116

80

48
68

159

94

67

171

70
58

0
20
40
60
80

100
120
140
160
180

Morning Afternoon Night Morning Afternoon Night

Day 1 Day 2

N
o

. o
f

V
eh

ic
le

s

Time

Vehicles going left against going right in respect to
time

Going Left Going Right

62

4.3.3 Manual Counting vs Algorithm Counting

Table 4. 1: Total number of vehicles (manual vs algorithm)

Figure 4. 29: Graph of manual counting vs algorithm counting for total number

of vehicles

220
252

160

118

184

126

235
261

161

118

194
162

0

50

100

150

200

250

300

Morning Afternoon Night Morning Afternoon Night

Day 1 Day 2

N
o

. o
f

ve
h

ic
le

s

Time

Total number of vehicles: Manual vs Algorithm

Manual Counting Algorithm Counting

Day Time Manual Counting

Algorithm

counting Accuracy (%)

1 Morning 220 235 93.18181818

1 Afternoon 252 261 96.42857

1 Night 160 161 99.375

2 Morning 118 118 100

2 Afternoon 184 194 94.56521739

2 Night 126 162 71.42857143

63

Table 4.1 compares the number of vehicles counted manually and counted by the

algorithm and the accuracy of the algorithm. Figure 4.29 compares the number of

vehicles counted manually and counted by the algorithm using a bar chart. From table

4.1, the accuracy during morning and afternoon is high from a range of 93.18% to

100%. The accuracy of the detection decreases to 71.43% during the night. The

algorithm counting overcounts the total number of vehicles in most cases.

Table 4. 2: Number of vehicles going to the left (manual vs algorithm)

Day Time

Manual

Counting

Algorithm

Counting Accuracy (%)

1 Morning 61 66 91.80327869

1 Afternoon 80 81 98.75

1 Night 66 65 98.48484848

2 Morning 48 47 97.91666667

2 Afternoon 116 122 94.82758621

2 Night 68 84 76.47058824

64

Figure 4. 30: Graph of number of vehicles going to the left (manual vs

algorithm)

Table 4.2 compares the number of vehicles going to the left counted manually

and counted by the algorithm and the accuracy of the algorithm. Figure 4.30 compares

the number of vehicles going to the left counted manually and counted by the algorithm

using a bar chart. From Figure 4.30, the algorithm overcounts 4 times and undercounts

2 times for vehicles going to the left. The accuracy for counting vehicles going to the

left is at a minimum of 76.47% during the second night, while at a maximum of 98.48%

on the first night.

Table 4. 3: Number of vehicles going to the right (manual vs algorithm)

Day Time Manual Counting

Algorithm

Counting Accuracy (%)

1 Morning 159 169 93.71069

1 Afternoon 171 180 94.73684

1 Night 94 96 97.87234

2 Morning 70 71 98.57143

2 Afternoon 67 72 92.53731

2 Night 58 78 65.51724

61
80

66
48

116

6866
81

65
47

122

84

0
20
40
60
80

100
120
140

Morning Afternoon Night Morning Afternoon Night

Day 1 Day 2

N
o

. o
f

ve
h

ic
le

s

Time

Number of vehicles going to the left: Manual vs
Algorithm

Manual Counting Algorithm Counting

65

Figure 4. 31: Graph of number of vehicles going to the right (manual vs

algorithm)

Table 4.3 compares the number of vehicles going to the right counted manually

and counted by the algorithm and the accuracy of the algorithm. Figure 4.31 compares

the number of vehicles going to the right counted manually and counted by the

algorithm using a bar chart. From Figure 4.31, the algorithm overcounts vehicles going

to the right for the six tests. The accuracy is maximum at 98.57% during the second

morning, and minimum at 65.51% during the second night.

159
171

94
70 67 58

169 180

96
71 72 78

0

50

100

150

200

Morning Afternoon Night Morning Afternoon Night

Day 1 Day 2

N
o

. o
f

ve
h

ic
le

s

Time

Number of vehicles going to the right: Manual vs
Algorithm

Manual Counting Algorithm Counting

66

4.3.4 Errors Found for Vehicle Counting

4.3.4.1 Overlapping error

Figure 4. 32: Overlap error part 1

Figure 4. 33: Overlap error part 2

67

Figure 4. 34: Overlap error part 3

The main issue with placing the camera perpendicular to the road is the unavoidable

overlapping error. This overlapping error is shown in Figure 4.30, 4.31 and 4.32.

Vehicle 35 is going to the left while vehicle 36 is going to the right. However, the two

vehicles overlap at one point, vehicle 35 blocks vehicle 36 from view. When vehicle

36 comes back to view, the algorithm registers it as a new vehicle since it suddenly

appeared. This extra count happens when there are multiple vehicles in frame and the

vehicle in near lane blocks the vehicle from the far lane. This confuses the tracker as

it is treating the vehicle that was blocked and reappear as a new vehicle.

68

4.3.4.2 Detection error when scene is dark

Figure 4. 35: Detection error when scene is dark

The algorithm detects the body and the light shone by the car as two different objects.

The light is counted as a vehicle by the algorithm.

4.4 Vehicle Speed Measurement Evaluation

The main parameter of tuning for the speed measurement algorithm is the distance in

meters for the frame width. To ensure the speed measured of each vehicle is accurate,

a car is driven passing by the camera. This calibration is shown in Figure 4.36. The

speed of the car can be seen on the speedometer of the car. When going to the right,

the car’s speed is around 30km/h. When going to the left, the car’s speed is around

27km/h. After tuning the distance in meters of the algorithm, the algorithm can

measure accurately the car’s speed.

69

Figure 4. 36: Car with known speed driven pass the camera

Table 4. 4: Evaluation of speed measuring algorithm

Day Time

Error

Measurements

Total

measurements Error (%)

1 Morning 5 196 2.551020408

1 Afternoon 1 145 0.689655172

1 Night 4 87 4.597701149

2 Morning 4 204 1.960784314

2 Afternoon 1 118 0.847457627

2 Night 2 33 6.060606061

Table 4.4 shows the errors happening during speed measuring and the

percentage of errors happening during the speed measuring. Error measurements

happen when the speed of the vehicle cannot be measured, or the measured speed is

above 100km/h. From the table, most errors happen in the morning. This is because

there are many vehicles passing by in the morning, and this results in the overlapping

70

error. The algorithm tracks the vehicle, but when another vehicle overlaps with the

vehicle, the algorithm tracks the other vehicle that is going to the opposite direction.

The speed cannot be measured in this case. This overlapping error also results in

measured speed of over 100km/h.

Overall, the error for speed measurement ranges from 0.69% to 2.55% for well-

lit scenes and slightly higher at 4.60% to 6.06% for dark scenes.

4.5 Vehicle Classification Evaluation

Table 4. 5: Actual Cars vs Predicted Cars

Day Time Actual Cars

Predicted

Cars Accuracy (%)

1 Morning 171 156 91.22807018

1 Afternoon 121 103 96.42857

1 Night 124 77 62.09677419

2 Morning 172 163 94.76744186

2 Afternoon 85 81 95.29411765

2 Night 91 28 30.76923077

Figure 4. 37: Graph of Actual Cars vs Predicted Cars

171

121 124

172

85 91

156

103

77

163

81

28

0

50

100

150

200

Morning Afternoon Night Morning Afternoon Night

Day 1 Day 2

N
o

. o
f

C
ar

s

Time

Graph of Actual Cars vs Predicted Cars

Actual Cars Predicted Cars

71

Table 4.5 compares the actual cars in the video and the number of cars detected

by the deep learning object detection model. Figure 4.37 plots the actual cars in the

video and the number of cars detected by the deep learning object detection model.

From Figure 4.35 and Table 4.5, the algorithm predicted cars decently during morning

and afternoon, with a prediction accuracy ranging from 91.23% to 96.43%. However,

the accuracy drops to 62.1% when the scene is darker in the first night. The accuracy

drops drastically to 30.77% when the scene is totally dark with a single road lamp in

the second night.

Table 4. 6: Actual Motorcycles vs Predicted Motorcycles

Day Time

Actual

Motorcycles

Predicted

Motorcycles Accuracy (%)

1 Morning 49 40 81.63265306

1 Afternoon 40 38 95

1 Night 58 10 17.24137931

2 Morning 57 41 71.92982456

2 Afternoon 33 33 100

2 Night 34 5 14.70588235

Figure 4. 38: Graph of Actual Motorcycles vs Predicted Motorcycles

49

40

58 57

33 34
40 38

10

41
33

5

0

10

20

30

40

50

60

70

Morning Afternoon Night Morning Afternoon Night

Day 1 Day 2

N
o

. o
f

M
o

to
rc

yc
le

s

Time

Actual Motorcycles vs Predicted Motorcycles

Actual Motorcycles Predicted Motorcycles

72

Table 4.6 compares the actual number of motorcycles in the video and the

number of motorcycles detected by the deep learning object detection model and

shows the object detection model’s accuracy. Figure 4.38 plots the actual number of

motorcycles in the video and the number of motorcycles detected by the deep learning

object detection model. From Figure 4.38 and Table 4.6, the prediction accuracy for

motorcycles ranges from a low 71.93% to a high 100% during the morning and

afternoon when the scene is bright. The prediction accuracy for motorcycles drops to

17.24% and 14.71% when the scene is dark in the first and second night. The object

detection model is trained with images of vehicles in the morning and afternoon. The

visibility of the vehicles is also significantly reduced at night. Thus, vehicle

classification is poor at night (dark condition).

4.6 Limitations

After conducting several experiments, some limitations in the developed system can

be noticed. First, the vehicle counting, speed measuring and classification has poor

performance when the scene is dark. This happens when the system is used at night

after the sky has become dark.

Furthermore, when many vehicles pass by each other in the scene, the

overlapping of vehicles result in extra vehicles being counted. This overlapping error

also affects the vehicle speed measuring and vehicle counting function.

73

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The objective of this project is to implement a low-cost hardware system that is able

to capture video recording of vehicles on the road and a software program to be able

to count, calculate the speed and categorize the vehicles in the video. The developed

system can count vehicles, calculate speed of vehicles, and classify vehicles in a real-

time video. The data collected is also logged into a csv file for future reference. This

project aims to apply the power of computer vision and deep learning for the use of

traffic data collection.

 The system has been tested with 6 different video recordings recorded at

different times. The number of vehicles, lighting condition of the video recordings are

different. The performance of the system varies with different lighting condition. A

summary for the analysis is the developed system performed well when the lighting

condition is good in the morning and the afternoon. The counting and speed

measurements still functions well when the scene is slightly dark but there is still light

in the sky. However, the performance of vehicle counting, and speed measurements is

poor when the scene is almost totally dark. The vehicle classification function also

falls short when the lighting condition is dark at night with an accuracy of 30.77%.

74

5.2 Recommendation

For vehicle counting, the overlapping error is due to the camera placement being

perpendicular to the road. A better angle for the vehicle counting will be a top view of

the road, where every vehicle is able to be detected without any overlapping. By having

this view the accuracy of the vehicle counting can be increased.

 For vehicle counting, speed measuring, vehicle classification during bad

lighting conditions, an infrared camera can be used instead of a normal camera to

capture video of the vehicles. Infrared camera can capture the invisible infrared light

that is emitted from objects. Therefore, IR cameras is able to see objects in the dark

clearly (Cremins, 2017).

 Besides, the neural network can be trained with more datasets to make it more

accurate, and able to classify vehicles in different conditions. Future work can also

focus on classifying vehicles into more specific classes such as trucks, vans, buses and

others.

 Other than that, future work can focus on testing the system in different weather

such as raining and snowing to test the viability of the system in different environments.

75

REFERENCES

Adebisi, O., 1987. Improving Manual Counts on turning Traffic Volumes at Road

Junctions. Journal of Transportation Engineering-ASCE, 113(3), pp. 256-267.

Analytics Vidhya, 2017. Transfer learning and the art of using pre-trained models in

deep learning. [Online]

Available at: https://www.analyticsvidhya.com/blog/2017/06/transfer-

learning-the-art-of-fine-tuning-a-pre-trained-model/

[Accessed 5 April 2022].

Baker, H. & Wallace, D., 1982. Software Technology gets Rid of the TIC in Manual

Traffic. ITE Journal - Institute of Transportation Engineers, 52(4), pp. 30-31.

Batenko, A. et al., 2011. Weight-in-motion (WIM) measurements by fiber optic sensor:

problems and solutions.. Transport and Telecommunication, 12(4), pp. 27-33.

Brownlee, J., 2021. A Gentle Introduction to the Challenge of Training Deep Learning

Neural Network Models. [Online]

Available at: https://machinelearningmastery.com/a-gentle-introduction-to-

the-challenge-of-training-deep-learning-neural-network-models/

[Accessed 5 August 2021].

Cremins, D., 2017. Need a Night Vision Camera? Why Dynamic Smart IR is the Way

to Go. [Online]

Available at: https://www.marchnetworks.com/intelligent-ip-video-blog/need-

a-night-vision-camera-why-dynamic-smart-ir-is-the-way-to-

go/#:~:text=IR%20or%20night%20vision%20cameras,to%20see%20in%20th

e%20dark.

[Accessed 22 April 2022].

76

Findley, D. J., 2011. Comparison of mobile and manual data collection for roadway

components. Transportation Research Part C, 19(3), pp. 521-540.

Godbehere, A. B., Matsukawa, A. & Goldberg, K., 2012. Visual tracking of human

visitors under variable-lighting conditions for a responsive audio art

installation. 2012 American Control Conference (ACC), pp. 4305-4312.

IBM, 2021. What is Computer Vision. [Online]

Available at: https://www.ibm.com/topics/computer-

vision#:~:text=Computer%20vision%20is%20a%20field,recommendations%

20based%20on%20that%20information.https://www.ibm.com/topics/comput

er-

vision#:~:text=Computer%20vision%20is%20a%20field,recommendations%

20based%20on%20th

[Accessed 24 June 2021].

Jalihal, S., Reddy, T. & Nataraju, J., 2005. Evaluation of automatic traffic counters

under mixed traffic. Journal of the Institution of Engineers (India): Civil

Engineering Division, Volume 86, pp. 96-102.

Le, J., 2018. The 5 Computer Vision Techniques That Will Change How You See The

World. [Online]

Available at: https://heartbeat.fritz.ai/the-5-computer-vision-techniques-that-

will-change-how-you-see-the-world-1ee19334354b

[Accessed 24 June 2021].

Li, D., Liang, B. & Zhang, W., 2014. Real-time moving vehicle detection, tracking,

and counting system implemented with OpenCV. s.l., 2014 4th IEEE

International Conference on Information Science and Technology.

Luca Massaron, A. B. A. G. A. T. R. S., 2018. TensorFlow Deep Learning Projects.

1st ed. Birmingham-Mumbai: Packt Publishing.

Marcomini, L. A. & Cunha, A. L., 2018. A comparison between background modelling

methods for vehicle segmentation. arVix preprint arXiv:1810.02835.

77

Markoff, J., 2015. A learning advance in artificial intelligence rivals human abilities..

[Online]

Available at: https://www.nytimes.com/2015/12/11/science/an-advance-in-

artificial-intelligence-rivals-human-vision-

abilities.htmlhttps://www.nytimes.com/2015/12/11/science/an-advance-in-

artificial-intelligence-rivals-human-vision-abilities.htmlv

[Accessed 25 June 2021].

Marr, B., 2018. What Is Deep Learning AI? A Simple Guide With 8 Practical Examples.

[Online]

Available at: https://www.forbes.com/sites/bernardmarr/2018/10/01/what-is-

deep-learning-ai-a-simple-guide-with-8-practical-

examples/?sh=710579128d4b

[Accessed 25 June 2021].

Meel, V., 2021. YOLOv3: Real-Time Object Detection Algorithm (What's New?).

[Online]

Available at: https://viso.ai/deep-learning/yolov3-overview/

[Accessed 15 August 2021].

Murzovva, A., 2021. Background Subtraction with OpenCV and BGS Libraries.

[Online]

Available at: https://learnopencv.com/background-subtraction-with-opencv-

and-bgs-libraries/#basics

[Accessed 15 July 2021].

Nelson, J., 2020. LabelImg forLabeling Object Detection Data. [Online]

Available at: https://blog.roboflow.com/labelimg/

[Accessed 4 March 2022].

Nielsen, 2014. Rising Middle Class Will Drive Global Automotive Demand in the

Coming Two Years. [Online]

Available at: https://www.nielsen.com/my/en/press-releases/2014/rising-

middle-class-will-drive-global-automotive-demand/

[Accessed 21 June 2021].

78

OpenCV, 2016. Background Subtraction. [Online]

Available at:

https://docs.opencv.org/3.2.0/db/d5c/tutorial_py_bg_subtraction.html

[Accessed 5 August 2021].

Ozer, J., 2012. What is H.264?. [Online]

Available at:

https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=7473

5

[Accessed 28 July 2021].

Rey, J., 2017. Faster R-CNN: Down the rabbit hole of modern object detection.

[Online]

Available at: https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-

rabbit-hole-of-modern-object-detection/

[Accessed 5 August 2021].

Rosebrock, A., 2019. OpenCV Vehicle Detection, Tracking, and Speed Estimation.

[Online]

Available at: https://pyimagesearch.com/2019/12/02/opencv-vehicle-

detection-tracking-and-speed-estimation/

[Accessed 5 April 2022].

Schumann, R., 2001. Summary of Transportation Operations Data Issues. PBS&J.

Shaikh, R., 2020. OpenCV (findContours) Detailed Guide. [Online]

Available at: https://medium.com/analytics-vidhya/opencv-findcontours-

detailed-guide-692ee19eeb18

[Accessed 4 April 2022].

Silva, E. A. B. d. & Mendonca, G. V., 2005. Digirtal Image Processing . In: W. Chen,

ed. The Electrical Engineering Handbook. Boston: Elsevier Academic Press,

p. 891.

Stofan, D., 2020. GoodVision Vs Manual Traffic Counters: Comparing User

Experience on Traffic Surveys. [Online]

Available at: https://medium.com/goodvision/we-have-compared-user-

79

experience-in-traffic-data-collection-between-goodvision-and-manual-traffic-

79e9c4cbff09https://medium.com/goodvision/we-have-compared-user-

experience-in-traffic-data-collection-between-goodvision-and-ma

[Accessed 24 June 2021].

Tangkocharoen, T. & Srisuphab, A., 2017. Vehicle detection on a pint-sized computer.

s.l., 9th International Conference on Knowledge and Smart Technology (KST).

TensorFlow, 2022. Why TensorFlow. [Online]

Available at: https://www.tensorflow.org/about

[Accessed 20 March 2022].

Tolotra Samuel, 2018. What is the difference between step, batch size, epoch, iteration?

Machine Learning Terminology. [Online]

Available at: https://tolotra.com/2018/07/25/what-is-the-difference-between-

step-batch-size-epoch-iteration-machine-learning-terminology/

[Accessed 5 April 2022].

Wylie, M., 2010. Automating the collection of turning count data at signalised

intersections in. Traffic Engineering and Control, 51(11), pp. 429-431.

Yatskiv, I., Grakovski, A. & Yurshevich, E., 2013. An overview of different methods

available to observe traffic flows using new technologies. Proceedings of the

NTTS (New Techniques and Technologies for Statistics) International

Conference, Eurostat.

Zheng, P. & Mike, M., 2012. An investigation on the manual traffic count accuracy.

Procedia-Social and Behavorial Sciences, Volume 43, pp. 226-231.

80

APPENDICES

APPENDIX A: Coding

Vehicle Counting Program

from locale import format_string

import cv2

import numpy as np

import time

import vehicles

import csv

import tensorflow as tf

import dlib

import vehicles

import centroidtracker

from datetime import datetime

import os

from imutils.video import FPS

import imutils

import six

from centroidtracker import CentroidTracker

from vehicles import TrackableObject

from tensorflow_detection import DetectionObj

from object_detection.utils import label_map_util

from object_detection.utils import ops as utils_ops

from object_detection.utils import visualization_utils_modded as

viz_utils

from object_detection.builders import model_builder

from object_detection.utils import config_util

"""

Object Detection

"""

paths = {'CHECKPOINT_PATH':"Tensorflow/workspace/models/my_ssd_mobnet"}

81

files = {

 'PIPELINE_CONFIG':

"Tensorflow/workspace/models/my_ssd_mobnet/pipeline.config",

 'TF_RECORD_SCRIPT': "Tensorflow/scripts/generate_tfrecord.py",

 'LABELMAP': "Tensorflow/workspace/annotations/label_map.pbtxt"

}

Load pipeline config and build a detection model

configs =

config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG'])

detection_model = model_builder.build(model_config=configs['model'],

is_training=False)

Restore checkpoint

ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)

ckpt.restore(os.path.join(paths['CHECKPOINT_PATH'], 'ckpt-

6')).expect_partial()

category_index =

label_map_util.create_category_index_from_labelmap(files['LABELMAP'])

def vehicle_counting():

 frame_width = 640

 frame_height = 480

 videoSource = "C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP

Project\\Code\\VideoSource\\Morning1.mp4"

 videoName= videoSource[64:-4]

 videoOut = f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP

Project\\Code\\Result\\{videoName}_detection.mp4'

 LogOutPath = 'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP

Project\\Code\\Result'

 csv_name = f"{videoName}.csv"

 cap=cv2.VideoCapture(videoSource) # Video Source

 out = cv2.VideoWriter(videoOut,cv2.VideoWriter_fourcc(*'mp4v'), 25,

(frame_width,frame_height)) #Write video to output file

 fgbg=cv2.createBackgroundSubtractorMOG2(detectShadows=False,history

=200,varThreshold = 90) # Create Foreground mask

 kernalOp = np.ones((3,3),np.uint8)

 kernalOp2 = np.ones((5,5),np.uint8)

 kernalCl = np.ones((11,11),np.uint8)

 font = cv2.FONT_HERSHEY_SIMPLEX

 cars = []

 max_p_age = 5

 pid = 1

 cnt_left=0

 cnt_right=0

 cnt_left2=0

82

 cnt_right2=0

 cnt_car = 0

 cnt_motor = 0

 cnt_bicycle = 0

 cnt_nan = 0

 # maximum consecutive frames a given object is allowed to be marked

as "disappeared" until we need to deregister the object from tracking

 max_disappear = 8

 # maximum distance between centroids to associate an object if the

distance is larger than this maximum distance we'll start to mark the

object as "disappeared"

 max_distance = 175

 #number of frames to perform object tracking instead of object

detection

 track_object = 4

 #minimum confidence

 confidence = 0.4

 #frame width in pixels

 frame_width = 640

 #dictionary holding the different speed estimation columns

 speed_estimation_zone = (250,300, 350, 400)

 #real world distance in meters

 distance_left = 13

 distance_right = 15.1

 #speed limit in kmph

 speed_limit = 50

 #Meter Per Pixel

 meterPerPixel_left = distance_left / frame_width

 meterPerPixel_right = distance_right/ frame_width

 # count the number of frames

 frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)

 # start the frames per second throughput estimator

 fps_2 = int(cap.get(cv2.CAP_PROP_FPS))

 # calculate dusration of the video

 seconds = int(frames / fps_2)

 duration = float(seconds/3600)

 print(f"frames: {frames} fps: {fps_2} seconds:{seconds}

duration:{duration}")

 print("Car counting and classification")

 line_left=310 #320 dv

 line_right=330 #450 dv

83

 left_limit=540 #470 for diagonal view (dv)

 right_limit=60 #300 for diagonal view

 # ---------------------------------- Speed Measurement Parameters -

 ct = CentroidTracker(maxDisappeared= max_disappear)

 trackers = []

 trackableObjects = {}

 # keep the count of total number of frames

 frame_count = 0

 # initialize the log file

 logFile = None

 # initialize the list of various points used to calculate the avg

of

 # the vehicle speed

 points = [("A", "B"), ("B", "C"), ("C", "D")]

 while(cap.isOpened()):

 timez = float(frame_count/fps_2)

 ret,frame=cap.read()

 ts = datetime.now()

 newDate = ts.strftime("%m-%d-%y")

 rects = []

 centroidz = []

 if frame is None:

 break

 if logFile is None:

 # build the log file path and create/open the log file

 logPath = os.path.join(LogOutPath, csv_name)

 logFile = open(logPath, mode="a")

 # set the file pointer to end of the file

 pos = logFile.seek(0, os.SEEK_END)

 # if we are using dropbox and this is a empty log file then

 # write the column headings

 if pos == 0:

 logFile.write("Year,Month,Day,Time,

ObjectID ,Direction, Vehicle Class, Speed(km/h)\n")

84

 # Object Detection

 image_np = np.array(frame)

 input_tensor = tf.convert_to_tensor(np.expand_dims(image_np,

axis=0), dtype=tf.float32)

 detections = detect_fn(input_tensor)

 num_detections = int(detections.pop('num_detections'))

 detections = {key: value[0, :num_detections].numpy()

 for key, value in detections.items()}

 detections['num_detections'] = num_detections

 # detection_classes should be ints.

 detections['detection_classes'] =

detections['detection_classes'].astype(np.int64)

 label_id_offset = 1

 image_np_with_detections = image_np.copy()

 class_label, rects2, _ =

viz_utils.visualize_boxes_and_labels_on_image_array(

 image_np_with_detections,

 detections['detection_boxes'],

 detections['detection_classes']+label_id_offset,

 detections['detection_scores'],

 category_index,

 use_normalized_coordinates=True,

 max_boxes_to_draw=5,

 min_score_thresh=.8,

 agnostic_mode=False)

 image_np_with_detections = cv2.resize(image_np_with_detections,

(frame_width, frame_height))

 for i in cars:

 i.age_one()

 fgmask=fgbg.apply(frame)

 # if frame_count == 1080:

 # cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FY

P Project\\Code\\Result\\maskSub_{frame_count}.png',fgmask)

 if ret==True:

 ret,imBin=cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY)

85

 #

cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP

Project\\Code\\Result\\image_thresh_{frame_count}.png',imBin)

 mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kernalOp)

 #

cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP

Project\\Code\\Result\\image_morphOp_{frame_count}.png',mask)

 mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernalCl)

 #

cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR\\Y3S1\\FYP

Project\\Code\\Result\\image_morphClose_{frame_count}.png',mask)

 (countours0,hierarchy)=cv2.findContours(mask,cv2.RETR_EXTER

NAL,cv2.CHAIN_APPROX_NONE)

 for cnt in countours0:

 area=cv2.contourArea(cnt)

 if (area>2000 and area < 60000):

 m=cv2.moments(cnt)

 cx=int(m['m10']/m['m00'])

 cy=int(m['m01']/m['m00'])

 x,y,w,h=cv2.boundingRect(cnt)

 rects.append((x, y, w, h))

 centroidz.append((cx,cy))

 # add the bounding box coordinates to the

rectangles list

 # use the centroid tracker to associate the (1) old

object

 # centroids with (2) the newly computed object

centroids

 new=True

 if cx in range(right_limit,left_limit): # If car

within limit

 for i in cars:

 if abs(x - i.getX()) <= w and abs(y -

i.getY()) <= h : #Check whether new car or old car that has moved

 new = False

 i.updateCoords(cx, cy) #Update

Coordinate if car moves

 # Determine the direction of the car

86

 if

i.going_LEFT(line_right,line_left)==True:

 cnt_left+=1

 if to.vehicleClass == "car":

 cnt_car+=1

 elif to.vehicleClass

=="motorcycle":

 cnt_motor+=1

 elif to.vehicleClass =="bicycle":

 cnt_bicycle+=1

 else:

 cnt_nan+=1

 elif

i.going_RIGHT(line_right,line_left)==True:

 cnt_right+=1

 if to.vehicleClass == "car":

 cnt_car+=1

 elif to.vehicleClass

=="motorcycle":

 cnt_motor+=1

 elif to.vehicleClass =="bicycle":

 cnt_bicycle+=1

 else:

 cnt_nan+=1

 break

 # If reach limit stop bounding rectangle

 if i.getState()=='1':

 if i.getDir()=='right'and

i.getX()>right_limit:

 i.setDone()

 elif i.getDir()=='left'and

i.getX()<left_limit:

 i.setDone()

 if i.timedOut():

 index=cars.index(i)

 cars.pop(index)

 del i

 if new==True:

 p=vehicles.Car(pid,cx,cy,max_p_age)

 cars.append(p)

 pid+1

 cv2.circle(image_np_with_detections, (cx, cy), 2,

(0, 0, 255), -1) # Draw the centroid of the car

87

 img=cv2.rectangle(mask,(x,y),(x+w,y+h),(244,255,100

),2) # Draw rectangle over the car

 if frame_count == 1080:

 frame=cv2.line(frame,(line_left,0),(line_left,4

80),(0,0,255),3,8)

 frame=cv2.line(frame,(left_limit,0),(left_limit

,480),(255,255,0),1,8) # Display left limit

 frame=cv2.line(frame,(right_limit,0),(right_lim

it,480),(255,255,0),1,8) # Display right limit

 frame = cv2.line(frame, (line_right, 0),

(line_right, 480), (255, 0,0), 3, 8)

 cv2.imwrite(f'C:\\Users\\anand\\Documents\\UTAR

\\Y3S1\\FYP

Project\\Code\\Result\\imageFindcontour_{frame_count}.png',frame)

 objects = ct.update(rects, centroidz)

 # loop over the tracked objects

 for (objectID, centroid) in objects.items():

 # check to see if a trackable object exists for the

current

 # object ID

 to = trackableObjects.get(objectID, None)

 # print(f"Object ID:{objectID} centroid:{centroid}")

 # if there is no existing trackable object, create one

 if to is None:

 to = TrackableObject(objectID, centroid)

 to.vehicleClass = class_label

 # otherwise, if there is a trackable object and its

speed has

 # not yet been estimated then estimate it

 elif not to.estimated:

 if to.vehicleClass is None or to.vehicleClass ==

"None":

 to.vehicleClass = class_label

88

 # check if the direction of the object has been

set, if

 # not, calculate it, and set it

 if to.direction is None or to.direction == 0:

 y = [c[0] for c in to.centroids]

 direction = centroid[0] - np.mean(y)

 to.direction = direction

 # print(f"npmeany: {np.mean(y)} direction:

{direction}")

 # if the direction is positive (indicating

the object

 # is moving from left to right)

 if to.direction > 0:

 # check to see if timestamp has been noted for

 # point A

 if to.timestamp["A"] == 0 :

 # if the centroid's x-coordinate is greater

than

 # the corresponding point then set the

timestamp

 # as current timestamp and set the position

as the

 # centroid's x-coordinate

 if centroid[0] > speed_estimation_zone[0]:

 to.timestamp["A"] = timez

 to.position["A"] = centroid[0]

 # check to see if timestamp has been noted for

 # point B

 elif to.timestamp["B"] == 0:

 # if the centroid's x-coordinate is greater

than

 # the corresponding point then set the

timestamp

 # as current timestamp and set the position

as the

 # centroid's x-coordinate

 if centroid[0] > speed_estimation_zone[1]:

 to.timestamp["B"] = timez

 to.position["B"] = centroid[0]

 # check to see if timestamp has been noted for

 # point C

 elif to.timestamp["C"] == 0:

 # if the centroid's x-coordinate is greater

than

 # the corresponding point then set the

timestamp

89

 # as current timestamp and set the position

as the

 # centroid's x-coordinate

 if centroid[0] > speed_estimation_zone[2]:

 to.timestamp["C"] = timez

 to.position["C"] = centroid[0]

 # check to see if timestamp has been noted for

 # point D

 elif to.timestamp["D"] == 0:

 # if the centroid's x-coordinate is greater

than

 # the corresponding point then set the

timestamp

 # as current timestamp, set the position as

the

 # centroid's x-coordinate, and set the last

point

 # flag as True

 if centroid[0] > speed_estimation_zone[3]:

 to.timestamp["D"] = timez

 to.position["D"] = centroid[0]

 to.lastPoint = True

 # if the direction is negative (indicating the

object

 # is moving from right to left)

 elif to.direction < 0:

 # check to see if timestamp has been noted for

 # point D

 if to.timestamp["D"] == 0 :

 # if the centroid's x-coordinate is lesser

than

 # the corresponding point then set the

timestamp

 # as current timestamp and set the position

as the

 # centroid's x-coordinate

 if centroid[0] < speed_estimation_zone[0]:

 to.timestamp["D"] = timez

 to.position["D"] = centroid[0]

 # check to see if timestamp has been noted for

 # point C

 elif to.timestamp["C"] == 0:

 # if the centroid's x-coordinate is lesser

than

 # the corresponding point then set the

timestamp

 # as current timestamp and set the position

as the

90

 # centroid's x-coordinate

 if centroid[0] < speed_estimation_zone[1]:

 to.timestamp["C"] = timez

 to.position["C"] = centroid[0]

 # check to see if timestamp has been noted for

 # point B

 elif to.timestamp["B"] == 0:

 # if the centroid's x-coordinate is lesser

than

 # the corresponding point then set the

timestamp

 # as current timestamp and set the position

as the

 # centroid's x-coordinate

 if centroid[0] < speed_estimation_zone[2]:

 to.timestamp["B"] = timez

 to.position["B"] = centroid[0]

 # check to see if timestamp has been noted for

 # point A

 elif to.timestamp["A"] == 0:

 # if the centroid's x-coordinate is lesser

than

 # the corresponding point then set the

timestamp

 # as current timestamp, set the position as

the

 # centroid's x-coordinate, and set the last

point

 # flag as True

 if centroid[0] < speed_estimation_zone[3]:

 to.timestamp["A"] = timez

 to.position["A"] = centroid[0]

 to.lastPoint = True

 # check to see if the vehicle is past the last

point and

 # the vehicle's speed has not yet been estimated,

if yes,

 # then calculate the vehicle speed and log it if

it's

 # over the limit

 if to.lastPoint and not to.estimated:

 # print(to.position["A"], to.position["B"],

to.position["C"], to.position["D"])

 # initialize the list of estimated speeds

 estimatedSpeeds = []

 if to.vehicleClass is None or to.vehicleClass

== "None":

91

 # if class_label is None:

 # to.vehicleClass = "motorcycle"

 # cnt_motor += 1

 # else:

 to.vehicleClass = class_label

 # loop over all the pairs of points and

estimate the

 # vehicle speed

 for (i, j) in points:

 # calculate the distance in pixels

 d = to.position[j] - to.position[i]

 distanceInPixels = abs(d)

 # print(f"Distance In Pixel:

{distanceInPixels}")

 # check if the distance in pixels is zero,

if so,

 # skip this iteration

 if distanceInPixels == 0:

 continue

 # calculate the time in hours

 if to.timestamp[j] is str or

to.timestamp[i] is str:

 estimatedSpeeds.append(100)

 else:

 # print(f"Timestamp J:

{type(to.timestamp[j])} Timestamp I: {type(to.timestamp[i])}")

 timeInSeconds = abs(to.timestamp[j] -

to.timestamp[i])

 # timeInSeconds =

abs(t.total_seconds())

 timeInHours = timeInSeconds / (60 * 60)

 # calculate distance in kilometers and

append the

 # calculated speed to the list

 if direction > 0:

 distanceInMeters = distanceInPixels

* meterPerPixel_right

 elif direction < 0:

 distanceInMeters = distanceInPixels

* meterPerPixel_left

 distanceInKM = distanceInMeters / 1000

 estimatedSpeeds.append(distanceInKM /

timeInHours)

92

 # else:

 # estimatedSpeeds.append(100)

 # calculate the average speed

 to.calculate_speed(estimatedSpeeds)

 # set the object as estimated

 to.estimated = True

 print(to.vehicleClass)

 print("[INFO] Speed of the vehicle that just

passed"\

 " is: {:.2f} KMPH {}

{}".format(to.speedKMPH, objectID, to.direction))

 # textz = "Speed: {:.2f}".format(to.speedKMPH)

 # cv2.putText(image_np_with_detections, textz,

(centroid[0] - 15, centroid[1] - 10)

 # , cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0),

2)

 # store the trackable object in our dictionary

 trackableObjects[objectID] = to

 # draw both the ID of the object and the centroid of

the

 # object on the output frame

 text = "ID {}".format(objectID)

 cv2.putText(image_np_with_detections, text,

(centroid[0] - 10, centroid[1] - 10)

 , cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

 cv2.circle(image_np_with_detections, (centroid[0],

centroid[1]), 4,

 (0, 255, 0), -1)

 # check if the object has not been logged

 if not to.logged:

 # check if the object's speed has been estimated

and it

 # is higher than the speed limit

 if to.estimated:

 # set the current year, month, day, and time

 year = ts.strftime("%Y")

 month = ts.strftime("%m")

 day = ts.strftime("%d")

 time = ts.strftime("%H:%M:%S")

 if to.direction < 0:

 cardirection = "Left"

 cnt_left2 +=1

 elif to.direction > 0:

 cardirection = "Right"

 cnt_right2+=1

93

 # if to.vehicleClass == "car":

 # cnt_car+=1

 # elif to.vehicleClass =="motorcycle":

 # cnt_motor+=1

 # elif to.vehicleClass =="bicycle":

 # cnt_bicycle+=1

 # log the event in the log file

 info =

"{},{},{},{},{},{},{},{:.2f}\n".format(year, month, day, time,

to.objectID, cardirection,

 to.vehicleClass, to.speedKMPH)

 print(info)

 logFile.write(info)

 # set the object has logged

 to.logged = True

 #--------------------------Display info on video ----------

 str_left='Going Right: '+str(cnt_left)

 str_right='Going Left: '+str(cnt_right)

 cv2.putText(image_np_with_detections, str_left, (110, 40),

font, 0.5, (0, 0, 255), 1, cv2.LINE_AA)

 cv2.putText(image_np_with_detections, str_right, (110, 60),

font, 0.5, (255, 0, 0), 1, cv2.LINE_AA)

 out.write(image_np_with_detections) # Export frame to video

 cv2.imshow('object detection', image_np_with_detections)

 #-----------------When to End Video-----------------------

 frame_count += 1

 if cv2.waitKey(10)&0xff==ord('q'):

 break

 else:

 break

94

 cap.release()

 out.release()

 cv2.destroyAllWindows()

 if logFile is not None:

 infoz = "Total Vehicle: {},Total Left: {},Total Right: {},Total

Cars: {}, Total Motorcycles: {}, Total Bicycles: {}\n".format((cnt_left

+ cnt_right), cnt_right, cnt_left, cnt_car, cnt_motor,

cnt_bicycle)

 logFile.write(infoz)

 logFile.close()

def detect_video():

 detection = DetectionObj(model='my_ssd_mobnet')

 detection.video_pipeline(video="C:\\Users\\anand\\Documents\\UTAR\\

Y3S1\\FYP Project\\Code\\VideoSource\\video5.2.mp4", audio=False)

@tf.function

def detect_fn(image):

 image, shapes = detection_model.preprocess(image)

 prediction_dict = detection_model.predict(image, shapes)

 detections = detection_model.postprocess(prediction_dict, shapes)

 return detections

if __name__ == '__main__':

 vehicle_counting()

95

Vehicle counting, speed measuring subprogram: vehicle.py

from random import randint

import time

import numpy as np

from scipy.spatial import distance as dist

from collections import OrderedDict

class Car:

 tracks=[]

 def __init__(self,i,xi,yi,max_age):

 self.i=i

 self.x=xi

 self.y=yi

 self.tracks=[]

 self.done=False

 self.state='0'

 self.age=0

 self.max_age=max_age

 self.dir=None

 def getTracks(self):

 return self.tracks

 def getId(self): #For the ID

 return self.i

 def getState(self):

 return self.state

 def getDir(self):

 return self.dir

 def getX(self): #for x coordinate

 return self.x

 def getY(self): #for y coordinate

 return self.y

 def updateCoords(self, xn, yn):

 self.age = 0

 self.tracks.append([self.x, self.y])

 self.x = xn

 self.y = yn

 def setDone(self):

 self.done = True

 def timedOut(self):

96

 return self.done

 def going_LEFT(self, mid_start, mid_end):

 if len(self.tracks)>=2:

 if self.state=='0':

 if self.tracks[-1][0]>mid_end and self.tracks[-

2][0]<=mid_end: # nested listing

 state='1'

 self.dir='left'

 return True

 else:

 return False

 else:

 return False

 else:

 return False

 def going_RIGHT(self,mid_start,mid_end):

 if len(self.tracks)>=2:

 if self.state=='0':

 if self.tracks[-1][0]<mid_start and self.tracks[-

2][0]>=mid_start:

 start='1'

 self.dir='right'

 return True

 else:

 return False

 else:

 return False

 else:

 return False

 def age_one(self):

 self.age+=1

 if self.age>self.max_age:

 self.done=True

 return True

#Class2

class MultiCar:

 def __init__(self,cars,xi,yi):

 self.cars=cars

 self.x=xi

 self.y=yi

 self.tracks=[]

 self.done=False

97

class TrackableObject:

 def __init__(self, objectID, centroid):

 # store the object ID, then initialize a list of centroids

 # using the current centroid

 self.objectID = objectID

 self.centroids = [centroid]

 # initialize a dictionaries to store the timestamp and

 # position of the object at various points

 self.timestamp = {"A": 0, "B": 0, "C": 0, "D": 0}

 self.position = {"A": None, "B": None, "C": None, "D": None}

 self.lastPoint = False

 # initialize the object speeds in MPH and KMPH

 self.speedMPH = None

 self.speedKMPH = None

 # initialize two booleans, (1) used to indicate if the

 # object's speed has already been estimated or not, and (2)

 # used to indidicate if the object's speed has been logged or

 # not

 self.estimated = False

 self.logged = False

 # initialize the direction of the object

 self.direction = None

 #initialize vehicle Class

 self.vehicleClass = None

 def calculate_speed(self, estimatedSpeeds):

 # calculate the speed in KMPH and MPH

 self.speedKMPH = np.average(estimatedSpeeds)

 MILES_PER_ONE_KILOMETER = 0.621371

 self.speedMPH = self.speedKMPH * MILES_PER_ONE_KILOMETER

98

Vehicle counting, speed measuring subprogram: centroidtracker.py

import the necessary packages

from scipy.spatial import distance as dist

from collections import OrderedDict

import numpy as np

class CentroidTracker():

 def __init__(self, maxDisappeared=50):

 # initialize the next unique object ID along with two ordered

 # dictionaries used to keep track of mapping a given object

 # ID to its centroid and number of consecutive frames it has

 # been marked as "disappeared", respectively

 self.nextObjectID = 0

 self.objects = OrderedDict()

 self.disappeared = OrderedDict()

 # store the number of maximum consecutive frames a given

 # object is allowed to be marked as "disappeared" until we

 # need to deregister the object from tracking

 self.maxDisappeared = maxDisappeared

 def register(self, centroid):

 # when registering an object we use the next available object

 # ID to store the centroid

 self.objects[self.nextObjectID] = centroid

 self.disappeared[self.nextObjectID] = 0

 self.nextObjectID += 1

 def deregister(self, objectID):

 # to deregister an object ID we delete the object ID from

 # both of our respective dictionaries

 del self.objects[objectID]

 del self.disappeared[objectID]

 def update(self, rects, centroidz):

 # check to see if the list of input bounding box rectangles

 # is empty

 if len(rects) == 0:

 # loop over any existing tracked objects and mark them

 # as disappeared

 for objectID in list(self.disappeared.keys()):

 self.disappeared[objectID] += 1

 # if we have reached a maximum number of consecutive

 # frames where a given object has been marked as

 # missing, deregister it

 if self.disappeared[objectID] > self.maxDisappeared:

 self.deregister(objectID)

 # return early as there are no centroids or tracking info

99

 # to update

 return self.objects

 # initialize an array of input centroids for the current frame

 inputCentroids = np.zeros((len(rects), 2), dtype="int")

 # loop over the bounding box rectangles

 for (i, (startX, startY, endX, endY)) in enumerate(rects):

 # use the bounding box coordinates to derive the centroid

 # cX = int((startX + endX) / 2.0)

 # cY = int((startY + endY) / 2.0)

 cX = centroidz[i][0]

 cY = centroidz[i][1]

 inputCentroids[i] = (cX, cY)

 # if we are currently not tracking any objects take the input

 # centroids and register each of them

 if len(self.objects) == 0:

 for i in range(0, len(inputCentroids)):

 self.register(inputCentroids[i])

 # otherwise, are are currently tracking objects so we need to

 # try to match the input centroids to existing object

 # centroids

 else:

 # grab the set of object IDs and corresponding centroids

 objectIDs = list(self.objects.keys())

 objectCentroids = list(self.objects.values())

 # compute the distance between each pair of object

 # centroids and input centroids, respectively -- our

 # goal will be to match an input centroid to an existing

 # object centroid

 D = dist.cdist(np.array(objectCentroids), inputCentroids)

 # in order to perform this matching we must (1) find the

 # smallest value in each row and then (2) sort the row

 # indexes based on their minimum values so that the row

 # with the smallest value is at the *front* of the index

 # list

 rows = D.min(axis=1).argsort()

 # next, we perform a similar process on the columns by

 # finding the smallest value in each column and then

 # sorting using the previously computed row index list

 cols = D.argmin(axis=1)[rows]

 # in order to determine if we need to update, register,

 # or deregister an object we need to keep track of which

 # of the rows and column indexes we have already examined

 usedRows = set()

 usedCols = set()

 # loop over the combination of the (row, column) index

100

 # tuples

 for (row, col) in zip(rows, cols):

 # if we have already examined either the row or

 # column value before, ignore it

 # val

 if row in usedRows or col in usedCols:

 continue

 # otherwise, grab the object ID for the current row,

 # set its new centroid, and reset the disappeared

 # counter

 objectID = objectIDs[row]

 self.objects[objectID] = inputCentroids[col]

 self.disappeared[objectID] = 0

 # indicate that we have examined each of the row and

 # column indexes, respectively

 usedRows.add(row)

 usedCols.add(col)

 # compute both the row and column index we have NOT yet

 # examined

 unusedRows = set(range(0, D.shape[0])).difference(usedRows)

 unusedCols = set(range(0, D.shape[1])).difference(usedCols)

 # in the event that the number of object centroids is

 # equal or greater than the number of input centroids

 # we need to check and see if some of these objects have

 # potentially disappeared

 if D.shape[0] >= D.shape[1]:

 # loop over the unused row indexes

 for row in unusedRows:

 # grab the object ID for the corresponding row

 # index and increment the disappeared counter

 objectID = objectIDs[row]

 self.disappeared[objectID] += 1

 # check to see if the number of consecutive

 # frames the object has been marked "disappeared"

 # for warrants deregistering the object

 if self.disappeared[objectID] >

self.maxDisappeared:

 self.deregister(objectID)

 # otherwise, if the number of input centroids is greater

 # than the number of existing object centroids we need to

 # register each new input centroid as a trackable object

 else:

 for col in unusedCols:

 self.register(inputCentroids[col])

 # return the set of trackable objects

 return self.objects

101

