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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

In information theory, turbo codes are a class of high-performance forward error 

correction (FEC) codes developed in 1993, which were the first practical codes to 

closely approach the channel capacity, a theoretical maximum for the code rate at 

which reliable communication is still possible given a specific noise level. Turbo 

codes are finding use in (deep space) satellite communications and other applications 

where designers seek to achieve reliable information transfer over bandwidth or 

latency constrained communication links in the presence of data-corrupting noise. 

Turbo codes are nowadays competing with LDPC codes, which provide similar 

performance. 

 

 

1.2 Aims and Objectives 

 

The aim in this project is to make sure we gain the knowledge of turbo codes system. 

The decoder in turbo code system is very complex and involved with many 

algorithms. In order to get understand about the decoder algorithm, we will go 

through deeply in this project. This is to make sure that we can apply our knowledge 

of turbo code system in industrial area after we graduated.  

 

 

http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem
http://en.wikipedia.org/wiki/Code_rate
http://en.wikipedia.org/wiki/Deep_space
http://en.wikipedia.org/wiki/Satellite
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/LDPC_code


 

1.3 Thesis Outline 

 

The first two chapters in this thesis report are about the introduction for the 

communication system in your real world. I will go through the history of the 

communication system for the first generation until the fourth generation cellular 

network. After that, I will go through the Error Control Coding (ECC) and the type 

of the ECC. Moreover, the introduction for turbo code system will come afterward. 

The interleaving feature in turbo code system and puncturing system will be 

introduced in this chapter. The last part for chapter two is to talk about the decoding 

algorithm in the turbo code system. 

  

 The chapter three is all about the simulation on the Yufei Codes by using the 

Matlab software. I will go through the introduction for Matlab and Yufei Codes. In 

addition, I will capture image for the example during my simulation for the codes. 

The parameter for the simulation is frame size, generator polynomial, code rate, 

number of iteration and the final result for comparing the pros and cons of the Log-

MAP algorithm and the SOVA algorithm. 

 

 I will come out with some result and discussion in the chapter four and the 

result is base on the simulation on the chapter three. The discussion for the 

performance of the decoding algorithm is based on the four parameters. The 

parameter is frame size, generator polynomial, code rate and number of iteration. 

 

 Last but not least, I will conclude with the future work that we can put more 

research on the few algorithms that has potential to have great advantage than turbo 

codes.  

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 History of Communication System 

 

Wireless communications is the fastest growing segment of the communications 

industry. Indeed, it has captured the attention of the media and the imagination of the 

public. Cellular systems have experienced exponential growth over the last decade 

and there are currently around two billion users worldwide. As such, cellular phones 

become an important business tool and part of everyday life in most developed 

countries, such as US, UK, etc. (Seymour & Shaheen, 2011) 

 

 

 

2.1.1 First Generation (1G) 

 

In the late 1970s, AT&T Bell Laboratories developed the first US cellular telephone 

system called the Advanced Mobile Phone Service (AMPS) (Yong, 1979). AMPS 

was first deployed in late 1983 in the urban and suburban areas of Chicago by 

Ameritech. In 1983, a total of 40MHz of spectrum in the 800MHz band was 

allocated by the Federal Communications Commission for the Advanced Mobile 

Phone Service. In the 1989, as the demand for cellular telephone services increased, 

the Federal Communications Commission allocated an additional 10MHz for cellular 

telecommunications. The first AMPS cellular system used large cells and 

omnidirectional base station antenna to minimize initial equipment needs, and the 
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system was deployed in Chicago to cover approximately 2100 square miles (Yong, 

1979). 

 

 The European Total Access Communication System (ETACS) was developed 

in the mid 1980s, and is virtually identical to AMPS, except it is scaled to fit in 

25kHz channels used throughout Europe. Another difference between ETACS and 

AMPS is how the telephone number of each subscriber is formatted, due to the need 

to accommodate different country codes throughout Europe as opposed to area codes 

in the US (Yong, 1979). 

 

 

 

2.1.2 Second Generation (2G) 

 

Most of ubiquitous cellular network use since 1991 that is commonly called second 

generation or 2G technologies which conform to the second generation cellular 

standards. Unlike first generation cellular systems that relied exclusively on 

FDMA/FDD and analogue FM, second generation standards use digital modulation 

formats and TDMA/FDD and CDMA/FDD multiple access techniques. 

 

 The most popular second generation standards include three TDMA standards 

and one CDMA standard: 

a) Global System Mobile (GSM), which supports eight time slotted users for 

each 200kHz radio channel and has been deployed widely in the cellular and 

PCS bands by service provider in Europe, Asia, Australia, South America and 

some parts of the US [2]; 

b) Interim Standard 136 (IS-136), also known as North American Digital 

Cellular (NADC) or US Digital Cellular (USDC), which supports three time 

slotted users for each 30kHz radio channel and is a popular choice for carriers 

in North America, South America, and Australia; 

c) Pacific Digital Cellular (PDC), a Japanese TDMA standard that is similar to 

IS-136 with more than 50 million users; and 

d) The popular 2G CDMA standard Interim Standard 95 Code Division Multiple 

Access (IS-95), also known as cdmaOne, which supports up to 64 users that 
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are orthogonally coded and simultaneously transmitted on each 1.25MHz 

channel. CDMA is widely deployed by carriers in North America, as well as 

in Korea, Japan, China, South America, and Australia (Liberti & Rappaport, 

1999), (Kim,2000), (Garg, 2000). 

The 2G standards mentioned above represent the first set of wireless air 

interface standards to rely on digital modulation and sophisticated digital signal 

processing in the handset and the base station. 

 

 

 

2.1.2.1 Evolution on 2G Cellular Network 

 

Three different upgrade paths have been developed for GSM carriers, and two of 

these solutions also support IS-136. The three TDMA upgrade options include: 

a) High Speed Circuit Switched Data (HSCSD) 

b) General Packet Radio Service (GPRS) 

c) Enhanced Data Rates for GSM Evolution (EDGE) 

There options provide significant improvements in the Internet access speed 

and support the creation of new Internet-ready cell phone. 

 

 

 

2.1.2.2   High Speed Circuit Switched Data (HSCSD) 

 

As the name implies, High Speed Circuit Switched Data is a circuit switched 

technique that allow a single mobile subscriber to use consecutive user time slots in 

the GSM standard. That is, instead of limiting each user to only one specific time slot 

in the GSM TDMA standard, HSCSD allows individual data users to commandeer 

consecutive time slots in order to obtain higher speed data access on the GSM 

network. HSCSD relaxes the error control coding algorithms originally specified in 

the GSM standard for data transmissions and increase the available application data 

rate to 14,400 bps, as compared to the original 9,600 bps in the GSM specification. 

By using up to four consecutive time slots, HSCSD is able to provide a raw 
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transmission rate up to 57.6 kbps to individual users, and this enhanced data offering 

can be billed as a premium service by the carrier. HSCSD is ideal for dedicated 

streaming Internet access or real-time interactive web sessions and simply requires 

the service provider to implement a software change at existing GSM base stations. 

 

 

 

2.1.2.3   General Packet Radio Service (GPRS) 

 

General Packet Radio Service is a packet-based data network, which is well suited 

for non-real time Internet usage, including the retrieval of email, faxes, and 

asymmetric web browsing, where the user download much more data then it uploads 

on the Internet. Unlike HSCSD, which dedicates circuit switched channels to specific 

users, GPRS supports multi-user network sharing of individual radio channels and 

time slots. Similar to the Cellular Digital Packet Data (CDPD) standard developed 

for the North American AMPS systems in the early 1990s, the GPRS standard 

provides a packet network on dedicated GSM radio channels. GPRS retains the 

original modulation format specified in the original 2G TDMA standard, but uses a 

completely redefined air interface in order to better handle packet data access. GPRS 

subscriber units are automatically instructed to tune to dedicated GPRS radio 

channels and particular time slots for “always on” access to the network. 

 

When all eight time slots of a GSM radio channel are dedicated to GPRS, an 

individual user is able to achieve as much as 171.2 kbps. Applications are required to 

provide their own error correction schemes as part of the carried data payload in 

GPRS. As is the case for any packet network, the data throughput experienced by an 

individual GPRS user decrease substantially as more users attempt to use the 

network or as propagation condition become poor for particular users. The 

implementation of GPRS merely requires the GSM operator to install new routers 

and Internet gateway at the base station, along with new software that redefines the 

base station air interface standard for GPRS channel and time slots. 
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2.1.2.4   Enhanced Data Rates for GSM Evolution (EDGE) 

 

EDGE, which stands for Enhanced Data Rates for GSM Evolution is a more 

advanced upgrade to the GSM standard, and requires the addition of new hardware 

and software at existing base stations. Interestingly, EDGE was developed from the 

desire of both GSM and IS-136 operators to have common technology path for 

eventual 3G high speed data access, but the initial impetus came from the GSM user 

community. 

 

 EDGE introduces a new digital modulation format, 8-PSK which is used in 

addition to GSM’s standard GMSK modulation. EDGE allows for nine different air 

interface formats, known as multiple modulation and coding schemes (MCS), with 

varying degrees of error control protection. Each MCS state may use either GMSK 

(low data rate) or 8-PSK (high data rate) modulation for network access, depending 

on the instantaneous demands of the network and the operating conditions. Because 

of the higher data rate and relaxed error control covering in many of the selectable air 

interface formats, the coverage range is smaller in EDGE than in HSDRC or GPRS. 

EDGE is sometimes referred to as Enhanced GPRS, or EGPRS (Frederic, 2001). 

 

 

 

2.1.3 Third Generation (3G) 

 

Mobile broadband networks are becoming increasingly faster and increasingly more 

pervasive. The Universal Mobile Telecommunications System (UMTS) is a 

visionary air interface standard that has evolved since late 1996 under the auspices of 

the European Telecommunications Standards Institute (ETSI). European carriers, 

manufacturers, and government regulators collectively developed the early version of 

UMTS as a competitive open air-interface standard for third generation wireless 

telecommunications. 

 

 The eventual 3G evolution for 2G CDMA system leads to cdma2000. Several 

variants of CDMA 2000 are currently being developed, but they all are based on the 

fundamentals of IS-95 and IS-95B technologies. The eventual 3G evolution for GSM, 
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IS-136, and PDC system leads to Wideband CDMA, also called Universal Mobile 

Telecommunications Service (UMTS). W-CDMA is based on the network 

fundamentals of GSM, as well as merged versions of GSM and IS-136 through 

EDGE. It is fair to say these two major 3G technology camps, cdma2000 and W-

CDMA, will be remaining popular throughout the early part of the 21
st
 century. 

 

2.1.3.1 HSDPA (3.5G) 

 

High-Speed Downlink Packet Access (HSDPA) is an enhanced 3G mobile telephony 

communication protocol in HSPA family, also dubbed 3.5G or turbo 3G which 

allows network on UMTS to have higher data transfer speed and capacity.  

 

 

 

2.1.3.2 HSPA (3.75G) 

 

The main difference for 3.7G standard compared with other standard is 3.75G based 

on High Speed Packet Access (HSPA). HSPA is an amalgamation of two mobile 

telephony protocols, High Speed Downlink Packet Access (HSDPA) and High Speed 

Uplink Packet Access (HSUPA), that extends and improves the performance of 

existing WCDMA protocols (Seymour & Shaheen, 2011). 

 

 

 

2.1.3.3 HSPA+ (3.9G) 

3.9G or we called as Pre-4G is based on Evolved High-Speed Packet Access 

(HSPA+), is a technical standard for wireless, broadband telecommunication. 

HSPA+ was first defined in the technical standard 3GPP release 7. The pre-4G 

technology 3GPP Long Term Evolution (LTE) is often branded “4G”, but the first 

LTE release does not fully comply with the IMT-Advanced requirements. LTE has a 

theoretical net bit rate capacity of up to 100 Mbps in the downlink and 50 Mbps in 

the uplink if a 20MHz channel is used – and more if multiple-input multiple output 

(MIMO).  

http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/HSDPA
http://en.wikipedia.org/wiki/HSUPA
http://en.wikipedia.org/wiki/W-CDMA_(UMTS)
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The world’s first publicly available LTE service was opened in the two 

Scandinavian capitals Stockholm (Ericsson system) and Oslo (Huawei System) on 14 

December 2009, and branded 4G. The user terminals were manufactured by 

Samsung. Currently, the two publicly available LTE service in the United Stated are 

provided by Metro PCS, and Verizon Wireless. AT&T also has an LTE service in the 

works (Seymour & Shaheen, 2011). 

 

2.1.4 Fourth Generation (4G) 

 

A 4G or we called as IMT-Advanced system is expected to provide a comprehensive 

and secure all-IP based mobile broadband solution to laptop computer wireless 

modems, Smartphone, and other mobile devices. Facilities such as ultra-broadband 

Internet access, IP telephony, gaming services, and streamed multimedia may be 

provided to users.  

 

Currently, no industry group has required creating a formal definition of 4G. 

So, 4G can’t be classified as an official technology in this moment. This has resulted 

in some near term technologies such as WiMAX or 3G Long Term Evolution (LTE) 

being classified as 4G. IMT-A is used to provide a seamless interworking at any 

network and terminal. IMT-A concept outlined data rates for 4G technology will 

achieve 100Mbps for high mobility, whereas 1Gbps of data rates for nomadic users. 

Highly mobile users are further defined as accessing the network at speeds up to 125 

KMph, while maintaining network connectivity at speeds of up to 350 KMph. Data 

rates are not yet specified. 

 

IMT-A are using Orthogonal frequency-division multiple access (OFDMA), 

multiple-input and multiple-output (MIMO) access technology (Tellabs,2008).  
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2.1.5 Summary of Generation Standards 

 

In general, the most important feature among these generations is about the data rates 

and the multiple access techniques. We can see the huge differences started for the 

first generation cellular network until now we have the fourth generation cellular 

network with the data rate of 1Gbps at the maximum rates.  

 

 

Table 2.1: Summary of Generation Standards  

(sayanthan, 2011) 
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2.2 Wireless Communications System 

 

 

Figure 2.1: Block diagram of a wireless communication system 

(Gersho, 1977) 

 

Air is the medium of transmission in wireless communication system. This system 

allow multimedia communication from anywhere in the world using a small 

handheld device or laptop. In wireless communication system, the analogue sources 

must be converted into digital format. This is due to the reliability for digital format 

is better than analogue. Besides that, digital data is more easy and accurate to be 

detected during the error control coding process as compare to analogue data. It is 

easier to remove the unnecessary redundancy bits when the signal information 

presented in digital format. As we can see from figure 1, the transmitter consists of 

few of components such as, A/D converter, source encoder, channel encoder and 

modulator. 

 

 Source information from analogue signal or video signal which has discrete 

time and finite number of outputs will converted into digital form so that is easy to 

recognized by the source encoder. Before the quantization begins, we should start 

with the sampling process. The purpose for sampling process is to make sure that we 

can exactly reconstruct the analogue signal from the samples at the receiver. In order 

to get the signal correctly, we must perform the sampling properly. After we done the 
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sampling process, the system will continued with next process which called as 

quantization. Quantization is the process of mapping a continuous range of 

amplitudes of a signal into a finite set of discrete amplitudes and also an irreversible 

process. Quantization process will drop some of the information from the original 

analogue source. Quantizers can be thought of as devices that remove the 

irrelevancies. Unlike sampling, quantization introduces distortion. Amplitude 

quantization is an important step in any speech coding process, and it determines to a 

great extent the overall distortion as well as the bit rate necessary to represent the 

speech waveform. There have four types of quantization techniques as shown in 

figures 2 which are the uniform quantization, non-uniform quantization, adaptive 

quantization and vector quantization. 

 

 

Figure 2.2: Block diagram for the Source encoder/decoder 

 

 After the quantization process, the signal will pass to the channel encoder for 

further process. Error control coding (ECC) is applied after the source information is 

converted into digital format by the source encoder. ECC is in principle a collection 

of digital signal processing techniques aiming to average the effects of channel noise 

over several transmitted signals. An important part of ECC is the incorporation of 

redundancy into the transmitted sequences. The number of bits transmitted as a result 

of the error correcting code is therefore greater than the needed to represent the 

information. Without this, the code would not even allow us to detect the presence of 

errors and therefore would not have any error controlling properties. Figures 3 

showed some example for ECC in channel encoder. 
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Figure 2.3: Block diagram for the Channel encoder/decoder 

 

 Before the signal is sending out to the air interface, the signal will pass 

through the modulator. Modulation is the process of encoding information from a 

message source in a manner suitable for transmission. There have two types of 

modulation which is analogue modulation and digital modulation. Amplitude 

Modulation (AM), Frequency Modulation (FM), and Phase Modulation is an analog 

modulation. For digital modulation which is Quadrature Phase Shift Keying (QPSK), 

Frequency Shift Keying (FSK), Minimum Shift Keying (MSK), Quadrature 

Amplitude Modulation (QAM), and so on.  It generally involves translating a 

baseband message signal (called the source) to a bandpass signal at frequencies that 

are very high when compared to the baseband frequency. The bandpass signal is 

called the modulated signal and the baseband message signal is called the modulating 

signal. Modulation may be done by varying the amplitude, phase, or frequency of a 

high frequency carrier in accordance with the amplitude of the message signal. 

Demodulation is the process of extracting the baseband message from the carrier so 

that it may be processed and interpreted by the intended receiver (also called the 

sink). Figures 4 showed some example for some types of modulation. 
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Figure 2.4: Block diagram for Modulation/demodulation 

 

 

 

2.3 Error Control Coding (ECC) 

 

In principle, error control coding is a collection of digital signal processing 

techniques aiming to average the effects of channel noise over several transmitted 

signals. The amount of noise suffered by a single transmitted symbol is much less 

predictable than that experienced over a longer interval of time, so the noise margins 

built into the code are proportionally smaller than those needed for uncoded symbols. 

 

 The incorporation of the redundancy into the transmitted sequences is the 

important part of the error control coding. The number of bits transmitted as a result 

of the error correcting code is therefore greater than that needed to represent the 

information. Without this, the code would not even allow us to detect the presence of 

errors and therefore would not have any error controlling properties. This mean that, 

in theory, any incomplete compression carried out by a source encoder could be 

regarded as having error control capabilities. In practice, however, it will be better to 
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compress the source information as completely as possible and then to re-introduce 

redundancy in a way that can be used to best effect by the error correcting decoder. 

 

2.4 The Channel 

 

The transmission medium introduces a number of effects such as attenuation, 

distortion, interference and noise, making it uncertain whether the information will 

be received correctly. Although it is easiest to think in term of the channel as 

introducing errors, it should be realized that it is the effects of the channel on the 

demodulator that produce the errors. On the other side, if the channel is without noise, 

there will be an unlimited amount of data to be transported to the receiver due to the 

infinite expansion also is an issue in the communications system. 

 

2.4.1 Additive White Gaussian Noise (AWGN) 

 

In communications, the additive white Gaussian noise (AWGN) channel 

model is one in which the information is given a single impairment which is a linear 

addition of wide band or white noise with a constant spectral density that is 

expressed as watts per hertz of bandwidth besides having a Gaussian distribution of 

amplitude. The model does not account for the phenomena of fading, frequency 

selectivity, interference, nonlinearity or dispersion. It does not s suffer from fading 

which means does not have to worry about distortion that a carrier-modulated 

telecommunication signal experiences over certain propagation media. 

However, it produces simple and tractable mathematical models which are 

useful for gaining insight into the underlying behaviour of a system before these 

other phenomena are considered. Wideband Gaussian noise comes from many 

natural sources, such as the thermal vibrations of atoms in antennas or referred to as 

thermal noise, shot noise, black body radiation from the earth and other warm 

objects, and from celestial sources such as the Sun. 
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2.4.2 Rayleigh Fading 

 

Rayleigh fading is a statistical model for the effect of a propagation environment on 

a radio signal, such as that used by wireless devices. Rayleigh fading models assume 

that the magnitude of a signal that has passed through such a transmission 

medium will vary randomly, or fade, according to a Rayleigh distribution - the radial 

component of the sum of two uncorrelated Gaussian random variables.  

 

Rayleigh fading is viewed as a reasonable model for troposphere and 

ionosphere signal as well as the effect of heavily built-up urban environments on 

radio signals. Rayleigh fading is most applicable when there is no dominant 

propagation along a line of sight between the transmitter and receiver. If there is a 

dominant line of sight, Racing fading may be more applicable.  

 

 

 

2.5 Types of Error Correction Codes 

 

Error Correction Codes (ECC) is a very powerful technique that used in our wireless 

communication system. There have many codes algorithm in ECC such as linear 

block codes and convolutional code.  The following are introduction for some 

example in ECC. 

 

 

 

2.5.1 Liner Block Codes 

Linear block codes are the basic error control coding algorithm. The basic property 

of linear block coder is called closure, and according to this property the sum of any 

two codeword is another codeword. The codeword of the linear block codes can be 

separated by two parts which is the part for parity bits and another part for message 

bits. Consider an (n,k) linear block diagram, the first portion of k bits is always 

identical to the message sequence to be transmitted. The second portion is n-k bits 

generalized parity check bits and is computed from the message bits in accordance 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Wireless
http://en.wikipedia.org/wiki/Transmission_medium
http://en.wikipedia.org/wiki/Transmission_medium
http://en.wikipedia.org/wiki/Transmission_medium
http://en.wikipedia.org/wiki/Fading
http://en.wikipedia.org/wiki/Rayleigh_distribution
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Random_variable
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with a prescribed encoding rule that determines the mathematical structure of the 

code. Block codes in which message bits are transmitted in unaltered form are called 

systematic codes.  

 

Figure 2.5: Structure of a systematic codeword 

 

 

Figure 2.6: Structure of a generator matrix 

 

 Another way of expressing the relationship between the message bits and 

parity bit of linear block code is by parity check matrix. This matrix is used in 

decoding of the linear block codes. 

 

 

 

 

 

 

 

 

2.5.2 Bose-Chaudhari-Hocquenqhem (BCH) Codes 

 

BCH codes are one of the most important and powerful classes of cyclic codes. BCH 

codes are known for their multiple error correcting ability, and the ease of encoding 

and decoding. For any positive integers m (equal to or greater than 3) and t [< (2
m

-

1)/2] there exists a binary BCH code with the following parameters: 

 Block length:        n = 2
m

-1 symbols 

 Number of message bites:     k  n - mt    

 Minimum distance:  dmin = 2t + 1 symbols 

 

H  =  T
kn PI   

T
P  is an (n-k) x k matrix representing the transpose of    P    

kn I  is the (n-k) x (n-k) identity matrix. 
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           Each BCH code is a t-error correcting code which means that it can detect and 

correct up to t random errors per code word. The Hamming single-error correcting 

codes can be described as BCH codes. Also, decoding algorithms for BCH codes can 

be implemented with a reasonable amount of equipment. The BCH codes provide a 

large selection of block lengths, code rates, alphabet sizes, and error correcting 

capability.  (Bose, 2003) 

 

 

 

2.5.3 Reed-Solomon Codes 

 

Reed-Solomon codes are an important subclass of non-binary BCH codes. Reed-

Solomon codes work on symbols rather than individual bits. The encoder of an (n,k) 

Reed-Solomon code receives input data stream in the form of blocks of k symbols 

each. The encoding algorithm expands each block of k symbols into a block of n 

symbols by adding n-k redundant (parity) symbols. A symbol is nothing but a 

combination of m bits. Thus an encoder converts blocks of km bits each into blocks 

of nm bits each. When m is an integer power of two, the m-bit symbols are called 

bytes. A popular value of m is 8; indeed, 8-bit Reed- Solomon codes are extremely 

powerful.  (Bose, 2003) 

 

A t-error correcting Reed Solomon code has the following parameters: 

 Block length:        n = 2
m

-1 symbols 

 Message size:        k symbols 

 Parity-check size:  n-k = 2t symbols 

 Minimum distance:  dmin = 2t + 1 symbols 

 Number of correctable errors:  t = ½(dmin -1)  symbols  
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2.5.4 Convolutional Codes 

 

An encoder for a binary block code takes a block of information bits and converts it 

into a block of transmitted bits (a codeword). A binary convolutional encoder takes a 

stream of information bits and converts it into a stream of transmitted bits, using a 

shift register bank. Redundancy for recovery from channel errors is provided by 

transmitting more bits per unit time than the number of information bits per unit time. 

Maximum likelihood decoding can be done using the Viterbi algorithm; other 

decoding algorithms such as SOVA (soft output Viterbi algorithm) and the BCJR 

algorithm are also commonly used. In practice the information stream is of finite 

duration and one typically appends a few termination bits to the input stream to bring 

the shift register bank back to the all zeros state, so that the convolutional code is in 

effect used as a very long block code. Often convolutional codes are used as inner 

codes with burst error correcting block codes as outer codes to form concatenated 

codes. Errors in Viterbi-like decoding algorithms for convolutional codes tend to 

occur in bursts because they result from taking a wrong path in a trellis. The burst 

error correcting capability of the outer code is used to recover from such burst error 

patterns in the decoding of the inner code (Ip & Tang, 2005). 

 

 

Table 2.2: Terminology for the Convolutional Code 

 

 

 

 



31 

2.5.5 Trellis Code Modulation (TCM) 

 

TCM is   which accomplishes this by the use of convolutional coding and increase 

the power efficiency. It conserves bandwidth by doubling the number of 

constellation points of the signal. This way the bit rate increase but the symbol rate 

stays the same.  

 

            Convolutional coding constrains allowed symbol transitions, creating 

sequence coding. Unlike a true convolutional coding, not all incoming bits are coded. 

Increasing the constellation size reduces Euclidean distances between the 

constellation points but sequence coding offers a coding gain that overcomes the 

power disadvantage of going to the higher constellation. Performance is measured by 

coding gain over an uncoded signal. The decoding metric is the Euclidean distance 

and not Hamming distance. Ungerboeck originally proposed TCM which used set-

partitioning and small number of states with code rates that varied with the input 

signal type. TCM is a general concept and by varying k, we can create a QPSK, 

8PSK, or higher level signals.  (Bose, 2003) 

 

 

 

2.5.6 Viterbi algorithm 

 

The Viterbi algorithm is a dynamic programming algorithm for finding the most 

likely sequence of hidden states – called the Viterbi path – that results in a sequence 

of observed events, especially in the context of Markov information sources, and 

more generally, hidden Markov models. The forward algorithm is a closely related 

algorithm for computing the probability of a sequence of observed events. These 

algorithms belong to the realm of information theory. 

 

The Viterbi algorithm was conceived by Andrew Viterbi in 1967 as a 

decoding algorithm for convolutional codes over noisy digital communication links. 

The algorithm has found universal application in decoding the convolutional codes 

used in both CDMA and GSM digital cellular, dial-up modems, satellite, deep-space 

communications, and 802.11 wireless LANs. It is now also commonly used in speech 
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recognition, keyword spotting, computational linguistics, and bioinformatics. For 

example, in speech-to-text (speech recognition), the acoustic signal is treated as the 

observed sequence of events, and a string of text is considered to be the "hidden 

cause" of the acoustic signal. The Viterbi algorithm finds the most likely string of 

text given the acoustic signal (Viterbi, 1967) . 

 

 

 

2.6 Hard and Soft Decision 

 

Kouraichi et al. (2004) found that hard-decision and soft-decision decoding refer to 

the type of quantization used on the received bits. The channel used  in our study is 

the AWGN, In this channel, noise with uniform power spectral density (hence  the  

term white)  is  assumed  to  be  added  to the  information signal. It is a simple and 

common channel model in a communication system. Hard-decision decoding use 1-

bit quantization on the received channel values. As shown in  figure 3, we  add  a  

conformer  that  makes  decision  on  the signal  issued  from  the  demodulator:  if  

the  signal voltage  exceeds  a  certain  value,  we  have  logic“one”, otherwise its 

output  is equal to logic “zero”. 

 

 

Figure 2.7: Hard decision decoding 

(Kouraichi M, 2004) 

 

Soft-decision decoding uses multi-bit quantization on the received channel 

values. For  the  ideal  soft- decision  decoding  (infinite-bit  quantization),  the 

received  channel  values  are  directly  used  in  the channel decoder. Figure 3 shows 

decision decoding. 
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Figure 2.8: Soft decision decoding 

(Kouraichi M, 2004) 

 

In the soft decision decoding, we do not use the conformer that makes 

decision on the value of the bit but we inject it directly in the decoder. Thus all the 

perturbation caused by the imperfection of the channel will be integrated in 

estimation process. The estimation of the bit value will be done after the decoding 

process. 

 

 

 

2.7 History of Turbo Codes 

 

Claude Shannon published a classic paper in 1949 (Shannon, 1949) that established a 

mathematical basic for the consideration of the noisy communications channel. In his 

analysis, he came out with Shannon limit that quantified the maximum theoretical 

capacity for a communications channel and indicated the error-correcting channel 

codes must exist that allowed this maximum capacity to be achieved. The intervening 

years have been seen many well-considered channel codes inch toward the Shannon 

limit, but all contenders have required large block lengths to perform close to the 

limit. The consequent complexity, cost, and signal latency of these codes have made 

them impractical within 3 to 5 dB of the limit, but they provide useful coding gain at 

higher values of Eb/No and bit error rate. 

 

In 1993 Berrou, Glavieux and thitimajshima proposed “a new class of 

convolution codes called turbo codes whose performance in terms of Bit Error Rate 

(BER) are close to the Shannon limit”.  It has been claimed these codes achieve near-

Shannon-limit error correction performance with relatively simple component codes 

and large interleavers. A required Eb=N0 of 0.7 dB was reported for a bit error rate 

(BER) of 10-5, using a rate 1/2 turbo code (Berrou et al, 1993). 
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It  is  theoretically possible  to approach  the Shannon  limit by using a block 

code with large  block  length  or  a  convolutional  code  with  a  large  constraint  

length.    The processing  power  required  to  decode  such  long  codes  makes  this  

approach impractical. Turbo  codes  overcome  this  limitation  by  using  recursive  

coders  and  iterative  soft decoders.  The recursive coder makes convolutional codes 

with short constraint length appear  to  be  block  codes with  a  large  block  length,  

and  the  iterative  soft  decoder progressively improves the estimate of the received 

message. 

 

 

 

2.8 Turbo Code Encoder 

 

A  specific  type  of  convolutional  coder  is  used  to  generate  turbo  codes. The 

convolutional coder shown in Figure 1a has a single input, x, outputs p0 and p1, and 

a constraint length K=3. Multiplexing the outputs generates a code of rate R=1/2.  

 

Figure 2.9: Convolutional coder 

(Gomilko, 2008) 

 

The convolutional coder shown in Figure 1b differs in that one of the outputs, 

p0, has been “folded back” and is presenting one of its output sequences at the coder 

input, making it recursive. This has the effect of increasing the apparent block length 

without affecting the constraint length of the coder.  The input is also presented as 

one outputs of the coder, making it systematic. Such coders are thus called recursive 

systematic convolutional (RSC) coders. 
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Figure 2.10: Recursive systematic convolutional coder 

(Gomilko, 2008) 

In  non-recursive  convolutional  codes  it  is  common  practice  to  flush  the  

coder with zeros to bring the decoder to an end state.  Flushing with zeros does not 

readily work with recursive coders, however relatively simple binary arithmetic can 

establish the input sequence that will generate a zero state. RSC codes can thus be 

made to appear like linear block codes. 

 

A  turbo  code  is  the  parallel  concatenation  of  a  number  of RSC  codes. 

Usually the number of codes is kept low, typically two, as the added performance of 

more codes is not justified by the added complexity and increased overhead.  The 

input to the second decoder is an interleaved version of the systematic x, thus the 

outputs of coder 1 and coder 2 are time displaced codes generated from the same 

input sequence.  The input sequence is only presented once at the output. The  

outputs  of  the  two  coders may  be  multiplexed  into  the  stream  giving  a  rate  

R=1/3  code, or  they  may  be punctured to give a rate R=1/2 code.  This is 

illustrated in Figure 2.11. 

 

Figure 2.11: Punctured rate R=1/2 turbo coder (Gomilko, 2008) 
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The interleaver design has a significant effect on code performance. A low 

weight code can produce poor error performance, so it is important that one or both 

of the coders produce codes with good weight. If an input sequence x produces a low 

weight output from coder 1, then the interleaved version of x needs to produce a code 

of good weight from coder 2. Block interleavers give adequate performance, but 

pseudo random interleavers have been shown to give superior performance. 

 

 

 

2.8.1 Interleaver 

 

For  turbo  codes,  an  interleaver  is  used  between  the  two  component  encoders. 

Interleaver plays an important role in determining the performance of a particular 

turbo code. The interleaver is used to provide ran domness to the input sequences.   

For short interleavers, the performance of the Turbo code with a random 

interleaver degrades substantially up to a point where its BER performance is worse 

than the BER performance of convolutional codes with similar computational 

complexity. For short block length interleavers, selection of the interleaver has a 

significant effect on the performance of the Turbo code. In many applications, such 

as voice, delay is an important issue in choosing the block size. 

 

 

 

2.8.2 Puncturing 

 

Puncturing is a way of adding or removing parity bits based on the channel 

properties. Turbo coding introduces puncturing for two reasons. First is rate 

matching where bits are punctured so the number of coded bits fit the available bits 

in the physical channel. Another reason is to make different redundancy versions, 

adding more parity bits when the decoder fails to decode the transmitted bits. 

Puncturing can be used to prioritize between systematic bits and parity bits. An 

example of prioritizing could be seen between the first transmission and a 

retransmission. For the first transmission systematic bits should be prioritized so the 

decoder receives a minimum of redundancy. An error in the decoding of the first 
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transmission implies a need for redundancy and therefore priority bits should be 

prioritized.  

 

 

Figure 2.12: An example for interleaver. 

(Gomilko, 2008) 

 

 

 

2.9 Turbo Code Decoder 

 

Although the encoder determines the capability for error correction, it is the decoder 

that determines the actual performance. The performance, however, depends upon 

which algorithm is used. Since turbo decoding is an iterative process, it requires a 

soft output algorithm like the maximum a-posteriori algorithm (MAP) or the Soft 

Output Viterbi Algorithm (SOVA) for decoding. Soft output algorithm out-perform 

hard decision algorithms because they have available a better estimate of what the 

sent data actually was. This is because soft output yields a gradient of information 

about the computed information bit rather than just choosing a 1 or 0 like hard output 

a typical turbo is shown in Figure 2.13. 
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Figure 2.13: Turbo Code Decoder 

(Harrison, 2001) 

 

The MAP algorithm is often used to estimate the most likely information bit 

to have been transmitted in a coded sequence. The MAP algorithm is favoured 

because it outperforms other algorithms, such as the SOVA, under low SNR 

conditions. The major drawback, however, is that it is more complex than most 

algorithms because of its focus on each individual bit of information. In the past 

decade years, the research has resulted in great simplification of the MAP algorithm. 

 

A turbo decoder generally uses the MAP algorithm in least one of its 

component decoders. The decoding process begins by receiving partial information 

from the channel and passing it to the first decoder. The rest of the information, 

parity 2, goes to the second decoder and waits for the rest of the information to catch 

up. While the second decoder is waiting, the first decoder makes an estimate of the 

transmitted information, interleavers it to match the format of parity 2, and sends it to 

the second decoder. The second decoder takes information from both the first 

decoder and the channel and re-estimates the information. This second estimation is 

looped back to the first encoder where the process starts again.  

 

This cycle will continue until certain conditions are met, such as a certain 

number of iterations being performed. It is from this iterative process that turbo 

coding gets its name. The decoder circulates estimates of the sent data like a turbo 

engine circulates air. When the decoder is ready, the estimated information is finally 
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kicked out of the cycle and hard decisions are made in the threshold component. The 

result is the decoded  

 

 

 

2.9.1 Parameters of Turbo Decoder 

 

There are two main parameters in turbo decoder which is 

1.  Soft Input Soft Output (SISO)  

2. Iterations 

 

 

 

2.9.1.1 Soft Input Soft Ouput (SISO) 

 

The important part of the turbo decoder is the general soft-input-soft-output a 

posteriori probability (APP) module that can be constructed codes. Several different 

algorithms can be used to implement the SISO decoder, such as MAP algorithm. 

According to  (Benedetto, 1995), who proposed the concept of applying SISO APP 

general modules to decode parallel and serial turbo codes in 1996, the proposed 

universal SISO APP module is recognized as critical breakthrough in bridging the 

gap between diversified turbo codes besides having the advantage of being further 

applied into the design of more advance iterative decoding schemes.  

 

These algorithms can be split into two groups. First group represents the 

algorithms derived from the Viterbi algorithm and the second group includes 

algorithms based on the Maximum a Posteriori (MAP) algorithm. The Maximum 

Likelihood Algorithms finds the most probable information sequence that was 

transmitted like SOVA. The MAP algorithm finds the most probable information bit 

to have been transmitted given (whole) coded sequence like BCJR (Bahl, Cocke, 

Jelinek, Raviv ) (Gomilko, 2008). The SISO APP is normally equipped with the 

MAP algorithm in basic form and can be further extended to additive MAP (Log-

MAP) or Max-Log MAP or even SOVA algorithms. 
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2.9.1.2 Iterations 

 

Iteration is a computation of repeating a process. The more number of iterations 

during the decoding process, the better the performance because it will improve the 

BER for that frame. But the number of iterations can be increased up to a certain 

level where it will reach saturation stage and will produce optimum values. In this 

stage, even if the number of iterations is increased, the BER for that frame will not 

increase since it has already reached its optimum value. An example of the 

performance of iteration in turbo decoder is shown below, where as we can see the 

more number of iterations involved in the decoding process the better the BER 

performance. 

 

 

Figure 2.14: BER performance of different number of iterations 

(Hsian, May 2005) 

 

 

 

2.9.1.3 Branch metric computation – γ unit 

 

In the algorithm for turbo decoding the first computational block is the 

branch metric computation. The branch metrics is computed based on the knowledge 

of input and output associated with the branch during the transition from one state to 

another. There are four states and each state has two branches, which gives a total of 
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eight branch metrics. The computation of branch metric is done using by taking the 

systematic bits of information with frame-length, the information that is fed back 

from one decoder to the other decoder, the channel estimate which corresponds to the 

maximum signal to distortion ratio, the encoded parity bits of the encoder, the noisy 

observed values of the encoded parity bits and the observed values of the encoded 

systematic bits. The γ unit takes the noisy systematic bit stream, the parity bits from 

first and second encoder to first and second decoder respectively and the a priori 

information to compute the branch metrics. The branch metrics for all branches in 

the trellis are computed and stored. 

 

 

 

2.9.1.4 Forward metric computation – α unit 

 

The forward metric is the next computation in the algorithm. This represents 

the probability of a state at time, given the probabilities of states at previous time 

instance where the summation is over all the state transitions to be computed at each 

node at a time instance k in the forward direction traversing through the trellis. 

This metric is termed as forward metric because the computation is in an 

increasing order is from and the value for index time instance, k is initialized to zero. 

The unit recursively computes the metric using values computed in the above step. A 

forward recursion on the trellis is performed by computing α for each node in the 

trellis, α is the sum of the previous alpha times the branch metric along each branch 

from the two previous nodes to the current node. 

 

 

 

2.9.1.5 Backward metric unit – β unit 

 

The backward state probability being in each state gives the knowledge of all 

the future received symbols, which is recursively calculated and stored. The 

backward metric is computed in the backward direction going from the end to the 

beginning of the trellis. Backward metric computation can start only after the 

completion of the computation by the γ unit. Observing the trellis diagram, there are 
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four β values to be computed, but now in backward order, from [N-1 down to 0] .The 

four β values and the initialized values for index k equal to N-1. A backward 

recursion on the trellis is performed by computing β[k] for each node in the trellis. 

The computation is the same as for α, but starting at the end of the trellis and going 

in the reverse direction. 

 

 

 

2.10 Decoding Algorithm 

 

Some of the major decoding approaches, developed for turbo decoding are: 

1. Maximum Aposteriori Probability (MAP) 

2. Log-MAP, 

3. Max-Log-MAP and 

4. Soft Output Viterbi Algorithm (SOVA) 

 

 

 

2.10.1 Maximum Aposteriori Probability (MAP) 

 

The MAP decoding algorithm for convolutional codes was proposed over two 

decades ago, but initially received very little attention because of its increased 

complexity over alterative convolutional decoders for a minimal advantage in BER 

performance. Recently, the MAP decoder has enjoyed renewed and greatly increased 

attention as an iterative soft-output decoder for the class of turbo codes, which were 

discovered in 1993 and are planned to be used in 3
rd

 generation standards. 

 

MAP algorithm is a trellis-based decoding algorithm which is also known as 

the BJCR algorithm. The MAP algorithm is most favourable for convolutional codes 

and it minimizes the number of bits decoded wrongly. The input bits xk and parity 

bits yk may include additive white Gaussian noise at time k. The MAP decoding 

algorithm is devised to minimize the bit error probability. The MAP algorithm is 

computationally complex and sensitive to SNR mismatch and inaccurate estimation 

of the noise variance. This algorithm requires non-linear functions for computation 
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of the probabilities and both multiplication and addition are also required to compute 

the variables of this algorithm.  

 

         The MAP algorithm is a forward-backward recursion algorithm, which 

minimizes the probability bit error but has computational complexity and numerical 

instability. The forward state probability of being in each state of the trellis at each 

time k given the knowledge of all the previous received symbols is recursively 

calculated and stored. The backward state probability of being in each state of the 

trellis at each time k given the knowledge of all the future received symbols is 

recursively calculated and stored. The solution to these problems is to operate in the 

log-domain.  

 

MAP algorithm finds the marginal probability that the received bit was 1 or 0. 

Since the bit 1 (or 0) could occur in many different code words, we have to sum over 

the probabilities of all these code words. The decision is made by using the 

likelihood ratio of these marginal distributions from 1 and 0. The calculation can be 

structured by using trellis diagram. For every state sequence there is a unique path 

through the trellis and vice versa. The objective of the decoder is to examine states 

and compute a posteriori probability (APP) associated with the state transitions. 

There are two major problems with MAP decoding algorithm. First, MAP requires 

accurate estimation of the noise variance and its performance is very sensitive to 

SNR mismatch. The fixed-point representation of the MAP decoding variables 

usually require between 16 to 24 bits for a QPSK signal group 

 

To construct the turbo decoder two MAP decoders with the same function as 

well as an interleaver and a deinterleaver are needed. These components are arranged 

as shown in the figure corresponding to the turbo encoder.  

 

 

 

 

Figure 2.15: Turbo decoder using MAP 

(Kharagpur, 2004) 
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In the structure above, X and Y are input parameters of the first MAP decoder. 

The X input refers to the received systematic symbols while Y refers to the received 

coded symbols. The interleaved sequences of the received bits X’ and Y’ are input 

parameters of the second MAP decoder. Each MAP decoder computes the extrinsic 

information known as lambda or λ. The second MAP produces lambda values with 

an interleaved sequence λ’. The hard decision, whether a bit is 0 or 1, is a function of 

the lambda values. 

 

 The initial lambda value which is the first set of λ supplied to MAP 1 is set to 

zeros. The absolute values of lambda are expected to be larger after iteration. One 

turbo decoding iteration consists of two MAP decoder iterations. The number of 

iterations to run depends on the power capability, speed requirement, and decoding 

performance requirement. The decoding performance increases greatly after the first 

few turbo decoding iterations, but starts to show insignificant improvements after 

several decoding iterations. The hard decision from MAP 1 is taken directly from the 

lambda produced by MAP 1, but the hard decision from MAP 2 must be taken from 

after the de-interleaving process of the lambda output from MAP 2. There are three 

main types of internal signals which are calculated and used within the Map 

algorithm. They are named alpha α, beta β, and lambda λ. The calculation of alpha 

and beta are independent of each other but the calculation of lambda for a symbol 

requires alpha of that symbol and beta of the next symbol. 

 

 

 

2.10.2 Log-MAP  

 

MAP algorithm was ignored by designers during a long time because of the 

hardware complexity required by multipliers and exponential units. In instead of a 

complex architecture of the MAP algorithm in the time domain, we develop 

architecture in the log-domain. This converts all multiplications to additions, 

divisions to subtractions, and eliminates exponentials entirely, without affecting BER 

performance. There are other reasons use the log domain like logs and exponentials 

can be eliminated and the numbers do not grow as rapidly. Because the forward and 



45 

backward recursions require successive multiplications by numbers less than one, 

even 32-bit floating-point numbers will underflow unless they are scaled.  

 

Scaling requires additional operations that will slow down the turbo decoder. 

By going to the log domain no scaling is needed for 32-bit fixed-point numbers, and 

minimal scaling can be employed to utilize 16-bit or even 8-bit numbers. Also, 

avoiding the use of multiplications will reduce the power consumption of the 

processor. 

 

  Another advantage of going to the log domain is that the desired output of the 

algorithm, the log likelihood ratio or LLR, is in the log domain so it is automatically 

produced without having to actually take a logarithm. The LLR is the ratio of the 

logs of the probabilities that the particular data bit is a 1 or a 0. 

 

The major drawback of the Log-MAP decoder is its huge requirement of 

memory storage for storing the state metrics before finally obtaining the likelihood 

decision especially in a decoder not employing the sliding window technique. To 

solve this problem a low power implementation of the MAP decoder through the 

forward recursive calculation of reverse state metrics was presented. This is based on 

the algorithmic optimization of the MAP algorithm.  

 

To avoid the performance degradation of the decoders due to the modification 

of the conventional MAP algorithm to compute the reverse state metrics in a forward 

recursive manner, the complete frame or the block of data to be decoded is divided 

into several smaller blocks. 

 

 

 

2.10.3 Max-Log-MAP 

 

Similar to Log-MAP but replaces the Max-Log operation with taking 

maximum. Because at each state in forward and backward calculations only the path 

with maximum value is considered the probabilities are not calculated over all the 

codeword. In recursion calculation of α and β also only the best transition is 
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considered. The algorithm gives the logarithm of the probability that only the most 

likely path reaches the state. In calculations of log likelihood ratio only two 

codeword are considered. The best transition that would give +1 and the best 

transition that would give -1. Max-Log-MAP performs worse than MAP and Log-

MAP 

 

 

 

2.10.4 Soft Output Viterbi Algorithm (SOVA) 

 

The Soft-Output Viterbi Algorithm (SOVA) is a variation of the Viterbi 

algorithm. This algorithm has two modifications (Viterbi, 1998) over the classical 

Viterbi algorithm. First, the path metrics used to select the maximum likelihood path 

through the trellis are modified to take account of a-priori information. Second, the 

algorithm is modified to provide a soft output for each decoded bit. 

 

Consider the operation of a Viterbi algorithm. At some time t , each surviving 

path in the trellis denotes a series of add/compare/select operations, each resulting in 

the selection of a value for an information bit or symbol. Hagenauer and Hoeher 

noted that the probability that a given value is correct is proportional to how close the 

algorithm came to selecting the other value (or values). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Introduction 

 

To achieve the simulations for Turbo Code System, MATLAB software is 

used. The simulations results are displayed in graphs where the Bit Error Rate (BER) 

is plotted versus the Eb/N0. All graphs are plotted by using Microsoft Excel. 

 

 

  

3.2 Simulation Model 

                                                                                                                                                                                                            

 

         

 

 

 

 

 

 

Figure 3.1: Block diagram of simulation model 

 

The simulation in the communication system is represented by a standard 

description which is the block diagram, where each block contains the algorithm and 

equations that represents the signal processing operation. The sequence of binary 

Turbo Code 

Encoder 

Modulator 

Channel 

Turbo Code 

Decoder 

Demodulator 

  Input 

  Output 



 

digits from which is known as the information sequence is passed on to the channel 

encoder redundancy will be introduced. Error control codes will calculate extra 

control bits from the information that we wish to transmit and then transmit those 

control bits together with the information sequence for the decoder to detect or 

correct the most possible error patterns. 

 

In the turbo encoder, the fundamental turbo code encoder is built using two 

identical recursive systematic convolutional (RSC) codes with parallel concatenation 

that provides a very straightforward means of achieving a long, complex code out of 

much shorter component codes, which can be decoded much more easily. An 

interleaver is used between the encoders to improve burst error correction capacity or 

to increase the randomness of the code. Puncturing takes place after the encoder to 

change the overall coding rate. The binary symbol outputs are used to modulate 

where Binary Phase Shift Key (BPSK) modulation is used. At the receiver end the 

signal is faded and added to Additive White Gaussian Noise. 

 

Before decoding the signal is demodulated before passing to the presenting to 

turbo decoder. The turbo decoder is implemented using two constituent decoders. 

Each decoder uses either Log-MAP or SOVA decoding algorithm. The entire 

procedure, from generation of the information bits until the decoding process where 

decoder makes decision, is repeated frame-by- frame according to the number of 

frames needed to be simulated. 

 

 

 

3.3 Yufei Codes 

 

Yufei codes were developed by Wu, Yufei in Nov 1998 (Wu). Yufei Wu is a 

physician from Virginia Tech University. This script simulates the classical turbo 

encoding-decoding system where the encoder architecture consists of parallel 

concatenation through random interleaver of two RSC component encoders while the 

decoder architecture consists of iterative cooperation between soft-input-soft-output 

decoders for the constituent codes. Random information bits are modulated into +1/-

1, and transmitted through an Additive White Gaussian Noise (AWGN) channel. 
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Log-MAP algorithm without quantization or approximation is used. Using ln 

(e^x+e^y) = max(x,y) + ln(1+e^(-abs(x-y))),the Log-MAP can be simplified with a 

look-up table for the correction function. If use approximation ln (e^x+e^y) = 

max(x,y), it becomes MAX-Log-MAP. SOVA decoding algorithm is also one 

optional. 

 

 

 

3.4 Introduction to MATLAB 

 

This chapter introduces MATLAB 7.3 software, which is used to construct 

the turbo code system. The design of turbo code system with Additive White 

Gaussian Noise (AWGN) as its main channel condition is done using this software.  

 

 

 

3.4.1 Description of MATLAB 

 

MATLAB is a sophisticated language for technical computing. It integrates 

wide range of applications, algorithm development, computation, visualization, and 

programming in a comprehensible environment where problems and solutions are 

expressed in recognized mathematical notation. It also has interactive tools for 

iterative exploration, design and problem solving. The software MATLAB had been 

known as the well-organized user friendly software besides providing the most 

efficient services for the design simulation of this project.  

 

 

 

3.5 Design the Model 

 

3.5.1 Create and Launch Program 

 

First start MATLAB to design the software. Then select File which is placed on top 

of the MATLAB command window. Secondly to creating a new model click File >  
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(Wu)New > M-file which is placed at the top of the MATLAB editor. Next step is 

done by clicking Open >Turbo Sys Demo > Run to launch and run the simulation 

codes. In order to meet the purpose of this research, simulation is done by modifying 

the Matlab script developed by Yufei (Wu)  files. 

 

Figure 3.2: Creating and launching the program 

 

 

Figure 3.3: Running Yu Fei Codes 
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3.5.2 Simulation 

 

After running the codes, the simulation is then conducted. This is done by 

inserting and varying the values of the parameters such as type of decoding algorithm, 

frame size, generator polynomial, puncturing, iterations, and frame errors to 

terminate at different Signal to Noise ratio. The simulation results will be then 

obtained. 

 

Figure 3.4: Running the simulation 

 

 

 

 

3.5.2.1 Simulation for frame size 

 

Firstly the RSC Encoder is terminated with tails bits which is the combination 

of information bits and tail bits and then scrambled and passed on to the second 

encoder, while second encoder is left open without tail bits of itself. For this 

parameter frame size of N=40,400 and 1000 is used to compare the differences of 

frame size in Log MAP and SOVA decoding algorithm. 
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Figure 3.5: Simulation window for frame size 

 

 

 

 

3.5.2.2 Simulation for generator polynomial 

 

For this parameter, generator sequences is represented by values in an octal 

format where [feedback,feedfoward]. The values used are [111,101] and [1111,1011] 

which is used in both encoders simultaneously to adds randomness to the turbo code. 

 

Figure 3.6: Simulation window for polynomial generator 
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3.5.2.3 Simulation for code rate 

 

The outputs of both encoders are punctured. The puncturing is an optional 

where it changes according to required code rate needed. Puncturing gives lower 

code rate value (1/2) or no puncturing which gives higher code rate value (1/3). 

 

Figure 3.7: Simulation window for code rate 

 

 

3.5.2.4 Simulation for number of Iterations 

 

Iterations are used to reduce the number of errors in different channel 

condition such as condition at low Eb/No or high Eb/No. For this simulation iteration 

5, 6 and 7 is tested in the turbo decoder. 

 

Figure 3.8: Simulation window for number of iterations 
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3.5.2.5 Simulation Results 

 

Once all the simulations for all the parameters tested are completed, the 

results are obtained synchronized . The last value of each simulation will be value for 

that particular SNR value. And the whole process is repeated until the desired 

amount of SNR values are obtained. The results are then displayed in a graph form 

using Microsoft Excel for further analyses and discussion. 

 

Figure 3.9: Example of simulation results when N=400, r=1/2, I=5, g (P) = [7, 5] 

at Eb/N0 of 2.00dB. 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 4 

 

 

 

RESULT AND DISCUSSIONS 

 

 

 

4.1 Performance of Decoding Algorithm  

 

4.1.1 Frame Size 

 

The simulations above have been carried out by varying the frame size. 

Frame size means the number of information bits including tail bits. Using larger 

frame size means having more number of bits. The total number of bits will be 

shuffled by the interleaver in the encoder to reduce the correlation between adjacent 

bits therefore give better performance efficiency.Hence the decoder gives better 

performance. The simulation results verified this conclusion. However, since Turbo 

code is a block code, it causes a time delay before getting the complete decoding 

output. Increasing the frame size also increases the delay time. We fixed some 

parameter such as generator polynomial g (D) = [7, 5], a punctured turbo code at rate 

R = 1/2, 5 iteration for this simulations in order to explore the performance of turbo 

code in term of frame size.  
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Figure 4.12: Simulation results for frame size N=500 bits for Log-MAP and 

SOVA decoding algorithm in AWGN channel 

 

 

Figure 4.2: Simulation results for frame size N=1000 bits for Log-MAP and 

SOVA decoding algorithm in AWGN channel 
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Figure 4.3: Simulation results for frame size N=1500 bits for Log-MAP and 

SOVA decoding algorithm in AWGN channel 

 

 

Figure 4.4: Simulation results of various frame size for Log-MAP and SOVA 

decoding algorithm in AWGN channel 

 

As we observe from the graph above, we can clearly see there are three 

different frame size simulations which is N=500, 1000 and 1500 simulated with a 

standard value of generator polynomial g (D) = [7, 5] in octal representation with 

code rate, r =1/2 and a maximum iteration of 5 decoded with Log MAP and SOVA 
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algorithm each. At increased frame size, the performance of a turbo code improves 

substantially with the largest frame size with N=1500 which has the most number of 

bits has the lowest BER value compared to the other two frame size. From figure 

above, we can see that the Turbo code with larger frame size has better performance 

but decoding processing time and complexity increase. 

 

In these simulations, Log-MAP algorithm for all the three frame size N= 

500,1000 and 1500 performs better compared to SOVA where their coding gain is 

approximately around 0.6 dB to 0.4dB at BER value of 10 ²̄. Frame size affects the 

size of the interleaver hence increases the complexity and even though Log-MAP has 

higher computational complexity compared to SOVA, it still produces optimum 

performance despite longer decoding time during larger frame size. 

 

 

 

4.1.2 Code Rate 

 

 

Figure 4.5: Simulation results for code rate, r = 1/2for Log-MAP and SOVA 

decoding algorithm in AWGN channel 

 



59 

 

Figure 4.6: Simulation results for code rate, r = 1/3for Log-MAP and SOVA 

decoding algorithm in AWGN channel 

 

 

Figure 4.73: Simulation results of various code rate for Log-MAP and SOVA 

decoding algorithm in AWGN channel 

 

As we observe from the figure above, two different simulations on the effects 

puncturing is carried out by varying its code rate value over different decoding 

algorithm. Puncturing adjusts the number of bits so that the width of the encoded bit 

sequence is constant and easy to handle. The code rate r =1/2, also known as half rate 

codes, is a punctured code where bits in the encoder is deleted thus decreases the 
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code rate.  Third rate codes or r =1/3, is the un-punctured codes where puncturing 

does not take place in the encoder therefore no bits are deleted and code rate is 

increased. 

 

 We can clearly see the difference on the performance between half rate 

codes, r =1/2 and third rate codes, r = 1/3 simulated based on a standard parameter 

value with a maximum iteration of 5, together with frame size of N=400 and 

generator polynomial g (D) = [7, 5]. The simulations were conducted for both Log-

MAP and SOVA algorithm in AWGN channel condition. 

 

The third rate codes, r =1/3 performs better than the half rate codes, r =1/2, 

where third rate codes reaches a lower BER value compared to the half rate codes. 

The half rate codes might have lost some information during the puncturing process 

and decreases the bandwidth requirements which eventually results in performance 

degradation compared to the third rate codes where full parity information is sent 

exclusive of any puncturing. 

 

For both code rate r = 1/2, 1/3 it is shown that Log-Map has a lower BER 

compared to SOVA with a coding gain between 0.3 to 0.35dB at BER value 10 ²̄. As 

a result, from here we can see that the higher the code rate, the lower the BER, hence 

the better the performance and in both variation of code rate, Log-MAP algorithm 

performs better compared to SOVA algorithm,  although might have slight delay in 

time due to computational complexity in Log-MAP algorithm. 

 

 

 

4.1.3 Generator Polynomial 

 

The generator sequence and can be equivalently represented in a more 

compact form as g (D) = [g1, g2]. Where g2 denotes the feed forward output and g1 

is the feedback to the input of the RSC encoder. The feedback from the RSC encoder 

output would results in major performance difference even if the same code 

generator was applied to both component codes. The rate of generator polynomials 

affects the puncturing pattern.  
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The simulations that has been carried out involves frame size of N=400 and a 

maximum iteration of 5, together with code rate of r = 1/3. Here two different 

generator polynomial value in octal representation which is g (D) = [7, 5] or [111, 

101] and [15, 13] or [1111, 1101] in its respective octal representation is simulated 

using different type of decoding algorithms. 

 

 

Figure 4.8: Simulation results for generator polynomial [7, 5] octal for Log-MAP 

and SOVA decoding algorithm in AWGN channel 

 

 

Figure 4.4: Simulation results for generator polynomial [15, 13] octal for Log-

MAP and SOVA decoding algorithm in AWGN channel 
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Figure 4.5: Simulation results of various generator polynomial for Log-MAP 

and SOVA decoding algorithm in AWGN channel 

 

The combination with higher feedback and feed forward value g (D) = [15, 

13] gives a better performance when compared to other combination using the same 

number of iterations besides giving optimum weight spectrum compared to the other. 

Log-MAP algorithm performs better compared to SOVA algorithm with a coding 

gain between 0.2dB to 0.25dBat BER value of 10 ²̄. This could be due to the forward 

backward recursion that takes place in Log-MAP compared with only forward 

recursion in SOVA algorithm. 
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4.1.4 Iterations 

 

 

Figure 4.11: Simulation results for 5 iterations for Log-MAP and SOVA 

decoding algorithm in AWGN channel 

 

 

Figure 4.12: Simulation results for 7 iterations for Log-MAP and SOVA 

decoding algorithm in AWGN channel 
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Figure 4.13: Simulation results for 9 iterations for Log-MAP and SOVA 

decoding algorithm in AWGN channel 

 

 

Figure 4.14: Simulation results of various iterations for Log-MAP and SOVA 

decoding algorithm in AWGN channel 

 

As we observe from the graph above, the simulations varying the number of 

iterations has been conducted with a code rate =1/2, N=400, g(D)= [7,5] by varying 

the  iterations I=5,7 and 9 for both Log MAP and SOVA algorithm.  

 From here we can see that the more number of iterations involved the lower 

the BER value.  The performance of the iterations improves significantly from 5
th

 

iteration to 9
th

 iteration. For each iteration, Log MAP has a better BER performance 

compared to SOVA for all the iterations with a coding gain between 0.26 dB to 0.30 
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dB. As we increase the number of iterations, the decoding complexity and latency 

also increases so for this simulation 9
th

  iteration gives satisfactory performance 

without excessive time delay. As we can see, if the simulation is continued most 

probably the 7
th 

and 9
th

 iteration will meet at a certain SNR value and will be 

saturated, improvement is not significant. As can be seen, the performance improves 

with the increased number of iterations. However, this leads to additional complexity 

and delay, which may cause glitches in applications involving real time data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 5 

 

 

 

3 CONCLUSION AND FUTURE WORK 

 

 

 

5.1 Conclusion 

 

From the error performance results, it is evident that turbo codes are quite 

suitable for the wireless communications applications under consideration with ahead 

mentioned requirements. In the system the encoder architecture is based on parallel 

concatenation through random interleaver of Recursive Systematic Convolutional 

encoders the decoder architecture is based on iterative cooperation between soft-

input-soft-output decoders for the constituent codes. As we know now that the frame 

size, generator polynomial, code rate and also number of iterations affects the 

performance of turbo encoder and turbo decoder as a whole system and any changes 

in these parameters will affect the performance of the turbo codes.  

 

After completing the simulations, it can be see that the frame size plays an 

important role in the turbo code system. When larger frame size is used, it means 

having more number of bits (information bits + tail bits). From the simulations it can 

be see that turbo code with frame size of 1500 bits gives better BER performance 

compared to the frame size 500 and 1000 bits, hence we can say that the larger the 

frame size better the performance. 
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Based on the simulations of different combination of generator polynomial, it 

can be clearly see that value of generator polynomial affects the performance in the 

turbo encoder. The combination with the higher feedback and feed forward value [15, 

13] gives much better performance when compared to other combination using 

(Ioannis Chatzigeorgiou) the same number of iterations besides giving optimum 

weight spectrum compared to the other.  

 

Besides that, different puncturing pattern also influence the performance of 

the generator polynomial. We emphasize that the puncturing pattern depends on the 

rate of generator polynomials rate hence different polynomials yield different 

puncturing patterns (Ioannis Chatzigeorgiou). (Hsian, May 2005) 

 

Based on the simulations we can see that third rate codes are the output code 

which is fully transmitted from the encoder without puncturing and half rate codes  

are the codes in which their half parity bits from each of the component encoder are 

deleted to increase the system rate. The third rate codes can achieve coding gain of 

0.30 dB to 0.35 dB at 10 ²̄ BER. The third rate codes has a lower BER value 

compare to the half rate codes, and according to  (Hsian, May 2005), this can be the 

due to the fact that full parity information is sent in third rate codes therefore the 

iterative decoder can best estimate the original message sequence from the received 

channel sequence. Thus we can conclude that third rate codes without puncturing is 

indeed better than half rate codes. 

 

Iterations also play an important role in the effects of turbo decoding since 

one of the two main characteristic of turbo code decoder is iterative decoding besides 

SISO algorithm. Effect of varying the number of iterations during the decoding 

process is an interesting observation in system level studies. From the simulations 

conducted in AWGN channel, the number of iterations has been fixed. It can be see 

that the more number of iterations involved, the lower the BER value thus better 

performance in the system. 

 

It can be clearly conclude now that Log-MAP is a much better decoding 

algorithm compared to SOVA but depends on the choice of complexity of the 
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decoding process.  If a fast simulation need to be conducted but neglecting the BER 

performance, then SOVA is the right one for it but if a better BER performance 

needed to have more precise error correcting process then Log-MAP is the best 

choice despite the additional complexity and latency it has to deal with. That will be 

the major disadvantage that has to be dealt with in order to achieve the desired 

objectives. An improvement in the present decoding algorithms, utilizing hardware 

equipment with enhanced capabilities or the use of serial concatenated turbo codes 

are some of the options worth considering. 

 

 

 

5.2 Future Work 

 

In future we plan to investigate this new algorithmic technique that has been 

derived from an existing SOVA decoder and is known as Adaptive Soft Output 

Viterbi Architecture (ASOVA) turbo decoder. It is known to provide reduced 

computational complexity and a competitive bit error rate (BER) for decoders with 

the same operating parameters. This new adaptive SOVA (ASOVA) approach 

attempts to eliminate intermediate trellis paths during processing that are least likely 

to lead to the decoded output bit sequence. 

 

 Besides that, Low-density parity-check (LDPC) codes are a class of linear 

block LDPC codes. LDPC codes are also known as Gallager codes, in honor 

of Robert G. Gallager, who developed the LDPC concept in his doctoral dissertation 

at MIT in 1960 (Leiner, 2005). LDPC codes are already equipped with very fast 

(probabilistic) encoding and decoding algorithms. This makes LDPC codes not only 

attractive from a theoretical point of view, but also perfect for practical applications. 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Robert_G._Gallager
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
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APPENDIX A: TURBO CODE DEMO PROGRAM 

 

 

% This script simulates the classical turbo encoding-decoding system.  

% It simulates parallel concatenated convolutional codes. 

% Two component rate 1/2 RSC (Recursive Systematic Convolutional) component 

encoders are assumed. 

% First encoder is terminated with tails bits. (Info + tail) bits are scrambled and 

passed to  

% the second encoder, while second encoder is left open without tail bits of itself. 

% 

% Random information bits are modulated into +1/-1, and transmitted through a 

AWGN channel. 

% Interleavers are randomly generated for each frame. 

% 

% Log-MAP algorithm without quantization or approximation is used. 

% By making use of ln(e^x+e^y) = max(x,y) + ln(1+e^(-abs(x-y))), 

% the Log-MAP can be simplified with a look-up table for the correction function. 

% If use approximation ln(e^x+e^y) = max(x,y), it becomes MAX-Log-MAP. 

% 

% Copyright Nov 1998, Yufei Wu 

% MPRG lab, Virginia Tech. 

% for academic use only 

 

clear all 

 

% Write display messages to a text file 

diary turbo_logmap.txt 

 

% Choose decoding algorithm  
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dec_alg = input(' Please enter the decoding algorithm. (0:Log-MAP, 1:SOVA)  

default 0    '); 

if isempty(dec_alg) 

   dec_alg = 0; 

end 

 

% Frame size 

L_total = input(' Please enter the frame size (= info + tail, default: 500)   '); 

if isempty(L_total) 

   L_total = 500;  % infomation bits plus tail bits 

end 

 

% Code generator 

g = input(' Please enter code generator: ( default: g = [1 1 1;1 0 1]      '); 

if isempty(g) 

   g = [1 1 1;1 0 1]; 

end 

%g = [1 1 0 1; 1 1 1 1]; 

%g = [1 1 1 1 1; 1 0 0 0 1]; 

 

[n,K] = size(g);  

m = K - 1; 

nstates = 2^m; 

 

%puncture = 0, puncturing into rate 1/2;  

%puncture = 1, no puncturing 

puncture = input(' Please choose punctured / unpunctured (0/1): default 1     '); 

if isempty(puncture)  

    puncture = 1; 

end 

 

% Code rate 

rate = 1/(2+puncture);    
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% Fading amplitude; a=1 in AWGN channel 

a = 1;  

 

% Number of iterations 

niter = input(' Please enter number of iterations for each frame: default 5       '); 

if isempty(niter)  

   niter = 5; 

end    

% Number of frame errors to count as a stop criterior 

ferrlim = input(' Please enter number of frame errors to terminate: default 7        '); 

if isempty(ferrlim) 

   ferrlim = 7; 

end    

 

EbN0db = input(' Please enter Eb/N0 in dB : default [2.0]    '); 

if isempty(EbN0db) 

   EbN0db = [2.0]; 

end 

 

fprintf('\n\n----------------------------------------------------\n');  

if dec_alg == 0 

   fprintf(' === Log-MAP decoder === \n'); 

else 

   fprintf(' === SOVA decoder === \n'); 

end 

fprintf(' Frame size = %6d\n',L_total); 

fprintf(' code generator: \n'); 

for i = 1:n 

    for j = 1:K 

        fprintf( '%6d', g(i,j)); 

    end 

    fprintf('\n'); 

end         

if puncture==0 
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   fprintf(' Punctured, code rate = 1/2 \n'); 

else 

   fprintf(' Unpunctured, code rate = 1/3 \n'); 

end 

fprintf(' iteration number =  %6d\n', niter); 

fprintf(' terminate frame errors = %6d\n', ferrlim); 

fprintf(' Eb / N0 (dB) = '); 

for i = 1:length(EbN0db) 

    fprintf('%10.2f',EbN0db(i)); 

end 

fprintf('\n----------------------------------------------------\n\n'); 

     

fprintf('+ + + + Please be patient. Wait a while to get the result. + + + +\n'); 

 

for nEN = 1:length(EbN0db) 

   en = 10^(EbN0db(nEN)/10);      % convert Eb/N0 from unit db to normal numbers 

   L_c = 4*a*en*rate;  % reliability value of the channel 

   sigma = 1/sqrt(2*rate*en);  % standard deviation of AWGN noise 

 

% Clear bit error counter and frame error counter 

   errs(nEN,1:niter) = zeros(1,niter); 

   nferr(nEN,1:niter) = zeros(1,niter); 

 

   nframe = 0;    % clear counter of transmitted frames 

   while nferr(nEN, niter)<ferrlim 

      nframe = nframe + 1;     

      x = round(rand(1, L_total-m));    % info. bits 

      [temp, alpha] = sort(rand(1,L_total));        % random interleaver mapping 

      en_output = encoderm( x, g, alpha, puncture ) ; % encoder output (+1/-1) 

           

      r = en_output+sigma*randn(1,L_total*(2+puncture)); % received bits 

      yk = demultiplex(r,alpha,puncture); % demultiplex to get input for decoder 1 and 

2 
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% Scale the received bits       

      rec_s = 0.5*L_c*yk; 

 

% Initialize extrinsic information       

      L_e(1:L_total) = zeros(1,L_total); 

       

      for iter = 1:niter 

% Decoder one 

         L_a(alpha) = L_e;  % a priori info.  

         if dec_alg == 0 

            L_all = logmapo(rec_s(1,:), g, L_a, 1);  % complete info. 

         else    

            L_all = sova0(rec_s(1,:), g, L_a, 1);  % complete info. 

         end    

         L_e = L_all - 2*rec_s(1,1:2:2*L_total) - L_a;  % extrinsic info. 

 

% Decoder two          

         L_a = L_e(alpha);  % a priori info. 

         if dec_alg == 0 

            L_all = logmapo(rec_s(2,:), g, L_a, 2);  % complete info.   

         else 

            L_all = sova0(rec_s(2,:), g, L_a, 2);  % complete info.  

         end 

         L_e = L_all - 2*rec_s(2,1:2:2*L_total) - L_a;  % extrinsic info. 

          

% Estimate the info. bits         

         xhat(alpha) = (sign(L_all)+1)/2; 

 

% Number of bit errors in current iteration 

         err(iter) = length(find(xhat(1:L_total-m)~=x)); 

% Count frame errors for the current iteration 

         if err(iter)>0 

            nferr(nEN,iter) = nferr(nEN,iter)+1; 

         end    
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      end %iter 

       

% Total number of bit errors for all iterations 

      errs(nEN,1:niter) = errs(nEN,1:niter) + err(1:niter); 

 

      if rem(nframe,3)==0 | nferr(nEN, niter)==ferrlim 

% Bit error rate 

         ber(nEN,1:niter) = errs(nEN,1:niter)/nframe/(L_total-m); 

% Frame error rate 

         fer(nEN,1:niter) = nferr(nEN,1:niter)/nframe; 

 

% Display intermediate results in process   

         fprintf('************** Eb/N0 = %5.2f db **************\n', 

EbN0db(nEN)); 

         fprintf('Frame size = %d, rate 1/%d. \n', L_total, 2+puncture); 

         fprintf('%d frames transmitted, %d frames in error.\n', nframe, nferr(nEN, 

niter)); 

         fprintf('Bit Error Rate (from iteration 1 to iteration %d):\n', niter); 

         for i=1:niter 

            fprintf('%8.4e    ', ber(nEN,i)); 

         end 

         fprintf('\n'); 

         fprintf('Frame Error Rate (from iteration 1 to iteration %d):\n', niter); 

         for i=1:niter 

            fprintf('%8.4e    ', fer(nEN,i)); 

         end 

         fprintf('\n'); 

         fprintf('***********************************************\n\n'); 

 

% Save intermediate results  

         save turbo_sys_demo EbN0db ber fer 

      end 

       

   end  %while 
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end   %nEN 

 

diary off 

 

 

 

 

 


