

MAP Decoding Algorithm in Turbo Code System

TAN CHAU WENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electronic and Communication Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2012

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “MAP Decoding Algorithm in Turbo Code

System” was prepared by TAN CHAU WENG has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Hons.) Electronic and Communication Engineering at Universiti Tunku

Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Mr.Balamuralithara

Date : _________________________

iv

TABLE OF CONTENTS

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS / ABBREVIATIONS xi

CHAPTER

1 INTRODUCTION 12

1.1 Background 12

1.2 Aims and Objectives 12

 1.3 Thesis Outline 13

2 LITERATURE REVIEW 14

2.1 History of Communication System 14

2.1.1 First Generation (1G) 14

2.1.2 Second Generation (2G) 15

2.1.3 Third Generation (3G) 188

2.1.4 Fourth Generation (4G) 200

2.1.5 Summary of Generation Standards 221

2.2 Wireless Communications System 222

2.3 Error Control Coding (ECC) 255

2.4 The Channel 266

2.4.1 Additive White Gaussian Noise (AWGN) 266

2.4.2 Rayleigh Fading 277

2.5 Types of Error Correction Codes 277

2.5.1 Liner Block Codes 277

2.5.2 Bose-Chaudhari-Hocquenqhem (BCH) Codes 288

2.5.3 Reed-Solomon Codes 299

v

2.5.4 Convolutional Codes 300

2.5.5 Trellis Code Modulation (TCM) 311

2.5.6 Viterbi algorithm 311

2.6 Hard and Soft Decision 332

2.7 History of Turbo Codes 333

2.8 Turbo Code Encoder 344

2.8.1 Interleaver 366

2.8.2 Puncturing 366

2.9 Turbo Code Decoder 377

2.9.1 Parameters of Turbo Decoder 399

 2.9.1.1 Soft Input Soft Ouput (SISO) 39

 2.9.1.2 Iterations 40

 2.9.1.3 Branch metric computation – γ unit 40

 2.9.1.4 Forward metric computation – α unit 41

 2.9.1.5 Backward metric unit – β unit 41

2.10 Decoding Algorithm 422

2.10.1 Maximum Aposteriori Probability (MAP) 422

2.10.2 Log-MAP 44

2.10.3 Max-Log-MAP 455

2.10.4 Soft Output Viterbi Algorithm (SOVA) 466

3 METHODOLOGY 47

 3.1 Introduction 47

 3.2 Simulation Model 47

 3.3 Yufei Codes 48

 3.4 Introduction to MATLAB 49

 3.4.1 Description of MATLAB 49

 3.5 Design the Model 49

 3.5.1 Create and Launch Program 49

 3.5.2 Simulation 51

 3.5.2.1 Simulation for Frame Size 51

 3.5.2.2 Simulation for Generator Polynomial 52

 3.5.2.3 Simulation for Code Rate 53

 3.5.2.4 Simulation for Number of Iterations 53

vi

 3.5.2.5 Simulation Results 54

4 RESULT AND DISCUSSIONS 55

 4.1 Performance of Decoding Algorithm 55

 4.1.1 Frame Size 56

 4.1.2 Code Rate 58

 4.1.3 Generator Polynomial 60

 4.1.4 Iterations 63

5 CONCLUSION AND FUTURE WORK 66

 5.1 Conclusion 66

 5.2 Future Work 68

REFERENCE Error! Bookmark not defined.

 APPENDICES 71

vii

LIST OF TABLES

 TABLE TITLE PAGE

 2.1: Summary of Generation Standards 21

 2.2: Terminology for the Convolutional Code 30

viii

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 2.1: Block diagram of a wireless communication

system 22

Figure 2.2: Block diagram for the Source encoder/decoder 23

Figure 2.3: Block diagram for the Channel encoder/decoder 24

Figure 2.4: Block diagram for Modulation/demodulation 25

Figure 2.5: Structure of a systematic codeword 28

Figure 2.6: Structure of a generator matrix 28

Figure 2.7: Hard decision decoding 32

Figure 2.8: Soft decision decoding 33

Figure 2.9: Convolutional coder 34

Figure 2.10: Recursive systematic convolutional coder 35

Figure 2.11: Punctured rate R=1/2 turbo coder (Gomilko,

2008) 35

Figure 2.12: An example for interleaver. 37

Figure 2.13: Turbo Code Decoder 38

Figure 2.14: BER performance of different number of

iterations 40

Figure 2.15: Turbo decoder using MAP 43

Figure 3.1: Block diagram of simulation model 47

Figure 3.2: Creating and launching the program 50

ix

Figure 3.3: Running Yu Fei Codes 50

Figure 3.4: Running the simulation 51

Figure 3.5: Simulation window for frame size 52

Figure 3.6: Simulation window for polynomial generator 52

Figure 3.7: Simulation window for code rate 53

Figure 3.8: Simulation window for number of iterations 53

Figure 3.9: Example of simulation results when N=400, r=1/2,

I=5, g (P) = [7, 5] at Eb/N0 of 2.00dB. 54

Figure 4.1: Simulation results for frame size N=500 bits for

Log-MAP and SOVA decoding algorithm in

AWGN channel 56

Figure 4.2: Simulation results for frame size N=1000 bits for

Log-MAP and SOVA decoding algorithm in

AWGN channel 56

Figure 4.3: Simulation results for frame size N=1500 bits for

Log-MAP and SOVA decoding algorithm in

AWGN channel 57

Figure 4.4: Simulation results of various frame size for Log-

MAP and SOVA decoding algorithm in AWGN

channel 57

Figure 4.5: Simulation results for code rate, r = 1/2for Log-

MAP and SOVA decoding algorithm in AWGN

channel 58

Figure 4.6: Simulation results for code rate, r = 1/3for Log-

MAP and SOVA decoding algorithm in AWGN

channel 59

Figure 4.7: Simulation results of various code rate for Log-

MAP and SOVA decoding algorithm in AWGN

channel 59

Figure 4.8: Simulation results for generator polynomial [7, 5]

octal for Log-MAP and SOVA decoding

algorithm in AWGN channel 61

Figure 4.9: Simulation results for generator polynomial [15,

13] octal for Log-MAP and SOVA decoding

algorithm in AWGN channel 61

x

Figure 4.10: Simulation results of various generator

polynomial for Log-MAP and SOVA decoding

algorithm in AWGN channel 62

Figure 4.11: Simulation results for 5 iterations for Log-MAP

and SOVA decoding algorithm in AWGN

channel 63

Figure 4.12: Simulation results for 7 iterations for Log-MAP

and SOVA decoding algorithm in AWGN

channel 63

Figure 4.13: Simulation results for 9 iterations for Log-MAP

and SOVA decoding algorithm in AWGN

channel 64

Figure 4.14: Simulation results of various iterations for Log-

MAP and SOVA decoding algorithm in AWGN

channel 64

xi

LIST OF SYMBOLS / ABBREVIATIONS

ARQ Automatic repeat request

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

ECC Error Control Coding

FEC Forward Error Correction

GSM Global System for Mobile Communication

LLR Log- Likehood Ratio

MAP Maximum A Posteriori

ML Maximum Likelihood

PCCC Parallel Concatenated Convolutional Code

RSC Recursive Systematic Convolutional

SNR Signal to noise ratio

SOVA Soft-Output Viterbi Algorithm

UMTS Universal Mobile Telecommunication System

WCDMA Wide Code Division Multiple Access

CHAPTER 1

1 INTRODUCTION

1.1 Background

In information theory, turbo codes are a class of high-performance forward error

correction (FEC) codes developed in 1993, which were the first practical codes to

closely approach the channel capacity, a theoretical maximum for the code rate at

which reliable communication is still possible given a specific noise level. Turbo

codes are finding use in (deep space) satellite communications and other applications

where designers seek to achieve reliable information transfer over bandwidth or

latency constrained communication links in the presence of data-corrupting noise.

Turbo codes are nowadays competing with LDPC codes, which provide similar

performance.

1.2 Aims and Objectives

The aim in this project is to make sure we gain the knowledge of turbo codes system.

The decoder in turbo code system is very complex and involved with many

algorithms. In order to get understand about the decoder algorithm, we will go

through deeply in this project. This is to make sure that we can apply our knowledge

of turbo code system in industrial area after we graduated.

http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem
http://en.wikipedia.org/wiki/Code_rate
http://en.wikipedia.org/wiki/Deep_space
http://en.wikipedia.org/wiki/Satellite
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/LDPC_code

1.3 Thesis Outline

The first two chapters in this thesis report are about the introduction for the

communication system in your real world. I will go through the history of the

communication system for the first generation until the fourth generation cellular

network. After that, I will go through the Error Control Coding (ECC) and the type

of the ECC. Moreover, the introduction for turbo code system will come afterward.

The interleaving feature in turbo code system and puncturing system will be

introduced in this chapter. The last part for chapter two is to talk about the decoding

algorithm in the turbo code system.

 The chapter three is all about the simulation on the Yufei Codes by using the

Matlab software. I will go through the introduction for Matlab and Yufei Codes. In

addition, I will capture image for the example during my simulation for the codes.

The parameter for the simulation is frame size, generator polynomial, code rate,

number of iteration and the final result for comparing the pros and cons of the Log-

MAP algorithm and the SOVA algorithm.

 I will come out with some result and discussion in the chapter four and the

result is base on the simulation on the chapter three. The discussion for the

performance of the decoding algorithm is based on the four parameters. The

parameter is frame size, generator polynomial, code rate and number of iteration.

 Last but not least, I will conclude with the future work that we can put more

research on the few algorithms that has potential to have great advantage than turbo

codes.

CHAPTER 2

2 LITERATURE REVIEW

2.1 History of Communication System

Wireless communications is the fastest growing segment of the communications

industry. Indeed, it has captured the attention of the media and the imagination of the

public. Cellular systems have experienced exponential growth over the last decade

and there are currently around two billion users worldwide. As such, cellular phones

become an important business tool and part of everyday life in most developed

countries, such as US, UK, etc. (Seymour & Shaheen, 2011)

2.1.1 First Generation (1G)

In the late 1970s, AT&T Bell Laboratories developed the first US cellular telephone

system called the Advanced Mobile Phone Service (AMPS) (Yong, 1979). AMPS

was first deployed in late 1983 in the urban and suburban areas of Chicago by

Ameritech. In 1983, a total of 40MHz of spectrum in the 800MHz band was

allocated by the Federal Communications Commission for the Advanced Mobile

Phone Service. In the 1989, as the demand for cellular telephone services increased,

the Federal Communications Commission allocated an additional 10MHz for cellular

telecommunications. The first AMPS cellular system used large cells and

omnidirectional base station antenna to minimize initial equipment needs, and the

15

system was deployed in Chicago to cover approximately 2100 square miles (Yong,

1979).

 The European Total Access Communication System (ETACS) was developed

in the mid 1980s, and is virtually identical to AMPS, except it is scaled to fit in

25kHz channels used throughout Europe. Another difference between ETACS and

AMPS is how the telephone number of each subscriber is formatted, due to the need

to accommodate different country codes throughout Europe as opposed to area codes

in the US (Yong, 1979).

2.1.2 Second Generation (2G)

Most of ubiquitous cellular network use since 1991 that is commonly called second

generation or 2G technologies which conform to the second generation cellular

standards. Unlike first generation cellular systems that relied exclusively on

FDMA/FDD and analogue FM, second generation standards use digital modulation

formats and TDMA/FDD and CDMA/FDD multiple access techniques.

 The most popular second generation standards include three TDMA standards

and one CDMA standard:

a) Global System Mobile (GSM), which supports eight time slotted users for

each 200kHz radio channel and has been deployed widely in the cellular and

PCS bands by service provider in Europe, Asia, Australia, South America and

some parts of the US [2];

b) Interim Standard 136 (IS-136), also known as North American Digital

Cellular (NADC) or US Digital Cellular (USDC), which supports three time

slotted users for each 30kHz radio channel and is a popular choice for carriers

in North America, South America, and Australia;

c) Pacific Digital Cellular (PDC), a Japanese TDMA standard that is similar to

IS-136 with more than 50 million users; and

d) The popular 2G CDMA standard Interim Standard 95 Code Division Multiple

Access (IS-95), also known as cdmaOne, which supports up to 64 users that

16

are orthogonally coded and simultaneously transmitted on each 1.25MHz

channel. CDMA is widely deployed by carriers in North America, as well as

in Korea, Japan, China, South America, and Australia (Liberti & Rappaport,

1999), (Kim,2000), (Garg, 2000).

The 2G standards mentioned above represent the first set of wireless air

interface standards to rely on digital modulation and sophisticated digital signal

processing in the handset and the base station.

2.1.2.1 Evolution on 2G Cellular Network

Three different upgrade paths have been developed for GSM carriers, and two of

these solutions also support IS-136. The three TDMA upgrade options include:

a) High Speed Circuit Switched Data (HSCSD)

b) General Packet Radio Service (GPRS)

c) Enhanced Data Rates for GSM Evolution (EDGE)

There options provide significant improvements in the Internet access speed

and support the creation of new Internet-ready cell phone.

2.1.2.2 High Speed Circuit Switched Data (HSCSD)

As the name implies, High Speed Circuit Switched Data is a circuit switched

technique that allow a single mobile subscriber to use consecutive user time slots in

the GSM standard. That is, instead of limiting each user to only one specific time slot

in the GSM TDMA standard, HSCSD allows individual data users to commandeer

consecutive time slots in order to obtain higher speed data access on the GSM

network. HSCSD relaxes the error control coding algorithms originally specified in

the GSM standard for data transmissions and increase the available application data

rate to 14,400 bps, as compared to the original 9,600 bps in the GSM specification.

By using up to four consecutive time slots, HSCSD is able to provide a raw

17

transmission rate up to 57.6 kbps to individual users, and this enhanced data offering

can be billed as a premium service by the carrier. HSCSD is ideal for dedicated

streaming Internet access or real-time interactive web sessions and simply requires

the service provider to implement a software change at existing GSM base stations.

2.1.2.3 General Packet Radio Service (GPRS)

General Packet Radio Service is a packet-based data network, which is well suited

for non-real time Internet usage, including the retrieval of email, faxes, and

asymmetric web browsing, where the user download much more data then it uploads

on the Internet. Unlike HSCSD, which dedicates circuit switched channels to specific

users, GPRS supports multi-user network sharing of individual radio channels and

time slots. Similar to the Cellular Digital Packet Data (CDPD) standard developed

for the North American AMPS systems in the early 1990s, the GPRS standard

provides a packet network on dedicated GSM radio channels. GPRS retains the

original modulation format specified in the original 2G TDMA standard, but uses a

completely redefined air interface in order to better handle packet data access. GPRS

subscriber units are automatically instructed to tune to dedicated GPRS radio

channels and particular time slots for “always on” access to the network.

When all eight time slots of a GSM radio channel are dedicated to GPRS, an

individual user is able to achieve as much as 171.2 kbps. Applications are required to

provide their own error correction schemes as part of the carried data payload in

GPRS. As is the case for any packet network, the data throughput experienced by an

individual GPRS user decrease substantially as more users attempt to use the

network or as propagation condition become poor for particular users. The

implementation of GPRS merely requires the GSM operator to install new routers

and Internet gateway at the base station, along with new software that redefines the

base station air interface standard for GPRS channel and time slots.

18

2.1.2.4 Enhanced Data Rates for GSM Evolution (EDGE)

EDGE, which stands for Enhanced Data Rates for GSM Evolution is a more

advanced upgrade to the GSM standard, and requires the addition of new hardware

and software at existing base stations. Interestingly, EDGE was developed from the

desire of both GSM and IS-136 operators to have common technology path for

eventual 3G high speed data access, but the initial impetus came from the GSM user

community.

 EDGE introduces a new digital modulation format, 8-PSK which is used in

addition to GSM’s standard GMSK modulation. EDGE allows for nine different air

interface formats, known as multiple modulation and coding schemes (MCS), with

varying degrees of error control protection. Each MCS state may use either GMSK

(low data rate) or 8-PSK (high data rate) modulation for network access, depending

on the instantaneous demands of the network and the operating conditions. Because

of the higher data rate and relaxed error control covering in many of the selectable air

interface formats, the coverage range is smaller in EDGE than in HSDRC or GPRS.

EDGE is sometimes referred to as Enhanced GPRS, or EGPRS (Frederic, 2001).

2.1.3 Third Generation (3G)

Mobile broadband networks are becoming increasingly faster and increasingly more

pervasive. The Universal Mobile Telecommunications System (UMTS) is a

visionary air interface standard that has evolved since late 1996 under the auspices of

the European Telecommunications Standards Institute (ETSI). European carriers,

manufacturers, and government regulators collectively developed the early version of

UMTS as a competitive open air-interface standard for third generation wireless

telecommunications.

 The eventual 3G evolution for 2G CDMA system leads to cdma2000. Several

variants of CDMA 2000 are currently being developed, but they all are based on the

fundamentals of IS-95 and IS-95B technologies. The eventual 3G evolution for GSM,

19

IS-136, and PDC system leads to Wideband CDMA, also called Universal Mobile

Telecommunications Service (UMTS). W-CDMA is based on the network

fundamentals of GSM, as well as merged versions of GSM and IS-136 through

EDGE. It is fair to say these two major 3G technology camps, cdma2000 and W-

CDMA, will be remaining popular throughout the early part of the 21
st
 century.

2.1.3.1 HSDPA (3.5G)

High-Speed Downlink Packet Access (HSDPA) is an enhanced 3G mobile telephony

communication protocol in HSPA family, also dubbed 3.5G or turbo 3G which

allows network on UMTS to have higher data transfer speed and capacity.

2.1.3.2 HSPA (3.75G)

The main difference for 3.7G standard compared with other standard is 3.75G based

on High Speed Packet Access (HSPA). HSPA is an amalgamation of two mobile

telephony protocols, High Speed Downlink Packet Access (HSDPA) and High Speed

Uplink Packet Access (HSUPA), that extends and improves the performance of

existing WCDMA protocols (Seymour & Shaheen, 2011).

2.1.3.3 HSPA+ (3.9G)

3.9G or we called as Pre-4G is based on Evolved High-Speed Packet Access

(HSPA+), is a technical standard for wireless, broadband telecommunication.

HSPA+ was first defined in the technical standard 3GPP release 7. The pre-4G

technology 3GPP Long Term Evolution (LTE) is often branded “4G”, but the first

LTE release does not fully comply with the IMT-Advanced requirements. LTE has a

theoretical net bit rate capacity of up to 100 Mbps in the downlink and 50 Mbps in

the uplink if a 20MHz channel is used – and more if multiple-input multiple output

(MIMO).

http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Mobile_telephony
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/HSDPA
http://en.wikipedia.org/wiki/HSUPA
http://en.wikipedia.org/wiki/W-CDMA_(UMTS)

20

The world’s first publicly available LTE service was opened in the two

Scandinavian capitals Stockholm (Ericsson system) and Oslo (Huawei System) on 14

December 2009, and branded 4G. The user terminals were manufactured by

Samsung. Currently, the two publicly available LTE service in the United Stated are

provided by Metro PCS, and Verizon Wireless. AT&T also has an LTE service in the

works (Seymour & Shaheen, 2011).

2.1.4 Fourth Generation (4G)

A 4G or we called as IMT-Advanced system is expected to provide a comprehensive

and secure all-IP based mobile broadband solution to laptop computer wireless

modems, Smartphone, and other mobile devices. Facilities such as ultra-broadband

Internet access, IP telephony, gaming services, and streamed multimedia may be

provided to users.

Currently, no industry group has required creating a formal definition of 4G.

So, 4G can’t be classified as an official technology in this moment. This has resulted

in some near term technologies such as WiMAX or 3G Long Term Evolution (LTE)

being classified as 4G. IMT-A is used to provide a seamless interworking at any

network and terminal. IMT-A concept outlined data rates for 4G technology will

achieve 100Mbps for high mobility, whereas 1Gbps of data rates for nomadic users.

Highly mobile users are further defined as accessing the network at speeds up to 125

KMph, while maintaining network connectivity at speeds of up to 350 KMph. Data

rates are not yet specified.

IMT-A are using Orthogonal frequency-division multiple access (OFDMA),

multiple-input and multiple-output (MIMO) access technology (Tellabs,2008).

21

2.1.5 Summary of Generation Standards

In general, the most important feature among these generations is about the data rates

and the multiple access techniques. We can see the huge differences started for the

first generation cellular network until now we have the fourth generation cellular

network with the data rate of 1Gbps at the maximum rates.

Table 2.1: Summary of Generation Standards

(sayanthan, 2011)

22

2.2 Wireless Communications System

Figure 2.1: Block diagram of a wireless communication system

(Gersho, 1977)

Air is the medium of transmission in wireless communication system. This system

allow multimedia communication from anywhere in the world using a small

handheld device or laptop. In wireless communication system, the analogue sources

must be converted into digital format. This is due to the reliability for digital format

is better than analogue. Besides that, digital data is more easy and accurate to be

detected during the error control coding process as compare to analogue data. It is

easier to remove the unnecessary redundancy bits when the signal information

presented in digital format. As we can see from figure 1, the transmitter consists of

few of components such as, A/D converter, source encoder, channel encoder and

modulator.

 Source information from analogue signal or video signal which has discrete

time and finite number of outputs will converted into digital form so that is easy to

recognized by the source encoder. Before the quantization begins, we should start

with the sampling process. The purpose for sampling process is to make sure that we

can exactly reconstruct the analogue signal from the samples at the receiver. In order

to get the signal correctly, we must perform the sampling properly. After we done the

23

sampling process, the system will continued with next process which called as

quantization. Quantization is the process of mapping a continuous range of

amplitudes of a signal into a finite set of discrete amplitudes and also an irreversible

process. Quantization process will drop some of the information from the original

analogue source. Quantizers can be thought of as devices that remove the

irrelevancies. Unlike sampling, quantization introduces distortion. Amplitude

quantization is an important step in any speech coding process, and it determines to a

great extent the overall distortion as well as the bit rate necessary to represent the

speech waveform. There have four types of quantization techniques as shown in

figures 2 which are the uniform quantization, non-uniform quantization, adaptive

quantization and vector quantization.

Figure 2.2: Block diagram for the Source encoder/decoder

 After the quantization process, the signal will pass to the channel encoder for

further process. Error control coding (ECC) is applied after the source information is

converted into digital format by the source encoder. ECC is in principle a collection

of digital signal processing techniques aiming to average the effects of channel noise

over several transmitted signals. An important part of ECC is the incorporation of

redundancy into the transmitted sequences. The number of bits transmitted as a result

of the error correcting code is therefore greater than the needed to represent the

information. Without this, the code would not even allow us to detect the presence of

errors and therefore would not have any error controlling properties. Figures 3

showed some example for ECC in channel encoder.

24

Figure 2.3: Block diagram for the Channel encoder/decoder

 Before the signal is sending out to the air interface, the signal will pass

through the modulator. Modulation is the process of encoding information from a

message source in a manner suitable for transmission. There have two types of

modulation which is analogue modulation and digital modulation. Amplitude

Modulation (AM), Frequency Modulation (FM), and Phase Modulation is an analog

modulation. For digital modulation which is Quadrature Phase Shift Keying (QPSK),

Frequency Shift Keying (FSK), Minimum Shift Keying (MSK), Quadrature

Amplitude Modulation (QAM), and so on. It generally involves translating a

baseband message signal (called the source) to a bandpass signal at frequencies that

are very high when compared to the baseband frequency. The bandpass signal is

called the modulated signal and the baseband message signal is called the modulating

signal. Modulation may be done by varying the amplitude, phase, or frequency of a

high frequency carrier in accordance with the amplitude of the message signal.

Demodulation is the process of extracting the baseband message from the carrier so

that it may be processed and interpreted by the intended receiver (also called the

sink). Figures 4 showed some example for some types of modulation.

25

Figure 2.4: Block diagram for Modulation/demodulation

2.3 Error Control Coding (ECC)

In principle, error control coding is a collection of digital signal processing

techniques aiming to average the effects of channel noise over several transmitted

signals. The amount of noise suffered by a single transmitted symbol is much less

predictable than that experienced over a longer interval of time, so the noise margins

built into the code are proportionally smaller than those needed for uncoded symbols.

 The incorporation of the redundancy into the transmitted sequences is the

important part of the error control coding. The number of bits transmitted as a result

of the error correcting code is therefore greater than that needed to represent the

information. Without this, the code would not even allow us to detect the presence of

errors and therefore would not have any error controlling properties. This mean that,

in theory, any incomplete compression carried out by a source encoder could be

regarded as having error control capabilities. In practice, however, it will be better to

26

compress the source information as completely as possible and then to re-introduce

redundancy in a way that can be used to best effect by the error correcting decoder.

2.4 The Channel

The transmission medium introduces a number of effects such as attenuation,

distortion, interference and noise, making it uncertain whether the information will

be received correctly. Although it is easiest to think in term of the channel as

introducing errors, it should be realized that it is the effects of the channel on the

demodulator that produce the errors. On the other side, if the channel is without noise,

there will be an unlimited amount of data to be transported to the receiver due to the

infinite expansion also is an issue in the communications system.

2.4.1 Additive White Gaussian Noise (AWGN)

In communications, the additive white Gaussian noise (AWGN) channel

model is one in which the information is given a single impairment which is a linear

addition of wide band or white noise with a constant spectral density that is

expressed as watts per hertz of bandwidth besides having a Gaussian distribution of

amplitude. The model does not account for the phenomena of fading, frequency

selectivity, interference, nonlinearity or dispersion. It does not s suffer from fading

which means does not have to worry about distortion that a carrier-modulated

telecommunication signal experiences over certain propagation media.

However, it produces simple and tractable mathematical models which are

useful for gaining insight into the underlying behaviour of a system before these

other phenomena are considered. Wideband Gaussian noise comes from many

natural sources, such as the thermal vibrations of atoms in antennas or referred to as

thermal noise, shot noise, black body radiation from the earth and other warm

objects, and from celestial sources such as the Sun.

27

2.4.2 Rayleigh Fading

Rayleigh fading is a statistical model for the effect of a propagation environment on

a radio signal, such as that used by wireless devices. Rayleigh fading models assume

that the magnitude of a signal that has passed through such a transmission

medium will vary randomly, or fade, according to a Rayleigh distribution - the radial

component of the sum of two uncorrelated Gaussian random variables.

Rayleigh fading is viewed as a reasonable model for troposphere and

ionosphere signal as well as the effect of heavily built-up urban environments on

radio signals. Rayleigh fading is most applicable when there is no dominant

propagation along a line of sight between the transmitter and receiver. If there is a

dominant line of sight, Racing fading may be more applicable.

2.5 Types of Error Correction Codes

Error Correction Codes (ECC) is a very powerful technique that used in our wireless

communication system. There have many codes algorithm in ECC such as linear

block codes and convolutional code. The following are introduction for some

example in ECC.

2.5.1 Liner Block Codes

Linear block codes are the basic error control coding algorithm. The basic property

of linear block coder is called closure, and according to this property the sum of any

two codeword is another codeword. The codeword of the linear block codes can be

separated by two parts which is the part for parity bits and another part for message

bits. Consider an (n,k) linear block diagram, the first portion of k bits is always

identical to the message sequence to be transmitted. The second portion is n-k bits

generalized parity check bits and is computed from the message bits in accordance

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Wireless
http://en.wikipedia.org/wiki/Transmission_medium
http://en.wikipedia.org/wiki/Transmission_medium
http://en.wikipedia.org/wiki/Transmission_medium
http://en.wikipedia.org/wiki/Fading
http://en.wikipedia.org/wiki/Rayleigh_distribution
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Random_variable

28

with a prescribed encoding rule that determines the mathematical structure of the

code. Block codes in which message bits are transmitted in unaltered form are called

systematic codes.

Figure 2.5: Structure of a systematic codeword

Figure 2.6: Structure of a generator matrix

 Another way of expressing the relationship between the message bits and

parity bit of linear block code is by parity check matrix. This matrix is used in

decoding of the linear block codes.

2.5.2 Bose-Chaudhari-Hocquenqhem (BCH) Codes

BCH codes are one of the most important and powerful classes of cyclic codes. BCH

codes are known for their multiple error correcting ability, and the ease of encoding

and decoding. For any positive integers m (equal to or greater than 3) and t [< (2
m

-

1)/2] there exists a binary BCH code with the following parameters:

 Block length: n = 2
m

-1 symbols

 Number of message bites: k  n - mt

 Minimum distance: dmin = 2t + 1 symbols

H =  T
kn PI 

T
P is an (n-k) x k matrix representing the transpose of P

kn I is the (n-k) x (n-k) identity matrix.

29

 Each BCH code is a t-error correcting code which means that it can detect and

correct up to t random errors per code word. The Hamming single-error correcting

codes can be described as BCH codes. Also, decoding algorithms for BCH codes can

be implemented with a reasonable amount of equipment. The BCH codes provide a

large selection of block lengths, code rates, alphabet sizes, and error correcting

capability. (Bose, 2003)

2.5.3 Reed-Solomon Codes

Reed-Solomon codes are an important subclass of non-binary BCH codes. Reed-

Solomon codes work on symbols rather than individual bits. The encoder of an (n,k)

Reed-Solomon code receives input data stream in the form of blocks of k symbols

each. The encoding algorithm expands each block of k symbols into a block of n

symbols by adding n-k redundant (parity) symbols. A symbol is nothing but a

combination of m bits. Thus an encoder converts blocks of km bits each into blocks

of nm bits each. When m is an integer power of two, the m-bit symbols are called

bytes. A popular value of m is 8; indeed, 8-bit Reed- Solomon codes are extremely

powerful. (Bose, 2003)

A t-error correcting Reed Solomon code has the following parameters:

 Block length: n = 2
m

-1 symbols

 Message size: k symbols

 Parity-check size: n-k = 2t symbols

 Minimum distance: dmin = 2t + 1 symbols

 Number of correctable errors: t = ½(dmin -1) symbols

30

2.5.4 Convolutional Codes

An encoder for a binary block code takes a block of information bits and converts it

into a block of transmitted bits (a codeword). A binary convolutional encoder takes a

stream of information bits and converts it into a stream of transmitted bits, using a

shift register bank. Redundancy for recovery from channel errors is provided by

transmitting more bits per unit time than the number of information bits per unit time.

Maximum likelihood decoding can be done using the Viterbi algorithm; other

decoding algorithms such as SOVA (soft output Viterbi algorithm) and the BCJR

algorithm are also commonly used. In practice the information stream is of finite

duration and one typically appends a few termination bits to the input stream to bring

the shift register bank back to the all zeros state, so that the convolutional code is in

effect used as a very long block code. Often convolutional codes are used as inner

codes with burst error correcting block codes as outer codes to form concatenated

codes. Errors in Viterbi-like decoding algorithms for convolutional codes tend to

occur in bursts because they result from taking a wrong path in a trellis. The burst

error correcting capability of the outer code is used to recover from such burst error

patterns in the decoding of the inner code (Ip & Tang, 2005).

Table 2.2: Terminology for the Convolutional Code

31

2.5.5 Trellis Code Modulation (TCM)

TCM is which accomplishes this by the use of convolutional coding and increase

the power efficiency. It conserves bandwidth by doubling the number of

constellation points of the signal. This way the bit rate increase but the symbol rate

stays the same.

 Convolutional coding constrains allowed symbol transitions, creating

sequence coding. Unlike a true convolutional coding, not all incoming bits are coded.

Increasing the constellation size reduces Euclidean distances between the

constellation points but sequence coding offers a coding gain that overcomes the

power disadvantage of going to the higher constellation. Performance is measured by

coding gain over an uncoded signal. The decoding metric is the Euclidean distance

and not Hamming distance. Ungerboeck originally proposed TCM which used set-

partitioning and small number of states with code rates that varied with the input

signal type. TCM is a general concept and by varying k, we can create a QPSK,

8PSK, or higher level signals. (Bose, 2003)

2.5.6 Viterbi algorithm

The Viterbi algorithm is a dynamic programming algorithm for finding the most

likely sequence of hidden states – called the Viterbi path – that results in a sequence

of observed events, especially in the context of Markov information sources, and

more generally, hidden Markov models. The forward algorithm is a closely related

algorithm for computing the probability of a sequence of observed events. These

algorithms belong to the realm of information theory.

The Viterbi algorithm was conceived by Andrew Viterbi in 1967 as a

decoding algorithm for convolutional codes over noisy digital communication links.

The algorithm has found universal application in decoding the convolutional codes

used in both CDMA and GSM digital cellular, dial-up modems, satellite, deep-space

communications, and 802.11 wireless LANs. It is now also commonly used in speech

32

recognition, keyword spotting, computational linguistics, and bioinformatics. For

example, in speech-to-text (speech recognition), the acoustic signal is treated as the

observed sequence of events, and a string of text is considered to be the "hidden

cause" of the acoustic signal. The Viterbi algorithm finds the most likely string of

text given the acoustic signal (Viterbi, 1967) .

2.6 Hard and Soft Decision

Kouraichi et al. (2004) found that hard-decision and soft-decision decoding refer to

the type of quantization used on the received bits. The channel used in our study is

the AWGN, In this channel, noise with uniform power spectral density (hence the

term white) is assumed to be added to the information signal. It is a simple and

common channel model in a communication system. Hard-decision decoding use 1-

bit quantization on the received channel values. As shown in figure 3, we add a

conformer that makes decision on the signal issued from the demodulator: if

the signal voltage exceeds a certain value, we have logic“one”, otherwise its

output is equal to logic “zero”.

Figure 2.7: Hard decision decoding

(Kouraichi M, 2004)

Soft-decision decoding uses multi-bit quantization on the received channel

values. For the ideal soft- decision decoding (infinite-bit quantization), the

received channel values are directly used in the channel decoder. Figure 3 shows

decision decoding.

33

Figure 2.8: Soft decision decoding

(Kouraichi M, 2004)

In the soft decision decoding, we do not use the conformer that makes

decision on the value of the bit but we inject it directly in the decoder. Thus all the

perturbation caused by the imperfection of the channel will be integrated in

estimation process. The estimation of the bit value will be done after the decoding

process.

2.7 History of Turbo Codes

Claude Shannon published a classic paper in 1949 (Shannon, 1949) that established a

mathematical basic for the consideration of the noisy communications channel. In his

analysis, he came out with Shannon limit that quantified the maximum theoretical

capacity for a communications channel and indicated the error-correcting channel

codes must exist that allowed this maximum capacity to be achieved. The intervening

years have been seen many well-considered channel codes inch toward the Shannon

limit, but all contenders have required large block lengths to perform close to the

limit. The consequent complexity, cost, and signal latency of these codes have made

them impractical within 3 to 5 dB of the limit, but they provide useful coding gain at

higher values of Eb/No and bit error rate.

In 1993 Berrou, Glavieux and thitimajshima proposed “a new class of

convolution codes called turbo codes whose performance in terms of Bit Error Rate

(BER) are close to the Shannon limit”. It has been claimed these codes achieve near-

Shannon-limit error correction performance with relatively simple component codes

and large interleavers. A required Eb=N0 of 0.7 dB was reported for a bit error rate

(BER) of 10-5, using a rate 1/2 turbo code (Berrou et al, 1993).

34

It is theoretically possible to approach the Shannon limit by using a block

code with large block length or a convolutional code with a large constraint

length. The processing power required to decode such long codes makes this

approach impractical. Turbo codes overcome this limitation by using recursive

coders and iterative soft decoders. The recursive coder makes convolutional codes

with short constraint length appear to be block codes with a large block length,

and the iterative soft decoder progressively improves the estimate of the received

message.

2.8 Turbo Code Encoder

A specific type of convolutional coder is used to generate turbo codes. The

convolutional coder shown in Figure 1a has a single input, x, outputs p0 and p1, and

a constraint length K=3. Multiplexing the outputs generates a code of rate R=1/2.

Figure 2.9: Convolutional coder

(Gomilko, 2008)

The convolutional coder shown in Figure 1b differs in that one of the outputs,

p0, has been “folded back” and is presenting one of its output sequences at the coder

input, making it recursive. This has the effect of increasing the apparent block length

without affecting the constraint length of the coder. The input is also presented as

one outputs of the coder, making it systematic. Such coders are thus called recursive

systematic convolutional (RSC) coders.

35

Figure 2.10: Recursive systematic convolutional coder

(Gomilko, 2008)

In non-recursive convolutional codes it is common practice to flush the

coder with zeros to bring the decoder to an end state. Flushing with zeros does not

readily work with recursive coders, however relatively simple binary arithmetic can

establish the input sequence that will generate a zero state. RSC codes can thus be

made to appear like linear block codes.

A turbo code is the parallel concatenation of a number of RSC codes.

Usually the number of codes is kept low, typically two, as the added performance of

more codes is not justified by the added complexity and increased overhead. The

input to the second decoder is an interleaved version of the systematic x, thus the

outputs of coder 1 and coder 2 are time displaced codes generated from the same

input sequence. The input sequence is only presented once at the output. The

outputs of the two coders may be multiplexed into the stream giving a rate

R=1/3 code, or they may be punctured to give a rate R=1/2 code. This is

illustrated in Figure 2.11.

Figure 2.11: Punctured rate R=1/2 turbo coder (Gomilko, 2008)

36

The interleaver design has a significant effect on code performance. A low

weight code can produce poor error performance, so it is important that one or both

of the coders produce codes with good weight. If an input sequence x produces a low

weight output from coder 1, then the interleaved version of x needs to produce a code

of good weight from coder 2. Block interleavers give adequate performance, but

pseudo random interleavers have been shown to give superior performance.

2.8.1 Interleaver

For turbo codes, an interleaver is used between the two component encoders.

Interleaver plays an important role in determining the performance of a particular

turbo code. The interleaver is used to provide ran domness to the input sequences.

For short interleavers, the performance of the Turbo code with a random

interleaver degrades substantially up to a point where its BER performance is worse

than the BER performance of convolutional codes with similar computational

complexity. For short block length interleavers, selection of the interleaver has a

significant effect on the performance of the Turbo code. In many applications, such

as voice, delay is an important issue in choosing the block size.

2.8.2 Puncturing

Puncturing is a way of adding or removing parity bits based on the channel

properties. Turbo coding introduces puncturing for two reasons. First is rate

matching where bits are punctured so the number of coded bits fit the available bits

in the physical channel. Another reason is to make different redundancy versions,

adding more parity bits when the decoder fails to decode the transmitted bits.

Puncturing can be used to prioritize between systematic bits and parity bits. An

example of prioritizing could be seen between the first transmission and a

retransmission. For the first transmission systematic bits should be prioritized so the

decoder receives a minimum of redundancy. An error in the decoding of the first

37

transmission implies a need for redundancy and therefore priority bits should be

prioritized.

Figure 2.12: An example for interleaver.

(Gomilko, 2008)

2.9 Turbo Code Decoder

Although the encoder determines the capability for error correction, it is the decoder

that determines the actual performance. The performance, however, depends upon

which algorithm is used. Since turbo decoding is an iterative process, it requires a

soft output algorithm like the maximum a-posteriori algorithm (MAP) or the Soft

Output Viterbi Algorithm (SOVA) for decoding. Soft output algorithm out-perform

hard decision algorithms because they have available a better estimate of what the

sent data actually was. This is because soft output yields a gradient of information

about the computed information bit rather than just choosing a 1 or 0 like hard output

a typical turbo is shown in Figure 2.13.

38

Figure 2.13: Turbo Code Decoder

(Harrison, 2001)

The MAP algorithm is often used to estimate the most likely information bit

to have been transmitted in a coded sequence. The MAP algorithm is favoured

because it outperforms other algorithms, such as the SOVA, under low SNR

conditions. The major drawback, however, is that it is more complex than most

algorithms because of its focus on each individual bit of information. In the past

decade years, the research has resulted in great simplification of the MAP algorithm.

A turbo decoder generally uses the MAP algorithm in least one of its

component decoders. The decoding process begins by receiving partial information

from the channel and passing it to the first decoder. The rest of the information,

parity 2, goes to the second decoder and waits for the rest of the information to catch

up. While the second decoder is waiting, the first decoder makes an estimate of the

transmitted information, interleavers it to match the format of parity 2, and sends it to

the second decoder. The second decoder takes information from both the first

decoder and the channel and re-estimates the information. This second estimation is

looped back to the first encoder where the process starts again.

This cycle will continue until certain conditions are met, such as a certain

number of iterations being performed. It is from this iterative process that turbo

coding gets its name. The decoder circulates estimates of the sent data like a turbo

engine circulates air. When the decoder is ready, the estimated information is finally

39

kicked out of the cycle and hard decisions are made in the threshold component. The

result is the decoded

2.9.1 Parameters of Turbo Decoder

There are two main parameters in turbo decoder which is

1. Soft Input Soft Output (SISO)

2. Iterations

2.9.1.1 Soft Input Soft Ouput (SISO)

The important part of the turbo decoder is the general soft-input-soft-output a

posteriori probability (APP) module that can be constructed codes. Several different

algorithms can be used to implement the SISO decoder, such as MAP algorithm.

According to (Benedetto, 1995), who proposed the concept of applying SISO APP

general modules to decode parallel and serial turbo codes in 1996, the proposed

universal SISO APP module is recognized as critical breakthrough in bridging the

gap between diversified turbo codes besides having the advantage of being further

applied into the design of more advance iterative decoding schemes.

These algorithms can be split into two groups. First group represents the

algorithms derived from the Viterbi algorithm and the second group includes

algorithms based on the Maximum a Posteriori (MAP) algorithm. The Maximum

Likelihood Algorithms finds the most probable information sequence that was

transmitted like SOVA. The MAP algorithm finds the most probable information bit

to have been transmitted given (whole) coded sequence like BCJR (Bahl, Cocke,

Jelinek, Raviv) (Gomilko, 2008). The SISO APP is normally equipped with the

MAP algorithm in basic form and can be further extended to additive MAP (Log-

MAP) or Max-Log MAP or even SOVA algorithms.

40

2.9.1.2 Iterations

Iteration is a computation of repeating a process. The more number of iterations

during the decoding process, the better the performance because it will improve the

BER for that frame. But the number of iterations can be increased up to a certain

level where it will reach saturation stage and will produce optimum values. In this

stage, even if the number of iterations is increased, the BER for that frame will not

increase since it has already reached its optimum value. An example of the

performance of iteration in turbo decoder is shown below, where as we can see the

more number of iterations involved in the decoding process the better the BER

performance.

Figure 2.14: BER performance of different number of iterations

(Hsian, May 2005)

2.9.1.3 Branch metric computation – γ unit

In the algorithm for turbo decoding the first computational block is the

branch metric computation. The branch metrics is computed based on the knowledge

of input and output associated with the branch during the transition from one state to

another. There are four states and each state has two branches, which gives a total of

41

eight branch metrics. The computation of branch metric is done using by taking the

systematic bits of information with frame-length, the information that is fed back

from one decoder to the other decoder, the channel estimate which corresponds to the

maximum signal to distortion ratio, the encoded parity bits of the encoder, the noisy

observed values of the encoded parity bits and the observed values of the encoded

systematic bits. The γ unit takes the noisy systematic bit stream, the parity bits from

first and second encoder to first and second decoder respectively and the a priori

information to compute the branch metrics. The branch metrics for all branches in

the trellis are computed and stored.

2.9.1.4 Forward metric computation – α unit

The forward metric is the next computation in the algorithm. This represents

the probability of a state at time, given the probabilities of states at previous time

instance where the summation is over all the state transitions to be computed at each

node at a time instance k in the forward direction traversing through the trellis.

This metric is termed as forward metric because the computation is in an

increasing order is from and the value for index time instance, k is initialized to zero.

The unit recursively computes the metric using values computed in the above step. A

forward recursion on the trellis is performed by computing α for each node in the

trellis, α is the sum of the previous alpha times the branch metric along each branch

from the two previous nodes to the current node.

2.9.1.5 Backward metric unit – β unit

The backward state probability being in each state gives the knowledge of all

the future received symbols, which is recursively calculated and stored. The

backward metric is computed in the backward direction going from the end to the

beginning of the trellis. Backward metric computation can start only after the

completion of the computation by the γ unit. Observing the trellis diagram, there are

42

four β values to be computed, but now in backward order, from [N-1 down to 0] .The

four β values and the initialized values for index k equal to N-1. A backward

recursion on the trellis is performed by computing β[k] for each node in the trellis.

The computation is the same as for α, but starting at the end of the trellis and going

in the reverse direction.

2.10 Decoding Algorithm

Some of the major decoding approaches, developed for turbo decoding are:

1. Maximum Aposteriori Probability (MAP)

2. Log-MAP,

3. Max-Log-MAP and

4. Soft Output Viterbi Algorithm (SOVA)

2.10.1 Maximum Aposteriori Probability (MAP)

The MAP decoding algorithm for convolutional codes was proposed over two

decades ago, but initially received very little attention because of its increased

complexity over alterative convolutional decoders for a minimal advantage in BER

performance. Recently, the MAP decoder has enjoyed renewed and greatly increased

attention as an iterative soft-output decoder for the class of turbo codes, which were

discovered in 1993 and are planned to be used in 3
rd

 generation standards.

MAP algorithm is a trellis-based decoding algorithm which is also known as

the BJCR algorithm. The MAP algorithm is most favourable for convolutional codes

and it minimizes the number of bits decoded wrongly. The input bits xk and parity

bits yk may include additive white Gaussian noise at time k. The MAP decoding

algorithm is devised to minimize the bit error probability. The MAP algorithm is

computationally complex and sensitive to SNR mismatch and inaccurate estimation

of the noise variance. This algorithm requires non-linear functions for computation

43

of the probabilities and both multiplication and addition are also required to compute

the variables of this algorithm.

 The MAP algorithm is a forward-backward recursion algorithm, which

minimizes the probability bit error but has computational complexity and numerical

instability. The forward state probability of being in each state of the trellis at each

time k given the knowledge of all the previous received symbols is recursively

calculated and stored. The backward state probability of being in each state of the

trellis at each time k given the knowledge of all the future received symbols is

recursively calculated and stored. The solution to these problems is to operate in the

log-domain.

MAP algorithm finds the marginal probability that the received bit was 1 or 0.

Since the bit 1 (or 0) could occur in many different code words, we have to sum over

the probabilities of all these code words. The decision is made by using the

likelihood ratio of these marginal distributions from 1 and 0. The calculation can be

structured by using trellis diagram. For every state sequence there is a unique path

through the trellis and vice versa. The objective of the decoder is to examine states

and compute a posteriori probability (APP) associated with the state transitions.

There are two major problems with MAP decoding algorithm. First, MAP requires

accurate estimation of the noise variance and its performance is very sensitive to

SNR mismatch. The fixed-point representation of the MAP decoding variables

usually require between 16 to 24 bits for a QPSK signal group

To construct the turbo decoder two MAP decoders with the same function as

well as an interleaver and a deinterleaver are needed. These components are arranged

as shown in the figure corresponding to the turbo encoder.

Figure 2.15: Turbo decoder using MAP

(Kharagpur, 2004)

44

In the structure above, X and Y are input parameters of the first MAP decoder.

The X input refers to the received systematic symbols while Y refers to the received

coded symbols. The interleaved sequences of the received bits X’ and Y’ are input

parameters of the second MAP decoder. Each MAP decoder computes the extrinsic

information known as lambda or λ. The second MAP produces lambda values with

an interleaved sequence λ’. The hard decision, whether a bit is 0 or 1, is a function of

the lambda values.

 The initial lambda value which is the first set of λ supplied to MAP 1 is set to

zeros. The absolute values of lambda are expected to be larger after iteration. One

turbo decoding iteration consists of two MAP decoder iterations. The number of

iterations to run depends on the power capability, speed requirement, and decoding

performance requirement. The decoding performance increases greatly after the first

few turbo decoding iterations, but starts to show insignificant improvements after

several decoding iterations. The hard decision from MAP 1 is taken directly from the

lambda produced by MAP 1, but the hard decision from MAP 2 must be taken from

after the de-interleaving process of the lambda output from MAP 2. There are three

main types of internal signals which are calculated and used within the Map

algorithm. They are named alpha α, beta β, and lambda λ. The calculation of alpha

and beta are independent of each other but the calculation of lambda for a symbol

requires alpha of that symbol and beta of the next symbol.

2.10.2 Log-MAP

MAP algorithm was ignored by designers during a long time because of the

hardware complexity required by multipliers and exponential units. In instead of a

complex architecture of the MAP algorithm in the time domain, we develop

architecture in the log-domain. This converts all multiplications to additions,

divisions to subtractions, and eliminates exponentials entirely, without affecting BER

performance. There are other reasons use the log domain like logs and exponentials

can be eliminated and the numbers do not grow as rapidly. Because the forward and

45

backward recursions require successive multiplications by numbers less than one,

even 32-bit floating-point numbers will underflow unless they are scaled.

Scaling requires additional operations that will slow down the turbo decoder.

By going to the log domain no scaling is needed for 32-bit fixed-point numbers, and

minimal scaling can be employed to utilize 16-bit or even 8-bit numbers. Also,

avoiding the use of multiplications will reduce the power consumption of the

processor.

 Another advantage of going to the log domain is that the desired output of the

algorithm, the log likelihood ratio or LLR, is in the log domain so it is automatically

produced without having to actually take a logarithm. The LLR is the ratio of the

logs of the probabilities that the particular data bit is a 1 or a 0.

The major drawback of the Log-MAP decoder is its huge requirement of

memory storage for storing the state metrics before finally obtaining the likelihood

decision especially in a decoder not employing the sliding window technique. To

solve this problem a low power implementation of the MAP decoder through the

forward recursive calculation of reverse state metrics was presented. This is based on

the algorithmic optimization of the MAP algorithm.

To avoid the performance degradation of the decoders due to the modification

of the conventional MAP algorithm to compute the reverse state metrics in a forward

recursive manner, the complete frame or the block of data to be decoded is divided

into several smaller blocks.

2.10.3 Max-Log-MAP

Similar to Log-MAP but replaces the Max-Log operation with taking

maximum. Because at each state in forward and backward calculations only the path

with maximum value is considered the probabilities are not calculated over all the

codeword. In recursion calculation of α and β also only the best transition is

46

considered. The algorithm gives the logarithm of the probability that only the most

likely path reaches the state. In calculations of log likelihood ratio only two

codeword are considered. The best transition that would give +1 and the best

transition that would give -1. Max-Log-MAP performs worse than MAP and Log-

MAP

2.10.4 Soft Output Viterbi Algorithm (SOVA)

The Soft-Output Viterbi Algorithm (SOVA) is a variation of the Viterbi

algorithm. This algorithm has two modifications (Viterbi, 1998) over the classical

Viterbi algorithm. First, the path metrics used to select the maximum likelihood path

through the trellis are modified to take account of a-priori information. Second, the

algorithm is modified to provide a soft output for each decoded bit.

Consider the operation of a Viterbi algorithm. At some time t , each surviving

path in the trellis denotes a series of add/compare/select operations, each resulting in

the selection of a value for an information bit or symbol. Hagenauer and Hoeher

noted that the probability that a given value is correct is proportional to how close the

algorithm came to selecting the other value (or values).

CHAPTER 3

3 METHODOLOGY

3.1 Introduction

To achieve the simulations for Turbo Code System, MATLAB software is

used. The simulations results are displayed in graphs where the Bit Error Rate (BER)

is plotted versus the Eb/N0. All graphs are plotted by using Microsoft Excel.

3.2 Simulation Model

Figure 3.1: Block diagram of simulation model

The simulation in the communication system is represented by a standard

description which is the block diagram, where each block contains the algorithm and

equations that represents the signal processing operation. The sequence of binary

Turbo Code

Encoder

Modulator

Channel

Turbo Code

Decoder

Demodulator

 Input

 Output

digits from which is known as the information sequence is passed on to the channel

encoder redundancy will be introduced. Error control codes will calculate extra

control bits from the information that we wish to transmit and then transmit those

control bits together with the information sequence for the decoder to detect or

correct the most possible error patterns.

In the turbo encoder, the fundamental turbo code encoder is built using two

identical recursive systematic convolutional (RSC) codes with parallel concatenation

that provides a very straightforward means of achieving a long, complex code out of

much shorter component codes, which can be decoded much more easily. An

interleaver is used between the encoders to improve burst error correction capacity or

to increase the randomness of the code. Puncturing takes place after the encoder to

change the overall coding rate. The binary symbol outputs are used to modulate

where Binary Phase Shift Key (BPSK) modulation is used. At the receiver end the

signal is faded and added to Additive White Gaussian Noise.

Before decoding the signal is demodulated before passing to the presenting to

turbo decoder. The turbo decoder is implemented using two constituent decoders.

Each decoder uses either Log-MAP or SOVA decoding algorithm. The entire

procedure, from generation of the information bits until the decoding process where

decoder makes decision, is repeated frame-by- frame according to the number of

frames needed to be simulated.

3.3 Yufei Codes

Yufei codes were developed by Wu, Yufei in Nov 1998 (Wu). Yufei Wu is a

physician from Virginia Tech University. This script simulates the classical turbo

encoding-decoding system where the encoder architecture consists of parallel

concatenation through random interleaver of two RSC component encoders while the

decoder architecture consists of iterative cooperation between soft-input-soft-output

decoders for the constituent codes. Random information bits are modulated into +1/-

1, and transmitted through an Additive White Gaussian Noise (AWGN) channel.

49

Log-MAP algorithm without quantization or approximation is used. Using ln

(e^x+e^y) = max(x,y) + ln(1+e^(-abs(x-y))),the Log-MAP can be simplified with a

look-up table for the correction function. If use approximation ln (e^x+e^y) =

max(x,y), it becomes MAX-Log-MAP. SOVA decoding algorithm is also one

optional.

3.4 Introduction to MATLAB

This chapter introduces MATLAB 7.3 software, which is used to construct

the turbo code system. The design of turbo code system with Additive White

Gaussian Noise (AWGN) as its main channel condition is done using this software.

3.4.1 Description of MATLAB

MATLAB is a sophisticated language for technical computing. It integrates

wide range of applications, algorithm development, computation, visualization, and

programming in a comprehensible environment where problems and solutions are

expressed in recognized mathematical notation. It also has interactive tools for

iterative exploration, design and problem solving. The software MATLAB had been

known as the well-organized user friendly software besides providing the most

efficient services for the design simulation of this project.

3.5 Design the Model

3.5.1 Create and Launch Program

First start MATLAB to design the software. Then select File which is placed on top

of the MATLAB command window. Secondly to creating a new model click File >

50

(Wu)New > M-file which is placed at the top of the MATLAB editor. Next step is

done by clicking Open >Turbo Sys Demo > Run to launch and run the simulation

codes. In order to meet the purpose of this research, simulation is done by modifying

the Matlab script developed by Yufei (Wu) files.

Figure 3.2: Creating and launching the program

Figure 3.3: Running Yu Fei Codes

51

3.5.2 Simulation

After running the codes, the simulation is then conducted. This is done by

inserting and varying the values of the parameters such as type of decoding algorithm,

frame size, generator polynomial, puncturing, iterations, and frame errors to

terminate at different Signal to Noise ratio. The simulation results will be then

obtained.

Figure 3.4: Running the simulation

3.5.2.1 Simulation for frame size

Firstly the RSC Encoder is terminated with tails bits which is the combination

of information bits and tail bits and then scrambled and passed on to the second

encoder, while second encoder is left open without tail bits of itself. For this

parameter frame size of N=40,400 and 1000 is used to compare the differences of

frame size in Log MAP and SOVA decoding algorithm.

52

Figure 3.5: Simulation window for frame size

3.5.2.2 Simulation for generator polynomial

For this parameter, generator sequences is represented by values in an octal

format where [feedback,feedfoward]. The values used are [111,101] and [1111,1011]

which is used in both encoders simultaneously to adds randomness to the turbo code.

Figure 3.6: Simulation window for polynomial generator

53

3.5.2.3 Simulation for code rate

The outputs of both encoders are punctured. The puncturing is an optional

where it changes according to required code rate needed. Puncturing gives lower

code rate value (1/2) or no puncturing which gives higher code rate value (1/3).

Figure 3.7: Simulation window for code rate

3.5.2.4 Simulation for number of Iterations

Iterations are used to reduce the number of errors in different channel

condition such as condition at low Eb/No or high Eb/No. For this simulation iteration

5, 6 and 7 is tested in the turbo decoder.

Figure 3.8: Simulation window for number of iterations

54

3.5.2.5 Simulation Results

Once all the simulations for all the parameters tested are completed, the

results are obtained synchronized . The last value of each simulation will be value for

that particular SNR value. And the whole process is repeated until the desired

amount of SNR values are obtained. The results are then displayed in a graph form

using Microsoft Excel for further analyses and discussion.

Figure 3.9: Example of simulation results when N=400, r=1/2, I=5, g (P) = [7, 5]

at Eb/N0 of 2.00dB.

CHAPTER 4

RESULT AND DISCUSSIONS

4.1 Performance of Decoding Algorithm

4.1.1 Frame Size

The simulations above have been carried out by varying the frame size.

Frame size means the number of information bits including tail bits. Using larger

frame size means having more number of bits. The total number of bits will be

shuffled by the interleaver in the encoder to reduce the correlation between adjacent

bits therefore give better performance efficiency.Hence the decoder gives better

performance. The simulation results verified this conclusion. However, since Turbo

code is a block code, it causes a time delay before getting the complete decoding

output. Increasing the frame size also increases the delay time. We fixed some

parameter such as generator polynomial g (D) = [7, 5], a punctured turbo code at rate

R = 1/2, 5 iteration for this simulations in order to explore the performance of turbo

code in term of frame size.

56

Figure 4.12: Simulation results for frame size N=500 bits for Log-MAP and

SOVA decoding algorithm in AWGN channel

Figure 4.2: Simulation results for frame size N=1000 bits for Log-MAP and

SOVA decoding algorithm in AWGN channel

57

Figure 4.3: Simulation results for frame size N=1500 bits for Log-MAP and

SOVA decoding algorithm in AWGN channel

Figure 4.4: Simulation results of various frame size for Log-MAP and SOVA

decoding algorithm in AWGN channel

As we observe from the graph above, we can clearly see there are three

different frame size simulations which is N=500, 1000 and 1500 simulated with a

standard value of generator polynomial g (D) = [7, 5] in octal representation with

code rate, r =1/2 and a maximum iteration of 5 decoded with Log MAP and SOVA

58

algorithm each. At increased frame size, the performance of a turbo code improves

substantially with the largest frame size with N=1500 which has the most number of

bits has the lowest BER value compared to the other two frame size. From figure

above, we can see that the Turbo code with larger frame size has better performance

but decoding processing time and complexity increase.

In these simulations, Log-MAP algorithm for all the three frame size N=

500,1000 and 1500 performs better compared to SOVA where their coding gain is

approximately around 0.6 dB to 0.4dB at BER value of 10 ²̄. Frame size affects the

size of the interleaver hence increases the complexity and even though Log-MAP has

higher computational complexity compared to SOVA, it still produces optimum

performance despite longer decoding time during larger frame size.

4.1.2 Code Rate

Figure 4.5: Simulation results for code rate, r = 1/2for Log-MAP and SOVA

decoding algorithm in AWGN channel

59

Figure 4.6: Simulation results for code rate, r = 1/3for Log-MAP and SOVA

decoding algorithm in AWGN channel

Figure 4.73: Simulation results of various code rate for Log-MAP and SOVA

decoding algorithm in AWGN channel

As we observe from the figure above, two different simulations on the effects

puncturing is carried out by varying its code rate value over different decoding

algorithm. Puncturing adjusts the number of bits so that the width of the encoded bit

sequence is constant and easy to handle. The code rate r =1/2, also known as half rate

codes, is a punctured code where bits in the encoder is deleted thus decreases the

60

code rate. Third rate codes or r =1/3, is the un-punctured codes where puncturing

does not take place in the encoder therefore no bits are deleted and code rate is

increased.

 We can clearly see the difference on the performance between half rate

codes, r =1/2 and third rate codes, r = 1/3 simulated based on a standard parameter

value with a maximum iteration of 5, together with frame size of N=400 and

generator polynomial g (D) = [7, 5]. The simulations were conducted for both Log-

MAP and SOVA algorithm in AWGN channel condition.

The third rate codes, r =1/3 performs better than the half rate codes, r =1/2,

where third rate codes reaches a lower BER value compared to the half rate codes.

The half rate codes might have lost some information during the puncturing process

and decreases the bandwidth requirements which eventually results in performance

degradation compared to the third rate codes where full parity information is sent

exclusive of any puncturing.

For both code rate r = 1/2, 1/3 it is shown that Log-Map has a lower BER

compared to SOVA with a coding gain between 0.3 to 0.35dB at BER value 10 ²̄. As

a result, from here we can see that the higher the code rate, the lower the BER, hence

the better the performance and in both variation of code rate, Log-MAP algorithm

performs better compared to SOVA algorithm, although might have slight delay in

time due to computational complexity in Log-MAP algorithm.

4.1.3 Generator Polynomial

The generator sequence and can be equivalently represented in a more

compact form as g (D) = [g1, g2]. Where g2 denotes the feed forward output and g1

is the feedback to the input of the RSC encoder. The feedback from the RSC encoder

output would results in major performance difference even if the same code

generator was applied to both component codes. The rate of generator polynomials

affects the puncturing pattern.

61

The simulations that has been carried out involves frame size of N=400 and a

maximum iteration of 5, together with code rate of r = 1/3. Here two different

generator polynomial value in octal representation which is g (D) = [7, 5] or [111,

101] and [15, 13] or [1111, 1101] in its respective octal representation is simulated

using different type of decoding algorithms.

Figure 4.8: Simulation results for generator polynomial [7, 5] octal for Log-MAP

and SOVA decoding algorithm in AWGN channel

Figure 4.4: Simulation results for generator polynomial [15, 13] octal for Log-

MAP and SOVA decoding algorithm in AWGN channel

62

Figure 4.5: Simulation results of various generator polynomial for Log-MAP

and SOVA decoding algorithm in AWGN channel

The combination with higher feedback and feed forward value g (D) = [15,

13] gives a better performance when compared to other combination using the same

number of iterations besides giving optimum weight spectrum compared to the other.

Log-MAP algorithm performs better compared to SOVA algorithm with a coding

gain between 0.2dB to 0.25dBat BER value of 10 ²̄. This could be due to the forward

backward recursion that takes place in Log-MAP compared with only forward

recursion in SOVA algorithm.

63

4.1.4 Iterations

Figure 4.11: Simulation results for 5 iterations for Log-MAP and SOVA

decoding algorithm in AWGN channel

Figure 4.12: Simulation results for 7 iterations for Log-MAP and SOVA

decoding algorithm in AWGN channel

64

Figure 4.13: Simulation results for 9 iterations for Log-MAP and SOVA

decoding algorithm in AWGN channel

Figure 4.14: Simulation results of various iterations for Log-MAP and SOVA

decoding algorithm in AWGN channel

As we observe from the graph above, the simulations varying the number of

iterations has been conducted with a code rate =1/2, N=400, g(D)= [7,5] by varying

the iterations I=5,7 and 9 for both Log MAP and SOVA algorithm.

 From here we can see that the more number of iterations involved the lower

the BER value. The performance of the iterations improves significantly from 5
th

iteration to 9
th

 iteration. For each iteration, Log MAP has a better BER performance

compared to SOVA for all the iterations with a coding gain between 0.26 dB to 0.30

65

dB. As we increase the number of iterations, the decoding complexity and latency

also increases so for this simulation 9
th

 iteration gives satisfactory performance

without excessive time delay. As we can see, if the simulation is continued most

probably the 7
th

and 9
th

 iteration will meet at a certain SNR value and will be

saturated, improvement is not significant. As can be seen, the performance improves

with the increased number of iterations. However, this leads to additional complexity

and delay, which may cause glitches in applications involving real time data

CHAPTER 5

3 CONCLUSION AND FUTURE WORK

5.1 Conclusion

From the error performance results, it is evident that turbo codes are quite

suitable for the wireless communications applications under consideration with ahead

mentioned requirements. In the system the encoder architecture is based on parallel

concatenation through random interleaver of Recursive Systematic Convolutional

encoders the decoder architecture is based on iterative cooperation between soft-

input-soft-output decoders for the constituent codes. As we know now that the frame

size, generator polynomial, code rate and also number of iterations affects the

performance of turbo encoder and turbo decoder as a whole system and any changes

in these parameters will affect the performance of the turbo codes.

After completing the simulations, it can be see that the frame size plays an

important role in the turbo code system. When larger frame size is used, it means

having more number of bits (information bits + tail bits). From the simulations it can

be see that turbo code with frame size of 1500 bits gives better BER performance

compared to the frame size 500 and 1000 bits, hence we can say that the larger the

frame size better the performance.

67

Based on the simulations of different combination of generator polynomial, it

can be clearly see that value of generator polynomial affects the performance in the

turbo encoder. The combination with the higher feedback and feed forward value [15,

13] gives much better performance when compared to other combination using

(Ioannis Chatzigeorgiou) the same number of iterations besides giving optimum

weight spectrum compared to the other.

Besides that, different puncturing pattern also influence the performance of

the generator polynomial. We emphasize that the puncturing pattern depends on the

rate of generator polynomials rate hence different polynomials yield different

puncturing patterns (Ioannis Chatzigeorgiou). (Hsian, May 2005)

Based on the simulations we can see that third rate codes are the output code

which is fully transmitted from the encoder without puncturing and half rate codes

are the codes in which their half parity bits from each of the component encoder are

deleted to increase the system rate. The third rate codes can achieve coding gain of

0.30 dB to 0.35 dB at 10 ²̄ BER. The third rate codes has a lower BER value

compare to the half rate codes, and according to (Hsian, May 2005), this can be the

due to the fact that full parity information is sent in third rate codes therefore the

iterative decoder can best estimate the original message sequence from the received

channel sequence. Thus we can conclude that third rate codes without puncturing is

indeed better than half rate codes.

Iterations also play an important role in the effects of turbo decoding since

one of the two main characteristic of turbo code decoder is iterative decoding besides

SISO algorithm. Effect of varying the number of iterations during the decoding

process is an interesting observation in system level studies. From the simulations

conducted in AWGN channel, the number of iterations has been fixed. It can be see

that the more number of iterations involved, the lower the BER value thus better

performance in the system.

It can be clearly conclude now that Log-MAP is a much better decoding

algorithm compared to SOVA but depends on the choice of complexity of the

68

decoding process. If a fast simulation need to be conducted but neglecting the BER

performance, then SOVA is the right one for it but if a better BER performance

needed to have more precise error correcting process then Log-MAP is the best

choice despite the additional complexity and latency it has to deal with. That will be

the major disadvantage that has to be dealt with in order to achieve the desired

objectives. An improvement in the present decoding algorithms, utilizing hardware

equipment with enhanced capabilities or the use of serial concatenated turbo codes

are some of the options worth considering.

5.2 Future Work

In future we plan to investigate this new algorithmic technique that has been

derived from an existing SOVA decoder and is known as Adaptive Soft Output

Viterbi Architecture (ASOVA) turbo decoder. It is known to provide reduced

computational complexity and a competitive bit error rate (BER) for decoders with

the same operating parameters. This new adaptive SOVA (ASOVA) approach

attempts to eliminate intermediate trellis paths during processing that are least likely

to lead to the decoded output bit sequence.

 Besides that, Low-density parity-check (LDPC) codes are a class of linear

block LDPC codes. LDPC codes are also known as Gallager codes, in honor

of Robert G. Gallager, who developed the LDPC concept in his doctoral dissertation

at MIT in 1960 (Leiner, 2005). LDPC codes are already equipped with very fast

(probabilistic) encoding and decoding algorithms. This makes LDPC codes not only

attractive from a theoretical point of view, but also perfect for practical applications.

http://en.wikipedia.org/wiki/Robert_G._Gallager
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology

69

Reference

ADABI, I. (2011, august 23). AFENDA DAILY INSIGHT NEWS. Retrieved august

23, 2011, from AFENDA DAILY INSIGHT NEWS :

http://www.agendadaily.com/Analisa/cabaran-konsep-1malaysia-mengikis-jurang-

perkauman.html

Berrou, C. (2010). Code and Turbo code. France: Springer.

Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon Limit Error

Correcting Coding and Decoding: Turbo Codes. IEEE International Conference on

Communications (ICC) , 1064-1070.

D.J.C. Mackay, R. (1997, march 6). Near Shannon limit performance of low density

parity check codes.

Du, K.-L., & M.N.S.SWAMY. (2010). Wireless Communication Systems: From RF

Subsystems to 4G Enabling Technologies. UK: CAmbridge University.

Glavieux, A. (2007). Channel Coding in Communication Networks. United States:

ISTE.

Hsian, P. C. (May 2005). Iterative decoding of parallel and serial concatenated

convolutional codes.

Ioannis Chatzigeorgiou, M. R. (n.d.). Pseudo- random Puncturing: A Technique to

Lower the Error Floor of Turbo Codes.

Korhonrn, J. (2003). Introduction to 3G Mobile Communication. United States:

Artech House.

Langton, C. (2006). Turbo Coding and MAP Decoding.

http://www.agendadaily.com/Analisa/cabaran-konsep-1malaysia-mengikis-jurang-perkauman.html
http://www.agendadaily.com/Analisa/cabaran-konsep-1malaysia-mengikis-jurang-perkauman.html

70

Leiner, B. M. (2005). LDPC Codes – a brief Tutorial.

Malarić, K. (2010). EMI protection for Communication Systems. MA canton street

Norwood , MA: Artech House.

Proakis, J. (1995). Digital Communications. New york: McGraw-Hill.

Rekh, S., rani, D. S., & A.Shanmugam, D. (2000). Optimal Choice of Interleaver for

Turbo codes. IEEE .

Scott, A. (2008). RF Measurements for Cellular Phones and Wireless Data Systems.

canada: John Wiley &Sons.

Singal, T. (2010). Wireless Communications. New Delhi: Tata McGraw Hill.

Wu, Y. (n.d.). google. Retrieved from https://sites.google.com/site/bsnugroho/turbo

Yoon, S. (2009, march). Turbo Code Distance Spectrum Calculator Version 1.2.

Retrieved from www,eccpage.com/tcds_readme.txt

71

Reference

APPENDIX A: TURBO CODE DEMO PROGRAM

% This script simulates the classical turbo encoding-decoding system.

% It simulates parallel concatenated convolutional codes.

% Two component rate 1/2 RSC (Recursive Systematic Convolutional) component

encoders are assumed.

% First encoder is terminated with tails bits. (Info + tail) bits are scrambled and

passed to

% the second encoder, while second encoder is left open without tail bits of itself.

%

% Random information bits are modulated into +1/-1, and transmitted through a

AWGN channel.

% Interleavers are randomly generated for each frame.

%

% Log-MAP algorithm without quantization or approximation is used.

% By making use of ln(e^x+e^y) = max(x,y) + ln(1+e^(-abs(x-y))),

% the Log-MAP can be simplified with a look-up table for the correction function.

% If use approximation ln(e^x+e^y) = max(x,y), it becomes MAX-Log-MAP.

%

% Copyright Nov 1998, Yufei Wu

% MPRG lab, Virginia Tech.

% for academic use only

clear all

% Write display messages to a text file

diary turbo_logmap.txt

% Choose decoding algorithm

72

dec_alg = input(' Please enter the decoding algorithm. (0:Log-MAP, 1:SOVA)

default 0 ');

if isempty(dec_alg)

 dec_alg = 0;

end

% Frame size

L_total = input(' Please enter the frame size (= info + tail, default: 500) ');

if isempty(L_total)

 L_total = 500; % infomation bits plus tail bits

end

% Code generator

g = input(' Please enter code generator: (default: g = [1 1 1;1 0 1] ');

if isempty(g)

 g = [1 1 1;1 0 1];

end

%g = [1 1 0 1; 1 1 1 1];

%g = [1 1 1 1 1; 1 0 0 0 1];

[n,K] = size(g);

m = K - 1;

nstates = 2^m;

%puncture = 0, puncturing into rate 1/2;

%puncture = 1, no puncturing

puncture = input(' Please choose punctured / unpunctured (0/1): default 1 ');

if isempty(puncture)

 puncture = 1;

end

% Code rate

rate = 1/(2+puncture);

73

% Fading amplitude; a=1 in AWGN channel

a = 1;

% Number of iterations

niter = input(' Please enter number of iterations for each frame: default 5 ');

if isempty(niter)

 niter = 5;

end

% Number of frame errors to count as a stop criterior

ferrlim = input(' Please enter number of frame errors to terminate: default 7 ');

if isempty(ferrlim)

 ferrlim = 7;

end

EbN0db = input(' Please enter Eb/N0 in dB : default [2.0] ');

if isempty(EbN0db)

 EbN0db = [2.0];

end

fprintf('\n\n--\n');

if dec_alg == 0

 fprintf(' === Log-MAP decoder === \n');

else

 fprintf(' === SOVA decoder === \n');

end

fprintf(' Frame size = %6d\n',L_total);

fprintf(' code generator: \n');

for i = 1:n

 for j = 1:K

 fprintf('%6d', g(i,j));

 end

 fprintf('\n');

end

if puncture==0

74

 fprintf(' Punctured, code rate = 1/2 \n');

else

 fprintf(' Unpunctured, code rate = 1/3 \n');

end

fprintf(' iteration number = %6d\n', niter);

fprintf(' terminate frame errors = %6d\n', ferrlim);

fprintf(' Eb / N0 (dB) = ');

for i = 1:length(EbN0db)

 fprintf('%10.2f',EbN0db(i));

end

fprintf('\n--\n\n');

fprintf('+ + + + Please be patient. Wait a while to get the result. + + + +\n');

for nEN = 1:length(EbN0db)

 en = 10^(EbN0db(nEN)/10); % convert Eb/N0 from unit db to normal numbers

 L_c = 4*a*en*rate; % reliability value of the channel

 sigma = 1/sqrt(2*rate*en); % standard deviation of AWGN noise

% Clear bit error counter and frame error counter

 errs(nEN,1:niter) = zeros(1,niter);

 nferr(nEN,1:niter) = zeros(1,niter);

 nframe = 0; % clear counter of transmitted frames

 while nferr(nEN, niter)<ferrlim

 nframe = nframe + 1;

 x = round(rand(1, L_total-m)); % info. bits

 [temp, alpha] = sort(rand(1,L_total)); % random interleaver mapping

 en_output = encoderm(x, g, alpha, puncture) ; % encoder output (+1/-1)

 r = en_output+sigma*randn(1,L_total*(2+puncture)); % received bits

 yk = demultiplex(r,alpha,puncture); % demultiplex to get input for decoder 1 and

2

75

% Scale the received bits

 rec_s = 0.5*L_c*yk;

% Initialize extrinsic information

 L_e(1:L_total) = zeros(1,L_total);

 for iter = 1:niter

% Decoder one

 L_a(alpha) = L_e; % a priori info.

 if dec_alg == 0

 L_all = logmapo(rec_s(1,:), g, L_a, 1); % complete info.

 else

 L_all = sova0(rec_s(1,:), g, L_a, 1); % complete info.

 end

 L_e = L_all - 2*rec_s(1,1:2:2*L_total) - L_a; % extrinsic info.

% Decoder two

 L_a = L_e(alpha); % a priori info.

 if dec_alg == 0

 L_all = logmapo(rec_s(2,:), g, L_a, 2); % complete info.

 else

 L_all = sova0(rec_s(2,:), g, L_a, 2); % complete info.

 end

 L_e = L_all - 2*rec_s(2,1:2:2*L_total) - L_a; % extrinsic info.

% Estimate the info. bits

 xhat(alpha) = (sign(L_all)+1)/2;

% Number of bit errors in current iteration

 err(iter) = length(find(xhat(1:L_total-m)~=x));

% Count frame errors for the current iteration

 if err(iter)>0

 nferr(nEN,iter) = nferr(nEN,iter)+1;

 end

76

 end %iter

% Total number of bit errors for all iterations

 errs(nEN,1:niter) = errs(nEN,1:niter) + err(1:niter);

 if rem(nframe,3)==0 | nferr(nEN, niter)==ferrlim

% Bit error rate

 ber(nEN,1:niter) = errs(nEN,1:niter)/nframe/(L_total-m);

% Frame error rate

 fer(nEN,1:niter) = nferr(nEN,1:niter)/nframe;

% Display intermediate results in process

 fprintf('************** Eb/N0 = %5.2f db **************\n',

EbN0db(nEN));

 fprintf('Frame size = %d, rate 1/%d. \n', L_total, 2+puncture);

 fprintf('%d frames transmitted, %d frames in error.\n', nframe, nferr(nEN,

niter));

 fprintf('Bit Error Rate (from iteration 1 to iteration %d):\n', niter);

 for i=1:niter

 fprintf('%8.4e ', ber(nEN,i));

 end

 fprintf('\n');

 fprintf('Frame Error Rate (from iteration 1 to iteration %d):\n', niter);

 for i=1:niter

 fprintf('%8.4e ', fer(nEN,i));

 end

 fprintf('\n');

 fprintf('***\n\n');

% Save intermediate results

 save turbo_sys_demo EbN0db ber fer

 end

 end %while

77

end %nEN

diary off

