

Generator Polynomial in Turbo Code System

LOOI CHUN HUI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Hons.) Electronic and Communication Engineering

Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2012

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “GENERATOR POLYNOMIAL IN

TURBO CODE SYSTEM” was prepared by LOOI CHUN HUI has met the

required standard for submission in partial fulfilment of the requirements for the

award of Bachelor of Engineering (Hons.) Electronic and Communication

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Dr. Balamuralithara a/l Balakrishnan

Date : _________________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© Year, Name of candidate. All right reserved.

v

GENERATOR POLYNOMIAL IN TURBO CODE SYSTEM

ABSTRACT

In digital wireless system, error control codes have become an important technique

for enabling reliable transmission to be achieved over noise and fading channels.

Since the introduction of the turbo codes, many researchers have put effort in

improving the turbo code performance because over the past decade turbo code have

been widely considered as the most powerful error control code. Improving the turbo

code performance with choosing the optimum generator polynomial without

increasing the complexity in the system and delay. In this project, the researcher is

searching for the optimum performance of the generator polynomial under AWGN

channel. The study are investigate the performance of turbo code system using

difference decoding algorithm and frame size under AWGN channel. The

performance results for the turbo code system through the matlab simulation, where

also consider the system was investigated using Log-MAP decoder over AWGN

channel with different frame sizes. The researcher found that generator polynomial,

g(D) = [7,5], [13,15] and [31,17] gives the best performance for constraint length, K

= 3,4 and 5 respectively. The performance results for the turbo code system are

obtained through using matlab simulation. The study are investigate the performance

of turbo code system using difference decoding algorithm and frame size under

AWGN channel.

vi

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 3

1.3 Thesis Outline 4

1.3.1 Chapter Two: Literature Review 4

1.3.2 Chapter Three: Methodology 4

1.3.3 Chapter Four: Discussion 4

1.3.4 Chapter Five: Conclusion 4

2 LITERATURE REVIEW 5

2.1 Communication System 5

2.2 Error Control Code 6

2.2.1 Linear Block Code 6

2.2.2 Hamming Code 8

vii

2.2.3 Cyclic Codes 9

2.2.4 BCH Codes 9

2.2.5 Reed-Soloman code 10

2.3 Convolutional Codes 10

2.4 Turbo Codes 14

2.4.1 Turbo Codes Structure 14

2.4.2 Puncturing 16

2.4.3 Interleaving 16

2.4.4 Turbo Decoding 17

2.4.5 Turbo Decoding MAP Algorithm Overview 18

3 METHODOLOGY 19

3.1 Introduction 19

3.2 Simulation Setup 19

3.3 Interpretation of the Simulation Model 21

3.3.1 Input Data 21

3.3.2 Decimal-to-binary 22

3.3.3 Turbo encoder 22

3.3.4 Channel 23

3.3.5 Turbo Decoder 23

3.3.6 Binary-to-decimal 24

3.4 Step procedure in Matlab 24

3.5 Turbo Code Distance Spectrum Calculator 25

4 DISCUSSION 28

4.1 Introduction 28

4.2 Effects of number of decoding iterations 28

4.3 Frame size effects 29

4.4 Effects of generator polynomial 30

4.4.1 Effects of Generator Polynomial 32

4.4.2 Effects of decoder algorithm 38

5 CONCLUSION 39

viii

5.1 Conclusion 39

5.2 Future Work 40

REFERENCES 41

APPENDICES 43

ix

LIST OF TABLES

 TABLE TITLE PAGE

 2.1 Terminology of Convolutional Codes 11

 2.2 Equivalent index position for original matrix index

in diagonal interleaver (Rekh, rani, &

A.Shanmugam, 2000) 17

 4.1 Various combination of generator polynomials 31

 4.2 Default parameters in simulation 32

x

LIST OF FIGURES

 FIGURE TITLE PAGE

 2.1 Block diagram of communication system.

(Korhonrn, 2003) 6

 2.2 Linear block codes (Korhonrn, 2003) 8

 2.3 Convolutional encoder with constraint length K=3,

rate r=1/2 (Berrou C. , 2010) 11

 2.4 Convolutional encoder with constraint length K=4,

rate r=1/2 (Berrou C. , 2010) 12

 2.5 Code Tree for the Convolutional Code (Berrou C. ,

2010) 12

 2.6 State diagram of the convolutional codes (Berrou

C. , 2010) 13

 2.7 Portion of Trellis diagram for convolutional

encoder with constraint length K=3, rate r=1/2

(Berrou C. , 2010) 13

 2.8 Structure of a Turbo Encoder (Rekh, rani, &

A.Shanmugam, 2000) 15

 2.9 Structure of the RSC Encoder (Rekh, rani, &

A.Shanmugam, 2000) 15

 2.10 Structure of Turbo Decoding (Proakis, 1995) 17

 3.1 Block Diagram of the simulation model 21

 3.2 The encoder flow chart 22

 3.3 The turbo decoder flow chart 23

 3.4 User interface of the Turbo Code simulator 24

xi

 3.5 The matlab workspace with the result 25

 3.6 Turbo Code Distance Spectrum Calculator 26

 3.7 The screen shot of the notepad results obtained

from simulation 27

 4.1 Turbo code performance for frame length, N=500

for iteration 3, 4 and 5 with g(D)=[7,5]10, code rate

=1/3 under AWGN channel 29

 4.2 Comparison of farame length, N=500 and 1200 for

bit error rate versus Eb/N0 with g(D)=[7,5], code

rate=1/3, number of iteration 7. 30

 4.3 Turbo code performance for constraint length, K=3 32

 4.4 The simulation results of number of codewords

and weight distribution 33

 4.5 Turbo code performance for constraint length, K=4 34

 4.6 The simulation result of No. of codewords and

weight distribution for constraint length K=4 35

 4.7 Turbo code performance for constraint length, K=5 36

 4.8 The simulation result of No. of codewords and

weight distribution from “Turbo Code Distance

Spectrum Calculator” 37

 4.9 Effects of decoder algorithm 38

xii

LIST OF SYMBOLS / ABBREVIATIONS

ARQ Automatic repeat request

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

ECC Error Control Coding

FEC Forward Error Correction

GSM Global System for Mobile Communication

LLR Log- Likehood Ratio

MAP Maximum A Posteriori

ML Maximum Likelihood

PCCC Parallel Concatenated Convolutional Code

RSC Recursive Systematic Convolutional

SNR Signal to noise ratio

SOVA Soft-Output Viterbi Algorithm

UMTS Universal Mobile Telecommunication System

WCDMA Wide Code Division Multiple Access

xiii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

A TURBO CODE DEMO CODING 43

CHAPTER 1

1 INTRODUCTION

1.1 Background

Nowadays communication is become part of our life. World War ll greatly promoted

the development of mobile communications. Communication system is very helpful

to connect people from one point to another one point and change people life style.

The first generation of mobile cellular telecommunications systems appeared

in the 1980s. The first generation was not the beginning of mobile communications,

as there were several mobile radio networks in existence before then, but they were

not cellular systems either. The capacity of these early networks was much lower

than that of cellular networks, and the support for mobility is weak.

The second-generation (2G) mobile cellular systems use digital radio

transmission for traffic. Thus, the boundary line between first and second generation

systems is obvious: it is the analog/digital split. The 2G networks have much higher

capacity than the first generation systems. One frequency channel is simultaneously

divided among several users. Hierarchical cell structures – in which the service area

is covered by macocells, microcells, and picovells – enhance the system capacity

even further.

Recently there has been an attempt in the GSM community to enhance GSM

to meet the requirements of cordless markets. Cordless telephone system (CTS) us a

scheme in which GSM mobiles can be used at home via a special home base station,

2

in a manner similar to the present-day cordless phones. This scheme can be seen as

an attempt of the GSM phone vendors to get into the cordless market.

3G have been several competing proposals for a global 3G standard. Below,

these are grouped based on their basic technology, WCDMA, advanced TDMA,

hybrid CDMA/TDMA, and orthogonal frequency division multiplexing (OFDM).

WCDMA system is 5MHz or more, and this 5MHz is also the nominal

bandwidth of all 3G WCDMA proposals. This bandwidth was chosen because it is

enough to provide data rates of 144 and 384 kbps, and even 2Mbps in good

conditions and bandwidth is always scare, and the smallest possible allocation should

be used. The bandwidth also can resolve more multipath than narrower bandwidths,

thus improving performance.

Error control code is use for detect and correction the error in transmission.

Each coding got difference feature and function. The error control code can be

difference as block code, convolution code, trellis coded modulation and turbo code.

Block codes is accepts information in successive blocks producing an overall

encoded blocks. In other words, block codes are codes that a blocks include group

the source data. The most simple linear block code is repetition code.

Convolution codes not break up the data stream into blocks, but add

redundancy in a quasi-continuous manner. Basically, convolution code is with

memory and the block code is without memory. This is because the convolution code

need some register in encoder or decoder to encoder. Convolution code is accepts

message bits as a continuous sequence and thereby generates a continuous sequence

of encoded bits at higher rate.

The first 2 codes main problem is the reduction in spectral efficiency. Since

nowadays need to transmit more bits, in a limit bandwidth, we only can transmit

limit data. If we need transmit more data, then the check bits will becomes larger,

then the bandwidth also need requirement becomes larger. This problem can be avoid

by use trellis coded modulation (TCM). In TCM, modulation and coding is treated as

3

combined entity. The key to this integrated modulation and coding approach is to

devise an effective method for mapping the coded bits into signal point such as that

the minimum Euclidean distance is maximized. So that, a simplistic approach to

solve the spectral efficiency is to add parity check bits to data bit and modulation the

symbols together. However, this modulation is not give good results. This is because

this disallowing some symbol sequences in this enlarged signal space. The important

aspect is the encoding and modulation is joint process so that allow shows higher

resilience to noise that uncoded systems with the same spectral efficiency.

A very long codes can approach the Shannon limit. So that, the brute force

decoding of such long codes need spent a lot of time and more complex. Turbo codes

were the first used codes that came close to the Shannon limit using reasonable effort.

The codes are interleaved and the vital trick lies in the decoder because the code need

combination a lot short codes, the decoder can also be divide into several simple

decoders that exchange information about the decoded bits and arrive at a solution.

The random interleaver let the total codeword has very little structure and this come

with some advantages such as increases the effective code length of the combined

code and make decoding possible with an effort that is essentially determined by the

length of the constituent codes.

1.2 Aims and Objectives

Turbo codes is the one of error control codes apply in the current communication

system. Researcher needed to know and try to improve the following things:

 Basic turbo codes encoder structures and to understand each parameters

performance;

 To understand and research the generator polynomial functions to get the

perfect result;

 To study the interleaver, puncturing and multiplexing performance and to

change the parameters to get the optimum result in simulation.

4

1.3 Thesis Outline

1.3.1 Chapter Two: Literature Review

Chapter two gives an overview explains how the turbo code system work in digital

communication system in general. It starts with an introduction of the history of the

communication system, followed by the explanation of the error control code include

linear block code, convolutional code and so on. The turbo code system including the

algorithm and structure of both turbo code encoder and turbo code decoder are

described here. RSC encoder and the generator polynomial are explained in detail.

1.3.2 Chapter Three: Methodology

Chapter three explains the design and implementation of the source code in

MATLAB. The simulation process in shown clearly and systematically. “Turbo code

distance spectrum calculator” software is also briefly explained in this chapter.

1.3.3 Chapter Four: Discussion

Chapter four presents various simulations results of the turbo code. The simulation

results are compared and analyzed here. Finally, discussion, conclusions and future

works are pointed out in Chapter five.

1.3.4 Chapter Five: Conclusion

Chapter five point out the conclusions and future works.

CHAPTER 2

2 LITERATURE REVIEW

2.1 Communication System

The remaining components in the overall system block diagram are digital processors

to convert the analog voice and video signal into digital signals, to apply error

correction bits, and to optimize the number of digital channels that can be transmitted

within the RF system bandwidth.

The analog signals from the voice microphone and the video camera are show

entering the transmitter part of the communication system from the left-hand side of

Figure 1. The signals are digitized, and the digital signal representing data cannot be

compressed.

The digital signals representing voice, video, and data are then sent to an

error coder, which adds extra bits to allow transmission errors to be corrected. The

digital signals to be transmitted from an individual user occupy a small fraction of

the service provider‟s licensed bandwidth. To accommodate many users the digital

signals from each user are assigned a specific frequency slot and time slot, or a

coding sequence. This is accomplished in the multiple access block of the overall

system.

6

As the digital signal leaves the multiple access block, it is just a series of

digital bits and system control signals. These bits are next modulated onto an IF

subcarrier, which is at a frequency below the RF band where the modulation can

easily be accomplished with a digital processor. The modulated IF subcarrier is then

shifted to the RF frequency in the up converter block of the RF transmitter.

In the communication system receiver shown in the lower row of boxes in

Figure 2.1, the demodulator, multiple access. Error decoder, expander, and DAC

simply perform in the inverse functions of their counterparts in the transmitter. (Scott,

2008)

Figure 2.1: Block diagram of communication system. (Korhonrn, 2003)

2.2 Error Control Code

2.2.1 Linear Block Code

Linear block code is the basic code in the error control coding (ECC). For a linear

block code is transmit as a block by block and the message block is the fixed length.

Each block got parity bits and data bits. Each bits is represented by 0 or 1. Linear

block code is designed in term of generator and parity- check matrices.

7

Normally linear block encoder can distribute by 3 elements. The formula as

following (Glavieux, 2007):

𝑥 = 𝑚 × 𝐺 (2.1)

where

𝑥 = encoder message

𝑚 = message

𝐺 = generator polynomial matrix

The generator matrix G is used in the encoding operation at the transmitter,

while the parity check matrix H is used in the decoding operation at the receiver.

If y represents the received vector, then

𝑦 = 𝑥 + 𝑒 (2.2)

where

𝑥 = encoder message

𝑒 = error vector

𝑦 = received vector

The e is represents the error vector. Here, we will get one definition is

syndrome. The syndrome vector is S.

𝑆 = 𝑦 × 𝐻𝑇 (2.3)

where

𝑆 = syndrome vector

𝐻𝑇 = parity check matrix

𝑦 = received vector

For a block code with 2
k
 codewords and length n. The consists of k is

represented information digits so that got 2
k
 of codewords. A desirable structure for a

8

block code to possess is linearity because want to reduce the complexity of the

encoding.

Here is some definition of the linear block codes:

(i) Hamming weight: the hamming weight of a code vector x is defined as

the number of non-zero components of code vector x.

(ii) Hamming distance: the hamming distance between two vectors is defined

as the number of components in which they differ.

(iii) Minimum distance: the minimum distance of a block code is the smallest

distance between any pair of codewords in the code.

Nowadays the linear block code can be distributed as Hamming codes, Cyclic

codes, Binary BCH codes and Reed-Solomon codes shows in Figure 2.2. Each code

got difference property, but all the linear block code property can fulfill this all codes.

Figure 2.2: Linear block codes (Korhonrn, 2003)

2.2.2 Hamming Code

The hamming code are extremely simple to design and construct because when a

single error occurs, the syndrome of the received vector is equal to the H
T
. Hence if

Linear
Block
Codes

Cyclic
Codes

Binary
BCH

Codes

Reed-
Solomon

Codes

Hamming
Codes

9

we choose the n rows of the n x (n-k) matrix H
T
 to be distinct, then the syndrome of

all single errors will be distinct and we can correct single error.

For any positive integer m ≥ 3, then this codes will exists Hamming code

with the following property (Scott, 2008):

Code length : n= 2
m

 -1, (2.4)

Number of information symbols: k=2
m

-m-1, (2.5)

Number of parity-check symbols: n-k=m, (2.6)

Error-correcting capability : t=1 (dmin=3). (2.7)

2.2.3 Cyclic Codes

The cyclic codes got one important property that is the each code shifter by one and

can get another code words. Here got a special factor denoted by g(D), is called the

generator polynomial of the code. The g(D) is equivalent to the generator matrix G as

a description of the code. The encoder formula is x(D) = b(D) + D
n-k

m(D). The b(D)

is the message m(D) divide by g(D) of the remainder.

2.2.4 BCH Codes

Binary BCH codes are one of the most important and powerful cyclic codes. For any

positive integers m≥3 and t<(2
m

-1)/2 there exists a binary BCH code with the

following parameters:

Block length: n=2
m

-1,

Number of message bits: k ≥ n-mt,

Minimum distance: dmin≥2t+1.

10

The BCH codes provide a large selection of block length, code rates, alphabet

sizes , and error correcting capability.

2.2.5 Reed-Soloman code

Reed-Solomon code is the important of the nonbinary BCH codes. Reed-Solomon

code work on symbols rather than individual bits. A t-error correcting Reed-Solomon

code has the following parameters:

Block length: n=2
m

-1,

Message size: k,

Parity –check size: n-k=2t,

Minimum distance: dmin=2t +1,

Number of correctable errors: t=0.5(dmin-1)

2.3 Convolutional Codes

Convolutional code is the one with memory code (tree code) and the linear block

code is without memory code(block code). Convolutional code structure is a tree

code and it is fundamentally difference from the structure of a block code.

Convolutional code unlike the linear block codes, large minimum distance and low

error probabilities are achieved not by increasing the k and n but need increase the

memory order m.

Convolutional code can have many generator polynomial g(D). All

convolutional code can be realized using a linear feed forward shift register encoder

of this type. Normally the convolutional codes are preferred in many

telecommunication application. Hence, here will introduce the terminology of

convolutional codes shown in Table 2.1

11

Table 2.1: Terminology of Convolutional Codes

Here is the example of the convolutional codes in figure 3. This diagram

shows that the convolutional codes can have more than one generator polynomial for

difference output. The path 1 generator polynomial is g1=(111) and the path 2

generator polynomial is g2=(101). And the other this one need 2 registers to store the

memory. From this diagram, we can get 3 difference diagram to easy understand and

encoder. The 3 difference way to represent the encoder is code tree, state diagram

and trellis diagram.

Figure 2.3: Convolutional encoder with constraint length K=3, rate r=1/2

(Berrou C. , 2010)

•Number input bits taken into the encoder at oneceInput Frame, k

•Number output bits produced from the encoder at onceOutput Frame, n

•Maximum number of shift register stage in the path to any output bit.Memory order, M

•Total number of shift registers in the encoders.Memory constraint length, m

•Total number of bits involved in the encoding operationInput constaint length, K = m+k

12

Figure 2.4: Convolutional encoder with constraint length K=4, rate r=1/2

(Berrou C. , 2010)

The tree diagram show in Figure 2.5 is simple to represent the convolutional

code output and the flip-flop of register memory by its code tree. There only 2 way to

go from starting point. When the input is „0‟, then will go to upward (left). On the

other hand, when the input is „1‟, then will go to downward (right). From this

diagram, all the 2 digit in the line is represent the output state. For the alphabets is

represented the flip-flop memory.

Figure 2.5: Code Tree for the Convolutional Code (Berrou C. , 2010)

Convolutional code is a code with memory, so that the previous input will

affect the next state. For this state diagram, the current output of the convolutional

13

encoder from Figure 2.6 is depends on previous state. So that, the code output or next

state can be form as a circle. The alphabets still represented same things as the code

tree is the flip-flop memory. The digit is the output. The solid branch is represent the

input „0‟ and the dashed branch is represent the response to input „1‟.

Figure 2.6: State diagram of the convolutional codes (Berrou C. , 2010)

This trellis diagram show in Figure 2.7 left nodes represent the four possible

flip-flop current state same as previous figure and the right node is represent the next

state of the register memory. Same thing the input „0‟ is represented by a solid

branch and input „1‟ is represented by a dashed branch.

Figure 2.7: Portion of Trellis diagram for convolutional encoder with constraint

length K=3, rate r=1/2 (Berrou C. , 2010)

14

This 3 diagram result is get from the first diagram of the convolutional codes.

For decoding the convolutional code we can use the viterbi algorithm. The viterbi

algorithm is a method commonly used for decoding bit stream encoded by

convolutional encoder. Viterbi algorithm realized that not all paths needs to be

considered, if the channel errors are random then non-optimal paths at this stage can

never become optimal path in the future. This type algorithm only keep one of the

paths reaching each node and at end state only 2
m

 paths need to be retained.

2.4 Turbo Codes

Turbo code was introduced in 1993 by Berrou, Glavieux, and Thitimajshima, and

reported in (Berrou, Glavieux, & Thitimajshima, 1993). In the field of forward-error

correction channel coding are a recent developmental by turbo codes. This codes got

three simple ideas to make use: parallel concatenation of codes to allow simpler

decoding, interleaving provide a better weight distribution and soft decoding to

increase decoder decisions and maximize the gain from decoder interaction.

2.4.1 Turbo Codes Structure

The basic ides of turbo codes is use two convolutional codes in parallel and the

second encoder input bits will process to interleaving just go through the encoder 2.

The operation of Turbo encoding is based on the use of a pair of encoders, separated

by the interleave, and iterative detection involving the use of feedback around a pair

of decoders separated by a deinterleaver and an interleave. The turbo code can be

regard as a large block code. The encoder user a parallel FEC encoding scheme in

which the information is systematically encoded by two separate identical encoders.

The performance depends on the weight distribution. So that, the input patterns

giving low weight words from first encoder will to be interleaved to the more height

15

weight distribution for the second encoder. Turbo codes provide significant

improvements in the quality of data transmission over a noisy channel. Figure 2.8

illustrates the functional block diagram of a turbo encoder.

Figure 2.8: Structure of a Turbo Encoder (Rekh, rani, & A.Shanmugam, 2000)

Figure 2.9: Structure of the RSC Encoder (Rekh, rani, & A.Shanmugam, 2000)

In figure 2.9 generator polynomial is g=(1,(1+D+D
2
/(1+D

2
))) and we have

shown an encoder on the recursive systematic form. From the diagram we can find

out that the turbo codes is a systematic codes because the first output is original bits

and not process to any encoder. The rest of output is the parity bits. Notice that the

fact that the codes are systematic is just a coincidence, although it turns out to be

very convenient for several reasons. One of these is that the bit error rate (BER) after

decoding of a systematic code can not exceed the BER on the channel. Imagine that

the received parity symbols were completely random, then the decoder would of

16

course stick to the received version of the information. If the parity symbols at least

make some sense we would gain information on the average and the BER after

decoding will be below the BER on the channel.

2.4.2 Puncturing

One thing is important concerning the systematic property, though. If we transmit the

systematic part from both encoders, this would just be a repetition, and we know that

we can construct better codes than repetition codes. The information part should only

be transmitted from one of the constituent codes, so if we use constituent codes with

rate 1/2 the final rate of the turbo code becomes 1/3. If more redundancy is needed,

we must select constituent codes with lower rates. Likewise we can use puncturing

after the constituent encoders to increase the rate of the turbo codes. The information

bits and the parity bits generated by the two encoders are the multiplexed and

punctured in a repeating pattern to increase the code rate for transmission.

2.4.3 Interleaving

Interleaving is a process to rearranging the input data stream of sequence in a one to

one deterministic format. In turbo coding, interleaving is used before the second

encoder want to input the information data to encoder. The basic role of an

interleaving is to construct the long block code from small memory convolutional

codes, as long as can approach the Shannon capacity limit. The final role of the

interleaver is to break low weight input sequences, and hence increase the code free

Hamming distance or reduce the number of code words with small distances in the

code distance spectrum. The size and structure of interleavers play a major role in the

performance of turbo codes. Here got one of interleavers, which can be implemented.

The random interleaver uses a fixed random permutation and maps the input

sequence according to the permutation order. In this turbo code, we recommend use

17

the random interleaver. The random interleave, also called turbo interleave, enables

the second encoder to reorder the information bits prior to encoding. Table 2.2 shows

a 3 x 5 matrix positions after the matrix is interleaved. This is the example shows that

if the input is 15 bits, then will permutation to randomly.

Table 2.2: Equivalent index position for original matrix index in diagonal

interleaver (Rekh, rani, & A.Shanmugam, 2000)

 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Interleaver(i) 0 6 12 1 7 13 2 8 14 3 9 10 4 5 11

2.4.4 Turbo Decoding

It is proposed that an iterative decoding scheme should be used. The decoding

algorithm is similar to Viterbi algorithm in the sense that it produces soft outputs.

While the Viterbi algorithm outputs either 0 or 1 for each estimated bit, the turbo

code decoding algorithm outputs a continuous value of each bit estimate. While the

goal of the Viterbi decoder is to minimize the code word error by finding a maximum

likelihood estimate of transmitted code word, the soft output decoding attempts to

minimize bit error by estimating the posterior probabilities of individual bits of the

code word. We called the decoding algorithm Software Decision Viterbi Decoding.

Figure 2.10: Structure of Turbo Decoding (Proakis, 1995)

18

The turbo decoder consists of M elementary decoders - one for each encoder

in turbo encoding part. Each elementary decoder uses the Software Decision Viterbi

Decoding to produce a software decision for each received bit. After an iteration of

the decoding process, every elementary decoder shares its soft decision output with

the other M - 1 elementary decoders.

In theory, as the number of these iterations approaches infinity, the estimate

at the output of decoder will approach the maximum a posteriori (MAP) solution.

2.4.5 Turbo Decoding MAP Algorithm Overview

In MPSK or QAM demodulation process, decision about a bit is made by looking at

what decision region the phase or the amplitude falls in. This way to make decision

is called the Maximum Likelihood Detection(MLD).

 A similar but better rule is based on knowing the priory probability of the

signal. If a -1 bit has a probability of 80%, then if the signal falls in the negative

decision range, the MLD will decide it as a +1. However, it is clear that the priory

probability as here of 80% should be taken into account. This decision method that

on this conditional probability is called the Maximum Aposteriori Probability(MAP).

(Langton, 2006)

CHAPTER 3

3 METHODOLOGY

3.1 Introduction

MATLAB has been used in this project. MATLAB is user friendly and most efficient

to simulation turbo codes in this section. The MATLAB is a high-performance

language for computing, simulating and programming in a convenient environment.

Thus, MATLAB is researcher first choice to simulation turbo codes. After simulation,

researcher collect simulation result bit error rate (BER) versus signal to noise ratio

(Eb/No) are plotted using Microsoft Office excel 2007.

3.2 Simulation Setup

The Turbo code m-files developed in this project were based on original work by

Yufer Wu (YuFei, 2005). The matlab Turbo Code structure used by Wu is based

upon the structure described in the original paper by Berrou. (Berrou, Glavieux, &

Thitimajshima, 1993)

This simulation is based on the classical parallel concatenated convolutional codes

(PCCC) system. In this structure got two components of RSC (Recursive Systematic

Convolutional) encoders with code rate 1/3 (not puncture) are designed. First

encoder is terminated with tails bits. Next, both the info bits and the tail bits are

scrambled and passed to the second encoder, while second encoder is left open

20

without tail bits. Random information bits are modulated into +1/-1, and transmitted

through an AWGN channel. Interleavers are randomly generated for each frame.

Log-MAP algorithm without quantization or approximation is used. Below is the list

of functions used to call the main program:

i. Function bin_state: To convert a vector of integer into a matrix

ii. Function demultiplex: To get the codeword of each encoder at the receiver

end.

iii. Function encode_bit: This function takes as an input a single bit to be

encoded, as well as the coefficients of the generator polynomials and the

current state vector. It returns as output n encoded data bits, where 1/n is the

code rate.

iv. Function encoderm: This function interleaves input of the second encoder, if

unpunctured, produces a rate 1/3 output of fixed length, if punctured,

produces a rate 1/2 output. Multiplexer chooses odd check bits from RSC1,

even check bits from RSC2, and determine the constraint length (K), memory

(m) and number of information bits plus tail bits. Also, performs BPSK

Antipodal modulation: +1/-1.

v. Function int_state: This function converts a row vector of m bits into a

integer (base 10)

vi. Function logmapo: To compute the soft output, log-likelihood ratio of

symbols in the frame using Log MAP algorithm.

vii. Function rsc_encode: To generate codeword.

viii. Function trellis: To set up the trellis for the given , G(D)

21

3.3 Interpretation of the Simulation Model

The standard description of the system is the block diagram, where each block

represents a signal processing operation (Balamuralithara, 2005), and it shown in

Figure 3.1. WCDMA standard parameters are used for this investigation and the

output bits of the turbo encoder are then modulated using a Binary Phase Shift

Keying (BPSK) modulator.

Figure 3.1: Block Diagram of the simulation model

Each block contains the algorithm and equations needed to implement the block

functions within the simulation (Balamuralithara, 2005).

3.3.1 Input Data

Researcher are using a randomly values for frame size. In this simulation, researcher

using N=500 and N=1200 for frame size values. The line below is used in the source

code to generate random values:

𝑥 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑 1, 𝐿𝑡𝑜𝑡𝑎𝑙 − 𝑚)

Input Data

Decimal-to-
Binary

Turbo
Encoder

BPSK
Modulator

Channel

BPSK
Demodulator

Turbo
Decoder

Binary-to-
Decimal

Decoded
Data

22

3.3.2 Decimal-to-binary

The input data all in decimal form but in the encoder and modulator process all in

binary form. So, the function of this module is to transform the source from the

decimal value to binary value.

3.3.3 Turbo encoder

Turbo code encoder is already been description in Chapter 2. The simulation turbo

code encoder is composed of two identical RSC component encoders. A random

interleaver separates these two encoders and this is a random permutation of bit order

in a bit stream.

In this simulation, researcher basically using code rate of 1/3 (unpunctured) and

some of the journals are using ½ as is achieved by puncturing the coded bit streams

of the turbo code. Figure 3.2 illustrate the flow chart of the turbo encoder in this

simulation model.

Figure 3.2 : The encoder flow chart

23

3.3.4 Channel

In this simulation, the Additive White Gaussian Noise (AWGN) channel model is

used because it is useful to simulation the realized underlying behaviour of a system

and AWGN channel is also a good approximation for many satellite and deep space

communication links. The Gaussion noise easy to construct from the Gaussion

distribution with mean of zero and standard deviation of one.

3.3.5 Turbo Decoder

The turbo code decoder system have 2 type decoder: soft input soft output (SOVA)

and the log maximum a posterior algorithm (log-MAP). In these simulation,

researcher are using the log-Map algorithm to investigation. The flow chart of the

turbo decoder simulation is illustrated in figure 3.3.

Figure 3.3 : The turbo decoder flow chart

24

3.3.6 Binary-to-decimal

The output of the decoder is binary but the system read it as decimal value, so must

transform the binary number to decimal number and recover it to the input of the

encoder.

3.4 Step procedure in Matlab

Matlab programme takes in all the design parameter and passes it over to the

functions. All the design parameter is defined in the main function itself. Figure 3.4

display a print screen of the matlab simulation interface where user can choose the

decoding algorithm and input the value for the frame size, punctured, iterations

number, frame errors to terminate and the SNR.

Figure 3.4 : User interface of the Turbo Code simulator

After simulation finish, researcher can view all the result. Figure 3.5 shows that

researcher need copy Bit Error Rate (BER) to the MS-Excel to plot the Bit Error Rate

(BER) against the channel condition that is Signal to Noise Ratio (SNR). The plotted

graphs are shown in detail in next chapter.

25

Figure 3.5: The matlab workspace with the result

3.5 Turbo Code Distance Spectrum Calculator

This software computes the distance spectrum of parallel or serially concatenated

convolutional code (overall rate of 1/3 for PCCC and ¼ for SCCC) where the same

½ rate systematic convolutional code is used for both the constituent codes. (Yoon,

2009). Researcher can test with various generator polynomials. It will creates a test

file containing the BER performance of the turbo code. A print Screen of the Turbo

Code Distance Spectrum Calculator is shown in figure 3.6.

26

Figure 3.6 : Turbo Code Distance Spectrum Calculator

Distance Spectrum is equal to the number of codewords that has certain Hamming

weight, averaged over all possible permutations (Uniform Interleaver Assumption). It

is for computaion of Codeword Error probability bound. While, the weighted

Distance Spectrum is for computation of Bit Error Probability Bound. After software

finish analysis, the result is shown in text file. Researcher can analysis the code

weight and compare the result from the matlab simulations result to verify

conclusions and justification. A screen shot of the text file obtained from the

simulation is presented in figure 3.7.

27

Figure 3.7 : The screen shot of the notepad results obtained from simulation

CHAPTER 4

4 DISCUSSION

4.1 Introduction

This chapter presents simulation results for the implementation of classical turbo

codes in Matlab simulation platform. Researcher need to observe the effects of the

generator polynomial on the turbo code performance in various scenarios. The effect

of generator polynomials with constraint length, K=3, 4 and 5 are investigated for the

frame length of N=500 for different iteration and for the decoding algorithm used

Log-Map and the code rate was fixed at 1/3.

4.2 Effects of number of decoding iterations

When the number of iteration increases will cause the performance of the turbo code

increases. However, the improvement of the BER will not be significant at certain

regions of Eb/No. But, there will increase processing time delay as the iteration

increase. This is because this action will increase the complexity and reduce the

system efficiency. So those, researcher need to justify the number of iterations to get

the optimum performance result. Figure 4.1 shows turbo code performance due to

effects of number of iterations.

29

Figure 4.1: Turbo code performance for frame length, N=500 for iteration 3, 4

and 5 with g(D)=[7,5]10, code rate =1/3 under AWGN channel

From figure 4.1, we can find out that the five iterations are good enough to get the

good performance results for the frame size of 500 bits. So, we chose the five

iterations for simulation of frame size of 500 bits under AWGN.

4.3 Frame size effects

Frame size will effect the performance of turbo code. Large frame size means that

the larger distance between each frame can be interleaved and the decoder can get

better performance because the correlation between two adjacent bits will becomes

smaller. But, if increase the frame size will also increase the processing time as turbo

code is a one type of block code, it need to wait for the completion of the decoding of

the whole block before getting the decoded output. So that, we need to certain limit

the frame size to avoid higher processing delay due to larger amount of transmitted

data (Balamuralithara, 2005). From the figure 4.2 shows the simulation result

verified this conclusion. In this simulation, we are using N=500 and N=1200, and we

can see that the turbo code with larger frame size has better performance.

30

Figure 4.2 : Comparison of farame length, N=500 and 1200 for bit error rate

versus Eb/N0 with g(D)=[7,5], code rate=1/3, number of iteration 7.

4.4 Effects of generator polynomial

Generator Polynomials are used for this simulation are shown in table 4.1. In this

simulation, we only use up to constraint length, K=5 with the study of seven

combinations of the generator polynomials as the complexity of the simulation. All

the display generator polynomial value is decimal.

31

Table 4.1 : Various combination of generator polynomials

Constraint Length, K Generator Polynomial, g (D)= [g1,g2]10

K=3 [5,7]10

[7,5]10

K=4 [9,11]10

[9,13]10

[9,15]10

[11,9]10

[11,13]10

[11,15]10

[13,9]10

[13,11]10

[13,15]10

[15,9]10

[15,11]10

[15,13]10

K=5 [19,17]10

[21,17]10

[23,17]10

[25,17]10

[27,17]10

[29,17]10

[31,17]10

32

4.4.1 Effects of Generator Polynomial

The default parameters in this case simulation are shown in Table 4.2.

Table 4.2: Default parameters in simulation

Channel =AWGN Channel

Decoder =Log-MAP decoder

Frame Size =500 bits

Code Rate =1/3

Iteration number =5

Terminate frame errors =7

4.4.1.1 Simulation results for constraint length, K=3

Figure 4.3 : Turbo code performance for constraint length, K=3

Figure 4.3 plotted that the BER performance of turbo code with g(D)=[7,5] and

g(D)=[5,7]. From the graph, we can find out that the g(D)=[5,7] is not good enough

compare with g(D)=[7,5]. At BER 10
-3

 the approximated coding gain is 0.3dB.

In this case, this phenomena is caused by the codewords. The g(D) = [7,5] has fewer

codewords with relatively low codeweights than g(D)=[5,7]. So that, we can assume

33

that g(D) = [7,5] has higher number of high weighted codewords and this property

can be prove and understand by using the software “Turbo Code Distance Spectrum

Calculator”.

 (a) g(D)=[5,7] (b) g(D)=[7,5]

Figure 4.4: The simulation results of number of codewords and weight

distribution

As this software, we can calculate the code weight of the encoded bits. Distance

Spectrum is equal to the number of codewords that has certain Hamming weight,

averaged over all possible permutations. It is for computation of Codeword Error

probability bound. The print screen this software and shown in the figure 4.4 (a) and

(b), we only shows the first 23 codeweight out of 1508. Codewords with weight 1-20

considered very low codeweights.

From the figure 4.4, we can observe that the figures 4.4(a) only at codeweight 0-12

are negligible, and the figure 4.4(b), we can negligible codeweight 0-19. So that, we

can prove that the g(D)=[7,5] has fewer codewords with relatively low code weights

than g(D)=[7,5]. In other way, we can observe the codeweight at 10, figure 4.4(a)

have number of codewords is 6 (5.958112e+000). Figure 4.4 (b) have number of

codewords at codeweight is 10 are 2 (1.997816e+000).

34

Hence, turbo code in constraint length K=3 and g(D)=[7,5] were sought that would

allow for more easier decoding compare with g(D)=[5,7] because one way of making

the task of the decoder easier is using a code with mostly high-weight code words.

High-weight code words can be distinguished more easily (Käsper, 2006).

4.4.1.2 Simulation results for constraint length, K=4

Figure 4.5 : Turbo code performance for constraint length, K=4

Figure 4.5 shows that the generator polynomial g (D)=[13,15]10 given the best

performance in turbo code system for constraint length K=4. From the graph,

researcher conclude that g(D)=[13,15]10 better than g(D)=[15,13]10 as it shows a

better BER performance. At BER 10
-3

 the approximated coding gain is 0.2dB.

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0 0.5 1 1.5 2

B
ER

Eb/N0 (dB)
13,15 15,13 11,15

15,11 15,9 9,15

13,11 11,13 13,9

35

In this case, this phenomena is caused by the codewords. The g(D) = [13,15] has

fewer codewords with relatively low codeweights than g(D)=[15,13]. So that, we can

assume that g(D) = [13,15] has higher number of high weighted codewords and this

property can be prove and understand by using the software “Turbo Code Distance

Spectrum Calculator”.

The print screen this software and shown in the figure 4.6 (a) and (b), we only shows

the first 23 codeweight out of 1508. Codewords with weight 1-20 considered very

low codeweights.

 (a) g(D)=[15,13] (b) g(D)=[13,15]

Figure 4.6: The simulation result of No. of codewords and weight distribution

for constraint length K=4

From the figure 4.6, we can observe that the figures 4.6(a) only at codeweight 0-16

are negligible, and the figure 4.6(b), we can negligible codeweight 0-20. So that, we

can prove that the g(D)=[13,15] has fewer codewords with relatively low code

weights than g(D)=[13,15].

36

Hence, turbo code in constraint length K=4 and g(D)=[13,15] were sought that would

allow for more easier decoding compare with g(D)=[15,13] because one way of

making the task of the decoder easier is using a code with mostly high-weight code

words. High-weight code words can be distinguished more easily (Käsper, 2006).

4.4.1.3 Simulation results for constraint length, K=5

Figure 4.7: Turbo code performance for constraint length, K=5

Figure 4.7 only shown some generator polynomial of BER performance for

constraint length K=5. From the graph, researcher can observe the best performance

are given by the g(D)=[31,17]10. From figure 4.8, this graph clearly to prove the

phenomena is correct.

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0 0.5 1 1.5 2

B
ER

Eb/N0 (dB)
[31,17] [29,17] [27,17] [25,17]

[23,17] [21,17] [19,17]

37

 (a) g(D)=[31,17] (b) g(D)=[29,17]

Figure 4.8: The simulation result of No. of codewords and weight distribution

from “Turbo Code Distance Spectrum Calculator”

Figure 4.8 show that the g(D)=[31,17]10 has higher number of high weighted

codewords. Researcher can observe that the figures 4.8(a) only at codeweight 9 just

start have codewords, and the figure 4.8(b), researcher can observe at codeweight 8

start have codewords. So that, we can prove that the g(D)=[31,17] has fewer

codewords with relatively low code weights than g(D)=[31,17].

Hence, turbo code in constraint length K=5 and g(D)=[31,17] were sought that would

allow for more easier decoding compare with other generator polynomials for K=5

because one way of making the task of the decoder easier is using a code and can be

distinguished more easily with mostly high-weight code words (Käsper, 2006).

38

4.4.2 Effects of decoder algorithm

Figure 4.9: Effects of decoder algorithm

In this simulation, researcher choose the constraint length K=3 and generator

polynomial g(D) = [7,5]10. The other parameter used in these simulations was the

same as detailed in Section 4.2.1. From this graph, clearly show that the Log-Map

decoder algorithm is better than SOVA decoder algorithm. The approximated coding

gain obtained at BER 10
-3

is 0.3dB.

Log-Map given better performance than SOVA, but SOVA is less complex (C

Chaikalis, 2000). Since for different applications (e.g. video, data transfer) and for

different parameters(e.g. performance, complexity) either SOVA or Log-Map is

optimum, a reconfigurable SOVA/Log-Map turbo decoder can be used, resulting in

lower power consumption (Noras, 2002).

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0 0.5 1 1.5 2

B
ER

Eb/N0 (dB)

Log-Map

SOVA

CHAPTER 5

5 CONCLUSION

5.1 Conclusion

From this research, the researcher has found that RSC turbo encoder generator

polynomial gives the optimum performance under AWGN channel. From the

research, high frame size will get better performance in turbo code system compare

with the lower frame size. From the optimum performance generator polynomial

compare with other generator polynomial the performance improvement around 0.1-

0.3dB coding gain in the turbo code system. Generator polynomial is important in

designing the Turbo code system where the performance of the system can be

improved without any increase in hardware element or complexity of the system. The

researcher also find out that in through simulation, Log-MAP decoding algorithm

performance is better than SOVA decoding algorithm, which improvement around

0.4dB.

40

5.2 Future Work

 In this research, the researcher using the symmetrical turbo code system to

get simulation result but there also has an asymmetrical turbo code system.

Study asymmetrical turbo code system will be necessary in future.

 Apply 3G standard in the simulation at study the performance

 Study Low-density Parity-check codes (LDPC). LDPC codes to be more and

more attractive as enhancement of current (beyond 3G) or next generation

wireless systems(4G)

41

REFERENCES

Balamuralithara, B. (2005). modifications in Turbo Coding System for Performance

Enhancement. Master Thesis , 8-65.

Berrou, C. (2010). Code and Turbo code. France: Springer.

Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon Limit Error

Correcting Coding and Decoding: Turbo Codes. IEEE International Conference on

Communications (ICC) , 1064-1070.

C Chaikalis, M. S.-K. (2000). Reconfiguration between soft output Viterbi and log

maximum a posteriori decoding algorithms. IEEE , MARCH.

D.J.C. Mackay, R. (1997, march 6). Near Shannon limit performance of low density

parity check codes.

Du, K.-L., & M.N.S.SWAMY. (2010). Wireless Communication Systems: From RF

Subsystems to 4G Enabling Technologies. UK: CAmbridge University.

Glavieux, A. (2007). Channel Coding in Communication Networks. United States:

ISTE.

Käsper, E. (2006). Turbo Codes.

Korhonrn, J. (2003). Introduction to 3G Mobile Communication. United States:

Artech House.

Langton, C. (2006). Turbo Coding and MAP Decoding.

Malarić, K. (2010). EMI protection for Communication Systems. MA canton street

Norwood , MA: Artech House.

Noras,]. C. (2002). Implementation of an improved reconfigurable SOVA/log-MAP

turbo decoder in 3GPP. IEEE , MAY

42

Proakis, J. (1995). Digital Communications. New york: McGraw-Hill.

Rekh, S., rani, D. S., & A.Shanmugam, D. (2000). Optimal Choice of Interleaver for

Turbo codes. IEEE .

Scott, A. (2008). RF Measurements for Cellular Phones and Wireless Data Systems.

canada: John Wiley &Sons.

Singal, T. (2010). Wireless Communications. New Delhi: Tata McGraw Hill.

Yoon, S. (2009, march). Turbo Code Distance Spectrum Calculator Version 1.2.

Retrieved from www,eccpage.com/tcds_readme.txt

YuFei, W. (2005, April). Turbo Code Demo. Retrieved from

www.ee.vt.edu/~yufei/turbo.html

43

APPENDICES

APPENDIX A: TURBO CODE DEMO CODING

% This script simulates the classical turbo encoding-decoding system.

% It simulates parallel concatenated convolutional codes.

% Two component rate 1/2 RSC (Recursive Systematic Convolutional) component

encoders are assumed.

% First encoder is terminated with tails bits. (Info + tail) bits are scrambled and

passed to

% the second encoder, while second encoder is left open without tail bits of itself.

%

% Random information bits are modulated into +1/-1, and transmitted through a

AWGN channel.

% Interleavers are randomly generated for each frame.

%

% Log-MAP algorithm without quantization or approximation is used.

% By making use of ln(e^x+e^y) = max(x,y) + ln(1+e^(-abs(x-y))),

% the Log-MAP can be simplified with a look-up table for the correction function.

% If use approximation ln(e^x+e^y) = max(x,y), it becomes MAX-Log-MAP.

%

% Copyright Nov 1998, Yufei Wu

% MPRG lab, Virginia Tech.

% for academic use only

clear all

44

% Write display messages to a text file

diary turbo_logmap.txt

% Choose decoding algorithm

dec_alg = input(' Please enter the decoding algorithm. (0:Log-MAP, 1:SOVA)

default 0 ');

if isempty(dec_alg)

 dec_alg = 0;

end

% Frame size

L_total = input(' Please enter the frame size (= info + tail, default: 500) ');

if isempty(L_total)

 L_total = 500; % infomation bits plus tail bits

end

% Code generator

g = input(' Please enter code generator: (default: g = [1 1 1;1 0 1] ');

if isempty(g)

 g = [1 1 1;1 0 1];

end

%g = [1 1 0 1; 1 1 1 1];

%g = [1 1 1 1 1; 1 0 0 0 1];

[n,K] = size(g);

m = K - 1;

nstates = 2^m;

%puncture = 0, puncturing into rate 1/2;

%puncture = 1, no puncturing

puncture = input(' Please choose punctured / unpunctured (0/1): default 1 ');

if isempty(puncture)

 puncture = 1;

end

45

% Code rate

rate = 1/(2+puncture);

% Fading amplitude; a=1 in AWGN channel

a = 1;

% Number of iterations

niter = input(' Please enter number of iterations for each frame: default 5 ');

if isempty(niter)

 niter = 5;

end

% Number of frame errors to count as a stop criterior

ferrlim = input(' Please enter number of frame errors to terminate: default 7 ');

if isempty(ferrlim)

 ferrlim = 7;

end

EbN0db = input(' Please enter Eb/N0 in dB : default [2.0] ');

if isempty(EbN0db)

 EbN0db = [2.0];

end

fprintf('\n\n--\n');

if dec_alg == 0

 fprintf(' === Log-MAP decoder === \n');

else

 fprintf(' === SOVA decoder === \n');

end

fprintf(' Frame size = %6d\n',L_total);

fprintf(' code generator: \n');

for i = 1:n

 for j = 1:K

 fprintf('%6d', g(i,j));

46

 end

 fprintf('\n');

end

if puncture==0

 fprintf(' Punctured, code rate = 1/2 \n');

else

 fprintf(' Unpunctured, code rate = 1/3 \n');

end

fprintf(' iteration number = %6d\n', niter);

fprintf(' terminate frame errors = %6d\n', ferrlim);

fprintf(' Eb / N0 (dB) = ');

for i = 1:length(EbN0db)

 fprintf('%10.2f',EbN0db(i));

end

fprintf('\n--\n\n');

fprintf('+ + + + Please be patient. Wait a while to get the result. + + + +\n');

for nEN = 1:length(EbN0db)

 en = 10^(EbN0db(nEN)/10); % convert Eb/N0 from unit db to normal numbers

 L_c = 4*a*en*rate; % reliability value of the channel

 sigma = 1/sqrt(2*rate*en); % standard deviation of AWGN noise

% Clear bit error counter and frame error counter

 errs(nEN,1:niter) = zeros(1,niter);

 nferr(nEN,1:niter) = zeros(1,niter);

 nframe = 0; % clear counter of transmitted frames

 while nferr(nEN, niter)<ferrlim

 nframe = nframe + 1;

 x = round(rand(1, L_total-m)); % info. bits

 [temp, alpha] = sort(rand(1,L_total)); % random interleaver mapping

 en_output = encoderm(x, g, alpha, puncture) ; % encoder output (+1/-1)

47

 r = en_output+sigma*randn(1,L_total*(2+puncture)); % received bits

 yk = demultiplex(r,alpha,puncture); % demultiplex to get input for decoder 1 and

2

% Scale the received bits

 rec_s = 0.5*L_c*yk;

% Initialize extrinsic information

 L_e(1:L_total) = zeros(1,L_total);

 for iter = 1:niter

% Decoder one

 L_a(alpha) = L_e; % a priori info.

 if dec_alg == 0

 L_all = logmapo(rec_s(1,:), g, L_a, 1); % complete info.

 else

 L_all = sova0(rec_s(1,:), g, L_a, 1); % complete info.

 end

 L_e = L_all - 2*rec_s(1,1:2:2*L_total) - L_a; % extrinsic info.

% Decoder two

 L_a = L_e(alpha); % a priori info.

 if dec_alg == 0

 L_all = logmapo(rec_s(2,:), g, L_a, 2); % complete info.

 else

 L_all = sova0(rec_s(2,:), g, L_a, 2); % complete info.

 end

 L_e = L_all - 2*rec_s(2,1:2:2*L_total) - L_a; % extrinsic info.

% Estimate the info. bits

 xhat(alpha) = (sign(L_all)+1)/2;

% Number of bit errors in current iteration

 err(iter) = length(find(xhat(1:L_total-m)~=x));

48

% Count frame errors for the current iteration

 if err(iter)>0

 nferr(nEN,iter) = nferr(nEN,iter)+1;

 end

 end %iter

% Total number of bit errors for all iterations

 errs(nEN,1:niter) = errs(nEN,1:niter) + err(1:niter);

 if rem(nframe,3)==0 | nferr(nEN, niter)==ferrlim

% Bit error rate

 ber(nEN,1:niter) = errs(nEN,1:niter)/nframe/(L_total-m);

% Frame error rate

 fer(nEN,1:niter) = nferr(nEN,1:niter)/nframe;

% Display intermediate results in process

 fprintf('************** Eb/N0 = %5.2f db **************\n',

EbN0db(nEN));

 fprintf('Frame size = %d, rate 1/%d. \n', L_total, 2+puncture);

 fprintf('%d frames transmitted, %d frames in error.\n', nframe, nferr(nEN,

niter));

 fprintf('Bit Error Rate (from iteration 1 to iteration %d):\n', niter);

 for i=1:niter

 fprintf('%8.4e ', ber(nEN,i));

 end

 fprintf('\n');

 fprintf('Frame Error Rate (from iteration 1 to iteration %d):\n', niter);

 for i=1:niter

 fprintf('%8.4e ', fer(nEN,i));

 end

 fprintf('\n');

 fprintf('***\n\n');

% Save intermediate results

49

 save turbo_sys_demo EbN0db ber fer

 end

 end %while

end %nEN

diary off

