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GENERATOR POLYNOMIAL IN TURBO CODE SYSTEM 

 

 

ABSTRACT 

 

 

In digital wireless system, error control codes have become an important technique 

for enabling reliable transmission to be achieved over noise and fading channels. 

Since the introduction of the turbo codes, many researchers have put effort in 

improving the turbo code performance because over the past decade turbo code have 

been widely considered as the most powerful error control code. Improving the turbo 

code performance with choosing the optimum generator polynomial without 

increasing the complexity in the system and delay. In this project, the researcher is 

searching for the optimum performance of the generator polynomial under AWGN 

channel. The study are investigate the performance of turbo code system using 

difference decoding algorithm and frame size under AWGN channel. The 

performance results for the turbo code system through the matlab simulation, where 

also consider the system was investigated using Log-MAP decoder over AWGN 

channel with different frame sizes. The researcher found that generator polynomial, 

g(D) = [7,5], [13,15] and [31,17] gives the best performance for constraint length, K 

= 3,4 and 5 respectively. The performance results for the turbo code system are 

obtained through using matlab simulation. The study are investigate the performance 

of turbo code system using difference decoding algorithm and frame size under 

AWGN channel. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Nowadays communication is become part of our life. World War ll greatly promoted 

the development of mobile communications. Communication system is very helpful 

to connect people from one point to another one point and change people life style.  

 

The first generation of mobile cellular telecommunications systems appeared 

in the 1980s. The first generation was not the beginning of mobile communications, 

as there were several mobile radio networks in existence before then, but they were 

not cellular systems either. The capacity of these early networks was much lower 

than that of cellular networks, and the support for mobility is weak. 

 

The second-generation (2G) mobile cellular systems use digital radio 

transmission for traffic. Thus, the boundary line between first and second generation 

systems is obvious: it is the analog/digital split. The 2G networks have much higher 

capacity than the first generation systems. One frequency channel is simultaneously 

divided among several users. Hierarchical cell structures – in which the service area 

is covered by macocells, microcells, and picovells – enhance the system capacity 

even further. 

 

Recently there has been an attempt in the GSM community to enhance GSM 

to meet the requirements of cordless markets. Cordless telephone system (CTS) us a 

scheme in which GSM mobiles can be used at home via a special home base station, 
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in a manner similar to the present-day cordless phones. This scheme can be seen as 

an attempt of the GSM phone vendors to get into the cordless market. 

 

3G have been several competing proposals for a global 3G standard. Below, 

these are grouped based on their basic technology, WCDMA, advanced TDMA, 

hybrid CDMA/TDMA, and orthogonal frequency division multiplexing (OFDM). 

 

WCDMA system is 5MHz or more, and this 5MHz is also the nominal 

bandwidth of all 3G WCDMA proposals. This bandwidth was chosen because it is 

enough to provide data rates of 144 and 384 kbps, and even 2Mbps in good 

conditions and bandwidth is always scare, and the smallest possible allocation should 

be used. The bandwidth also can resolve more multipath than narrower bandwidths, 

thus improving performance. 

 

Error control code is use for detect and correction the error in transmission. 

Each coding got difference feature and function. The error control code can be 

difference as block code, convolution code, trellis coded modulation and turbo code. 

 

Block codes is accepts information in successive blocks producing an overall 

encoded blocks. In other words, block codes are codes that a blocks include group 

the source data. The most simple linear block code is repetition code. 

 

Convolution codes not break up the data stream into blocks, but add 

redundancy in a quasi-continuous manner. Basically, convolution code is with 

memory and the block code is without memory. This is because the convolution code 

need some register in encoder or decoder to encoder. Convolution code is accepts 

message bits as a continuous sequence and thereby generates a continuous sequence 

of encoded bits at higher rate. 

 

The first 2 codes main problem is the reduction in spectral efficiency. Since 

nowadays need to transmit more bits, in a limit bandwidth, we only can transmit 

limit data. If we need transmit more data, then the check bits will becomes larger, 

then the bandwidth also need requirement becomes larger. This problem can be avoid 

by use trellis coded modulation (TCM). In TCM, modulation and coding is treated as 
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combined entity. The key to this integrated modulation and coding approach is to 

devise an effective method for mapping the coded bits into signal point such as that 

the minimum Euclidean distance is maximized. So that, a simplistic approach to 

solve the spectral efficiency is to add parity check bits to data bit and modulation the 

symbols together. However, this modulation is not give good results. This is because 

this disallowing some symbol sequences in this enlarged signal space. The important 

aspect is the encoding and modulation is joint process so that allow shows higher 

resilience to noise that uncoded systems with the same spectral efficiency. 

 

A very long codes can approach the Shannon limit. So that, the brute force 

decoding of such long codes need spent a lot of time and more complex. Turbo codes 

were the first used codes that came close to the Shannon limit using reasonable effort. 

The codes are interleaved and the vital trick lies in the decoder because the code need 

combination a lot short codes, the decoder can also be divide into several simple 

decoders that exchange information about the decoded bits and arrive at a solution. 

The random interleaver let the total codeword has very little structure and this come 

with some advantages such as increases the effective code length of the combined 

code and make decoding possible with an effort that is essentially determined by the 

length of the constituent codes. 

 

 

 

1.2 Aims and Objectives 

 

Turbo codes is the one of error control codes apply in the current communication 

system. Researcher needed to know and try to improve the following things: 

 Basic turbo codes encoder structures and to understand each parameters 

performance; 

 To understand and research the generator polynomial functions to get the 

perfect result; 

 To study the interleaver, puncturing and multiplexing performance and to 

change the parameters to get the optimum result in simulation. 
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1.3 Thesis Outline 

  

1.3.1 Chapter Two: Literature Review 

 

Chapter two gives an overview explains how the turbo code system work in digital 

communication system in general. It starts with an introduction of the history of the 

communication system, followed by the explanation of the error control code include 

linear block code, convolutional code and so on. The turbo code system including the 

algorithm and structure of both turbo code encoder and turbo code decoder are 

described here. RSC encoder and the generator polynomial are explained in detail. 

 

 

 

1.3.2 Chapter Three: Methodology 

 

Chapter three explains the design and implementation of the source code in 

MATLAB. The simulation process in shown clearly and systematically. “Turbo code 

distance spectrum calculator” software is also briefly explained in this chapter. 

 

 

 

1.3.3 Chapter Four: Discussion 

 

Chapter four presents various simulations results of the turbo code. The simulation 

results are compared and analyzed here. Finally, discussion, conclusions and future 

works are pointed out in Chapter five.  

 

 

1.3.4 Chapter Five: Conclusion 

 

Chapter five point out the conclusions and future works.  



 

 

 

 

CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Communication System 

 

The remaining components in the overall system block diagram are digital processors 

to convert the analog voice and video signal into digital signals, to apply error 

correction bits, and to optimize the number of digital channels that can be transmitted 

within the RF system bandwidth.  

 

The analog signals from the voice microphone and the video camera are show 

entering the transmitter part of the communication system from the left-hand side of 

Figure 1. The signals are digitized, and the digital signal representing data cannot be 

compressed. 

 

The digital signals representing voice, video, and data are then sent to an 

error coder, which adds extra bits to allow transmission errors to be corrected. The 

digital signals to be transmitted from an individual user occupy a small fraction of 

the service provider‟s licensed bandwidth. To accommodate many users the digital 

signals from each user are assigned a specific frequency slot and time slot, or a 

coding sequence. This is accomplished in the multiple access block of the overall 

system.  



6 

 

As the digital signal leaves the multiple access block, it is just a series of 

digital bits and system control signals. These bits are next modulated onto an IF 

subcarrier, which is at a frequency below the RF band where the modulation can 

easily be accomplished with a digital processor. The modulated IF subcarrier is then 

shifted to the RF frequency in the up converter block of the RF transmitter. 

 

In the communication system receiver shown in the lower row of boxes in 

Figure 2.1, the demodulator, multiple access. Error decoder, expander, and DAC 

simply perform in the inverse functions of their counterparts in the transmitter. (Scott, 

2008) 

 

 

Figure 2.1: Block diagram of communication system. (Korhonrn, 2003) 

 

 

 

2.2 Error Control Code 

 

2.2.1 Linear Block Code 

 

Linear block code is the basic code in the error control coding (ECC). For a linear 

block code is transmit as a block by block and the message block is the fixed length. 

Each block got parity bits and data bits. Each bits is represented by 0 or 1. Linear 

block code is designed in term of generator and parity- check matrices.  
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Normally linear block encoder can distribute by 3 elements. The formula as 

following (Glavieux, 2007): 

 

𝑥 = 𝑚 × 𝐺                                                    (2.1) 

 

where 

𝑥 = encoder message 

𝑚 = message  

𝐺 = generator polynomial matrix 

 

The generator matrix G is used in the encoding operation at the transmitter, 

while the parity check matrix H is used in the decoding operation at the receiver. 

If y represents the received vector, then 

 

𝑦 = 𝑥 + 𝑒                                                           (2.2) 

 

where 

𝑥 = encoder message 

𝑒 = error vector 

𝑦 = received vector 

 

The e is represents the error vector. Here, we will get one definition is 

syndrome. The syndrome vector is S. 

 

𝑆 = 𝑦 × 𝐻𝑇                                                      (2.3) 

where 

𝑆 = syndrome vector 

𝐻𝑇 = parity check matrix 

𝑦 = received vector 

 

For a block code with 2
k
 codewords and length n. The consists of k is 

represented information digits so that got 2
k
 of codewords. A desirable structure for a 
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block code to possess is linearity because want to reduce the complexity of the 

encoding. 

Here is some definition of the linear block codes: 

(i) Hamming weight: the hamming weight of a code vector x is defined as 

the number of non-zero components of code vector x. 

(ii) Hamming distance: the hamming distance between two vectors is defined 

as the number of components in which they differ. 

(iii) Minimum distance: the minimum distance of a block code is the smallest 

distance between any pair of codewords in the code. 

 

  

 

Nowadays the linear block code can be distributed as Hamming codes, Cyclic 

codes, Binary BCH codes and Reed-Solomon codes shows in Figure 2.2. Each code 

got difference property, but all the linear block code property can fulfill this all codes. 

 

Figure 2.2: Linear block codes (Korhonrn, 2003) 

 

 

 

2.2.2 Hamming Code 

 

The hamming code are extremely simple to design and construct because when a 

single error occurs, the syndrome of the received vector is equal to the H
T
. Hence if 

Linear 
Block 
Codes

Cyclic 
Codes

Binary 
BCH 

Codes

Reed-
Solomon 

Codes

Hamming 
Codes



9 

we choose the n rows of the n x (n-k) matrix H
T
 to be distinct, then the syndrome of 

all single errors will be distinct and we can correct single error. 

 

For any positive integer m ≥ 3, then this codes will exists Hamming code 

with the following property (Scott, 2008): 

 

Code length      : n= 2
m

 -1,                                                        (2.4) 

Number of information symbols: k=2
m

-m-1,                                                     (2.5) 

Number of parity-check symbols: n-k=m,                                                           (2.6) 

Error-correcting capability       :  t=1 (dmin=3).                                                (2.7) 

 

 

 

2.2.3 Cyclic Codes 

 

The cyclic codes got one important property that is the each code shifter by one and 

can get another code words. Here got a special factor denoted by g(D), is called the 

generator polynomial of the code. The g(D) is equivalent to the generator matrix G as 

a description of the code. The encoder formula is x(D) = b(D) + D
n-k

m(D). The b(D) 

is the message m(D) divide by g(D) of the remainder. 

 

 

 

2.2.4 BCH Codes 

 

Binary BCH codes are one of the most important and powerful cyclic codes. For any 

positive integers m≥3 and t<(2
m

-1)/2 there exists a binary BCH code with the 

following parameters: 

 

Block length: n=2
m

-1, 

Number of message bits:  k ≥ n-mt, 

Minimum distance:  dmin≥2t+1. 
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The BCH codes provide a large selection of block length, code rates, alphabet 

sizes , and error correcting capability. 

 

 

 

 

2.2.5 Reed-Soloman code 

 

Reed-Solomon code is the important of the nonbinary BCH codes. Reed-Solomon 

code work on symbols rather than individual bits. A t-error correcting Reed-Solomon 

code has the following parameters: 

 

Block length: n=2
m

-1, 

Message size: k, 

Parity –check size:  n-k=2t, 

Minimum distance:  dmin=2t +1, 

Number of correctable errors: t=0.5(dmin-1) 

 

 

 

2.3 Convolutional Codes 

 

Convolutional code is the one with memory code (tree code) and the linear block 

code is without memory code( block code). Convolutional code structure is a tree 

code and it is fundamentally difference from the structure of a block code. 

Convolutional code unlike the linear block codes, large minimum distance and low 

error probabilities are achieved not by increasing the k and n but need increase the 

memory order m. 

 

Convolutional code can have many generator polynomial g(D). All 

convolutional code can be realized using a linear feed forward shift register encoder 

of this type. Normally the convolutional codes are preferred in many 

telecommunication application. Hence, here will introduce the terminology of 

convolutional codes shown in Table 2.1 
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Table 2.1: Terminology of Convolutional Codes 

 

 

 

Here is the example of the convolutional codes in figure 3. This diagram 

shows that the convolutional codes can have more than one generator polynomial for 

difference output.  The path 1 generator polynomial is g1=(111) and the path 2 

generator polynomial is g2=(101).  And the other this one need 2 registers to store the 

memory. From this diagram, we can get 3 difference diagram to easy understand and 

encoder. The 3 difference way to represent the encoder is code tree, state diagram 

and trellis diagram. 

 

 

Figure 2.3: Convolutional encoder with constraint length K=3, rate r=1/2 

(Berrou C. , 2010) 

•Number input bits taken into the encoder at oneceInput Frame, k

•Number output bits produced from the encoder at onceOutput Frame, n

•Maximum number of shift register stage in the path to any output bit.Memory order, M

•Total number of shift registers in the encoders.Memory constraint length, m

•Total number of bits involved in the encoding operationInput constaint length,        K = m+k
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Figure 2.4: Convolutional encoder with constraint length K=4, rate r=1/2 

(Berrou C. , 2010) 

 

 

The tree diagram show in Figure 2.5 is simple to represent the convolutional 

code output and the flip-flop of register memory by its code tree. There only 2 way to 

go from starting point. When the input is „0‟, then will go to upward (left). On the 

other hand, when the input is „1‟, then will go to downward (right). From this 

diagram, all the 2 digit in the line is represent the output state. For the alphabets is 

represented the flip-flop memory.  

 

 

 

 

 

 

 

 

Figure 2.5: Code Tree for the Convolutional Code  (Berrou C. , 2010) 

 

 

Convolutional code is a code with memory, so that the previous input will 

affect the next state. For this state diagram, the current output of the convolutional 
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encoder from Figure 2.6 is depends on previous state. So that, the code output or next 

state can be form as a circle. The alphabets still represented same things as the code 

tree is the flip-flop memory. The digit is the output. The solid branch is represent the 

input „0‟ and the dashed branch is represent the response to input „1‟. 

 

 

Figure 2.6: State diagram of the convolutional codes (Berrou C. , 2010) 

 

 

This trellis diagram show in Figure 2.7  left nodes represent the four possible 

flip-flop current state same as previous figure and the right node is represent the next 

state of the register memory. Same thing the input „0‟ is represented by a solid 

branch and input „1‟ is represented by a dashed branch. 

 

 

Figure 2.7: Portion of Trellis diagram for convolutional encoder with constraint 

length K=3, rate r=1/2 (Berrou C. , 2010) 
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This 3 diagram result is get from the first diagram of the convolutional codes.  

For decoding the convolutional code we can use the viterbi algorithm. The viterbi 

algorithm is a method commonly used for decoding bit stream encoded by 

convolutional encoder. Viterbi algorithm realized that not all paths needs to be 

considered, if the channel errors are random then non-optimal paths at this stage can 

never become optimal path in the future. This type algorithm only keep one of the 

paths reaching each node and at end state only 2
m

 paths need to be retained.  

 

 

 

2.4 Turbo Codes 

 

Turbo code was introduced in 1993 by Berrou, Glavieux, and Thitimajshima, and 

reported in (Berrou, Glavieux, & Thitimajshima, 1993). In the field of forward-error 

correction channel coding are a recent developmental by turbo codes. This codes got 

three simple ideas to make use: parallel concatenation of codes to allow simpler 

decoding, interleaving provide a better weight distribution and soft decoding to 

increase decoder decisions and maximize the gain from decoder interaction. 

 

 

 

2.4.1 Turbo Codes Structure  

 

The basic ides of turbo codes is use two convolutional codes in parallel and the 

second encoder input bits will process to interleaving just go through the encoder 2. 

The operation of Turbo encoding is based on the use of a pair of encoders, separated 

by the interleave, and iterative detection involving the use of feedback around a pair 

of decoders separated by a deinterleaver and an interleave. The turbo code can be 

regard as a large block code. The encoder user a parallel FEC encoding scheme in 

which the information is systematically encoded by two separate identical encoders. 

The performance depends on the weight distribution. So that, the input patterns 

giving low weight words from first encoder will to be interleaved to the more height 
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weight distribution for the second encoder. Turbo codes provide significant 

improvements in the quality of data transmission over a noisy channel. Figure 2.8 

illustrates the functional block diagram of a turbo encoder. 

 

Figure 2.8: Structure of a Turbo Encoder (Rekh, rani, & A.Shanmugam, 2000) 

 

 

 

 

 

Figure 2.9: Structure of the RSC Encoder (Rekh, rani, & A.Shanmugam, 2000) 

 

 

In figure 2.9 generator polynomial is g=(1,(1+D+D
2
/(1+D

2
))) and we have 

shown an encoder on the recursive systematic form. From the diagram we can find 

out that the turbo codes is a systematic codes because the first output is original bits 

and not process to any encoder. The rest of output is the parity bits. Notice that the 

fact that the codes are systematic is just a coincidence, although it turns out to be 

very convenient for several reasons. One of these is that the bit error rate (BER) after 

decoding of a systematic code can not exceed the BER on the channel. Imagine that 

the received parity symbols were completely random, then the decoder would of 
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course stick to the received version of the information. If the parity symbols at least 

make some sense we would gain information on the average and the BER after 

decoding will be below the BER on the channel. 

 

 

 

2.4.2 Puncturing 

 

One thing is important concerning the systematic property, though. If we transmit the 

systematic part from both encoders, this would just be a repetition, and we know that 

we can construct better codes than repetition codes. The information part should only 

be transmitted from one of the constituent codes, so if we use constituent codes with 

rate 1/2 the final rate of the turbo code becomes 1/3. If more redundancy is needed, 

we must select constituent codes with lower rates. Likewise we can use puncturing 

after the constituent encoders to increase the rate of the turbo codes. The information 

bits and the parity bits generated by the two encoders are the multiplexed and 

punctured in a repeating pattern to increase the code rate for transmission. 

 

 

 

2.4.3 Interleaving 

 

Interleaving is a process to rearranging the input data stream of sequence in a one to 

one deterministic format. In turbo coding, interleaving is used before the second 

encoder want to input the information data to encoder. The basic role of an 

interleaving is to construct the long block code from small memory convolutional 

codes, as long as can approach the Shannon capacity limit. The final role of the 

interleaver is to break low weight input sequences, and hence increase the code free 

Hamming distance or reduce the number of code words with small distances in the 

code distance spectrum. The size and structure of interleavers play a major role in the 

performance of turbo codes. Here got one of interleavers, which can be implemented. 

 

The random interleaver uses a fixed random permutation and maps the input 

sequence according to the permutation order. In this turbo code, we recommend use 
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the random interleaver. The random interleave, also called turbo interleave, enables 

the second encoder to reorder the information bits prior to encoding. Table 2.2 shows 

a 3 x 5 matrix positions after the matrix is interleaved. This is the example shows that 

if the input is 15 bits, then will permutation to randomly.  

 

Table 2.2: Equivalent index position for original matrix index in diagonal 

interleaver (Rekh, rani, & A.Shanmugam, 2000) 

   i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Interleaver(i) 0 6 12 1 7 13 2 8 14 3 9 10 4 5 11 

 

 

 

2.4.4 Turbo Decoding 

It is proposed that an iterative decoding scheme should be used. The decoding 

algorithm is similar to Viterbi algorithm in the sense that it produces soft outputs. 

While the Viterbi algorithm outputs either 0 or 1 for each estimated bit, the turbo 

code decoding algorithm outputs a continuous value of each bit estimate. While the 

goal of the Viterbi decoder is to minimize the code word error by finding a maximum 

likelihood estimate of transmitted code word, the soft output decoding attempts to 

minimize bit error by estimating the posterior probabilities of individual bits of the 

code word. We called the decoding algorithm Software Decision Viterbi Decoding. 

 

Figure 2.10: Structure of Turbo Decoding (Proakis, 1995) 
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The turbo decoder consists of M elementary decoders - one for each encoder 

in turbo encoding part. Each elementary decoder uses the Software Decision Viterbi 

Decoding to produce a software decision for each received bit. After an iteration of 

the decoding process, every elementary decoder shares its soft decision output with 

the other M - 1 elementary decoders. 

In theory, as the number of these iterations approaches infinity, the estimate 

at the output of decoder will approach the maximum a posteriori (MAP) solution. 

2.4.5 Turbo Decoding MAP Algorithm Overview 

 

In MPSK or QAM demodulation process, decision about a bit is made by looking at 

what decision region the phase or the amplitude falls in. This way to make decision 

is called the Maximum Likelihood Detection(MLD). 

 

 A similar but better rule is based on knowing the priory probability of the 

signal. If a -1 bit has a probability of 80%, then if the signal falls in the negative 

decision range, the MLD will decide it as a +1. However, it is clear that the priory 

probability as here of 80% should be taken into account. This decision method that 

on this conditional probability is called the Maximum Aposteriori Probability(MAP). 

(Langton, 2006) 

 

 

 

 



 

 

 

 

CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Introduction 

 

MATLAB has been used in this project. MATLAB is user friendly and most efficient 

to simulation turbo codes in this section. The MATLAB is a high-performance 

language for computing, simulating and programming in a convenient environment. 

Thus, MATLAB is researcher first choice to simulation turbo codes. After simulation, 

researcher collect simulation result bit error rate (BER) versus signal to noise ratio 

(Eb/No) are plotted using Microsoft Office excel 2007. 

 

 

 

3.2 Simulation Setup 

 

The Turbo code m-files developed in this project were based on original work by 

Yufer Wu (YuFei, 2005). The matlab Turbo Code structure used by Wu is based 

upon the structure described in the original paper by Berrou. (Berrou, Glavieux, & 

Thitimajshima, 1993) 

 

This simulation is based on the classical parallel concatenated convolutional codes 

(PCCC) system. In this structure got two components of RSC (Recursive Systematic 

Convolutional) encoders with code rate 1/3 (not puncture) are designed. First 

encoder is terminated with tails bits. Next, both the info bits and the tail bits are 

scrambled and passed to the second encoder, while second encoder is left open 
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without tail bits. Random information bits are modulated into +1/-1, and transmitted 

through an AWGN channel. Interleavers are randomly generated for each frame. 

Log-MAP algorithm without quantization or approximation is used. Below is the list 

of functions used to call the main program:  

 

i. Function bin_state: To convert a vector of integer into a matrix 

 

ii. Function demultiplex: To get the codeword of each encoder at the receiver 

end. 

 

iii. Function encode_bit: This function takes as an input a single bit to be 

encoded, as well as the coefficients of the generator polynomials and the 

current state vector. It returns as output n encoded data bits, where 1/n is the 

code rate. 

 

iv. Function encoderm: This function interleaves input of the second encoder, if 

unpunctured, produces a rate 1/3 output of fixed length, if punctured, 

produces a rate 1/2 output. Multiplexer chooses odd check bits from RSC1, 

even check bits from RSC2, and determine the constraint length (K), memory 

(m) and number of information bits plus tail bits. Also, performs BPSK 

Antipodal modulation: +1/-1. 

 

v. Function int_state: This function converts a row vector of m bits into a 

integer (base 10) 

 

vi. Function logmapo:  To compute the soft output, log-likelihood ratio of 

symbols in the frame using Log MAP algorithm.  

 

vii. Function rsc_encode: To generate codeword.  

 

viii. Function trellis: To set up the trellis for the given , G(D)    
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3.3 Interpretation of the Simulation Model 

 

The standard description of the system is the block diagram, where each block 

represents a signal processing operation (Balamuralithara, 2005), and it shown in 

Figure 3.1. WCDMA standard parameters are used for this investigation and the 

output bits of the turbo encoder are then modulated using a Binary Phase Shift 

Keying (BPSK) modulator. 

 

 

 

Figure 3.1: Block Diagram of the simulation model 

 

Each block contains the algorithm and equations needed to implement the block 

functions within the simulation (Balamuralithara, 2005). 

 

 

 

3.3.1 Input Data 

 

Researcher are using a randomly values for frame size. In this simulation, researcher 

using N=500 and N=1200 for frame size values. The line below is used in the source 

code to generate random values: 

𝑥 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑 1, 𝐿𝑡𝑜𝑡𝑎𝑙 − 𝑚 ) 

Input Data

Decimal-to-
Binary

Turbo 
Encoder

BPSK 
Modulator

Channel

BPSK 
Demodulator

Turbo 
Decoder

Binary-to-
Decimal

Decoded 
Data
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3.3.2 Decimal-to-binary 

 

The input data all in decimal form but in the encoder and modulator process all in 

binary form. So, the function of this module is to transform the source from the 

decimal value to binary value. 

 

 

 

3.3.3 Turbo encoder 

 

Turbo code encoder is already been description in Chapter 2. The simulation turbo 

code encoder is composed of two identical RSC component encoders. A random 

interleaver separates these two encoders and this is a random permutation of bit order 

in a bit stream. 

 

In this simulation, researcher basically using code rate of 1/3 (unpunctured) and 

some of the journals are using ½ as is achieved by puncturing the coded bit streams 

of the turbo code.  Figure 3.2 illustrate the flow chart of the turbo encoder in this 

simulation model. 

 

 

Figure 3.2 : The encoder flow chart 
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3.3.4 Channel 

 

In this simulation, the Additive White Gaussian Noise (AWGN) channel model is 

used because it is useful to simulation the realized underlying behaviour of a system 

and AWGN channel is also a good approximation for many satellite and deep space 

communication links. The Gaussion noise easy to construct from the Gaussion 

distribution with mean of zero and standard deviation of one.  

 

 

 

3.3.5 Turbo Decoder 

 

The turbo code decoder system have 2 type decoder: soft input soft output (SOVA) 

and the log maximum a posterior algorithm (log-MAP). In these simulation, 

researcher are using the log-Map algorithm to investigation. The flow chart of the 

turbo decoder simulation is illustrated in figure 3.3. 

 

Figure 3.3 : The turbo decoder flow chart 
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3.3.6 Binary-to-decimal 

 

The output of the decoder is binary but the system read it as decimal value, so must 

transform the binary number to decimal number and recover it to the input of the 

encoder. 

 

 

 

3.4 Step procedure in Matlab 

 

Matlab programme takes in all the design parameter and passes it over to the 

functions. All the design parameter is defined in the main function itself. Figure 3.4 

display a print screen of the matlab simulation interface where user can choose the 

decoding algorithm and input the value for the frame size, punctured, iterations 

number, frame errors to terminate and the SNR. 

 

 

 

Figure 3.4 : User interface of the Turbo Code simulator 

 

After simulation finish, researcher can view all the result. Figure 3.5 shows that 

researcher need copy Bit Error Rate (BER) to the MS-Excel to plot the Bit Error Rate 

(BER) against the channel condition that is Signal to Noise Ratio (SNR). The plotted 

graphs are shown in detail in next chapter. 
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Figure 3.5: The matlab workspace with the result 

 

 

 

3.5 Turbo Code Distance Spectrum Calculator 

 

This software computes the distance spectrum of parallel or serially concatenated 

convolutional code (overall rate of 1/3 for PCCC and ¼ for SCCC) where the same 

½ rate systematic convolutional code is used for both the constituent codes. (Yoon, 

2009). Researcher can test with various generator polynomials. It will creates a test 

file containing the BER performance of the turbo code. A print Screen of the Turbo 

Code Distance Spectrum Calculator is shown in figure 3.6. 
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Figure 3.6 : Turbo Code Distance Spectrum Calculator 

 

Distance Spectrum is equal to the number of codewords that has certain Hamming 

weight, averaged over all possible permutations (Uniform Interleaver Assumption). It 

is for computaion of Codeword Error probability bound. While, the weighted 

Distance Spectrum is for computation of Bit Error Probability Bound. After software 

finish analysis, the result is shown in text file. Researcher can analysis the code 

weight and compare the result from the matlab simulations result to verify 

conclusions and justification. A screen shot of the text file obtained from the 

simulation is presented in figure 3.7. 
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Figure 3.7 : The screen shot of the notepad results obtained from simulation 

 

 

 

 

  

 

 

 

 

 



 

 

 

 

CHAPTER 4 

 

 

 

4 DISCUSSION 

 

 

 

4.1 Introduction 

 

This chapter presents simulation results for the implementation of classical turbo 

codes in Matlab simulation platform. Researcher need to observe the effects of the 

generator polynomial on the turbo code performance in various scenarios. The effect 

of generator polynomials with constraint length, K=3, 4 and 5 are investigated for the 

frame length of N=500 for different iteration and for the decoding algorithm used 

Log-Map and the code rate was fixed at 1/3. 

 

 

 

4.2 Effects of number of decoding iterations 

 

When the number of iteration increases will cause the performance of the turbo code 

increases. However, the improvement of the BER will not be significant at certain 

regions of Eb/No. But, there will increase processing time delay as the iteration 

increase. This is because this action will increase the complexity and reduce the 

system efficiency. So those, researcher need to justify the number of iterations to get 

the optimum performance result. Figure 4.1 shows turbo code performance due to 

effects of number of iterations. 
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Figure 4.1:  Turbo code performance for frame length, N=500 for iteration 3, 4 

and 5 with g(D)=[7,5]10, code rate =1/3 under AWGN channel 

 

From figure 4.1, we can find out that the  five iterations are good enough to get the 

good performance results for the frame size of 500 bits. So, we chose the five 

iterations for simulation of frame size of 500 bits under AWGN. 

 

 

 

4.3 Frame size effects 

 

Frame size will effect the performance of turbo code. Large frame size means that 

the larger distance between each frame can be interleaved and the decoder can get 

better performance because the correlation between two adjacent bits will becomes 

smaller. But, if increase the frame size will also increase the processing time as turbo 

code is a one type of block code, it need to wait for the completion of the decoding of 

the whole block before getting the decoded output. So that, we need to certain limit 

the frame size to avoid higher processing delay due to larger amount of transmitted 

data (Balamuralithara, 2005). From the figure 4.2 shows the simulation result 

verified this conclusion. In this simulation, we are using N=500 and N=1200, and we 

can see that the turbo code with larger frame size has better performance. 
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Figure 4.2 : Comparison of farame length, N=500 and 1200 for bit error rate 

versus Eb/N0 with g(D)=[7,5], code rate=1/3, number of iteration 7. 

 

 

 

4.4 Effects of generator polynomial 

 

Generator Polynomials are used for this simulation are shown in table 4.1. In this 

simulation, we only use up to constraint length, K=5 with the study of seven 

combinations of the generator polynomials as the complexity of the simulation. All 

the display generator polynomial value is decimal. 
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Table 4.1 : Various combination of generator polynomials 

Constraint Length, K Generator Polynomial, g (D)= [g1,g2]10 

K=3 [5,7]10 

[7,5]10 

K=4 [9,11]10 

[9,13]10 

[9,15]10 

[11,9]10 

[11,13]10 

[11,15]10 

[13,9]10 

[13,11]10 

[13,15]10 

[15,9]10 

[15,11]10 

[15,13]10 

K=5 [19,17]10 

[21,17]10 

[23,17]10 

[25,17]10 

[27,17]10 

[29,17]10 

[31,17]10 
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4.4.1 Effects of Generator Polynomial  

 

The default parameters in this case simulation are shown in Table 4.2.  

 

Table 4.2: Default parameters in simulation 

Channel =AWGN Channel 

Decoder =Log-MAP decoder 

Frame Size =500 bits 

Code Rate =1/3 

Iteration number =5 

Terminate frame errors =7 

 

 

4.4.1.1 Simulation results for constraint length, K=3 

 

 

Figure 4.3 : Turbo code performance for constraint length, K=3 

 

Figure 4.3 plotted that the BER performance of turbo code with g(D)=[7,5] and 

g(D)=[5,7]. From the graph, we can find out that the g(D)=[5,7] is not good enough 

compare with g(D)=[7,5].  At BER 10
-3

 the approximated coding gain is 0.3dB. 

 

In this case, this phenomena is caused by the codewords. The g(D) = [7,5] has fewer 

codewords with relatively low codeweights than g(D)=[5,7]. So that, we can assume 
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that g(D) = [7,5] has higher number of high weighted codewords and this property  

can be prove and understand by using the software “Turbo Code Distance Spectrum 

Calculator”. 

 

 

                     (a)  g(D)=[5,7]                                      (b) g(D)=[7,5] 

Figure 4.4: The simulation results of number of codewords and weight 

distribution 

 

As this software, we can calculate the code weight of the encoded bits.  Distance 

Spectrum is equal to the number of codewords that has certain Hamming weight, 

averaged over all possible permutations. It is for computation of Codeword Error 

probability bound. The print screen this software and shown in the figure 4.4 (a) and 

(b), we only shows the first 23 codeweight out of 1508. Codewords with weight 1-20 

considered very low codeweights. 

 

From the figure 4.4, we can observe that the figures 4.4(a) only at codeweight 0-12 

are negligible,  and the figure 4.4(b),  we can negligible codeweight 0-19. So that, we 

can prove that the g(D)=[7,5] has fewer codewords with relatively low code weights 

than g(D)=[7,5]. In other way, we can observe the codeweight at 10, figure 4.4(a) 

have number of codewords is 6 (5.958112e+000). Figure 4.4 (b) have number of 

codewords at codeweight is 10 are 2 (1.997816e+000).  

 



34 

Hence, turbo code in constraint length K=3 and g(D)=[7,5] were sought that would 

allow for more easier decoding compare with g(D)=[5,7] because one way of making 

the task of the decoder easier is using a code with mostly high-weight code words. 

High-weight code words can be distinguished more easily (Käsper, 2006). 

 

 

 

4.4.1.2 Simulation results for constraint length, K=4 

 

 

 

Figure 4.5 : Turbo code performance for constraint length, K=4 

 

Figure 4.5 shows that the generator polynomial g (D)=[13,15]10 given the best 

performance in turbo code system for constraint length  K=4.  From the graph, 

researcher conclude that g(D)=[13,15]10 better than g(D)=[15,13]10 as it shows a 

better BER performance. At BER 10
-3

 the approximated coding gain is 0.2dB. 
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In this case, this phenomena is caused by the codewords. The g(D) = [13,15] has 

fewer codewords with relatively low codeweights than g(D)=[15,13]. So that, we can 

assume that g(D) = [13,15] has higher number of high weighted codewords and this 

property  can be prove and understand by using the software “Turbo Code Distance 

Spectrum Calculator”. 

 

The print screen this software and shown in the figure 4.6 (a) and (b), we only shows 

the first 23 codeweight out of 1508. Codewords with weight 1-20 considered very 

low codeweights. 

 

 (a) g(D)=[15,13]     (b) g(D)=[13,15] 

Figure 4.6: The simulation result of No. of codewords and weight distribution 

for constraint length K=4 

 

From the figure 4.6, we can observe that the figures 4.6(a) only at codeweight 0-16 

are negligible,  and the figure 4.6(b),  we can negligible codeweight 0-20. So that, we 

can prove that the g(D)=[13,15] has fewer codewords with relatively low code 

weights than g(D)=[13,15].  
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Hence, turbo code in constraint length K=4 and g(D)=[13,15] were sought that would 

allow for more easier decoding compare with g(D)=[15,13] because one way of 

making the task of the decoder easier is using a code with mostly high-weight code 

words. High-weight code words can be distinguished more easily (Käsper, 2006). 

 

 

4.4.1.3 Simulation results for constraint length, K=5 

 

Figure 4.7: Turbo code performance for constraint length, K=5 

 

Figure 4.7 only shown some generator polynomial of BER performance for 

constraint length K=5. From the graph, researcher can observe the best performance 

are given by the g(D)=[31,17]10. From figure 4.8, this graph clearly to prove the 

phenomena is correct. 
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  (a) g(D)=[31,17]    (b) g(D)=[29,17] 

Figure 4.8: The simulation result of No. of codewords and weight distribution 

from “Turbo Code Distance Spectrum Calculator” 

 

Figure 4.8 show that the g(D)=[31,17]10 has higher number of high weighted 

codewords. Researcher can observe that the figures 4.8(a) only at codeweight 9 just 

start have codewords,  and the figure 4.8(b), researcher can observe at codeweight 8 

start have codewords. So that, we can prove that the g(D)=[31,17] has fewer 

codewords with relatively low code weights than g(D)=[31,17].  

 

Hence, turbo code in constraint length K=5 and g(D)=[31,17] were sought that would 

allow for more easier decoding compare with other generator polynomials for K=5 

because one way of making the task of the decoder easier is using a code and can be 

distinguished more easily with mostly high-weight code words (Käsper, 2006). 

 

 



38 

4.4.2 Effects of decoder algorithm 

 

 

Figure 4.9: Effects of decoder algorithm 

 

In this simulation, researcher choose the constraint length K=3 and generator 

polynomial g(D) = [7,5]10. The other parameter used in these simulations was the 

same as detailed in Section 4.2.1. From this graph, clearly show that the Log-Map 

decoder algorithm is better than SOVA decoder algorithm. The approximated coding 

gain obtained at BER 10
-3 

is 0.3dB. 

 

Log-Map given better performance than SOVA, but SOVA is less complex (C 

Chaikalis, 2000). Since for different applications (e.g. video, data transfer) and for 

different parameters(e.g. performance, complexity) either SOVA or Log-Map is 

optimum, a reconfigurable SOVA/Log-Map turbo decoder can be used, resulting in 

lower power consumption (Noras, 2002). 
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CHAPTER 5 

 

 

 

5 CONCLUSION 

 

 

 

5.1 Conclusion 

 

From this research, the researcher has found that RSC turbo encoder generator 

polynomial gives the optimum performance under AWGN channel. From the 

research, high frame size will get better performance in turbo code system compare 

with the lower frame size. From the optimum performance generator polynomial 

compare with other generator polynomial the performance improvement around 0.1-

0.3dB coding gain in the turbo code system. Generator polynomial is important in 

designing the Turbo code system where the performance of the system can be 

improved without any increase in hardware element or complexity of the system. The 

researcher also find out that in through simulation, Log-MAP decoding algorithm 

performance is better than SOVA decoding algorithm, which improvement around 

0.4dB. 
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5.2 Future Work 

 

 In this research, the researcher using the symmetrical turbo code system to 

get simulation result but there also has an asymmetrical turbo code system. 

Study asymmetrical turbo code system will be necessary in future. 

 Apply 3G standard in the simulation at study the performance 

 Study  Low-density Parity-check codes (LDPC). LDPC codes to be more and 

more attractive as enhancement of current (beyond 3G) or next generation 

wireless systems(4G) 
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APPENDICES 

 

 

 

APPENDIX A: TURBO CODE DEMO CODING 

 

 

 

% This script simulates the classical turbo encoding-decoding system.  

% It simulates parallel concatenated convolutional codes. 

% Two component rate 1/2 RSC (Recursive Systematic Convolutional) component 

encoders are assumed. 

% First encoder is terminated with tails bits. (Info + tail) bits are scrambled and 

passed to  

% the second encoder, while second encoder is left open without tail bits of itself. 

% 

% Random information bits are modulated into +1/-1, and transmitted through a 

AWGN channel. 

% Interleavers are randomly generated for each frame. 

% 

% Log-MAP algorithm without quantization or approximation is used. 

% By making use of ln(e^x+e^y) = max(x,y) + ln(1+e^(-abs(x-y))), 

% the Log-MAP can be simplified with a look-up table for the correction function. 

% If use approximation ln(e^x+e^y) = max(x,y), it becomes MAX-Log-MAP. 

% 

% Copyright Nov 1998, Yufei Wu 

% MPRG lab, Virginia Tech. 

% for academic use only 

 

clear all 
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% Write display messages to a text file 

diary turbo_logmap.txt 

 

% Choose decoding algorithm  

dec_alg = input(' Please enter the decoding algorithm. (0:Log-MAP, 1:SOVA)  

default 0    '); 

if isempty(dec_alg) 

   dec_alg = 0; 

end 

 

% Frame size 

L_total = input(' Please enter the frame size (= info + tail, default: 500)   '); 

if isempty(L_total) 

   L_total = 500;  % infomation bits plus tail bits 

end 

 

% Code generator 

g = input(' Please enter code generator: ( default: g = [1 1 1;1 0 1]      '); 

if isempty(g) 

   g = [1 1 1;1 0 1]; 

end 

%g = [1 1 0 1; 1 1 1 1]; 

%g = [1 1 1 1 1; 1 0 0 0 1]; 

 

[n,K] = size(g);  

m = K - 1; 

nstates = 2^m; 

 

%puncture = 0, puncturing into rate 1/2;  

%puncture = 1, no puncturing 

puncture = input(' Please choose punctured / unpunctured (0/1): default 1     '); 

if isempty(puncture)  

    puncture = 1; 

end 
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% Code rate 

rate = 1/(2+puncture);    

 

% Fading amplitude; a=1 in AWGN channel 

a = 1;  

 

% Number of iterations 

niter = input(' Please enter number of iterations for each frame: default 5       '); 

if isempty(niter)  

   niter = 5; 

end    

% Number of frame errors to count as a stop criterior 

ferrlim = input(' Please enter number of frame errors to terminate: default 7        '); 

if isempty(ferrlim) 

   ferrlim = 7; 

end    

 

EbN0db = input(' Please enter Eb/N0 in dB : default [2.0]    '); 

if isempty(EbN0db) 

   EbN0db = [2.0]; 

end 

 

fprintf('\n\n----------------------------------------------------\n');  

if dec_alg == 0 

   fprintf(' === Log-MAP decoder === \n'); 

else 

   fprintf(' === SOVA decoder === \n'); 

end 

fprintf(' Frame size = %6d\n',L_total); 

fprintf(' code generator: \n'); 

for i = 1:n 

    for j = 1:K 

        fprintf( '%6d', g(i,j)); 
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    end 

    fprintf('\n'); 

end         

if puncture==0 

   fprintf(' Punctured, code rate = 1/2 \n'); 

else 

   fprintf(' Unpunctured, code rate = 1/3 \n'); 

end 

fprintf(' iteration number =  %6d\n', niter); 

fprintf(' terminate frame errors = %6d\n', ferrlim); 

fprintf(' Eb / N0 (dB) = '); 

for i = 1:length(EbN0db) 

    fprintf('%10.2f',EbN0db(i)); 

end 

fprintf('\n----------------------------------------------------\n\n'); 

     

fprintf('+ + + + Please be patient. Wait a while to get the result. + + + +\n'); 

 

for nEN = 1:length(EbN0db) 

   en = 10^(EbN0db(nEN)/10);      % convert Eb/N0 from unit db to normal numbers 

   L_c = 4*a*en*rate;  % reliability value of the channel 

   sigma = 1/sqrt(2*rate*en);  % standard deviation of AWGN noise 

 

% Clear bit error counter and frame error counter 

   errs(nEN,1:niter) = zeros(1,niter); 

   nferr(nEN,1:niter) = zeros(1,niter); 

 

   nframe = 0;    % clear counter of transmitted frames 

   while nferr(nEN, niter)<ferrlim 

      nframe = nframe + 1;     

      x = round(rand(1, L_total-m));    % info. bits 

      [temp, alpha] = sort(rand(1,L_total));        % random interleaver mapping 

      en_output = encoderm( x, g, alpha, puncture ) ; % encoder output (+1/-1) 
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      r = en_output+sigma*randn(1,L_total*(2+puncture)); % received bits 

      yk = demultiplex(r,alpha,puncture); % demultiplex to get input for decoder 1 and 

2 

       

% Scale the received bits       

      rec_s = 0.5*L_c*yk; 

 

% Initialize extrinsic information       

      L_e(1:L_total) = zeros(1,L_total); 

       

      for iter = 1:niter 

% Decoder one 

         L_a(alpha) = L_e;  % a priori info.  

         if dec_alg == 0 

            L_all = logmapo(rec_s(1,:), g, L_a, 1);  % complete info. 

         else    

            L_all = sova0(rec_s(1,:), g, L_a, 1);  % complete info. 

         end    

         L_e = L_all - 2*rec_s(1,1:2:2*L_total) - L_a;  % extrinsic info. 

 

% Decoder two          

         L_a = L_e(alpha);  % a priori info. 

         if dec_alg == 0 

            L_all = logmapo(rec_s(2,:), g, L_a, 2);  % complete info.   

         else 

            L_all = sova0(rec_s(2,:), g, L_a, 2);  % complete info.  

         end 

         L_e = L_all - 2*rec_s(2,1:2:2*L_total) - L_a;  % extrinsic info. 

          

% Estimate the info. bits         

         xhat(alpha) = (sign(L_all)+1)/2; 

 

% Number of bit errors in current iteration 

         err(iter) = length(find(xhat(1:L_total-m)~=x)); 
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% Count frame errors for the current iteration 

         if err(iter)>0 

            nferr(nEN,iter) = nferr(nEN,iter)+1; 

         end    

      end %iter 

       

% Total number of bit errors for all iterations 

      errs(nEN,1:niter) = errs(nEN,1:niter) + err(1:niter); 

 

      if rem(nframe,3)==0 | nferr(nEN, niter)==ferrlim 

% Bit error rate 

         ber(nEN,1:niter) = errs(nEN,1:niter)/nframe/(L_total-m); 

% Frame error rate 

         fer(nEN,1:niter) = nferr(nEN,1:niter)/nframe; 

 

% Display intermediate results in process   

         fprintf('************** Eb/N0 = %5.2f db **************\n', 

EbN0db(nEN)); 

         fprintf('Frame size = %d, rate 1/%d. \n', L_total, 2+puncture); 

         fprintf('%d frames transmitted, %d frames in error.\n', nframe, nferr(nEN, 

niter)); 

         fprintf('Bit Error Rate (from iteration 1 to iteration %d):\n', niter); 

         for i=1:niter 

            fprintf('%8.4e    ', ber(nEN,i)); 

         end 

         fprintf('\n'); 

         fprintf('Frame Error Rate (from iteration 1 to iteration %d):\n', niter); 

         for i=1:niter 

            fprintf('%8.4e    ', fer(nEN,i)); 

         end 

         fprintf('\n'); 

         fprintf('***********************************************\n\n'); 

 

% Save intermediate results  
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         save turbo_sys_demo EbN0db ber fer 

      end 

       

   end  %while 

end   %nEN 

 

diary off 

 

 

 

 

 


