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ABSTRACT

NEW FAMILIES OF UNIVERSAL PORTFOLIOS AND THEIR

PERFORMANCES

KUANG KEE SENG

In the world of investment, various types of investment product are available

for the investor to seek for long term investment return. These products include

invest in real-estate, invest in foods and beverages, invest in bonds, invest in

commodities and many more. Choosing the ’right’ asset to invest is difficult.

Losses can occur if the chosen asset behaves in an unfavourable way. In the

modern era, investors use portfolio in their investment strategy. A portfolio is a

combination or collection of a series of financial instruments like commodities,

bonds, stocks, cashes and etc. It is a method that commonly spotted in the

market which it can reduce the risk significantly by not allocating all the capital

into one basket. Portfolio helps to diversify the investor capital and allocate

those wealth onto various options to prevent occurrence of huge loss due to

unpleasant event. As an individual investor, we need to determine the optimum

allocation for each of the components in the portfolio. A well-diversified

portfolio is crucial for any investor to yield a higher return.

Universal portfolio is a strategy of trading on stocks that does not assume

any probability model for the stock prices. Universal portfolio is an investment

technique where it helps us to generate portfolio vector to produce high wealth

return in a long run.

In this research, new possible ways to generate new universal portfolios are

studied. Objective functions with different divergence have been tested to

obtain the new universal portfolios. The purpose is to obtain the next-day

stocks’ allocation of the portfolio which could maximize the wealth return.



Next, the performance of the newly derived universal portfolios is studied by

running these universal portfolios on some selected stocks from the Kuala

Lumpur Stock Exchange (KLSE). These results will be compared with others

and the performances are studied intensively.

Beside comparing the performances, a new family of universal portfolios is

developed. Most of the newly derived universal portfolios are linked to the

universal portfolio generated by f -divergence and universal portfolio generated

by Bregman divergence. These two universal portfolios are the general form of

Helmbold universal portfolio.

For numerical experiment of the performance of universal portfolio, it is

shown that the newly derived universal portfolios can perform as good as

Helmbold universal portfolio. The results of these universal portfolios show that

it is possible to increase the wealth of the investor by using these portfolios in

investment.
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Kullback-Leibler Divergence 28

3.2.1 Universal Portfolio Generated by Rényi Divergence 29
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CHAPTER 1

INTRODUCTION

Portfolio is a financial term representing a pool of various types of investments,

such as stocks, assets, bonds, commodities, cash and etc. It is always advisable

to invest in a portfolio than a single asset as portfolio helps to reduce the risks of

unpleasant movement of the market. Famous quote, “Do not put all your eggs in

one basket”, is the best advise for the investor who should invest in a portfolio.

In this thesis, we focus on the portfolio of stocks only. The performance of the

stock market is commonly known as unpredictable. Beside the factor of

corporate itself, it’s performance also strongly influenced by both macro and

microeconomics factors. Therefore, portfolio selection is always a challenge for

those investors who are trying to beat the market and earn tremendous return

from the stock market. Furthermore, the fund allocation to each of the stocks in

the portfolio provides another challenge to the investors. These investors have

to decide the best asset allocation to yield them the best return.

Universal portfolio is a robust investment strategy. The investment

decision-making applying universal portfolios adopts the assumption which the

stock prices do not follow any probability model. Cover (1991) showed that

universal portfolio is capable to achieve a better return than a standard

’buy-and-hold’ strategy. Then Helmbold et al. (1998) introduced a method of

generating universal portfolio from the objective function, which maximized the

log-optimal growth rate of the portfolio in the long runs. This research mainly

focuses on exploring potential methods that can be used to generate new

universal portfolios. The performance of these newly generated universal

portfolios are then studied by running on some chosen stocks from Bursa
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Malaysia.

1.1 Objective

In this research, we extend the work of Helmbold et al. (1998) to generate

various universal portfolios by searching potential useful distance functions.

Then the empirical result for each newly derived universal portfolios is

computed and compared with the benchmark performance. The purpose for this

study is to find possible universal portfolio which can outperform the Helmbold

universal portfolio (see Helmbold et al. (1998)). A suitable portfolio can help

investor to growth his wealth in a long run.

The relationship among the universal portfolios generated by different

distance functions is also studied in this research. A possible new parametric

family of universal portfolio may be derived by searching for the connections

among the universal portfolios.

1.2 Literature Review

A portfolio is an investment strategy which help to reduce the investment risk

by diversification of assets. It is shown that portfolio investment outperforms

buy-and-hold a single asset strategy in a long run. Markowitz (1952) first

introduced the portfolio theory. He proposed a solution for the portfolio assets’
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selection problem. He suggested to hold a constant variance portfolio while

maximizing the mean. He also suggested to hold constant mean portfolio while

minimize the variance. This is famously known as the Efficient Frontier Theory.

It is a cornerstone of modern portfolio theory. An extension study on

Markowitz’s work on portfolio analysis had been carried out by Sharpe (1963).

A simplified model that study the relationship between securities for practical

applications of the Markowitz portfolio analysis technique is introduced by

Sharpe.

Kelly (1956) introduced the theory of rebalanced portfolios which the

investor’s wealth is rebalanced his cumulative wealth based on the knowledge

given. The growth rate of wealth can be maximized by the log-optimal

investment is shown by Kelly. A constant rebalanced portfolio allocates the

same allocations of wealth among the stocks every day. The best constant

rebalanced portfolio (BCRP) can achieve a wealth which is expected to grow

exponentially at a rate determined by the portfolio’s volatility. Robbins (1951)

had developed a theory of compound sequential Bayes decision rules. This

theory had been further studied by Hanna and Robbins (1955). Then the

game-theoretic approachability-excludability theory had introduced by

Blackwell (1956a) and Blackwell (1956b). Then, with the theory mentioned

above, a best wealth return had achieved by Cover and Gluss (1986). This

wealth return had achieved by using the constant-rebalanced-portfolio (CRP)

for discrete valued stock markets.

A series of research on universal portfolio had been conducted by Cover

(1991), Cover and Ordentlich (1996) and Helmbold et al. (1998). Their purpose

was to achieve a higher return in the stock market. Cover and Ordentlich (1996)

introduced the class of universal portfolios. However, these portfolios unable to

have a better perform than the best constant rebalanced portfolio (BCRP) and
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successive constant rebalance portfolio (SCRP) introduced by Gaivoronski and

Stella (2000).

Cover (1991) introduced the uniform universal portfolio and showed the

use of Laplace’s method of integration to show that his uniform universal

portfolio performs asymptotically as good as the BCRP. He and his research

teams tested his algorithm in New York Stock Exchange and showed that it is

possible to increase the wealth by a large margin. Cover and Ordentlich (1996)

then generalized the uniform universal portfolio into the class of

Dirichlet-weighted universal portfolio. Cover and Ordentlich (1996) also

introduced the notion of side information and emphasized on the studied of

wealth achievable by the uniform and Dirichlet-weighted universal portfolios.

They also derived the theoretical performance bounds of the two special

Dirichlet-weighted universal portfolios. Helmbold et al. (1998) introduced a

universal portfolio which requires lesser memory requirement and computation

time. The multiplicative-update universal portfolio is generated using the

exponentiated gradient update algorithm that was developed by Kivinen and

Warmuth (1997), is introduced by Helmbold et al. (1998). They showed that

Helmbold universal portfolio outperforms the uniform universal portfolio based

on the same stock data from the New York Stock Exchange in Cover (1991).

Then, Tan and Tang (2003) showed that the Helmbold universal portfolio reacts

sensitively to the initial wealth allocation for the portfolio. They also showed

that the portfolio looks like a constant rebalanced portfolio if the parameter

selected is a small positive value.

Helmbold et al. (1998) introduced a method of generating a universal

portfolio using the zero-gradient set of objective function containing the

Kullback-Leibler divergence of two portfolio vectors. Tan and Lim (2012)

extended this method to the zero-gradient set of an objective function

4



containing the Mahalanobis squared-divergence of two portfolio vectors. Tan

and Pang (2014) studied the performance of the universal portfolio generated by

low order of Brownian Motion. The result they obtained showed that the wealth

can be increased by using different parameters. In both Pang et al. (2017) and

Pang et al. (2019), the empirical results showed that finite-order universal

portfolios generated by stochastic processes can outperform the constant

rebalanced portfolio at a certain parameters. Phoon et al. (2020) studied the low

order performance of special time series generated universal portfolio. The

wealth obtained is close to the wealth achieved by Best Constant Rebalanced

Portfolio. In Garivaltis (2021), he generalized Cover’s benchmark of the best

constant-rebalanced portfolio (1-linear trading strategy) by considering the best

bilinear trading strategy determined for the realized sequence of asset prices.

They showed that the universal bilinear portfolio asymptotically outperforms

the universal 1-linear portfolio.

1.3 Thesis Overview

This thesis consists of a total of six chapters. In chapter 1, an introduction is

given by stating the objectives, literature review on this research area and

preliminaries definition. In chapter 2, an introduction of Bursa Malaysia is

given. Historical daily stock data are collected from Bloomberg. These data

have been grouped into few different stock data sets for empirical study. Each

stock data set consists of 5 different stock data from local companies.

In chapter 3, we introduce the universal portfolio generated by zero-gradient

set of logarithm objective function. We successfully derive four universal
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portfolios in this chapter. There are Reciprocal-Price-Relative universal

portfolios, universal portfolios generated by Rényi divergence and Generalized

Kullback-Leibler divergence and reverse Helmbold universal portfolio. We

study the performance of these universal portfolios by running them on stock

data sets D, E, F, G and H. These universal portfolios are the results obtained

during the initial stage of our study.

In chapter 4, we derive a universal portfolio from the well-known Csiszár

f -divergence. Then, we obtain the universal portfolio generated by

f -divergence. This universal portfolio enables us to obtain more universal

portfolios which are presented in chapter 5. We study the performance of this

universal portfolio by running it on new stock data sets J, K, L, M and N. We

extend the study of this universal portfolio generated by f -divergence and the

universal portfolio generated by reverse f -divergence is obtained.

In chapter 5, we study the extension of the universal portfolio given in

chapter 4. Few universal portfolios are obtained by applying the suitable convex

functions to the universal portfolio derived in chapter 4. The performance of

these universal portfolios is studied. We run these universal portfolio on new

stock data sets to obtain empirical results. The performance of these universal

portfolio is compared with the benchmark universal portfolio.

Chapter 6 gives the conclusion and a comprehensive summary of this

research. Some potential directions for the future research are included in this

chapter.
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1.4 Definitions

This section gives some basic definitions and assumptions used in this thesis.

1.4.1 Some Preliminaries

A market of m numbers of stock is considered in this thesis. The price-relative

of a stock in a particular trading day is given by the ratio of the closing price of

the stock to its opening price of the stock in that particular trading day. Define

xn = (xni) = (xn1,xn2, · · · ,xnm) as the stock price-relative column vector on the

nth trading day, where xni is the stock price-relative of the ith stock, n = 1,2, · · ·

and i = 1,2, · · · ,m. Denote bni as the probability or proportion of the current

wealth or fund allocated on ith stock on nth trading day. A portfolio vector bn =

(bn1,bn2, · · · ,bnm) is a column vector consists of a list of probability where 0 ≤

bni ≤ 1 for i = 1,2, · · · ,m and ∑m
i=1 bni = 1 for n = 1,2,3, · · · . Since bni ≥ 0, we

assume that no short-selling is allowed in this strategy. The stock price-relative

xni describes the movement of the ith stock on nth trading day. Hence, the wealth

achieved at the end of trading day j is

bt
jx j =

m

∑
i=1

b jix ji (1.1)

for i = 1,2, · · · ,m.

By assuming the starting wealth, S0 = 1. Then, the wealth achieved by the

investor at the end of the investment period, n days is
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Sn =
n

∏
j=1
bt

jx j (1.2)

where b1,b2, · · · ,bn is the sequence of proportion of the wealth invested and

x1,x2, · · · ,xn is the sequence of the daily price-relative for m numbers of stock.

1.4.2 Objective Function

In Helmbold et al. (1998), they introduced the method to obtain the next-day

allocation bn+1 by maximizing the function below:

F(bn+1) = ξ log(bt
n+1xn+1)−d(bn+1,bn) (1.3)

where ξ > 0 is a parameter and d is a distance measure. This d acts as a penalty

term to keep bn+1 close to bn. Kivinen and Warmuth (1997) showed that a

portfolio can achieve better performance by choosing bn+1 that is ”close” to bn.

It is difficult to maximize (1.3) since both terms depend on non-linear on

bn+1. Fletcher (1987) introduced an approach to use an iterative optimization

algorithm to find the maximum vector bn+1 that maximizes (1.3) under the

constraint ∑m
i=1bn+1 = 1. However, it would be time consuming as it requires

solving a different non-linear equation on each trading day. Hence, instead of

solving the exact maximizer of (1.3), the first term of (1.3) is replaced by its

first-order Taylor series. The Lagrange multiplier, λ to handle the constraint is

added to ensure the component of bn+1 must sum to one. Then, we will need to

maximize the following function:
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F̂(bn+1) = ξ
(

log(bt
nxn)+

(
bt

n+1xn

bt
nxn

)
−1
)
−d(bn+1,bn)+λ

( m

∑
i=1

bn+1,i−1
)

(1.4)

The objective function (1.4) together with different distance functions,

d(bn+1,bn) are studied. Various universal portfolios are generated in our study

and their performance are compared.
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CHAPTER 2

DATA COLLECTION

In this chapter, our methods of data collecting and processing will be explained.

In our research, we focus on analysing the stock data from Bursa Malaysia,

which is explained in Section 2.1. Then, we explained the stocks selection and

grouping of the stock data sets in Section 2.2 and Section 2.3.

2.1 Bursa Malaysia

The Bursa Malaysia, or previously known as Kuala Lumpur Stock Exchange

(KLSE) dates back to year 1930 when the a formal organisation dealing in

securities was set up in Malaysia. It was named as Singapore Stockbrokers’

Association. Seven years later, it was re-registered as Malayan Stockbrokers’

Association, but public share trading is still not allowed yet. In year 1960, the

Malayan Stock Exchange was established and trading of public share were

allowed starting on 9 May 1960. In year 1964, the Stock Exchange of Malaysia

was officially formed. However, followed by the secession of Singapore from

Malaysia, this common stock exchange continued to function under the new

name Stock Exchange of Malaysia and Singapore (SEMS). In year 1973,

followed by the termination of currency interchangeability between Singapore

and Malaysia, the SEMS was forced to separated into the Stock Exchange of

Singapore (SES) and the Kuala Lumpur Stock Exchange Bhd (KLSEB).

In year 1976, the Kuala Lumpur Stock Exchange was incorporated as a
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company limited by guarantee and took over the operation of the Kuala Lumpur

Stock Exchange Bhd. In year 1994, the KLSEB then renamed to Kuala Lumpur

Stock Exchange (KLSE). On 14 April 2004, Kuala Lumpur Stock Exchange

became a demutualised exchange and a new name, Bursa Malaysia was given.

The purpose of this demutualised exchange is to respond to global trends in

exchange sector and enhance competitive position. On the next year, Bursa

Malaysia was listed on the Main Board of Bursa Malaysia Securities Bhd. In

year 2008, Bursa Trade Securities, a new trading platform for the securities

market was launched. This platform provides better accessibility for investors

while enhancing trading efficiency and market transparency. In year 2009,

Bursa’s benchmark index, known as Kuala Lumpur Composite Index (KLCI),

was improved to a new level with the adoption of the Financial Times Stock

Exchange (FTSE) international index methodology. Then the enhanced KLCI,

now known as the FTSE Bursa Malaysia (FBM) KLCI, is based on globally

accepted standards of tradability and investability of the constituents, as well as

transparency of the methodology. The corporate history can be found at Bursa

Malaysia Corporate History (n.d.)

2.2 Stocks Selection

Portfolio is a collection of different stocks. It is always advisable to group stocks

from different industries in a portfolio to minimize the risk. In our research, we

choose 5 Malaysia company stocks from Bursa Malaysia to form one stock data

set. We utilize the Bloomberg terminal, which is one of the facilities offered

by Universiti Tunku Abdul Rahman Mary KUOK Pick Hoo Library, to collect

the stock data. The daily opening price and daily closing price of each stock
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is collected from Bloomberg terminal. The reason is we are interested with the

daily movement of the stock. As introduce in Section (1.4.1), the stock-price

relative is derived by obtaining the ratio of its opening price to its closing price

for each stock. These data processing is done via some functions in Microsoft

Excel.

2.3 Stock Data Sets

The stock data sets D, E, F, G and H were collected and compiled by previous

researchers. These stock data sets consists of stocks of the Malaysian

companies that are traded from 1st March 2006 until 2nd August 2012,

consisting of a total of 1500 trading days. Table below gives the lists of stocks

for data sets D, E, F, G and H.

Table 2.1: List of Malaysian companies in data sets D, E, F, G and H

Data Set Portfolio of five Malaysian Companies

D
IOI Corporation, Carlsberg Brewery Malaysia,

British American Tobacco, Nestle, Digi

E
Public Bank, Kulim, KLCC Property Holding,

AEON Corporation, Kuala Lumpur Kepong

F
AMMB Holdings, Berjaya Sports TOTO, Air Asia,

Gamuda, Genting

G
Hong Leong Bank, DiGi.com, Eco World Development Group,

Zecon, United Malacca

H
Digi, Public Bank, KLCC Proporty Holdings,

Carlsberg Brewery Malaysia, Kuala Lumpur Kepong

We collect and compile another 5 different stock data sets which the data

collected from different stocks of the Malaysian companies that are traded from

3rd January 2005 until 4th September 2015. These data consisting a total of 2500

trading days. Table below provides the lists of stocks for data sets J, K, L, M and
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N.

Table 2.2: List of Malaysian companies in data sets J, K, L, M and N

Data Set Portfolio of five Malaysian Companies

J
Public Bank, Nestle Malaysia, Telekom Malaysia,

Eco World Development Group, Gamuda

K
AMMB Holding, Air Asia, Encorp,

IJM Corp, Genting Plantations

L
Alliance Financial Group, DiGi.com, KSL Holdings,

IJM Corp, Kulim Malaysia

M
Hong Leong Bank, DiGi.com, Eco World Development Group,

Zecon, United Malacca

N
RHB Capital, Carlsberg Brewery Malaysia, KSL Holdings,

Crest Building Holdings, Kulim Malaysia
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CHAPTER 3

UNIVERSAL PORTFOLIO GENERATED BY ZERO-GRADIENT SET

OF LOGARITHM OBJECTIVE FUNCTION

3.1 Reciprocal-Price-Relative (RPR) Universal Portfolio

In this session, we introduce an additive-update universal portfolio where the

updates depend on reciprocal functions of price relatives. Hence, they will be

called RPR (Reciprocal-Price-Relative) universal portfolios. We will be using

the objective function (1.4), which was introduced by Helmbold et al. (1998).

The gradient vector of this objective function F̂(bn+1) is defined as:

∇F =
( ∂ F̂

∂bn+1,i

)
. Then the portfolio components bn+1,i, · · · ,bn+1,m are treated as

free variables subject to the constraint ∑m
i=1 bn+1,i = 1, with Lagrange

multiplier, λ . F̂(bn+1,λ ;bn,xn) is a function of bn+1 and λ given bn and xn.

The zero-gradient set of F̂(bn+1,λ ) is the set of {bn+1 : ∇F̂(bn+1,λ ) = 0}.

The pseudo Lagrange multiplier λ is a function of the variable bn+1

obtained by some mathematical operation on the zero-gradient equations of the

objective function 1.4. Since it is a variable, it is not a valid solution of the

zero-gradient equations. The pseudo λ is said to be a pseudo solution of the

zero-gradient equations.

The quantity log(bt
n+1xn+1) is the rate of growth of wealth on day n+ 1

which can be estimated by log(bt
n+1xn) since xN is unknown on day n. We

obtain the Type 1 RPR universal portfolio by approximating log(bt
n+1xn) with
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first-order Taylor series
[

log(bt
nxn)+

(bt
n+1xn
bt

nxn
−1
)
−1
]

.

3.1.1 Type 1 RPR Universal Portfolio

In this section, the derivation for Type 1 RPR universal portfolio is shown. The

empirical results for this universal portfolio are given by running this universal

portfolio on the stock data sets.

Proposition 3.1.1: Consider C =(ci j) be a non-negative matrix satisfying 1tC =

1 where 1= (1,1, · · · ,1) and α ≥ 0 are given. Given ξ > 0, from (1.4), consider

the objective function

F̂(bn+1,λ ) =ξ
[

log(bt
nxn)+

(bt
n+1xn

bt
nxn

)
−1
]

− log
{ m

∏
i=1

[ηi +(bn+1,i−bni)]

}
+λ

( m

∑
i=1

bn+1,i−1
) (3.1)

where

vi = [α(bt
nxn)+ xni]

−1 (3.2)

for i = 1,2, · · · ,m and

ηi = ξ−1(bt
nxn)

m

∑
j=1

ci jv j (3.3)

for i= 1,2, · · · ,m. Then we can obtain the pseudo Type 1 RPR universal portfolio

generated by the zero-gradient set of F̂(bn+1,λ ) as followed

bn+1 = bn +ξ−1(bt
nxn)[v−Cv] (3.4)

15



for i = 1,2, · · · ,m, where ξ is any positive scalar satisfying bn+1 ≥ 0.

Proof. We differentiate (3.1) with respect to bn+1,i to obtain

∂ F̂
∂bn+1,i

= ξ
xni

bt
nxn
− 1

[ηi +(bn+1,i−bni)]
+λ (3.5)

for i = 1,2, · · · ,m. Then, we let (3.5) equal to 0 and rearrange the equation, we

obtain

[
ξ

xni

bt
nxn

+λ
]
[ηi +(bn+1,i−bni)] = 1 (3.6)

for i = 1,2, · · · ,m. Then, we multiply (3.5) by bni and sum over i to get

λ =
m

∑
i=1

bni

[ηi +(bn+1,i−bni)]
−ξ . (3.7)

The variable λ that we obtained in (3.7) is known as a pseudo Lagrange

multiplier. Next, we substitute this variable λ into (3.6) to obtain

[
ξ

xni

bt
nxn

+
m

∑
j=1

bn j

η j +(bn+1, j−bn j)
−ξ
]
[ηi +(bn+1,i−bni)] = 1 (3.8)

for i = 1,2, · · · ,m. Let

zi = [ηi +(bn+1,i−bni)]
−1 (3.9)

for i = 1,2, · · · ,m and then (3.8) becomes

m

∑
j=1

bn jz j− zi = ξ
[
1− xni

bt
nxn

]
(3.10)

Then, we rewrite (3.10) in matrix form,Az = y where

yi = ξ
[
1− xni

bt
nxn

]
(3.11)

for i = 1,2, · · · ,m andA= (ai j) is defined as following
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aii = bni−1 for i = 1,2, · · · ,m

ai j = bn j for i 6= j.
(3.12)

Then, the solution to Az = y is z = ζ1−y where ζ is any real scalar (see

(3.1.1)). Hence, we have

zi =
(ζ −ξ )(bt

nxn)+ξ xni

bt
nxn

(3.13)

for i = 1,2, · · · ,m. Then, we reparametrize ζ = (α +1)ξ and obtain

z−1
i =

bt
nxn

ξ [α(bt
nxn + xni)]

(3.14)

for i = 1,2, · · · ,m. Lastly, we merge the equations (3.2), (3.3) and (3.9) and

obtain

bn+1,i =bni + z−1
i −ηi

=bni +ξ−1(bt
nxn)

[
vi−

m

∑
j=1

ci jv j

] (3.15)

where (3.4) is obtained.

Lemma 3.1.1: LetA be the m×m matrix defined by (3.12).

1. The solution of Az = y where y defined by (3.11) is z = ζ1−y for any

real scalar ζ .

2. The solution toAq = s where q is defined by

qi = φ(bn,xn)

[
1− xni

bt
nxn

]
(3.16)

for i = 1,2, · · · ,m and

φ(bn,xn) = ξ
[

1+
(
bt

nxn− (s−1)txn

bt
nxn

)]
(3.17)

is s= γ1−q for any real scalar γ where s−1 = (s−1
i ).
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Proof.

1. Any z of the form z = η1−y satisfies Az = η(A1)−Ay = ζ (A1)−

(−y) = y. Conversely, if z is a solution to Az = y, then Az = (bt
nz)1−

z = y, implying that z = ζ1−y where ζ = bt
nzn.

2. First note that Aq = (bt
nq)1−q = −q since bt

nq = φ(bn,xn)∑m
i=1
[
bni−

bnixni
bt

nxn

]
= 0. Any s of the form s= γ1−q will satisfyAs= γ(A1)−Aq=

q. Conversely, any solution s toAs= q must satisfy As=(bt
ns)1−s= q,

implying that s= γ1−q where γ = bts.

By selecting the matrix C as

C =




0.24 0.20 0.23 0.31 0.21

0.17 0.20 0.33 0.22 0.11

0.30 0.27 0.30 0.03 0.24

0.00 0.04 0.02 0.15 0.31

0.29 0.29 0.13 0.29 0.13




(3.18)

where the sum of the entry in each of the column must be one. The matrix C

above is generated randomly which ensure matrix C is a non-negative matrix

which satisfy 1tC = 1 where 1= (1,1, · · · ,1). A 5×5 matrix is chosen because

the stock data sets each consists five stocks.

Then, we run this Type 1 RPR Universal Portfolio on the stock data sets

listed in Table 2.1 to obtain empirical results. The period of trading of the stocks

selected in Table 2.1 is from 1st March 2006 until 2nd August 2012, consisting of

1500 trading days. There are five company stocks in each data set. We start with

taking the initial starting portfolio b1 = (0.2,0.2,0.2,0.2,0.2) for all stock data

sets. For each stock data sets, the wealth S1500 obtained and the final portfolios

b1501 are calculated for the values of α and best values of ζ are listed in Table

3.1, 3.2, 3.3, 3.4 and 3.5.

18



Table 3.1: The wealth S1500 and the final portfolio b1501 achieved by the Type 1
RPR universal portfolio for stock data set D after 1500 trading days, where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ζ S1500 b1501
0 0.00072 2.39 (0.00245, 0.16739, 0.05745, 0.71236, 0.06035)
1 0.00145 2.39 (0.00098, 0.16713, 0.05647, 0.71589, 0.05953)
2 0.00218 2.39 (0.00051, 0.16703, 0.05613, 0.71707, 0.05926)
3 0.00291 2.39 (0.00027, 0.16698, 0.05596, 0.71766, 0.05913)
4 0.00364 2.39 (0.00013, 0.16696, 0.05586, 0.71801, 0.05904)
5 0.00437 2.39 (0.00005, 0.16694, 0.05579, 0.71823, 0.05899)
6 0.00509 2.39 (0.00035, 0.16699, 0.05603, 0.71740, 0.05923)
7 0.00582 2.39 (0.00027, 0.16696, 0.05596, 0.71765, 0.05916)
8 0.00655 2.39 (0.00020, 0.16695, 0.05590, 0.71784, 0.05911)
9 0.00728 2.39 (0.00013, 0.16695, 0.05585, 0.71800, 0.05907)

10 0.00801 2.39 (0.00008, 0.16693, 0.05582, 0.71813, 0.05904)

Table 3.2: The wealth S1500 and the final portfolio b1501 achieved by the Type 1
RPR universal portfolio for stock data set E after 1500 trading days, where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ζ S1500 b1501
0 0.00072 10.29 (0.00288, 0.16725, 0.05285, 0.71626, 0.06076)
1 0.00145 10.30 (0.00111, 0.16701, 0.05631, 0.71585, 0.05972)
2 0.00218 10.31 (0.00060, 0.16695, 0.05602, 0.71704, 0.05939)
3 0.00291 10.31 (0.00034, 0.16692, 0.05588, 0.71764, 0.05922)
4 0.00364 10.31 (0.00020, 0.16690, 0.05579, 0.71799, 0.05912)
5 0.00437 10.31 (0.00009, 0.16689, 0.05574, 0.71823, 0.05905)
6 0.00509 10.31 (0.00003, 0.16688, 0.05569, 0.71840, 0.05900)
7 0.00582 10.31 (0.00031, 0.16693, 0.05591, 0.71764, 0.05921)
8 0.00655 10.31 (0.00023, 0.16692, 0.05586, 0.71784, 0.05915)
9 0.00728 10.31 (0.00016, 0.16692, 0.05582, 0.71799, 0.05911)

10 0.00801 10.31 (0.00011, 0.16691, 0.05578, 0.71812, 0.05908)
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Table 3.3: The wealth S1500 and the final portfolio b1501 achieved by the Type 1
RPR universal portfolio for stock data set F after 1500 trading days, where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ζ S1500 b1501
0 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
1 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
2 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
3 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
4 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
5 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
6 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
7 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
8 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)
9 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)

10 0 1.27 (0.2, 0.2, 0.2, 0.2, 0.2)

Table 3.4: The wealth S1500 and the final portfolio b1501 achieved by the Type 1
RPR universal portfolio for stock data set G after 1500 trading days, where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ζ S1500 b1501
0 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
1 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
2 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
3 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
4 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
5 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
6 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
7 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
8 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
9 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)

10 0 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
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Table 3.5: The wealth S1500 and the final portfolio b1501 achieved by the Type 1
RPR universal portfolio for stock data set H after 1500 trading days, where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ζ S1500 b1501
0 0.00072 5.20 (0.00246, 0.16751, 0.05675, 0.71299, 0.06029)
1 0.00145 5.20 (0.00101, 0.16707, 0.05622, 0.71622, 0.05948)
2 0.00218 5.20 (0.00533, 0.16320, 0.05496, 0.71729, 0.05922)
3 0.00291 5.20 (0.00294, 0.16496, 0.05524, 0.71782, 0.05904)
4 0.00364 5.21 (0.00151, 0.16593, 0.05543, 0.71811, 0.05902)
5 0.00437 5.21 (0.00006, 0.16691, 0.05571, 0.71835, 0.05897)
6 0.00509 5.20 (0.00038, 0.16697, 0.05595, 0.71749, 0.05921)
7 0.00582 5.20 (0.00028, 0.16696, 0.05588, 0.71773, 0.05915)
8 0.00655 5.20 (0.00020, 0.16694, 0.05584, 0.71792, 0.05910)
9 0.00728 5.21 (0.00014, 0.16693, 0.05580, 0.71807, 0.05906)

10 0.00801 5.21 (0.00009, 0.16692, 0.05577, 0.71819, 0.05903)

Table 3.1, 3.2, 3.3, 3.4 and 3.5 give the empirical performance of Type 1

RPR universal portfolio. We can observed that the best wealth of 10.31 units

is obtained for data set E corresponding to α = 6 and ζ = 0.0051. The lowest

wealth of 1.27 units is obtained for data set F corresponding to α = 0, · · · ,10 and

ζ = 0. Average wealth of 2.39, 4.44 and 5.20 units are obtained for data set D, G

and H respectively. It is also observed that for data sets D, E, and H, a proportion

of 70% of the current wealth after 1500 trading days tends to be invested in

the fourth company of the portfolio, whereas the proportion invested in the first

company tends to zero. This indicates that the fourth and the first stocks are the

best and worst stock respectively. For data sets F and G, the portfolios become

constant after a long run.
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3.1.2 Type 2 RPR Universal Portfolio

In this section, the derivation for Type 2 RPR universal portfolio is shown. The

empirical results for this universal portfolio are given by running this universal

portfolio on the stock data sets.

Proposition 3.1.2: Consider C =(ci j) be a non-negative matrix satisfying 1tC =

1 where a real scalar, α are given. Given ξ > 0, from (1.4), consider the objective

function

F̂(bn+1,λ ) =ξ
[

log(bt
nxn)+

(
bt

n+1xn

bt
nxn

)
− 1

2

(
bt

n+1xn

bt
nxn

−1
)2]

− log
{ m

∏
i=1

[σi +(bn+1,i−bni)]

}
+λ

( m

∑
i=1

bn+1,i−1
) (3.19)

where

σi = ξ−1(bt
nxn)

2
m

∑
j=1

ci jr j (3.20)

for i = 1,2, · · · ,m,

ri =
[
α(bt

nxn)
2 +
(
xni−β (bn,xn)

)
(bt

nxn)+β (bn,xn)xni
]−1

> 0 (3.21)

for i = 1,2, · · · ,m and

β (bn,xn) = ξ−1(bt
nxn)

2xt
n[Cr−r]. (3.22)

Then, the pseudo Type 2 RPR universal portfolio generated by the

zero-gradient set of F̂(bn+1,λ ) is obtained as follow

bn+1 = bn +ξ−1(bt
nxn)

2[r−Cr] (3.23)

for n = 1,2, · · · , where ξ is any positive scalar satisfying bn+1 ≥ 0, provided r is
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a consistent solution of (3.21).

Proof. Then, we differentiate F̂(bn+1,λ ) in (3.19) with respect to bn+1,i to

obtain

∂ F̂
∂bn+1,i

= ξ
[

2xni

bt
nxn
− (bt

n+1xn)xni

(bt
nxn)2

]
− [σi(bn+1,i−bni)]

−1 +λ (3.24)

for i = 1,2, · · · ,m. Then we let ∂ F̂
∂bn+1,i

in (3.24) to be zero and obtain

ξ
[

2xni

bt
nxn
− (bt

n+1xn)xni

(bt
nxn)2

]
− [σi +(bn+1,i−bni)]

−1 +λ = 0 (3.25)

for i = 1,2, · · · ,m. Next, we multiply (3.25) by bni and sum over i to obtain the

pseudo Lagrange multiplier

λ =−ξ
[

2− b
t
n+1xn

bt
nxn

]
+

m

∑
j=1

bn j
(
σ j +(bn+1, j−bn j)

)−1
. (3.26)

Then, we substitute the Lagrange multiplier in (3.26) into (3.25) to get

ξ
[

2xni

bt
nxn
− (bt

n+1xn)xni

(bt
nxn)2 −2+

bt
n+1xn

bt
nxn

]
− [σi +(bn+1,i−bni)]

−1]

+
m

∑
j=1

bn j
(
σ j +(bn+1, j−bn j)

)−1
= 0

(3.27)

for i = 1,2, · · · ,m. Then, we let

s−1
i = bni−bi +σi (3.28)

for i = 1,2, · · · ,m. Then, we substitute (3.28) into (3.27) to obtain

m

∑
j=1

bn js j− si = φ(bn,xn)
[
1− xni

bt
nxn

]
(3.29)

for i = 1,2, · · · ,m where

φ(bn,xn) = ξ
[
2− b

t
n+1xn

bt
nxn

]
. (3.30)

23



We use the vector notation s−1 = (s−1
i ) then (3.28) can become (s−1)txn =

bt
n+1xn−bt

nxn +σ
txn. This implies

bt
n+1xn

bt
nxn

= 1+
(s−1)xn−σtxn

bt
nxn

. (3.31)

By substituting (3.31) into (3.30), we obtain the equivalent definition of

φ(bn,xn) in (3.17). The matrix form of the set of equations on (3.29) is As= q

where A and q are defined by (3.12) and (3.16) respectively. From Lemma

(3.1.1), we have shown that the solution to As = q is s = γ1− q for any real

scalar γ . An equivalent definition of β (bn,xn) in (3.22) is given by

β (bn,xn) = (xt
nσ−xt

ns
−1). (3.32)

Hence, we can obtain si = γ − qi = γ − ξ [1+ β (bn,xn)
bt

nxn
] for i = 1,2, · · · ,m from

(3.16), (3.17) and (3.32).

Then we reparametrize the γ as (α +1)ξ , we obtain

si =(bnx)−2ξ [α(bt
nxn)

2 +(xni−β (bn,xn))(b
t
nxn)+β (bn,xn)xni]

=(bt
nxn)

−2r−1
i

(3.33)

for i = 1,2, · · · ,m where ri is defined by (3.21). From (3.20) and (3.28), we

obtain the next-day portfolio

bn+1,i =bni + s−1
i −σi

=bni +ξ−1(bt
nxn)

2
[

ri−
m

∑
j=1

ci jr j

] (3.34)

for i = 1,2, · · · ,m and (3.23) is proved.

We remark that the pseudo Type 2 RPR universal portfolio may be relaxed

by assuming that β (bn,xn) is a constant, which not depending on the bn and xn.

The pseudo relaxed type 2 portfolio has parametric set (C,α,β ) where we will

24



choose the β to be −1 ≤ β ≤ 1. The scalar α is chosen so that ri > 0 for all

i = 1,2, · · · ,m in (3.21). This is always possible for a large enough α .

Similarly, we run the pseudo relaxed Type 2 RPR universal portfolios with

parametric set (C,α,β ) on the stock data sets D, E, F, G and H, listed in Table

2.1. We select the matrix C to be an equal-entry matrix with each entry 0.2 and

eleven integer values of α from 0 until 10. β = 0.6 is selected to obtain the

empirical results. The best wealth S1500 achieved after 1500 trading days on

each stock data sets are listed in Table 3.6, 3.7, 3.8, 3.9 and 3.10.

Table 3.6: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Type 2 RPR universal portfolio for stock data set D after 1500 trading
days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ξ S1500 b1501
0 0.1 2.46 (0.24380, 0.21627, 0.21218, 0.17654, 0.15121)
1 0.5 2.53 (0.23456, 0.23665, 0.22449, 0.17672, 0.12758)
2 1.3 2.57 (0.23182, 0.25012, 0.23215, 0.17530, 0.11061)
3 2.2 2.57 (0.22625, 0.25142, 0.23250, 0.17754, 0.11229)
4 3.5 2.58 (0.22423, 0.25482, 0.23428, 0.17777, 0.10890)
5 5.1 2.59 (0.22281, 0.25718, 0.23550, 0.17794, 0.10657)
6 6.9 2.59 (0.22144, 0.25796, 0.23587, 0.17839, 0.10634)
7 9.0 2.59 (0.22048, 0.25876, 0.23626, 0.17865, 0.10585)
8 11.4 2.59 (0.21978, 0.25950, 0.23663, 0.17881, 0.10528)
9 14.0 2.59 (0.21909, 0.25969, 0.23671, 0.17906, 0.10545)

10 16.9 2.59 (0.21857, 0.25998, 0.23684, 0.17923, 0.10538)
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Table 3.7: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Type 2 RPR universal portfolio for stock data set E after 1500 trading
days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ξ S1500 b1501
0 0.2 9.17 (0.30314, 0.19905, 0.11999, 0.11239, 0.26543)
1 1.0 9.46 (0.36914, 0.15425, 0.09283, 0.10818, 0.27560)
2 2.1 9.36 (0.37176, 0.14014, 0.09788, 0.12168, 0.26854)
3 3.6 9.32 (0.37245, 0.13381, 0.10079, 0.12810, 0.26485)
4 5.5 9.29 (0.37265, 0.13027, 0.10264, 0.13184, 0.26260)
5 7.9 9.28 (0.37495, 0.12697, 0.10265, 0.13353, 0.26190)
6 10.7 9.28 (0.37604, 0.12487, 0.10298, 0.13492, 0.26119)
7 13.9 9.27 (0.37654, 0.12345, 0.10341, 0.13606, 0.26054)
8 17.5 9.26 (0.37674, 0.12244, 0.10385, 0.13700, 0.25997)
9 21.6 9.26 (0.37761, 0.12128, 0.10381, 0.13753, 0.25977)

10 26.0 9.26 (0.37741, 0.12079, 0.10427, 0.13824, 0.25929)

Table 3.8: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Type 2 RPR universal portfolio for stock data set F after 1500 trading
days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ξ S1500 b1501
0 0.1 1.38 (0.13895, 0.13657, 0.29070, 0.20205, 0.23173)
1 0.6 1.44 (0.11958, 0.12320, 0.33978, 0.16434, 0.25310)
2 1.5 1.46 (0.11436, 0.12027, 0.36283, 0.14144, 0.26110)
3 2.7 1.46 (0.11518, 0.12207, 0.36952, 0.13025, 0.26298)
4 4.2 1.47 (0.11672, 0.12416, 0.37151, 0.12423, 0.26338)
5 6.0 1.46 (0.11817, 0.12595, 0.37187, 0.12068, 0.26333)
6 8.1 1.46 (0.11941, 0.12743, 0.37161, 0.11842, 0.26313)
7 10.5 1.46 (0.12045, 0.12864, 0.37112, 0.11689, 0.26290)
8 13.2 1.46 (0.12132, 0.12965, 0.37055, 0.11582, 0.26266)
9 16.2 1.46 (0.12206, 0.13049, 0.36998, 0.11503, 0.26244)

10 19.6 1.46 (0.12228, 0.13081, 0.37047, 0.11388, 0.26256)
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Table 3.9: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Type 2 RPR universal portfolio for stock data set G after 1500 trading
days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ξ S1500 b1501
0 0.1 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
1 0.5 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
2 1.1 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
3 1.9 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
4 2.9 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
5 4.1 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
6 5.6 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
7 7.3 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
8 9.2 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)
9 11.3 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)

10 13.7 4.44 (0.2, 0.2, 0.2, 0.2, 0.2)

Table 3.10: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Type 2 RPR universal portfolio for stock data set H after 1500 trading
days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

α ξ S1500 b1501
0 0.1 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
1 0.5 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
2 1.1 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
3 1.9 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
4 3.0 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
5 4.4 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
6 5.9 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
7 7.8 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
8 9.8 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)
9 12.1 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)

10 14.7 4.57 (0.2, 0.2, 0.2, 0.2, 0.2)

Tables 3.6, 3.7, 3.8, 3.9 and 3.10 give the numerical results obtained by the

pseudo relaxed Type 2 RPR universal portfolio with parametric set (C,α,β ).

The matrix C selected is an equal-entry matrix with each entry 0.2. We

observed that average wealth of 2.57, 9.27, 1.46, 4.44 and 4.57 units are

obtained for data sets D, E, F, G and H respectively. The best portfolio

corresponds to data set E exhibiting good performance. In data set E,

current-wealth proportions of around 37% and 26% tend to be invested in the

first and fifth stock respectively, whereas in set D, proportions of 25% and 23%
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tend to be invested in the second and third stocks. For data sets G and H, the

portfolios tend to be constant after a long run.

The performance of the pseudo Type 1 and Type 2 RPR portfolios seem to

be comparable, with neither exhibiting a superior performance over the other.

3.2 Universal Portfolio Generated by Rényi and Generalized

Kullback-Leibler Divergence

Helmbold et al. (1998) introduces a universal portfolio by maximizing an

objective function which is a linear sum of an estimated daily growth rate of

return and the Kullback-Leibler divergence of two portfolio vectors. In this

session, we generalize this portfolio by using a more general order-α

Kullback-Leibler divergence and the pseudo Lagrange multiplier. One of the

results gives the explicit form of the portfolio corresponds to a reparametrized

Helmbold universal portfolio. The Helmbold universal portfolio, {bn+1} with

parameter η is given in Helmbold et al. (1998) is defined by:

bn+1,i =
bnie

ηxni
bt

nxn

∑m
j=1 bn je

ηxn j
bt

nxn

(3.35)

for i = 1,2, · · · ,m. Another result gives the implicit form of the portfolio, which

has a functional relationship with the Rényi universal portfolio. This relationship

is studied.
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3.2.1 Universal Portfolio Generated by Rényi Divergence

Given two probability distributions p = (pi) and q = (qi), the Rényi order-α

divergence given in Basu et al. (2011) is defined as:

Rα =
1

α−1
log
[ m

∑
i=1

pα
i q1−α

i

]
(3.36)

where α = 0 and α 6= 1.

Proposition 3.2.1: Consider the objective function F̂(bn+1,i,λ ) containing the

Rényi divergence (3.36):

F̂(bn+1,λ ) =ξ
(

log(bt
nxn)+

(
bt

n+1xn

bt
nxn

)
−1
)
− 1

α−1
log
[ m

∑
i=1

bα
n+1,ib

1−α
ni

]

+λ
( m

∑
j=1

bn+1, j−1
)

(3.37)

for α > 0 and α 6= 1. The pseudo implicit form of the universal portfolio

generated by Rényi divergence is

bn+1,i =
ψ

1
α−1
i

∑m
j=1 ψ

1
α−1
j bn j

(3.38)

for i = 1,2, · · · ,m and

ψi(bn+1,bn,xn) =

{
ξ (α−1)

α

[
xni

bt
nxn
−
(
bt

n+1xn

bt
nxn

)
+1
]}

(3.39)

for i = 1,2, · · · ,m. We will choose the parameter ξ > 0 to ensure

ψi(bn+1,bn,xn) > 0 for all i = 1,2, · · · ,m. Then the pseudo Rényi (α,ξ )

universal portfolio is given by (3.38), in the condition that there is a consistent

solution to bn+1.
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Proof. We differentiate the objective function, F̂(bn+1,λ ) in (3.37) to obtain

∂ F̂
∂bn+1,i

= ξ
[

xni

bt
nxn

]
− α

(α−1)

bα−1
n+1,ib

1−α
ni

∑m
j=1 bα

n+1, jb
1−α
n j

+λ (3.40)

for i = 1,2, · · · ,m. Then, we let (3.40) equals to zero and get

ξ
[

xni

bt
nxn

]
− α

(α−1)

bα−1
n+1,ib

1−α
ni

∑m
j=1 bα

n+1, jb
1−α
n j

+λ = 0 (3.41)

for i = 1,2, · · · ,m. Then, we multiply bn+1,i into (3.41) and sum over i to get

ξ
(
bt

n+1xn

bt
nxn

)
− α

α−1
+λ = 0 (3.42)

where λ is the pseudo Lagrange multiplier. Then subtract (3.42) from (3.41) and

get

ξ
[

xni

bt
nxn
−
(
bt

n+1xn

bt
nxn

)]
+

α
α−1

=
α

α−1

bα−1
n+1,ib

1−α
ni

∑m
j=1 bα

n+1, jb
1−α
n j

(3.43)

for i = 1,2, · · · ,m. Arrange (3.43) to obtain

bn+1,i = ψ
1

α−1
i bni

[ m

∑
j=1

bα
n+1, jb

1−α
n j

] 1
α−1

(3.44)

for i = 1,2, · · · ,m. Summing (3.44) over all i will obtain

1 =

[ m

∑
j=1

bα
n+1, jb

1−α
n j

] 1
α−1 m

∑
i=1

ψ
1

α−1
i bni (3.45)

Then, substitute (3.45) as normalizing constant to (3.44) and (3.38) is obtained.
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3.2.2 Universal Portfolio Generated by Generalized Kullback-Leibler

Divergence

Given two probability distributions p = (pi) and q = (qi), the more general

Kullback-Leibler order-α divergence is defined as:

Dα(p||q) = α
m

∑
i=1

pi log
pi

qi
(3.46)

where α > 0 and α 6= 1. The case α = 1 corresponds to the well-studied

Kullback-Leibler divergence.

Proposition 3.2.2: Consider the objective function F̂(bn+1,i,λ ) from (1.4)

which containing the Kullback-Leibler order-α divergence Dα(bn+1||bn):

F̂(bn+1,λ ) =ξ
(

log(bt
nxn)+

(
bt

n+1xn

bt
nxn

)
−1
)
−α

m

∑
j=1

bn+1, j log
bn+1, j

bn j

+λ
( m

∑
j=1

bn+1, j−1
)

(3.47)

for α > 0 and α 6= 1. We then obtain the pseudo explicit form of the universal

portfolio generated by (3.46) is the Helmbold universal portfolio (3.35) with the

parameter η = ξ
α . The pseudo implicit form of the universal portfolio generated

by (3.46) is

bn+1,i =
φ

1
α−1

i bni
[

∑m
j=1 φ

1
α−1
j bn j

] (3.48)

for i = 1,2, · · · ,m where

φi(bn+1,bn,xn) = eψi(bn+1,bn,xn) (3.49)

for i = 1,2, · · · ,m and ψi(bn+1,bn,xn) is defined by (3.39). Then the pseudo
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implicit Kullback-Leibler (α,ξ ) universal portfolio is given by (3.48), in the

condition that there is a consistent solution to bn+1.

Proof. Differentiate the objective function, F̂(bn+1,λ ), (3.47) to obtain

∂ F̂
∂bn+1,i

= ξ
[

xni

bt
nxn

]
−α

[
1+ log

bn+1,i

bni

]
+λ (3.50)

for i = 1,2, · · · ,m. Let (3.50) equal to zero,

ξ
[

xni

bt
nxn

]
−α

[
1+ log

bn+1,i

bni

]
+λ = 0 (3.51)

for i = 1,2, · · · ,m. Then multiply (3.51) by bni and sum over i to get

ξ −α
[

1+
m

∑
i=1

bn j log
bn+1, j

bn j

]
+λ = 0 (3.52)

where λ is the pseudo Lagrange multiplier. Then we take (3.51) minus (3.52) to

obtain

ξ
[

xni

bt
nxn
−1
]
+α

[
1+

m

∑
j=1

bn j log
bn+1, j

bn j
− log

bn+1,i

bni

]
= 0 (3.53)

for i = 1,2, · · · ,m and hence

bn+1,i = bnie
ξ
α

xni
bt

nxn e
− ξ

α +∑m
j=1 bn j log

bn+1, j
bn j (3.54)

for i = 1,2, · · · ,m. Sum (3.54) over i and obtain

1 =
[ m

∑
i=1

bnie
ξ
α

xni
bt

nxn
]−1e

− ξ
α +∑m

j=1 bn j log
bn+1, j

bn j . (3.55)
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Replacement (3.55) to (3.54) will result a universal portfolio as below:

bn+1,i =
bnie

ξ
α

xni
bt

nxn

∑m
j=1 bn je

ξ
α

xni
bt

nxn

(3.56)

for i = 1,2, · · · ,m. We can see that this bn+1 is the Helmbold universal portfolio

(3.35) with parameter η = ξ
α .

Next, if we multiply bn+1,i into (3.51), we obtain the sum is

ξ
[
bt

n+1xn

bt
nxn

]
−α

[
1+

m

∑
j=1

bn+1, j log
bn+1,i

bni

]
+λ = 0 (3.57)

where λ is a different pseudo Lagrange multiplier from the one defined in

(3.52).

Then we take (3.51) minus (3.57) and obtain

ξ
[

xni− (bt
n+1xn)

bt
nxn

]
+α

[ m

∑
j=1

bb+1, j log
bn+1, j

bn j
− log

bn+1,i

bni

]
= 0 (3.58)

for i = 1,2, · · · ,m. Thus,

bn+1,i =bnie
ξ
α

[ xni−bt
n+1xn

bt
nxn

]
+∑m

j=1 bn+1, j log
bn+1, j

bn j

=bnie
{

ξ (α−1)
α

[ xni−bt
n+1xn

bt
nxn

]
+1
}

1
α−1 × e

{
− 1

α−1+∑m
j=1 bn+1, j log

bn+1, j
bn j

}

=bni[eψi]
1

α−1 e
{
− 1

α−1+∑m
j=1 bn+1, j log

bn+1, j
bn j

}
(3.59)

for i = 1,2, · · · ,m. We sum (3.59) over all i,

1 =

[ m

∑
i=1

[
bnieψi]

1
α−1

]
e
{
− 1

α−1+∑m
j=1 bn+1, j log

bn+1, j
bn j

}
(3.60)

Then we substitute (3.60) into (3.59) and get (3.48). We then reparametrize the

parameter ξ to a new parameter β > 0 where β = 1
ξ | α

α−1 | where ξ > 0.
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Proposition 3.2.3:

1. Let α > 0 and β > 0. If the pseudo implicit Rényi (α,β ) universal

portfolio is given by

bn+1,i =
c

1
α−1
1i bni

[
∑m

j=1 c
1

α−1
1 j bn j

] (3.61)

for i = 1,2, · · · ,m where

c1i(bn+1,bn,xn,β ) = β (bt
nxn)− (bt

n+1xn− xni) (3.62)

for i = 1,2, · · · ,m and we choose any value for β such that c1i > 0 for

i = 1,2, · · · ,m, then we have the pseudo implicit Kullback-Leibler (α,β )

universal portfolio as below

bn+1,i =
φ

1
α−1

i bni

∑m
j=1 φ

1
α−1
j bn j

(3.63)

for i = 1,2, · · · ,m where

φi = e
c1i

β (bt
nxn) (3.64)

for i = 1,2, · · · ,m.

2. Let 0 < α < 1 and β > 0. If the pseudo implicit Rényi (α,β ) universal

portfolio is given by

bn+1,i =
c

1
1−α
2i bni

[
∑m

j=1 c
1

1−α
2 j bn j

] (3.65)

for i = 1,2, · · · ,m where

c2i(bn+1,bn,xn,β ) = [β (bt
nxn)− (bt

n+1xn− xni)]
−1 (3.66)

for i = 1,2, · · · ,m and we choose any value for β such that c2i > 0 for
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i = 1,2, · · · ,m, then we have the pseudo implicit Kullback-Leibler (α,β )

universal portfolio as below

bn+1,i =
(φ−1

i )
1

1−α bni

∑m
j=1 bn j(φ−1

j )
1

1−α
(3.67)

for i = 1,2, · · · ,m where

φ−1
i = e

1
c2iβ (b

t
nxn) (3.68)

for i = 1,2, · · · ,m.

Proof. For α > 0, then β = α
ξ (α−1) > 0. Noting that ψiβ (bn) = c1i, we obtain

the results that follow (3.38), (3.48) and (3.49). Then for 0 < α < 1,

β = α
ξ (1−α)

> 0. From the relationship ψiβ (bt
nxn) = c−1

2i , we obtain the results

that follow (3.38), (3.48) and (3.49), where φ−1
i = e−ψi .

We remark that the explicit and implicit Kullback-Leibler (α,ξ ) universal

portfolios (3.35) and (3.48) generated by pseudo zero-gradient set of the

objective function (3.47) are different from each other. The pseudo implicit

Rényi (α,β ) and Kullback-Leibler (α,β ) universal portfolios (3.61), (3.63),

(3.65) and (3.67) in general may not have consistent solution for bn+1. Hence,

we relax the pseudo Rényi (α,β ,γ) and Kullback-Leibler (α,β ,γ) universal

portfolios by replacing the bt
n+1xn in (3.62) and (3.66) by

bt
n+1xn = γ min

j
{xn j}+(1− γ)max

j
{xb j} (3.69)

where γ is a parameter that does not depend on bn+1 and xn. The parameter γ is

a constant where 0 < γ < 1.

We obtain Helmbold universal portfolio (3.35) from the pseudo

Kullback-Leibler (α,β ,γ) universal portfolios by replacing bt
n+1xn in (3.62)
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and (3.66) by (3.69) with parameters η = [β (α − 1)]−1 and η = [β (1−α)]−1

respectively, corresponding to α > 1 and 0 < α < 1.

Tables 3.11, 3.12, 3.13, 3.14 and 3.15 give the empirical results obtained by

running the pseudo relaxed Rényi universal portfolio for stock data sets D, E, F,

G and H after 1500 trading days. The parameters selected are α = 10, β = 6

and γ = 0.1,0.2, · · · ,0.9. We observed that average wealth of 2.3276, 8.0075,

1.2652, 4.4528 and 4.5760 units are achieved for data sets D, E, F, G and H

respectively. The portfolios in decreasing order of performance are data sets E,

H, G, D and F. The highest portfolio proportions are in the fifth, third, fourth,

third and third stocks for data sets, D, E, F, G and H respectively after 1500

trading days.

Table 3.11: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Rényi universal portfolio for stock data set D after 1500 trading days,
where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 10 and β = 6.

γ S1500 b1501
0.1 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
0.2 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
0.3 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
0.4 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
0.5 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
0.6 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
0.7 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
0.8 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
0.9 2.3276 (0.1998, 0.1991, 0.1994, 0.2003, 0.2014)
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Table 3.12: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Rényi universal portfolio for stock data set E after 1500 trading days,
where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 10 and β = 6.

γ S1500 b1501
0.1 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)
0.2 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)
0.3 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)
0.4 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)
0.5 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)
0.6 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)
0.7 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)
0.8 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)
0.9 8.0075 (0.198, 0.2009, 0.2010, 0.2008, 0.1995)

Table 3.13: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Rényi universal portfolio for stock data set F after 1500 trading days,
where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 10 and β = 6.

γ S1500 b1501
0.1 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)
0.2 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)
0.3 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)
0.4 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)
0.5 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)
0.6 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)
0.7 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)
0.8 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)
0.9 1.2652 (0.2010, 0.2007, 0.1980, 0.2012, 0.1991)

Table 3.14: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Rényi universal portfolio for stock data set G after 1500 trading days,
where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 10 and β = 6.

γ S1500 b1501
0.1 4.4529 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
0.2 4.4529 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
0.3 4.4528 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
0.4 4.4528 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
0.5 4.4528 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
0.6 4.4528 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
0.7 4.4528 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
0.8 4.4528 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
0.9 4.4528 (0.2028, 0.1971, 0.2031, 0.1980, 0.1990)
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Table 3.15: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Rényi universal portfolio for stock data set H after 1500 trading days,
where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 10 and β = 6.

γ S1500 b1501
0.1 4.5760 (0.1989, 0.2000, 0.2030, 0.1966, 0.2015)
0.2 4.5760 (0.1989, 0.2000, 0.2030, 0.1966, 0.2015)
0.3 4.5760 (0.1989, 0.2000, 0.2030, 0.1966, 0.2015)
0.4 4.5760 (0.1989, 0.2000, 0.2030, 0.1966, 0.2015)
0.5 4.5760 (0.1989, 0.2000, 0.2030, 0.1966, 0.2015)
0.6 4.5760 (0.1989, 0.2000, 0.2030, 0.1966, 0.2015)
0.7 4.5759 (0.1989, 0.2000, 0.2030, 0.1966, 0.2015)
0.8 4.5759 (0.1989, 0.2000, 0.2029, 0.1967, 0.2015)
0.9 4.5759 (0.1989, 0.2000, 0.2029, 0.1967, 0.2015)

Tables 3.16, 3.17, 3.18, 3.19 and 3.20 provide the empirical results achieved

by the psudeo relaxed Kullback-Leibler universal portfolio running over data

sets D, E, F, G and H for 1500 trading days. The parameters chosen are α and β

equal to 0.1 and 2 respectively with nine values of γ from 0.1 to 0.9, with a 0.1

difference. The average wealth achieved are 2.2153, 7.6412, 1.1924, 4.7212 and

4.6942 units for data sets D, E, F, G and H respectively. The best wealth is

achieved for data set E and the lowest wealth is achieved for data set F. The

highest portfolio proportions are in the fifth, third, fourth, third and third stock

for data sets D, E, F, G and H respectively after 1500 trading days. The best

performing portfolios are data sets E, G, H, D and F in decreasing order.

We noticed that the pseudo relaxed Rényi universal portfolio performs better

than the pseudo relaxed Kullback-Leibler universal portfolio for data sets D, E

and F. However, this situation is reversed for data sets G and H. The portfolio

performance is data-dependent and a general conclusion cannot be drawn.
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Table 3.16: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Kullback-Leibler universal portfolio for stock data set D after 1500
trading days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 0.1 and
β = 2.

γ S1500 b1501
0.1 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)
0.2 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)
0.3 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)
0.4 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)
0.5 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)
0.6 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)
0.7 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)
0.8 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)
0.9 2.2153 (0.1947, 0.1742, 0.1802, 0.2077, 0.2432)

Table 3.17: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Kullback-Leibler universal portfolio for stock data set E after 1500
trading days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 0.1 and
β = 2.

γ S1500 b1501
0.1 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)
0.2 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)
0.3 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)
0.4 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)
0.5 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)
0.6 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)
0.7 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)
0.8 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)
0.9 7.6412 (0.1465, 0.2234, 0.228, 0.219, 0.1831)

39



Table 3.18: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Kullback-Leibler universal portfolio for stock data set F after 1500
trading days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 0.1 and
β = 2.

γ S1500 b1501
0.1 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)
0.2 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)
0.3 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)
0.4 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)
0.5 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)
0.6 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)
0.7 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)
0.8 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)
0.9 1.1924 (0.2293, 0.218, 0.1502, 0.2296, 0.1729)

Table 3.19: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Kullback-Leibler universal portfolio for stock data set G after 1500
trading days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 0.1 and
β = 2.

γ S1500 b1501
0.1 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
0.2 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
0.3 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
0.4 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
0.5 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
0.6 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
0.7 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
0.8 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
0.9 4.7212 (0.2839, 0.1213, 0.2925, 0.1392, 0.1631)
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Table 3.20: The wealth S1500 and the final portfolio b1501 achieved by the pseudo
relaxed Kullback-Leibler universal portfolio for stock data set H after 1500
trading days, where the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2), α = 0.1 and
β = 2.

γ S1500 b1501
0.1 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)
0.2 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)
0.3 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)
0.4 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)
0.5 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)
0.6 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)
0.7 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)
0.8 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)
0.9 4.6942 (0.1623, 0.1897, 0.2943, 0.116, 0.2377)

3.3 Reverse Helmbold Universal Portfolio

In this section, we consider the zero-gradient set of the objective function

estimating the next-day portfolio which contains the reverse Kullback-Leibler

order-alpha divergence. Then, we obtain the explicit, reverse Helmbold

universal portfolio. The performance of this universal portfolio is studied and

compared with Helmbold universal portfolio (3.35).

From the Kullback-Leibler order-α divergence (3.46), we obtain Helmbold

universal portfolio (3.35) by taking the α = 1 in (3.63) and (3.67). Given the

reverse Kullback-Leibler order-α divergence of p= (pi) and q = (qi) is defined

as:

Dα(q||p) = α
m

∑
j=1

q j log
q j

p j
(3.70)

for α > 0. The universal portfolio generated by (3.70) is known as the reverse
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order-α Helmbold portfolio.

Proposition 3.3.1: Let v = (vi) be a given vector, where

vi =
ξ
α

[
xni

bt
nxn

]
(3.71)

for i = 1,2, · · · ,m, ξ > 0 and α > 0. Then, consider the set of linear equations

Cu= v (3.72)

where C = (ci j) is a known matrix given by:

ci j =





b2
n j for i 6= j

b2
ni−bni for i = j.

(3.73)

Then, the solution to the set of equations (3.72) is:

ui =
1

bni
(η− vi) (3.74)

for i = 1,2, · · · ,m where η is any real scalar.

Proof. The system (3.72) can be written as:

m

∑
j=1

b2
n ju j−bniui = vi (3.75)

for i = 1,2, · · · ,m.

A necessary condition for u = (ui) be a solution to (3.75) is that

∑m
j=1 b2

n ju j = bniui + vi = constant independent of i, say η . Then

ui =
1

bni
(η− vi) for i = 1,2, · · · ,m.
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Conversely, let u= (ui) be given by (3.74). Then

m

∑
j=1

b2
n ju j−bniui =

m

∑
j=1

bn j(η− v j)− (η− vi)

=η−
m

∑
j=1

bn j
ξ
α
[ xni

bt
nxn
−1
]
−η + vi

=η− ξ
α
+

ξ
α
−η + vi

=vi

which implies that u given by (3.74) for any real scalar η is a solution.

Proposition 3.3.2: Consider the objective function which consists of the reverse

Kullback-Leibler order-α divergence (3.70) of bn+1 = (bn+1,i) and bn = (bn,i),

F̂(bn+1,λ ) =ξ
[

log(bt
nxn)+

bt
n+1xn

bt
nxn

−1
]

−α
m

∑
j=1

bn j log
bn j

bn+1, j
+λ

[ m

∑
j=1

bn+1, j−1
] (3.76)

where ξ > 0 and α > 0 are given. We obtain the reverse order-α Helmbold

universal portfolio generated by the reverse Kullback-Leibler order-α divergence

(3.70) as follow:

bn+1,i =
bni[β (bt

nxn)− xni]
−1

∑m
j=1 bn j[β (bt

nxn)− xn j]−1 (3.77)

for i = 1,2, · · · ,m where β = αη
ξ +1 for any real scalar η . The η is chosen such

that β (bt
nxn)− xni > 0 for all i = 1,2, · · · ,m.

Proof. We differentiate the objective function (3.76) with respect to bn+1,i

and obtain
∂ F̂

∂bn+1,i
= ξ

[ xni

bt
nxn

]
+α

bni

bn+1,i
+λ (3.78)
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We then let (3.78) equal to zero and obtain

ξ
[ xni

bt
nxn

]
+α

bni

bn+1,i
+λ = 0. (3.79)

In order to solve for the Lagrange multiplier, λ , we multiply bni into (3.79)

and sum over i to get

ξ +α
m

∑
j=1

b2
n j

bn+1, j
+λ = 0. (3.80)

We then replacing λ in (3.79) by the value obtain in (3.80) and obtain

ξ
[

xni

bt
nxn
−1
]
+α

[
bni

bn+1,i
−

m

∑
j=1

b2
n j

bn+1, j

]
= 0 (3.81)

for i = 1,2, · · · ,m. We let ui =
1

bn+1, j
for i = 1,2, · · · ,m, it leads to the system

of equation (3.72). Then, we obtain the solution for this system of equation, is

given by (3.74). Then, we obtain

bn+1,i =
bni{

η− ξ
α
[ xni
bt

nxn
−1
]}

=
bni(b

t
nxn){(

η + ξ
α
)
(bt

nxn)− ξ
α xni

}

=
bni(b

t
nxn)

α
ξ

{β (bt
nxn)− xni}

(3.82)

for i = 1,2, · · · ,m where β = αη
ξ +1. Summing (3.82) over all i and obtain the

normalizing constant

(bt
nxn)

α
ξ
=

{ m

∑
j=1

bn j[β (bt
nxn)− xn j]

−1
}−1

. (3.83)

Substitute the normalizing constant (3.83) to (3.82) to obtain (3.77).

The reverse order-α Helmbold universal portfolio 3.77 with parameter β is

run on the selected data sets D, E,F G and H. The wealth achieved after 1500

trading days are given in Tables 3.21, 3.22, 3.23, 3.24 and 3.25 respectively,
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together with the final portfolios b1501. It is observed that the best wealth

achieved for data sets D, E, F, G and H are 2.5245, 8.0192, 1.4358, 5.7101 and

5.0115 units respectively. The good portfolio is E with the best performance.

Portfolios G and H exhibit average performance. The portfolios D and F

perform poorly. For good portfolio E, the return is almost 8 times the starting

wealth after a period of 1500 trading days.

A close examination of Tables 3.21, 3.22, 3.23, 3.24 and 3.25 reveals that

the final portfolio for data set E tends to a portfolio with the proportion of

wealth almost equally distributed among the five stocks as the parameter β gets

large. For data set D and β = 0.3, the first three stocks have the higher weights

in the range 0.23− 0.25, with lower weights for the last two stocks. For set F

and the best parameter β = 0.4, heavier weights are placed on the third and fifth

stocks. About half of the wealth is placed on the first stock for data set G and

40% on the third stock corresponding to the best parameter β = 1.3. The third

and fifth stocks in data set H receive higher weights of 48% and 46% for

β = 1.3, with very low weights for the other stocks.

Table 3.21: The wealth S1500 and the final portfolio b1501 achieved by the reverse
Helmbold universal portfolio for stock data set D after 1500 trading days, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

β S1500 b1501
0.0 2.5066 (0.2182, 0.2432, 0.2266, 0.1778, 0.1342)
0.1 2.5155 (0.2220, 0.2459, 0.2285, 0.1748, 0.1288)
0.2 2.5225 (0.2275, 0.2483, 0.2307, 0.1710, 0.1225)
0.3 2.5245 (0.2358, 0.2496, 0.2332, 0.1661, 0.1153)
0.4 2.5151 (0.2497, 0.2478, 0.2359, 0.1597, 0.1069)
0.5 2.4814 (0.2747, 0.2383, 0.2388, 0.1508, 0.0974)
0.6 2.3967 (0.3255, 0.2099, 0.2406, 0.1374, 0.0866)
0.7 2.2071 (0.4356, 0.1413, 0.2346, 0.1139, 0.0746)
0.8 1.8281 (0.5649, 0.0391, 0.2339, 0.0797, 0.0824)
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Table 3.22: The wealth S1500 and the final portfolio b1501 achieved by the reverse
Helmbold universal portfolio for stock data set E after 1500 trading days, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

β S1500 b1501
10 7.9457 (0.1881, 0.2053, 0.2058, 0.2039, 0.1969)
20 7.9848 (0.1943, 0.2025, 0.2028, 0.2019, 0.1985)
30 7.9969 (0.1963, 0.2016, 0.2018, 0.2012, 0.1991)
40 8.0028 (0.1972, 0.2012, 0.2013, 0.2009, 0.1994)
50 8.0063 (0.1978, 0.2010, 0.2011, 0.2007, 0.1994)
100 8.0132 (0.1989, 0.2005, 0.2005, 0.2004, 0.1997)
300 8.0177 (0.1996, 0.2002, 0.2002, 0.2001, 0.1999)
500 8.0186 (0.1998, 0.2001, 0.2001, 0.2001, 0.1999)
800 8.0191 (0.1999, 0.2001, 0.2000, 0.2000, 0.2000)

Table 3.23: The wealth S1500 and the final portfolio b1501 achieved by the reverse
Helmbold universal portfolio for stock data set F after 1500 trading days, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

β S1500 b1501
0.0 1.4006 (0.1382, 0.1463, 0.3317, 0.1484, 0.2354)
0.1 1.4106 (0.1315, 0.1396, 0.3462, 0.1449, 0.2378)
0.2 1.4208 (0.1233, 0.1316, 0.3628, 0.1414, 0.2409)
0.3 1.4300 (0.1136, 0.1218, 0.3811, 0.1386, 0.2449)
0.4 1.4358 (0.1022, 0.1100, 0.3986, 0.1379, 0.2513)
0.5 1.4338 (0.0889, 0.0959, 0.4085, 0.1434, 0.2633)
0.6 1.4180 (0.0736, 0.0790, 0.3920, 0.1678, 0.2876)
0.7 1.3813 (0.0537, 0.0560, 0.3071, 0.2560, 0.3272)
0.8 1.2590 (0.0218, 0.0192, 0.1443, 0.5132, 0.3015)

Table 3.24: The wealth S1500 and the final portfolio b1501 achieved by the reverse
Helmbold universal portfolio for stock data set G after 1500 trading days, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

β S1500 b1501
1.3 5.7101 (0.5143, 0.0035, 0.3854, 0.0807, 0.0161)
1.4 5.5362 (0.5205, 0.0137, 0.3894, 0.0353, 0.0411)
1.5 5.3322 (0.4603, 0.0242, 0.4088, 0.0455, 0.0612)
1.6 5.2014 (0.4200, 0.0353, 0.4084, 0.0574, 0.0789)
1.7 5.1081 (0.3917, 0.0463, 0.3992, 0.0689, 0.0939)
1.8 5.0366 (0.3705, 0.0566, 0.3868, 0.0795, 0.1066)
1.9 4.9792 (0.3539, 0.0662, 0.3737, 0.0891, 0.1171)
2.0 4.9320 (0.3403, 0.0750, 0.3613, 0.0975, 0.1259)
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Table 3.25: The wealth S1500 and the final portfolio b1501 achieved by the reverse
Helmbold universal portfolio for stock data set H after 1500 trading days, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2)

β S1500 b1501
1.3 5.0115 (0.0237, 0.0409, 0.4762, 0.0041, 0.4551)
1.4 4.9750 (0.0468, 0.0746, 0.5088, 0.0120, 0.3578)
1.5 4.9290 (0.0675, 0.1009, 0.4885, 0.0221, 0.3210)
1.6 4.8893 (0.0849, 0.1210, 0.4594, 0.0330, 0.3017)
1.7 4.8563 (0.0994, 0.1361, 0.4315, 0.0437, 0.2893)
1.8 4.8289 (0.1112, 0.1476, 0.4072, 0.0538, 0.2802)
1.9 4.8060 (0.1209, 0.1564, 0.3866, 0.0630, 0.2731)
2.0 4.7866 (0.1290, 0.1633, 0.3692, 0.0714, 0.2671)
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CHAPTER 4

f -DIVERGENCE AND ITS REVERSE

4.1 f -Divergence

Rényi (1961) introduced the f -divergence, which is a function D f (p||q)

measuring the difference between two probability distributions p and q. This

divergence is further studied independently by Csiszár (1963) and this is also

known as Csiszár f -divergence. Let f (t) be a convex function on (0,∞) and is

strictly convex at t = 1 and it satisfies f (1) = 0. Then, we have the f -divergence

between two probability distribution p= (pi) and q = (qi) is given by

D f (p||q) =
n

∑
i=1

qi f
[ pi

qi

]
. (4.1)

Hence, for two portfolio vectors of bn+1 and bn, the f -divergence is given by

D f (bn+1||bn) =
m

∑
i=1

bni f
[bn+1,i

bni

]
. (4.2)

4.1.1 Type k Universal Portfolio Generated by f -Divergence

In this session, we develop a generalization of the universal portfolio generated

by f -divergence by considering k-th order Taylor series approximation of

log
[bt

n+1xn
bt

nxn

]
. Then we obtain Type k universal portfolio generated by

f -divergence where k = 1,2, · · · .
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Lemma 4.1.1: The k-th. order approximation of log
[

bk
n+1xn
bt

nxn

]
is

log
[

bt
n+1xn

bt
nxn

]
'

k

∑
r=1

(−1)r+1

r

[
bt

n+1xn

bt
nxn

−1
]r

(4.3)

and

∂
∂bn+1,i

[
log
(

bt
n+1xn

bt
nxn

)]
=

xni

bt
n+1xn

[
1+(−1)k+1

(
bt

n+1xn

bt
nxn

−1
)k]

(4.4)

for 0 <
bt

n+1xn
bt

nxn
< 2, where k = 1,2, · · · . Furthermore, (4.4) can be simplified as

∂
∂bn+1,i

[
log
(

bt
n+1xn

bt
nxn

)]
=

(
xni

bt
nxn

)
uk(bn+1,bn), (4.5)

where

uk(bn+1,bn) =
k

∑
r=1

(−1)2k+1−r
(

k
r

)(
bt

n+1xn

bt
nxn

)r

(4.6)

for i = 1,2, · · · ,m.

Remarks. The function uk(bn+1,bn) in (4.6) is a polynomial in
(bt

n+1xn
bt

nxn

)
.

1. For k = 1, u1(bn+1,bn) = 1.

2. For k = 2, u2(bn+1,bn) = 2−
(bt

n+1xn
bt

nxn

)
.

3. For k = 3, u3(bn+1,bn) = 3−3
(bt

n+1xn
bt

nxn

)
+
(bt

n+1xn
bt

nxn

)2.

Proof. From the Taylor series log(1+ z) = ∑∞
r=1

(−1)r+1

r zr for |z| < 1, it is clear

that log y = ∑k
r=1

(−1)r+1

r (y−1)r is the k-th approximation of log y. Hence (4.3)

obtains when y =
bt

n+1xn
bt

nxn
.
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Differentiating (4.3) with respect to bn+1,i, the derivative is

xni

bt
nxn

[ k

∑
r=1

(−1)r+1
{

bt
n+1xn

bt
nxn

−1
}r−1]

=
xni

bt
nxn

[1+(−1)k+1(bt
n+1xn
bt

nxn
−1
)k

1+
(bt

n+1xn
bt

nxn
−1
)

] (4.7)

by summing up the geometric series. The derivative simplifies to (4.4). By using

the binomial expansion in (4.4), the derivative (4.4) can be written as

xni

bt
nxn

[
1+(−1)k+1

k

∑
r=0

(−1)k−r
(

k
r

)(
bt

n+1xn

bt
nxn

)r]

=
xni

bt
nxn

[ k

∑
r=1

(−1)2k+1−r
(

k
r

)(
bt

n+1xn

bt
nxn

)r] (4.8)

which leads to (4.5).

Example. (i) For k = 1,

∂
∂bn+1,i

[
log
(

bt
n+1xn

bt
nxn

)]
=

xni

bt
nxn

, i = 1,2, · · · ,m. (4.9)

(ii) For k = 2,

∂
∂bn+1,i

[
log
(

bt
n+1xn

bt
nxn

)]
=

(
xni

bt
nxn

)[
2
(

bt
n+1xn

bt
nxn

)
−
(

bt
n+1xn

bt
nxn

)2]

=

(
xni

bt
nxn

)[
2− bt

n+1xn

bt
nxn

]
, i = 1,2, · · · ,m

(4.10)

Hence, the rate of wealth increase on day (n+1) is log(bt
n+1xn+1) which is

estimated as log(bt
n+1xn). From (4.3), the k-th order approximation of

log(bt
n+1xn) is

log(bt
n+1xn)' log(bt

nxn)+
k

∑
r=1

(−1)r+1

r

[
bt

n+1xn

bt
nxn

−1
]r

. (4.11)

We then use the result obtained in (4.11) with the objective function

50



F̂(bn+1;λ ) = log(bt
n+1xn)−D f (bn+1||bn) to obtain the type k universal

portfolio.

Proposition 4.1.1: We define f (t) be a convex function on (0,∞) satisfying

f (1) = 0 and the objective function

F̂(bn+1;λ ) =η
[

log(bt
nxn)+

k

∑
r=1

(−1)r+1

r

(
bt

n+1xn

bt
nxn

−1
)r]

−
m

∑
j=1

bn j f
[

bn+1, j

bn j

]
+λ

( m

∑
j=1

bn+1, j−1
)
,

(4.12)

where η > 0 is a parameter and λ is the Lagrange multiplier. The Type k

universal portfolio generated by the f -divergence is given by

f ′
[

bn+1,i

bni

]
= ηuk(bn+1,bn)

(
xni

bt
nxn

)
+ξn, (4.13)

where uk(bn+1,bn) is given by (4.6) and ξn is another parameter possible

depending on bn+1 and bn.

Proof. By using (4.3) and (4.5) in the Lemma (4.1.1) and differentiating

F̂(bn+1;λ ) in (4.12). Then we set the derivative equals to zero and obtain the

following,

∂ F̂
∂bn+1,i

= ηuk(bn+1,bn)

(
xni

bt
nxn

)
− f ′

[
bn+1,i

bni

]
+λ = 0, for i = 1,2, · · · ,m.

(4.14)

Then, we multiplying (4.14) by bni and sum over i to get

λ =
m

∑
j=1

bn j f ′
[

bn+1, j

bn j

]
−ηuk(bn+1,bn). (4.15)
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Next, we substitute the value of λ in (4.15) into (4.14) to obtain

f ′
[

bn+1,i

bni

]
= ηuk(bn+1,bn)

(
xni

bt
nxn

)
+

m

∑
j=1

bn j f ′
[

bn+1, j

bn j

]
−ηuk(bn+1,bn)

(4.16)

for i = 1,2, · · · ,m.

By reparametrizing,

ξn =
m

∑
j=1

bn j f ′
[

bn+1, j

bn j

]
−ηuk(bn+1,bn), (4.17)

the form of the universal portfolio (4.13) is derived. For a valid solution to

∇F̂ =

(
∂ F̂

∂bn+1,i

)
= 0, λ in (4.15) should not depend on bn+1. The focus in this

paper is on generating a new portfolio instead of finding a valid solution to

∇F̂ = 0. If there is no valid solution, (4.13) will be called a pseudo solution.

Proposition 4.1.2: We define f (t) be a convex function on (0,∞) satisfying

f (1) = 0 and c > 0 satisfies f ′(c) < ∞. The mean-value form of the Type k

universal portfolio generated by the f -divergence is given by

bn+1,i = bni

[
c+

1
f ′′(s)

{
f ′
[

bn+1,i

bni

]
− f ′(c)

}]
for i = 1,2, · · · ,m, (4.18)

where s is some number between bn+1,i
bni

and c; and f ′
[

bn+1,i
bni

]
is given by (4.13).

Proof. The mean-value theorem states that there exists an s between bn+1,i
bni

and c

such that f ′
[

bn+1,i
bni

]
− f ′(c) =

[
bn+1,i
bni]
− c
]

f ′′(s) for i = 1,2, · · · ,m. Rewriting

this equation leads to (4.18).

Example. The Helmbold family of universal portfolios is defined by the convex

function f (t) = t log t for t > 0. The derivative f ′(t) = log t + 1 generates the
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Type k Helmbold universal portfolio

log
(

bn+1,i

bni

)
= ηuk(bn+1,bn)

(
xni

bt
nxn

)
+ξn−1, for i = 1,2, · · · ,m (4.19)

according to (4.13). Exponentiating (4.19), bn+1,i
bni

= e
ηuk(bn+1,bn)

(
xni

bt
nxn

)
eξn−1.

Evaluating eξn−1, we obtain

bn+1,i =
bnie

ηuk(bn+1,bn)
(

xni
bt

nxn

)

∑m
j=1 bn je

ηuk(bn+1,bn)
( xn j

bt
nxn

) for i = 1,2, · · · ,m. (4.20)

Recall from (4.6), that uk(bn+1,bn) is a polynomial in bt
n+1xn
bt

nxn
. The Type 1

Helmbold universal portfolio for uk(bn+1,bn) = 1 is extensively studied. The

Type 2 Helmbold universal portfolio for

uk(bn+1,bn) = 2−
(

bt
n+1xn

bt
nxn

)
(4.21)

is the focus of the empirical study in the next section. The Type 3 Helmbold

portfolio is defined for

uk(bn+1,bn) = 3−3
(

bt
n+1xn

bt
nxn

)
+

(
bt

n+1xn

bt
nxn

)2

. (4.22)

For the empirical study, bt
n+1xn in (4.21) is replaced by

bt
n+1xn = γ min

j
{xn j}+(1− γ)max

j
{xn j}. (4.23)

where 0 < γ < 1.

Tables 4.1, 4.2, 4.3, 4.4 and 4.5 show the wealth achieved by the Type 1

Helmbold universal portfolio while tables 4.6, 4.2, 4.3, 4.4 and 4.5 provide the

empirical result obtained by the Type 2 Helmbold universal portfolio. These

universal portfolios are running over the five data sets J, K, L, M and N after
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2500 trading days for selected value of the parameters. The results are

presented in the tables below.

Table 4.1: The wealth S2500 achieved after 2500 trading days by running the
Type 1 Helmbold portfolio over the data set J for selected value of η together
with final portfolio b2501

η S2500 b2501
0.3 15.4957 (0.126763, 0.127786, 0.114715, 0.513119, 0.117617)
0.4 16.1562 (0.103203, 0.104335, 0.090455, 0.608522, 0.093485)
0.5 16.3094 (0.082917, 0.084071, 0.070421, 0.689242, 0.073349)
0.6 15.9953 (0.066127, 0.067247, 0.054443, 0.755045, 0.057138)
0.7 15.3086 (0.052549, 0.053598, 0.041955, 0.807542, 0.044356)

Table 4.2: The wealth S2500 achieved after 2500 trading days by running the Type
1 Helmbold portfolio over the data set K for selected value of η together with
final portfolio b2501

η S2500 b2501
-4.2 18.57109 (0.068924, 0.226932, 0.646187, 0.057511, 0.000446)
-4.1 18.67420 (0.080392, 0.263809, 0.587355, 0.067859, 0.000585)
-4.0 18.71009 (0.092274, 0.301252, 0.526939, 0.078782, 0.000753)
-3.9 18.67303 (0.104260, 0.338003, 0.466762, 0.090020, 0.000955)
-3.8 18.55880 (0.116050, 0.372854, 0.408590, 0.101310, 0.001196)

Table 4.3: The wealth S2500 achieved after 2500 trading days by running the Type
1 Helmbold portfolio over the data set L for selected value of η together with
final portfolio b2501

η S2500 b2501
-2.0 4.42198 (0.261983, 0.009207, 0.504003, 0.198672, 0.026135)
-1.9 4.43670 (0.268802, 0.011158, 0.481837, 0.208073, 0.030130)
-1.8 4.44490 (0.274631, 0.013474, 0.460337, 0.216948, 0.034610)
-1.7 4.44681 (0.279396, 0.016213, 0.439609, 0.225169, 0.039613)
-1.6 4.44287 (0.283043, 0.019440, 0.419736, 0.232612, 0.045169)
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Table 4.4: The wealth S2500 achieved after 2500 trading days by running the Type
1 Helmbold portfolio over the data set M for selected value of η together with
final portfolio b2501

η S2500 b2501
0.3 19.11034 (0.114547, 0.168995, 0.489913, 0.108615, 0.117930)
0.4 19.74197 (0.089628, 0.150149, 0.581495, 0.085567, 0.093161)
0.5 19.97019 (0.068846, 0.130784, 0.661432, 0.066695, 0.072243)
0.6 19.80705 (0.052200, 0.112291, 0.728585, 0.051626, 0.055298)
0.7 19.30544 (0.039230, 0.095428, 0.783594, 0.039797, 0.041951)

Table 4.5: The wealth S2500 achieved after 2500 trading days by running the Type
1 Helmbold portfolio over the data set N for selected value of η together with
final portfolio b2501

η S2500 b2501
-2.3 4.99236 (0.045748, 0.199536, 0.601143, 0.134370, 0.019203)
-2.2 5.00734 (0.050722, 0.207542, 0.575474, 0.144158, 0.022104)
-2.1 5.01289 (0.056009, 0.214906, 0.549948, 0.153793, 0.025344)
-2.0 5.00873 (0.061599, 0.221550, 0.524765, 0.163140, 0.028946)
-1.9 4.99481 (0.067479, 0.227411, 0.500107, 0.172066, 0.032937)

Table 4.6: The wealth S2500 achieved after 2500 trading days by running the
Type 2 Helmbold portfolio over the data set J for selected value of η and η = 0.8
together with final portfolio b2501

η S2500 b2501
-0.1 9.9810 (0.218758, 0.218118, 0.228124, 0.109243, 0.225757)
0.0 11.5238 (0.2, 0.2, 0.2, 0.2, 0.2)
0.1 13.2749 (0.172952, 0.173489, 0.166047, 0.319765, 0.167747)
0.2 14.8741 (0.142037, 0.142943, 0.131064, 0.450227, 0.133729)
0.3 15.9522 (0.112273, 0.113373, 0.099665, 0.572008, 0.102681)
0.4 16.3184 (0.086691, 0.087847, 0.074089, 0.674320, 0.077053)
0.5 15.9952 (0.066127, 0.067246, 0.054443, 0.755044, 0.057140)
0.6 15.1363 (0.050177, 0.051209, 0.039817, 0.816637, 0.042160)
0.7 13.9317 (0.038018, 0.038939, 0.029090, 0.862890, 0.031063)
0.8 12.5510 (0.028815, 0.029618, 0.021267, 0.897403, 0.022897)
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Table 4.7: The wealth S2500 achieved after 2500 trading days by running the Type
2 Helmbold portfolio over the data set K for selected values of η and γ = 0.4
together with final portfolio b2501

η S2500 b2501
-2.9 17.4887 (0.029238, 0.095890, 0.851581, 0.023174, 0.000117)
-2.8 17.9828 (0.041217, 0.135798, 0.789504, 0.033285, 0.000196)
-2.7 18.3681 (0.056107, 0.185059, 0.712351, 0.046165, 0.000318)
-2.6 18.6199 (0.073442, 0.241536, 0.622957, 0.061567, 0.000498)
-2.5 18.7100 (0.092273, 0.301251, 0.526939, 0.078781, 0.000756)
-2.4 18.6139 (0.111375, 0.359212, 0.431513, 0.096803, 0.001097)
-2.3 18.3165 (0.129584, 0.410732, 0.343549, 0.114596, 0.001539)
-2.2 17.8147 (0.146095, 0.452562, 0.267874, 0.131375, 0.002094)
-2.1 17.1178 (0.160569, 0.483317, 0.206590, 0.146740, 0.002784)

0 3.9413 (0.2, 0.2, 0.2, 0.2, 0.2)

Table 4.8: The wealth S2500 achieved after 2500 trading days by running the Type
2 Helmbold portfolio over the data set L for selected values of η and γ = 0.1
together with final portfolio b2501

η S2500 b2501
-1.3 4.26914 (0.219783, 0.003563, 0.612543, 0.151316, 0.012795)
-1.2 4.34636 (0.238455, 0.005277, 0.568370, 0.170670, 0.017228)
-1.1 4.40310 (0.255073, 0.007721, 0.524408, 0.189871, 0.022927)
-1.0 4.43670 (0.268802, 0.011157, 0.481837, 0.208072, 0.030132)
-0.9 4.44689 (0.278968, 0.015918, 0.441644, 0.224383, 0.039087)
-0.8 4.43589 (0.285130, 0.022418, 0.404487, 0.237927, 0.050038)
-0.7 4.40787 (0.287079, 0.031159, 0.370636, 0.247949, 0.063177)
-0.6 4.36800 (0.284806, 0.042723, 0.340008, 0.253840, 0.078623)
-0.5 4.32144 (0.278463, 0.057738, 0.312252, 0.255211, 0.096336)

0 4.10782 (0.2, 0.2, 0.2, 0.2, 0.2)
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Table 4.9: The wealth S2500 achieved after 2500 trading days by running the Type
2 Helmbold portfolio over the data set M for selected values of η and γ = 0.3
together with final portfolio b2501

η S2500 b2501
-0.1 13.6551 (0.234364, 0.187123, 0.086477, 0.261558, 0.230475)

0 15.6012 (0.2, 0.2, 0.2, 0.2, 0.2)
0.1 17.7752 (0.151584, 0.189215, 0.360377, 0.144705, 0.154116)
0.2 19.4098 (0.104114, 0.161637, 0.527763, 0.098885, 0.107599)
0.3 19.9708 (0.067000, 0.128878, 0.668722, 0.065025, 0.070372)
0.4 19.4294 (0.041559, 0.098650, 0.773498, 0.041932, 0.044358)
0.5 18.0774 (0.025291, 0.073786, 0.846658, 0.026830, 0.027433)
0.6 16.2722 (0.015246, 0.054448, 0.896367, 0.017129, 0.016807)
0.7 14.3040 (0.009147, 0.039835, 0.929830, 0.010934, 0.010251)
0.8 12.3656 (0.005475, 0.028965, 0.952338, 0.006982, 0.006237)

Table 4.10: The wealth S2500 achieved after 2500 trading days by running the
Type 2 Helmbold portfolio over the data set N for selected values of η and γ =
0.1 together with final portfolio b2501

η S2500 b2501
-1.6 4.65335 (0.018892, 0.130543, 0.776109, 0.068418, 0.006038)
-1.5 4.76915 (0.024161, 0.148641, 0.735671, 0.083251, 0.008276)
-1.4 4.86902 (0.030519, 0.166947, 0.691488, 0.099839, 0.011207)
-1.3 4.94662 (0.038031, 0.184723, 0.644508, 0.117753, 0.014985)
-1.2 4.99609 (0.046717, 0.201184, 0.596007, 0.136333, 0.019759)
-1.1 5.01290 (0.056554, 0.215604, 0.547411, 0.154742, 0.025689)
-1.0 4.99480 (0.067479, 0.227410, 0.500106, 0.172067, 0.032938)
-0.9 4.94212 (0.079401, 0.236246, 0.455249, 0.187431, 0.041673)
-0.8 4.85759 (0.092203, 0.241972, 0.413638, 0.200127, 0.052060)

0 3.61793 (0.2, 0.2, 0.2, 0.2, 0.2)

The tables 4.6, 4.7, 4.8, 4.9 and 4.10 give the empirical results obtained by

running the Type 2 Helmbold universal portfolio on Stock Data Sets J, K, L, M

and N, respectively. From the results obtained by Type 2 Helmbold universal

portfolio, we can observe that the best wealth is achieved for data set M while

the lowest wealth is achieved for data set L. We observed that J, K and M are

good portfolios achieving maximum wealth of 16.31847, 18.71009 and

19.97086 units respectively. The empirical result also reveals that L and N are

poor portfolios, achieving maximum wealth of 4.44689 and 5.012909 units

respectively. The forth stock of set J, third stock of set K and third stock of set
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M respectively are performing well. Hence the portfolios assign more weights

on them and lead to higher wealth return. Similarly, the fifth stock for both set L

and N are performing poorly. Hence, lower weights are assigned on them.

A comparison of the performance between Type 1 Helmbold universal

portfolio and Type 2 Helmbold universal is done. The results from tables 4.1,

4.2, 4.3, 4.4 and 4.5 and tables 4.6, 4.2, 4.3, 4.4 and 4.5 are within the same

range with small differences after comparing Table 2 and Table 3. Hence, the

performance of Type 2 Helmbold universal portfolio is comparable with Type 1

Helmbold universal portfolio with no significant differences.

4.2 Reverse f -divergence

In this session, a reverse f -divergence is used to generate a new universal

portfolio. The f -divergence of two probability is defined previous at (4.1). Let

the function f ∗(t) = t f (1
t ), which is also convex on (0,∞) and f ∗(1) = 1. The

function f ∗ is the reverse f -divergence, which is defined by

D f ∗(p||q) = D f (q||p), (4.24)

see (Basu et al. (2011)). Hence, we have the reverse f -divergence for the

portfolio vectors bn+1 and bn is given by

D f (bn||bn+1) =
m

∑
j=1

bn+1, j f
[

bn j

bn+1, j

]
. (4.25)

Proposition 4.2.1: Let f (t) be a convex function on (0,∞) satisfying f (1) = 0.

58



Then, let the objective function

F̂(bn+1;λ ) =η
{

log(bt
nxn)+ ˆlogk

[
bt

n+1xn

bt
nxn

]}

−
m

∑
j=1

bn+1, j f
[

bn j

bn+1, j

]
+λ

[ m

∑
j=1

bn+1, j−1
] (4.26)

where η > 0 and λ is the Lagrange multiplier. The Type k universal portfolio

generated by the reverse f divergence D f ∗(bn+1||bn) is

f
(

bni

bn+1,i

)
− bni

bn+1,i
f ′
(

bni

bn+1,i

)
=ηuk(bn+1,bn)

(
xni

bt
nxn

)
+ξn for i= 1,2, · · · ,m.

(4.27)

If there is no valid solution to λ , the solutions of Equations (4.27) will be

called pseudo solutions.

Proof. The stationary vector of F̂(bn+1;λ ) is ∇F̂(bn+1;λ ) =
( ∂ F̂

∂bn+1,i

)
= 0.

From the Lemma,

∂ F̂
∂bn+1,i

=ηuk(bn+1,bn)

(
xni

bt
nxn

)
−
{

f
(

bni

bn+1,i

)
− bni

bn+1,i
f ′
(

bni

bn+1,i

)}
+λ = 0

(4.28)

Multiply Equation (4.28) by bni and sum over i to get

ηuk(bn+1,bn)−
m

∑
j=1

[
bn j f

(
bn j

bn+1, j

)
−

b2
n j

bn+1, j
f ′
(

bn j

bn+1, j

)]
+λ = 0 (4.29)

Let

ξn =−ηuk(bn+1,bn)+
m

∑
j=1

[
bn j f

(
bn j

bn+1, j

)
−

b2
n j

bn+1, j
f ′
(

bn j

bn+1, j

)]
(4.30)

Subtracting Equation (4.29) from Equation (4.28) yields Equation (4.27).

Remarks. The portfolios (4.27) is valid if λ does not depend on bn+1.
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Proposition 4.2.2: The following gives the Type-1 universal portfolios

generated by reverse- f divergence associated with different convex function,

f (t).

1. For the associated convex function f (t) = t log t− t +1, t > 0, the reverse

Kullback-Leibler universal portfolio is

bn+1,i =
bni[βbt

nxn− xni]
−1

∑m
j=1 bn j[βbt

nxn− xn j]−1 , i = 1,2, · · · ,m. (4.31)

2. For the associated convex function f (t) = (t−1)2, t > 0, the reverse chi-

square universal portfolio is

bn+1,i =
bni[βbt

nxn− xni]
− 1

2

∑m
j=1 bn j[βbt

nxn− xn j]
− 1

2
, i = 1,2, · · · ,m. (4.32)

3. For the associated convex function f (t) = t−t1−α

α(1−α) , t > 0, the reverse α-

divergence universal portfolio is

bn+1,i =
bni[βbt

nxn− xni]
− 1

1−α

∑m
j=1 bn j[βbt

nxn− xn j]
− 1

1−α
, i = 1,2, · · · ,m. (4.33)

The portfolios are valid provided [βbt
nxn − xni]

s > 0 for

s =−1,−1
2 ,−(1−α)−1.

Proof.

1. For f (t) = t log t− t +1, t > 0, f ′(t) = log t and

f
(

bni

bn+1,i

)
− bni

bn+1,i
f ′
(

bni

bn+1,i

)
=− bni

bn+1,i
+1 for i = 1,2, · · · ,m.
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From Equation (4.27),

− bni

bn+1,i
+1 =

ηxni

bt
nxn

+ξn

bn+1,i =bni
1

[1−η xni
bt

nxn
−ξn]

, i = 1,2, · · · ,m

=

(
bt

nxn

η

)
bni[(1−ξn

η
)
bt

nxn− xni
]

Evaluating the normalizing constant
(bt

nxn
η
)
, Equation (4.31) is obtained

where β = (1−ξn)
η .

2. For f (t) = (t−1)2, t > 0, f ′′(t) = 2.

f
(

bni

bn+1,i

)
− bni

bn+1,i
f ′
(

bni

bn+1,i

)
=−

(
bni

bn+1,i

)2

+1 for i = 1,2, · · · ,m

=η
xni

bt
nxn

+ξn

Thus,

bn+1,i =
bni

[
1−η xni

bt
nxn
−ξn

] 1
2
, i = 1,2, · · · ,m

=

(
bt

nxn

η

)
bni

[(1−ξn
η
)
bt

nxn− xni
] 1

2

Evaluating the normalizing constant
(bt

nxn
η
)
, Equation (4.32) is obtained

where β = (1−ξn)
η .

3. For f (t) = t−t1−α

α(1−α) , t > 0, f ′(t) = 1
α(1−α) − 1

α t−α .

Now,

f
(

bni

bn+1,i

)
− bni

bn+1,i
f ′
(

bni

bn+1,i

)
=

1
α−1

(
bni

bn+1,i

)1−α
, i = 1,2, · · · ,m

=η
xni

bt
nxn

+ξn,
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leading to

bn+1,i =bni

[
η(α−1)

xni

bt
nxn

+ξn(α−1)
]− 1

1−α

=

[
η(1−α)

bt
nxn

]− 1
1−α

bni

[
− xni−

ξn

η
(bt

nxn)

]− 1
1−α

.

Evaluating the normalizing constant results in Equation (4.33) where β =

−ξn
η .
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CHAPTER 5

STRONG FORM AND WEAK FORM OF f -DIVERGENCE

5.1 Bregman Divergence

5.1.1 Universal Portfolio Generated by Bregman Divergence

Given the portfolio bn and the price-relative vector xn on the nth trading day, the

next-day portfolio bn+1 will be determined by maximizing the approximate rate

of growth in investment wealth log[bt
n+1xn] and minimizing the Bregman

divergence of bn+1 and bn with respect to a given convex function f (t) for t > 0.

Proposition 5.1.1: Let f (t) be a given convex function for t > 0 and B f (·||·) is

the Bregman divergence associated with f (t). Consider the objective function

F̂(bn+1,λ ) given by:

F̂(bn+1,λ ) =ξ
[

log(bt
n+1xn)+

(
bt

n+1xn

bt
nxn

)
−1
]

−
m

∑
j=1

[ f (bn+1, j)− f (bn j)− f ′(bn j)(bn+1, j−bn j)]

+λ
[ m

∑
j=1

bn+1, j−1
]

(5.1)

where ξ > 0 and λ is the Lagrange multiplier. The explicit form of the Bregman

universal portfolio associated with f (t) is

f ′(bn+1,i) = f ′(bni)+(η−ξ )+ξ
(

xni

bt
nxn

)
for i = 1,2, · · · ,m (5.2)
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where η is a real parameter. The implicit form of the Bregman universal portfolio

associated with f (t) is the set of non-linear equations in (bn+1,i) given by:

f ′(bn+1,i) = f ′(bni)+ζ +ξ
(

xni−bt
n+1xn

bt
nxn

)
for i = 1,2, · · · ,m (5.3)

where ζ is a real parameter.

Proof. Differentiating the objective function with respect to bn+1,i and setting

the derivatives to zero,

∂ F̂
∂bn+1,i

= ξ
[

xni

bt
nxn

]
−{ f ′(bn+1,i)− f ′(bni)}+λ = 0 for i = 1,2, · · · ,m. (5.4)

Multiply (5.4) by bni and summing over i to get

ξ −
m

∑
j=1

bn j{ f ′(bn+1, j)− f ′(bn j)}+λ = 0. (5.5)

From the difference of (5.4) and (5.5),

ξ
[

xni

bt
nxn

]
−ξ −{ f ′(bn+1,i)− f ′(bni)}+

m

∑
j=1

bn j{ f ′(bn+1, j)− f ′(bn j)}= 0

(5.6)

for i = 1,2, · · · ,m.

Let

zi = bni[ f ′(bn+1,i)− f ′(bni)] for i = 1,2, · · · ,m. (5.7)

Then (5.7) can be rewritten as:

m

∑
j=1

z j =
zi

bni
+ξ
[

1− xni

bt
nxn

]
f or i = 1,2, · · · ,m. (5.8)

From (5.8), it is observed that ∑m
j=1 z j = η is a constant, not depending on the

subscript i. In fact, it can be concluded that the general solution to (5.6) is given

by (5.2) where η is any real scalar.
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Similarly, multiplying (5.4) by bn+1,i and summing over i,

ξ
[
bt

n+1xn

bt
nxn

]
−

m

∑
j=1

bn+1, j[ f ′(bn+1, j)− f ′(bn j)]+λ = 0 for i = 1,2, · · · ,m (5.9)

is obtained. The value of λ given by (5.9) is not a valid solution to ∂ F̂
∂bn+1,i

= 0 for

i = 1,2, · · · ,m because λ depends on the variable {bn+1,i}. The λ given by (5.9)

is known as pseudo Lagrange multiplier. However, it can be used to generate a

pseudo universal portfolio. Substituting the value of λ in (5.9) into (5.5), it is

observed that

ξ
[

xni−bt
n+1xn

bt
nxn

]
−{ f ′(bn+1,i)− f ′(bni)}+

m

∑
j=1

bn+1, j[ f ′(bn+1, j)− f ′(bn j)] = 0

(5.10)

for i = 1,2, · · · ,m.

Let

yi = bn+1,i[ f ′(bn+1,i)− f ′(bni)] for i = 1,2, · · · ,m. (5.11)

Again, it is seen that

m

∑
j=1

y j =
yi

bn+1,i
+ξ
[
bt

n+1xn− xni

bt
nxn

]
for i = 1,2, · · · ,m (5.12)

is a constant, say, ζ , not depending on i. By substituting ∑m
j=1 y j = ζ into

(5.10), the implicit form for bn+1 in (5.3) is obtained.

Remarks. A pseudo universal portfolio can be derived from (5.3) by

replacing bt
n+1xn on the right-hand side with ∑m

j=1 w jxn j for selected weight

{w j} such that 0 ≤ w j ≤ 1 and ∑m
j=1 w j = 1. Different ways of replacing

bt
n+1xn with an expression not depending on bn+1 are possible.
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Proposition 5.1.2: Consider the objective function F̂(bn+1,λ ) given by (5.1),

where f (t) is a convex function for t > 0 with associated Bregman divergence.

The explicit mean-value form of (5.2) is:

bn+1,i = bni +
1

f ′′(rni)

[
(η−ξ )+ξ

(
xni

bt
nxn

)]
for i = 1,2, · · · ,m (5.13)

where η is a real parameter, bni ≤ rni ≤ bn+1 or bn+1,i ≤ rni ≤ bni. The implicit

mean-value form of (5.3) is:

bn+1,i = bni +
1

f ′′(rni)

[
ζ +ξ

(
xni−bt

n+1xn

bt
nxn

)]
for i = 1,2, · · · ,m (5.14)

where ζ is a real parameter.

Proof. The mean-value theorem states that there exists an rni such that

f ′(bn+1,i)− f ′(bni) = (bn+1,i − bni) f ′′(rni) where bni ≤ rni ≤ bn+1,i or vice

versa. The rest is obvious.

Remarks. An approximate form of (5.13) may be obtained by approximating rni

as bni, namely

bn+1,i = bni +
1

f ′′(bni)

[
(η−ξ )+ξ

(
xni

bt
nxn

)]
for i = 1,2, · · · ,m. (5.15)

Proposition 5.1.3: Given the convex function f (t) = α(t + β )log[(t + β )e−1]

where the parameters α > 0, β > 0 and e = 2.718, consider the Bregman

universal portfolio generated by f (t), t > 0. The explicit form of the Bregman

universal portfolio is given by:

bn+1,i =
(1+βm)(bni +β )e

γxni
bt

nxn

∑m
j=1(bn j +β )e

γxni
bt

nxn

−β for i = 1,2, · · · ,m (5.16)

where the parameter γ > 0.

66



Proof. The derivatives of f (t) are given by: f ′(t) = log(t+β )α , f ′′(t) = α
t+β > 0

for t > 0, α > 0, β > 0. The explicit Bregman universal portfolio is given by

(5.2), namely, log(bn+1,i+β )α = log(bni+β )α +η ′+ξ ( xni
bt

nxn
) for i= 1,2, · · · ,m

where η ′ = η−ξ . Hence (bn+1,i +β )α = (bn +β )αeη ′e
ξ xni
bt

nxn and

bn+1,i +β = (bni +β )e
η ′
α e

1
α

(
ξ xni
bt

nxn

)
for i = 1,2, · · · ,m. (5.17)

Summing (5.17) over i to get

e
η ′
α =

1+βm

∑m
j=1(bn j +β )e

(
ξ
α

)( xn j
bt

nxn

) . (5.18)

Let γ = ξ
α and substituting (5.18) into (5.17), the portfolio (5.16) is

obtained.

Remarks. (i) When γ < 0, the portfolio (5.16) is still a valid portfolio. Hence

(5.16) is valid for any parameter γ provided bn+1,i ≥ 0 for i = 1,2, · · · ,m.

(ii) The portfolio (5.16) may be regarded as a generalization of the Helmbold

portfolio (Helmbold et al. (1998)) given by:

bn+1,i =
bnie

γxni
(bt

nxn)

∑m
j=1 bn je

γxn j
(bt

nxn)

. (5.19)

Observe that when β → 0 in (5.16), the portfolio (5.19) is obtained.

The empirical result obtained by running this universal portfolio generated

by Bregman divergence on the data sets J, K, L, M and N. The results are shown

in Tables 5.1, 5.2, 5.3, 5.4 and 5.5, respectively.
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Table 5.1: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by Bregman Divergence for data set J ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and β = 0.01.

γ S2500 b2501
0.43 16.29481 (0.09265, 0.09387, 0.07914, 0.65199, 0.08234)
0.44 16.41119 (0.09049, 0.09172, 0.07700, 0.66061, 0.08019)
0.45 16.32229 (0.08837, 0.08960, 0.07489, 0.66907, 0.07807)
0.46 16.32818 (0.08628, 0.08751, 0.07283, 0.67738, 0.07600)
0.47 16.32890 (0.08423, 0.08546, 0.07081, 0.68552, 0.07397)
0.48 16.32455 (0.08222, 0.08345, 0.06884, 0.69352, 0.07198)
0.49 16.31518 (0.08024, 0.08147, 0.06691, 0.70135, 0.07003)
0.50 16.30090 (0.07830, 0.07953, 0.06502, 0.70903, 0.06813)
0.51 16.28178 (0.07639, 0.07762, 0.06317, 0.71656, 0.06626)
0.52 16.25792 (0.07452, 0.07575, 0.06136, 0.72393, 0.06443)

Table 5.2: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by Bregman Divergence for data set K ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and β = 0.001.

γ S2500 b2501
-3.29 18.07213 (0.16483, 0.48914, 0.19262, 0.15129, 0.00212)
-3.28 17.35192 (0.16565, 0.49053, 0.18946, 0.15220, 0.00217)
-3.27 16.74881 (0.16645, 0.49188, 0.18635, 0.15309, 0.00222)
-3.26 18.25698 (0.16726, 0.49320, 0.18329, 0.15398, 0.00228)
-3.25 18.83454 (0.16805, 0.49446, 0.18029, 0.15486, 0.00233)
-3.24 17.84723 (0.16883, 0.49569, 0.17734, 0.15574, 0.00239)
-3.23 18.25432 (0.16961, 0.49688, 0.17445, 0.15661, 0.00245)
-3.22 17.92804 (0.17038, 0.49802, 0.17161, 0.15748, 0.00250)
-3.21 17.66083 (0.17115, 0.49913, 0.16882, 0.15834, 0.00256)
-3.20 17.78524 (0.17190, 0.50019, 0.16609, 0.15920, 0.00262)
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Table 5.3: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by Bregman Divergence for data set L ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and β = 0.01.

γ S2500 b2501
-1.62 4.35246 (0.28376, 0.00936, 0.44250, 0.22904, 0.03534)
-1.61 4.36164 (0.28416, 0.00972, 0.44033, 0.22984, 0.03594)
-1.60 4.31730 (0.28455, 0.01008, 0.43817, 0.23064, 0.03655)
-1.59 4.38673 (0.28492, 0.01045, 0.43602, 0.23143, 0.03717)
-1.58 4.44790 (0.28528, 0.01083, 0.43388, 0.23221, 0.03780)
-1.57 4.44728 (0.28563, 0.01121, 0.43176, 0.23298, 0.03843)
-1.56 4.44660 (0.28597, 0.01160, 0.42964, 0.23374, 0.03907)
-1.55 4.44587 (0.28629, 0.01199, 0.42753, 0.23449, 0.03971)
-1.54 4.44508 (0.28660, 0.01239, 0.42543, 0.23522, 0.04036)
-1.53 4.44423 (0.28689, 0.01279, 0.42334, 0.23595, 0.04102)

Table 5.4: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by Bregman Divergence for data set M ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and β = 0.00001.

γ S2500 b2501
0.47 19.94433 (0.07463, 0.13655, 0.63880, 0.07193, 0.07809)
0.48 19.95694 (0.07266, 0.13462, 0.64648, 0.07014, 0.07610)
0.49 19.96553 (0.07073, 0.13270, 0.65403, 0.06840, 0.07415)
0.50 19.97014 (0.06884, 0.13078, 0.66145, 0.06669, 0.07224)
0.51 19.97080 (0.06699, 0.12888, 0.66874, 0.06502, 0.07037)
0.52 19.96755 (0.06519, 0.12698, 0.67590, 0.06339, 0.06854)
0.53 19.96044 (0.06343, 0.12510, 0.68294, 0.06179, 0.06675)
0.54 19.94952 (0.06170, 0.12323, 0.68984, 0.06023, 0.06500)
0.55 19.93483 (0.06002, 0.12137, 0.69662, 0.05871, 0.06328)
0.56 19.91643 (0.05838, 0.11952, 0.70327, 0.05723, 0.06161)
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Table 5.5: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by Bregman Divergence for data set N ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and β = 0.001.

γ S2500 b2501
-2.13 5.01704 (0.05351, 0.21239, 0.56050, 0.15022, 0.02338)
-2.12 5.01741 (0.05405, 0.21312, 0.55793, 0.15119, 0.02371)
-2.11 5.01768 (0.05459, 0.21384, 0.55536, 0.15215, 0.02405)
-2.10 5.01786 (0.05514, 0.21456, 0.55280, 0.15311, 0.02439)
-2.09 5.01793 (0.05569, 0.21527, 0.55024, 0.15407, 0.02474)
-2.08 5.01791 (0.05624, 0.21596, 0.54768, 0.15503, 0.02508)
-2.07 5.01779 (0.05680, 0.21666, 0.54513, 0.15598, 0.02544)
-2.06 5.01757 (0.05735, 0.21734, 0.54258, 0.15693, 0.02579)
-2.05 5.01725 (0.05791, 0.21802, 0.54003, 0.15788, 0.02615)
-2.04 5.01683 (0.05848, 0.21869, 0.53749, 0.15882, 0.02652)

A close examination of 5.1, 5.2, 5.3, 5.4 and 5.5 reveal that J, K, and M are

good portfolios achieving maximum wealth of 16.3289, 18.83454 and 19.9708

units respectively. The portfolios L and N perform poorly, achieving maximum

wealth of 4.4479 and 5.01793 units respectively. Stocks in the individual

portfolios J, K and M contributing to the higher returns are the fourth, second

and third respectively. The second and fifth stocks in the portfolio L perform

poorly and hence lower weights are assigned on them. Similarly, lower weights

are assigned on the first and fifth stocks in the portfolio N due to their poor

performance.

We compared the performance of Bregman universal portfolio (5.16) with

that of the Helmbold universal portfolio (5.19). The empirical results of

Helmbold universal portfolio (5.19) are given by Tables 4.1, 4.2, 4.3, 4.4, 4.5.

The comparison indicates that the wealth achieved by the same data set for two

different universal portfolios (5.16) and (5.19) are within the same range with

small differences. Hence, the performance of universal portfolios (5.16) and

(5.19) are comparable with no significant differences. The new Bregman

universal portfolio (5.16) introduced here provides an alternative choice to the

well-known Helmbold universal portfolio (5.19).
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5.1.2 Universal Portfolio Generated by Reverse Bregman Divergence

Let the objective function

F̂(bn+1;λ ) =η
{

log(bt
nxn)+ ˆlogk

[
bt

n+1xn

bt
nxn

]}
−B f ∗(bn+1||bn)

+λ
[ m

∑
j=1

bn+1, j−1
]

where η > 0 and λ is the Lagrange multiplier. The Type k universal portfolio

generated by the reverse Bregman divergence B f ∗(bn+1||bn) is

f ′′(bn+1,i)(bn+1,i−bni) = ηuk(bn+1,bn)

(
xni

bt
nxn

)
+αn for i = 1,2, · · · ,m.

(5.20)

If there is no valid solution to λ , the solutions of Equations (5.20) will be called

pseudo solutions.

Note that

B f ∗(bn+1||bn)=B f (bn||bn+1)=
m

∑
j=1

[ f (bn j)− f (bn+1, j)− f ′(bn+1, j)(bn j−bn+1, j)].

(5.21)

From the Lemma,

∂ F̂
∂bn+1,i

= η
(

xni

bt
nxn

)
+ f ′′(bn+1,i)(bni−bn+1,i)+λ = 0 for i = 1,2, · · · ,m.

(5.22)

Multiply Equation (5.22) by bni and sum over i to get

η +
m

∑
j=1

f ′′(bn+1, j)bn j(bn j−bn+1, j)+λ = 0 (5.23)

Let

αn =−
[

η +
m

∑
j=1

f ′′(bn+1, j)bn j(bn j−bn+1, j)

]
. (5.24)
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The portfolio (5.20) is obtained by subtracting Equation (5.23) from Equation

(5.22).

Remarks. The portfolio (5.20) is valid if λ does not depend on bn+1.

Proposition 5.1.4: The following gives the Type 1 reverse Bregman universal

portfolios associated with different convex functions.

1. For the associated convex function f (t) = t log t− t +1, t > 0, the reverse

Bregman universal portfolio is

bn+1,i =
bni[βbt

nxn− xni]
−1

∑m
j=1 bn j[βbt

nxn− xn j]−1 , i = 1,2, · · · ,m, (5.25)

provided [βbt
nxn− xni]

−1 > 0.

2. For the associated convex function f (t) = (t−1)2, t > 0, the reverse chi-

square Bregman universal portfolio is

bn+1,i = bni +β
[xni− 1

m ∑m
j=1 xn j

bt
nxn

]
, i = 1,2 · · · ,m, (5.26)

provided bn+1,i ≥ 0.

Proof.

1. For f (t) = t log t− t +1, t > 0, f ′′(t) = 1
t .

Now

f ′′(bn+1,i)(bn+1,i−bni) =
1

bn+1,i
(bn+1,i−bni), i = 1,2, · · · ,m

=
ηxni

bt
nxn

+αn
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resulting in

bn+1,i =
bni[

1−η xni
bt

nxn
−αn

] , i = 1,2, · · · ,m.

Then, we evaluate the normalizing constant (bn
η ), (5.25) is obtained.

2. For f (t) = (t−1)2, t > 0, f ′′(t) = 2.

Thus,

f ′′(bn+1,i)(bn+1,i−bni) =2(bn+1,i−bni), i = 1,2, · · · ,m

=
ηxni

bt
nxn

+αn

leading to

bn+1,i =bni +
η
2

xni

bt
nxn

+
αn

2

=bni +β
(xni− 1

m ∑m
j=1 xn j

bt
nxn

)

after evaluating η
2 where β = η

2 .

5.2 f -Disparity Difference

This session gives two universal portfolios generated by f -disparity difference.
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5.2.1 Universal Portfolio Generated by f -disparity difference

Let f (t) be a convex function on (0,∞) and is strictly convex at t = 1 and satisfies

f (1) = 0. The f -divergence of two probability distribution p= (pi) and q= (qi)

is defined as

D f (p||q) =
m

∑
i=1

qi f
[

pi

qi

]
. (5.27)

The f -divergence (5.27) is known as the f -disparity difference between two

probability distributions p = (pi) and q = (qi) if f (t) is an f -disparity function

which is defined as follows. The continuous function f (t) on (0,∞) is an

f -disparity function if

1. f (t) is a decreasing function for 0 < t < 1,

2. f (t) is a increasing function for 1 < t < ∞,

3. f (1) = 0,

4. f (0) is determined by the continuous extension of f (t) (see Basu et al.

(2011), pg. 29).

The f -disparity function is also known as the phi-disparity function in the

statistical inference literature. The convex function f (t) used in the

f -divergence is an f -disparity function. The converse is not true. An

f -disparity function may not be convex on (0,∞). Thus, the f -disparity

difference (5.27) which may not be a divergence is a weaker form of (5.27).

Example. Let f (t) = (1−t)2

(1+t2)
for t ≥ 0. Then

f ′(t) =−2
[

1− t2

(1+ t2)2

]
(5.28)
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is negative for 0 < t < 1 and positive for t > 1. Noting that

f ′′(t) =
−4t

(1+ t2)3 [t
2−3],

it is clear that f ′′(t)> 0 for 0 < t <
√

3 and f ′′(t)< 0 for t >
√

3. Thus, f (t) is

not convex on (0,∞). However, f (t) is an f -disparity function.

The fact that the f -disparity difference has the same form as the f -divergence

implies that the mathematical form of the universal portfolio generated by the f -

disparity difference is the same as that generated by the f -divergence. Let f (t)

be a given f -disparity difference. Then from (Tan and Kuang (2018)), then the

Type-1 universal portfolio bn+1 generated by f (t) corresponding to the objective

function

F̂(bn+1;λ ) =η
[

log(bt
nxn)+

(
bt

n+1xn

bt
nxn

)
−1
]
−D f (bn+1||bn)

+λ
( m

∑
j=1

bn+1, j−1
) (5.29)

is given by

f ′
(

bn+1,i

bni

)
= η

(
xni

bt
nxn

)
+ξ , i = 1,2, . . . ,m, (5.30)

where λ is the Lagrange multiplier and without loss of generality, the

parameters η and ξ are assumed to be constants.

Proposition 5.2.1: For the f -disparity function f (t) = (1−t)2

(1+t2)
, t ≥ 0, a valid

version of the universal portfolio bn+1 generated by f (t) is given by

bn+1,i =
bni[v−1

i −1+ v−1
i (1−4vi)

1
2 ]

1
2

∑m
j=1 bn j[v−1

j −1+ v−1
j (1−4v j)

1
2 ]

1
2
, i = 1,2, . . . ,m (5.31)
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for 0 < vi <
1
4 , where

vi =
ηxni

bt
nxn

+ξ ; (5.32)

η and ξ are parameters.

Proof. From (5.28), (5.30) and (5.32),

f ′
(

bn+1,i

bni

)
=−2

[
(

1− b2
n+1,i

b2
ni

)

(
1+

b2
n+1,i

b2
ni

)2

]
= vi, i = 1,2, . . . ,m. (5.33)

Simplifying (5.33),

vi[b4
n+1,i +2b2

nib
2
n+1,i +b4

ni]+2b4
ni−2b2

nib
2
n+1,i = 0

or

vib4
n+1,i +2(vi−1)b2

nib
2
n+1,i + vib4

ni +2b4
ni = 0.

Solving the quadratic in b2
n+1,i, it follows that

b2
n+1,i =

1
2vi

{
2(1− vi)b2

ni±
√

4b4
ni(1−4vi)

}
, i = 1,2, . . . ,m.

Choosing the positive root,

bn+1,i = bni[v−1
i −1+ v−1

i (1−4vi)
1
2 ]

1
2 , i = 1,2, . . . ,m (5.34)

For a valid portfolio, 0≤ bn+1,i ≤ 1. Thus normalizing (5.34) leads to (5.31).

Remarks. (i) For an empirical study, the parameters η and ξ in (5.32) are

chosen so that 0 < vi <
1
4 .

(ii) For small vi, (1−4vi)
1
2 can be approximated as (1−2vi). The portfolio (5.31)
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can be replaced by

bn+1,i =
bni[2v−1

i −3]
1
2

∑m
j=1 bn j[2v−1

j −3]
1
2

(5.35)

for i = 1,2, · · · ,m.

Tables 5.6, 5.7, 5.8, 5.9 and 5.10 provides the empirical results achieved by

running the universal portfolio generated by f -disparity differences on data sets

J, K, L, M and N for 2500 trading days. The tables give the accumulated wealth

S25000 after 2500 trading days for selected value of the parameters η and ξ

together with the final portfolio b2501.

Table 5.6: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by f -disparity difference for data set J ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ S2500 b2501
-0.15 0.33 16.0048 (0.0287, 0.0849, 0.0232, 0.8157, 0.0475)
-0.15 0.29 15.9767 (0.0229, 0.0684, 0.0195, 0.8471, 0.0421)
-0.13 0.32 16.1824 (0.0374, 0.1106, 0.0306, 0.7595, 0.0619)
-0.12 0.22 15.9622 (0.0226, 0.0678, 0.0201, 0.8453, 0.0442)
-0.11 0.20 16.0118 (0.0227, 0.0683, 0.0203, 0.8436, 0.0451)
-0.10 0.18 15.9716 (0.0226, 0.0682, 0.0205, 0.8431, 0.0456)
-0.09 0.16 15.8157 (0.0224, 0.0674, 0.0204, 0.8441, 0.0457)
-0.08 0.29 15.7066 (0.0633, 0.1880, 0.0547, 0.5849, 0.1091)
-0.04 0.07 16.2445 (0.0235, 0.0709, 0.0218, 0.8344, 0.0494)
-0.02 0.26 15.7233 (0.0923, 0.2755, 0.0864, 0.3745, 0.1713)
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Table 5.7: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by f -disparity difference for data set K ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ S2500 b2501
0.38 -0.27 7.8305 (0.0643, 0.4770, 0.1591, 0.2789, 0.0207)
0.39 -0.28 7.8439 (0.0629, 0.4823, 0.1567, 0.2785, 0.0196)
0.40 -0.28 7.8766 (0.0679, 0.4814, 0.1445, 0.2858, 0.0204)
0.40 -0.29 7.8421 (0.0614, 0.4879, 0.1538, 0.2782, 0.0187)
0.41 -0.29 7.9185 (0.0666, 0.4852, 0.1435, 0.2852, 0.0195)
0.42 -0.30 7.9446 (0.0653, 0.4893, 0.1420, 0.2848, 0.0186)
0.43 -0.31 7.9554 (0.0641, 0.4937, 0.1400, 0.2846, 0.0176)
0.44 -0.32 7.9511 (0.0629, 0.4984, 0.1376, 0.2844, 0.0167)
0.45 -0.33 7.9318 (0.0617, 0.5033, 0.1348, 0.2843, 0.0159)
0.46 -0.34 7.8964 (0.0605, 0.5085, 0.1314, 0.2843, 0.0153)

Table 5.8: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by f -disparity difference for data set L ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ S2500 b2501
-0.57 0.69 5.6261 (0.0067, 0.2343, 0.6686, 0.0289, 0.0615)
-0.49 0.57 5.5615 (0.0031, 0.2981, 0.6398, 0.0176, 0.0414)
-0.48 0.58 5.6194 (0.0084, 0.2259, 0.6663, 0.0351, 0.0643)
-0.34 0.41 5.4893 (0.0113, 0.2330, 0.6382, 0.0446, 0.0729)
-0.05 0.06 7.1999 (0.0042, 0.0774, 0.8741, 0.0171, 0.0272)
0.45 -0.28 5.2723 (0.1684, 0.0174, 0.2328, 0.5396, 0.0418)
0.47 -0.31 5.2772 (0.1712, 0.0162, 0.2296, 0.5370, 0.0460)
0.48 -0.32 5.2868 (0.1713, 0.0150, 0.2309, 0.5381, 0.0447)
0.49 -0.33 5.2950 (0.1713, 0.0138, 0.2320, 0.5391, 0.0438)
0.50 -0.34 5.3016 (0.1714, 0.0125, 0.2329, 0.5403, 0.0429)

78



Table 5.9: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by f -disparity difference for data set M ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ S2500 b2501
-0.18 0.35 19.8899 (0.0106, 0.0848, 0.8375, 0.0446, 0.0225)
-0.18 0.34 19.6881 (0.0097, 0.0783, 0.8407, 0.0508, 0.0205)
-0.17 0.32 19.9981 (0.0102, 0.0798, 0.8295, 0.0589, 0.0216)
-0.17 0.35 19.4965 (0.0139, 0.1051, 0.8077, 0.0439, 0.0294)
-0.16 0.34 19.5251 (0.0163, 0.1170, 0.7828, 0.0496, 0.0343)
-0.12 0.29 19.8063 (0.0273, 0.1583, 0.6755, 0.0822, 0.0567)
-0.09 0.24 19.4608 (0.0372, 0.1869, 0.5861, 0.1132, 0.0766)
-0.07 0.19 19.7307 (0.0410, 0.1938, 0.5521, 0.1288, 0.0843)
-0.04 0.11 19.5588 (0.0457, 0.2033, 0.5122, 0.1454, 0.0934)
0.09 -0.02 19.9003 (0.0763, 0.0930, 0.0333, 0.6540, 0.1434)

Table 5.10: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Porfolio generated by f -disparity difference for data set N ,where the
initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ S2500 b2501
0.43 -0.29 5.3227 (0.0361, 0.2926, 0.1889, 0.4295, 0.0529)
0.44 -0.31 5.3005 (0.0357, 0.2727, 0.1933, 0.4382, 0.0601)
0.45 -0.32 5.3329 (0.0352, 0.2713, 0.1950, 0.4374, 0.0611)
0.45 -0.33 5.2841 (0.0359, 0.2583, 0.1981, 0.4289, 0.0788)
0.46 -0.33 5.3663 (0.0347, 0.2700, 0.1966, 0.4361, 0.0626)
0.46 -0.34 5.3036 (0.0354, 0.2561, 0.1985, 0.4257, 0.0843)
0.47 -0.34 5.4044 (0.0343, 0.2694, 0.1986, 0.4329, 0.0648)
0.47 -0.35 5.3193 (0.0348, 0.2534, 0.1984, 0.4212, 0.0922)
0.48 -0.36 5.3283 (0.0341, 0.2495, 0.1973, 0.4144, 0.1047)
0.49 -0.37 5.3221 (0.0330, 0.2429, 0.1939, 0.4028, 0.1274)

From the results above, we can observe that the best wealth is obtained for

data set M while the lowest wealth is obtained for data set N. We observed that

data sets J and M are good performing portfolios achieving maximum wealth of

16.2445 and 19.9981 respectively. Meanwhile, data sets K and L are poor

performing portfolios, achieving maximum wealth of 7.9544 and 7.1999

respectively.

The empirical results reveal that the forth stock of data set J and the third

stock of data set M are performing well in the market. Hence, the portfolios
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assign more weights on these stocks and lead to higher wealth return.

Equivalently, the first, second and fifth stock for both data sets J and L are not

performing well. Thus, the portfolios assign lower weights on them.

Tables 4.1, 4.2, 4.3, 4.4, 4.5 shows the wealth achieved by the Type 1

Helmbold universal portfolio (5.19). We compared the performance between

Type 1 Helmbold universal portfolio and the universal portfolio generated by

f -disparity differences. The results shown from both tables imply that universal

portfolio generated by f -dispariry differences performs slight better for the data

sets L and N while Type 1 Helmbold universal portfolio performs better for data

set K. There is no significant differences between the performance of these two

universal portfolio for the data sets J and M.

5.2.2 Universal Portfolio Generated by Rational Function

Let f (t) is defined as given f -disparity difference, then the Type-1 universal

portfolio bn+1 generated by f (t) corresponding to the objective function (5.29)

is given by (5.30) where λ is the Lagrange multiplier and the parameters η and

ξ are assumed to be constant.

A non-negative, continuously differentiable convex function g(t) on (0,∞)

may not satisfy the condition g(1) = 0. The function g(t) is then translated by

g(1) to satisfy f (1) = 0, e.g. f (t) = g(t)− g(1). Consider function f (t) =

g(t)−g(1) on (0,∞) where function g(t) is a given continuously differentiable,

non-negative convex function on (0,∞). For a translated convex function g(t), a
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pseudo f -divergence can be defined by

f (t) = g(t)−g(1) (5.36)

by substituting f (t) in (5.27) by (5.36).

For t ≥ 0, we consider the convex function

g(t) =
d1

(β +1)
(t + c1)

(β+1)+
d2

(1−β )
1

(t + c+2)β−1 . (5.37)

For constants c1 > 0,c2 > 0,d1 > 0,d2 < 0 and the parameter β > 1. For

β = 1, g(t) is defined as

g(t) =
d1

2
(t + c1)

2 +d2 log(t + c2). (5.38)

A pseudo f -divergence is defined by (5.27) for f (t) and g(t) given by (5.36)

and (5.37) or (5.38) respectively.

Proposition 5.2.2: Let the convex function g(t) given by (5.37) or (5.38), f (t)

given by (5.36) and the objective function (5.29).

For c1 = c2 = c > 0 and β > 1, a valid version of the universal portfolio bn+1

generated by f (t) is given by

bn+1,i =
bni
{
[ 1

2d1
(vi +

√
v2

i −4d1d2)]
1
β − c

}

∑m
j=1 bn j

{
[ 1

2d1
(v j +

√
v2

j −4d1d2)]
1
β − c

} . (5.39)

for j = 1,2, · · · ,m where

vi =
ηxni

bt
n+1xn

+ξi (5.40)

and
[ 1

2di
(vi +

√
v2

i −4d1d2)
] 1

β > c for selected values of vi and c.
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Proof. The universal portfolio bn+1 generated by the pseudo f -divergence (5.27)

is given by

f ′(t) = g′(t) = d1(t + c)β +d2(t + c)−β = vi (5.41)

for i = 1,2, · · · ,m from (5.30), (5.36), (5.37) and (5.40) where t = bn+1,i
bni

.

Simplifying the (5.41),

d1(t + c)2β − vi(t + c)β +d2 = 0. (5.42)

Solving the quadratic in (t + c) and taking the positive root,

t =
[ 1

2d1

(
vi +

√
v2

i −4d1d2
)] 1

β − c. (5.43)

Then, normalizing (5.43) leads to (5.39).

Proposition 5.2.3: Let the convex function g(t) given by (5.37) or (5.38), f (t)

given by (5.36) and the objective function (5.29).

For β = 1, a valid version of the universal portfolio bn+1 generated by f (t)

is given by

bn+1,i =

bni

[
1

2d1
[vi−d1(c1 + c2)]

+ 1
2d1

√
{vi−d1(c1 + c2)}2−4d1[d1c1c2 +d2− vic2]

]

∑m
j=1 bn j

[
1

2d1
[v j−d1(c1 + c2)]

+ 1
2d1

√
{v j−d1(c1 + c2)}2−4d1[d1c1c2 +d2− v jc2]

]

(5.44)

for i = 1,2, · · · ,m, where vi is given by (5.40) and the numerator of (5.44) is
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positive for selected values of vi, c1 and c2.

Proof. The universal portfolio bn+1 generated by the pseudo f-divergence (5.27)

is given by

f ′(t) = g′(t) = d1(t + c)+d2(t + c2)
−1 = vi (5.45)

for i = 1,2, · · · ,m from (5.30), (5.36), (5.38) and (5.40) where
bn+1,i

bni
.

Simplifying the (5.45),

d1(t + c1)(t + c2)+d2− vi(t + c2) = 0 (5.46)

for i = 1,2, · · · ,m.

Solving the quadratic in t and normalizing bn+1,i, the universal portfolio

(5.44) is obtained.

Tables 5.11, 5.12, 5.13, 5.14 and 5.15 gives the result obtained after

universal portfolio (5.39) is run on the data sets J, K, L, M and N, respectively.

Tables 5.16, 5.17, 5.18, 5.19 and 5.20 gives the result obtained after universal

portfolio (5.44) is run on the same data sets. The results obtained between two

universal portfolios (5.39) and (5.44) did not show significant differences

among them. Then, we compare the result obtained from universal portfolios

(5.39) and (5.44) with the result obtained from Type 1 Helmbold universal

portfolio (5.19). The empirical result obtained by Type 1 Helmbold universal

portfolio is shown in Tables 4.1, 4.2, 4.3, 4.4 and 4.5.
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Table 5.11: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.39) for data set J ,where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and c = 0.1.

η β ξ S2500 b2501
1.0 1.1 -2.0 17.2146 (0.0811, 0.0825, 0.0697, 0.6936, 0.0731)
1.0 1.2 -1.8 17.0865 (0.0872, 0.0886, 0.0755, 0.6698, 0.0789)
1.1 1.2 -1.8 16.9870 (0.0782, 0.0795, 0.0666, 0.7058, 0.0699)
1.2 1.3 -1.9 17.0492 (0.0768, 0.0782, 0.0654, 0.7108, 0.0688)
0.9 1.3 -2.0 17.0072 (0.1052, 0.1066, 0.0937, 0.5974, 0.0971)
0.9 1.3 -1.9 16.9640 (0.1044, 0.1058, 0.0928, 0.6007, 0.0963)
1.1 1.4 -2.0 17.2893 (0.0917, 0.0931, 0.0802, 0.6514, 0.0836)
1.2 1.5 -1.8 17.0051 (0.0887, 0.0901, 0.0769, 0.6640, 0.0803)
1.4 1.5 -2.0 16.9972 (0.0746, 0.0759, 0.0633, 0.7197, 0.0665)

Table 5.12: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.39) for data set K, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and c = 0.1.

η β ξ S2500 b2501
1.2 1.3 -2.0 19.6095 (0.0634, 0.0569, 0.7123, 0.0614, 0.1060)
1.1 1.2 -1.9 19.4867 (0.0647, 0.0580, 0.7070, 0.0626, 0.1077)
1.1 1.1 -1.9 19.4762 (0.0575, 0.0511, 0.7363, 0.0555, 0.0996)
1.5 1.7 -1.9 19.0312 (0.0655, 0.0584, 0.7033, 0.0633, 0.1095)
1.2 1.8 -2.0 19.0107 (0.0911, 0.0840, 0.6027, 0.0889, 0.1333)
1.6 2.0 -2.0 18.9782 (0.0735, 0.0662, 0.6713, 0.0713, 0.1177)
1.5 1.8 -1.9 18.9756 (0.0704, 0.0632, 0.6836, 0.0682, 0.1146)
1.5 2.1 -2.0 18.9632 (0.0832, 0.0759, 0.6330, 0.0810, 0.1269)
1.4 1.9 -1.9 18.9514 (0.0811, 0.0737, 0.6415, 0.0789, 0.1248)

Table 5.13: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.39) for data set L, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and c = 0.1.

η β ξ S2500 b2501
-2.0 1.8 0.2 6.5401 (0.2955, 0.1267, 0.1137, 0.2913, 0.1728)
-2.0 1.7 0.2 6.5400 (0.3014, 0.1227, 0.1088, 0.2968, 0.1703)
-2.0 2.9 0.4 6.5075 (0.2605, 0.1518, 0.1440, 0.2583, 0.1854)
-2.0 2.9 1.0 6.4998 (0.2696, 0.1465, 0.1342, 0.2665, 0.1832)
-2.0 1.2 -0.1 6.4991 (0.3389, 0.0984, 0.0786, 0.3309, 0.1532)
-2.0 1.2 0.2 6.4959 (0.3451, 0.0941, 0.0745, 0.3365, 0.1498)
-1.7 1.1 -0.4 6.4735 (0.3322, 0.1045, 0.0814, 0.3241, 0.1578)
-1.8 1.1 -0.3 6.4734 (0.3390, 0.0995, 0.0770, 0.3305, 0.1540)
-1.6 1.1 -0.6 6.4728 (0.3235, 0.1107, 0.0872, 0.3161, 0.1625)
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Table 5.14: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.39) for data set M, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and c = 0.1.

η β ξ S2500 b2501
1.1 1.3 -2.0 21.0694 (0.0718, 0.1304, 0.6478, 0.0749, 0.0751)
1.0 1.2 -1.9 20.9321 (0.0740, 0.1328, 0.6397, 0.0762, 0.0773)
1.1 1.4 -1.9 20.9259 (0.0776, 0.1362, 0.6256, 0.0796, 0.0810)
1.2 1.2 -2.0 20.8834 (0.0566, 0.1148, 0.7082, 0.0606, 0.0598)
1.3 1.9 -2.0 20.8725 (0.0875, 0.1447, 0.5877, 0.0892, 0.0909)
1.2 1.8 -2.0 20.8678 (0.0906, 0.1470, 0.5759, 0.0925, 0.0940)
1.3 2.7 -1.9 19.9123 (0.1155, 0.1662, 0.4851, 0.1144, 0.1188)
1.7 2.8 -2.0 19.9114 (0.0977, 0.1557, 0.5508, 0.0946, 0.1012)
1.6 2.6 -1.9 19.8951 (0.0969, 0.1551, 0.5537, 0.0939, 0.1004)

Table 5.15: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.39) for data set N, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2) and c = 0.1.

η β ξ S2500 b2501
-2.0 1.1 1.9 4.6463 (0.1288, 0.2443, 0.3240, 0.2154, 0.0875)
-1.9 1.1 1.8 4.6019 (0.1328, 0.2433, 0.3157, 0.2161, 0.0921)
-2.0 1.3 1.2 4.4774 (0.1413, 0.2342, 0.2910, 0.2282, 0.1053)
-1.9 1.3 1.8 4.4762 (0.1434, 0.2396, 0.2943, 0.2175, 0.1052)
-1.9 1.3 1.9 4.4755 (0.1438, 0.2405, 0.2947, 0.2158, 0.1052)
-2.0 1.5 1.9 4.4153 (0.1484, 0.2374, 0.2848, 0.2177, 0.1117)
-2.0 1.5 1.8 4.4140 (0.1482, 0.2365, 0.2842, 0.2192, 0.1119)
-2.0 1.5 1.7 4.4112 (0.1481, 0.2356, 0.2833, 0.2208, 0.1122)
-2.0 1.5 1.6 4.4070 (0.1481, 0.2346, 0.2823, 0.2223, 0.1127)

Table 5.16: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.44) for data set J, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ c1 c2 S2500 b2501
1.2 1.5 -2.0 0.1 17.2924 (0.0889, 0.0904, 0.0774, 0.6623, 0.0810)
1.1 1.4 -1.9 0.1 17.1842 (0.0912, 0.0926, 0.0796, 0.6534, 0.0832)
1.4 1.8 -2.0 0.1 17.1534 (0.0897, 0.0911, 0.0781, 0.6595, 0.0816)
1.4 1.7 -2.0 0.1 17.1461 (0.0850, 0.0864, 0.0734, 0.6784, 0.0768)
1.1 1.5 -1.9 0.1 17.1378 (0.0969, 0.0983, 0.0853, 0.6308, 0.0887)
1.3 1.9 -2.0 0.1 17.1356 (0.1008, 0.1022, 0.0893, 0.6149, 0.0928)
1.2 1.4 -1.9 0.1 17.1351 (0.0830, 0.0844, 0.0714, 0.6864, 0.0748)
1.2 1.6 -1.9 0.1 17.1335 (0.0940, 0.0954, 0.0824, 0.6423, 0.0859)
0.9 1.1 -1.9 0.1 17.1318 (0.0908, 0.0922, 0.0791, 0.6554, 0.0825)

85



Table 5.17: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.44) for data set K, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ c1 c2 S2500 b2501
1.2 1.3 -2.0 0.1 19.6095 (0.0634, 0.0569, 0.7123, 0.0614, 0.1060)
1.3 1.3 -2.0 0.1 19.5290 (0.0558, 0.0496, 0.7431, 0.0538, 0.0977)
1.4 1.5 -2.0 0.1 19.4671 (0.0608, 0.0542, 0.7228, 0.0587, 0.1035)
1.2 1.5 -2.0 0.1 19.4637 (0.0756, 0.0687, 0.6638, 0.0734, 0.1185)
1.4 1.7 -2.0 0.1 19.3886 (0.0714, 0.0644, 0.6803, 0.0692, 0.1147)
1.3 1.4 -1.9 0.1 19.3812 (0.0618, 0.0551, 0.7188, 0.0597, 0.1046)
1.0 1.1 -1.8 0.1 19.3583 (0.0662, 0.0594, 0.7010, 0.0641, 0.1093)
1.0 1.2 -1.9 0.1 19.3573 (0.0742, 0.0672, 0.6692, 0.0720, 0.1174)
1.1 1.2 -1.8 0.1 19.3531 (0.0644, 0.0576, 0.7084, 0.0622, 0.1074)

Table 5.18: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.44) for data set L, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ c1 c2 S2500 b2501
-2.0 1.8 0.2 0.1 6.5401 (0.2955, 0.1267, 0.1137, 0.2913, 0.1728)
-2.0 1.9 0.3 0.1 6.5390 (0.2921, 0.1291, 0.1166, 0.2881, 0.1741)
-2.0 1.9 0.2 0.1 6.5389 (0.2902, 0.1304, 0.1182, 0.2864, 0.1748)
-2.0 2.0 0.5 0.1 6.5357 (0.2911, 0.1300, 0.1172, 0.2871, 0.1746)
-2.0 1.6 -0.2 0.1 6.5356 (0.3004, 0.1236, 0.1092, 0.2958, 0.1710)
-2.0 1.4 0.1 0.1 6.5274 (0.3219, 0.1090, 0.0920, 0.3157, 0.1614)
-2.0 1.5 -0.5 0.1 6.5273 (0.3025, 0.1226, 0.1069, 0.2977, 0.1703)
-1.9 1.4 -0.1 0.1 6.5215 (0.3146, 0.1145, 0.0970, 0.3088, 0.1651)
-2.0 2.6 0.4 0.1 6.5185 (0.2678, 0.1464, 0.1375, 0.2652, 0.1831)

Table 5.19: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.44) for data set M, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ c1 c2 S2500 b2501
1.1 1.3 -2.0 0.1 21.0694 (0.0718, 0.1304, 0.6478, 0.0749, 0.0751)
1.0 1.1 -1.9 0.1 20.9148 (0.0666, 0.1257, 0.6685, 0.0693, 0.0699)
1.1 1.2 -1.9 0.1 20.9099 (0.0646, 0.1236, 0.6766, 0.0675, 0.0677)
1.2 1.2 -2.0 0.1 20.8834 (0.0566, 0.1148, 0.7082, 0.0606, 0.0598)
1.3 1.9 -2.0 0.1 20.8725 (0.0875, 0.1447, 0.5877, 0.0892, 0.0909)
1.4 2.0 -2.0 0.1 20.8071 (0.0850, 0.1429, 0.5974, 0.0863, 0.0884)
1.0 1.1 -1.8 0.1 20.8060 (0.0661, 0.1255, 0.6707, 0.0683, 0.0694)
1.1 1.3 -1.8 0.1 20.8048 (0.0710, 0.1305, 0.6514, 0.0728, 0.0743)
1.0 1.4 -1.9 0.1 20.8038 (0.0870, 0.1445, 0.5897, 0.0884, 0.0904)
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Table 5.20: The wealth S2500 and the final portfolio b2501 achieved by the
Universal Portfolio generated by rational functions (5.44) for data set N, where
the initial portfolio b1 = (0.2,0.2,0.2,0.2,0.2).

η ξ c1 c2 S2500 b2501
-2.0 1.1 1.9 0.1 4.6463 (0.1288, 0.2443, 0.3240, 0.2153, 0.0876)
-2.0 1.2 1.7 0.1 4.5730 (0.1346, 0.2406, 0.3089, 0.2208, 0.0951)
-1.9 1.2 1.9 0.1 4.5339 (0.1389, 0.2424, 0.3045, 0.2151, 0.0991)
-1.9 1.3 1.9 0.1 4.4755 (0.1438, 0.2405, 0.2947, 0.2158, 0.1052)
-2.0 1.4 1.9 0.1 4.4626 (0.1445, 0.2391, 0.2921, 0.2177, 0.1066)
-2.0 1.4 1.8 0.1 4.4614 (0.1443, 0.2382, 0.2914, 0.2193, 0.1068)
-2.0 1.4 1.3 0.1 4.4337 (0.1451, 0.2335, 0.2850, 0.2266, 0.1098)
-1.9 1.4 1.8 0.1 4.4249 (0.1476, 0.2378, 0.2863, 0.2176, 0.1107)
-2.0 1.4 1.2 0.1 4.4248 (0.1456, 0.2326, 0.2835, 0.2275, 0.1108)

We observe that the result obtained from universal portfolios (5.39) and

(5.44) are closed to the result from Type 1 Helmbold universal portfolio. The

stock-price data sets J, K and M are good peratforming portfolios while

stock-price data sets L and N are poor peratforming portfolios. However,

in-term of wealth achieved, both universal portfolio (5.39) and (5.44) peratform

slightly better for stock-price data sets J, K, L and M as compare to Type 1

Helmbold universal portfolio. But Type 1 Helmbold universal portfolio

peratform better for stock-price data set N. However, the peratformances

between Type I Helmbold universal portfolio, universal portfolio (5.39) and

(5.44) do not show any significant difference for all stock-price data sets.
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CHAPTER 6

CONCLUSION

This chapter concludes the research with a comprehensive summary. Beside,

some future works are proposed in this session.

6.1 Summary

The objective of this research is to investigate the new methods to generate new

universal portfolio with potential useful distance functions. Then, the

performance of the newly generated universal portfolios is studied and

compared with the benchmark performance. In this research, a total of 11 new

universal portfolios have been derived. There are Type 1 RPR Universal

Portfolio, Type 2 RPR Universal Portfolio, Universal Portfolio generated by

Rényi Divergence, Universal Portfolio generated by Kullback-Leibler

Divergence, Reverse Helmbold Universal Portfolio, Type k universal portfolio

generated by f -divergence, universal portfolio generated by reverse

f -divergence, universal portfolio generated by Bregman divergence, universal

portfolio generated by reverse Bregman divergence, universal portfolio

generated by f -disparity difference and universal portfolio generated by rational

function.

The core in this new parametric family of universal portfolio is the universal

portfolio generated by Csiszar f -divergence. With the right convex functions,

we able to derive many other universal portfolios from universal portfolio
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generated by f -divergence. For instance, the Helmbold universal portfolio can

be derived from universal portfolio generated by f -divergence by applying the

convex function f (t) = t log t − t + 1, where t > 0. We able to derive a few

universal portfolios by choosing the right convex functions. These universal

portfolios are universal portfolio generated by f -disparity difference and

universal portfolio generated by rational function. The performance of these

universal portfolio are studied intensively. The performance of these universal

portfolios are at the same level as the performance of the benchmark universal

portfolio, the Helmbold universal portfolio. The empirical result obtained by

running these universal portfolios on the local stock data sets.

There are a few universal portfolios derived from universal portfolios

generated by reverse f and Bregman divergences are not studied intensively.

There are the reverse Kullback-Leibler universal portfolio, reverse chi-square

universal portfolio, the reverse α-divergence universal portfolio, the reverse

Bregman universal portfolio and reverse chi-square Bregman universal

portfolio. A future study can be done to obtain the empirical results from these

universal portfolios. The results will be compared with the result obtained by

benchmark universal portfolio.

Figure 6.1 gives the new family tree for universal portfolios derived in this

thesis and their relationship.
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Figure 6.1: New Family of Universal Portfolios

The ability of the universal portfolio to assign proper weights to the

constituent stocks to achieve higher investment returns.

6.2 Future Works

We have successfully built a new parametric family of universal portfolio in this

research and their performance are on par with well-known Helmbold universal

portfolio. However, the newly derived universal portfolios fail to outperform the

Helmbold universal portfolio. Therefore, further study to search for new

methods to generate universal portfolio is suggested to future work.

Beside searching for new methods generating universal portfolio, a study of

practicality of universal portfolio in real stock exchange market is suggested for

future work. The current practical limitation of universal portfolio is the daily

stock trading that could costs a big amount of commission fee. The universal
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portfolio optimizes the allocation of the stocks daily, each change in portfolio

involves a payment of commission or brokerage fees to the broker. The

transaction costs will be costly to the investors. Therefore, further study of

universal portfolio including transaction costs is suggested for future work. The

number of portfolio changes maybe reduce in order to minimize the effect from

transaction cost charged for each portfolio changes. This can be achieved by

changing the portfolio when the components have moved to a bigger threshold.

By reducing the commission paid to the brokers, the investor’s wealth will be

increased.

We may consider to include cash-in-hand and gold in the portfolio and

observe the performance of the universal portfolios. The cash-in-hand can be

spent on the transaction cost while the gold plays an important role in a

diversified investment portfolio. The reason is the gold’s price tends to increase

in value in response to the event that the stocks’ value decline. Historically,

gold showed that it has always maintain its value over the long term.
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APPENDIX A

This section gives the graphs of the the stock data that were selected from

Kuala Lumpur Stock Exchange (KLSE) and Bloomberg. The data were

collected for 2500 trading days, for the period from 3rd January 2005 to 4th

September 2015. Stock data collected were grouped into 5 different stock data

sets. Stock data set J consists of the stocks of Public Bank, Nestle Malaysia,

Telekom Malaysia, Eco World Development Group and Gamuda. Stock data set

K consists of the stocks of AMMB Holdings, Air Asia, Encorp, IJM Corp and

Genting Plantations. Stock data set L consists of stocks of Alliance Financial

Group, DiGi.com, KSL Holdings, IJM Corp and Kulim Malaysia. Stock data

set M consists of stocks of Hong Leong Bank, DiGi.com, Eco World

Development Group, Zecon and United Malacca. Stock data set N consists of

stocks of RHB Capital, Carlsberg Brewery Malaysia, KSL Holdings, Crest

Building Holdings and Kulim Malaysia.
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SET J DATASETS
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SET K DATASETS
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SET L DATASETS
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SET M DATASETS
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SET N DATASETS
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APPENDIX B

This sessions gives the macros used to study the performance of the

universal portfolios derived via Microsoft Excel Visual Basic for Application

(VBA).

The empirical results obtained were analyzed further via Microsoft Excel.

Excel VBA Coding for Type 1 RPR universal portfolio

Sub void()
Dim alpha, zai As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim v1, v2, v3, v4, v5 As Double
Dim c1, c2, c3, c4, c5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1Do While stock < 6count = 1alpha = 0
Do While alpha < 15
zai = -10sntry = 1
Do While zai < 5sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2For i = 1 To 1500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
v1 = 1 / ( alpha * bxn + x11 )
v2 = 1 / ( alpha * bxn + x12 )
v3 = 1 / ( alpha * bxn + x13 )
v4 = 1 / ( alpha * bxn + x14 )
v5 = 1 / ( alpha * bxn + x15 )
c1 = v1 - ( 0.24 * v1 + 0.20 * v2 + 0.23 * v3 +_
0.31 * v4 + 0.21 * v5)
c2 = v2 - ( 0.17 * v1 + 0.20 * v2 + 0.33 * v3 +_
0.22 * v4 + 0.11 * v5)
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c3 = v3 - ( 0.30 * v1 + 0.27 * v2 + 0.30 * v3 +_
0.03 * v4 + 0.24 * v5)
c4 = v4 - ( 0.00 * v1 + 0.04 * v2 + 0.02 * v3 +_
0.15 * v4 + 0.31 * v5)
c5 = v5 - ( 0.29 * v1 + 0.29 * v2 + 0.13 * v3 +_
0.29 * v4 + 0.13 * v5)
b01 = b01 + bxn * c1 / zai
b02 = b02 + bxn * c2 / zai
b03 = b03 + bxn * c3 / zai
b04 = b04 + bxn * c4 / zai
b05 = b05 + bxn * c5 / zai
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = alpha
Sheet3.Cells(count, 2 + 10 * (stock - 1)) = zai
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
zai = zai + 0.01Loop
count = count + 1alpha = alpha + 2
Loop
stock = stock + 1
Loop
End Sub
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Excel VBA Coding for pseudo relaxed Type 2 RPR universal portfolio

Sub void()
Dim alpha, zai, beta As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim r1, r2, r3, r4, r5 As Double
Dim c1, c2, c3, c4, c5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearbeta=0.6stock = 1Do While stock < 6count = 1alpha = 0
Do While alpha < 15
zai = -10sntry = 1
Do While zai < 30sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2For i = 1 To 1500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
r1 = 1 / ( alpha * bxn * bxn + ( x11 - beta ) *_
bxn + beta * x11 )
r2 = 1 / ( alpha * bxn * bxn + ( x12 - beta ) *_
bxn + beta * x12 )
r3 = 1 / ( alpha * bxn * bxn + ( x13 - beta ) *_
bxn + beta * x13 )
r4 = 1 / ( alpha * bxn * bxn + ( x14 - beta ) *_
bxn + beta * x14 )
r5 = 1 / ( alpha * bxn * bxn + ( x15 - beta ) *_
bxn + beta * x15 )
c1 = r1 - 0.2 * (v1 + v2 + v3 + v4 + v5)
c2 = r2 - 0.2 * (v1 + v2 + v3 + v4 + v5)
c3 = r3 - 0.2 * (v1 + v2 + v3 + v4 + v5)
c4 = r4 - 0.2 * (v1 + v2 + v3 + v4 + v5)
c5 = r5 - 0.2 * (v1 + v2 + v3 + v4 + v5)
b01 = b01 + bxn * bxn * c1 / zai
b02 = b02 + bxn * bxn * c2 / zai
b03 = b03 + bxn * bxn * c3 / zai
b04 = b04 + bxn * bxn * c4 / zai
b05 = b05 + bxn * bxn * c5 / zai
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
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If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = alpha
Sheet3.Cells(count, 2 + 10 * (stock - 1)) = zai
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
zai = zai + 0.01Loop
count = count + 1alpha = alpha + 2
Loop
stock = stock + 1
Loop
End Sub
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Excel VBA Coding for pseudo relaxed Rényi universal portfolio

Sub void()
Dim alpha, beta, gamma As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim c1, c2, c3, c4, c5 As Double
Dim m1, m2, m3, m4, m5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1alpha = 10
beta = 6Do While stock < 6count = 1gamma = 0
sntry = 1
Do While gamma < 5
sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2For i = 1 To 1500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
c1 = ( beta * bxn ) - ( gamma - x11 )
c2 = ( beta * bxn ) - ( gamma - x12 )
c3 = ( beta * bxn ) - ( gamma - x13 )
c4 = ( beta * bxn ) - ( gamma - x14 )
c5 = ( beta * bxn ) - ( gamma - x15 )
m1 = ( c1 ˆ ( 1 / ( alpha - 1 ) ) ) * b01
m2 = ( c2 ˆ ( 1 / ( alpha - 1 ) ) ) * b02
m3 = ( c3 ˆ ( 1 / ( alpha - 1 ) ) ) * b03
m4 = ( c4 ˆ ( 1 / ( alpha - 1 ) ) ) * b04
m5 = ( c5 ˆ ( 1 / ( alpha - 1 ) ) ) * b05
bnxc = m1 + m2 + m3 + m4 + m5
b01 = m1 / ( m1 + m2 + m3 + m4 + m5 )
b02 = m2 / ( m1 + m2 + m3 + m4 + m5 )
b03 = m3 / ( m1 + m2 + m3 + m4 + m5 )
b04 = m4 / ( m1 + m2 + m3 + m4 + m5 )
b05 = m5 / ( m1 + m2 + m3 + m4 + m5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = alpha
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Sheet3.Cells(count, 2 + 10 * (stock - 1)) = zai
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
gamma = gamma + 0.01
count = count + 1Loop
stock = stock + 1
Loop
End Sub
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Excel VBA Coding for pseudo relaxed Kullback-Leibler universal portfolio

Sub void()
Dim alpha, beta, gamma As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim c1, c2, c3, c4, c5 As Double
Dim d1, d2, d3, d4, d5 As Double
Dim m1, m2, m3, m4, m5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1alpha = 10
beta = 6Do While stock < 6count = 1gamma = 0
sntry = 1
Do While gamma < 5
sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2For i = 1 To 1500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
c1 = ( beta * bxn ) - ( gamma - x11 )
c2 = ( beta * bxn ) - ( gamma - x12 )
c3 = ( beta * bxn ) - ( gamma - x13 )
c4 = ( beta * bxn ) - ( gamma - x14 )
c5 = ( beta * bxn ) - ( gamma - x15 )
d1 = exp ( c1 / ( beta * bnx ) )
d2 = exp ( c2 / ( beta * bnx ) )
d3 = exp ( c3 / ( beta * bnx ) )
d4 = exp ( c4 / ( beta * bnx ) )
d5 = exp ( c5 / ( beta * bnx ) )
m1 = ( d1 ˆ ( 1 / ( alpha - 1 ) ) ) * b01
m2 = ( d2 ˆ ( 1 / ( alpha - 1 ) ) ) * b02
m3 = ( d3 ˆ ( 1 / ( alpha - 1 ) ) ) * b03
m4 = ( d4 ˆ ( 1 / ( alpha - 1 ) ) ) * b04
m5 = ( d5 ˆ ( 1 / ( alpha - 1 ) ) ) * b05
b01 = m1 / ( m1 + m2 + m3 + m4 + m5 )
b02 = m2 / ( m1 + m2 + m3 + m4 + m5 )
b03 = m3 / ( m1 + m2 + m3 + m4 + m5 )
b04 = m4 / ( m1 + m2 + m3 + m4 + m5 )
b05 = m5 / ( m1 + m2 + m3 + m4 + m5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxn
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End If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = alpha
Sheet3.Cells(count, 2 + 10 * (stock - 1)) = zai
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
gamma = gamma + 0.01
count = count + 1Loop
stock = stock + 1
Loop
End Sub

Excel VBA Coding for Reverse Helmbold universal portfolio

Sub void()
Dim beta As DoubleDim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim c1, c2, c3, c4, c5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1Do While stock < 6count = 1gamma = 0
beta = 6sntry = 1
Do While beta < 1000sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2For i = 1 To 1500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
c1 = b01 * 1 / ( ( beta * bnx ) - x11 )
c2 = b02 * 1 / ( ( beta * bnx ) - x12 )
c3 = b03 * 1 / ( ( beta * bnx ) - x13 )
c4 = b04 * 1 / ( ( beta * bnx ) - x14 )
c5 = b05 * 1 / ( ( beta * bnx ) - x15 )
b01 = c1 / ( c1 + c2 + c3 + c4 + c5 )
b02 = c2 / ( c1 + c2 + c3 + c4 + c5 )
b03 = c3 / ( c1 + c2 + c3 + c4 + c5 )
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b04 = c4 / ( c1 + c2 + c3 + c4 + c5 )
b05 = c5 / ( c1 + c2 + c3 + c4 + c5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = alpha
Sheet3.Cells(count, 2 + 10 * (stock - 1)) = zai
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
beta = beta + 0.01count = count + 1Loop
stock = stock + 1
Loop
End Sub

Excel VBA Coding for Type 1 Helmbold universal portfolio

Sub void()
Dim eta As DoubleDim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim c1, c2, c3, c4, c5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1Do While stock < 6count = 1gamma = 0
sntry = 1
Do While gamma < 5
sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2For i = 1 To 2500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
c1 = b01 * exp ( eta * x11 / bnx )
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c2 = b02 * exp ( eta * x12 / bnx )
c3 = b03 * exp ( eta * x13 / bnx )
c4 = b04 * exp ( eta * x14 / bnx )
c5 = b05 * exp ( eta * x15 / bnx )
b01 = c1 / ( c1 + c2 + c3 + c4 + c5 )
b02 = c2 / ( c1 + c2 + c3 + c4 + c5 )
b03 = c3 / ( c1 + c2 + c3 + c4 + c5 )
b04 = c4 / ( c1 + c2 + c3 + c4 + c5 )
b05 = c5 / ( c1 + c2 + c3 + c4 + c5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = eta
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
eta = eta + 0.01count = count + 1Loop
stock = stock + 1
Loop
End Sub

Excel VBA Coding for Type 2 Helmbold universal portfolio

Sub void()
Dim eta, gamma As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim c1, c2, c3, c4, c5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1Do While stock < 6count = 1gamma = 0
sntry = 1
Do While gamma < 5
sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2eta = -10do while eta < 10
For i = 1 To 2500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
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x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
c1 = b01 * exp ( eta * x11 / bnx )
c2 = b02 * exp ( eta * x12 / bnx )
c3 = b03 * exp ( eta * x13 / bnx )
c4 = b04 * exp ( eta * x14 / bnx )
c5 = b05 * exp ( eta * x15 / bnx )
b01 = c1 / ( c1 + c2 + c3 + c4 + c5 )
b02 = c2 / ( c1 + c2 + c3 + c4 + c5 )
b03 = c3 / ( c1 + c2 + c3 + c4 + c5 )
b04 = c4 / ( c1 + c2 + c3 + c4 + c5 )
b05 = c5 / ( c1 + c2 + c3 + c4 + c5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = eta
Sheet3.Cells(count, 2 + 10 * (stock - 1)) = gamma
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
eta = eta + 0.01count = count + 1Loop
gamma = gamma + 0.1
Loop
stock = stock + 1
Loop
End Sub

Excel VBA Coding for Bregman universal porttfolio

Sub void()
Dim beta, gamma As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim c1, c2, c3, c4, c5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1m = 5Do While stock < 6count = 1eta = -10sntry = 1
Do while beta < 10
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sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2gamma = 0
Do While gamma < 5
For i = 1 To 2500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
c1 = ( b01 + beta ) * exp ( gamma * x11 / bnx )
c2 = ( b02 + beta ) * exp ( gamma * x12 / bnx )
c3 = ( b03 + beta ) * exp ( gamma * x13 / bnx )
c4 = ( b04 + beta ) * exp ( gamma * x14 / bnx )
c5 = ( b05 + beta ) * exp ( gamma * x15 / bnx )
b01 = ( 1 + beta * m ) * c1 / ( c1 + c2 + c3 + c4 + c5 )
b02 = ( 1 + beta * m ) * c2 / ( c1 + c2 + c3 + c4 + c5 )
b03 = ( 1 + beta * m ) * c3 / ( c1 + c2 + c3 + c4 + c5 )
b04 = ( 1 + beta * m ) * c4 / ( c1 + c2 + c3 + c4 + c5 )
b05 = ( 1 + beta * m ) * c5 / ( c1 + c2 + c3 + c4 + c5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = beta
Sheet3.Cells(count, 2 + 10 * (stock - 1)) = gamma
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
gamma = gamma + 0.01
count = count + 1Loop
beta = beta + 0.0001Loop
stock = stock + 1
Loop
End Sub

Excel VBA Coding for universal portfolio generated by f -disparity

difference

Sub void()
Dim eta, xi As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
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Dim x21, x22, x23, x24, x25 As Double
Dim bxn As DoubleDim v1, v2, v3, v4, v5 As Double
Dim c1, c2, c3, c4, c5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1m = 5Do While stock < 6count = 1eta = -10sntry = 1
Do while eta < 10sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2xi = 0Do While xi < 5
For i = 1 To 2500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
v1 = ( eta * x11 )/ ( bxn ) + xi
v2 = ( eta * x12 )/ ( bxn ) + xi
v3 = ( eta * x13 )/ ( bxn ) + xi
v4 = ( eta * x14 )/ ( bxn ) + xi
v5 = ( eta * x15 )/ ( bxn ) + xi
c1 = b01 * ( 2 / v1 - 3 ) ˆ ( 0.5 )
c2 = b02 * ( 2 / v2 - 3 ) ˆ ( 0.5 )
c3 = b03 * ( 2 / v3 - 3 ) ˆ ( 0.5 )
c4 = b04 * ( 2 / v4 - 3 ) ˆ ( 0.5 )
c5 = b05 * ( 2 / v5 - 3 ) ˆ ( 0.5 )
b01 = c1 / ( c1 + c2 + c3 + c4 + c5 )
b02 = c2 / ( c1 + c2 + c3 + c4 + c5 )
b03 = c3 / ( c1 + c2 + c3 + c4 + c5 )
b04 = c4 / ( c1 + c2 + c3 + c4 + c5 )
b05 = c5 / ( c1 + c2 + c3 + c4 + c5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = eta
Sheet3.Cells(count, 2 + 10 * (stock - 1)) = xi
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
gamma = gamma + 0.01
count = count + 1
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Loop
beta = beta + 0.0001Loop
stock = stock + 1
Loop
End Sub

Excel VBA Coding for universal portfolio generated by rational functions

(4.28)

Sub void()
Dim eta, beta, xi As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
dim c, d1, d2 as Double
Dim bxn As DoubleDim v1, v2, v3, v4, v5 As Double
Dim c1, c2, c3, c4, c5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1Do While stock < 6eta = -10
Do while eta <10
count = 1sntry = 1
beta = 1c1 = -5
Do while c1 < 10c2 = -5Do while c2 < 10sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2xi = -5Do While xi < 5
For i = 1 To 2500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
v1 = ( eta * x11 )/ ( bxn ) + xi
v2 = ( eta * x12 )/ ( bxn ) + xi
v3 = ( eta * x13 )/ ( bxn ) + xi
v4 = ( eta * x14 )/ ( bxn ) + xi
v5 = ( eta * x15 )/ ( bxn ) + xi
c1 = b01 * ( ( 1 / ( 2 * d1 ) * ( v1 + sqrt( v1 * v1 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c2 = b02 * ( ( 1 / ( 2 * d2 ) * ( v2 + sqrt( v2 * v2 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c3 = b03 * ( ( 1 / ( 2 * d3 ) * ( v3 + sqrt( v3 * v3 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c4 = b04 * ( ( 1 / ( 2 * d4 ) * ( v4 + sqrt( v4 * v4 -_
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4 * d1 * d2 )))ˆ(1/beta)) - c
c5 = b05 * ( ( 1 / ( 2 * d5 ) * ( v5 + sqrt( v5 * v5 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c2 = b02 * ( 2 / v2 - 3 ) ˆ ( 0.5 )
c3 = b03 * ( 2 / v3 - 3 ) ˆ ( 0.5 )
c4 = b04 * ( 2 / v4 - 3 ) ˆ ( 0.5 )
c5 = b05 * ( 2 / v5 - 3 ) ˆ ( 0.5 )
b01 = c1 / ( c1 + c2 + c3 + c4 + c5 )
b02 = c2 / ( c1 + c2 + c3 + c4 + c5 )
b03 = c3 / ( c1 + c2 + c3 + c4 + c5 )
b04 = c4 / ( c1 + c2 + c3 + c4 + c5 )
b05 = c5 / ( c1 + c2 + c3 + c4 + c5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 11 * (stock - 1)) = eta
Sheet3.Cells(count, 2 + 11 * (stock - 1)) = c1
Sheet3.Cells(count, 3 + 11 * (stock - 1)) = c1
Sheet3.Cells(count, 4 + 11 * (stock - 1)) = xi
Sheet3.Cells(count, 5 + 11 * (stock - 1)) = sn
Sheet3.Cells(count, 6 + 11 * (stock - 1)) = b01
Sheet3.Cells(count, 7 + 11 * (stock - 1)) = b02
Sheet3.Cells(count, 8 + 11 * (stock - 1)) = b03
Sheet3.Cells(count, 9 + 11 * (stock - 1)) = b04
Sheet3.Cells(count, 10 + 11 * (stock - 1)) = b05
End If
xi = xi + 0.01count = count + 1Loop
c2 = c2 + 0.01Loop
c1 = c1 + 0.01Loop
eta = eta + 0.01Loop
stock = stock + 1Loop
End Sub

Excel VBA Coding for universal portfolio generated by rational functions

(4.30)

Sub void()
Dim eta, beta, xi As Double
Dim b01, b02, b03, b04, b05 As Double
Dim x11, x12, x13, x14, x15 As Double
Dim x21, x22, x23, x24, x25 As Double
dim c1, c2, d1, d2 as Double
Dim bxn As DoubleDim v1, v2, v3, v4, v5 As Double
Dim m1, m2, m3, m4, m5 As Double
Dim bnxn As DoubleDim sn As DoubleDim stock As Integer
Dim bnxc As DoubleDim count As Integer
Dim sntry As Double
Sheet3.Cells.Clearstock = 1Do While stock < 6eta = -10
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Do while eta <10
count = 1sntry = 1
beta = 0
Do while beta < 10sn = 1b01 = 0.2b02 = 0.2b03 = 0.2b04 = 0.2b05 = 0.2xi = -5c=0.1Do While xi < 5
For i = 1 To 2500
x11 = Sheet2.Cells(i + 1, 1 + 6 * (stock - 1))
x12 = Sheet2.Cells(i + 1, 2 + 6 * (stock - 1))
x13 = Sheet2.Cells(i + 1, 3 + 6 * (stock - 1))
x14 = Sheet2.Cells(i + 1, 4 + 6 * (stock - 1))
x15 = Sheet2.Cells(i + 1, 5 + 6 * (stock - 1))
x21 = Sheet2.Cells(i + 2, 1 + 6 * (stock - 1))
x22 = Sheet2.Cells(i + 2, 2 + 6 * (stock - 1))
x23 = Sheet2.Cells(i + 2, 3 + 6 * (stock - 1))
x24 = Sheet2.Cells(i + 2, 4 + 6 * (stock - 1))
x25 = Sheet2.Cells(i + 2, 5 + 6 * (stock - 1))
bxn = x11 * b01 + x12 * b02 + x13 * b03 +_
x14 * b04 + x15 * b05
v1 = ( eta * x11 )/ ( bxn ) + xi
v2 = ( eta * x12 )/ ( bxn ) + xi
v3 = ( eta * x13 )/ ( bxn ) + xi
v4 = ( eta * x14 )/ ( bxn ) + xi
v5 = ( eta * x15 )/ ( bxn ) + xi
c1 = b01 * ( ( 1 / ( 2 * d1 ) * ( v1 + sqrt( v1 * v1 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c2 = b02 * ( ( 1 / ( 2 * d2 ) * ( v2 + sqrt( v2 * v2 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c3 = b03 * ( ( 1 / ( 2 * d3 ) * ( v3 + sqrt( v3 * v3 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c4 = b04 * ( ( 1 / ( 2 * d4 ) * ( v4 + sqrt( v4 * v4 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c5 = b05 * ( ( 1 / ( 2 * d5 ) * ( v5 + sqrt( v5 * v5 -_
4 * d1 * d2 )))ˆ(1/beta)) - c
c2 = b02 * ( 2 / v2 - 3 ) ˆ ( 0.5 )
c3 = b03 * ( 2 / v3 - 3 ) ˆ ( 0.5 )
c4 = b04 * ( 2 / v4 - 3 ) ˆ ( 0.5 )
c5 = b05 * ( 2 / v5 - 3 ) ˆ ( 0.5 )
b01 = c1 / ( c1 + c2 + c3 + c4 + c5 )
b02 = c2 / ( c1 + c2 + c3 + c4 + c5 )
b03 = c3 / ( c1 + c2 + c3 + c4 + c5 )
b04 = c4 / ( c1 + c2 + c3 + c4 + c5 )
b05 = c5 / ( c1 + c2 + c3 + c4 + c5 )
If b01 < 0 Or b02 < 0 Or b03 < 0 Or b04 < 0 Or b05 < 0 ThenExit ForElsebnxn = b01 * x21 + b02 * x22 + b03 * x23 + b04 * x24 +_
b05 * x25sn = sn * bnxnEnd If
Next i
If b01 > 0 And b02 > 0 And b03 > 0 And_
b04 > 0 And b05 > 0 And sn > sntry Then
sntry = sn
Sheet3.Cells(count, 1 + 10 * (stock - 1)) = eta
Sheet3.Cells(count, 2 + 10 * (stock - 1)) = beta
Sheet3.Cells(count, 3 + 10 * (stock - 1)) = xi
Sheet3.Cells(count, 4 + 10 * (stock - 1)) = sn
Sheet3.Cells(count, 5 + 10 * (stock - 1)) = b01
Sheet3.Cells(count, 6 + 10 * (stock - 1)) = b02
Sheet3.Cells(count, 7 + 10 * (stock - 1)) = b03
Sheet3.Cells(count, 8 + 10 * (stock - 1)) = b04
Sheet3.Cells(count, 9 + 10 * (stock - 1)) = b05
End If
xi = xi + 0.01
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count = count + 1Loop
beta = beta + 0.01Loop
eta = eta + 0.01Loop
stock = stock + 1Loop
End Sub
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