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ABSTRACT 

 

Many hand rehabilitation systems have only one preprogramed exercise 

protocol, do not measure the recovery progress, are costly, heavy and also do 

not have built-in safety mechanisms. Therefore, the aim of this study is to 

design and construct an affordable and light-weight hand rehabilitation 

exoskeleton system that could provide continuous passive movement to the 

finger and wrist joints, allow the patient to choose between different 

rehabilitation protocols and review their recovery progress. The rehabilitation 

system constructed incorporated ESP32, flex sensors, MG995 servo motors 

and android mobile application. Moreover, origami string theory and 3D 

printing technology was integrated into the transmission mechanism design. 

From the results obtained, the transmission mechanism can actuate MCP and 

PIP flexion and extension as well as radiocarpal extension movements that 

respect the static constraints of the hand and do not exceed the maximum 

angular velocities that can be naturally generated. In addition, the 

transmission mechanism was capable of actuating movements at 3 different 

angular velocities. Furthermore, the sensing system could measure maximum 

angle values that have an accuracy comparable to other studies except for 0° 

angles. Next, the total cost of the rehabilitation system was RM 533.70 and 

the segments attached to the hand weighed only 250 g. In conclusion, all the 

objectives were met. In the future, the transmission mechanism can be 

improved to generate more torque, formfitting gloves and goniometers can be 

used to increase the accuracy of the sensing system and a cloud database 

could be used to track recovery progress of patients. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

With a lack of man power and the ongoing pandemic, it is important for post-

stroke patients to utilise hand rehabilitative exoskeletons as a 

telerehabilitation alternative to physical physiotherapist sessions in order to 

carry out repetitive rehabilitation exercises.  

 This project aims to design a hand exoskeleton system that can 

provide continuous passive movement to the finger and wrist joints and allow 

the patient to choose between different rehabilitation protocols as well as 

review their recovery progress. 

 

1.2 Importance of the Study 

The results of this present study may provide insight in designing a hand 

exoskeleton rehabilitation system that is safe, cost-effective, light and allows 

users to interact with it via mobile phone. Moreover, this study will 

contribute to a better understanding on how to integrate origami string theory 

into designing transmission mechanisms. 

 

1.3 Problem Statement 

At present, there are many different hand rehabilitation exoskeleton systems 

that are in the market or under development. However, few of them generate 

movement at the wrist, have customisable rehabilitation modes or have user 

interfaces. 

 

1.3.1 Lack of Customizable Rehabilitation Modes 

Many hand exoskeleton systems can only perform one preprogrammed 

exercise protocol. This is not sufficient because post-stroke patients have 

varying severity of complications. For example, for patients with spasticity, 

their muscle tone increases with the increase in stretching velocity. Therefore, 

if they were to use hand exoskeleton that actuates high angular velocities, 

they may feel discomfort or pain.  
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1.3.2 Lack of Recovery Progress Measurement 

Many hand exoskeletons can only generate movement of the finger and hand 

joints. They do not have sensors that measure the recovery progress of the 

patient. This would mean that the patients themselves would not be able to 

detect whether the rehabilitation exercises conducted by the hand 

rehabilitation exoskeleton system is effective. 

 

1.3.3 Costly and Heavy 

Most hand exoskeletons are priced around RM 3000. This may be 

unaffordable for patients to purchase for home rehabilitation. With 

physiotherapy sessions in Malaysia costing around RM 150 to RM 250 per 

session, RM 3000 can allow the patient to attend at least twelve sessions of 

physiotherapy. This means that it is still more cost effective to attend live 

physiotherapy sessions compared to purchasing a hand rehabilitation 

exoskeleton. Moreover, some hand exoskeletons found in the market survey 

are as heavy as 2.3 kg. With a weight this large, the hand will feel lethargic 

and uncomfortable after a while. 

 

1.3.4 Lack of Protection Against Unintended Motions 

Many exoskeletons like most tendon wire-based exoskeletons and some 

mechanical linkage exoskeletons do not have a built-in design their 

transmission mechanism to prevent actuating unintended motions. Over 

flexion or extension of finger and wrist joints exceeding their static 

constraints would injure and cause pain to the patient. 

 

1.4 Aim and Objectives 

The aim of this project was to design a hand rehabilitation exoskeleton 

system that could provide continuous passive movement to the finger and 

wrist joints and allow the patient to choose between different rehabilitation 

protocols as well as to review their recovery progress. The objectives were to:  

 

• Design and construct a transmission mechanism that has 9 degrees of 

freedom and can generate extension movement at the radiocarpal joint 
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and coupled flexion and extension movements at the 

Metacarpophalangeal (MCP) and Proximal Interphalangeal (PIP) joints of 

the 4 fingers (index, middle, ring and little fingers).  

• Design and construct a transmission mechanism that actuates movements 

that respect the static constraints of the hand and does not exceed the 

maximum angular velocities that can be generated by the hand naturally. 

• Design and construct a sensing system that can measure the maximum 

angle of flexion at the MCP joint and maximum angle of extension at the 

wrist joint for recovery progress measurement. 

• Design and construct a hand exoskeleton rehabilitation system that cost 

less than RM 1500 with the sections attached to the hand weighing less 

than 500 g. 

• Design and construct a user interface that allows the patient to choose 

between 3 levels of angular velocity that is generated by the transmission 

mechanism and allows the patient view their recovery progress. 

 

1.5 Scope and Limitation of the Study 

The scope of this study was to design and construct a hand rehabilitation 

exoskeleton system that can generate extension movement at the radiocarpal 

joint and coupled flexion and extension movements at the MCP and PIP 

joints of the 4 fingers (index, middle, ring and little fingers), measure the 

maximum angle of flexion at the MCP joint and maximum angle of extension 

at the wrist joint, allows the patient to choose between 3 levels of angular 

velocity that is generated by the transmission mechanism and allows the 

patient view their recovery progress. 

 This study had to be completed within 8 months. As such, due to 

time limitation, the hand rehabilitation exoskeleton system was not tested on 

subjects. Therefore, the efficacy of the rehabilitation system in improving the 

finger and wrist movements of post-stroke patients are not known. 

 

1.6 Contribution of the Study 

This study will design and construct a hand exoskeleton rehabilitation system 
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that is safe, cost-effective, light and allows users to interact with it via mobile 

phone. Moreover, this study will integrate origami string theory into the 

transmission mechanism design for the hand rehabilitation system. 

 

1.7 Outline of the Report 

The content of the report was distributed as shown in Table 1.1. 

 

Table 1.1: Outline of Report 

Chapter Content 

1 This chapter explains the importance of this study, identifies the 

problem statements and objectives of the study, states the scope 

and limitations of the project and highlights the importance and 

contributions of the study. 

2 This chapter contains the literature review on the following 

topics: the effects of stoke and its prevalence, the anatomy, 

kinematics and kinetics of the hand, Internet of Things 

architecture, market research, design considerations, exoskeleton 

system design, origami string theory, motor recovery evaluation 

and the effectiveness of folding origami for hand rehabilitation. 

3 This chapter contains the specification for rehabilitation system, 

system architecture design and materials chosen, total 

expenditure, work plan, Work Breakdown Structure, Gantt Chart 

and methods used to test and analyse the performance of the 

rehabilitation system. 

4 This chapter covers the design and construction of the following 

systems: electrical circuit, transmission mechanism, sensing 

system, and origami tutorial functionality. In addition, it also 

covers the method used to integrate these systems together. 

5 This chapter displays and evaluates the performance of the 

following areas: transmission system, sensing system, user 

interface, total cost of rehabilitation system and total weight of 

transmission mechanism attached to the hand. 

6 This chapter covers the conclusion of the entire study as well as 
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possible future work that can be done. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

A literature review was conducted to study the prevalence and effects of stroke, 

the properties of the human hand, the architecture of Internet of Things, 

conduct market research on hand exoskeletons as well as determine the design 

considerations and components required. The results of this review will be 

used to set the specifications of the hand exoskeleton as well as select suitable 

technology for the design of the exoskeleton system. 

 

2.2 Stroke and its Prevalence 

Stroke is a cerebrovascular disease that hinders the provision of oxygen and 

nutrients to the brain cells thus causing the demise of these cells.  

According to the World Stroke Organization, there are 12.2 million 

new strokes cases annually, with 101 million stroke survivors living with 

complications on a global scale. Stroke has the third highest disability-adjusted 

life years (DALYs) which indicates that this lifestyle disease places a huge 

burden on society, with 89 % of this burden concentrated in low- and middle-

income countries (Feigin et al., 2022). World Health Organization explains 

that DALYs is the aggregation of years forfeited by premature demise and the 

years existing in suboptimal health (World Health Organization, 2013). This 

shows that there is a huge market for rehabilitation devices that target post-

stroke patients. 

 

2.3 Post-stroke Effects 

They can be categorized into a few types: physical symptoms, cognitive 

symptoms and emotional symptoms. Some of the physical symptoms are loss 

in stamina, drop foot, loss in muscle strength, spasticity, contractures and 

sensory alterations (Stroke Association, 2013).  
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2.3.1 Spasticity 

Spasticity occurs in around 30 % to 80 % of post-stroke patients. 66 % of 

patients suffering from spasticity have it affect their flexor muscles in their 

wrist and fingers (Kuo and Hu, 2018). Spasticity is a velocity-dependent 

increase in muscle tone that causes the muscles to become stiff, in constant 

contraction and resistive to stretching. When spasticity occurs in the flexor 

muscles of the wrist and fingers, it will cause a decrease in range of motion on 

the finger and wrist joints as well as evoke pain to the patient. (American 

Stroke Association, 2019) This impairment will restrict the patient from 

carrying out their daily activities such as grabbing objects and pinching. This 

lack of autonomy will reduce their quality of life because they will have be 

dependent on their caregivers to carry out basic tasks or even be placed in care 

facilities.  

 

2.4 Treatment for Spasticity 

Treatment for spasticity include both pharmacological and physical 

management techniques. Physical management techniques can be divided into 

5 categories: active rehabilitation, passive rehabilitation / stretching, 

positioning, standing and supplementary exercises. Active rehabilitation 

exercises include: progressive resistance exercises to increase the strength of 

the affected limb, neuromuscular electrical stimulation to activate affected 

muscles, and using electromyography-driven robotics to provide active-

assisted rehabilitation. On the other hand, passive rehabilitation exercises 

include: passive stretching of joints to increase the mobility of the joints, using 

continuous motion robots that provide continuous passive movements (CPM) 

to the affected limb, and wearing orthotics to prevent the affected muscle from 

contracting (Monaghan et al., 2011).  

 

2.5 Anatomy of the Hand 

A human hand consists of five fingers, a palm and a wrist. The little, ring, 

middle and index fingers each contain three phalanges: distal, intermediate and 

proximal phalanges. In addition, these four fingers each contain three joints: 

distal interphalangeal (DIP), proximal interphalangeal (PIP), and 

metacarpophalangeal (MCP) joints. On the other hand, the thumb contains 
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only two phalanges: distal and proximal phalanges. The thumb has three joints: 

interphalangeal (IP), metacarpophalangeal (MCP) and carpometacarpal (CMC) 

joints.  

The palm contains five metacarpal bones while the wrist contains of eight 

bones: scaphoid, triquetrum, lunate, capitate, trapezoid, hamate, trapezium and 

pisiform. Furthermore, the wrist has four joints: ulnocarpal, distal radioulnar, 

radiocarpal and scaphotrapeziotrapezoid joints (American Society for Surgery 

of the Hand, 2022). 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Joints and Bones in a Human Hand (American Society for Surgery 

of the Hand, 2022). 

  

2.6 Kinematics and Kinetics of the Hand 

In total, there are twenty-seven degrees of freedom (DoF) in a human hand. 

One DoF means that the joint can move about in one axis of rotation. The little, 

ring, middle and index fingers each contain four DoF: one DoF at the DIP 

joint (motions: flexion / extension), one DoF at the PIP joint (motions: flexion 

/ extension), and two DoF at the MCP joint (motions: flexion / extension and 

adduction / abduction). The thumb contains five DoF: one DoF at the IP joint 

(motions: flexion / extension), two DoF at the MCP joint (motions: flexion / 

extension and adduction / abduction), and two DoF at the CMC joint (motions: 

flexion / extension and adduction / abduction). The palm contains six DoF: 
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three DoF for translation and three DoF for rotation motions. (Rahman and Al-

Jumaily, 2013) 

The twenty-seven DoF human hand model does not contain DoF for 

wrist. Therefore, besides finger and palm movements, the wrist contains three 

DoF: two DoF at radiocarpal joint (motions: flexion / extension and abduction 

/ adduction) and one DoF for rotation motion. (Palmer et al., 1985) 

 Referring to the results obtained from Chen Chen et al. (2013a), the 

maximum angular velocities of the finger joints of healthy subjects during 

flexion and extension can be seen at Table 2.1. 

 

Table 2.1: Maximum Angular Velocity at the Finger Joints for Males and 

Females during Flexion and Extension Motions. 

Joint Maximum Angular Velocity (°/s) 

Males Females 

DIP 574 572 

PIP 861 858 

MCP 697 694 

 

 Referring to the results obtained from Chen et al. (2011), the peak 

torque of the finger joints of healthy subjects during flexion and extension can 

be seen at Table 2.2. 

 

Table 2.2: Peak Torque at the Finger Joints during Flexion and Extension 

Motions. 

Joint Peak Torque (Nm) 

Little Ring Middle Index 

DIP 0.398 0.550 0.850 0.775 

PIP 1.200 1.800 2.890 2.280 

MCP N/A 3.700 5.000 4.630 

 

Referring to the results obtained from Xia and Frey-Law (2015), the 

maximum angular velocities and peak torque of the wrist joint of healthy 

subjects can be seen at Table 2.3 and Table 2.4 respectively. 

 



10 

Table 2.3: Maximum Angular Velocity at the Wrist Joint for Males and 

Females during Flexion, Extension, Abduction and Adduction Motions. 

Type of Motion Maximum Angular Velocity (°/s) 

Males Females 

Flexion 240 240 

Extension 240 180 

Abduction 180 120 

Adduction 180 180 

 

Table 2.4: Peak Torque at the Wrist Joint for Males and Females during 

Flexion, Extension, Abduction and Adduction Motions. 

Type of Motion Peak Torque (Nm) 

Males Females 

Flexion 17.5 11.2 

Extension 10.9 7.0 

Abduction 14.3 8.8 

Adduction 13.5 8.8 

 

2.7 Hand Functional Requirements for Activities of Daily Living 

Activities of Daily Living (ADLs) are the everyday tasks that are 

independently carried out by healthy individuals to maintain a good quality of 

life. To carry out most ADLs, a person’s hand need to at least have the ability 

to operate three fingers and each of these fingers need to at least have two 

degrees of freedom (DoF); one DoF at the PIP joint and one DoF the MCP 

joint to generate flexion and extension movement. This is because abduction 

and adduction at the MCP is not essential for the performance of ADL. In 

addition, since movement of the DIP joint is dependent on the movement of 

the PIP joint, the DIP joint is usually not targeted in ADLs training as well. 

(Sarac, Solazzi and Frisoli, 2019) 

 Referring to the minimum requirements needed to perform ADLs, we 

can set the minimum functional requirements for a hand exoskeleton 

rehabilitation device to be: able to generate flexion and extension at the MCP 

and PIP joints of at least three fingers.   

 

2.8 Internet of Things Architecture 

Internet of Things (IoT) is the interconnection of devices (e.g., sensors and 

personal servers) that can communicate with each another through via the 
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Internet. There are four layers in the IoT architecture: sensing, network, 

support and application layers. 

 The first layer is the sensing layer. This layer consists of different 

types of sensors (e.g., flex sensors, thermal sensors, and glucometers). Its 

function is to collected data (e.g., angular displacement, temperature, and 

blood oxygen saturation) from the environment and conduct some minor 

signal processing.  

 The second layer is the network layer. This layer functions to transmit 

data sent by components from the sensing layer to the support layer for 

processing and storage. There are two types of networks: wired and wireless. 

Wired networks require data to be sent to the Internet via cables. Some wired 

networks include: Ethernet, Meter Bus, and Power Line Communication. 

Some wireless networks include: Bluetooth, Wireless Fidelity (WiFi), and 

ZigBee.  

 The third layer is the support layer. This layer is used to process, 

analyse, store and retrieve data sent from the network layer. This layer also 

handles the security and maintenance of the system. Some components in this 

layer include: databases, authentication systems, and data processing centres. 

 The fourth layer is the application layer. This layer provides human 

interaction with the system and also executes orders provided by the support 

layer. For example, this layer can allow the users to select different modes of 

operation as well as display statistics to the users through interfaces like web 

applications and mobile applications. In addition, this layer can also control 

actuators to perform a function (e.g., turn on a nightlight) as dictated by the 

support layer.  

 

2.9 Market Research 

In order to get a better view on the aspects that should be considered when 

designing a hand rehabilitation exoskeleton, ten exoskeleton systems were 

analysed and summarised in Table 2.5.  
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Table 2.5: Summary of Characteristics for 10 Exoskeleton Systems. 

Paper Weight Body 

Structures 

Interacted 

Hardware Command 

method 

Transmission 

mechanism 

Operational 

Modes 

Network Patient 

Interface 

Force 

created 

(Yang 

et al., 

2021) 

 

150 g 5 fingers, 

10 DoF 

▪ Actuator: 5 Linear 

DC motors 

▪ Microcontroller:  

Arduino 

MEGA2560 

▪ Sensors: None 

Bilateral 

hand training 

• Type: Sliding 

springs 

• Placement: 

dorsal 

Continuous 

passive 

movement 

Bluetooth VR game 

on phone 

/ 

computer 

10 N 

(Rahma

n and 

Al-

Jumaily

, 2013) 

1.8 kg 5 fingers, 

15 DoF 

▪ Actuator: 5 Linear 

DC motors 

▪ Microcontroller:  

ATmega 328 

▪ Sensors: None 

Bilateral 

hand training 

• Type: 

Mechanical 

linkages 

• Placement: 

dorsal 

Continuous 

passive 

movement 

Zigbee None - 

(Ahme

d et al., 

280 g 5 fingers, 

14 DoF 

▪ Actuator: 14 

Rotational DC 

Pre-set 

programme 

• Type: 

Tendon wires 

Continuous 

passive 

Wired None - 
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2021) motors 

▪ Microcontroller:  

Arduino Sketch 

running on 

personal computer 

▪ Sensors: None 

• Placement: 

dorsal and 

palmar 
 

movement 

(Yurke

wich et 

al., 

2020) 

284 g 5 fingers, - ▪ Actuator: 2 Linear 

DC motors 

▪ Microcontroller:  

tinyTILE by Intel 

Curie 

▪ Sensors:  

Gyroscope 

Grasp intent 

detection 

• Type: 

Tendon wires 

• Placement: 

dorsal and 

palmar 

Active-

assisted 

movement 

- None 16 N 

(Decke

r and 

Kim, 

2017) 

719 g 5 fingers, 

12 DoF 

▪ Actuator: 5 

Rotational DC 

motors 

▪ Microcontroller: - 

▪ Sensors:  Flex 

• Pre-set 

programme 

• Grasp intent 

detection 

• Type: 

Mechanical 

linkages 

• Placement: 

dorsal 

• Continuous 

passive 

movement 

• Active-

assisted 

- VR 14 N 
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sensor and Inertial 

Measurement Unit 

 movement 

• Haptic 

interaction 

(Jo et 

al., 

2019) 

156 g 4 fingers 

(little, ring, 

middle, 

index), 

coupled, 8 

DoF 

▪ Actuator: 1 Linear 

DC motor 

▪ Microcontroller: - 

Sensors:  

Potentiometer 

Pre-set 

programme 

 

• Type: 

Mechanical 

Linkages 

with Spring 

Guidance 

• Placement: 

dorsal 

Passive 

movement 

- None - 

(Ates, 

Haarma

n and 

Stienen

, 2017) 

650 g 5 fingers 

and wrist, 

14 DoF, 

only 

extension 

▪ Actuator: 1 electric 

motor 

▪ Microcontroller: - 

▪ Sensors:  Rotary 

position sensors 

and flex sensors 

- • Type: Spring 

• Placement: 

dorsal 

• Continuous 

passive 

movement 

• Active-

assisted 

movement 

 

- - - 



15 

(Yap et 

al., 

2016) 

 

150 g 5 fingers, 

14 DoF, 

only 

extension 

▪ Actuator: 1 

pneumatic actuator 

▪ Microcontroller: 

Arduino Mega 

▪ Sensors:  Air 

pressure sensor 

Pre-set 

programme 

 

• Type: 

Pneumatic 

• Placement: 

dorsal 

Continuous 

passive 

movement 

None None - 

(Kang 

et al., 

2019) 

104 g 2 fingers 

(index and 

middle), 6 

DoF 

▪ Actuator: 1 dual-

slack enabling 

actuator 

▪ Microcontroller: 

Custom electric 

board 

(TMS320F2808) 

▪ Sensors:  None 

Button 

intention 

detection 

• Type: 

Tendon wires 

• Placement: 

dorsal and 

palmar 

Continuous 

passive 

movement 

None None - 

(Singh 

et al., 

2019) 

2.3 kg 4 fingers 

(little, ring, 

middle, 

index) and 

▪ Actuator: 1 

rotational DC 

motor 

▪ Microcontroller: 

Pre-set 

programmes 

with 

customizable 

• Type: 

Mechanical 

Linkages 

with Spring 

• Continuous 

passive 

movement 

• Active-

Wired LCD 

display 

with 

buttons 

- 
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wrist, 5 

DoF 

ATmega328 

▪ Sensors:  

Potentiometers and 

EMG units 

parameters Guidance 

• Placement: 

dorsal 

assisted 

movement 

 

for mode 

selections 
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 From Table 2.5, we can see that the weight of the wearable 

exoskeleton ranges from 104 g to 2.3 g. Some of the exoskeletons are also 

lighter because their actuators, control systems and power sources are placed 

remotely. Since they are not attached to the arm or hand, these masses are not 

factored into the total weight.  

In addition, the body structures that the exoskeleton interacts with 

range from two fingers (index and middle fingers) to all five fingers. Only 

two out of the ten exoskeletons reviewed interact with the wrist. Most 

exoskeletons here provide flexion and extension motions of joints while two 

of them provide only extension.  

Other than that, the exoskeletons reviewed have different operational 

modes. Some exoskeletons provide the patients with the option of multiple 

operation modes. Most of them operate on continuous passive movement 

mode (CPM). A few operated on active-assisted movement mode and only 

Decker and Kim (2017) operated on haptic interaction mode.  

Furthermore, methods used to dictate the movements of the 

exoskeletons include: bilateral hand training (where the exoskeleton copies 

the movement of the healthy hand), pre-set programme (common for those 

using CPM), grasp intent detection (common for those using active-assisted 

movement mode) and button intention detection (where the patient uses their 

healthy hand to press a button when they want the exoskeleton to perform 

flexion). 

In addition, the exoskeletons implement various transmission 

mechanisms such as: tendon wires, sliding springs, mechanical linkages and 

pneumatics. The placement of these transmission mechanisms are either 

dorsal or palmar or both.  

Moreover, most exoskeletons reviewed used either linear or 

rotational DC motors as actuators. Other than DC motors, pneumatic pumps 

(for pneumatic transmission systems) and dual-slack enabling actuators (for 

tendon driven transmission system) were also utilised. Most exoskeleton 

designs try to have less actuators because they are expensive and if attached 

directly to the exoskeleton itself, they will contribute to the weight of the 

exoskeleton. Sensors used by the exoskeletons include: flex sensors, 
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gyroscopes, inertial measurement units, potentiometers, air pressure sensors, 

Electromyography (EMG) units, and rotary position sensors. 

A few exoskeleton systems have patient interfaces in the form of a 

Virtual Reality games or just a Liquid Crystal Display (LCD) display that 

allows patient to select rehabilitation parameters by selecting buttons. The 

types of networks that allow data to be transmitted between the exoskeleton 

and the patient interface are: wired or wireless (Bluetooth and Zigbee). 

Only three papers stated the force that can be generated by the 

exoskeleton: 10 N, 14 N and 16 N. This gives us the range of forces that we 

should achieve from our own exoskeleton design.  

Some of the terminology used above will be elaborated in section 

2.11. 

 

2.10 Design Considerations 

It is important to consider these following aspects before the specifications 

and design of the exoskeleton is set.  

 

2.10.1 Safety 

Safety is the most important aspect that should be considered when designing 

an exoskeleton system. The design of the transmission mechanism and 

control programme need to consider the static and dynamic constraints of the 

human hand. The exoskeleton device also needs to be electrically safe.  

 

2.10.1.1 Static Constraints 

Static constraints are limitations imposed on the movement of joints (Rahman 

and Al-Jumaily, 2013). Table 2.6 shows the maximum angular displacement 

that can occur for different joints in the fingers and wrist. 

  



19 

 

Table 2.6: Maximum Angular Displacement for Wrist and Finger Joints. 

(Chen Chen et al., 2013b) and (Palmer et al., 1985). 

Joints Flexion (°) Extension (°) Abduction / 

Adduction (°) 

Little Finger 

DIP 90 5 0 

PIP 135 0 0 

MCP 90 30 – 40 50 

Ring Finger 

DIP 80 - 90 5 0 

PIP 120 0 0 

MCP 90 30 – 40 45 

Middle Finger 

DIP 80 – 90 5 0 

PIP 110 0 0 

MCP 90 30 – 40 45 

Index Finger 

DIP 80 – 90 5 0 

PIP 110 0 0 

MCP 90 30 – 40 60 

Thumb 

IP 75 – 80 5 – 10 5 

MCP 75 – 80 0 5 

Wrist 

Radiocarpal 78 60 21 – 38 

 

 Referring to Table 2.6, we need to ensure that the exoskeleton 

designed does not generate motions that exceeds these static constraints. 
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2.10.1.2 Dynamic Constraints 

Dynamic constraints are limitations imposed on the movement of finger 

joints when the finger is moving (Rahman and Al-Jumaily, 2013). Dynamic 

constraint can be divided into intrafinger and interfinger constraints.  

Intrafinger constraints are limitation of joints imposed by the 

movement of other joints that are located on the same finger. Intrafinger 

constraints are listed below:  

Equation 2.1 shows the intrafinger constraints on the index, middle, 

ring and little fingers (Chen Chen et al., 2013b).  

 

 

                                                   𝜃𝐷𝐼𝑃 ≈  
2

3
𝜃𝑃𝐼𝑃                                             (2.1) 

where 

θDIP = flexion or extension angle for DIP joint  

θPIP = flexion or extension angle for PIP joint  

 

 Interfinger constraints are limitations on joints due to correlation of 

joint motion between joints from different fingers. Interfinger constraints are 

listed below: 

Equation 2.2 shows that when there is flexion or extension of the 

ring finger at MCP joint, the MCP joints at middle finger and little finger will 

also flex or extend to the same degree (Chen Chen et al., 2013b).  

 

                                𝜃𝑀𝐶𝑃𝑅𝑖𝑛𝑔
≈  𝜃𝑀𝐶𝑃𝑀𝑖𝑑𝑑𝑙𝑒  ≈  𝜃𝑀𝐶𝑃𝐿𝑖𝑡𝑡𝑙𝑒                           (2.2) 

where 

θMCPLittle
= flexion or extension angle for MCP joint of little finger  

θMCPMiddle
= flexion or extension angle for MCP joint of middle finger  

θMCPRing
= flexion or extension angle for MCP joint of ring finger  

 

 The exoskeleton design should follow these dynamic constraints to 

ensure that the movement generated on the hand follow the natural hand 
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motions. This will help to reduce the patient’s discomfort or fatigue when 

using the exoskeleton. 

 

2.10.2 Mobility 

Referring to the hand anatomy, we need to determine which fingers and what 

joints on each finger that we want the exoskeleton to interact with. 

Furthermore, we also need to determine whether we want to include wrist 

interaction. We should also determine whether we want to control each finger 

/ wrist individually or couple the movements together (Sarac, Solazzi and 

Frisoli, 2019).  

 

2.10.3 Comfort 

We need to ensure that patients are comfortable during the usage of the 

exoskeleton because rehabilitation sessions have long durations. One method 

to ensure comfort is to evaluate whether the parts of the exoskeleton that 

interacts physically with any part of the patient’s body does not cause the 

patient any pain. We should also ensure that the static and dynamic 

constraints of the hand adhered to ensure the movement generated by the 

exoskeleton feel natural (Sarac, Solazzi and Frisoli, 2019).  

 

2.10.4 Effective Force of Transmission 

We need to ensure that the forces generated by the transmission system of the 

exoskeleton are sufficient to generate torque at the joints. From the market 

survey, we gather that the target forces that should be generated is in the 

range of 10 N to 16 N. However, we should also keep in mind that patients 

with spasticity have stiffer joints due to an increase in muscle tone. They may 

require a larger force as compared to healthy subjects. Moreover, forces 

applied need to be perpendicular to the bones to ensure that the connectors of 

the exoskeleton do not slip off the hand during actuation (Sarac, Solazzi and 

Frisoli, 2019).  

 

2.10.5 Cost 

Since the goal is to have this exoskeleton purchased by the patient for 

personal use at home, it will have to be affordable. The cost of the 
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exoskeleton includes the cost of components, the manufacturing cost and the 

cost to modify the exoskeleton design to fit different hand sizes (Sarac, 

Solazzi and Frisoli, 2019).  

 From the market research done, the cost of the exoskeleton should 

be in the range of 300 to 500 USD. 

 

2.10.6 User-Friendliness 

The goal is to ensure the exoskeleton can be worn and operated 

independently by the patients themselves with minimal training required.  

 One criterion is that the patient must be able to utilise their less 

impaired hand to wear and take off the exoskeleton from the hand with 

spasticity. As such, they should be able to do so within 5 minutes (Ates, 

Haarman and Stienen, 2017).  

 In addition, since 86 % of stroke cases occur in people who are 50 

years old or older, the user interface design must be intuitive and easy to 

understand. Words displayed must be easily readable and the design of the 

user interface must be simple and direct.  

 

2.10.7 Weight 

The weight of the exoskeleton that is worn on the hand and arm must be light 

(within 500 g) to ensure the it is portable without causing arm fatigue to the 

patient (Ates, Haarman and Stienen, 2017).  

 

2.10.8 Adjustment to Different Hand Sizes 

People have different hand sizes due to their age, height and sex. Therefore, 

strategies should be created on how to customize the exoskeleton to function 

effectively for patients of various hand sizes.  

One such strategy is to scale and manufacture each exoskeleton 

individually according to the hand dimensions of the patient. Another method 

is to have a technician manually adjust the mechanical connects to align with 

the finger joints before operating the exoskeleton. Another strategy is to 

predesign and manufacture a set range of sizes. The range of sizes should be 

small enough to still allow mass production but large enough to ensure that 

accommodate most hand sizes (Sarac, Solazzi and Frisoli, 2019).  
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2.11 Exoskeleton System Design 

There are many components in an exoskeleton system. The subsections 

below will review these components. 

 

2.11.1 Transmission System 

Transmission systems transform forces generated by actuators into movement 

at the patient’s joints.  

These transmission system units can be planted on either on the 

palmar, lateral or dorsal sides of the hand. Palmar placements mean that the 

transmission components are installed on the palm of the hand. (Sarac, 

Solazzi and Frisoli, 2019) This placement is almost never used for 

mechanical linkages or pneumatic systems because the bulky components 

would obstruct the movement of the finger joints when flexion takes place.  

Lateral placements mean that the transmission components are 

placed at the left and right sides of the fingers as well as the wrist. However, 

this placement is not suited for bulky units found in mechanical linkages and 

is also prone to movement collisions between different fingers due to the 

adduction and abduction of the MCP joints. (Sarac, Solazzi and Frisoli, 2019) 

Lastly, dorsal placements mean that the transmission components 

are placed on top of the fingers and wrist. This placement is most common 

especially for mechanical linkage mechanism because it will not obstruct the 

movement actuated by the exoskeleton, there are less collisions between 

different fingers and the palm is bare and can interact with real objects. 

(Sarac, Solazzi and Frisoli, 2019) 

 

2.11.2 Actuators 

Actuators are used to generate forces on to the transmission mechanisms. 

There are four types of actuators: direct current (DC) motors, servo motors, 

ultrasonic and pneumatic actuators. 

 DC motors are the most widely used type of actuator because they 

are easily sourced, cheap, reliable and can be easily controlled. DC motors 

can be further divided into linear DC motors and rotational DC motors. 

Linear DC motors generate forces that produces linear motions. It is suitable 
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for mechanical linkage or spring transmission systems that require linear 

forces. Rotational DC motors generate forces that produces rotational 

motions. It is suitable for tendon wire transmission systems because 

rotational DC motors can coil and uncoil the wires. (Sarac, Solazzi and 

Frisoli, 2019) 

 Servo motors are used to generate specific angular displacements. 

These motors can provide accurate positioning, and generate high output 

torque. However, they are costlier compared to DC motors. (Sarac, Solazzi 

and Frisoli, 2019) 

 Ultrasonic motors also generate rotational motions using ultrasonic 

vibrations. These motors are light and silent but are prone to temperature 

increase and hysteresis after a certain operational period. (Sarac, Solazzi and 

Frisoli, 2019) 

 Pneumatic actuators utilise a combination of pneumatic pumps and 

valves to control the air pressure that is sent to inflate or deflate the 

components in the transmission system. These motors can produce adjustable 

forces and speed easily but they need to be attached remotely because they 

are large in size and weight. (Sarac, Solazzi and Frisoli, 2019) 

 Based on the analysis above, servo motors and linear DC motors are 

suitable for this project. Table 2.7 makes a comparison between these 2 

actuators to determine which one is more suitable.  

 

Table 2.7: Comparison between Linear DC Motor and Servo Motor. 

Specification Linear DC motor Servo motor 

Cost RM 65.10 RM 14.90 

Weight Heavier Lighter 

Force Larger force. Smaller force 

(maximum torque 

for MG995: 10 

kgfcm) 

Attachment • Linear DC motors have long 

dimensions which will take up too 

much space on the arm. 

• Servo motors have 

smaller 

dimensions. 
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Referring to Table 2.7, the servo motor is selected because it is 

cheaper, lighter and would not take up too much space. 

 

2.11.3 Control System 

2.11.3.1 Operational Modes 

There are three different operational modes for rehabilitation exoskeletons: 

Continuous Passive Movement (CPM), Active-assisted Movement and 

Active-resisted Movement. 

Exoskeletons applying CPM will passively move the joints on the 

hand without any assistance from the muscles in the hand. The patient does 

not exert any force during the entire rehabilitation exercise. This is used to 

the replace repetitive task practice (RTP) performed by therapists in 

rehabilitation sessions. CPM has the ability to restore the patient’s range of 

motion and is most effective when each session conducted over a long 

duration of around 45 minutes. (Ahmed et al., 2021) 

When patients use exoskeletons applying active-assisted movement, 

patients have to use their muscles to contribute some force in rehabilitation 

exercises. 

Meanwhile, when patients use exoskeletons applying active-resisted 

movement, patients have to use their muscles to apply forces larger than what 

they would normally exert without the exoskeletons. These exoskeletons 

apply forces that oppose that generated by the patient’s muscles. (Sarac, 

Solazzi and Frisoli, 2019) 

 

2.11.3.2 Microcontrollers 

The function of a microcontroller is to control the actuators, receive data 

from sensors and send as well as receive data to and from a user interface. 

Some microcontroller specifications that should be considered during 

selection process are: compatible programming languages, number of input 

and output pins, input power and additional integrated modules. 
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2.11.4 Sensors 

There are many types of sensors used in the exoskeleton in order to achieve 

different functionalities. Table 2.8 elaborates the types of sensors as well as 

its common functions. 

 

Table 2.8: Types of Sensors and their Common Functions in Exoskeletons. 

(Tiboni et al., 2022) 

Type of Sensors Common Functions 

Bending / Flex Sensors • Measure the orientation or magnitude of 

bending force generated by transmission 

system. 

• Measure the angular displacement of a joint. 

Potentiometers / Rotary 

Position Sensors 

• Measure angular displacement of joint. 

Pressure Sensors • Measure air pressure in pneumatic transmission 

systems. 

Force Sensors • Measure force exerted by the patient or force 

exerted by transmission system. 

Torque Sensors • Measure torque generated by transmission 

system. 

Gyroscope • Measure angular velocity generated by 

transmission system. 

Inertial Measurement 

Units (IMUs) 

• Measure the orientation of the phalanges. 

• Measure angular velocity generated by 

transmission system. 

Electromyography 

(EMG) Sensors 

• Measure EMG signals to anticipate movement 

from patient. 

 

Based on Table 2.8, both flex sensors and the rotary position sensors are 

suitable because they can detect the range of motion of the joint by varying 

their resistance. Table 2.9 makes a comparison between these two sensors to 

determine which one is more suitable.  
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Table 2.9: Comparison between Flex Sensor and Rotary Position Sensor. 

Specification Flex sensor Rotary position sensor 

Cost RM 49 RM 15 

Setup • Simpler setup. 

• The flex sensor just has 

to be attached to the 

glove and connected to 

the microcontroller. 

• Complicated setup. 

• Requires a lever system to be 

attached to the gloves. Then 

the lever system needs to 

rotate the shaft of the sensor. 

Attachment • Can be attached at the 

dorsal part of the fingers 

and wrist. 

• Will have to be attached to the 

lateral sides of the fingers and 

wrist because that will where 

the lever system will be 

installed. 

• This bulky system may hinder 

the movement of the fingers. 

 

Even though the flex sensor is more expensive, it is selected for the 

exoskeleton system because of the ease of setup and its attachment would not 

disturb the movement of the fingers. 

 

2.11.5 Wireless Networks 

Wireless Network technology is often used to connect the microcontroller to 

the user interface. There are four main types of wireless technologies.  

Low-power Wide Area Network (LPWAN) can be ruled out as 

potential wireless technology for this project because it is not widely 

supported which would make installation more complex and not compatible 

with many devices. Since the microprocessor on the exoskeleton will be 

transmitting data over a short distance, Wireless Metropolitan Area Network 

(WMAN) is also unsuitable because it is meant to transfer data over a longer 

distance. It would be costly to use WMAN.  

Two possible technologies that can be considered are Wireless Local 

Area Network (WLAN) and Wireless Personal Area Network (WPAN) 

because they are both relatively low cost, interoperable with suitable 
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coverage range. However, WPAN would be more suitable due to having 

lower power consumption (exoskeleton can operate longer before bring 

charged), cheaper and has less signal interference. Even though WPAN has a 

shorter range of coverage and data transfer rate, it will not interfere with the 

functionality of the exoskeleton system because the exoskeleton aims to 

transfer a small amount of data infrequently through a short distance. 

(Rackley, 2011) 

 

2.11.6 User Interface 

User interface is the point where the patient can interact with the exoskeleton 

system. These interfaces are usually the applications on the patient’s phones, 

laptops or custom-LCD screen displays with button selections. These 

interfaces will run the application layer of the exoskeleton IoT system.   

There are 3 possible types of user interface that can be constructed: 

Android mobile application, web application or Arduino IoT Cloud. Table 

2.10 compares the attributes of these 3 types of user interface. 

 

Table 2.10: Comparison Between the 3 Types of User Interface. 

Attribute Android Mobile 

Application 

Web 

Application 

Arduino IoT Cloud 

Type of 

Network 

Layer with 

ESP32 

Bluetooth 

(More reliable 

and does not 

require a router) 

Wi-Fi 

(Less reliable 

and requires a 

router) 

Wi-Fi 

(Less reliable and 

requires a router) 

Construction 

of Network 

Layer 

Difficult to 

construct 

network.  

Difficult to 

construct 

network.  

Easy to connect to 

ESP32. Just have to 

link the ESP32 to a 

“Thing”.   

Integrated 

Development 

Environment 

Android Studio Web Application 

Builder 

Arduino Web Editor 

Interface 

Construction 

Difficult to 

build. Require 

Difficult to 

build. Require 

Easy to build built by 

selecting the widgets 
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knowledge of 

JavaScript 

programming 

language. 

knowledge of 

JavaScript 

programming 

language. 

and dropping it into 

the display area. 

Interface 

Design 

Customizable 

and can embed 

origami video 

tutorials. 

Customizable 

and can embed 

origami video 

tutorials. 

Not customizable and 

cannot embed origami 

video tutorials. 

 

 Referring to the comparisons made in Table 2.10, Android mobile 

application was chosen as the user interface type. This is because it can create 

a more reliable network with the ESP32 and does not require a router. Even 

though it is more difficult to construct, it has a customizable interface design 

which can allow the integration of origami video tutorials. 

 

2.12 Origami String as Transmission Mechanism 

Origami-influenced engineering designs have been implemented in many 

different applications such as: antenna deployment, air bag systems, stent 

grafts and drug delivery systems.  

 One keen interest of this project is to investigate the viability of 

designing a transmission mechanism inspired by origami theory. This is 

conducted by reviewing the origami claw gripper designed by  Liu et al. 

(2021). In this paper, they incorporate the theory of the Miura vertex and 

origami string into designing the fingers for the grippers. 

 The basic component that makes up each foldable finger is called the 

Miura vertex. A vertex is the point where two or more lines or creases meet. 

As seen in Figure 2.2, the Miura vertex consists of four creases: two central 

spinal creases (C1, C2) and two peripheral creases (P1, P2). The angles 

between the peripheral creases and the central spinal creases are α1, α2. The 

lengths of the central spinal creases can be varied to alter the location of the 

vertex. When the lengths of the peripheral creases change, the angles α1, α2 

will also change. (Liu et al., 2021) 
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Figure 2.2: Miura Vertex. (Liu et al., 2021). 

 

 Each Miura vertex has two configurations: parallel configuration 

(when the central spinal creases, C1 and C2 are collinear) and antiparallel 

configuration (when the central spinal creases are not collinear). From Figure 

2.3, we can see that the angle offset for collinear crease C1 is ϕ. When the 

Miura vertex is in antiparallel configuration, angle ϕ is more than 0°.  

 

 

 

 

 

 

 

 

 

 

 Figure 2.3: (a) Parallel Configuration. (b) Antiparallel Configuration. (Liu et 

al., 2021) 

 During transition from parallel to antiparallel configurations, 

magnitudes for angles θ1, θ2 and ϕ will increase. At any point of the transition, 

magnitudes of θ1 will always be equal to θ2.  

 An origami string is a multivertex template that contains multiple 

Miura vertices. Figure 2.4 shows an example of an origami string template 

that contains 3 vertices. 

P1 
P2 

C1 

C2 

(b) (a) ϕ 
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Figure 2.4: Origami String Template with Three Vertices. (Liu et al., 2021) 

 

 Figure 2.5 shows the method (Liu et al., 2021) used to actuate one 

finger on the gripper. The actuation mechanism consists of one rotational DC 

motor and shaft linkage mechanism. 

 

 

 

 

 

 

 

 

 

Figure 2.5: Actuation Mechanism for each Finger on Gripper. 

 (Liu et al., 2021) 

 

 Figure 2.6 shows that mechanical stops are designed on the hingers 

to prevent the finger of the gripper from folding in the other direction. This 

would be a useful design in the exoskeleton to restrict the angular 

displacement of the transmission system within the static constraints of the 

finger and wrist joints.  
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Figure 2.6: Mechanical Stops on Hinges. (Liu et al., 2021) 

 

2.13 Motor Recovery Evaluation 

It is important to evaluate the motor recovery of patients with hand spasticity 

after their rehabilitation sessions in order to gage how far along is their 

healing progress and whether the rehabilitation protocol is effective. There 

are many methods to evaluate motor recovery such as: Modified Ashworth 

Scale, Fugl-Meyer Assessment (Upper Extremity) and active range of motion.  

 The Modified Ashworth and Fugl-Meyer Assessment evaluation 

methods are widely used. However, since they require a therapist to be 

present, it cannot be carried out by the exoskeleton itself.  

 On the other hand, recovery progress of the patient can be evaluated 

by detecting the active range of motion that can be performed by the patients 

themselves. Since this range of motion can be detected using flex sensors, it 

can be carried out using the hand exoskeleton. 

 

2.14 Effectiveness of Origami Folding Activity as a Hand 

Rehabilitation Technique 

The effectiveness of applying the origami folding activity as a hand 

rehabilitation therapeutic method was reviewed to decide whether the user 

interface for the hand rehabilitation system should contain a functionality that 

provides users with tutorials on how to fold origami. 

One of the studies reviewed whether origami folding sessions 

contributed to the improvement of the hand functions of patients. These 

patients were given a weekly, 1 hour session of origami classes for the span 
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of 6 weeks. These classes thought the patients how to fold a series of origami 

models that has a range of complexities. Patients participating in these 

sessions displayed a larger progress in sub-test scores for the Jebsen-Taylor 

Hand Function Test compared to the control group.  (M Wilson et al., 2008)  

Another study investigated whether subjects can improve their 

dexterity by folding origami cranes. Subjects were instructed to fold origami 

cranes for 40 to 50 minutes a day for a span of 4 weeks. Those participating 

in these folding sessions shown a significant improvement in the Purdue 

Pegboard test and the Grooved Pegboard test compared to the control group. 

(Bae, 2013) 

The studies above shows that folding origami is effective as a 

rehabilitation technique. Therefore, tutorials on how to fold origami will be 

provided in the user interface. 

 

2.15 Summary of Findings 

A hand exoskeleton should respect the static and dynamic constraints of the 

hand, be light and comfortable to be worn for long periods of time, be cost-

effective, generate sufficient forces, user-friendly and adjustable to different 

hand sizes. 

Moreover, the hand exoskeleton system should contain a 

transmission system, servo motor actuators, a control system, flex sensors, 

data transmission network and an Android mobile application user interface. 

Furthermore, one possible transmission mechanism design can be based on 

the Miura vertex theory. In addition, the hand exoskeleton should be able to 

measure the patient’s joint range of motion to determine their recovery 

progress. Lastly, a functionality that provides the user with origami tutorials 

can be designed in the user interface to increase the recovery rate of the 

patients.    
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This section covers the specifications for the rehabilitation system, the system 

architecture design and materials chosen, total expenditure, the work plan, 

Work Breakdown Structure and Gantt Chart for this project as well as the 

methods used to test and analyse the performance of the rehabilitation system. 

 

3.2 Specifications of Exoskeleton System 

Referring to literature review conducted on the design considerations of 

exoskeleton systems, Table 3.1 shows the specifications set for this 

exoskeleton system:  

 

Table 3.1: Specifications for Exoskeleton System 

Specifications Justification 

• Actuate movement in four fingers 

(index, middle, ring, little fingers) 

and wrist. 

• For fingers: one DoF at the PIP 

joint and one DoF at the MCP 

joint.  

• For wrist: one DoF at Radiocarpal 

joint. 

• Type of motion: 

▪ flexion and extension for 

MCP and PIP joints 

▪ extension for Radiocarpal 

joint. 

• Need at least three functional 

fingers to carry out most ADLs. 

• Each of these fingers need to have at 

least two DoF to carry out most 

ADLs. 

• Adduction and abduction at the 

joints are not essential to perform 

ADLs. 

• Movement of the MCP joints for 

all 4 fingers are coupled. 

• Movement of the PIP joints for all 

• To reduce the complexity of the 

design system. 

• To reduce cost by enabling the 



35 

 

4 fingers are coupled. movement of all 4 fingers to be 

actuated by using only 2 actuators.  

The maximum angles generated by 

transmission mechanism on PIP, 

MCP and radiocarpal joints should 

respect the static constraints of the 

hand. Moreover, the maximum 

angular velocities generated by 

transmission mechanism should not 

exceed the maximum angular 

velocities that can be generated by 

the hand naturally.  

To ensure that the transmission 

mechanism does not cause the 

patient discomfort or pain. 

Total cost of the system must be 

less than RM 1500. 

To ensure that it will be affordable for 

patients to purchase for home use. 

Total weight attached to the hand 

must be less than 500 g. 

To ensure that it is portable without 

causing fatigue to the patient. 

User interface allows patients to 

select from 3 levels of angular 

velocity that is generated by the 

transmission mechanism. 

Allows users to reduce the angular 

velocity generated by the 

transmission mechanism if they feel 

pain or discomfort. 

Sensing system detects the flexion 

angle of MCP joint and extension 

angle of radiocarpal joint. Then, the 

maximum angle of flexion for the 

MCP joint and the maximum angle 

of extension for the radiocarpal 

joint is displayed to user via the 

user interface. 

To allow the patient review their 

recovery progress. 
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3.3 Work Plan 

A work plan is developed for this project. 

 

1. Planning Phase 

1.1. Title Selection 

1.2. Work Plan Formulation 

1.3. Gantt Chart Construction 

1.4. Problem Formulation 

1.5. Setting Objectives 

2. Preliminary Design phase 

2.1. Literature Review 

2.1.1. Stroke and its Effects 

2.1.2. Anatomy, Kinetics and Kinematic of Hand 

2.1.3. IoT Architecture 

2.1.4. Market Research 

2.1.5. Design Considerations for Hand Exoskeletons 

2.1.6. Components Required in Exoskeleton System 

2.1.7. Origami String as Transmission Mechanism 

2.1.8. Motor Recovery Evaluation Techniques 

2.2. Preliminary System Design 

2.2.1. Determine Specifications for Exoskeleton 

2.2.2. Determine Architecture of Exoskeleton System 

2.2.3. Preliminary Design of Solution 1 and 2 for Exoskeleton 

System 

2.2.4. Preliminary Design and Modelling of Transmission 

Mechanism 

2.2.5. Prototyping User Interface Design 

2.2.6. Determine Budgeted Expenditure 

3. Documentation Phase 

3.1. Progress Report Writing 

3.2. Log Book Compilation 

3.3. Presentation 

4. Design and Construction Phase 
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4.1. Purchase Components 

4.2. Hardware Design and Construction 

4.2.1. Design, 3D-Print and Assemble Transmission Mechanism 

4.2.2. Design and Construct Sensing Glove 

4.3. Software Design and Construction 

4.3.1. Develop Code for ESP32 

4.3.2. Develop Code for Android Mobile Application 

5. Functionality Testing Phase 

6. System Integration Phase (Sensing, Transmission and User Interface) 

7. System Testing Phase 

8. Documentation Phase 

8.1. FYP Poster Designing 

8.2. Final Report Writing 

8.3. Log Book Compilation 

8.4. Presentation 
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3.3.1 Work Breakdown Structure 

Figure 3.1 shows the Work Breakdown Structure for tasks conducted in the 

first part of the study. 

 

Figure 3.1: Work Breakdown Structure for FYP Part 1. 

Planning Phase

Title Selection

Work Plan Formulation

Gantt Chart Construction

Problem Formulation

Setting Objectives

Preliminary Design phase

Literature Review

Stroke and its Effects

Anatomy, Kinetics and Kinematic 
of Hand

IoT Architecture

Market Research

Design Considerations for Hand 
Exoskeletons

Components Required in 
Exoskeleton System

Origami String as Transmission 
Mechanism

Motor Recovery Evaluation 
Techniques

Preliminary System Design

Determine Specifications for 
Exoskeleton

Determine Architecture of 
Exoskeleton System

Preliminary Design of Solution 1 
and 2 for Exoskeleton System

Preliminary Design and Modelling 
of Transmission Mechanism

Prototyping User Interface Design

Determine Budgeted Expenditure

Documentation Phase

Progress Report Writing

Log Book Compilation

Presentation
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Figure 3.2 shows the Work Breakdown Structure for tasks conducted 

in the second part of the study. 

 

Figure 3.2: Work Breakdown Structure for FYP Part 2.  

Design and Construction 
Phase

Purchase Components

Hardware Design and 
Construction

Design, 3D-Print and 
Assemble Transmission 

Mechanism

Design and Construct 
Sensing Glove

Software Design and 
Construction

Develop Code for ESP32

Develop Code for Android 
Mobile Application

Functionality Testing Phase

System Integration Phase 
(Sensing, Transmission and 

User Interface)

System Testing Phase

Documentation Phase

FYP Poster Designing

Final Report Writing

Log Book Compilation

Presentation
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3.3.2 Gantt Chart 

Gantt Charts were constructed using ProjectLibre. Figure 3.3 illustrates the Gantt Chart for tasks conducted this semester. The work duration was 

fourteen weeks. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Gantt Chart (Semester One) 
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Figure 3.4 illustrates the Gantt Chart for tasks conducted in the second part of the study. The work duration was fifteen weeks because 

tasks commenced immediately during the semester break. 

 

Figure 3.4: Gantt Chart (Semester Two) 
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3.4 Architecture of Hand Rehabilitation Exoskeleton System 

Figure 3.5 illustrates the architecture design for the exoskeleton system.  

 

Figure 3.5: Architecture Design for Exoskeleton System. 

 

 Table 3.2 describes the function of each element in the exoskeleton 

architecture. 

 

Table 3.2: Function of Elements in Exoskeleton System. 

Elements Function 

Power Source To supply power to actuators, 

microcontroller and sensors. 

Microcontroller ▪ To control the actuators. 

▪ To read data from the sensors. 

▪ To transmit data to user interface. 

▪ To read data from the user 

interface. 

Sensors ▪ To detect the range of motion of 

the MCP and radiocarpal joints. 

User Interface ▪ To allow the user to change the 

angular velocity generated by the 

transmission mechanism. 

▪ To display the recovery progress to 

the user. 

▪ To display video tutorials on how 

to fold origami. 

Actuators To drive the transmission 
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mechanism. 

Transmission Mechanism To generate motion at the MCP, PIP 

and radiocarpal joints. 

 

3.5 Anatomical Dimension Assumptions 

To create the first exoskeleton prototype, the dimensions of the hand are 

assumed to be as shown in Table 3.3. Since the movement of all four fingers 

will be coupled, the lengths for the finger phalanges on the four fingers are 

assumed to be equal to that of the middle finger.  

 

Table 3.3: Dimension Assumptions of the Hand. 

Appendage Dimensions 

Distal Phalange Length: 2 cm 

Intermediate Phalange Length: 3.5 cm 

Proximal Phalange Length: 6 cm 

Palm  Length: 8.5 cm 

 

3.5.1 Components Chosen for Each Element in the System 

Architecture  

3.5.1.1 Power Source 

The power source chosen should be portable to allow the user to carry out the 

rehabilitation activities anywhere. Therefore, a power bank was chosen. This 

power bank will supply the microcontroller, sensors and actuators with power 

via a modified Micro USB cable. 

 

3.5.1.2 Microcontroller 

This project would require 1 microcontroller for the entire exoskeleton 

system. This microcontroller should have a minimum of two pulse-width 

modulation (PWM) output pins to control the actuators as well as a minimum 

of nine analog input pins to receive data from the sensors. 

Table 3.4 compares some of the microcontrollers that are available 

in the market.  
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Table 3.4: Comparison between Compatible Microcontrollers for Arduino 

IoT Cloud. 

Specifications ESP32 Arduino 

Nano 33 IoT 

Arduino 

MKR WAN 

1300 

Arduino 

MKR WiFi 

1010 

Cost RM 21.80 RM 143 RM 177 RM 199 

Processor 32-bit 32-bit 32-bit 32-bit 

Network WiFi, 

Bluetooth, 

and BLE 

WiFi, 

Bluetooth, 

and BLE 

LoRaWAN WiFi, 

Bluetooth, 

and BLE 

Powered by 5 V 5 V 5 V 5 V 

PWM pins 16 11 12 13 

Analog input 

pins 

18 8 7 7 

Weight - 5 g 32 g 32 g 

 

From table 3.4, ESP32 is selected because it is the cheapest option, 

has enough PWM and analogue pins and has an integrated network module 

with WiFi, Bluetooth or Bluetooth Low Energy (BLE) network capabilities. 

 

3.5.1.2.1   Programming ESP32  

The programming language for ESP32 is C++. The Arduino Web Editor will 

be used to construct, debug and upload the C++ programme to the ESP32 

microcontroller. 

 

3.5.1.3 Sensors 

This project would require 2 sensors to measure the angular displacement of 

the MCP joint of the middle finger and the radiocarpal joint. From the 

literature review conducted, flex sensors were selected for the exoskeleton 

system because of the ease of setup and its attachment would not disturb the 

movement of the fingers. 
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3.5.1.4 Actuators 

This project would require two actuators to actuate the transmission 

mechanism. Based on the literature review conducted, servo motors were 

selected because it is cheaper, lighter and would not take up too much space. 

 

3.5.1.5 Transmission Mechanism 

3.5.1.5.1   Mechanism Design Theory 

The transmission mechanism design selected is inspired by the Miura vertex 

and origami string concept. This design is chosen because the maximum 

flexion angles at MCP and PIP joints as well as the maximum extension 

angle of the radiocarpal joint can be explicitly designed into the transmission 

mechanism. This would remove the possibility of the exoskeleton generating 

angles of rotation that exceed the static constraints of the finger and wrist 

joints.  

Figure 3.6 visualises the first version of crease pattern and 

dimensions for the transmission mechanism that will move the PIP and MCP 

joints. Red lines are creases that are folded inwards (valley folds) while blue 

lines are creases that are folded outwards (mountain folds). The Miura vertex 

on the left has 55° angles to generate the maximum flexion angle of 110° at 

the PIP joint when the Miura vertex is in its antiparallel configuration. On the 

other hand, the Miura vertex on the right has 45° angles to generate the 

maximum flexion angle of 90° at the MCP joint when the Miura vertex is in 

its antiparallel configuration. Figure 3.7 illustrates the transmission 

mechanism in its antiparallel configuration. 

 

Figure 3.6: Crease Pattern and Dimensions for Transmission Mechanism 

(PIP and MCP joints). 

 
𝜃𝑀𝐶𝑃 

𝜃𝑃𝐼𝑃 
𝜃𝑅 
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Figure 3.7: Transmission Mechanism in Antiparallel Configuration (PIP and 

MCP joints). 

 

Figure 3.8 visualises the first version of the crease pattern and 

dimensions for the transmission mechanism that will move the radiocarpal 

joint. The Miura vertex has 30° angles to generate the maximum extension 

angle of 60° at the Radiocarpal joint when the Miura vertex is in its 

antiparallel configuration. Figure 3.9 illustrates the transmission mechanism 

in its antiparallel configuration. 

 

 

 

 

 

 

 

Figure 3.8: Crease Pattern and Dimensions for Transmission Mechanism 

(Radiocarpal joint). 
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Figure 3.9: Transmission Mechanism in Antiparallel Configuration 

(Radiocarpal Joint). 

 

The crease patterns shown in Figure 3.6 and 3.8 is subjected to 

change as newer versions of the transmission mechanism is designed. 

 

3.5.1.5.2   Software to Design Mechanism 

SOLIDWORKS 2019 will be used to design all the sections of the 

transmission mechanism that will be 3D printed. This software was chosen 

because it is an industry standard software, it is easy to use, and allows the 

assembly all the sections together before the design is printed out. The 

objects designed will be exported as STL (Standard Tessellation Language) 

files. 

 In addition, Ultimaker Cura will be used to slice the objects created 

by SOLIDWORKS to prepare them for 3D printing.  This software will 

convert the STL files into G-Code (Geometric Code) files. These files can be 

readily read by the 3D printer. 

 

3.5.1.5.3  3D Printer 

The 3D printer chosen for this project is the Creality Ender 3. This 3D printer 

is compatible with PLA (Polylactic acid), ABS (Acrylonitrile Butadiene 

Styrene) and TPU (Thermoplastic Polyurethane) filaments. In addition, it has 

a printing volume of 220 x 220 x 250 mm which is sufficient to print the 

transmission mechanism. It also has a layer resolution of 0.1 mm which is 

adequate for this project. 

 

0° 

60° 
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3.5.1.5.4  Filament 

The material chosen for the filament that will be used in the 3D printer is 

PLA. This is because PLA does not produce hazardous fumes when heated 

like ABS. Furthermore, PLA is not prone to warping when ambient 

temperature decreases like ABS. In addition, PLA does not have the high 

elastic properties that TPU has. Elastic properties are not ideal for the 

transmission mechanism because force has to be effectively transferred from 

segment to segment. 

 

3.5.1.6 User Interface 

Referring to the literature review conducted, Android mobile application was 

chosen as the user interface type. This is because it can create a more reliable 

network with the ESP32, does not require a router and has a customizable 

interface design which can allow the integration of origami video tutorials. 

 

3.6 Performance Testing and Results Analysis Methodology 

3.6.1 Transmission System 

3.6.1.1 Purpose 

To determine whether these specifications listed below are met: 

i. Can generate flexion and extension at MCP and PIP joints, and 

extension at radiocarpal joint. 

ii. Maximum MCP flexion generated should be 90° and below. 

iii. Maximum PIP flexion generated should be 110° and below. 

iv. Maximum radiocarpal extension angle generated should be 60° and 

below. 

v. “Difficult” mode capable of generating the highest magnitude of 

angular velocities, followed by “Intermediate” mode and then “Easy” 

mode. 

vi. Maximum magnitude of angular velocity at PIP joint is 858 °/s. 

vii. Maximum magnitude of angular velocity at MCP joint is 694 °/s. 

viii. Maximum magnitude of angular velocity at radiocarpal joint is 

180 °/s. 
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3.6.1.2 Steps 

i. Setup the blue backdrop to create a clearer background. 

 

 

 

 

 

 

 

 

 

Figure 3.10: Blue Coloured Backdrop. 

 

ii. Setup the ring light and stand so that the light shines perpendicular to 

the ground. 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Ring Light and Stand Setup. 

 

iii. Attach the transmission mechanism to the hand. 

iv. Attach markers (i.e., black stickers) to the PIP, MCP and radiocarpal 

joints of the index finger. In addition, one marker is attached to the 

transmission mechanism, in front of where the DIP joint should be 

located. 
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Figure 3.12: Hand Attached with Transmission Mechanism and Markers. 

 

v. Activate the “Easy” mode continuous rehabilitation activity from the 

user interface. 

vi. Start the video recording. 

vii. Position the hand so that the sagittal view of the hand is being 

captured by the camera. 

 

 

 

 

 

 

 

 

Figure 3.13: Sagittal View of the Hand. 

 

viii. Record the movement actuated by the transmission mechanism for 

60 seconds. 

ix. Upload the video to Kinovea and attach trackers to measure the 

angles generated and the angular velocity for the extension of 

radiocarpal joint as well as the flexion of the MCP and PIP joints. 
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Figure 3.14: Trackers Attached Using Kinovea. 

  

x. Export the raw data. 

xi. Use Microsoft Excel to visualise the raw data in graphs. Then, using 

the “Max” function, locate the maximum angles generated by 

radiocarpal extension, as well as MCP and PIP flexion. Moreover, 

using the “ABS” and “Max” functions, locate the maximum angular 

velocity magnitudes generated at the radiocarpal, MCP and PIP 

joints. 

xii. Repeat steps v to viii for the “Intermediate” and “Difficult” modes. 

 

3.6.2 Sensing System 

3.6.2.1 Purpose 

To measure the performance of sensing system in detecting the maximum 

flexion angle of the MCP joint of middle finger and the maximum extension 

angle of the radiocarpal joint. 

 

3.6.2.2 Steps 

i. 0°, 30°, 60°, and 90° angles are constructed on paper. 
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Figure 3.15: Angles Constructed on Paper. 

 

ii. The sensing glove is worn. 

iii. The middle finger is positioned so that the MCP joint has a flexion of 

0°. 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Position of Middle Finger With 0° Flexion at MCP Joint. 

 

iv. Obtain and record the value for the maximum flexion angle of MCP 

joint from the user interface. 
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Figure 3.17: Maximum MCP Flexion Angle Displayed on the User 

Interface. 

 

v. Steps iii and iv are repeated for MCP flexion angles of 30°, 60°, and 

90°. 

vi. Steps iii and iv are repeated for radiocarpal extension angles of 0°, 30° 

and 60°. 

vii. Steps iii to vi are repeated 9 more times to obtain 10 sample values. 

viii. Construct boxplots to visualise the distribution of sample values. 

ix. Calculate the mean values of angles measured and the mean 

differences between these values and the actual angles at the MCP 

and radiocarpal joints. 

 

3.6.3 User Interface 

3.6.3.1 Purpose 

To determine whether these specifications listed below are met: 

i. Users can select between different activities. 

ii. Mobile application can connect to ESP32 via Bluetooth. 

iii. Users can select different rehabilitation modes. 

iv. Users can see the maximum angles for radiocarpal extension and 

MCP flexion. 

v. Users can view origami tutorial videos. 
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3.6.3.2 Steps 

Functionality testing is conducted for the mobile application by exploring the 

different functionalities offered in the application. 

 

3.6.4 Total Cost of Rehabilitation System 

3.6.4.1 Purpose 

To evaluate whether the total cost of the entire rehabilitation system is less 

than RM 1500. 

 

3.6.4.2 Steps 

Expenditure table is constructed to calculate the total cost. 

 

3.6.5 Total Weight of Transmission Mechanism Attached to Hand 

3.6.5.1 Purpose 

To evaluate whether the total weight of the transmission mechanism attached 

to the hand is less than 500 g. 

 

3.6.5.2 Steps 

Weigh the transmission mechanism segments on an electronic weighing scale 

that has an accuracy of 0.1 g. 

 

3.7 Total Expenditure 

Table 3.5 shows the total expenditure for the construction of the entire 

rehabilitation system. The total expenditure was RM 533.70. Since it costs 

less than RM 1500, the rehabilitation system has fulfilled part of an objective 

set in Chapter 1. 

 

Table 3.5: Total Expenditure for the Construction of Rehabilitation System. 

Components Quantity Cost per 

Unit 

Total Cost 

Design 

ESP32 

Microcontroller 

1 RM 21.80 RM 21.80 

Flex Sensors (2.2 2 RM 49 RM 98 
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inch) 

MG995 Servo 

Motors 

2 RM 10.30 RM 20.60 

Metal Rods (2 mm 

diameter) 

12 x 15 

cm 

RM 1.60 RM 19.20 

2mm Brushings 56 RM 0.20 RM 11.20 

Pure PLA 

Filaments 

1 kg RM 47.50 RM 47.50 

Super Glue 2 RM 1.60 RM 3.20 

Elastic Bands (Flat) 1 RM 3.50 RM 3.50 

Elastic Bands 

(Thin) 

1 RM 2.00 RM 2.00 

Gloves 1 RM 4 RM 4 

Power Bank 1 N / A RM 0 

Breadboard 1 N / A RM 0 

Connecting Wires - N / A RM 0 

Soldering Iron 1 N / A RM 0 

Solder 1 N / A RM 0 

Creality Ender 3 1 N / A RM 0 

SOLIDWORKS 1 N / A RM 0 

Project Libre 1 RM 0 RM 0 

Android Studio 1 RM 0 RM 0 

Arduino Web 

Editor 

1 RM 0 RM 0 

Total Cost RM 533.70 

 

• N / A: Not applicable because the components are readily available. 

 

3.8 Summary 

The entire Final Year Project took 29 weeks to complete. Table 3.6 

summarizes the elements inside the rehabilitation system architecture design 

along with the components selected. 
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Table 3.6: Elements in Rehabilitation System Architecture Design and 

Components Selected. 

Elements Components Selected 

Power source 1 power bank 

Microcontroller ESP32 + Arduino Web Editor 

Sensors 2 Flex sensors 

User interface Android mobile application + 

Android Studio 

Actuators 2 servo motors 

Transmission mechanism Origami String theory + 3D-printing 

technology + Creality Ender 3 + PLA 

+ SOLIDWORKS + Ultimaker Cura 

 

 Next, the total expenditure for the entire rehabilitation system was 

RM 533.70. Lastly, using tools such as Kinovea, Microsoft Excel and an 

electronic weighing scale, the performance of the rehabilitation were tested 

and analysed for the following areas: transmission system, sensing system, 

user interface, total cost of rehabilitation system and total weight of 

transmission mechanism sections attached to the hand. 
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CHAPTER 4 

 

4 REHABILITATION SYSTEM DESIGN AND CONSTRUCTION 

 

4.1 Introduction 

This chapter elaborates on the design and construction of the entire 

rehabilitation system. The design and construction of the following systems 

covered here are: electrical circuit, transmission mechanism, sensing system, 

and origami tutorial functionality. Lastly, the method to integrate these 

systems together was also explained. 

 

4.2 Electrical Circuit 

Figure 4.1 shows the electric circuit design that connects the MG995 servo 

motors and flex sensors to the ESP32 microcontroller. The microcontroller, 

servo motors and flex sensors are powered externally by a 5V power bank. 

Moreover, 10 kΩ resistors are used to construct the voltage divider circuit for 

the flex sensors. Furthermore, D14 and D15 pins of the microcontroller are 

output pins that produce pulse-width modulation (PWM) output signals. As 

such, they are connected to the signal input pins of the servo motors to drive 

the servo motors. Lastly, the D34 and D35 pins of the microcontroller are 

analog-to-digital converter (ADC) input pins that connect to the flex sensor 

voltage divider circuits to receive variable voltage signal. Figure 4.2 shows 

the constructed electrical circuit. 

 

Figure 4.1: Electrical Circuit Design for Rehabilitation Device. 
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Figure 4.2: Constructed Electrical Circuit for Rehabilitation Device. 

 

4.3 Transmission System 

The transmission system includes the transmission mechanism and actuators. 

 

4.3.1 Origami Theory 

Figure 4.3 visualises the latest crease pattern and dimensions for the 

transmission mechanism that will generate movement at the PIP, MCP and 

radiocarpal joints. Compared to the previous design found in Section 

3.5.1.5.1: Mechanism Design Theory, this new design combines the 

transmission mechanism of the MCP and PIP joints with that of the 

radiocarpal joint to create a more efficient design. The Miura vertex on the 

left has 55° angles to generate the maximum flexion angle of 110° at the PIP 

joint when the Miura vertex is in its antiparallel configuration. On the other 

hand, the Miura vertex in the middle has 45° angles to generate the maximum 

flexion angle of 90° at the MCP joint when the Miura vertex is in its 

antiparallel configuration. Lastly, the Miura vertex on the right has 30° 

angles to generate the maximum extension angle of 60° at the radiocarpal 

joint when the Miura vertex is in its antiparallel configuration. Figure 4.4 

illustrates the transmission mechanism in its antiparallel configuration. 
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Figure 4.3: Crease Pattern and Dimensions for Transmission Mechanism 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Transmission Mechanism in Antiparallel Configuration. 

  

 This design ensures that the transmission mechanism does not 

actuate movements that exceed the static constraints of the hand. 

 

4.3.2 Final Hardware Design 

After ten rounds of designing, 3-D printing, testing and modifying the 

transmission mechanism, the final design is as shown in Figure 4.5 (a) and 

(b). There are 34 separate segments in total (excluding the 30 separate loops 

that attach the sections together). Figure 4.6 shows the 3D-printed and 

assembled transmission system. 
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Figure 4.5 (a) & (b): Final Transmission Mechanism Design. 

 

 

 

 

 

 

 

 

Figure 4.6: 3D-Printed and Assembled Transmission Mechanism. 

(a) 

(b) 

Segment 4 Segment 2 Segment 1 Segment 3 
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In general, the transmission mechanism consists of 4 main segments 

as shown in Figure 4.6. Segments 1, 2, 3, and 4 will be attached to the distal-

middle phalanges, proximal phalanges, palm and wrist respectively as shown 

in Figure 4.7. When the servo motor arms move upwards in segment 4, the 

forces will be transferred to segment 3, then segment 2 and subsequently 

segment 1. This would result in the flexion of the MCP and PIP joints and the 

extension of the radiocarpal joints as shown in Figure 4.8. 

 

 

 

 

 

 

 

 

Figure 4.7: Transmission Mechanism Attached to the Hand. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Transmission Mechanism Actuating MCP and PIP Joint Flexion 

and Radiocarpal Joint Extension. 
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4.3.3 Design Features 

The following design features are incorporated to ensure that the 

transmission mechanism can actuated the movements as intended.  

 Initially the loops designed to connect the segments together 

diagonally as shown in Figure 4.9 (a) have an axis of rotation that is located 

the middle of the segment. As such, the segments cannot bend completely as 

shown in Figure 4.9 (b). To solve this issue, the loops were designed so that 

the axis of rotation between the segments are now located between the 2 

segments as shown in Figure 4.9 (c) which enabled the segments to bend 

completely like folds on a paper as shown in Figure 4.9 (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 

(d) 
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Figure 4.9: (a) Initial Design of Loops that Connect Segments Diagonally. (b) 

Segments Cannot Bend Completely. (c) Modified Loops. (d) Segments Can 

Bend Completely. 

 

 Moreover, the transmission mechanism has safeguard plates 

designed as shown in Figure 4.10 to ensure that the segments do not bend in 

the direction that is not intended. This prevents the transmission mechanism 

from actuating movements that violate the static constraints of the hand. 

 

 

 

 

 

Figure 4.10: Safeguard Plates Design Feature. 

 

In addition, the initial designs had the segments lie completely flat 

as shown in Figure 4.11 (a). This made the movements actuated jerky. Unlike 

paper that encodes the creases in its fibres when it is folded, this transmission 

mechanism does not remember which direction it should be folding towards. 

Even though there are safeguard plates too prevent the segments from 

bending the wrong direction, there was also no design to encourage it to bend 

in the correct direction. As such, the safeguard plates were later designed to 

extend outward with a 3° angle to allow the segments to “remember” which 

direction it should bend towards as shown in Figure 4.11 (b). 

 

 

 

 

 

 

Figure 4.11: (a) Segments Lie Completely Flat. (b) Segments Do Not lie 

Completely Flat. 

 

(a) (b) 
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 Furthermore, when the initial versions of the transmission 

mechanism were attached to the hand and attempted to actuate the joints, it 

was discovered that due to the weight of the hand, the forces transferred from 

the servo motors to the subsequent segments were not adequate to generate 

flexion at the MCP and PIP joints and extension at the radiocarpal joints. As 

such, two additional design features were added to aid the transmission 

mechanism. Elastic bands were attached between segments to exert elastic 

forces on the segments while extensions were attached on some segments to 

increase the length of the lever thus increasing the torque generated on the 

segments.  

 

 

 

 

 

 

 

 

 

Figure 4.12: Elastic Bands (Circled in Red) and Extensions (Circled in Pink) 

Attached on Segments. 

 

4.3.4 Code Design for Android Mobile Application Programme 

The purpose of this code is to allow the user to select the rehabilitation mode 

and to send this information to the ESP32. 

 Figure 4.13 illustrates the different activities that the user navigates 

through to select the rehabilitation mode. 

 

 

 

Figure 4.13: Different Activities Navigated During Selection of 

Rehabilitation Modes. 
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 Table 4.1 summarizes the function of each activity. 

 

Table 4.1: Activities Conducted to Select Rehabilitation Modes and their 

Functions. 

Activity Function 

RehabConnect Enable Bluetooth on user’s mobile device. 

DevicesFragment Query the mobile device for paired devices and 

displays this list of devices for the user to select. 

RehabModesFragment Connect with the device selected by user. Then, 

displays 3 modes of rehabilitation for user to select. 

Once selected, this information is sent to ESP32 and 

user is notified that the rehabilitation has started. In 

addition, this activity listens to the status of the 

Bluetooth connection. If connection fails, it will 

attempt to reconnect with the ESP32 again. 

 

The complete code annotated with comments can be found in 

Appendix B, C, and D. 

 

4.3.5 Code Design for ESP32 Programme 

The purpose of this code is to receive the rehabilitation mode sent by the 

Android mobile application and to control the servo motors. 

Firstly, the header files that enable Bluetooth and servo motor 

control functions are imported. Then, a variable, “Mode” is initialised to 

store the mode of the rehabilitation activity. After that, the Bluetooth serial 

service is initialised. Next, the code will loop as it attempts to detect whether 

the android mobile application has sent any message. Once a message is 

detected, it is stored in the “Mode” variable to detect which rehabilitation 

mode was selected by the user. Table 4.1 shows the value that the “Mode” 

variable will contain corresponding with the rehabilitation mode chosen by 

user. 
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Table 4.2: Rehabilitation Mode Selected and Corresponding Data Received 

by ESP32. 

Rehabilitation Mode Selected Data Received by ESP32 

Easy 1 

Intermediate 2 

Difficult 3 

 

 After detecting the rehabilitation mode, an if-else loop will be used 

to execute the correct rehabilitation mode. For all modes, the step angles are 

set to be the same at 1°. Moreover, the servo motor will also rotate from 0° to 

42° for all modes. The only difference is the delay set between angle 

increments. The delay set for “Easy” mode is the shortest, followed by 

“Intermediate” mode and then “Difficult” mode. The complete code 

annotated with comments can be found in Appendix E. 

 

4.4 Sensing System 

4.4.1 Voltage Divider Circuit 

When the flex sensors are bent away from the direction containing the 

conductive ink, their resistance will increase. To enable the ADC input pin of 

the ESP32 to detect a change in input voltage, a voltage divider circuit was 

constructed as shown in Figure 4.14 so that the ESP32 will be measuring the 

change of voltages across the 10 kΩ resistor. When the flex sensor is bent 

and its resistance increases, the voltage across the 10 kΩ resistor will drop 

thus the voltage received by the ESP32 will decrease. 

 

Figure 4.14: Voltage Divider Circuit for Sensing System. 
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4.4.2 Code Design for Android Mobile Application Programme 

The purpose of this code is to allow the users to assess their recovery 

progress. Figure 4.15 illustrates the different activities that the user navigates 

through in order to access their recovery progress. 

 

Figure 4.15: Different Activities Navigated for Users to Assess Recovery 

Progress. 

 

 Table 4.3 summarizes the function of each activity. 

 

Table 4.3: Activities Conducted to Assess Recovery Progress. 

Activity Function 

RehabConnect Enable Bluetooth on user’s mobile device. 

DevicesFragment2 Query the mobile device for paired devices and 

displays this list of devices for the user to select. 

ProgressStartFragment Connect with the device selected by user. Then, 

sends a command to the ESP32 to begin joint angle 

measurement. Once the measurement process is 

completed, it receives the maximum flexion of MPC 

joint and maximum extension of radiocarpal joint 

values from ESP32 and displays this information to 

the user. In addition, this activity listens to the status 

of the Bluetooth connection. If the connection fails, 

it will attempt to reconnect with the ESP32 again. 

 

The complete code annotated with comments can be found in 

Appendix B, F, and G. 
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4.4.3 Code Design for ESP32 Programme 

The purpose of this code is to detect the digital input voltages provided by 

the flex sensors, process them into MCP flexion angles and radiocarpal 

extension angles, locate the maximum angles and subsequently transmit this 

data back to the Android mobile application. 

 Firstly, the header file that enables Bluetooth functionality in ESP32 

was imported. Then, the true values for the voltage of the power source and 

resistance of the resistors used in the voltage divider circuit as well as the 

resistance of the flex sensors when they lie completely flat or are bent to 90° 

(for MCP joint flex sensor) and 60° (for radiocarpal joint flex sensor) was 

measured using a multi-meter. Next, these values are stored in variables.  

When the programme detects a prompt from the Android application 

to start measuring the angles of the joints, the programme will detect the 

digital signal provided by the flex sensors. Then, these values will be 

converted into analog voltages and subsequently into the resistance of the 

distorted flex sensors. Next, these values are mapped onto the resistance 

range of flex sensors so that MCP flexion angles and radiocarpal extension 

angles can be obtained. 

 After that, these values are passed through an if-else loop to 

determine whether their values were larger than those in the previous 

iterations. This programme will run for 11 iterations and the maximum MCP 

flexion angle and radiocarpal extension angle obtained will be catenated and 

converted into unsigned character format where they can now be sent to the 

Android Application. 

The complete code annotated with comments can be found in 

Appendix H. 

 

4.4.4 Calibration of Flex Sensors 

Once the code in section 4.5.3 was constructed, the values for the resistance 

of flex sensors when they lie completely flat or are bent to 90° (for MCP 

joint flex sensor) and 60° (for radiocarpal joint flex sensor) have to be 

calibrated to ensure that the calculated joint angles adhere as close to the true 

angles as possible. To do so, the following steps were taken: 
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i. The angles for 60° and 90° were drawn on paper. 

ii. The sensing glove was worn. 

iii. The hand was held at the position shown in Figure 4.16 to detect the 

resistance calculated by the ESP32 programme when MCP joint was 

flexed at 90°.  

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Hand Position Held for MCP Joint Flexion of 90°. 

 

iv. The ESP32 programme is imitated via Android mobile application. 

v. Once the measuring process was completed, the maximum value for 

“Resistance MCP” shown on the serial monitor of the Arduino Web 

Editor (Figure 4.17) was located among the iterations. This value 

represents the maximum resistance that was detected during the 

measuring process. 
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Figure 4.17: Iteration Values Shown on Serial Monitor. 

 

vi. Steps iii to v were repeated to obtain that maximum resistance 

measured for 0° MCP joint flexion and radiocarpal joint extension as 

well as 60° radiocarpal joint extension. Step iii was modified to 

obtain the different angles, whereby the hand was held at the position 

shown in Figure 4.18 (a) to measure angles for 60° radiocarpal joint 

extension and held at the position shown in Figure 4.18 (b) to 

measure angles for 0° MCP joint flexion and radiocarpal joint 

extension. 

 

(a) (b) 
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Figure 4.18: (a) Hand Position Held for Radiocarpal Joint Extension of 60°. 

(b) Hand Position Held for Radiocarpal Joint Extension and MCP Joint 

Flexion of 0°. 

 

vii. Steps iii to vi was repeated to obtain 10 sets of values and which were 

tabled. 

viii. The mean for these 10 sets of values were obtained and the values of 

the variables in the ESP32 programme were altered accordingly. 

(Table containing the 10 sets of values can be found in Appendix I) 

 

4.5 Origami Tutorial Functionality 

The purpose of this code was to display a list of tutorial videos to the user 

and enable the users to select and play the videos. For this functionality, the 

user interacts with only 1 activity: “OrigamiVideos”. The function of this 

activity is to embed HTML content from YouTube into WebView elements 

that the user can interact with. 

The complete code annotated with comments can be found in 

Appendix J. 

 

4.6 System Integration 

4.6.1 Code Design for Android Mobile Application Programme 

To integrate the 3 main systems / functionalities (transmission, sensing and 

origami tutorials) together, a menu page was added to enable the user to 

navigate to their preferred functionality. The “HomeDirectory” activity 

functions to display buttons for the users to click and navigate to activities 

that correspond to the user’s selection. As such, Figure 4.19 illustrates the 

different activities that the user navigates through in order to perform their 

chosen functionality. 
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Figure 4.19: Complete Activity Flow in Android Application. 

 

The complete code for the “HomeDirectory” activity that is 

annotated with comments can be found in Appendix K. 

 

4.6.2 Code Design for ESP32 Programme 

To integrate the transmission and sensing systems together, an infinite loop is 

created to constantly check whether the Android application has sent a 

command to the ESP32. When the android application sends the first 

command which contains information about which system was chosen by the 

user, the ESP32 programme passes this command to an if-else loop to trigger 

the correct system. The complete code for the ESP32 programme can be 

found in Appendix L. 

 

4.7 Summary 

To summarise, transmission mechanism was designed using origami theory. 

Furthermore, this transmission mechanism was designed to actuate the MCP, 

PIP and radiocarpal joints together and contains special design features that 

help to optimise its movements. 

In addition, the sensing system utilised voltage divider circuit 

method for its design. This system was also calibrated to increase the 

accuracy of its measurements. 

Moreover, the Android mobile application programme was designed 

to cover the transmission system, sensing system and origami tutorials 
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functionalities while the ESP32 programme was design to cover the 

transmission system and sensing system functionalities. Once the systems 

were completed, they were integrated to enable the user to select their 

preferred activity. 
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CHAPTER 5 

 

5 RESULTS AND DISCUSSION 

 

5.1 Introduction 

This chapter will assess whether the study has achieved its goals by 

displaying and evaluating the results produced for the analysis of the 

following areas: transmission system, sensing system, user interface, total 

cost of rehabilitation system and total weight of transmission mechanism 

attached to the hand. 

 

5.2 Transmission System 

5.2.1 Angles Generated 

Figure 5.1, 5.2 and 5.3 show the angles generated at the joints within a 

timeframe of 60 seconds for the “Easy”, “Intermediate” and “Difficult” 

modes respectively. 

 

 

Figure 5.1: Angle vs Time graph for “Easy” Mode. 
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Figure 5.2: Angle vs Time graph for “Intermediate” Mode. 

 

 

Figure 5.3: Angle vs Time graph for “Difficult” Mode. 

 

 From Figure 5.1, 5.2 and 5.3, it is observed that all modes were able 

to produce flexion and extension at the MCP and PIP joints and extension at 

the radiocarpal joint. In addition, the “Difficult” mode generated the most 
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flexion-extension cycles followed by the “Intermediate” mode and then the 

“Easy” mode. This proves than the transmission mechanism can actuate the 

fastest for the “Difficult” mode followed by the “Intermediate” mode and 

then the “Easy” mode, thus allowing the user to select which mode they are 

comfortable with. Moreover, it can be seen that the transmission mechanism 

can produce angular displacements with a range of 25° to 30°.  

Using the “Max” function from Microsoft Excel, the maximum 

flexion or extension angles for the joints were calculated as shown in Table 

5.1. 

 

Table 5.1: Maximum Flexion / Extension Angles Generated for Three 

Different Rehabilitation Modes. 

Rehabilitation 

Mode 

Maximum 

Flexion Angle 

for PIP Joint 

Maximum 

Flexion Angle 

for MCP Joint 

Maximum 

Extension Angle 

for Radiocarpal 

Joint 

Easy 81° 71° 60° 

Intermediate 80° 66° 57° 

Difficult 73° 63° 53° 

 

From Table 5.1, the maximum flexion angles generated at the PIP joints were 

less than 110° for all rehabilitation modes. Furthermore, the maximum 

flexion angles generated at the MCP joints were less than 90° for all 

rehabilitation modes. Lastly, the maximum extension angles generated at the 

Radiocarpal joints were 60° and below for all rehabilitation modes. Therefore, 

the transmission mechanism did not exceed the static constraints of the hand. 

 

5.2.2 Angular Velocities Generated 

Figure 5.4, 5.5 and 5.6 show the angular velocities generated at the joints 

within a timeframe of 60 seconds for the “Easy”, “Intermediate” and 

“Difficult” modes respectively. 
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Figure 5.4: Angular Velocity vs Time graph for “Easy” Mode. 

 

 

Figure 5.5: Angular Velocity vs Time graph for “Intermediate” Mode. 
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Figure 5.6: Angular Velocity vs Time graph for “Difficult” Mode. 

 

 From Figure 5.4, 5.5 and 5.6, it can be observed that the angular 

velocities generated at the joints for the “Difficult” mode is the highest, 

followed by “Intermediate” mode and then “Easy” mode. 

Using the “ABS” function from Microsoft Excel, the angular 

velocities were converted into absolute values. Then, using the “Max” 

function, the maximum angular velocity magnitudes for the joints were 

calculated as shown in Table 5.2.  

 

Table 5.2: Maximum Flexion / Extension Angular Velocity Magnitudes 

Generated for Three Different Rehabilitation Modes. 

Rehabilitation 

Mode 

Maximum 

Flexion Angular 

Velocity 

Magnitude for 

PIP Joint 

Maximum 

Flexion Angular 

Velocity 

Magnitude for 

MCP Joint 

Maximum 

Extension 

Angular Velocity 

Magnitude for 

Radiocarpal 

Joint 

Easy 49°/s 33°/s 28°/s 

Intermediate 69°/s 69°/s 57°/s 

Difficult 90°/s 71°/s 73°/s 
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From Table 5.2, the maximum magnitude for angular velocities 

generated at the PIP joints were less than 858°/s for all rehabilitation modes. 

Furthermore, the maximum magnitude for angular velocities generated at the 

MCP joints were less than 694°/s for all rehabilitation modes. Lastly, the 

maximum magnitude for angular velocities generated at the Radiocarpal 

joints were less than 180°/s for all rehabilitation modes. Therefore, the 

transmission mechanism generates movements that did not exceed the 

maximum angular velocities that can be produced naturally. 

To summarise, this study managed to design and construct a 

transmission mechanism that could generate flexion and extension at the 

MCP and PIP joins and extension at the radiocarpal joint. In addition, this 

transmission mechanism actuates movements that respect the static 

constraints of the hand and does not exceed the maximum angular velocities 

that can be generated by the hand naturally. Moreover, the “Difficult” mode 

of the transmission mechanism is capable of generating the highest 

magnitude of angular velocities, followed by “Intermediate” mode and then 

“Easy” mode. 

 

5.3 Sensing System 

Table 5.3 shows the maximum MCP flexion angles and maximum 

radiocarpal extension angles detected by the sensing system for 10 trials. 

 

Table 5.3: Maximum MCP Flexion Angles and Maximum Radiocarpal 

Extension Angles Detected. 

Trials Maximum MCP Flexion Angle Maximum Radiocarpal 

Extension Angle 

0° 30° 60° 90° 0° 30° 60° 

1 8° 35° 53° 95° 9° 34° 58° 

2 7° 36° 56° 89° 8° 28° 59° 

3 5° 30° 58° 91° 8° 26° 53° 

4 7° 28° 59° 87° 9° 27° 59° 

5 4° 30° 55° 94° 10° 33° 55° 

6 5° 36° 52° 90° 8° 30° 55° 
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7 7° 35° 56° 84° 5° 30° 57° 

8 7° 35° 56° 88° 7° 29° 55° 

9 6° 36° 57° 87° 7° 35° 65° 

10 3° 29° 55° 93° 8° 32° 64° 

 

Figure 5.7 and 5.8 represent the boxplots created to visualise the 

distribution of sample values obtained in Table 5.3. 

 

 

Figure 5.7: Boxplot: Maximum Angles Detected for MCP Joint Flexion. 
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Figure 5.8: Boxplot: Maximum Angles Detected for Radiocarpal Joint 

Extension. 

 

Referring to Figures 5.7 and 5.8, there are no outliers found in the measured 

values. Moreover, the sample values for maximum angles detected for MCP 

joint flexion of 60° and 90° as well as the sample values for maximum angles 

detected for radiocarpal joint extension of 0° display a symmetric distribution. 

Furthermore, the sample values for maximum angles detected for radiocarpal 

joint extension of 30° and 60° are slightly positively skewed while the 

sample values for maximum angles detected for MCP joint flexion of 0° and 

30° are negatively skewed. In addition, the dispersion of sample values for 

maximum angles detected for MCP joint flexion of 30° and 90° and for 

maximum angles detected for radiocarpal joint extension of 30° and 60° are 

larger compared to the other samples. 

 Table 5.4 shows the mean values for the maximum MCP flexion 

angles and maximum radiocarpal extension angles detected by the sensing 
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system along with the percentage difference between these values and the 

actual MCP flexion and radiocarpal extension produced. 

 

Table 5.4: Mean Values and Mean Differences for Maximum MCP Flexion 

Angles and Maximum Radiocarpal Extension Angles Detected. 

 Maximum MCP Flexion Angle Maximum Radiocarpal 

Extension Angle 

Actual 

Angles 

0° 30° 60° 90° 0° 30° 60° 

Mean for 

Angles 

Measured 5.9° 33° 55.7° 89.8° 7.9° 30.4° 58° 

Mean 

Difference 

Between 

Measured 

and Actual 

Angles 5.9° 3° -4.3° -0.2° 7.9° 0.4° -2° 

 

Referring to Table 5.4, the mean differences between the measured 

and actual angles for MCP joint flexion and radiocarpal joint extension fall 

below ±5° for all flexion and extension angles except those for 0°. Therefore, 

excluding the joint measurements for 0°, the accuracy of this sensing system 

is similar to the results obtained in (Williams et al., 2000) where the 

maximum mean difference was 5.10°. The joint measurements for 0° 

exceeded a mean difference of ±5 because the gloves used in the sensing 

system was large and not formfitting. As such, the excess material tends to 

distort the flex sensors especially when the joint flexion or extension angles 

are really small. Despite this issue, this study has managed to design and 

construct a working sensing system. 
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5.4 User Interface 

5.4.1 Activity Flow 

5.4.1.1 Navigation 

Android users can access the mobile application by selecting the launcher 

icon shown in Figure 5.9 (a). Once the application loads, users can navigate 

to the different activities from the navigation page shown in Figure 5.9 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: (a) Launcher Icon (b) Navigation Page 

 

5.4.1.2 Hand Rehabilitation Activity 

When users select the button shown in Figure 5.10 (a), the users will navigate 

to the page shown in Figure 5.10 (b). Here, they will be prompted to provide 

their permission to allow the application to enable the Bluetooth feature on 

their mobile devices. If they select “Allow”, they will navigate to the page 

shown in Figure 5.10 (c) which displays the list of external devices that are 

paired with the mobile phone. Here, the users can select “ESP32_Control” to 

connect with the ESP32 microcontroller. They will then be navigated to the 

page that will display the status of the Bluetooth connection. Figure 5.10 (d) 

is the status shown when the application is in the attempting to connect with 

ESP32. If the ESP32 is not turned on, status shown in Figure 5.10 (e) will be 

displayed to inform the user that the attempt has failed. The application will 

(a) (b) 
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loop between status shown in Figure 5.10 (d) and Figure 5.10 (e) until the 

ESP32 is turned on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: (a) “Start Rehabilitation Activity” Button is Selected. (b) Prompt 

Displayed to Enable Bluetooth. (c) List of Paired Devices is Displayed. (d) 

Status Shown as Application is Attempting to Connect with ESP32. (e) 

Status Shown When Application Fails to Connect with ESP32. 

 

(a) (b) (c) 

(e) (d) 
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 Once the ESP32 is turned on, the application will successfully 

connect with it and navigate to the page shown in Figure 5.11 (a). If the 

“Easy” mode is selected, the application will navigate to the page shown in 

Figure 5.11 (b) and the transmission mechanism will start to actuate. If the 

“Intermediate” mode is selected, the application will navigate to the page 

shown in Figure 5.11 (c) and the transmission mechanism will start to actuate. 

If the “Difficult” mode is selected, the application will navigate to the page 

shown in Figure 5.11 (d) and the transmission mechanism will start to actuate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) (d) 



86 

 

Figure 5.11: (a) Three Different Rehabilitation Modes Displayed. (b) Page 

Shown When “Easy” Mode was Selected. (c) Page Shown When 

“Intermediate” Mode was Selected. (d) Page Shown When “Difficult” Mode 

was Selected. 

 

5.4.1.3 Recovery Progress Measurement Activity 

When users select the button shown in Figure 5.12 (a), the users will navigate 

to the page shown in Figure 5.12 (b). Here, they will be prompted to provide 

their permission to allow the application to enable the Bluetooth feature on 

their mobile devices. If they select “Allow”, they will navigate to the page 

shown in Figure 5.12 (c) which displays the list of external devices that are 

paired with the mobile phone. Here, the users can select “ESP32_Control” to 

connect with the ESP32 microcontroller. They will then be navigated to the 

page that will display the status of the Bluetooth connection. Figure 5.12 (d) 

is the status shown when the application is in the attempting to connect with 

ESP32. If the ESP32 is not turned on, status shown in Figure 5.12 (e) will be 

displayed to inform the user that the attempt has failed. The application will 

loop between status shown in Figure 5.12 (d) and Figure 5.12 (e) until the 

ESP32 is turned on.  

 

 

 

(a) (b) (c) 
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Figure 5.12: (a) “Start Recovery Progress Measurement” Button is Selected. 

(b) Prompt Displayed to Enable Bluetooth. (c) List of Paired Devices is 

Displayed. (d) Status Shown as Application is Attempting to Connect with 

ESP32. (e) Status Shown When Application Fails to Connect with ESP32. 

 

Once the ESP32 is turned on, the application will successfully 

connect with it and navigate to the page shown in Figure 5.13 (a). Users can 

now move their hand has donned on sensing glove. Once the detection cycle 

is complete, the maximum flexion angle at the MCP joint of the middle 

finger and the maximum extension angle of the radiocarpal joint are 

displayed. 

 

 

 

 

 

 

 

 

 

 

(d) (e) 
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Figure 5.13: (a) Page Shown When the Sensing System is Measuring the 

Joint Angles. (b) Maximum Flexion Angle at MCP Joint and Maximum 

Extension Angle at Radiocarpal Joint Displayed on the Page. 

 

5.4.1.4 Origami Tutorials Activity 

When users select the button shown in Figure 5.14 (a), the users will navigate 

to the page shown in Figure 5.14 (b). When users select the video that they 

wish to view, the video will start to play as shown in Figure 5.15 (c). 

 

 

(a) (b) 

(a) (b) (c) 
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Figure 5.14: (a) “Start Learning How to Fold Origami” Button is Selected. (b) 

Page Displaying a List of Origami Tutorials. (c) Tutorial Video Runs When 

It is Selected. 

 

 Therefore, this study managed to design and construct a fully 

functional user interface that can connect to the ESP32 via Bluetooth, allow 

users to select between different activities, allow users to select between 

different rehabilitation modes, allow users to see their recovery progress as 

well as view tutorial videos on how to fold origami. 

 

5.5 Total Cost of Rehabilitation System 

Referring to the expenditure table constructed in Section 3.7, total cost of the 

rehabilitation system was RM 533.70. Therefore, this study managed to 

construct the entire rehabilitation system for less than RM 1500. 

 

5.6 Total Weight of Transmission Mechanism Attached to Hand 

The total weight of the transmission mechanism segments that are attached to 

the hand was 250 g. Therefore, this study managed to construct a 

transmission mechanism that weighed less than 500 g. 

 

5.7 Summary 

This study managed to design and construct a transmission mechanism that 

could generate flexion and extension at the MCP and PIP joins and extension 

at the radiocarpal joint. In addition, this transmission mechanism actuates 

movements that respect the static constraints of the hand and does not exceed 

the maximum angular velocities that can be generated by the hand naturally. 

Moreover, the “Difficult” mode of the transmission mechanism is capable of 

generating the highest magnitude of angular velocities, followed by 

“Intermediate” mode and then “Easy” mode. 

 Furthermore, this study managed to design and construct a working 

sensing system that can detect most angles with an accuracy on par with 

other studies.  
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Other than that, this study managed to design and construct a fully 

functional user interface that can connect to the ESP32 via Bluetooth, allow 

users to select between different activities, allow users to select between 

different rehabilitation modes, allow users to see their recovery progress as 

well as view tutorial videos on how to fold origami. 

 Next, this study managed to construct the entire rehabilitation 

system for RM 533.70, which is less than RM 1500. Lastly, this study 

managed to construct a transmission mechanism that weighed 250 g, which is 

less than 500 g. 

 In conclusion, this study managed to fulfil all 5 objectives set. 
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CHAPTER 6 

 

6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

To conclude, the aim of this study was to design a hand rehabilitation 

exoskeleton system that could provide continuous passive movement to the 

finger and wrist joints and allow the patient to choose between different 

rehabilitation protocols as well as to review their recovery progress. After 

testing and evaluating the system constructed, it was determined that the 

transmission system could generate 3 different angular velocities for the 

extension movement at the radiocarpal joint and coupled flexion and 

extension movements at the Metacarpophalangeal (MCP) and Proximal 

Interphalangeal (PIP) joints of the 4 fingers. In addition, these movements 

respect the static constraints of the hand and does not exceed the maximum 

angular velocities that can be generated by the hand naturally. Moreover, the 

sensing system could measure the angle of flexion at the MCP joint and 

maximum angle of extension at the wrist joint with an accuracy similar to 

that in the (Williams et al., 2000) study for all angles except 0°. Furthermore, 

the total expenditure for the construction of the rehabilitation system was RM 

533.70 and the sections of transmission mechanism attached to the hand 

weighed 250 g in total. Lastly, the Android mobile application was 

successfully constructed to allow the patient to choose between 3 levels of 

angular velocity that is generated by the transmission mechanism and allows 

the patient view their recovery progress. As such, all the 5 objectives set in 

this study was met.  

One of the limitations of this study is that the torque generated on 

the segments in the transmission mechanism are only sufficient to produce 

angular displacements with a range of 25° to 30°. In addition, the accuracy of 

the sensing system when measuring joint flexion or extension angles at 0° 

falls below that of a comparable study. 

This study has provided insight on designing a hand exoskeleton 

rehabilitation system that is cost-effective and allows users to interact with it 
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via mobile phone. In addition, this study has proven that it is possible to 

integrate origami string theory into designing transmission mechanism for 

rehabilitation systems. 

 

6.2 Recommendations for future work 

In the future, the design of the transmission mechanism should be improved 

to increase the torque that can be generated at each of the segments in order 

to enable the actuation of a wider range of motions for the joints. One idea is 

to increase the width of the segments that are located lateral to the hand 

 In addition, the sensing system should be improved by using a 

formfitting glove to prevent the excess material from distorting the flex 

sensors. Moreover, the sensing system should be calibrated by positioning 

the joints using a goniometer instead of a paper that has angles drawn to 

increase its accuracy.  

 Lastly, a cloud database could be utilised in the future to record the 

patient’s previous maximum MCP flexion and maximum radiocarpal 

extension angles. This will allow the user to keep track of their recovery 

progress throughout the entire rehabilitation journey. 
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APPENDICES 

 

Appendix A: Android Application Code for “RehabConnect” Activity 

 

package com.project.rehabilitation_system; 

 

import android.Manifest; 

import android.bluetooth.BluetoothAdapter; 

import android.content.pm.PackageManager; 

import android.os.Bundle; 

import android.widget.Toast; 

 

import androidx.core.app.ActivityCompat; 

import androidx.fragment.app.FragmentManager; 

import androidx.appcompat.app.AppCompatActivity; 

import androidx.appcompat.widget.Toolbar; 

 

public class RehabConnect extends AppCompatActivity implements 

FragmentManager.OnBackStackChangedListener { 

 

    // declare variables 

    Toolbar toolbar; 

    private BluetoothAdapter mBlueAdapter; 

    private String activity_mode; 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

 

        // retrieve activity mode 

        Bundle extras = getIntent().getExtras(); 

        activity_mode = extras.getString("activity_mode"); // 

success extraction 

 

 

        // initialise views 

        toolbar = findViewById(R.id.toolbar); 

        // sets the toolbar for this activity 

        setSupportActionBar(toolbar); 

 

        

getSupportFragmentManager().addOnBackStackChangedListener(this

); 

 

        if (savedInstanceState == null) // check fragment not 

there in first place 

            if (activity_mode.equals("Rehab")) { 

                

getSupportFragmentManager().beginTransaction().add(R.id.fragme

nt, new DevicesFragment(), "devices").commit(); 

            } 

            else { 

                

getSupportFragmentManager().beginTransaction().add(R.id.fragme

nt, new DevicesFragment2(), "devices").commit(); 

            } 
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        else 

            onBackStackChanged(); 

 

        if (activity_mode.equals("Rehab")) { 

            getSupportActionBar().setTitle("Rehabilitation 

Activity"); 

        }else { 

            getSupportActionBar().setTitle("Measure Recovery 

Progress"); 

        } 

 

        

toolbar.setTitleTextColor(getResources().getColor(android.R.co

lor.black)); 

 

 

 

        // on btn click, turn on bluetooth 

        // create bluetooth adapter 

        mBlueAdapter = BluetoothAdapter.getDefaultAdapter(); 

 

 

        // check is bluetooth is already enabled 

 

        // if not enabled, turn on 

        if (!mBlueAdapter.isEnabled()) { 

 

 

            // turn on bluetooth 

            if (ActivityCompat.checkSelfPermission(this, 

Manifest.permission.BLUETOOTH_CONNECT) != 

PackageManager.PERMISSION_GRANTED) { 

 

            } 

            mBlueAdapter.enable(); 

 

 

            // if already on... 

            if (mBlueAdapter.isEnabled()){ 

                showToast("Bluetooth is now on");} 

            } else { 

               showToast("Bluetooth is already on"); 

                   } 

 

    } 

 

    @Override 

    public void onBackStackChanged() { 

        

getSupportActionBar().setDisplayHomeAsUpEnabled(getSupportFrag

mentManager().getBackStackEntryCount()>0); 

    } 

 

    @Override 

    public boolean onSupportNavigateUp() { 

        onBackPressed(); 

        return true; 

    } 

 

    // toast message function 

    private void showToast(String msg) { 
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        Toast.makeText(this, msg, Toast.LENGTH_SHORT).show(); 

    } 

 

} 

 

  



101 

 

Appendix B: Android Application Code for “DevicesFragment” Activity 

 

package com.project.rehabilitation_system; 

 

import android.bluetooth.BluetoothAdapter; 

import android.bluetooth.BluetoothDevice; 

import android.content.pm.PackageManager; 

import android.os.Bundle; 

 

import androidx.annotation.NonNull; 

import androidx.fragment.app.Fragment; 

import androidx.fragment.app.ListFragment; 

 

import android.view.View; 

import android.view.ViewGroup; 

import android.widget.ArrayAdapter; 

import android.widget.ListView; 

import android.widget.TextView; 

 

import java.util.ArrayList; 

 

public class DevicesFragment extends ListFragment { 

 

     

    private BluetoothAdapter bluetoothAdapter; 

 

    // initialise array for paired devices 

    private final ArrayList<BluetoothDevice> listItems = new 

ArrayList<>(); 

 

    // adapter to create a view for each item (paired device) 

    private ArrayAdapter<BluetoothDevice> listAdapter; 

 

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

 

        // if device has bluetooth capabilities 

        

if(getActivity().getPackageManager().hasSystemFeature(PackageM

anager.FEATURE_BLUETOOTH)) 

 

            // create bluetooth adapter 

            bluetoothAdapter = 

BluetoothAdapter.getDefaultAdapter(); 

 

        // create list to show all paired devices and their 

addresses 

        listAdapter = new 

ArrayAdapter<BluetoothDevice>(getActivity(), 0, listItems) { 

            @NonNull 

            @Override 

            public View getView(int position, View view, 

@NonNull ViewGroup parent) { 

                BluetoothDevice device = 

listItems.get(position); 

                if (view == null) 

                    // show the fragment view 

                    view = 
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getActivity().getLayoutInflater().inflate(R.layout.device_list

_item, parent, false); 

                TextView text1 = 

view.findViewById(R.id.text1); 

                TextView text2 = 

view.findViewById(R.id.text2); 

                text1.setText(device.getName()); 

                text2.setText(device.getAddress()); 

                return view; 

            } 

        }; 

    } 

 

    @Override 

    public void onActivityCreated(Bundle savedInstanceState) { 

        super.onActivityCreated(savedInstanceState); 

        setListAdapter(null); 

        View header = 

getActivity().getLayoutInflater().inflate(R.layout.device_list

_header, null, false); 

        getListView().addHeaderView(header, null, false); 

 

        setListAdapter(listAdapter); 

    } 

 

 

    // when go out of app and come back 

    @Override 

    public void onResume() { 

        super.onResume(); 

 

        refresh(); 

    } 

 

    // finding all paired devices and store them into an array 

    void refresh() { 

        listItems.clear(); 

        // if bluetooth is on, get list of paired devices 

        if(bluetoothAdapter != null) { 

            for (BluetoothDevice device : 

bluetoothAdapter.getBondedDevices()) 

                if (device.getType() != 

BluetoothDevice.DEVICE_TYPE_LE) 

                    listItems.add(device); 

        } 

 

        listAdapter.notifyDataSetChanged(); 

    } 

 

    // once a paired device is selected, change fragment to  

RehabModesFragment 

    @Override 

    public void onListItemClick(@NonNull ListView l, @NonNull 

View v, int position, long id) { 

        BluetoothDevice device = listItems.get(position-1); 

        Bundle args = new Bundle(); 

        args.putString("device", device.getAddress()); 

        Fragment fragment = new RehabModesFragment(); 

        fragment.setArguments(args); 

        

getFragmentManager().beginTransaction().replace(R.id.fragment, 
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fragment, "rehabmodes").addToBackStack(null).commit(); 

    } 

 

} 
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Appendix C: Android Application Code for “RehabModesFragment” 

Activity 

 

 

package com.project.rehabilitation_system; 

 

import android.app.Activity; 

import android.bluetooth.BluetoothAdapter; 

import android.bluetooth.BluetoothDevice; 

import android.content.ComponentName; 

import android.content.Context; 

import android.content.Intent; 

import android.content.ServiceConnection; 

import android.os.Bundle; 

import android.os.Handler; 

import android.os.IBinder; 

import android.os.Looper; 

import android.view.LayoutInflater; 

import android.view.View; 

import android.view.ViewGroup; 

import android.widget.Button; 

import android.widget.ImageView; 

import android.widget.TextView; 

import android.widget.Toast; 

 

import androidx.annotation.NonNull; 

import androidx.annotation.Nullable; 

import androidx.fragment.app.Fragment; 

 

public class RehabModesFragment extends Fragment implements 

ServiceConnection, SerialListener { 

 

    private enum Connected { False, Pending, True } 

 

    // store address of microcontroller 

    private String deviceAddress; 

    // bluetooth connection service 

    private SerialService service; 

    private TextView receiveText; 

 

    // to show status of pairing 

    private ImageView pairStatusImage; 

    private ImageView miniPairStatusImage; 

 

    // variable storing pairing status 

    private Connected connected = Connected.False; 

 

 

    private boolean initialStart = true; 

    private boolean hexEnabled = false; 

 

 

    private Button easyModeBtn; 

    private Button intermediateModeBtn; 

    private Button difficultModeBtn; 

 

    private TextView rehabText; 
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    private TextView easySelected; 

    private TextView intermediateSelected; 

    private TextView difficultSelected; 

 

    private ImageView easyStar; 

    private ImageView intermediateStar; 

    private ImageView difficultStar; 

 

     

    @Override 

 

    // on create of fragment, get microcontroller id 

    public void onCreate(@Nullable Bundle savedInstanceState) 

{ 

        super.onCreate(savedInstanceState); 

 

        //setHasOptionsMenu(true); 

        setRetainInstance(true); 

        // get device address from devices fragment 

        deviceAddress = getArguments().getString("device"); 

 

    } 

 

    // when activity ends, disconnect from microcontroller 

    @Override 

    public void onDestroy() { 

 

        // if still connected, disconnect 

        if (connected != Connected.False) 

            disconnect(); 

        getActivity().stopService(new Intent(getActivity(), 

SerialService.class)); 

        super.onDestroy(); 

    } 

 

    // when activity starts, 

    @Override 

    public void onStart() { 

        super.onStart(); 

        if(service != null) 

            service.attach(this); 

        else 

            getActivity().startService(new 

Intent(getActivity(), SerialService.class)); // prevents 

service destroy on unbind from recreated activity caused by 

orientation change 

    } 

 

    // when activity stop 

    @Override 

    public void onStop() { 

        if(service != null && 

!getActivity().isChangingConfigurations()) 

            service.detach(); 

        super.onStop(); 

    } 

 

    @SuppressWarnings("deprecation") 

    @Override 

    public void onAttach(@NonNull Activity activity) { 
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        super.onAttach(activity); 

        getActivity().bindService(new Intent(getActivity(), 

SerialService.class), this, Context.BIND_AUTO_CREATE); 

    } 

 

    @Override 

    public void onDetach() { 

        try { getActivity().unbindService(this); } 

catch(Exception ignored) {} 

        super.onDetach(); 

    } 

 

    @Override 

    public void onResume() { 

        super.onResume(); 

        if(initialStart && service != null) { 

            initialStart = false; 

            getActivity().runOnUiThread(this::connect); 

        } 

    } 

 

    @Override 

    public void onServiceConnected(ComponentName name, IBinder 

binder) { 

        service = ((SerialService.SerialBinder) 

binder).getService(); 

        service.attach(this); 

        if(initialStart && isResumed()) { 

            initialStart = false; 

            getActivity().runOnUiThread(this::connect); 

        } 

    } 

 

    @Override 

    public void onServiceDisconnected(ComponentName name) { 

        service = null; 

    } 

 

 

// when activity starts, user only sees pairing status 

    @Override 

    public View onCreateView(@NonNull LayoutInflater inflater, 

ViewGroup container, Bundle savedInstanceState) { 

 

        View view = 

inflater.inflate(R.layout.fragment_terminal, container, 

false); 

 

        pairStatusImage = 

view.findViewById(R.id.pairStatusIm); 

        miniPairStatusImage = 

view.findViewById(R.id.miniPairStatus); 

        receiveText = view.findViewById(R.id.receive_text); 

 

        // mini icon is initially invisible 

        miniPairStatusImage.setVisibility(View.INVISIBLE); 

 

        easyModeBtn = view.findViewById(R.id.easyMode); 

        intermediateModeBtn = 

view.findViewById(R.id.intermediateMode); 

        difficultModeBtn = 
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view.findViewById(R.id.difficultMode); 

        rehabText = view.findViewById(R.id.rehabText); 

 

        // notification text 

        easySelected = view.findViewById(R.id.selected_easy); 

        intermediateSelected = 

view.findViewById(R.id.selected_intermediate); 

        difficultSelected = 

view.findViewById(R.id.selected_difficult); 

        easyStar = view.findViewById(R.id.easy_star); 

        intermediateStar = 

view.findViewById(R.id.intermediate_star); 

        difficultStar = 

view.findViewById(R.id.difficult_star); 

 

        // hide modes 

        easyModeBtn.setVisibility(view.INVISIBLE); 

        easyModeBtn.setEnabled(false); 

        intermediateModeBtn.setVisibility(view.INVISIBLE); 

        intermediateModeBtn.setEnabled(false); 

        difficultModeBtn.setVisibility(view.INVISIBLE); 

        difficultModeBtn.setEnabled(false); 

        rehabText.setVisibility(view.INVISIBLE); 

        easySelected.setVisibility(view.INVISIBLE); 

        intermediateSelected.setVisibility(view.INVISIBLE); 

        difficultSelected.setVisibility(view.INVISIBLE); 

        easyStar.setVisibility(view.INVISIBLE); 

        intermediateStar.setVisibility(view.INVISIBLE); 

        difficultStar.setVisibility(view.INVISIBLE); 

 

 

        return view; 

 

    } 

 

     

    // connect the socket 

    private void connect() { 

        try { 

            BluetoothAdapter bluetoothAdapter = 

BluetoothAdapter.getDefaultAdapter(); 

            BluetoothDevice device = 

bluetoothAdapter.getRemoteDevice(deviceAddress); 

            receiveText.setText("        Connecting..."); 

            

pairStatusImage.setImageResource(R.drawable.loading_foreground

); 

            

miniPairStatusImage.setImageResource(R.drawable.loading_foregr

ound); 

 

            connected = Connected.Pending; 

            SerialSocket socket = new 

SerialSocket(getActivity().getApplicationContext(), device); 

            service.connect(socket); 

 

        } catch (Exception e) { 

            onSerialConnectError(e); 

        } 

    } 
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    // unpair, disconnect socket 

    private void disconnect() { 

        connected = Connected.False; 

        service.disconnect(); 

    } 

 

    // send message to microcontroller 

    private void send(String str) { 

 

        // if not paired 

        if(connected != Connected.True) { 

            Toast.makeText(getActivity(), "not connected", 

Toast.LENGTH_SHORT).show(); 

            return; 

        } 

        try { 

 

            byte[] data; 

 

            data = (str).getBytes(); // only string can use 

this function to encode into array of bytes 

 

            // send data to microcontroller 

            service.write(data); 

 

        } catch (Exception e) { 

            onSerialIoError(e); 

        } 

    } 

 

 

     // listen for the following statuses 

    // status: paired 

    @Override 

    public void onSerialConnect() { 

        receiveText.setText("          Connected"); 

        

pairStatusImage.setImageResource(R.drawable.success_pair_foreg

round); 

        

miniPairStatusImage.setImageResource(R.drawable.success_pair_f

oreground); 

 

        connected = Connected.True; 

 

        // hide big pair status picture 

        pairStatusImage.setVisibility(View.INVISIBLE); 

        receiveText.setVisibility(View.INVISIBLE); 

 

 // Show the button selections 

        easyModeBtn.setVisibility(View.VISIBLE); 

        easyModeBtn.setEnabled(true); 

        intermediateModeBtn.setVisibility(View.VISIBLE); 

        intermediateModeBtn.setEnabled(true); 

        difficultModeBtn.setVisibility(View.VISIBLE); 

        difficultModeBtn.setEnabled(true); 

        rehabText.setVisibility(View.VISIBLE); 

 

 

        // send activity type to microcontroller 

        send("1"); // rehabilitation activity 
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        easyModeBtn.setOnClickListener(new 

View.OnClickListener() { 

 

            public void onClick(View v) { 

 

                // send mode to microcontroller 

                send("1"); 

 

                // tell user they selected easy mode 

                easySelected.setVisibility(View.VISIBLE); 

                easyStar.setVisibility(View.VISIBLE); 

                easyModeBtn.setVisibility(View.INVISIBLE); 

                

intermediateModeBtn.setVisibility(View.INVISIBLE); 

                

difficultModeBtn.setVisibility(View.INVISIBLE); 

 

            } 

        }); 

 

        intermediateModeBtn.setOnClickListener(new 

View.OnClickListener() { 

 

            public void onClick(View v) { 

 

                // send mode to microcontroller 

                send("2"); 

 

                

intermediateSelected.setVisibility(View.VISIBLE); 

                intermediateStar.setVisibility(View.VISIBLE); 

                easyModeBtn.setVisibility(View.INVISIBLE); 

                

intermediateModeBtn.setVisibility(View.INVISIBLE); 

                

difficultModeBtn.setVisibility(View.INVISIBLE); 

            } 

        }); 

 

        difficultModeBtn.setOnClickListener(new 

View.OnClickListener() { 

 

            public void onClick(View v) { 

 

                // send mode to microcontroller 

                send("3"); 

 

                difficultSelected.setVisibility(View.VISIBLE); 

                difficultStar.setVisibility(View.VISIBLE); 

                easyModeBtn.setVisibility(View.INVISIBLE); 

                

intermediateModeBtn.setVisibility(View.INVISIBLE); 

                

difficultModeBtn.setVisibility(View.INVISIBLE); 

            } 

        }); 

 

 

        // CHANGE Pairing status to smaller icon 

        miniPairStatusImage.setVisibility(View.VISIBLE); 
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    } 

 

    // status: cannot pair 

    @Override 

    public void onSerialConnectError(Exception e) { 

        receiveText.setText("    Connection failed"); 

        

pairStatusImage.setImageResource(R.drawable.fail_pair_foregrou

nd); 

        

miniPairStatusImage.setImageResource(R.drawable.fail_pair_fore

ground); 

 

        disconnect(); 

 

        // timer 

        Runnable runnable = new Runnable() { 

            @Override 

            public void run() { 

                connect(); 

            } 

        }; 

 

        Handler handler = new Handler(Looper.getMainLooper()); 

 

        handler.postDelayed(runnable, 2000); // delayed 2 s 

    } 

 

    // when data is read 

    @Override 

    public void onSerialRead(byte[] data) { 

 

    } 

 

    // when pairing is lost suddenly 

    @Override 

    public void onSerialIoError(Exception e) { 

        receiveText.setText("     Connection Lost"); 

        

pairStatusImage.setImageResource(R.drawable.fail_pair_foregrou

nd); 

        

miniPairStatusImage.setImageResource(R.drawable.fail_pair_fore

ground); 

 

        disconnect(); 

 

        // timer 

        Runnable runnable = new Runnable() { 

            @Override 

            public void run() { 

                connect(); 

            } 

        }; 

 

        Handler handler = new Handler(Looper.getMainLooper()); 

 

        handler.postDelayed(runnable, 2000); // delayed 2 s 

 

    } 

} 
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Appendix D: ESP32 Code for Transmission System 

 

// include this header file from the library 

#include <Servo_ESP32.h> 

#include "BluetoothSerial.h" 

 

// initialize variable 

char Mode; // store mode of rehabilitation activity 

 

// assign GPIO pin 14 as control pin for left servo 

static const int servoPinLeft = 14; //printed G14 on the board 

// assign GPIO pin 15 as control pin for right servo 

static const int servoPinRight = 15; 

 

int angle =0; // initial angle 

int angleStep = 1; // incremental angle 

 

// max angular displacements 

int angleMin =0; 

int angleMax = 42; 

 

//check if bluetooth is properly enabled 

#if !defined(CONFIG_BT_ENABLED) 

|| !defined(CONFIG_BLUEDROID_ENABLED) 

#error Bluetooth is not enabled! Please run `make menuconfig` to and enable 

it 

#endif 

 

// create an instance of bluetooth serial 

BluetoothSerial SerialBT; 

 

  servoLeft.attach(servoPinLeft); // attaching servo to pin 

  servoRight.attach(servoPinRight); 
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  // initialise bluetooth serial device 

  SerialBT.begin("ESP32_Control"); //Bluetooth device name 

 

void loop() { 

  // receive data from mcu       

        if (SerialBT.available()){ 

        Mode = SerialBT.read(); 

     

        if (Mode == '1'){ 

          // actuate 

          // need to alter timer 

          for (int timer = 0; timer <=73; timer +=1){ 

             

            for(int angle = angleMin; angle <= angleMax; angle +=angleStep) { 

             

            int angle2 = 40 - angle; 

             

            servoLeft.write(angle); 

            servoRight.write(angle2); 

            delay(120); 

            } 

       

            for(int angle = angleMax; angle >= angleMin; angle -=angleStep) { 

             

            int angle2 = 40 - angle; 

             

            servoLeft.write(angle); 

            servoRight.write(angle2); 

            delay(120); 

            } 

             

          } 
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        } else { 

          if (Mode == '2'){ 

            for (int timer = 0; timer <=73; timer +=1){ 

             

              for(int angle = angleMin; angle <= angleMax; angle +=angleStep) { 

               

                int angle2 = 40 - angle; 

                 

                servoLeft.write(angle); 

                servoRight.write(angle2); 

                delay(70); 

              } 

         

              for(int angle = angleMax; angle >= angleMin; angle -=angleStep) { 

               

                int angle2 = 40 - angle; 

                 

                servoLeft.write(angle); 

                servoRight.write(angle2); 

                delay(70); 

              } 

             

            } 

          } else { 

             

            for (int timer = 0; timer <=73; timer +=1){ 

             

              for(int angle = angleMin; angle <= angleMax; angle +=angleStep) { 

               

                int angle2 = 40 - angle; 

                 

                servoLeft.write(angle); 
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                servoRight.write(angle2); 

                delay(30); 

              } 

         

              for(int angle = angleMax; angle >= angleMin; angle -=angleStep) { 

               

                int angle2 = 40 - angle; 

                 

                servoLeft.write(angle); 

                servoRight.write(angle2); 

                delay(30); 

              } 

             

            } 

             

             

          } 

        } 

      }    

} 

} 
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Appendix E: Android Application Code for “DevicesFragment2” Activity 

 

package com.project.rehabilitation_system; 

 

import android.bluetooth.BluetoothAdapter; 

import android.bluetooth.BluetoothDevice; 

import android.content.pm.PackageManager; 

import android.os.Bundle; 

import androidx.annotation.NonNull; 

import androidx.fragment.app.Fragment; 

import androidx.fragment.app.ListFragment; 

import android.view.View; 

import android.view.ViewGroup; 

import android.widget.ArrayAdapter; 

import android.widget.ListView; 

import android.widget.TextView; 

 

import java.util.ArrayList; 

 

public class DevicesFragment2 extends ListFragment { 

 

 

    private BluetoothAdapter bluetoothAdapter; 

 

    // initialise array for paired devices 

    private final ArrayList<BluetoothDevice> listItems = new 

ArrayList<>(); 

 

    // adapter to create a view for each item (paired device) 

    private ArrayAdapter<BluetoothDevice> listAdapter; 

 

    @Override 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

 

   

if(getActivity().getPackageManager().hasSystemFeature(PackageM

anager.FEATURE_BLUETOOTH)) 

 

            // create bluetooth adapter 

            bluetoothAdapter = 

BluetoothAdapter.getDefaultAdapter(); 

 

        // create list to show all paired devices and their 

addresses 

        listAdapter = new 

ArrayAdapter<BluetoothDevice>(getActivity(), 0, listItems) { 

            @NonNull 

            @Override 

            public View getView(int position, View view, 

@NonNull ViewGroup parent) { 

                BluetoothDevice device = 

listItems.get(position); 

                if (view == null) 

                    // show the fragment view 

                    view = 

getActivity().getLayoutInflater().inflate(R.layout.device_list

_item2, parent, false); 

                TextView text1 = 
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view.findViewById(R.id.text3); 

                TextView text2 = 

view.findViewById(R.id.text4); 

                text1.setText(device.getName()); 

                text2.setText(device.getAddress()); 

                return view; 

            } 

        }; 

    } 

 

    @Override 

    public void onActivityCreated(Bundle savedInstanceState) { 

        super.onActivityCreated(savedInstanceState); 

        setListAdapter(null); 

        View header = 

getActivity().getLayoutInflater().inflate(R.layout.fragment_de

vices_header2, null, false); 

        getListView().addHeaderView(header, null, false); 

 

        setListAdapter(listAdapter); 

    } 

 

    // when go out of app and come back 

    @Override 

    public void onResume() { 

        super.onResume(); 

 

        refresh(); 

    } 

 

 

    // finding all paired devices and store them into an array 

    void refresh() { 

        listItems.clear(); 

        if(bluetoothAdapter != null) { 

            for (BluetoothDevice device : 

bluetoothAdapter.getBondedDevices()) 

                if (device.getType() != 

BluetoothDevice.DEVICE_TYPE_LE) 

                    listItems.add(device); 

        } 

 

        listAdapter.notifyDataSetChanged(); 

    } 

 

    // once a paired device is selected, change fragment to 

message terminal 

    @Override 

    public void onListItemClick(@NonNull ListView l, @NonNull 

View v, int position, long id) { 

        BluetoothDevice device = listItems.get(position-1); 

        Bundle args = new Bundle(); 

        args.putString("device", device.getAddress()); 

        Fragment fragment = new ProgressStartFragment(); 

        fragment.setArguments(args); 

        

getFragmentManager().beginTransaction().replace(R.id.fragment, 

fragment, "terminal").addToBackStack(null).commit(); 

    } 

 

} 
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Appendix F: Android Application Code for “ProgressStartFragment” 

Activity 

 

 

package com.project.rehabilitation_system; 

 

import android.app.Activity; 

import android.bluetooth.BluetoothAdapter; 

import android.bluetooth.BluetoothDevice; 

import android.content.ComponentName; 

import android.content.Context; 

import android.content.Intent; 

import android.content.ServiceConnection; 

import android.os.Bundle; 

 

import androidx.annotation.NonNull; 

import androidx.annotation.Nullable; 

import androidx.fragment.app.Fragment; 

 

import android.os.Handler; 

import android.os.IBinder; 

import android.os.Looper; 

import android.view.LayoutInflater; 

import android.view.View; 

import android.view.ViewGroup; 

import android.widget.ImageView; 

import android.widget.TextView; 

import android.widget.Toast; 

 

public class ProgressStartFragment extends Fragment implements 

ServiceConnection, SerialListener { 

 

    private enum Connected { False, Pending, True } 

 

    // store address of microcontroller 

    private String deviceAddress; 

    // bluetooth connection service 

    private SerialService service; 

    private TextView receiveText; 

 

    private TextView mcpStatus; 

    private TextView wristStatus; 

 

    // to show status of pairing 

    private ImageView pairStatusImage; 

    private ImageView miniPairStatusImage; 

 

    // variable storing pairing status 

    private Connected connected = Connected.False; 

 

    private boolean initialStart = true; 

    private boolean hexEnabled = false; 

 

    private TextView rehabText; 

 

    private StringBuilder message_whole; 

    private TextView MCPAngle; 

    private TextView WristAngle; 

    private TextView MCPUnit; 
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    private TextView WristUnit; 

 

     

    @Override 

 

    // on create of fragment, get microcontroller id 

    public void onCreate(@Nullable Bundle savedInstanceState) 

{ 

        super.onCreate(savedInstanceState); 

 

        //setHasOptionsMenu(true); 

        setRetainInstance(true); 

        // get device address from devices fragment 

        deviceAddress = getArguments().getString("device"); 

 

        // store entire message received by microcontroller 

        message_whole = new StringBuilder(100); 

 

    } 

 

    // when activity ends, disconnect from microcontroller 

    @Override 

    public void onDestroy() { 

 

        // if still connected, disconnect 

        if (connected != Connected.False) 

            disconnect(); 

        getActivity().stopService(new Intent(getActivity(), 

SerialService.class)); 

        super.onDestroy(); 

    } 

 

    // when activity starts, 

    @Override 

    public void onStart() { 

        super.onStart(); 

        if(service != null) 

            service.attach(this); 

        else 

            getActivity().startService(new 

Intent(getActivity(), SerialService.class));  

    } 

 

    // when activity stop 

    @Override 

    public void onStop() { 

        if(service != null && 

!getActivity().isChangingConfigurations()) 

            service.detach(); 

        super.onStop(); 

    } 

 

    @SuppressWarnings("deprecation")  

    @Override 

    public void onAttach(@NonNull Activity activity) { 

        super.onAttach(activity); 

        getActivity().bindService(new Intent(getActivity(), 

SerialService.class), this, Context.BIND_AUTO_CREATE); 

    } 

 

    @Override 
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    public void onDetach() { 

        try { getActivity().unbindService(this); } 

catch(Exception ignored) {} 

        super.onDetach(); 

    } 

 

    @Override 

    public void onResume() { 

        super.onResume(); 

        if(initialStart && service != null) { 

            initialStart = false; 

            getActivity().runOnUiThread(this::connect); 

        } 

    } 

 

    @Override 

    public void onServiceConnected(ComponentName name, IBinder 

binder) { 

        service = ((SerialService.SerialBinder) 

binder).getService(); 

        service.attach(this); 

        if(initialStart && isResumed()) { 

            initialStart = false; 

            getActivity().runOnUiThread(this::connect); 

        } 

    } 

 

    @Override 

    public void onServiceDisconnected(ComponentName name) { 

        service = null; 

    } 

 

 

     // view displayed to users when activity starts 

 

    @Override 

    public View onCreateView(@NonNull LayoutInflater inflater, 

ViewGroup container, Bundle savedInstanceState) { 

 

        View view = 

inflater.inflate(R.layout.fragment_progress_start, container, 

false); 

 

        pairStatusImage = 

view.findViewById(R.id.pairStatusIm); 

        miniPairStatusImage = 

view.findViewById(R.id.miniPairStatus); 

        receiveText = view.findViewById(R.id.receive_text); 

        mcpStatus = view.findViewById(R.id.MCP_Status); 

        wristStatus = view.findViewById(R.id.Wrist_Status); 

 

        // mini icon is initially invisible 

        miniPairStatusImage.setVisibility(View.INVISIBLE); 

        mcpStatus.setVisibility(View.INVISIBLE); 

        wristStatus.setVisibility(View.INVISIBLE); 

 

        rehabText = view.findViewById(R.id.rehabText); 

 

        // hide text 

        rehabText.setVisibility(view.INVISIBLE); 
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        // display MCP and Wrist angles 

        MCPAngle = view.findViewById(R.id.MCP_angle); 

        WristAngle = view.findViewById(R.id.Wrist_angle); 

        MCPUnit = view.findViewById(R.id.unit_MCP); 

        WristUnit = view.findViewById(R.id.unit_Wrist); 

 

        MCPUnit.setVisibility(View.INVISIBLE); 

        WristUnit.setVisibility(View.INVISIBLE); 

 

        return view; 

 

    } 

 

 

    // pairing, connect socket 

    private void connect() { 

        try { 

            BluetoothAdapter bluetoothAdapter = 

BluetoothAdapter.getDefaultAdapter(); 

            BluetoothDevice device = 

bluetoothAdapter.getRemoteDevice(deviceAddress); 

            receiveText.setText("        Connecting..."); 

            

pairStatusImage.setImageResource(R.drawable.loading_foreground

); 

            

miniPairStatusImage.setImageResource(R.drawable.loading_foregr

ound);  

            connected = Connected.Pending; 

            SerialSocket socket = new 

SerialSocket(getActivity().getApplicationContext(), device); 

            service.connect(socket); 

 

        } catch (Exception e) { 

            onSerialConnectError(e); 

        } 

    } 

 

    // unpair, disconnect socket 

    private void disconnect() { 

        connected = Connected.False; 

        service.disconnect(); 

    } 

 

    // send message to microcontroller 

    private void send(String str) { 

 

        // if not paired 

        if(connected != Connected.True) { 

            Toast.makeText(getActivity(), "not connected", 

Toast.LENGTH_SHORT).show(); 

            return; 

        } 

        try { 

 

            byte[] data; 

 

            data = (str).getBytes(); // only string can use 

this function to encode into array of bytes 

 

            // send data to microcontroller 
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            service.write(data); 

 

        } catch (Exception e) { 

            onSerialIoError(e); 

        } 

    } 

 

    // receive data from microcontroller 

    private void receive(byte[] data) { 

        if(hexEnabled) { 

 

        } else { 

 

            message_whole.append(new String (data)); 

 

        } 

 

    } 

 

     

     // Listening to the following statuses 

 

    // status: paired 

    @Override 

    public void onSerialConnect() { 

        receiveText.setText("          Connected"); 

        

pairStatusImage.setImageResource(R.drawable.success_pair_foreg

round); 

        

miniPairStatusImage.setImageResource(R.drawable.success_pair_f

oreground); 

        connected = Connected.True; 

 

        // hide big pair status picture 

        pairStatusImage.setVisibility(View.INVISIBLE); 

        receiveText.setVisibility(View.INVISIBLE); 

 

        rehabText.setVisibility(View.VISIBLE); 

        mcpStatus.setVisibility(View.VISIBLE); 

        wristStatus.setVisibility(View.VISIBLE); 

 

        // CHANGE Pairing status to smaller icon 

        miniPairStatusImage.setVisibility(View.VISIBLE); 

 

        // send activity type to microcontroller 

        send("2"); // rehabilitation activity 

    } 

 

    // status: cannot pair 

    @Override 

    public void onSerialConnectError(Exception e) { 

        receiveText.setText("    Connection failed"); 

        

pairStatusImage.setImageResource(R.drawable.fail_pair_foregrou

nd); 

        

miniPairStatusImage.setImageResource(R.drawable.fail_pair_fore

ground); 

 

        disconnect(); 
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        // timer 

        Runnable runnable = new Runnable() { 

            @Override 

            public void run() { 

                connect(); 

            } 

        }; 

 

        Handler handler = new Handler(Looper.getMainLooper()); 

 

        handler.postDelayed(runnable, 2000); // delayed 2 s 

    } 

 

    // when data sent by microcontroller is read 

    @Override 

    public void onSerialRead(byte[] data) { 

 

        receive(data); 

 

 

        if (message_whole.indexOf(":")!=-1){ 

 

            // split message into string arrays 

            String[] split = 

message_whole.toString().split(":"); 

 

            // issue with split again 

            StringBuffer mcp_b = new StringBuffer(); 

            StringBuffer wrist_b = new StringBuffer(); 

 

            mcp_b.append(split[0]); 

            wrist_b.append(split[1]); 

 

            String mcp_s = mcp_b.toString(); 

            String wrist_s = wrist_b.toString(); 

 

            // display angles 

            MCPAngle.setText(mcp_s); 

            MCPUnit.setVisibility(View.VISIBLE); 

            WristUnit.setVisibility(View.VISIBLE); 

            WristAngle.setText(wrist_s); 

        } 

    } 

 

 

    // when pairing is lost suddenly 

    @Override 

    public void onSerialIoError(Exception e) { 

        receiveText.setText("     Connection Lost"); 

        

pairStatusImage.setImageResource(R.drawable.fail_pair_foregrou

nd); 

        

miniPairStatusImage.setImageResource(R.drawable.fail_pair_fore

ground); 

 

        disconnect(); 

 

        // timer 

        Runnable runnable = new Runnable() { 
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            @Override 

            public void run() { 

                connect(); 

            } 

        }; 

 

        Handler handler = new Handler(Looper.getMainLooper()); 

 

        handler.postDelayed(runnable, 2000); // delayed 2 s 

 

    } 

 

} 
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Appendix G: ESP32 Code for Sensing System 

 

// include this header file from the library 

#include "BluetoothSerial.h" 

 

// initialize variable 

char MCP_data[20]; // character array to store MCP angle 

char Wrist_data[20]; // character array to store Wrist angle 

float MCP_max_data = 0; 

float Wrist_max_data = 0; 

 

// assign GPIO pin 34 as input pin for MCP flex sensor signal  

static const int FLEX_MCP_PIN = 34; 

// assign GPIO pin 35 as input pin for Wrist flex sensor signal  

static const int FLEX_Wrist_PIN = 35; 

 

// Measure the voltage at 5V and the actual resistance of  

// 10 k resistor, and enter them below: 

const float VCC = 5.17; // Measured voltage  

const float R_DIV = 10000.0; // Measured resistance of 10k resistor 

 

// values below can be adjusted during callibration 

const float STRAIGHT_RESISTANCE_MCP = 17203.4; // resistance when 

straight 

const float BEND_RESISTANCE_MCP = 33311.9; // resistance at 90 deg 

const float STRAIGHT_RESISTANCE_Wrist = 16864.1; // resistance when 

straight 

const float BEND_RESISTANCE_Wrist = 26740; // resistance at 60 deg 

 

float angle_MCP; 

float angle_Wrist; 
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// create an instance of bluetooth serial 

BluetoothSerial SerialBT; 

 

void setup() { 

// initialise the serial monitor 

  Serial.begin(9600); 

 

  //for MCP joint 

  pinMode(FLEX_MCP_PIN, INPUT); 

  // for Wrist joint 

  pinMode(FLEX_Wrist_PIN, INPUT); 

     

  // initialise bluetooth serial device 

  SerialBT.begin("ESP32_Control"); //Bluetooth device name 

} 

 

if (SerialBT.available()) { 

      for (int timer = 0; timer <=10; timer +=1) 

      { 

        // Read the ADC values and calculate voltage and resistance  

        int flexADC_MCP = analogRead(FLEX_MCP_PIN); 

        float flexV_MCP = flexADC_MCP * VCC / 4095.0; 

        float flexR_MCP = R_DIV * (VCC / flexV_MCP - 1.0); 

         

        int flexADC_Wrist = analogRead(FLEX_Wrist_PIN); 

        float flexV_Wrist = flexADC_Wrist * VCC / 4095.0; 

        float flexR_Wrist = R_DIV * (VCC / flexV_Wrist - 1.0);  

         

        // Use the calculated resistance to estimate the sensor's 

        // bend angle: 

        float angle_MCP_F = map(flexR_MCP, 

STRAIGHT_RESISTANCE_MCP, BEND_RESISTANCE_MCP, 
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                         0, 90.0); 

        float angle_Wrist_F = map(flexR_Wrist, 

STRAIGHT_RESISTANCE_Wrist, BEND_RESISTANCE_Wrist, 

                         0, 60.0); 

 

         // display on Arduino Web Editor’s serial monitor for calibration    

        // activities 

        Serial.println("Resistance MCP: " + String(flexR_MCP) + " ohms"); 

        Serial.println("Resistance Wrist: " + String(flexR_Wrist) + " ohms"); 

        Serial.println("Bend MCP: " + String(angle_MCP_F) + " degrees"); 

        Serial.println("Bend Wrist: " + String(angle_Wrist_F) + " degrees"); 

        Serial.println(); 

       

        // obtain the maximum angles generated at MCP and Wrist 

        if (angle_MCP_F > MCP_max_data){ 

          angle_MCP = angle_MCP_F; 

          MCP_max_data = angle_MCP_F; 

        } 

         

        if (angle_Wrist_F > Wrist_max_data){ 

          angle_Wrist = angle_Wrist_F; 

          Wrist_max_data = angle_Wrist_F; 

        } 

 

        delay(500); 

      } 

       

      // convert float to int 

      int   angle_MCP_int = (int)angle_MCP; 

      int   angle_Wrist_int = (int)angle_Wrist; 

       

      // convert from float to character array 

      sprintf(MCP_data, "%d", angle_MCP_int); 



127 

 

      sprintf(Wrist_data, "%d", angle_Wrist_int); 

       

      // combine the MCP angle data and Wrist angle data together 

      strcat(MCP_data, ":"); 

      strcat(MCP_data, Wrist_data); 

       

      // Send data to android application 

      for (int i = 0; i <= 15; i++) 

      { 

        Serial.println(char (MCP_data[i])); 

        SerialBT.write((uint8_t) MCP_data[i]); 

      } 

    } 

  } 

  delay(20); 

} 
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Appendix H: Ten Sets of Maximum Resistance Values for Sensing System 

Calibration 

 

Maximum 

Resistance 

Generated 

During 0° MCP 

Joint Flexion 

Maximum 

Resistance 

Generated 

During 0° 

Radiocarpal Joint 

Extension 

Maximum 

Resistance 

Generated 

During 90° MCP 

Joint Flexion 

Maximum 

Resistance 

Generated 

During 60° 

Radiocarpal Joint 

Extension 

17263 16782 33471 26047 

17119 16852 33060 27431 

16958 15885 33425 29337 

17137 17101 33241 27092 

16764 16852 32700 24880 

16782 17048 33333 26111 

17318 17282 33288 28235 

17300 16539 33379 23292 

18202 17191 33843 26891 

17191 17119 33379 28093 
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Appendix I: Android Application Code for “OrigamiVideos” Activity 

 

 
package com.project.rehabilitation_system; 

 

import androidx.appcompat.app.AppCompatActivity; 

import androidx.appcompat.widget.Toolbar; 

import android.os.Bundle; 

import android.webkit.WebView; 

import android.webkit.WebViewClient; 

 

public class OrigamiVideos extends AppCompatActivity { 

 

    // declare variable 

    Toolbar toolbar; 

 

    @Override 

 

    public void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

 

        setContentView(R.layout.activity_origami_videos); 

 

        // initialise views 

        toolbar = findViewById(R.id.toolbar); 

 

        // sets the toolbar for this activity 

        setSupportActionBar(toolbar); 

 

        getSupportActionBar().setTitle("Origami Tutorials"); 

 

        

toolbar.setTitleTextColor(getResources().getColor(android.R.co

lor.black)); 

 

        WebView wv = (WebView)findViewById(R.id.my_webview); 

        WebView wv2 = (WebView)findViewById(R.id.my_webview2); 

        WebView wv3 = (WebView)findViewById(R.id.my_webview3); 

 

        wv.getSettings().setJavaScriptEnabled(true); 

        wv2.getSettings().setJavaScriptEnabled(true); 

        wv3.getSettings().setJavaScriptEnabled(true); 

 

        wv.setWebViewClient(new WebViewClient() ); 

        wv2.setWebViewClient(new WebViewClient() ); 

        wv3.setWebViewClient(new WebViewClient() ); 

 

        // embed HTML content into WebView elements 

        String customHTML = "<iframe width=\"350\" 

height=\"160\" 

src=\"https://www.youtube.com/embed/aBRUb0TOHik\" 

title=\"YouTube video player\" frameborder=\"0\" 

allow=\"accelerometer; autoplay; clipboard-write; encrypted-

media; gyroscope; picture-in-picture\" 

allowfullscreen></iframe>"; 

        wv.loadData(customHTML, "text/html", "UTF-8"); 

 

        String customHTML2 = "<iframe width=\"350\" 

height=\"160\" 

src=\"https://www.youtube.com/embed/vs14JXq8XSk\" 
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title=\"YouTube video player\" frameborder=\"0\" 

allow=\"accelerometer; autoplay; clipboard-write; encrypted-

media; gyroscope; picture-in-picture\" 

allowfullscreen></iframe>"; 

        wv2.loadData(customHTML2, "text/html", "UTF-8"); 

 

        String customHTML3 = "<iframe width=\"350\" 

height=\"160\" 

src=\"https://www.youtube.com/embed/mnRMxb8r4v8\" 

title=\"YouTube video player\" frameborder=\"0\" 

allow=\"accelerometer; autoplay; clipboard-write; encrypted-

media; gyroscope; picture-in-picture\" 

allowfullscreen></iframe>"; 

        wv3.loadData(customHTML3, "text/html", "UTF-8"); 

 

    } 

 

} 

 

  



131 

 

Appendix J: Android Application Code for “HomeDirectory” Activity 

 

 
package com.project.rehabilitation_system; 

 

        import androidx.appcompat.app.AppCompatActivity; 

        import androidx.appcompat.widget.Toolbar; 

        import android.content.Intent; 

        import android.os.Bundle; 

        import android.view.View; 

 

public class HomeDirectory extends AppCompatActivity{ 

    // declare variable 

    Toolbar toolbar; 

 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_home_directory); 

 

        // initialise views 

        toolbar = findViewById(R.id.toolbar); 

        // sets the toolbar for this activity 

        setSupportActionBar(toolbar); 

 

        getSupportActionBar().setTitle("Exoskeleton 

Rehabilitation System"); 

        

toolbar.setTitleTextColor(getResources().getColor(android.R.co

lor.black)); 

    } 

 

    // when "start rehabilitation activity" button clicked, 

launch paired list activity 

    public void GoPairing(View v){ 

        String value = "Rehab"; 

        //"this" refers to navigation activity 

        Intent i = new Intent(this, RehabConnect.class); 

        i.putExtra("activity_mode", value); 

        startActivity(i); 

    } 

 

    // when "start progress measurement" button clicked, 

launch rehabilitation activity 

    public void GoProgress(View v){ 

        String value = "Progress"; 

        Intent i = new Intent(this, RehabConnect.class); 

        i.putExtra("activity_mode", value); 

        startActivity(i); 

    } 

 

    // when "start learning origami" button clicked, launch 

paired list activity 

    public void GoVideos(View v){ 

        //"this" refers to navigation activity 

        Intent i = new Intent(this, OrigamiVideos.class); 

        startActivity(i); 

    } 

} 
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Appendix K: Complete Android Application Code 

 

// include this header file from the library 

#include <Servo_ESP32.h> 

#include "BluetoothSerial.h" 

 

// initialize variable 

char Mode; // store mode of rehabilitation activity 

char Activity; // store type of activity 

 

char MCP_data[20]; // character array to store MCP angle 

char Wrist_data[20]; // character array to store Wrist angle 

float MCP_max_data = 0;  

float Wrist_max_data = 0; 

 

// assign GPIO pin 14 as control pin for left servo 

static const int servoPinLeft = 14; //printed G14 on the board 

// assign GPIO pin 15 as control pin for right servo 

static const int servoPinRight = 15; 

 

// assign GPIO pin 34 as input pin for MCP flex sensor signal 

(voltage divider output) 

static const int FLEX_MCP_PIN = 34; 

static const int FLEX_Wrist_PIN = 35; 

 

// create an instance of esp32 class 

Servo_ESP32 servoLeft; 

Servo_ESP32 servoRight; 

 

 

int angle =0; // initial angle 

int angleStep = 1; // incremental angle 

 

// max angular displacements 

int angleMin =0; 

int angleMax = 42; 

 

 

 

// Measure the voltage at 5V and the actual resistance of your 

// 47k resistor, and enter them below: 

const float VCC = 5.17; // Measured voltage of Ardunio 5V line 

const float R_DIV = 10000.0; // Measured resistance of 10k 

resistor 

 

// Upload the code, then try to adjust these values to more 

// accurately calculate bend degree. 

const float STRAIGHT_RESISTANCE_MCP = 17203.4; // resistance 

when straight 

const float BEND_RESISTANCE_MCP = 33311.9; // resistance at 90 

deg 

const float STRAIGHT_RESISTANCE_Wrist = 16864.1; // resistance 

when straight 

const float BEND_RESISTANCE_Wrist = 26740; // resistance at 60 

deg 

 

float angle_MCP; 

float angle_Wrist; 
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//check if bluetooth is properly enabled 

#if !defined(CONFIG_BT_ENABLED) || 

!defined(CONFIG_BLUEDROID_ENABLED) 

#error Bluetooth is not enabled! Please run `make menuconfig` 

to and enable it 

#endif 

 

// create an instance of bluetooth serial 

BluetoothSerial SerialBT; 

 

 

void setup() { 

  // initialise th serial monitor 

  Serial.begin(9600); // make sure match at serial monitor 

  servoLeft.attach(servoPinLeft); // attaching servo to pin 

  servoRight.attach(servoPinRight); 

     

  //for MCP joint 

  pinMode(FLEX_MCP_PIN, INPUT); 

  // for Wrist joint 

  pinMode(FLEX_Wrist_PIN, INPUT); 

     

  ////////// 

  // initialise bluetooth serial device 

  SerialBT.begin("ESP32_Control"); //Bluetooth device name 

  Serial.println("The device started, now you can pair it with 

bluetooth!"); 

} 

 

 

void loop() { 

   

  // transmit data out of mcu 

  if (Serial.available()) { 

     

    // send data using bluetooth serial, data is obtained from 

serial 

    SerialBT.write(Serial.read()); 

  } 

   

  // receive data from mcu 

  if (SerialBT.available()) { 

     

    Activity = SerialBT.read(); 

     

    if (Activity == '1'){ 

       

      // rehabilitation activity 

      //void loop() 

      for (int timer = 0; timer <=10000; timer +=1) { 

        delay(100); 

       

        if (SerialBT.available()){ 

        Mode = SerialBT.read(); 

     

        if (Mode == '1'){ 

          Serial.write("easy"); 

          // actuate 

          // need to alter timer 

          for (int timer = 0; timer <=73; timer +=1){ 
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            for(int angle = angleMin; angle <= angleMax; angle 

+=angleStep) { 

             

            int angle2 = 40 - angle; 

             

            servoLeft.write(angle); 

            servoRight.write(angle2); 

            //Serial.println(angle); 

            delay(120); 

            } 

       

            for(int angle = angleMax; angle >= angleMin; angle 

-=angleStep) { 

             

            int angle2 = 40 - angle; 

             

            servoLeft.write(angle); 

            servoRight.write(angle2); 

            //Serial.println(angle); 

            delay(120); 

            } 

             

          } 

           

        } else { 

          if (Mode == '2'){ 

            Serial.write("intermediate"); 

            for (int timer = 0; timer <=73; timer +=1){ 

             

              for(int angle = angleMin; angle <= angleMax; 

angle +=angleStep) { 

               

                int angle2 = 40 - angle; 

                 

                servoLeft.write(angle); 

                servoRight.write(angle2); 

                //Serial.println(angle); 

                delay(70); 

              } 

         

              for(int angle = angleMax; angle >= angleMin; 

angle -=angleStep) { 

               

                int angle2 = 40 - angle; 

                 

                servoLeft.write(angle); 

                servoRight.write(angle2); 

                //Serial.println(angle); 

                delay(70); 

              } 

             

            } 

          } else { 

            Serial.write("difficult"); 

             

            for (int timer = 0; timer <=73; timer +=1){ 

             

              for(int angle = angleMin; angle <= angleMax; 

angle +=angleStep) { 

               

                int angle2 = 40 - angle; 
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                servoLeft.write(angle); 

                servoRight.write(angle2); 

                //Serial.println(angle); 

                delay(30); 

              } 

         

              for(int angle = angleMax; angle >= angleMin; 

angle -=angleStep) { 

               

                int angle2 = 40 - angle; 

                 

                servoLeft.write(angle); 

                servoRight.write(angle2); 

                //Serial.println(angle); 

                delay(30); 

              } 

             

            } 

             

             

          } 

        } 

      } 

       

      } 

       

    }else{ 

       

      // progress measurement activity 

      //void loop() 

      for (int timer = 0; timer <=10; timer +=1) 

      { 

        // Read the ADC, and calculate voltage and resistance 

from it 

        int flexADC_MCP = analogRead(FLEX_MCP_PIN); 

        float flexV_MCP = flexADC_MCP * VCC / 4095.0; 

        float flexR_MCP = R_DIV * (VCC / flexV_MCP - 1.0); 

         

        int flexADC_Wrist = analogRead(FLEX_Wrist_PIN); 

        float flexV_Wrist = flexADC_Wrist * VCC / 4095.0; 

        float flexR_Wrist = R_DIV * (VCC / flexV_Wrist - 1.0);  

         

        // Use the calculated resistance to estimate the 

sensor's 

        // bend angle: 

        float angle_MCP_F = map(flexR_MCP, 

STRAIGHT_RESISTANCE_MCP, BEND_RESISTANCE_MCP, 

                         0, 90.0); 

        float angle_Wrist_F = map(flexR_Wrist, 

STRAIGHT_RESISTANCE_Wrist, BEND_RESISTANCE_Wrist, 

                         0, 60.0); 

                 

                 

                       

        Serial.println("Resistance MCP: " + String(flexR_MCP) 

+ " ohms"); 

        Serial.println("Resistance Wrist: " + 

String(flexR_Wrist) + " ohms"); 

        Serial.println("Bend MCP: " + String(angle_MCP_F) + " 

degrees"); 
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        Serial.println("Bend Wrist: " + String(angle_Wrist_F) 

+ " degrees"); 

        Serial.println(); 

       

        // obtain the maximum angles generated  MCP and Wrist 

        if (angle_MCP_F > MCP_max_data){ 

          angle_MCP = angle_MCP_F; 

          MCP_max_data = angle_MCP_F; 

        } 

         

        if (angle_Wrist_F > Wrist_max_data){ 

          angle_Wrist = angle_Wrist_F; 

          Wrist_max_data = angle_Wrist_F; 

        } 

         

       

        delay(500); 

      } 

       

      // convert float to int 

      int   angle_MCP_int = (int)angle_MCP; 

      int   angle_Wrist_int = (int)angle_Wrist; 

       

      // convert from float to character array 

      sprintf(MCP_data, "%d", angle_MCP_int); 

      sprintf(Wrist_data, "%d", angle_Wrist_int); 

       

      strcat(MCP_data, ":"); 

      strcat(MCP_data, Wrist_data); 

       

      for (int i = 0; i <= 15; i++) 

      { 

        Serial.println(char (MCP_data[i])); 

        SerialBT.write((uint8_t) MCP_data[i]); 

      } 

       

    } 

 

  } 

  delay(20); 

} 

 


