

DEVELOPMENT OF WEARABLE

REHABILITATION DEVICE FOR WRIST-

FINGER MOBILITY REHABILITATION

TAN CHIA WEN

UNIVERSITI TUNKU ABDUL RAHMAN

DEVELOPMENT OF WEARABLE REHABILITATION DEVICE FOR

WRIST-FINGER MOBILITY REHABILITATION

TAN CHIA WEN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Honours)

 Biomedical Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2022

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Tan Chia Wen

ID No. : 18UEB07036

Date : 29 September 2022

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DEVELOPMENT OF

WEARABLE REHABILITATION DEVICE FOR WRIST-FINGER

MOBILITY REHABILITATION” was prepared by TAN CHIA WEN has

met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Honours) Biomedical

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Mr Chong Yu Zheng

Date : 29 September 2022

Signature :

Co-Supervisor : Dr Chan Siow Cheng

Date : 29 September 2022

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be

made of the use of any material contained in, or derived from, this report.

© 2022, TAN CHIA WEN. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my research supervisor Mr

Chong Yu Zheng and my co-supervisor, Dr Chan Siow Cheng for their

continuous support and guidance throughout the entire development of the

research.

 Furthermore, I would like to extend my gratefulness to the founder

of Malaysia Origami Academy, Mr Kenneth Ch’ng for inspiring me to

incorporate origami theory into the design of the transmission mechanism for

the rehabilitation system.

v

ABSTRACT

Many hand rehabilitation systems have only one preprogramed exercise

protocol, do not measure the recovery progress, are costly, heavy and also do

not have built-in safety mechanisms. Therefore, the aim of this study is to

design and construct an affordable and light-weight hand rehabilitation

exoskeleton system that could provide continuous passive movement to the

finger and wrist joints, allow the patient to choose between different

rehabilitation protocols and review their recovery progress. The rehabilitation

system constructed incorporated ESP32, flex sensors, MG995 servo motors

and android mobile application. Moreover, origami string theory and 3D

printing technology was integrated into the transmission mechanism design.

From the results obtained, the transmission mechanism can actuate MCP and

PIP flexion and extension as well as radiocarpal extension movements that

respect the static constraints of the hand and do not exceed the maximum

angular velocities that can be naturally generated. In addition, the

transmission mechanism was capable of actuating movements at 3 different

angular velocities. Furthermore, the sensing system could measure maximum

angle values that have an accuracy comparable to other studies except for 0°

angles. Next, the total cost of the rehabilitation system was RM 533.70 and

the segments attached to the hand weighed only 250 g. In conclusion, all the

objectives were met. In the future, the transmission mechanism can be

improved to generate more torque, formfitting gloves and goniometers can be

used to increase the accuracy of the sensing system and a cloud database

could be used to track recovery progress of patients.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATIONS xvii

LIST OF APPENDICES xix

CHAPTER

1 INTRODUCTION

1.1 General Introduction 1

1.2 Importance of the Study 1

1.3 Problem Statement 1

1.3.1 Lack of Customizable Rehabilitation

Mode 2

1.3.2 Lack of Recovery Progress Measurement 2

1.3.3 Costly and Heavy 2

1.3.4 Lack of Protection Against Unitended

Motions 2

1.4 Aim and Objectives 2

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 3

1.7 Outline of Report 4

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Stroke and its Prevalence 6

2.3 Post-stroke Effects 6

vii

2.3.1 Spasticity 7

2.4 Treatment for Spasticity 7

2.5 Anatomy of the Hand 7

2.6 Kinematics and Kinetics of the Hand 8

2.7 Hand Functional Requirements for Activities of

Daily Living 10

2.8 Internet of Things Architecture 10

2.9 Market Research 11

2.10 Design Considerations 18

2.10.1 Safety 18

 2.10.1.1 Static Constraints 18

 2.10.1.2 Dynamic Constraints 20

2.10.2 Mobility 21

2.10.3 Comfort 21

2.10.4 Effective Force of Transmission 21

2.10.5 Cost 22

2.10.6 User-Friendliness 22

2.10.7 Weight 22

2.10.8 Adjustment to Different Hand Sizes 22

2.11 Exoskeleton System Design 23

2.11.1 Transmission System 23

2.11.2 Actuators 23

2.11.3 Control System 25

 2.11.3.1 Operational Modes 25

 2.11.3.2 Microcontrollers 25

2.11.4 Sensors 26

2.11.5 Wireless Networks 27

2.11.6 User Interface 28

2.12 Origami String as Transmission Mechanism 29

2.13 Motor Recovery Evaluation 32

2.14 Effectiveness of Origami Folding Activity as a

Hand Rehabilitation Technique 32

2.15 Summary of Findings 33

3 METHODOLOGY AND WORK PLAN 34

viii

3.1 Introduction 34

3.2 Specifications of Exoskeleton System 34

3.3 Work Plan 36

3.3.1 Work Breakdown Structure 38

3.3.2 Gantt Chart 40

3.4 Architecture of Hand Rehabilitation System 42

3.5 Anatomical Dimension Assumptions 43

3.5.1 Components Chosen for Each Element in

the System Architecture 43

3.5.1.1 Power Source 43

3.5.1.2 Microcontroller 43

3.5.1.2.1 Programming ESP32 44

3.5.1.3 Sensors 44

3.5.1.4 Actuators 45

3.5.1.5 Transmission Mechanism 45

3.5.1.5.1 Mechanism Design Theory 45

3.5.1.5.2 Software to Design Mechanism 47

3.5.1.5.3 3D Printer 47

3.5.1.5.4 Filament 48

3.5.1.6 User Interface 48

3.6 Performance Testing and Results Analysis

Methodology 48

3.6.1 Transmission System 48

3.6.1.1 Purpose 48

3.6.1.2 Steps 49

3.6.2 Sensing System 51

3.6.2.1 Purpose 51

3.6.2.2 Steps 51

3.6.3 User Interface 53

3.6.3.1 Purpose 53

3.6.3.2 Steps 54

3.6.4 Total Cost of Rehabilitation System 54

3.6.4.1 Purpose 54

3.6.4.2 Steps 54

ix

3.6.5 Total Weight of Transmission Mechanism

Attached to Hand 54

3.6.5.1 Purpose 54

3.6.5.2 Steps 54

3.7 Total Expenditure 54

3.8 Summary 55

4 REHABILITATION SYSTEM DESIGN AND

CONSTRUCTION 57

4.1 Introduction 57

4.2 Electrical Circuit 57

4.3 Transmission System 58

4.3.1 Origami Theory 58

4.3.2 Final Hardware Design 59

4.3.3 Design Features 62

4.3.4 Code Design for Android Mobile

Application Programmme 64

4.3.5 Code Design for ESP32 Programme 65

4.4 Sensing System 66

4.4.1 Voltage Divider Circuit 66

4.4.2 Code Design for Android Mobile

Application Programmme 67

4.4.3 Code Design for ESP32 Programme 68

4.4.4 Calibration of Flex Sensors 68

 4.5 Origami Tutorial Functionality 71

 4.6 System Integration 71

4.6.1 Code Design for Android Mobile

Application Programmme 71

4.6.2 Code Design for ESP32 Programme 72

 4.8 Summary 72

5 RESULTS AND DISCUSSION 74

5.1 Introduction 74

5.2 Transmission System 74

5.2.1 Angles Generated 74

5.2.2 Angular Velocities Generated 76

x

5.3 Sensing System 79

5.4 User Interface 83

5.4.1 Activity Flow 83

5.4.1.1 Navigation 83

5.4.1.2 Hand Rehabilitation Activity 83

5.4.1.3 Recovery Progress Measurement

Activity 86

5.4.1.4 Origami Tutorials Activity 88

5.5 Total Cost of Rehabilitation System 89

5.6 Total Weight of Transmission Mechanism

Attached to Hand 89

5.7 Summary 89

6 CONCLUSIONS AND RECOMMENDATIONS 91

6.1 Conclusions 91

6.2 Recommendations for future work 92

REFERENCES 93

xi

LIST OF TABLES

Table 1.1: Outline of Report 4

Table 2.1: Maximum Angular Velocity at the Finger Joints for

Males and Females during Flexion and Extension

Motions. 9

Table 2.2: Peak Torque at the Finger Joints during Flexion and

Extension Motions. 9

Table 2.3: Maximum Angular Velocity at the Wrist Joint for Males

and Females during Flexion, Extension, Abduction and

Adduction Motions. 10

Table 2.4: Peak Torque at the Wrist Joint for Males and Females

during Flexion, Extension, Abduction and Adduction

Motions. 10

Table 2.5: Summary of Characteristics for 10 Exoskeleton Systems.

 12

Table 2.6: Maximum Angular Displacement for Wrist and Finger

Joints. 19

Table 2.7: Comparison between Linear DC Motor and Servo Motor. 24

Table 2.8: Types of Sensors and their Common Functions in

Exoskeletons.. 26

Table 2.9: Comparison between Flex Sensor and Rotary Position

Sensor. 27

Table 2.10: Comparison Between the 3 Types of User Interface. 28

Table 3.1: Specifications for Exoskeleton System. 32

Table 3.2: Function of Elements in Exoskeleton System. 40

Table 3.3: Dimension Assumptions of the Hand. 41

Table 3.4: Comparison between Compatible Microcontrollers for

Arduino IoT Cloud. 42

xii

Table 3.5: Total Expenditure for the Construction of Rehabilitation

System. 54

Table 3.6: Elements in Rehabilitation System Architecture Design

and Components Selected. 56

Table 4.1: Activities Conducted to Select Rehabilitation Modes

and their Functions. 65

Table 4.2: Rehabilitation Mode Selected and Corresponding Data

Received by ESP32. 65

Table 4.3: Activities Conducted to Assess Recovery Progress. 67

Table 5.1: Maximum Flexion / Extension Angles Generated for

Three Different Rehabilitation Modes. 76

Table 5.2: Maximum Flexion / Extension Angles Generated for

Three Different Rehabilitation Modes. 78

Table 5.3: Maximum MCP Flexion Angles and Maximum

Radiocarpal Extension Angles Detected. 79

Table 5.4: Mean Values and Mean Differences for Maximum MCP

Flexion Angles and Maximum Radiocarpal Extension

Angles Detected. 82

xiii

LIST OF FIGURES

Figure 2.1: Joints and Bones in a Human Hand. 8

Figure 2.2: Miura Vertex. 27

Figure 2.3: (a) Parallel Configuration (b) Antiparallel Configuration

 28

Figure 2.4: Origami String Template with Three Vertices. 28

Figure 2.5: Actuation Mechanism for each Finger on Gripper. 29

Figure 2.6: Mechanical Stops on Hinges. 29

Figure 3.1: Work Breakdown Structure for FYP Part 1. 36

Figure 3.2: Work Breakdown Structure for FYP Part 2. 37

Figure 3.3: Gantt Chart (Semester One). 38

Figure 3.4: Gantt Chart (Semester Two). 39

Figure 3.5: Architecture Design for Exoskeleton System. 40

Figure 3.6: Crease Pattern and Dimensions for Transmission

Mechanism (PIP and MCP joints). 44

Figure 3.7: Transmission Mechanism in Antiparallel Configuration

(PIP and MCP joints). 45

Figure 3.8: Crease Pattern and Dimensions for Transmission

Mechanism (Radiocarpal joint). 45

Figure 3.9: Transmission Mechanism in Antiparallel Configuration

(Radiocarpal Joint). 46

Figure 3.10: Blue Coloured Backdrop. 49

Figure 3.11: Ring Light and Stand Setup. 49

Figure 3.12: Hand Attached with Transmission Mechanism and

Markers. 50

Figure 3.13: Sagittal View of the Hand. 50

Figure 3.14: Trackers Attached Using Kinovea. 51

xiv

Figure 3.15: Angles Constructed on Paper. 52

Figure 3.16: Position of Middle Finger With 0° Flexion at MCP Joint.

 52

Figure 3.17: Maximum MCP Flexion Angle Displayed on the User

Interface. 53

Figure 4.1: Electrical Circuit Design for Rehabilitation Device. 57

Figure 4.2: Constructed Electrical Circuit for Rehabilitation Device. 58

Figure 4.3: Crease Pattern and Dimensions for Transmission

Mechanism. 59

Figure 4.4: Transmission Mechanism in Antiparallel Configuration. 59

Figure 4.5 (a) & (b): Final Transmission Mechanism Design. 60

Figure 4.6: 3D-Printed and Assembled Transmission Mechanism. 60

Figure 4.7: Transmission Mechanism Attached to the Hand. 61

Figure 4.8: Transmission Mechanism Actuating MCP and PIP Joint

Flexion and Radiocarpal Joint Extension. 61

Figure 4.9: (a) Initial Design of Loops that Connect Segments

Diagonally. (b) Segments Cannot Bend Completely. (c)

Modified Loops. (d) Segments Can Bend Completely. 63

Figure 4.10: Safeguard Plates Design Feature. 63

Figure 4.11: (a) Segments Lie Completely Flat. (b) Segments Do Not

lie Completely Flat. 63

Figure 4.12: Elastic Bands (Circled in Red) and Extensions (Circled

in Pink) Attached on Segments. 64

Figure 4.13: Different Activities Navigated During Selection of

Rehabilitation Modes. 64

Figure 4.14: Voltage Divider Circuit for Sensing System. 66

Figure 4.15: Different Activities Navigated for Users to Assess

Recovery Progress. 67

Figure 4.16: Hand Position Held for MCP Joint Flexion of 90°. 69

Figure 4.17: Iteration Values Shown on Serial Monitor 70

xv

Figure 4.18: (a) Hand Position Held for Radiocarpal Joint Extension

of 60°. (b) Hand Position Held for Radiocarpal Joint

Extension and MCP Joint Flexion of 0°. 70

Figure 4.19: Complete Activity Flow in Android Application. 72

Figure 5.1: Angle vs Time graph for “Easy” Mode. 74

Figure 5.2: Angle vs Time graph for “Intermediate” Mode. 75

Figure 5.3: Angle vs Time graph for “Difficult” Mode. 75

Figure 5.4: Angular Velocity vs Time graph for “Easy” Mode. 77

Figure 5.5: Angular Velocity vs Time graph for “Intermediate”

Mode. 77

Figure 5.6: Angular Velocity vs Time graph for “Difficult” Mode. 78

Figure 5.7: Boxplot: Maximum Angles Detected for MCP Joint

Flexion. 80

Figure 5.8: Boxplot: Maximum Angles Detected for Radiocarpal

Joint Extension. 81

Figure 5.9: (a) Launcher Icon (b) Navigation Page 83

Figure 5.10: (a) “Start Rehabilitation Activity” Button is Selected. (b)

Prompt Displayed to Enable Bluetooth. (c) List of

Paired Devices is Displayed. (d) Status Shown as

Application is Attempting to Connect with ESP32. (e)

Status Shown When Application Fails to Connect with

ESP32. 84

Figure 5.11: (a) Three Different Rehabilitation Modes Displayed. (b)

Page Shown When “Easy” Mode was Selected. (c) Page

Shown When “Intermediate” Mode was Selected. (d)

Page Shown When “Difficult” Mode was Selected. 85

Figure 5.12: (a) “Start Recovery Progress Measurement” Button is

Selected. (b) Prompt Displayed to Enable Bluetooth. (c)

List of Paired Devices is Displayed. (d) Status Shown as

Application is Attempting to Connect with ESP32. (e)

Status Shown When Application Fails to Connect with

ESP32. 86

Figure 5.13: (a) Page Shown When the Sensing System is Measuring

the Joint Angles. (b) Maximum Flexion Angle at MCP

Joint and Maximum Extension Angle at Radiocarpal

Joint Displayed on the Page. 88

xvi

Figure 5.14: (a) “Start Learning How to Fold Origami” Button is

Selected. (b) Page Displaying a List of Origami

Tutorials. (c) Tutorial Video Runs When It is Selected. 88

xvii

LIST OF SYMBOLS / ABBREVIATIONS

𝜃𝐷𝐼𝑃 flexion or extension angle for DIP joint, °

𝜃𝑃𝐼𝑃 flexion or extension angle for PIP joint, °

𝜃𝑀𝐶𝑃𝐿𝑖𝑡𝑡𝑙𝑒
 flexion or extension angle for MCP joint of little finger, °

𝜃𝑀𝐶𝑃𝑀𝑖𝑑𝑑𝑙𝑒
 flexion or extension angle for MCP joint of middle finger, °

θMCPRing
 flexion or extension angle for MCP joint of ring finger, °

C1, C2 two central spinal creases

P1, P2 two peripheral creases

α1, α2 angles between the peripheral creases and the central spinal

 creases, °

ϕ angle offset for collinear crease C1, °

ADLs activities of daily living

BLE Bluetooth Low Energy

CMC carpometacarpal

CPM continuous passive movements

CRUD create, read, update and delete

DALYs disability-adjusted life years

DC direct current

DIP distal interphalangeal

DoF degrees of freedom

EMG electromyography

IDE integrated development environment

IoT Internet of Things

IP interphalangeal

LCD liquid crystal display

LPWAN low-power wide area network

MCP metacarpophalangeal

PIP proximal interphalangeal

PWM pulse-width modulation

ROM range of motion

RTP repetitive task practice

xviii

VR virtual reality

WiFi Wireless Fidelity

WLAN wireless local area network

WMAN wireless metropolitan area network

WPAN wireless personal area network

xix

LIST OF APPENDICES

Appendix A: Android Application Code for “RehabConnect” Activity 98

Appendix B: Android Application Code for “DevicesFragment”

Activity 111

Appendix C: Android Application Code for “RehabModesFragment”

Activity 104

Appendix D: ESP32 Code for Transmission System 111

Appendix E: Android Application Code for “DevicesFragment2”

Activity 115

Appendix F: Android Application Code for “ProgressStartFragment”

Activity 117

Appendix G: ESP32 Code for Sensing System 124

Appendix H: Ten Sets of Maximum Resistance Values for Sensing

System Calibration 111

Appendix I: Android Application Code for “OrigamiVideos”

Activity 111

Appendix J: Android Application Code for “HomeDirectory”

Activity 111

Appendix K: Complete Android Application Code. 111

101

128

129

131

132

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

With a lack of man power and the ongoing pandemic, it is important for post-

stroke patients to utilise hand rehabilitative exoskeletons as a

telerehabilitation alternative to physical physiotherapist sessions in order to

carry out repetitive rehabilitation exercises.

 This project aims to design a hand exoskeleton system that can

provide continuous passive movement to the finger and wrist joints and allow

the patient to choose between different rehabilitation protocols as well as

review their recovery progress.

1.2 Importance of the Study

The results of this present study may provide insight in designing a hand

exoskeleton rehabilitation system that is safe, cost-effective, light and allows

users to interact with it via mobile phone. Moreover, this study will

contribute to a better understanding on how to integrate origami string theory

into designing transmission mechanisms.

1.3 Problem Statement

At present, there are many different hand rehabilitation exoskeleton systems

that are in the market or under development. However, few of them generate

movement at the wrist, have customisable rehabilitation modes or have user

interfaces.

1.3.1 Lack of Customizable Rehabilitation Modes

Many hand exoskeleton systems can only perform one preprogrammed

exercise protocol. This is not sufficient because post-stroke patients have

varying severity of complications. For example, for patients with spasticity,

their muscle tone increases with the increase in stretching velocity. Therefore,

if they were to use hand exoskeleton that actuates high angular velocities,

they may feel discomfort or pain.

2

1.3.2 Lack of Recovery Progress Measurement

Many hand exoskeletons can only generate movement of the finger and hand

joints. They do not have sensors that measure the recovery progress of the

patient. This would mean that the patients themselves would not be able to

detect whether the rehabilitation exercises conducted by the hand

rehabilitation exoskeleton system is effective.

1.3.3 Costly and Heavy

Most hand exoskeletons are priced around RM 3000. This may be

unaffordable for patients to purchase for home rehabilitation. With

physiotherapy sessions in Malaysia costing around RM 150 to RM 250 per

session, RM 3000 can allow the patient to attend at least twelve sessions of

physiotherapy. This means that it is still more cost effective to attend live

physiotherapy sessions compared to purchasing a hand rehabilitation

exoskeleton. Moreover, some hand exoskeletons found in the market survey

are as heavy as 2.3 kg. With a weight this large, the hand will feel lethargic

and uncomfortable after a while.

1.3.4 Lack of Protection Against Unintended Motions

Many exoskeletons like most tendon wire-based exoskeletons and some

mechanical linkage exoskeletons do not have a built-in design their

transmission mechanism to prevent actuating unintended motions. Over

flexion or extension of finger and wrist joints exceeding their static

constraints would injure and cause pain to the patient.

1.4 Aim and Objectives

The aim of this project was to design a hand rehabilitation exoskeleton

system that could provide continuous passive movement to the finger and

wrist joints and allow the patient to choose between different rehabilitation

protocols as well as to review their recovery progress. The objectives were to:

• Design and construct a transmission mechanism that has 9 degrees of

freedom and can generate extension movement at the radiocarpal joint

3

and coupled flexion and extension movements at the

Metacarpophalangeal (MCP) and Proximal Interphalangeal (PIP) joints of

the 4 fingers (index, middle, ring and little fingers).

• Design and construct a transmission mechanism that actuates movements

that respect the static constraints of the hand and does not exceed the

maximum angular velocities that can be generated by the hand naturally.

• Design and construct a sensing system that can measure the maximum

angle of flexion at the MCP joint and maximum angle of extension at the

wrist joint for recovery progress measurement.

• Design and construct a hand exoskeleton rehabilitation system that cost

less than RM 1500 with the sections attached to the hand weighing less

than 500 g.

• Design and construct a user interface that allows the patient to choose

between 3 levels of angular velocity that is generated by the transmission

mechanism and allows the patient view their recovery progress.

1.5 Scope and Limitation of the Study

The scope of this study was to design and construct a hand rehabilitation

exoskeleton system that can generate extension movement at the radiocarpal

joint and coupled flexion and extension movements at the MCP and PIP

joints of the 4 fingers (index, middle, ring and little fingers), measure the

maximum angle of flexion at the MCP joint and maximum angle of extension

at the wrist joint, allows the patient to choose between 3 levels of angular

velocity that is generated by the transmission mechanism and allows the

patient view their recovery progress.

 This study had to be completed within 8 months. As such, due to

time limitation, the hand rehabilitation exoskeleton system was not tested on

subjects. Therefore, the efficacy of the rehabilitation system in improving the

finger and wrist movements of post-stroke patients are not known.

1.6 Contribution of the Study

This study will design and construct a hand exoskeleton rehabilitation system

4

that is safe, cost-effective, light and allows users to interact with it via mobile

phone. Moreover, this study will integrate origami string theory into the

transmission mechanism design for the hand rehabilitation system.

1.7 Outline of the Report

The content of the report was distributed as shown in Table 1.1.

Table 1.1: Outline of Report

Chapter Content

1 This chapter explains the importance of this study, identifies the

problem statements and objectives of the study, states the scope

and limitations of the project and highlights the importance and

contributions of the study.

2 This chapter contains the literature review on the following

topics: the effects of stoke and its prevalence, the anatomy,

kinematics and kinetics of the hand, Internet of Things

architecture, market research, design considerations, exoskeleton

system design, origami string theory, motor recovery evaluation

and the effectiveness of folding origami for hand rehabilitation.

3 This chapter contains the specification for rehabilitation system,

system architecture design and materials chosen, total

expenditure, work plan, Work Breakdown Structure, Gantt Chart

and methods used to test and analyse the performance of the

rehabilitation system.

4 This chapter covers the design and construction of the following

systems: electrical circuit, transmission mechanism, sensing

system, and origami tutorial functionality. In addition, it also

covers the method used to integrate these systems together.

5 This chapter displays and evaluates the performance of the

following areas: transmission system, sensing system, user

interface, total cost of rehabilitation system and total weight of

transmission mechanism attached to the hand.

6 This chapter covers the conclusion of the entire study as well as

5

possible future work that can be done.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

A literature review was conducted to study the prevalence and effects of stroke,

the properties of the human hand, the architecture of Internet of Things,

conduct market research on hand exoskeletons as well as determine the design

considerations and components required. The results of this review will be

used to set the specifications of the hand exoskeleton as well as select suitable

technology for the design of the exoskeleton system.

2.2 Stroke and its Prevalence

Stroke is a cerebrovascular disease that hinders the provision of oxygen and

nutrients to the brain cells thus causing the demise of these cells.

According to the World Stroke Organization, there are 12.2 million

new strokes cases annually, with 101 million stroke survivors living with

complications on a global scale. Stroke has the third highest disability-adjusted

life years (DALYs) which indicates that this lifestyle disease places a huge

burden on society, with 89 % of this burden concentrated in low- and middle-

income countries (Feigin et al., 2022). World Health Organization explains

that DALYs is the aggregation of years forfeited by premature demise and the

years existing in suboptimal health (World Health Organization, 2013). This

shows that there is a huge market for rehabilitation devices that target post-

stroke patients.

2.3 Post-stroke Effects

They can be categorized into a few types: physical symptoms, cognitive

symptoms and emotional symptoms. Some of the physical symptoms are loss

in stamina, drop foot, loss in muscle strength, spasticity, contractures and

sensory alterations (Stroke Association, 2013).

7

2.3.1 Spasticity

Spasticity occurs in around 30 % to 80 % of post-stroke patients. 66 % of

patients suffering from spasticity have it affect their flexor muscles in their

wrist and fingers (Kuo and Hu, 2018). Spasticity is a velocity-dependent

increase in muscle tone that causes the muscles to become stiff, in constant

contraction and resistive to stretching. When spasticity occurs in the flexor

muscles of the wrist and fingers, it will cause a decrease in range of motion on

the finger and wrist joints as well as evoke pain to the patient. (American

Stroke Association, 2019) This impairment will restrict the patient from

carrying out their daily activities such as grabbing objects and pinching. This

lack of autonomy will reduce their quality of life because they will have be

dependent on their caregivers to carry out basic tasks or even be placed in care

facilities.

2.4 Treatment for Spasticity

Treatment for spasticity include both pharmacological and physical

management techniques. Physical management techniques can be divided into

5 categories: active rehabilitation, passive rehabilitation / stretching,

positioning, standing and supplementary exercises. Active rehabilitation

exercises include: progressive resistance exercises to increase the strength of

the affected limb, neuromuscular electrical stimulation to activate affected

muscles, and using electromyography-driven robotics to provide active-

assisted rehabilitation. On the other hand, passive rehabilitation exercises

include: passive stretching of joints to increase the mobility of the joints, using

continuous motion robots that provide continuous passive movements (CPM)

to the affected limb, and wearing orthotics to prevent the affected muscle from

contracting (Monaghan et al., 2011).

2.5 Anatomy of the Hand

A human hand consists of five fingers, a palm and a wrist. The little, ring,

middle and index fingers each contain three phalanges: distal, intermediate and

proximal phalanges. In addition, these four fingers each contain three joints:

distal interphalangeal (DIP), proximal interphalangeal (PIP), and

metacarpophalangeal (MCP) joints. On the other hand, the thumb contains

8

only two phalanges: distal and proximal phalanges. The thumb has three joints:

interphalangeal (IP), metacarpophalangeal (MCP) and carpometacarpal (CMC)

joints.

The palm contains five metacarpal bones while the wrist contains of eight

bones: scaphoid, triquetrum, lunate, capitate, trapezoid, hamate, trapezium and

pisiform. Furthermore, the wrist has four joints: ulnocarpal, distal radioulnar,

radiocarpal and scaphotrapeziotrapezoid joints (American Society for Surgery

of the Hand, 2022).

Figure 2.1: Joints and Bones in a Human Hand (American Society for Surgery

of the Hand, 2022).

2.6 Kinematics and Kinetics of the Hand

In total, there are twenty-seven degrees of freedom (DoF) in a human hand.

One DoF means that the joint can move about in one axis of rotation. The little,

ring, middle and index fingers each contain four DoF: one DoF at the DIP

joint (motions: flexion / extension), one DoF at the PIP joint (motions: flexion

/ extension), and two DoF at the MCP joint (motions: flexion / extension and

adduction / abduction). The thumb contains five DoF: one DoF at the IP joint

(motions: flexion / extension), two DoF at the MCP joint (motions: flexion /

extension and adduction / abduction), and two DoF at the CMC joint (motions:

flexion / extension and adduction / abduction). The palm contains six DoF:

9

three DoF for translation and three DoF for rotation motions. (Rahman and Al-

Jumaily, 2013)

The twenty-seven DoF human hand model does not contain DoF for

wrist. Therefore, besides finger and palm movements, the wrist contains three

DoF: two DoF at radiocarpal joint (motions: flexion / extension and abduction

/ adduction) and one DoF for rotation motion. (Palmer et al., 1985)

 Referring to the results obtained from Chen Chen et al. (2013a), the

maximum angular velocities of the finger joints of healthy subjects during

flexion and extension can be seen at Table 2.1.

Table 2.1: Maximum Angular Velocity at the Finger Joints for Males and

Females during Flexion and Extension Motions.

Joint Maximum Angular Velocity (°/s)

Males Females

DIP 574 572

PIP 861 858

MCP 697 694

 Referring to the results obtained from Chen et al. (2011), the peak

torque of the finger joints of healthy subjects during flexion and extension can

be seen at Table 2.2.

Table 2.2: Peak Torque at the Finger Joints during Flexion and Extension

Motions.

Joint Peak Torque (Nm)

Little Ring Middle Index

DIP 0.398 0.550 0.850 0.775

PIP 1.200 1.800 2.890 2.280

MCP N/A 3.700 5.000 4.630

Referring to the results obtained from Xia and Frey-Law (2015), the

maximum angular velocities and peak torque of the wrist joint of healthy

subjects can be seen at Table 2.3 and Table 2.4 respectively.

10

Table 2.3: Maximum Angular Velocity at the Wrist Joint for Males and

Females during Flexion, Extension, Abduction and Adduction Motions.

Type of Motion Maximum Angular Velocity (°/s)

Males Females

Flexion 240 240

Extension 240 180

Abduction 180 120

Adduction 180 180

Table 2.4: Peak Torque at the Wrist Joint for Males and Females during

Flexion, Extension, Abduction and Adduction Motions.

Type of Motion Peak Torque (Nm)

Males Females

Flexion 17.5 11.2

Extension 10.9 7.0

Abduction 14.3 8.8

Adduction 13.5 8.8

2.7 Hand Functional Requirements for Activities of Daily Living

Activities of Daily Living (ADLs) are the everyday tasks that are

independently carried out by healthy individuals to maintain a good quality of

life. To carry out most ADLs, a person’s hand need to at least have the ability

to operate three fingers and each of these fingers need to at least have two

degrees of freedom (DoF); one DoF at the PIP joint and one DoF the MCP

joint to generate flexion and extension movement. This is because abduction

and adduction at the MCP is not essential for the performance of ADL. In

addition, since movement of the DIP joint is dependent on the movement of

the PIP joint, the DIP joint is usually not targeted in ADLs training as well.

(Sarac, Solazzi and Frisoli, 2019)

 Referring to the minimum requirements needed to perform ADLs, we

can set the minimum functional requirements for a hand exoskeleton

rehabilitation device to be: able to generate flexion and extension at the MCP

and PIP joints of at least three fingers.

2.8 Internet of Things Architecture

Internet of Things (IoT) is the interconnection of devices (e.g., sensors and

personal servers) that can communicate with each another through via the

11

Internet. There are four layers in the IoT architecture: sensing, network,

support and application layers.

 The first layer is the sensing layer. This layer consists of different

types of sensors (e.g., flex sensors, thermal sensors, and glucometers). Its

function is to collected data (e.g., angular displacement, temperature, and

blood oxygen saturation) from the environment and conduct some minor

signal processing.

 The second layer is the network layer. This layer functions to transmit

data sent by components from the sensing layer to the support layer for

processing and storage. There are two types of networks: wired and wireless.

Wired networks require data to be sent to the Internet via cables. Some wired

networks include: Ethernet, Meter Bus, and Power Line Communication.

Some wireless networks include: Bluetooth, Wireless Fidelity (WiFi), and

ZigBee.

 The third layer is the support layer. This layer is used to process,

analyse, store and retrieve data sent from the network layer. This layer also

handles the security and maintenance of the system. Some components in this

layer include: databases, authentication systems, and data processing centres.

 The fourth layer is the application layer. This layer provides human

interaction with the system and also executes orders provided by the support

layer. For example, this layer can allow the users to select different modes of

operation as well as display statistics to the users through interfaces like web

applications and mobile applications. In addition, this layer can also control

actuators to perform a function (e.g., turn on a nightlight) as dictated by the

support layer.

2.9 Market Research

In order to get a better view on the aspects that should be considered when

designing a hand rehabilitation exoskeleton, ten exoskeleton systems were

analysed and summarised in Table 2.5.

12

Table 2.5: Summary of Characteristics for 10 Exoskeleton Systems.

Paper Weight Body

Structures

Interacted

Hardware Command

method

Transmission

mechanism

Operational

Modes

Network Patient

Interface

Force

created

(Yang

et al.,

2021)

150 g 5 fingers,

10 DoF

▪ Actuator: 5 Linear

DC motors

▪ Microcontroller:

Arduino

MEGA2560

▪ Sensors: None

Bilateral

hand training

• Type: Sliding

springs

• Placement:

dorsal

Continuous

passive

movement

Bluetooth VR game

on phone

/

computer

10 N

(Rahma

n and

Al-

Jumaily

, 2013)

1.8 kg 5 fingers,

15 DoF

▪ Actuator: 5 Linear

DC motors

▪ Microcontroller:

ATmega 328

▪ Sensors: None

Bilateral

hand training

• Type:

Mechanical

linkages

• Placement:

dorsal

Continuous

passive

movement

Zigbee None -

(Ahme

d et al.,

280 g 5 fingers,

14 DoF

▪ Actuator: 14

Rotational DC

Pre-set

programme

• Type:

Tendon wires

Continuous

passive

Wired None -

13

2021) motors

▪ Microcontroller:

Arduino Sketch

running on

personal computer

▪ Sensors: None

• Placement:

dorsal and

palmar

movement

(Yurke

wich et

al.,

2020)

284 g 5 fingers, - ▪ Actuator: 2 Linear

DC motors

▪ Microcontroller:

tinyTILE by Intel

Curie

▪ Sensors:

Gyroscope

Grasp intent

detection

• Type:

Tendon wires

• Placement:

dorsal and

palmar

Active-

assisted

movement

- None 16 N

(Decke

r and

Kim,

2017)

719 g 5 fingers,

12 DoF

▪ Actuator: 5

Rotational DC

motors

▪ Microcontroller: -

▪ Sensors: Flex

• Pre-set

programme

• Grasp intent

detection

• Type:

Mechanical

linkages

• Placement:

dorsal

• Continuous

passive

movement

• Active-

assisted

- VR 14 N

14

sensor and Inertial

Measurement Unit

 movement

• Haptic

interaction

(Jo et

al.,

2019)

156 g 4 fingers

(little, ring,

middle,

index),

coupled, 8

DoF

▪ Actuator: 1 Linear

DC motor

▪ Microcontroller: -

Sensors:

Potentiometer

Pre-set

programme

• Type:

Mechanical

Linkages

with Spring

Guidance

• Placement:

dorsal

Passive

movement

- None -

(Ates,

Haarma

n and

Stienen

, 2017)

650 g 5 fingers

and wrist,

14 DoF,

only

extension

▪ Actuator: 1 electric

motor

▪ Microcontroller: -

▪ Sensors: Rotary

position sensors

and flex sensors

- • Type: Spring

• Placement:

dorsal

• Continuous

passive

movement

• Active-

assisted

movement

- - -

15

(Yap et

al.,

2016)

150 g 5 fingers,

14 DoF,

only

extension

▪ Actuator: 1

pneumatic actuator

▪ Microcontroller:

Arduino Mega

▪ Sensors: Air

pressure sensor

Pre-set

programme

• Type:

Pneumatic

• Placement:

dorsal

Continuous

passive

movement

None None -

(Kang

et al.,

2019)

104 g 2 fingers

(index and

middle), 6

DoF

▪ Actuator: 1 dual-

slack enabling

actuator

▪ Microcontroller:

Custom electric

board

(TMS320F2808)

▪ Sensors: None

Button

intention

detection

• Type:

Tendon wires

• Placement:

dorsal and

palmar

Continuous

passive

movement

None None -

(Singh

et al.,

2019)

2.3 kg 4 fingers

(little, ring,

middle,

index) and

▪ Actuator: 1

rotational DC

motor

▪ Microcontroller:

Pre-set

programmes

with

customizable

• Type:

Mechanical

Linkages

with Spring

• Continuous

passive

movement

• Active-

Wired LCD

display

with

buttons

-

16

wrist, 5

DoF

ATmega328

▪ Sensors:

Potentiometers and

EMG units

parameters Guidance

• Placement:

dorsal

assisted

movement

for mode

selections

17

 From Table 2.5, we can see that the weight of the wearable

exoskeleton ranges from 104 g to 2.3 g. Some of the exoskeletons are also

lighter because their actuators, control systems and power sources are placed

remotely. Since they are not attached to the arm or hand, these masses are not

factored into the total weight.

In addition, the body structures that the exoskeleton interacts with

range from two fingers (index and middle fingers) to all five fingers. Only

two out of the ten exoskeletons reviewed interact with the wrist. Most

exoskeletons here provide flexion and extension motions of joints while two

of them provide only extension.

Other than that, the exoskeletons reviewed have different operational

modes. Some exoskeletons provide the patients with the option of multiple

operation modes. Most of them operate on continuous passive movement

mode (CPM). A few operated on active-assisted movement mode and only

Decker and Kim (2017) operated on haptic interaction mode.

Furthermore, methods used to dictate the movements of the

exoskeletons include: bilateral hand training (where the exoskeleton copies

the movement of the healthy hand), pre-set programme (common for those

using CPM), grasp intent detection (common for those using active-assisted

movement mode) and button intention detection (where the patient uses their

healthy hand to press a button when they want the exoskeleton to perform

flexion).

In addition, the exoskeletons implement various transmission

mechanisms such as: tendon wires, sliding springs, mechanical linkages and

pneumatics. The placement of these transmission mechanisms are either

dorsal or palmar or both.

Moreover, most exoskeletons reviewed used either linear or

rotational DC motors as actuators. Other than DC motors, pneumatic pumps

(for pneumatic transmission systems) and dual-slack enabling actuators (for

tendon driven transmission system) were also utilised. Most exoskeleton

designs try to have less actuators because they are expensive and if attached

directly to the exoskeleton itself, they will contribute to the weight of the

exoskeleton. Sensors used by the exoskeletons include: flex sensors,

18

gyroscopes, inertial measurement units, potentiometers, air pressure sensors,

Electromyography (EMG) units, and rotary position sensors.

A few exoskeleton systems have patient interfaces in the form of a

Virtual Reality games or just a Liquid Crystal Display (LCD) display that

allows patient to select rehabilitation parameters by selecting buttons. The

types of networks that allow data to be transmitted between the exoskeleton

and the patient interface are: wired or wireless (Bluetooth and Zigbee).

Only three papers stated the force that can be generated by the

exoskeleton: 10 N, 14 N and 16 N. This gives us the range of forces that we

should achieve from our own exoskeleton design.

Some of the terminology used above will be elaborated in section

2.11.

2.10 Design Considerations

It is important to consider these following aspects before the specifications

and design of the exoskeleton is set.

2.10.1 Safety

Safety is the most important aspect that should be considered when designing

an exoskeleton system. The design of the transmission mechanism and

control programme need to consider the static and dynamic constraints of the

human hand. The exoskeleton device also needs to be electrically safe.

2.10.1.1 Static Constraints

Static constraints are limitations imposed on the movement of joints (Rahman

and Al-Jumaily, 2013). Table 2.6 shows the maximum angular displacement

that can occur for different joints in the fingers and wrist.

19

Table 2.6: Maximum Angular Displacement for Wrist and Finger Joints.

(Chen Chen et al., 2013b) and (Palmer et al., 1985).

Joints Flexion (°) Extension (°) Abduction /

Adduction (°)

Little Finger

DIP 90 5 0

PIP 135 0 0

MCP 90 30 – 40 50

Ring Finger

DIP 80 - 90 5 0

PIP 120 0 0

MCP 90 30 – 40 45

Middle Finger

DIP 80 – 90 5 0

PIP 110 0 0

MCP 90 30 – 40 45

Index Finger

DIP 80 – 90 5 0

PIP 110 0 0

MCP 90 30 – 40 60

Thumb

IP 75 – 80 5 – 10 5

MCP 75 – 80 0 5

Wrist

Radiocarpal 78 60 21 – 38

 Referring to Table 2.6, we need to ensure that the exoskeleton

designed does not generate motions that exceeds these static constraints.

20

2.10.1.2 Dynamic Constraints

Dynamic constraints are limitations imposed on the movement of finger

joints when the finger is moving (Rahman and Al-Jumaily, 2013). Dynamic

constraint can be divided into intrafinger and interfinger constraints.

Intrafinger constraints are limitation of joints imposed by the

movement of other joints that are located on the same finger. Intrafinger

constraints are listed below:

Equation 2.1 shows the intrafinger constraints on the index, middle,

ring and little fingers (Chen Chen et al., 2013b).

 𝜃𝐷𝐼𝑃 ≈
2

3
𝜃𝑃𝐼𝑃 (2.1)

where

θDIP = flexion or extension angle for DIP joint

θPIP = flexion or extension angle for PIP joint

 Interfinger constraints are limitations on joints due to correlation of

joint motion between joints from different fingers. Interfinger constraints are

listed below:

Equation 2.2 shows that when there is flexion or extension of the

ring finger at MCP joint, the MCP joints at middle finger and little finger will

also flex or extend to the same degree (Chen Chen et al., 2013b).

 𝜃𝑀𝐶𝑃𝑅𝑖𝑛𝑔
≈ 𝜃𝑀𝐶𝑃𝑀𝑖𝑑𝑑𝑙𝑒 ≈ 𝜃𝑀𝐶𝑃𝐿𝑖𝑡𝑡𝑙𝑒 (2.2)

where

θMCPLittle
= flexion or extension angle for MCP joint of little finger

θMCPMiddle
= flexion or extension angle for MCP joint of middle finger

θMCPRing
= flexion or extension angle for MCP joint of ring finger

 The exoskeleton design should follow these dynamic constraints to

ensure that the movement generated on the hand follow the natural hand

21

motions. This will help to reduce the patient’s discomfort or fatigue when

using the exoskeleton.

2.10.2 Mobility

Referring to the hand anatomy, we need to determine which fingers and what

joints on each finger that we want the exoskeleton to interact with.

Furthermore, we also need to determine whether we want to include wrist

interaction. We should also determine whether we want to control each finger

/ wrist individually or couple the movements together (Sarac, Solazzi and

Frisoli, 2019).

2.10.3 Comfort

We need to ensure that patients are comfortable during the usage of the

exoskeleton because rehabilitation sessions have long durations. One method

to ensure comfort is to evaluate whether the parts of the exoskeleton that

interacts physically with any part of the patient’s body does not cause the

patient any pain. We should also ensure that the static and dynamic

constraints of the hand adhered to ensure the movement generated by the

exoskeleton feel natural (Sarac, Solazzi and Frisoli, 2019).

2.10.4 Effective Force of Transmission

We need to ensure that the forces generated by the transmission system of the

exoskeleton are sufficient to generate torque at the joints. From the market

survey, we gather that the target forces that should be generated is in the

range of 10 N to 16 N. However, we should also keep in mind that patients

with spasticity have stiffer joints due to an increase in muscle tone. They may

require a larger force as compared to healthy subjects. Moreover, forces

applied need to be perpendicular to the bones to ensure that the connectors of

the exoskeleton do not slip off the hand during actuation (Sarac, Solazzi and

Frisoli, 2019).

2.10.5 Cost

Since the goal is to have this exoskeleton purchased by the patient for

personal use at home, it will have to be affordable. The cost of the

22

exoskeleton includes the cost of components, the manufacturing cost and the

cost to modify the exoskeleton design to fit different hand sizes (Sarac,

Solazzi and Frisoli, 2019).

 From the market research done, the cost of the exoskeleton should

be in the range of 300 to 500 USD.

2.10.6 User-Friendliness

The goal is to ensure the exoskeleton can be worn and operated

independently by the patients themselves with minimal training required.

 One criterion is that the patient must be able to utilise their less

impaired hand to wear and take off the exoskeleton from the hand with

spasticity. As such, they should be able to do so within 5 minutes (Ates,

Haarman and Stienen, 2017).

 In addition, since 86 % of stroke cases occur in people who are 50

years old or older, the user interface design must be intuitive and easy to

understand. Words displayed must be easily readable and the design of the

user interface must be simple and direct.

2.10.7 Weight

The weight of the exoskeleton that is worn on the hand and arm must be light

(within 500 g) to ensure the it is portable without causing arm fatigue to the

patient (Ates, Haarman and Stienen, 2017).

2.10.8 Adjustment to Different Hand Sizes

People have different hand sizes due to their age, height and sex. Therefore,

strategies should be created on how to customize the exoskeleton to function

effectively for patients of various hand sizes.

One such strategy is to scale and manufacture each exoskeleton

individually according to the hand dimensions of the patient. Another method

is to have a technician manually adjust the mechanical connects to align with

the finger joints before operating the exoskeleton. Another strategy is to

predesign and manufacture a set range of sizes. The range of sizes should be

small enough to still allow mass production but large enough to ensure that

accommodate most hand sizes (Sarac, Solazzi and Frisoli, 2019).

23

2.11 Exoskeleton System Design

There are many components in an exoskeleton system. The subsections

below will review these components.

2.11.1 Transmission System

Transmission systems transform forces generated by actuators into movement

at the patient’s joints.

These transmission system units can be planted on either on the

palmar, lateral or dorsal sides of the hand. Palmar placements mean that the

transmission components are installed on the palm of the hand. (Sarac,

Solazzi and Frisoli, 2019) This placement is almost never used for

mechanical linkages or pneumatic systems because the bulky components

would obstruct the movement of the finger joints when flexion takes place.

Lateral placements mean that the transmission components are

placed at the left and right sides of the fingers as well as the wrist. However,

this placement is not suited for bulky units found in mechanical linkages and

is also prone to movement collisions between different fingers due to the

adduction and abduction of the MCP joints. (Sarac, Solazzi and Frisoli, 2019)

Lastly, dorsal placements mean that the transmission components

are placed on top of the fingers and wrist. This placement is most common

especially for mechanical linkage mechanism because it will not obstruct the

movement actuated by the exoskeleton, there are less collisions between

different fingers and the palm is bare and can interact with real objects.

(Sarac, Solazzi and Frisoli, 2019)

2.11.2 Actuators

Actuators are used to generate forces on to the transmission mechanisms.

There are four types of actuators: direct current (DC) motors, servo motors,

ultrasonic and pneumatic actuators.

 DC motors are the most widely used type of actuator because they

are easily sourced, cheap, reliable and can be easily controlled. DC motors

can be further divided into linear DC motors and rotational DC motors.

Linear DC motors generate forces that produces linear motions. It is suitable

24

for mechanical linkage or spring transmission systems that require linear

forces. Rotational DC motors generate forces that produces rotational

motions. It is suitable for tendon wire transmission systems because

rotational DC motors can coil and uncoil the wires. (Sarac, Solazzi and

Frisoli, 2019)

 Servo motors are used to generate specific angular displacements.

These motors can provide accurate positioning, and generate high output

torque. However, they are costlier compared to DC motors. (Sarac, Solazzi

and Frisoli, 2019)

 Ultrasonic motors also generate rotational motions using ultrasonic

vibrations. These motors are light and silent but are prone to temperature

increase and hysteresis after a certain operational period. (Sarac, Solazzi and

Frisoli, 2019)

 Pneumatic actuators utilise a combination of pneumatic pumps and

valves to control the air pressure that is sent to inflate or deflate the

components in the transmission system. These motors can produce adjustable

forces and speed easily but they need to be attached remotely because they

are large in size and weight. (Sarac, Solazzi and Frisoli, 2019)

 Based on the analysis above, servo motors and linear DC motors are

suitable for this project. Table 2.7 makes a comparison between these 2

actuators to determine which one is more suitable.

Table 2.7: Comparison between Linear DC Motor and Servo Motor.

Specification Linear DC motor Servo motor

Cost RM 65.10 RM 14.90

Weight Heavier Lighter

Force Larger force. Smaller force

(maximum torque

for MG995: 10

kgfcm)

Attachment • Linear DC motors have long

dimensions which will take up too

much space on the arm.

• Servo motors have

smaller

dimensions.

25

Referring to Table 2.7, the servo motor is selected because it is

cheaper, lighter and would not take up too much space.

2.11.3 Control System

2.11.3.1 Operational Modes

There are three different operational modes for rehabilitation exoskeletons:

Continuous Passive Movement (CPM), Active-assisted Movement and

Active-resisted Movement.

Exoskeletons applying CPM will passively move the joints on the

hand without any assistance from the muscles in the hand. The patient does

not exert any force during the entire rehabilitation exercise. This is used to

the replace repetitive task practice (RTP) performed by therapists in

rehabilitation sessions. CPM has the ability to restore the patient’s range of

motion and is most effective when each session conducted over a long

duration of around 45 minutes. (Ahmed et al., 2021)

When patients use exoskeletons applying active-assisted movement,

patients have to use their muscles to contribute some force in rehabilitation

exercises.

Meanwhile, when patients use exoskeletons applying active-resisted

movement, patients have to use their muscles to apply forces larger than what

they would normally exert without the exoskeletons. These exoskeletons

apply forces that oppose that generated by the patient’s muscles. (Sarac,

Solazzi and Frisoli, 2019)

2.11.3.2 Microcontrollers

The function of a microcontroller is to control the actuators, receive data

from sensors and send as well as receive data to and from a user interface.

Some microcontroller specifications that should be considered during

selection process are: compatible programming languages, number of input

and output pins, input power and additional integrated modules.

26

2.11.4 Sensors

There are many types of sensors used in the exoskeleton in order to achieve

different functionalities. Table 2.8 elaborates the types of sensors as well as

its common functions.

Table 2.8: Types of Sensors and their Common Functions in Exoskeletons.

(Tiboni et al., 2022)

Type of Sensors Common Functions

Bending / Flex Sensors • Measure the orientation or magnitude of

bending force generated by transmission

system.

• Measure the angular displacement of a joint.

Potentiometers / Rotary

Position Sensors

• Measure angular displacement of joint.

Pressure Sensors • Measure air pressure in pneumatic transmission

systems.

Force Sensors • Measure force exerted by the patient or force

exerted by transmission system.

Torque Sensors • Measure torque generated by transmission

system.

Gyroscope • Measure angular velocity generated by

transmission system.

Inertial Measurement

Units (IMUs)

• Measure the orientation of the phalanges.

• Measure angular velocity generated by

transmission system.

Electromyography

(EMG) Sensors

• Measure EMG signals to anticipate movement

from patient.

Based on Table 2.8, both flex sensors and the rotary position sensors are

suitable because they can detect the range of motion of the joint by varying

their resistance. Table 2.9 makes a comparison between these two sensors to

determine which one is more suitable.

27

Table 2.9: Comparison between Flex Sensor and Rotary Position Sensor.

Specification Flex sensor Rotary position sensor

Cost RM 49 RM 15

Setup • Simpler setup.

• The flex sensor just has

to be attached to the

glove and connected to

the microcontroller.

• Complicated setup.

• Requires a lever system to be

attached to the gloves. Then

the lever system needs to

rotate the shaft of the sensor.

Attachment • Can be attached at the

dorsal part of the fingers

and wrist.

• Will have to be attached to the

lateral sides of the fingers and

wrist because that will where

the lever system will be

installed.

• This bulky system may hinder

the movement of the fingers.

Even though the flex sensor is more expensive, it is selected for the

exoskeleton system because of the ease of setup and its attachment would not

disturb the movement of the fingers.

2.11.5 Wireless Networks

Wireless Network technology is often used to connect the microcontroller to

the user interface. There are four main types of wireless technologies.

Low-power Wide Area Network (LPWAN) can be ruled out as

potential wireless technology for this project because it is not widely

supported which would make installation more complex and not compatible

with many devices. Since the microprocessor on the exoskeleton will be

transmitting data over a short distance, Wireless Metropolitan Area Network

(WMAN) is also unsuitable because it is meant to transfer data over a longer

distance. It would be costly to use WMAN.

Two possible technologies that can be considered are Wireless Local

Area Network (WLAN) and Wireless Personal Area Network (WPAN)

because they are both relatively low cost, interoperable with suitable

28

coverage range. However, WPAN would be more suitable due to having

lower power consumption (exoskeleton can operate longer before bring

charged), cheaper and has less signal interference. Even though WPAN has a

shorter range of coverage and data transfer rate, it will not interfere with the

functionality of the exoskeleton system because the exoskeleton aims to

transfer a small amount of data infrequently through a short distance.

(Rackley, 2011)

2.11.6 User Interface

User interface is the point where the patient can interact with the exoskeleton

system. These interfaces are usually the applications on the patient’s phones,

laptops or custom-LCD screen displays with button selections. These

interfaces will run the application layer of the exoskeleton IoT system.

There are 3 possible types of user interface that can be constructed:

Android mobile application, web application or Arduino IoT Cloud. Table

2.10 compares the attributes of these 3 types of user interface.

Table 2.10: Comparison Between the 3 Types of User Interface.

Attribute Android Mobile

Application

Web

Application

Arduino IoT Cloud

Type of

Network

Layer with

ESP32

Bluetooth

(More reliable

and does not

require a router)

Wi-Fi

(Less reliable

and requires a

router)

Wi-Fi

(Less reliable and

requires a router)

Construction

of Network

Layer

Difficult to

construct

network.

Difficult to

construct

network.

Easy to connect to

ESP32. Just have to

link the ESP32 to a

“Thing”.

Integrated

Development

Environment

Android Studio Web Application

Builder

Arduino Web Editor

Interface

Construction

Difficult to

build. Require

Difficult to

build. Require

Easy to build built by

selecting the widgets

29

knowledge of

JavaScript

programming

language.

knowledge of

JavaScript

programming

language.

and dropping it into

the display area.

Interface

Design

Customizable

and can embed

origami video

tutorials.

Customizable

and can embed

origami video

tutorials.

Not customizable and

cannot embed origami

video tutorials.

 Referring to the comparisons made in Table 2.10, Android mobile

application was chosen as the user interface type. This is because it can create

a more reliable network with the ESP32 and does not require a router. Even

though it is more difficult to construct, it has a customizable interface design

which can allow the integration of origami video tutorials.

2.12 Origami String as Transmission Mechanism

Origami-influenced engineering designs have been implemented in many

different applications such as: antenna deployment, air bag systems, stent

grafts and drug delivery systems.

 One keen interest of this project is to investigate the viability of

designing a transmission mechanism inspired by origami theory. This is

conducted by reviewing the origami claw gripper designed by Liu et al.

(2021). In this paper, they incorporate the theory of the Miura vertex and

origami string into designing the fingers for the grippers.

 The basic component that makes up each foldable finger is called the

Miura vertex. A vertex is the point where two or more lines or creases meet.

As seen in Figure 2.2, the Miura vertex consists of four creases: two central

spinal creases (C1, C2) and two peripheral creases (P1, P2). The angles

between the peripheral creases and the central spinal creases are α1, α2. The

lengths of the central spinal creases can be varied to alter the location of the

vertex. When the lengths of the peripheral creases change, the angles α1, α2

will also change. (Liu et al., 2021)

30

Figure 2.2: Miura Vertex. (Liu et al., 2021).

 Each Miura vertex has two configurations: parallel configuration

(when the central spinal creases, C1 and C2 are collinear) and antiparallel

configuration (when the central spinal creases are not collinear). From Figure

2.3, we can see that the angle offset for collinear crease C1 is ϕ. When the

Miura vertex is in antiparallel configuration, angle ϕ is more than 0°.

 Figure 2.3: (a) Parallel Configuration. (b) Antiparallel Configuration. (Liu et

al., 2021)

 During transition from parallel to antiparallel configurations,

magnitudes for angles θ1, θ2 and ϕ will increase. At any point of the transition,

magnitudes of θ1 will always be equal to θ2.

 An origami string is a multivertex template that contains multiple

Miura vertices. Figure 2.4 shows an example of an origami string template

that contains 3 vertices.

P1
P2

C1

C2

(b) (a) ϕ

31

Figure 2.4: Origami String Template with Three Vertices. (Liu et al., 2021)

 Figure 2.5 shows the method (Liu et al., 2021) used to actuate one

finger on the gripper. The actuation mechanism consists of one rotational DC

motor and shaft linkage mechanism.

Figure 2.5: Actuation Mechanism for each Finger on Gripper.

 (Liu et al., 2021)

 Figure 2.6 shows that mechanical stops are designed on the hingers

to prevent the finger of the gripper from folding in the other direction. This

would be a useful design in the exoskeleton to restrict the angular

displacement of the transmission system within the static constraints of the

finger and wrist joints.

32

Figure 2.6: Mechanical Stops on Hinges. (Liu et al., 2021)

2.13 Motor Recovery Evaluation

It is important to evaluate the motor recovery of patients with hand spasticity

after their rehabilitation sessions in order to gage how far along is their

healing progress and whether the rehabilitation protocol is effective. There

are many methods to evaluate motor recovery such as: Modified Ashworth

Scale, Fugl-Meyer Assessment (Upper Extremity) and active range of motion.

 The Modified Ashworth and Fugl-Meyer Assessment evaluation

methods are widely used. However, since they require a therapist to be

present, it cannot be carried out by the exoskeleton itself.

 On the other hand, recovery progress of the patient can be evaluated

by detecting the active range of motion that can be performed by the patients

themselves. Since this range of motion can be detected using flex sensors, it

can be carried out using the hand exoskeleton.

2.14 Effectiveness of Origami Folding Activity as a Hand

Rehabilitation Technique

The effectiveness of applying the origami folding activity as a hand

rehabilitation therapeutic method was reviewed to decide whether the user

interface for the hand rehabilitation system should contain a functionality that

provides users with tutorials on how to fold origami.

One of the studies reviewed whether origami folding sessions

contributed to the improvement of the hand functions of patients. These

patients were given a weekly, 1 hour session of origami classes for the span

33

of 6 weeks. These classes thought the patients how to fold a series of origami

models that has a range of complexities. Patients participating in these

sessions displayed a larger progress in sub-test scores for the Jebsen-Taylor

Hand Function Test compared to the control group. (M Wilson et al., 2008)

Another study investigated whether subjects can improve their

dexterity by folding origami cranes. Subjects were instructed to fold origami

cranes for 40 to 50 minutes a day for a span of 4 weeks. Those participating

in these folding sessions shown a significant improvement in the Purdue

Pegboard test and the Grooved Pegboard test compared to the control group.

(Bae, 2013)

The studies above shows that folding origami is effective as a

rehabilitation technique. Therefore, tutorials on how to fold origami will be

provided in the user interface.

2.15 Summary of Findings

A hand exoskeleton should respect the static and dynamic constraints of the

hand, be light and comfortable to be worn for long periods of time, be cost-

effective, generate sufficient forces, user-friendly and adjustable to different

hand sizes.

Moreover, the hand exoskeleton system should contain a

transmission system, servo motor actuators, a control system, flex sensors,

data transmission network and an Android mobile application user interface.

Furthermore, one possible transmission mechanism design can be based on

the Miura vertex theory. In addition, the hand exoskeleton should be able to

measure the patient’s joint range of motion to determine their recovery

progress. Lastly, a functionality that provides the user with origami tutorials

can be designed in the user interface to increase the recovery rate of the

patients.

34

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This section covers the specifications for the rehabilitation system, the system

architecture design and materials chosen, total expenditure, the work plan,

Work Breakdown Structure and Gantt Chart for this project as well as the

methods used to test and analyse the performance of the rehabilitation system.

3.2 Specifications of Exoskeleton System

Referring to literature review conducted on the design considerations of

exoskeleton systems, Table 3.1 shows the specifications set for this

exoskeleton system:

Table 3.1: Specifications for Exoskeleton System

Specifications Justification

• Actuate movement in four fingers

(index, middle, ring, little fingers)

and wrist.

• For fingers: one DoF at the PIP

joint and one DoF at the MCP

joint.

• For wrist: one DoF at Radiocarpal

joint.

• Type of motion:

▪ flexion and extension for

MCP and PIP joints

▪ extension for Radiocarpal

joint.

• Need at least three functional

fingers to carry out most ADLs.

• Each of these fingers need to have at

least two DoF to carry out most

ADLs.

• Adduction and abduction at the

joints are not essential to perform

ADLs.

• Movement of the MCP joints for

all 4 fingers are coupled.

• Movement of the PIP joints for all

• To reduce the complexity of the

design system.

• To reduce cost by enabling the

35

4 fingers are coupled. movement of all 4 fingers to be

actuated by using only 2 actuators.

The maximum angles generated by

transmission mechanism on PIP,

MCP and radiocarpal joints should

respect the static constraints of the

hand. Moreover, the maximum

angular velocities generated by

transmission mechanism should not

exceed the maximum angular

velocities that can be generated by

the hand naturally.

To ensure that the transmission

mechanism does not cause the

patient discomfort or pain.

Total cost of the system must be

less than RM 1500.

To ensure that it will be affordable for

patients to purchase for home use.

Total weight attached to the hand

must be less than 500 g.

To ensure that it is portable without

causing fatigue to the patient.

User interface allows patients to

select from 3 levels of angular

velocity that is generated by the

transmission mechanism.

Allows users to reduce the angular

velocity generated by the

transmission mechanism if they feel

pain or discomfort.

Sensing system detects the flexion

angle of MCP joint and extension

angle of radiocarpal joint. Then, the

maximum angle of flexion for the

MCP joint and the maximum angle

of extension for the radiocarpal

joint is displayed to user via the

user interface.

To allow the patient review their

recovery progress.

36

3.3 Work Plan

A work plan is developed for this project.

1. Planning Phase

1.1. Title Selection

1.2. Work Plan Formulation

1.3. Gantt Chart Construction

1.4. Problem Formulation

1.5. Setting Objectives

2. Preliminary Design phase

2.1. Literature Review

2.1.1. Stroke and its Effects

2.1.2. Anatomy, Kinetics and Kinematic of Hand

2.1.3. IoT Architecture

2.1.4. Market Research

2.1.5. Design Considerations for Hand Exoskeletons

2.1.6. Components Required in Exoskeleton System

2.1.7. Origami String as Transmission Mechanism

2.1.8. Motor Recovery Evaluation Techniques

2.2. Preliminary System Design

2.2.1. Determine Specifications for Exoskeleton

2.2.2. Determine Architecture of Exoskeleton System

2.2.3. Preliminary Design of Solution 1 and 2 for Exoskeleton

System

2.2.4. Preliminary Design and Modelling of Transmission

Mechanism

2.2.5. Prototyping User Interface Design

2.2.6. Determine Budgeted Expenditure

3. Documentation Phase

3.1. Progress Report Writing

3.2. Log Book Compilation

3.3. Presentation

4. Design and Construction Phase

37

4.1. Purchase Components

4.2. Hardware Design and Construction

4.2.1. Design, 3D-Print and Assemble Transmission Mechanism

4.2.2. Design and Construct Sensing Glove

4.3. Software Design and Construction

4.3.1. Develop Code for ESP32

4.3.2. Develop Code for Android Mobile Application

5. Functionality Testing Phase

6. System Integration Phase (Sensing, Transmission and User Interface)

7. System Testing Phase

8. Documentation Phase

8.1. FYP Poster Designing

8.2. Final Report Writing

8.3. Log Book Compilation

8.4. Presentation

38

3.3.1 Work Breakdown Structure

Figure 3.1 shows the Work Breakdown Structure for tasks conducted in the

first part of the study.

Figure 3.1: Work Breakdown Structure for FYP Part 1.

Planning Phase

Title Selection

Work Plan Formulation

Gantt Chart Construction

Problem Formulation

Setting Objectives

Preliminary Design phase

Literature Review

Stroke and its Effects

Anatomy, Kinetics and Kinematic
of Hand

IoT Architecture

Market Research

Design Considerations for Hand
Exoskeletons

Components Required in
Exoskeleton System

Origami String as Transmission
Mechanism

Motor Recovery Evaluation
Techniques

Preliminary System Design

Determine Specifications for
Exoskeleton

Determine Architecture of
Exoskeleton System

Preliminary Design of Solution 1
and 2 for Exoskeleton System

Preliminary Design and Modelling
of Transmission Mechanism

Prototyping User Interface Design

Determine Budgeted Expenditure

Documentation Phase

Progress Report Writing

Log Book Compilation

Presentation

39

Figure 3.2 shows the Work Breakdown Structure for tasks conducted

in the second part of the study.

Figure 3.2: Work Breakdown Structure for FYP Part 2.

Design and Construction
Phase

Purchase Components

Hardware Design and
Construction

Design, 3D-Print and
Assemble Transmission

Mechanism

Design and Construct
Sensing Glove

Software Design and
Construction

Develop Code for ESP32

Develop Code for Android
Mobile Application

Functionality Testing Phase

System Integration Phase
(Sensing, Transmission and

User Interface)

System Testing Phase

Documentation Phase

FYP Poster Designing

Final Report Writing

Log Book Compilation

Presentation

40

3.3.2 Gantt Chart

Gantt Charts were constructed using ProjectLibre. Figure 3.3 illustrates the Gantt Chart for tasks conducted this semester. The work duration was

fourteen weeks.

Figure 3.3: Gantt Chart (Semester One)

41

Figure 3.4 illustrates the Gantt Chart for tasks conducted in the second part of the study. The work duration was fifteen weeks because

tasks commenced immediately during the semester break.

Figure 3.4: Gantt Chart (Semester Two)

42

3.4 Architecture of Hand Rehabilitation Exoskeleton System

Figure 3.5 illustrates the architecture design for the exoskeleton system.

Figure 3.5: Architecture Design for Exoskeleton System.

 Table 3.2 describes the function of each element in the exoskeleton

architecture.

Table 3.2: Function of Elements in Exoskeleton System.

Elements Function

Power Source To supply power to actuators,

microcontroller and sensors.

Microcontroller ▪ To control the actuators.

▪ To read data from the sensors.

▪ To transmit data to user interface.

▪ To read data from the user

interface.

Sensors ▪ To detect the range of motion of

the MCP and radiocarpal joints.

User Interface ▪ To allow the user to change the

angular velocity generated by the

transmission mechanism.

▪ To display the recovery progress to

the user.

▪ To display video tutorials on how

to fold origami.

Actuators To drive the transmission

43

mechanism.

Transmission Mechanism To generate motion at the MCP, PIP

and radiocarpal joints.

3.5 Anatomical Dimension Assumptions

To create the first exoskeleton prototype, the dimensions of the hand are

assumed to be as shown in Table 3.3. Since the movement of all four fingers

will be coupled, the lengths for the finger phalanges on the four fingers are

assumed to be equal to that of the middle finger.

Table 3.3: Dimension Assumptions of the Hand.

Appendage Dimensions

Distal Phalange Length: 2 cm

Intermediate Phalange Length: 3.5 cm

Proximal Phalange Length: 6 cm

Palm Length: 8.5 cm

3.5.1 Components Chosen for Each Element in the System

Architecture

3.5.1.1 Power Source

The power source chosen should be portable to allow the user to carry out the

rehabilitation activities anywhere. Therefore, a power bank was chosen. This

power bank will supply the microcontroller, sensors and actuators with power

via a modified Micro USB cable.

3.5.1.2 Microcontroller

This project would require 1 microcontroller for the entire exoskeleton

system. This microcontroller should have a minimum of two pulse-width

modulation (PWM) output pins to control the actuators as well as a minimum

of nine analog input pins to receive data from the sensors.

Table 3.4 compares some of the microcontrollers that are available

in the market.

44

Table 3.4: Comparison between Compatible Microcontrollers for Arduino

IoT Cloud.

Specifications ESP32 Arduino

Nano 33 IoT

Arduino

MKR WAN

1300

Arduino

MKR WiFi

1010

Cost RM 21.80 RM 143 RM 177 RM 199

Processor 32-bit 32-bit 32-bit 32-bit

Network WiFi,

Bluetooth,

and BLE

WiFi,

Bluetooth,

and BLE

LoRaWAN WiFi,

Bluetooth,

and BLE

Powered by 5 V 5 V 5 V 5 V

PWM pins 16 11 12 13

Analog input

pins

18 8 7 7

Weight - 5 g 32 g 32 g

From table 3.4, ESP32 is selected because it is the cheapest option,

has enough PWM and analogue pins and has an integrated network module

with WiFi, Bluetooth or Bluetooth Low Energy (BLE) network capabilities.

3.5.1.2.1 Programming ESP32

The programming language for ESP32 is C++. The Arduino Web Editor will

be used to construct, debug and upload the C++ programme to the ESP32

microcontroller.

3.5.1.3 Sensors

This project would require 2 sensors to measure the angular displacement of

the MCP joint of the middle finger and the radiocarpal joint. From the

literature review conducted, flex sensors were selected for the exoskeleton

system because of the ease of setup and its attachment would not disturb the

movement of the fingers.

45

3.5.1.4 Actuators

This project would require two actuators to actuate the transmission

mechanism. Based on the literature review conducted, servo motors were

selected because it is cheaper, lighter and would not take up too much space.

3.5.1.5 Transmission Mechanism

3.5.1.5.1 Mechanism Design Theory

The transmission mechanism design selected is inspired by the Miura vertex

and origami string concept. This design is chosen because the maximum

flexion angles at MCP and PIP joints as well as the maximum extension

angle of the radiocarpal joint can be explicitly designed into the transmission

mechanism. This would remove the possibility of the exoskeleton generating

angles of rotation that exceed the static constraints of the finger and wrist

joints.

Figure 3.6 visualises the first version of crease pattern and

dimensions for the transmission mechanism that will move the PIP and MCP

joints. Red lines are creases that are folded inwards (valley folds) while blue

lines are creases that are folded outwards (mountain folds). The Miura vertex

on the left has 55° angles to generate the maximum flexion angle of 110° at

the PIP joint when the Miura vertex is in its antiparallel configuration. On the

other hand, the Miura vertex on the right has 45° angles to generate the

maximum flexion angle of 90° at the MCP joint when the Miura vertex is in

its antiparallel configuration. Figure 3.7 illustrates the transmission

mechanism in its antiparallel configuration.

Figure 3.6: Crease Pattern and Dimensions for Transmission Mechanism

(PIP and MCP joints).

𝜃𝑀𝐶𝑃

𝜃𝑃𝐼𝑃
𝜃𝑅

46

Figure 3.7: Transmission Mechanism in Antiparallel Configuration (PIP and

MCP joints).

Figure 3.8 visualises the first version of the crease pattern and

dimensions for the transmission mechanism that will move the radiocarpal

joint. The Miura vertex has 30° angles to generate the maximum extension

angle of 60° at the Radiocarpal joint when the Miura vertex is in its

antiparallel configuration. Figure 3.9 illustrates the transmission mechanism

in its antiparallel configuration.

Figure 3.8: Crease Pattern and Dimensions for Transmission Mechanism

(Radiocarpal joint).

30°

30°

4 cm 4 cm

3 cm

110°

0°

0°

90°

47

Figure 3.9: Transmission Mechanism in Antiparallel Configuration

(Radiocarpal Joint).

The crease patterns shown in Figure 3.6 and 3.8 is subjected to

change as newer versions of the transmission mechanism is designed.

3.5.1.5.2 Software to Design Mechanism

SOLIDWORKS 2019 will be used to design all the sections of the

transmission mechanism that will be 3D printed. This software was chosen

because it is an industry standard software, it is easy to use, and allows the

assembly all the sections together before the design is printed out. The

objects designed will be exported as STL (Standard Tessellation Language)

files.

 In addition, Ultimaker Cura will be used to slice the objects created

by SOLIDWORKS to prepare them for 3D printing. This software will

convert the STL files into G-Code (Geometric Code) files. These files can be

readily read by the 3D printer.

3.5.1.5.3 3D Printer

The 3D printer chosen for this project is the Creality Ender 3. This 3D printer

is compatible with PLA (Polylactic acid), ABS (Acrylonitrile Butadiene

Styrene) and TPU (Thermoplastic Polyurethane) filaments. In addition, it has

a printing volume of 220 x 220 x 250 mm which is sufficient to print the

transmission mechanism. It also has a layer resolution of 0.1 mm which is

adequate for this project.

0°

60°

48

3.5.1.5.4 Filament

The material chosen for the filament that will be used in the 3D printer is

PLA. This is because PLA does not produce hazardous fumes when heated

like ABS. Furthermore, PLA is not prone to warping when ambient

temperature decreases like ABS. In addition, PLA does not have the high

elastic properties that TPU has. Elastic properties are not ideal for the

transmission mechanism because force has to be effectively transferred from

segment to segment.

3.5.1.6 User Interface

Referring to the literature review conducted, Android mobile application was

chosen as the user interface type. This is because it can create a more reliable

network with the ESP32, does not require a router and has a customizable

interface design which can allow the integration of origami video tutorials.

3.6 Performance Testing and Results Analysis Methodology

3.6.1 Transmission System

3.6.1.1 Purpose

To determine whether these specifications listed below are met:

i. Can generate flexion and extension at MCP and PIP joints, and

extension at radiocarpal joint.

ii. Maximum MCP flexion generated should be 90° and below.

iii. Maximum PIP flexion generated should be 110° and below.

iv. Maximum radiocarpal extension angle generated should be 60° and

below.

v. “Difficult” mode capable of generating the highest magnitude of

angular velocities, followed by “Intermediate” mode and then “Easy”

mode.

vi. Maximum magnitude of angular velocity at PIP joint is 858 °/s.

vii. Maximum magnitude of angular velocity at MCP joint is 694 °/s.

viii. Maximum magnitude of angular velocity at radiocarpal joint is

180 °/s.

49

3.6.1.2 Steps

i. Setup the blue backdrop to create a clearer background.

Figure 3.10: Blue Coloured Backdrop.

ii. Setup the ring light and stand so that the light shines perpendicular to

the ground.

Figure 3.11: Ring Light and Stand Setup.

iii. Attach the transmission mechanism to the hand.

iv. Attach markers (i.e., black stickers) to the PIP, MCP and radiocarpal

joints of the index finger. In addition, one marker is attached to the

transmission mechanism, in front of where the DIP joint should be

located.

50

Figure 3.12: Hand Attached with Transmission Mechanism and Markers.

v. Activate the “Easy” mode continuous rehabilitation activity from the

user interface.

vi. Start the video recording.

vii. Position the hand so that the sagittal view of the hand is being

captured by the camera.

Figure 3.13: Sagittal View of the Hand.

viii. Record the movement actuated by the transmission mechanism for

60 seconds.

ix. Upload the video to Kinovea and attach trackers to measure the

angles generated and the angular velocity for the extension of

radiocarpal joint as well as the flexion of the MCP and PIP joints.

51

Figure 3.14: Trackers Attached Using Kinovea.

x. Export the raw data.

xi. Use Microsoft Excel to visualise the raw data in graphs. Then, using

the “Max” function, locate the maximum angles generated by

radiocarpal extension, as well as MCP and PIP flexion. Moreover,

using the “ABS” and “Max” functions, locate the maximum angular

velocity magnitudes generated at the radiocarpal, MCP and PIP

joints.

xii. Repeat steps v to viii for the “Intermediate” and “Difficult” modes.

3.6.2 Sensing System

3.6.2.1 Purpose

To measure the performance of sensing system in detecting the maximum

flexion angle of the MCP joint of middle finger and the maximum extension

angle of the radiocarpal joint.

3.6.2.2 Steps

i. 0°, 30°, 60°, and 90° angles are constructed on paper.

52

Figure 3.15: Angles Constructed on Paper.

ii. The sensing glove is worn.

iii. The middle finger is positioned so that the MCP joint has a flexion of

0°.

Figure 3.16: Position of Middle Finger With 0° Flexion at MCP Joint.

iv. Obtain and record the value for the maximum flexion angle of MCP

joint from the user interface.

53

Figure 3.17: Maximum MCP Flexion Angle Displayed on the User

Interface.

v. Steps iii and iv are repeated for MCP flexion angles of 30°, 60°, and

90°.

vi. Steps iii and iv are repeated for radiocarpal extension angles of 0°, 30°

and 60°.

vii. Steps iii to vi are repeated 9 more times to obtain 10 sample values.

viii. Construct boxplots to visualise the distribution of sample values.

ix. Calculate the mean values of angles measured and the mean

differences between these values and the actual angles at the MCP

and radiocarpal joints.

3.6.3 User Interface

3.6.3.1 Purpose

To determine whether these specifications listed below are met:

i. Users can select between different activities.

ii. Mobile application can connect to ESP32 via Bluetooth.

iii. Users can select different rehabilitation modes.

iv. Users can see the maximum angles for radiocarpal extension and

MCP flexion.

v. Users can view origami tutorial videos.

54

3.6.3.2 Steps

Functionality testing is conducted for the mobile application by exploring the

different functionalities offered in the application.

3.6.4 Total Cost of Rehabilitation System

3.6.4.1 Purpose

To evaluate whether the total cost of the entire rehabilitation system is less

than RM 1500.

3.6.4.2 Steps

Expenditure table is constructed to calculate the total cost.

3.6.5 Total Weight of Transmission Mechanism Attached to Hand

3.6.5.1 Purpose

To evaluate whether the total weight of the transmission mechanism attached

to the hand is less than 500 g.

3.6.5.2 Steps

Weigh the transmission mechanism segments on an electronic weighing scale

that has an accuracy of 0.1 g.

3.7 Total Expenditure

Table 3.5 shows the total expenditure for the construction of the entire

rehabilitation system. The total expenditure was RM 533.70. Since it costs

less than RM 1500, the rehabilitation system has fulfilled part of an objective

set in Chapter 1.

Table 3.5: Total Expenditure for the Construction of Rehabilitation System.

Components Quantity Cost per

Unit

Total Cost

Design

ESP32

Microcontroller

1 RM 21.80 RM 21.80

Flex Sensors (2.2 2 RM 49 RM 98

55

inch)

MG995 Servo

Motors

2 RM 10.30 RM 20.60

Metal Rods (2 mm

diameter)

12 x 15

cm

RM 1.60 RM 19.20

2mm Brushings 56 RM 0.20 RM 11.20

Pure PLA

Filaments

1 kg RM 47.50 RM 47.50

Super Glue 2 RM 1.60 RM 3.20

Elastic Bands (Flat) 1 RM 3.50 RM 3.50

Elastic Bands

(Thin)

1 RM 2.00 RM 2.00

Gloves 1 RM 4 RM 4

Power Bank 1 N / A RM 0

Breadboard 1 N / A RM 0

Connecting Wires - N / A RM 0

Soldering Iron 1 N / A RM 0

Solder 1 N / A RM 0

Creality Ender 3 1 N / A RM 0

SOLIDWORKS 1 N / A RM 0

Project Libre 1 RM 0 RM 0

Android Studio 1 RM 0 RM 0

Arduino Web

Editor

1 RM 0 RM 0

Total Cost RM 533.70

• N / A: Not applicable because the components are readily available.

3.8 Summary

The entire Final Year Project took 29 weeks to complete. Table 3.6

summarizes the elements inside the rehabilitation system architecture design

along with the components selected.

56

Table 3.6: Elements in Rehabilitation System Architecture Design and

Components Selected.

Elements Components Selected

Power source 1 power bank

Microcontroller ESP32 + Arduino Web Editor

Sensors 2 Flex sensors

User interface Android mobile application +

Android Studio

Actuators 2 servo motors

Transmission mechanism Origami String theory + 3D-printing

technology + Creality Ender 3 + PLA

+ SOLIDWORKS + Ultimaker Cura

 Next, the total expenditure for the entire rehabilitation system was

RM 533.70. Lastly, using tools such as Kinovea, Microsoft Excel and an

electronic weighing scale, the performance of the rehabilitation were tested

and analysed for the following areas: transmission system, sensing system,

user interface, total cost of rehabilitation system and total weight of

transmission mechanism sections attached to the hand.

57

CHAPTER 4

4 REHABILITATION SYSTEM DESIGN AND CONSTRUCTION

4.1 Introduction

This chapter elaborates on the design and construction of the entire

rehabilitation system. The design and construction of the following systems

covered here are: electrical circuit, transmission mechanism, sensing system,

and origami tutorial functionality. Lastly, the method to integrate these

systems together was also explained.

4.2 Electrical Circuit

Figure 4.1 shows the electric circuit design that connects the MG995 servo

motors and flex sensors to the ESP32 microcontroller. The microcontroller,

servo motors and flex sensors are powered externally by a 5V power bank.

Moreover, 10 kΩ resistors are used to construct the voltage divider circuit for

the flex sensors. Furthermore, D14 and D15 pins of the microcontroller are

output pins that produce pulse-width modulation (PWM) output signals. As

such, they are connected to the signal input pins of the servo motors to drive

the servo motors. Lastly, the D34 and D35 pins of the microcontroller are

analog-to-digital converter (ADC) input pins that connect to the flex sensor

voltage divider circuits to receive variable voltage signal. Figure 4.2 shows

the constructed electrical circuit.

Figure 4.1: Electrical Circuit Design for Rehabilitation Device.

58

Figure 4.2: Constructed Electrical Circuit for Rehabilitation Device.

4.3 Transmission System

The transmission system includes the transmission mechanism and actuators.

4.3.1 Origami Theory

Figure 4.3 visualises the latest crease pattern and dimensions for the

transmission mechanism that will generate movement at the PIP, MCP and

radiocarpal joints. Compared to the previous design found in Section

3.5.1.5.1: Mechanism Design Theory, this new design combines the

transmission mechanism of the MCP and PIP joints with that of the

radiocarpal joint to create a more efficient design. The Miura vertex on the

left has 55° angles to generate the maximum flexion angle of 110° at the PIP

joint when the Miura vertex is in its antiparallel configuration. On the other

hand, the Miura vertex in the middle has 45° angles to generate the maximum

flexion angle of 90° at the MCP joint when the Miura vertex is in its

antiparallel configuration. Lastly, the Miura vertex on the right has 30°

angles to generate the maximum extension angle of 60° at the radiocarpal

joint when the Miura vertex is in its antiparallel configuration. Figure 4.4

illustrates the transmission mechanism in its antiparallel configuration.

59

Figure 4.3: Crease Pattern and Dimensions for Transmission Mechanism

Figure 4.4: Transmission Mechanism in Antiparallel Configuration.

 This design ensures that the transmission mechanism does not

actuate movements that exceed the static constraints of the hand.

4.3.2 Final Hardware Design

After ten rounds of designing, 3-D printing, testing and modifying the

transmission mechanism, the final design is as shown in Figure 4.5 (a) and

(b). There are 34 separate segments in total (excluding the 30 separate loops

that attach the sections together). Figure 4.6 shows the 3D-printed and

assembled transmission system.

60

Figure 4.5 (a) & (b): Final Transmission Mechanism Design.

Figure 4.6: 3D-Printed and Assembled Transmission Mechanism.

(a)

(b)

Segment 4 Segment 2 Segment 1 Segment 3

61

In general, the transmission mechanism consists of 4 main segments

as shown in Figure 4.6. Segments 1, 2, 3, and 4 will be attached to the distal-

middle phalanges, proximal phalanges, palm and wrist respectively as shown

in Figure 4.7. When the servo motor arms move upwards in segment 4, the

forces will be transferred to segment 3, then segment 2 and subsequently

segment 1. This would result in the flexion of the MCP and PIP joints and the

extension of the radiocarpal joints as shown in Figure 4.8.

Figure 4.7: Transmission Mechanism Attached to the Hand.

Figure 4.8: Transmission Mechanism Actuating MCP and PIP Joint Flexion

and Radiocarpal Joint Extension.

62

4.3.3 Design Features

The following design features are incorporated to ensure that the

transmission mechanism can actuated the movements as intended.

 Initially the loops designed to connect the segments together

diagonally as shown in Figure 4.9 (a) have an axis of rotation that is located

the middle of the segment. As such, the segments cannot bend completely as

shown in Figure 4.9 (b). To solve this issue, the loops were designed so that

the axis of rotation between the segments are now located between the 2

segments as shown in Figure 4.9 (c) which enabled the segments to bend

completely like folds on a paper as shown in Figure 4.9 (d).

(a) (b)

(c)

(d)

63

Figure 4.9: (a) Initial Design of Loops that Connect Segments Diagonally. (b)

Segments Cannot Bend Completely. (c) Modified Loops. (d) Segments Can

Bend Completely.

 Moreover, the transmission mechanism has safeguard plates

designed as shown in Figure 4.10 to ensure that the segments do not bend in

the direction that is not intended. This prevents the transmission mechanism

from actuating movements that violate the static constraints of the hand.

Figure 4.10: Safeguard Plates Design Feature.

In addition, the initial designs had the segments lie completely flat

as shown in Figure 4.11 (a). This made the movements actuated jerky. Unlike

paper that encodes the creases in its fibres when it is folded, this transmission

mechanism does not remember which direction it should be folding towards.

Even though there are safeguard plates too prevent the segments from

bending the wrong direction, there was also no design to encourage it to bend

in the correct direction. As such, the safeguard plates were later designed to

extend outward with a 3° angle to allow the segments to “remember” which

direction it should bend towards as shown in Figure 4.11 (b).

Figure 4.11: (a) Segments Lie Completely Flat. (b) Segments Do Not lie

Completely Flat.

(a) (b)

64

 Furthermore, when the initial versions of the transmission

mechanism were attached to the hand and attempted to actuate the joints, it

was discovered that due to the weight of the hand, the forces transferred from

the servo motors to the subsequent segments were not adequate to generate

flexion at the MCP and PIP joints and extension at the radiocarpal joints. As

such, two additional design features were added to aid the transmission

mechanism. Elastic bands were attached between segments to exert elastic

forces on the segments while extensions were attached on some segments to

increase the length of the lever thus increasing the torque generated on the

segments.

Figure 4.12: Elastic Bands (Circled in Red) and Extensions (Circled in Pink)

Attached on Segments.

4.3.4 Code Design for Android Mobile Application Programme

The purpose of this code is to allow the user to select the rehabilitation mode

and to send this information to the ESP32.

 Figure 4.13 illustrates the different activities that the user navigates

through to select the rehabilitation mode.

Figure 4.13: Different Activities Navigated During Selection of

Rehabilitation Modes.

65

 Table 4.1 summarizes the function of each activity.

Table 4.1: Activities Conducted to Select Rehabilitation Modes and their

Functions.

Activity Function

RehabConnect Enable Bluetooth on user’s mobile device.

DevicesFragment Query the mobile device for paired devices and

displays this list of devices for the user to select.

RehabModesFragment Connect with the device selected by user. Then,

displays 3 modes of rehabilitation for user to select.

Once selected, this information is sent to ESP32 and

user is notified that the rehabilitation has started. In

addition, this activity listens to the status of the

Bluetooth connection. If connection fails, it will

attempt to reconnect with the ESP32 again.

The complete code annotated with comments can be found in

Appendix B, C, and D.

4.3.5 Code Design for ESP32 Programme

The purpose of this code is to receive the rehabilitation mode sent by the

Android mobile application and to control the servo motors.

Firstly, the header files that enable Bluetooth and servo motor

control functions are imported. Then, a variable, “Mode” is initialised to

store the mode of the rehabilitation activity. After that, the Bluetooth serial

service is initialised. Next, the code will loop as it attempts to detect whether

the android mobile application has sent any message. Once a message is

detected, it is stored in the “Mode” variable to detect which rehabilitation

mode was selected by the user. Table 4.1 shows the value that the “Mode”

variable will contain corresponding with the rehabilitation mode chosen by

user.

66

Table 4.2: Rehabilitation Mode Selected and Corresponding Data Received

by ESP32.

Rehabilitation Mode Selected Data Received by ESP32

Easy 1

Intermediate 2

Difficult 3

 After detecting the rehabilitation mode, an if-else loop will be used

to execute the correct rehabilitation mode. For all modes, the step angles are

set to be the same at 1°. Moreover, the servo motor will also rotate from 0° to

42° for all modes. The only difference is the delay set between angle

increments. The delay set for “Easy” mode is the shortest, followed by

“Intermediate” mode and then “Difficult” mode. The complete code

annotated with comments can be found in Appendix E.

4.4 Sensing System

4.4.1 Voltage Divider Circuit

When the flex sensors are bent away from the direction containing the

conductive ink, their resistance will increase. To enable the ADC input pin of

the ESP32 to detect a change in input voltage, a voltage divider circuit was

constructed as shown in Figure 4.14 so that the ESP32 will be measuring the

change of voltages across the 10 kΩ resistor. When the flex sensor is bent

and its resistance increases, the voltage across the 10 kΩ resistor will drop

thus the voltage received by the ESP32 will decrease.

Figure 4.14: Voltage Divider Circuit for Sensing System.

67

4.4.2 Code Design for Android Mobile Application Programme

The purpose of this code is to allow the users to assess their recovery

progress. Figure 4.15 illustrates the different activities that the user navigates

through in order to access their recovery progress.

Figure 4.15: Different Activities Navigated for Users to Assess Recovery

Progress.

 Table 4.3 summarizes the function of each activity.

Table 4.3: Activities Conducted to Assess Recovery Progress.

Activity Function

RehabConnect Enable Bluetooth on user’s mobile device.

DevicesFragment2 Query the mobile device for paired devices and

displays this list of devices for the user to select.

ProgressStartFragment Connect with the device selected by user. Then,

sends a command to the ESP32 to begin joint angle

measurement. Once the measurement process is

completed, it receives the maximum flexion of MPC

joint and maximum extension of radiocarpal joint

values from ESP32 and displays this information to

the user. In addition, this activity listens to the status

of the Bluetooth connection. If the connection fails,

it will attempt to reconnect with the ESP32 again.

The complete code annotated with comments can be found in

Appendix B, F, and G.

68

4.4.3 Code Design for ESP32 Programme

The purpose of this code is to detect the digital input voltages provided by

the flex sensors, process them into MCP flexion angles and radiocarpal

extension angles, locate the maximum angles and subsequently transmit this

data back to the Android mobile application.

 Firstly, the header file that enables Bluetooth functionality in ESP32

was imported. Then, the true values for the voltage of the power source and

resistance of the resistors used in the voltage divider circuit as well as the

resistance of the flex sensors when they lie completely flat or are bent to 90°

(for MCP joint flex sensor) and 60° (for radiocarpal joint flex sensor) was

measured using a multi-meter. Next, these values are stored in variables.

When the programme detects a prompt from the Android application

to start measuring the angles of the joints, the programme will detect the

digital signal provided by the flex sensors. Then, these values will be

converted into analog voltages and subsequently into the resistance of the

distorted flex sensors. Next, these values are mapped onto the resistance

range of flex sensors so that MCP flexion angles and radiocarpal extension

angles can be obtained.

 After that, these values are passed through an if-else loop to

determine whether their values were larger than those in the previous

iterations. This programme will run for 11 iterations and the maximum MCP

flexion angle and radiocarpal extension angle obtained will be catenated and

converted into unsigned character format where they can now be sent to the

Android Application.

The complete code annotated with comments can be found in

Appendix H.

4.4.4 Calibration of Flex Sensors

Once the code in section 4.5.3 was constructed, the values for the resistance

of flex sensors when they lie completely flat or are bent to 90° (for MCP

joint flex sensor) and 60° (for radiocarpal joint flex sensor) have to be

calibrated to ensure that the calculated joint angles adhere as close to the true

angles as possible. To do so, the following steps were taken:

69

i. The angles for 60° and 90° were drawn on paper.

ii. The sensing glove was worn.

iii. The hand was held at the position shown in Figure 4.16 to detect the

resistance calculated by the ESP32 programme when MCP joint was

flexed at 90°.

Figure 4.16: Hand Position Held for MCP Joint Flexion of 90°.

iv. The ESP32 programme is imitated via Android mobile application.

v. Once the measuring process was completed, the maximum value for

“Resistance MCP” shown on the serial monitor of the Arduino Web

Editor (Figure 4.17) was located among the iterations. This value

represents the maximum resistance that was detected during the

measuring process.

70

Figure 4.17: Iteration Values Shown on Serial Monitor.

vi. Steps iii to v were repeated to obtain that maximum resistance

measured for 0° MCP joint flexion and radiocarpal joint extension as

well as 60° radiocarpal joint extension. Step iii was modified to

obtain the different angles, whereby the hand was held at the position

shown in Figure 4.18 (a) to measure angles for 60° radiocarpal joint

extension and held at the position shown in Figure 4.18 (b) to

measure angles for 0° MCP joint flexion and radiocarpal joint

extension.

(a) (b)

71

Figure 4.18: (a) Hand Position Held for Radiocarpal Joint Extension of 60°.

(b) Hand Position Held for Radiocarpal Joint Extension and MCP Joint

Flexion of 0°.

vii. Steps iii to vi was repeated to obtain 10 sets of values and which were

tabled.

viii. The mean for these 10 sets of values were obtained and the values of

the variables in the ESP32 programme were altered accordingly.

(Table containing the 10 sets of values can be found in Appendix I)

4.5 Origami Tutorial Functionality

The purpose of this code was to display a list of tutorial videos to the user

and enable the users to select and play the videos. For this functionality, the

user interacts with only 1 activity: “OrigamiVideos”. The function of this

activity is to embed HTML content from YouTube into WebView elements

that the user can interact with.

The complete code annotated with comments can be found in

Appendix J.

4.6 System Integration

4.6.1 Code Design for Android Mobile Application Programme

To integrate the 3 main systems / functionalities (transmission, sensing and

origami tutorials) together, a menu page was added to enable the user to

navigate to their preferred functionality. The “HomeDirectory” activity

functions to display buttons for the users to click and navigate to activities

that correspond to the user’s selection. As such, Figure 4.19 illustrates the

different activities that the user navigates through in order to perform their

chosen functionality.

72

Figure 4.19: Complete Activity Flow in Android Application.

The complete code for the “HomeDirectory” activity that is

annotated with comments can be found in Appendix K.

4.6.2 Code Design for ESP32 Programme

To integrate the transmission and sensing systems together, an infinite loop is

created to constantly check whether the Android application has sent a

command to the ESP32. When the android application sends the first

command which contains information about which system was chosen by the

user, the ESP32 programme passes this command to an if-else loop to trigger

the correct system. The complete code for the ESP32 programme can be

found in Appendix L.

4.7 Summary

To summarise, transmission mechanism was designed using origami theory.

Furthermore, this transmission mechanism was designed to actuate the MCP,

PIP and radiocarpal joints together and contains special design features that

help to optimise its movements.

In addition, the sensing system utilised voltage divider circuit

method for its design. This system was also calibrated to increase the

accuracy of its measurements.

Moreover, the Android mobile application programme was designed

to cover the transmission system, sensing system and origami tutorials

73

functionalities while the ESP32 programme was design to cover the

transmission system and sensing system functionalities. Once the systems

were completed, they were integrated to enable the user to select their

preferred activity.

74

CHAPTER 5

5 RESULTS AND DISCUSSION

5.1 Introduction

This chapter will assess whether the study has achieved its goals by

displaying and evaluating the results produced for the analysis of the

following areas: transmission system, sensing system, user interface, total

cost of rehabilitation system and total weight of transmission mechanism

attached to the hand.

5.2 Transmission System

5.2.1 Angles Generated

Figure 5.1, 5.2 and 5.3 show the angles generated at the joints within a

timeframe of 60 seconds for the “Easy”, “Intermediate” and “Difficult”

modes respectively.

Figure 5.1: Angle vs Time graph for “Easy” Mode.

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000

A
n

gl
e(

°)

Time (ms)

Angle vs Time Graph ("Easy" Mode)

MCP Joint Flexion PIP Joint Flexion Radiocarpal Joint Extension

75

Figure 5.2: Angle vs Time graph for “Intermediate” Mode.

Figure 5.3: Angle vs Time graph for “Difficult” Mode.

 From Figure 5.1, 5.2 and 5.3, it is observed that all modes were able

to produce flexion and extension at the MCP and PIP joints and extension at

the radiocarpal joint. In addition, the “Difficult” mode generated the most

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000

A
n

gl
e

(°
)

Time (ms)

Angle vs Time Graph ("Intermediate" Mode)

PIP Joint Flexion MCP Joint Flexion Radiocarpal Joint Extension

0

10

20

30

40

50

60

70

80

0 10000 20000 30000 40000 50000 60000

A
n

gl
e

(°
)

Time (ms)

Angle vs Time Graph ("Difficult" Mode)

PIP Joint Flexion MCP Joint Flexion Radiocarpal Joint Extension

76

flexion-extension cycles followed by the “Intermediate” mode and then the

“Easy” mode. This proves than the transmission mechanism can actuate the

fastest for the “Difficult” mode followed by the “Intermediate” mode and

then the “Easy” mode, thus allowing the user to select which mode they are

comfortable with. Moreover, it can be seen that the transmission mechanism

can produce angular displacements with a range of 25° to 30°.

Using the “Max” function from Microsoft Excel, the maximum

flexion or extension angles for the joints were calculated as shown in Table

5.1.

Table 5.1: Maximum Flexion / Extension Angles Generated for Three

Different Rehabilitation Modes.

Rehabilitation

Mode

Maximum

Flexion Angle

for PIP Joint

Maximum

Flexion Angle

for MCP Joint

Maximum

Extension Angle

for Radiocarpal

Joint

Easy 81° 71° 60°

Intermediate 80° 66° 57°

Difficult 73° 63° 53°

From Table 5.1, the maximum flexion angles generated at the PIP joints were

less than 110° for all rehabilitation modes. Furthermore, the maximum

flexion angles generated at the MCP joints were less than 90° for all

rehabilitation modes. Lastly, the maximum extension angles generated at the

Radiocarpal joints were 60° and below for all rehabilitation modes. Therefore,

the transmission mechanism did not exceed the static constraints of the hand.

5.2.2 Angular Velocities Generated

Figure 5.4, 5.5 and 5.6 show the angular velocities generated at the joints

within a timeframe of 60 seconds for the “Easy”, “Intermediate” and

“Difficult” modes respectively.

77

Figure 5.4: Angular Velocity vs Time graph for “Easy” Mode.

Figure 5.5: Angular Velocity vs Time graph for “Intermediate” Mode.

-60

-50

-40

-30

-20

-10

0

10

20

30

40

0 10000 20000 30000 40000 50000 60000

A
n

gu
la

r
V

el
o

ci
ty

 (°
/s

)

Time (ms)

Angular Velocity vs Time Graph ("Easy" Mode)

MCP Joint Flexion PIP Joint Flexion Radiocarpal Joint Extension

-80

-60

-40

-20

0

20

40

60

0 10000 20000 30000 40000 50000 60000

A
n

gu
la

r
V

el
o

ci
ty

 (°
/s

)

Time (ms)

Angular Velocity vs Time Graph ("Intermediate"
Mode)

PIP Joint Flexion MCP Joint Flexion Radiocarpal Joint Extension

78

Figure 5.6: Angular Velocity vs Time graph for “Difficult” Mode.

 From Figure 5.4, 5.5 and 5.6, it can be observed that the angular

velocities generated at the joints for the “Difficult” mode is the highest,

followed by “Intermediate” mode and then “Easy” mode.

Using the “ABS” function from Microsoft Excel, the angular

velocities were converted into absolute values. Then, using the “Max”

function, the maximum angular velocity magnitudes for the joints were

calculated as shown in Table 5.2.

Table 5.2: Maximum Flexion / Extension Angular Velocity Magnitudes

Generated for Three Different Rehabilitation Modes.

Rehabilitation

Mode

Maximum

Flexion Angular

Velocity

Magnitude for

PIP Joint

Maximum

Flexion Angular

Velocity

Magnitude for

MCP Joint

Maximum

Extension

Angular Velocity

Magnitude for

Radiocarpal

Joint

Easy 49°/s 33°/s 28°/s

Intermediate 69°/s 69°/s 57°/s

Difficult 90°/s 71°/s 73°/s

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000

A
n

gu
la

r
V

el
o

ci
ty

 (°
/s

)

Time (ms)

Angular Velocity vs Time Graph ("Difficult" Mode)

PIP Joint Flexion MCP Joint Flexion Radiocarpal Joint Extension

79

From Table 5.2, the maximum magnitude for angular velocities

generated at the PIP joints were less than 858°/s for all rehabilitation modes.

Furthermore, the maximum magnitude for angular velocities generated at the

MCP joints were less than 694°/s for all rehabilitation modes. Lastly, the

maximum magnitude for angular velocities generated at the Radiocarpal

joints were less than 180°/s for all rehabilitation modes. Therefore, the

transmission mechanism generates movements that did not exceed the

maximum angular velocities that can be produced naturally.

To summarise, this study managed to design and construct a

transmission mechanism that could generate flexion and extension at the

MCP and PIP joins and extension at the radiocarpal joint. In addition, this

transmission mechanism actuates movements that respect the static

constraints of the hand and does not exceed the maximum angular velocities

that can be generated by the hand naturally. Moreover, the “Difficult” mode

of the transmission mechanism is capable of generating the highest

magnitude of angular velocities, followed by “Intermediate” mode and then

“Easy” mode.

5.3 Sensing System

Table 5.3 shows the maximum MCP flexion angles and maximum

radiocarpal extension angles detected by the sensing system for 10 trials.

Table 5.3: Maximum MCP Flexion Angles and Maximum Radiocarpal

Extension Angles Detected.

Trials Maximum MCP Flexion Angle Maximum Radiocarpal

Extension Angle

0° 30° 60° 90° 0° 30° 60°

1 8° 35° 53° 95° 9° 34° 58°

2 7° 36° 56° 89° 8° 28° 59°

3 5° 30° 58° 91° 8° 26° 53°

4 7° 28° 59° 87° 9° 27° 59°

5 4° 30° 55° 94° 10° 33° 55°

6 5° 36° 52° 90° 8° 30° 55°

80

7 7° 35° 56° 84° 5° 30° 57°

8 7° 35° 56° 88° 7° 29° 55°

9 6° 36° 57° 87° 7° 35° 65°

10 3° 29° 55° 93° 8° 32° 64°

Figure 5.7 and 5.8 represent the boxplots created to visualise the

distribution of sample values obtained in Table 5.3.

Figure 5.7: Boxplot: Maximum Angles Detected for MCP Joint Flexion.

81

Figure 5.8: Boxplot: Maximum Angles Detected for Radiocarpal Joint

Extension.

Referring to Figures 5.7 and 5.8, there are no outliers found in the measured

values. Moreover, the sample values for maximum angles detected for MCP

joint flexion of 60° and 90° as well as the sample values for maximum angles

detected for radiocarpal joint extension of 0° display a symmetric distribution.

Furthermore, the sample values for maximum angles detected for radiocarpal

joint extension of 30° and 60° are slightly positively skewed while the

sample values for maximum angles detected for MCP joint flexion of 0° and

30° are negatively skewed. In addition, the dispersion of sample values for

maximum angles detected for MCP joint flexion of 30° and 90° and for

maximum angles detected for radiocarpal joint extension of 30° and 60° are

larger compared to the other samples.

 Table 5.4 shows the mean values for the maximum MCP flexion

angles and maximum radiocarpal extension angles detected by the sensing

82

system along with the percentage difference between these values and the

actual MCP flexion and radiocarpal extension produced.

Table 5.4: Mean Values and Mean Differences for Maximum MCP Flexion

Angles and Maximum Radiocarpal Extension Angles Detected.

 Maximum MCP Flexion Angle Maximum Radiocarpal

Extension Angle

Actual

Angles

0° 30° 60° 90° 0° 30° 60°

Mean for

Angles

Measured 5.9° 33° 55.7° 89.8° 7.9° 30.4° 58°

Mean

Difference

Between

Measured

and Actual

Angles 5.9° 3° -4.3° -0.2° 7.9° 0.4° -2°

Referring to Table 5.4, the mean differences between the measured

and actual angles for MCP joint flexion and radiocarpal joint extension fall

below ±5° for all flexion and extension angles except those for 0°. Therefore,

excluding the joint measurements for 0°, the accuracy of this sensing system

is similar to the results obtained in (Williams et al., 2000) where the

maximum mean difference was 5.10°. The joint measurements for 0°

exceeded a mean difference of ±5 because the gloves used in the sensing

system was large and not formfitting. As such, the excess material tends to

distort the flex sensors especially when the joint flexion or extension angles

are really small. Despite this issue, this study has managed to design and

construct a working sensing system.

83

5.4 User Interface

5.4.1 Activity Flow

5.4.1.1 Navigation

Android users can access the mobile application by selecting the launcher

icon shown in Figure 5.9 (a). Once the application loads, users can navigate

to the different activities from the navigation page shown in Figure 5.9 (b).

Figure 5.9: (a) Launcher Icon (b) Navigation Page

5.4.1.2 Hand Rehabilitation Activity

When users select the button shown in Figure 5.10 (a), the users will navigate

to the page shown in Figure 5.10 (b). Here, they will be prompted to provide

their permission to allow the application to enable the Bluetooth feature on

their mobile devices. If they select “Allow”, they will navigate to the page

shown in Figure 5.10 (c) which displays the list of external devices that are

paired with the mobile phone. Here, the users can select “ESP32_Control” to

connect with the ESP32 microcontroller. They will then be navigated to the

page that will display the status of the Bluetooth connection. Figure 5.10 (d)

is the status shown when the application is in the attempting to connect with

ESP32. If the ESP32 is not turned on, status shown in Figure 5.10 (e) will be

displayed to inform the user that the attempt has failed. The application will

(a) (b)

84

loop between status shown in Figure 5.10 (d) and Figure 5.10 (e) until the

ESP32 is turned on.

Figure 5.10: (a) “Start Rehabilitation Activity” Button is Selected. (b) Prompt

Displayed to Enable Bluetooth. (c) List of Paired Devices is Displayed. (d)

Status Shown as Application is Attempting to Connect with ESP32. (e)

Status Shown When Application Fails to Connect with ESP32.

(a) (b) (c)

(e) (d)

85

 Once the ESP32 is turned on, the application will successfully

connect with it and navigate to the page shown in Figure 5.11 (a). If the

“Easy” mode is selected, the application will navigate to the page shown in

Figure 5.11 (b) and the transmission mechanism will start to actuate. If the

“Intermediate” mode is selected, the application will navigate to the page

shown in Figure 5.11 (c) and the transmission mechanism will start to actuate.

If the “Difficult” mode is selected, the application will navigate to the page

shown in Figure 5.11 (d) and the transmission mechanism will start to actuate.

(a) (b)

(c) (d)

86

Figure 5.11: (a) Three Different Rehabilitation Modes Displayed. (b) Page

Shown When “Easy” Mode was Selected. (c) Page Shown When

“Intermediate” Mode was Selected. (d) Page Shown When “Difficult” Mode

was Selected.

5.4.1.3 Recovery Progress Measurement Activity

When users select the button shown in Figure 5.12 (a), the users will navigate

to the page shown in Figure 5.12 (b). Here, they will be prompted to provide

their permission to allow the application to enable the Bluetooth feature on

their mobile devices. If they select “Allow”, they will navigate to the page

shown in Figure 5.12 (c) which displays the list of external devices that are

paired with the mobile phone. Here, the users can select “ESP32_Control” to

connect with the ESP32 microcontroller. They will then be navigated to the

page that will display the status of the Bluetooth connection. Figure 5.12 (d)

is the status shown when the application is in the attempting to connect with

ESP32. If the ESP32 is not turned on, status shown in Figure 5.12 (e) will be

displayed to inform the user that the attempt has failed. The application will

loop between status shown in Figure 5.12 (d) and Figure 5.12 (e) until the

ESP32 is turned on.

(a) (b) (c)

87

Figure 5.12: (a) “Start Recovery Progress Measurement” Button is Selected.

(b) Prompt Displayed to Enable Bluetooth. (c) List of Paired Devices is

Displayed. (d) Status Shown as Application is Attempting to Connect with

ESP32. (e) Status Shown When Application Fails to Connect with ESP32.

Once the ESP32 is turned on, the application will successfully

connect with it and navigate to the page shown in Figure 5.13 (a). Users can

now move their hand has donned on sensing glove. Once the detection cycle

is complete, the maximum flexion angle at the MCP joint of the middle

finger and the maximum extension angle of the radiocarpal joint are

displayed.

(d) (e)

88

Figure 5.13: (a) Page Shown When the Sensing System is Measuring the

Joint Angles. (b) Maximum Flexion Angle at MCP Joint and Maximum

Extension Angle at Radiocarpal Joint Displayed on the Page.

5.4.1.4 Origami Tutorials Activity

When users select the button shown in Figure 5.14 (a), the users will navigate

to the page shown in Figure 5.14 (b). When users select the video that they

wish to view, the video will start to play as shown in Figure 5.15 (c).

(a) (b)

(a) (b) (c)

89

Figure 5.14: (a) “Start Learning How to Fold Origami” Button is Selected. (b)

Page Displaying a List of Origami Tutorials. (c) Tutorial Video Runs When

It is Selected.

 Therefore, this study managed to design and construct a fully

functional user interface that can connect to the ESP32 via Bluetooth, allow

users to select between different activities, allow users to select between

different rehabilitation modes, allow users to see their recovery progress as

well as view tutorial videos on how to fold origami.

5.5 Total Cost of Rehabilitation System

Referring to the expenditure table constructed in Section 3.7, total cost of the

rehabilitation system was RM 533.70. Therefore, this study managed to

construct the entire rehabilitation system for less than RM 1500.

5.6 Total Weight of Transmission Mechanism Attached to Hand

The total weight of the transmission mechanism segments that are attached to

the hand was 250 g. Therefore, this study managed to construct a

transmission mechanism that weighed less than 500 g.

5.7 Summary

This study managed to design and construct a transmission mechanism that

could generate flexion and extension at the MCP and PIP joins and extension

at the radiocarpal joint. In addition, this transmission mechanism actuates

movements that respect the static constraints of the hand and does not exceed

the maximum angular velocities that can be generated by the hand naturally.

Moreover, the “Difficult” mode of the transmission mechanism is capable of

generating the highest magnitude of angular velocities, followed by

“Intermediate” mode and then “Easy” mode.

 Furthermore, this study managed to design and construct a working

sensing system that can detect most angles with an accuracy on par with

other studies.

90

Other than that, this study managed to design and construct a fully

functional user interface that can connect to the ESP32 via Bluetooth, allow

users to select between different activities, allow users to select between

different rehabilitation modes, allow users to see their recovery progress as

well as view tutorial videos on how to fold origami.

 Next, this study managed to construct the entire rehabilitation

system for RM 533.70, which is less than RM 1500. Lastly, this study

managed to construct a transmission mechanism that weighed 250 g, which is

less than 500 g.

 In conclusion, this study managed to fulfil all 5 objectives set.

91

CHAPTER 6

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

To conclude, the aim of this study was to design a hand rehabilitation

exoskeleton system that could provide continuous passive movement to the

finger and wrist joints and allow the patient to choose between different

rehabilitation protocols as well as to review their recovery progress. After

testing and evaluating the system constructed, it was determined that the

transmission system could generate 3 different angular velocities for the

extension movement at the radiocarpal joint and coupled flexion and

extension movements at the Metacarpophalangeal (MCP) and Proximal

Interphalangeal (PIP) joints of the 4 fingers. In addition, these movements

respect the static constraints of the hand and does not exceed the maximum

angular velocities that can be generated by the hand naturally. Moreover, the

sensing system could measure the angle of flexion at the MCP joint and

maximum angle of extension at the wrist joint with an accuracy similar to

that in the (Williams et al., 2000) study for all angles except 0°. Furthermore,

the total expenditure for the construction of the rehabilitation system was RM

533.70 and the sections of transmission mechanism attached to the hand

weighed 250 g in total. Lastly, the Android mobile application was

successfully constructed to allow the patient to choose between 3 levels of

angular velocity that is generated by the transmission mechanism and allows

the patient view their recovery progress. As such, all the 5 objectives set in

this study was met.

One of the limitations of this study is that the torque generated on

the segments in the transmission mechanism are only sufficient to produce

angular displacements with a range of 25° to 30°. In addition, the accuracy of

the sensing system when measuring joint flexion or extension angles at 0°

falls below that of a comparable study.

This study has provided insight on designing a hand exoskeleton

rehabilitation system that is cost-effective and allows users to interact with it

92

via mobile phone. In addition, this study has proven that it is possible to

integrate origami string theory into designing transmission mechanism for

rehabilitation systems.

6.2 Recommendations for future work

In the future, the design of the transmission mechanism should be improved

to increase the torque that can be generated at each of the segments in order

to enable the actuation of a wider range of motions for the joints. One idea is

to increase the width of the segments that are located lateral to the hand

 In addition, the sensing system should be improved by using a

formfitting glove to prevent the excess material from distorting the flex

sensors. Moreover, the sensing system should be calibrated by positioning

the joints using a goniometer instead of a paper that has angles drawn to

increase its accuracy.

 Lastly, a cloud database could be utilised in the future to record the

patient’s previous maximum MCP flexion and maximum radiocarpal

extension angles. This will allow the user to keep track of their recovery

progress throughout the entire rehabilitation journey.

93

REFERENCES

Ahmed, T., Assad-Uz-zaman, M., Islam, M.R., Gottheardt, D., McGonigle,

E., Brahmi, B. and Rahman, M.H., 2021. Flexohand: A hybrid exoskeleton-

based novel hand rehabilitation device. Micromachines, 12(11).

https://doi.org/10.3390/mi12111274.

American Society for Surgery of the Hand, 2022. Anatomy. [online]

Available at: <https://www.assh.org/handcare/anatomy> [Accessed 11 April

2022].

American Stroke Association, 2019. Spasticity After Stroke. [online]

Available at: <https://www.stroke.org/-/media/stroke-files/lets-talk-about-

stroke/life-after-stroke/ltas_spasticity_english_0419.pdf> [Accessed 3 March

2022].

Ates, S., Haarman, C.J.W. and Stienen, A.H.A., 2017. SCRIPT passive

orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at

home after stroke. Autonomous Robots, 41(3), pp.711–723.

https://doi.org/10.1007/s10514-016-9589-6.

Bae, J.H., 2013. The Effects of Origami on the Improvement of Hand

Dexterity. Journal of International Academy of Physical Therapy Research,

4(2), pp.588–594. https://doi.org/10.5854/JIAPTR.2013.10.25.588.

Chen Chen, F., Appendino, S., Battezzato, A., Favetto, A., Mousavi, M. and

Pescarmona, F., 2013a. Constraint Study for a Hand Exoskeleton: Human

Hand Kinematics and Dynamics. Journal of Robotics, 2013.

https://doi.org/10.1155/2013/910961.

Chen Chen, F., Appendino, S., Battezzato, A., Favetto, A., Mousavi, M. and

Pescarmona, F., 2013b. Constraint study for a hand exoskeleton: Human

https://doi.org/10.3390/mi12111274
https://doi.org/10.1007/s10514-016-9589-6
https://doi.org/10.5854/JIAPTR.2013.10.25.588
https://doi.org/10.1155/2013/910961

94

hand kinematics and dynamics. Journal of Robotics, 2013.

https://doi.org/10.1155/2013/910961.

Chen, F.C., Favetto, A., Mousavi, M., Ambrosio, E.P., Appendino, S.,

Battezzato, A., Manfredi, D., Pescarmona, F. and Bona, B., 2011. Human

Hand: Kinematics, Statics and Dynamics. In: 41st International Conference

on Environmental Systems 2011, ICES 2011. https://doi.org/10.2514/6.2011-

5249.

Decker, M. and Kim, Y., n.d. A Hand Exoskeleton Device for Robot Assisted

Sensory-Motor Training after Stroke.

Feigin, V.L., Brainin, M., Norrving, B., Martins, S., Sacco, R.L., Hacke, W.,

Fisher, M., Pandian, J. and Lindsay, P., 2022. World Stroke Organization

(WSO): Global Stroke Fact Sheet 2022. International Journal of Stroke,

17(1), pp.18–29. https://doi.org/10.1177/17474930211065917.

Jo, I., Park, Y., Lee, J. and Bae, J., 2019. A portable and spring-guided hand

exoskeleton for exercising flexion/extension of the fingers. Mechanism and

Machine Theory, 135, pp.176–191.

https://doi.org/10.1016/j.mechmachtheory.2019.02.004.

Kang, B.B., Choi, H., Lee, H. and Cho, K.J., 2019. Exo-Glove Poly II: A

Polymer-Based Soft Wearable Robot for the Hand with a Tendon-Driven

Actuation System. Soft Robotics, 6(2), pp.214–227.

https://doi.org/10.1089/soro.2018.0006.

Kuo, C.-L. and Hu, G.-C., 2018. Post-stroke Spasticity: A Review of

Epidemiology, Pathophysiology, and Treatments. International Journal of

Gerontology, 12(4), pp.280–284. https://doi.org/10.1016/j.ijge.2018.05.005.

https://doi.org/10.1155/2013/910961
https://doi.org/10.2514/6.2011-5249
https://doi.org/10.2514/6.2011-5249
https://doi.org/10.1177/17474930211065917
https://doi.org/10.1016/j.mechmachtheory.2019.02.004
https://doi.org/10.1089/soro.2018.0006
https://doi.org/10.1016/j.ijge.2018.05.005

95

Liu, C., Wohlever, S.J., Ou, M.B., Padir, T. and Felton, S.M., 2021. Shake

and Take: Fast Transformation of an Origami Gripper. [online]

https://doi.org/10.1109/TRO.2021.

M Wilson, L., W Roden, P., Taylor, Y. and Marston, L., 2008. The

Effectiveness of Origami on Overall Hand Function After Injury: A Pilot

Controlled Trial. The British Journal of Hand Therapy, 13(1), pp.12–20.

https://doi.org/10.1177/175899830801300102.

Monaghan, K., Horgan, F., Blake, C., Cornall, C., Hickey, P.P., Lyons, B.E.

and Langhorne, P., 2011. Physical treatment interventions for managing

spasticity after stroke. In: Cochrane Database of Systematic Reviews. John

Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.cd009188.

Palmer, A.K., Werner, F.W., Murphy, D. and Glisson, R., 1985. Functional

wrist motion: A biomechanical study. Journal of Hand Surgery, 10(1),

pp.39–46. https://doi.org/10.1016/S0363-5023(85)80246-X.

Rackley, S.A., 2011. Wireless networking technology: From principles to

successful implementation.

Rahman, A. and Al-Jumaily, A., 2013. Design and Development of a

Bilateral Therapeutic Hand Device for Stroke Rehabilitation. International

Journal of Advanced Robotic Systems, 10. https://doi.org/10.5772/56809.

Sarac, M., Solazzi, M. and Frisoli, A., 2019. Design Requirements of Generic

Hand Exoskeletons and Survey of Hand Exoskeletons for Rehabilitation,

Assistive, or Haptic Use. IEEE Transactions on Haptics, 12(4), pp.400–413.

https://doi.org/10.1109/TOH.2019.2924881.

Singh, N., Saini, M., Anand, S., Kumar, N., Srivastava, M.V.P. and

Mehndiratta, A., 2019. Robotic Exoskeleton for Wrist and Fingers Joint in

Post-Stroke Neuro-Rehabilitation for Low-Resource Settings. IEEE

https://doi.org/10.1109/TRO.2021
https://doi.org/10.1177/175899830801300102
https://doi.org/10.1002/14651858.cd009188
https://doi.org/10.1016/S0363-5023(85)80246-X
https://doi.org/10.5772/56809
https://doi.org/10.1109/TOH.2019.2924881

96

Transactions on Neural Systems and Rehabilitation Engineering, 27(12),

pp.2369–2377. https://doi.org/10.1109/TNSRE.2019.2943005.

Stroke Association, 2013. Physical effects of stroke. Available at:

<https://www.stroke.org.uk/sites/default/files/physical_effects_of_stroke.pdf>

[Accessed 2 March 2022].

Tiboni, M., Borboni, A., Vérité, F., Bregoli, C. and Amici, C., 2022. Sensors

and Actuation Technologies in Exoskeletons: A Review. Sensors,

https://doi.org/10.3390/s22030884.

WILLIAMS, N.W., PENROSE, J.M.T., CADDY, C.M., BARNES, E.,

HOSE, D.R. and HARLEY, P., 2000. A Goniometric Glove for Clinical

Hand Assessment. Journal of Hand Surgery, 25(2), pp.200–207.

https://doi.org/10.1054/jhsb.1999.0360.

World Health Organization, 2013. WHO methods and data sources for global

burden of disease estimates 2000-2011. [online] Available at:

<https://www.who.int/healthinfo/statistics/GlobalDALYmethods_2000_2011

.pdf> [Accessed 1 March 2022].

Xia, T. and Frey-Law, L.A., 2015. Wrist joint torque-angle-velocity

performance capacity envelope evaluation and modelling. Int. J. Human

Factors Modelling and Simulation

Yang, S.H., Koh, C.L., Hsu, C.H., Chen, P.C., Chen, J.W., Lan, Y.H., Yang,

Y., Lin, Y. de, Wu, C.H., Liu, H.K., Lo, Y.C., Liu, G.T., Kuo, C.H. and Chen,

Y.Y., 2021. An instrumented glove-controlled portable hand-exoskeleton for

bilateral hand rehabilitation. Biosensors, 11(12).

https://doi.org/10.3390/bios11120495.

Yap, H.K., Lim, J.H., Goh, J.C.H. and Yeow, C.H., 2016. Design of a Soft

Robotic Glove for Hand Rehabilitation of Stroke Patients with Clenched Fist

https://doi.org/10.1109/TNSRE.2019.2943005
https://doi.org/10.3390/s22030884
https://doi.org/10.1054/jhsb.1999.0360
https://doi.org/10.3390/bios11120495

97

Deformity using Inflatable Plastic Actuators. Journal of Medical Devices,

Transactions of the ASME, 10(4). https://doi.org/10.1115/1.4033035.

Yurkewich, A., Kozak, I.J., Hebert, D., Wang, R.H. and Mihailidis, A., 2020.

Hand Extension Robot Orthosis (HERO) Grip Glove: Enabling independence

amongst persons with severe hand impairments after stroke. Journal of

NeuroEngineering and Rehabilitation, 17(1). https://doi.org/10.1186/s12984-

020-00659-5.

https://doi.org/10.1115/1.4033035

98

APPENDICES

Appendix A: Android Application Code for “RehabConnect” Activity

package com.project.rehabilitation_system;

import android.Manifest;

import android.bluetooth.BluetoothAdapter;

import android.content.pm.PackageManager;

import android.os.Bundle;

import android.widget.Toast;

import androidx.core.app.ActivityCompat;

import androidx.fragment.app.FragmentManager;

import androidx.appcompat.app.AppCompatActivity;

import androidx.appcompat.widget.Toolbar;

public class RehabConnect extends AppCompatActivity implements

FragmentManager.OnBackStackChangedListener {

 // declare variables

 Toolbar toolbar;

 private BluetoothAdapter mBlueAdapter;

 private String activity_mode;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // retrieve activity mode

 Bundle extras = getIntent().getExtras();

 activity_mode = extras.getString("activity_mode"); //

success extraction

 // initialise views

 toolbar = findViewById(R.id.toolbar);

 // sets the toolbar for this activity

 setSupportActionBar(toolbar);

getSupportFragmentManager().addOnBackStackChangedListener(this

);

 if (savedInstanceState == null) // check fragment not

there in first place

 if (activity_mode.equals("Rehab")) {

getSupportFragmentManager().beginTransaction().add(R.id.fragme

nt, new DevicesFragment(), "devices").commit();

 }

 else {

getSupportFragmentManager().beginTransaction().add(R.id.fragme

nt, new DevicesFragment2(), "devices").commit();

 }

99

 else

 onBackStackChanged();

 if (activity_mode.equals("Rehab")) {

 getSupportActionBar().setTitle("Rehabilitation

Activity");

 }else {

 getSupportActionBar().setTitle("Measure Recovery

Progress");

 }

toolbar.setTitleTextColor(getResources().getColor(android.R.co

lor.black));

 // on btn click, turn on bluetooth

 // create bluetooth adapter

 mBlueAdapter = BluetoothAdapter.getDefaultAdapter();

 // check is bluetooth is already enabled

 // if not enabled, turn on

 if (!mBlueAdapter.isEnabled()) {

 // turn on bluetooth

 if (ActivityCompat.checkSelfPermission(this,

Manifest.permission.BLUETOOTH_CONNECT) !=

PackageManager.PERMISSION_GRANTED) {

 }

 mBlueAdapter.enable();

 // if already on...

 if (mBlueAdapter.isEnabled()){

 showToast("Bluetooth is now on");}

 } else {

 showToast("Bluetooth is already on");

 }

 }

 @Override

 public void onBackStackChanged() {

getSupportActionBar().setDisplayHomeAsUpEnabled(getSupportFrag

mentManager().getBackStackEntryCount()>0);

 }

 @Override

 public boolean onSupportNavigateUp() {

 onBackPressed();

 return true;

 }

 // toast message function

 private void showToast(String msg) {

100

 Toast.makeText(this, msg, Toast.LENGTH_SHORT).show();

 }

}

101

Appendix B: Android Application Code for “DevicesFragment” Activity

package com.project.rehabilitation_system;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.pm.PackageManager;

import android.os.Bundle;

import androidx.annotation.NonNull;

import androidx.fragment.app.Fragment;

import androidx.fragment.app.ListFragment;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

import java.util.ArrayList;

public class DevicesFragment extends ListFragment {

 private BluetoothAdapter bluetoothAdapter;

 // initialise array for paired devices

 private final ArrayList<BluetoothDevice> listItems = new

ArrayList<>();

 // adapter to create a view for each item (paired device)

 private ArrayAdapter<BluetoothDevice> listAdapter;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 // if device has bluetooth capabilities

if(getActivity().getPackageManager().hasSystemFeature(PackageM

anager.FEATURE_BLUETOOTH))

 // create bluetooth adapter

 bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 // create list to show all paired devices and their

addresses

 listAdapter = new

ArrayAdapter<BluetoothDevice>(getActivity(), 0, listItems) {

 @NonNull

 @Override

 public View getView(int position, View view,

@NonNull ViewGroup parent) {

 BluetoothDevice device =

listItems.get(position);

 if (view == null)

 // show the fragment view

 view =

102

getActivity().getLayoutInflater().inflate(R.layout.device_list

_item, parent, false);

 TextView text1 =

view.findViewById(R.id.text1);

 TextView text2 =

view.findViewById(R.id.text2);

 text1.setText(device.getName());

 text2.setText(device.getAddress());

 return view;

 }

 };

 }

 @Override

 public void onActivityCreated(Bundle savedInstanceState) {

 super.onActivityCreated(savedInstanceState);

 setListAdapter(null);

 View header =

getActivity().getLayoutInflater().inflate(R.layout.device_list

_header, null, false);

 getListView().addHeaderView(header, null, false);

 setListAdapter(listAdapter);

 }

 // when go out of app and come back

 @Override

 public void onResume() {

 super.onResume();

 refresh();

 }

 // finding all paired devices and store them into an array

 void refresh() {

 listItems.clear();

 // if bluetooth is on, get list of paired devices

 if(bluetoothAdapter != null) {

 for (BluetoothDevice device :

bluetoothAdapter.getBondedDevices())

 if (device.getType() !=

BluetoothDevice.DEVICE_TYPE_LE)

 listItems.add(device);

 }

 listAdapter.notifyDataSetChanged();

 }

 // once a paired device is selected, change fragment to

RehabModesFragment

 @Override

 public void onListItemClick(@NonNull ListView l, @NonNull

View v, int position, long id) {

 BluetoothDevice device = listItems.get(position-1);

 Bundle args = new Bundle();

 args.putString("device", device.getAddress());

 Fragment fragment = new RehabModesFragment();

 fragment.setArguments(args);

getFragmentManager().beginTransaction().replace(R.id.fragment,

103

fragment, "rehabmodes").addToBackStack(null).commit();

 }

}

104

Appendix C: Android Application Code for “RehabModesFragment”

Activity

package com.project.rehabilitation_system;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.Looper;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.Button;

import android.widget.ImageView;

import android.widget.TextView;

import android.widget.Toast;

import androidx.annotation.NonNull;

import androidx.annotation.Nullable;

import androidx.fragment.app.Fragment;

public class RehabModesFragment extends Fragment implements

ServiceConnection, SerialListener {

 private enum Connected { False, Pending, True }

 // store address of microcontroller

 private String deviceAddress;

 // bluetooth connection service

 private SerialService service;

 private TextView receiveText;

 // to show status of pairing

 private ImageView pairStatusImage;

 private ImageView miniPairStatusImage;

 // variable storing pairing status

 private Connected connected = Connected.False;

 private boolean initialStart = true;

 private boolean hexEnabled = false;

 private Button easyModeBtn;

 private Button intermediateModeBtn;

 private Button difficultModeBtn;

 private TextView rehabText;

105

 private TextView easySelected;

 private TextView intermediateSelected;

 private TextView difficultSelected;

 private ImageView easyStar;

 private ImageView intermediateStar;

 private ImageView difficultStar;

 @Override

 // on create of fragment, get microcontroller id

 public void onCreate(@Nullable Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 //setHasOptionsMenu(true);

 setRetainInstance(true);

 // get device address from devices fragment

 deviceAddress = getArguments().getString("device");

 }

 // when activity ends, disconnect from microcontroller

 @Override

 public void onDestroy() {

 // if still connected, disconnect

 if (connected != Connected.False)

 disconnect();

 getActivity().stopService(new Intent(getActivity(),

SerialService.class));

 super.onDestroy();

 }

 // when activity starts,

 @Override

 public void onStart() {

 super.onStart();

 if(service != null)

 service.attach(this);

 else

 getActivity().startService(new

Intent(getActivity(), SerialService.class)); // prevents

service destroy on unbind from recreated activity caused by

orientation change

 }

 // when activity stop

 @Override

 public void onStop() {

 if(service != null &&

!getActivity().isChangingConfigurations())

 service.detach();

 super.onStop();

 }

 @SuppressWarnings("deprecation")

 @Override

 public void onAttach(@NonNull Activity activity) {

106

 super.onAttach(activity);

 getActivity().bindService(new Intent(getActivity(),

SerialService.class), this, Context.BIND_AUTO_CREATE);

 }

 @Override

 public void onDetach() {

 try { getActivity().unbindService(this); }

catch(Exception ignored) {}

 super.onDetach();

 }

 @Override

 public void onResume() {

 super.onResume();

 if(initialStart && service != null) {

 initialStart = false;

 getActivity().runOnUiThread(this::connect);

 }

 }

 @Override

 public void onServiceConnected(ComponentName name, IBinder

binder) {

 service = ((SerialService.SerialBinder)

binder).getService();

 service.attach(this);

 if(initialStart && isResumed()) {

 initialStart = false;

 getActivity().runOnUiThread(this::connect);

 }

 }

 @Override

 public void onServiceDisconnected(ComponentName name) {

 service = null;

 }

// when activity starts, user only sees pairing status

 @Override

 public View onCreateView(@NonNull LayoutInflater inflater,

ViewGroup container, Bundle savedInstanceState) {

 View view =

inflater.inflate(R.layout.fragment_terminal, container,

false);

 pairStatusImage =

view.findViewById(R.id.pairStatusIm);

 miniPairStatusImage =

view.findViewById(R.id.miniPairStatus);

 receiveText = view.findViewById(R.id.receive_text);

 // mini icon is initially invisible

 miniPairStatusImage.setVisibility(View.INVISIBLE);

 easyModeBtn = view.findViewById(R.id.easyMode);

 intermediateModeBtn =

view.findViewById(R.id.intermediateMode);

 difficultModeBtn =

107

view.findViewById(R.id.difficultMode);

 rehabText = view.findViewById(R.id.rehabText);

 // notification text

 easySelected = view.findViewById(R.id.selected_easy);

 intermediateSelected =

view.findViewById(R.id.selected_intermediate);

 difficultSelected =

view.findViewById(R.id.selected_difficult);

 easyStar = view.findViewById(R.id.easy_star);

 intermediateStar =

view.findViewById(R.id.intermediate_star);

 difficultStar =

view.findViewById(R.id.difficult_star);

 // hide modes

 easyModeBtn.setVisibility(view.INVISIBLE);

 easyModeBtn.setEnabled(false);

 intermediateModeBtn.setVisibility(view.INVISIBLE);

 intermediateModeBtn.setEnabled(false);

 difficultModeBtn.setVisibility(view.INVISIBLE);

 difficultModeBtn.setEnabled(false);

 rehabText.setVisibility(view.INVISIBLE);

 easySelected.setVisibility(view.INVISIBLE);

 intermediateSelected.setVisibility(view.INVISIBLE);

 difficultSelected.setVisibility(view.INVISIBLE);

 easyStar.setVisibility(view.INVISIBLE);

 intermediateStar.setVisibility(view.INVISIBLE);

 difficultStar.setVisibility(view.INVISIBLE);

 return view;

 }

 // connect the socket

 private void connect() {

 try {

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 BluetoothDevice device =

bluetoothAdapter.getRemoteDevice(deviceAddress);

 receiveText.setText(" Connecting...");

pairStatusImage.setImageResource(R.drawable.loading_foreground

);

miniPairStatusImage.setImageResource(R.drawable.loading_foregr

ound);

 connected = Connected.Pending;

 SerialSocket socket = new

SerialSocket(getActivity().getApplicationContext(), device);

 service.connect(socket);

 } catch (Exception e) {

 onSerialConnectError(e);

 }

 }

108

 // unpair, disconnect socket

 private void disconnect() {

 connected = Connected.False;

 service.disconnect();

 }

 // send message to microcontroller

 private void send(String str) {

 // if not paired

 if(connected != Connected.True) {

 Toast.makeText(getActivity(), "not connected",

Toast.LENGTH_SHORT).show();

 return;

 }

 try {

 byte[] data;

 data = (str).getBytes(); // only string can use

this function to encode into array of bytes

 // send data to microcontroller

 service.write(data);

 } catch (Exception e) {

 onSerialIoError(e);

 }

 }

 // listen for the following statuses

 // status: paired

 @Override

 public void onSerialConnect() {

 receiveText.setText(" Connected");

pairStatusImage.setImageResource(R.drawable.success_pair_foreg

round);

miniPairStatusImage.setImageResource(R.drawable.success_pair_f

oreground);

 connected = Connected.True;

 // hide big pair status picture

 pairStatusImage.setVisibility(View.INVISIBLE);

 receiveText.setVisibility(View.INVISIBLE);

 // Show the button selections

 easyModeBtn.setVisibility(View.VISIBLE);

 easyModeBtn.setEnabled(true);

 intermediateModeBtn.setVisibility(View.VISIBLE);

 intermediateModeBtn.setEnabled(true);

 difficultModeBtn.setVisibility(View.VISIBLE);

 difficultModeBtn.setEnabled(true);

 rehabText.setVisibility(View.VISIBLE);

 // send activity type to microcontroller

 send("1"); // rehabilitation activity

109

 easyModeBtn.setOnClickListener(new

View.OnClickListener() {

 public void onClick(View v) {

 // send mode to microcontroller

 send("1");

 // tell user they selected easy mode

 easySelected.setVisibility(View.VISIBLE);

 easyStar.setVisibility(View.VISIBLE);

 easyModeBtn.setVisibility(View.INVISIBLE);

intermediateModeBtn.setVisibility(View.INVISIBLE);

difficultModeBtn.setVisibility(View.INVISIBLE);

 }

 });

 intermediateModeBtn.setOnClickListener(new

View.OnClickListener() {

 public void onClick(View v) {

 // send mode to microcontroller

 send("2");

intermediateSelected.setVisibility(View.VISIBLE);

 intermediateStar.setVisibility(View.VISIBLE);

 easyModeBtn.setVisibility(View.INVISIBLE);

intermediateModeBtn.setVisibility(View.INVISIBLE);

difficultModeBtn.setVisibility(View.INVISIBLE);

 }

 });

 difficultModeBtn.setOnClickListener(new

View.OnClickListener() {

 public void onClick(View v) {

 // send mode to microcontroller

 send("3");

 difficultSelected.setVisibility(View.VISIBLE);

 difficultStar.setVisibility(View.VISIBLE);

 easyModeBtn.setVisibility(View.INVISIBLE);

intermediateModeBtn.setVisibility(View.INVISIBLE);

difficultModeBtn.setVisibility(View.INVISIBLE);

 }

 });

 // CHANGE Pairing status to smaller icon

 miniPairStatusImage.setVisibility(View.VISIBLE);

110

 }

 // status: cannot pair

 @Override

 public void onSerialConnectError(Exception e) {

 receiveText.setText(" Connection failed");

pairStatusImage.setImageResource(R.drawable.fail_pair_foregrou

nd);

miniPairStatusImage.setImageResource(R.drawable.fail_pair_fore

ground);

 disconnect();

 // timer

 Runnable runnable = new Runnable() {

 @Override

 public void run() {

 connect();

 }

 };

 Handler handler = new Handler(Looper.getMainLooper());

 handler.postDelayed(runnable, 2000); // delayed 2 s

 }

 // when data is read

 @Override

 public void onSerialRead(byte[] data) {

 }

 // when pairing is lost suddenly

 @Override

 public void onSerialIoError(Exception e) {

 receiveText.setText(" Connection Lost");

pairStatusImage.setImageResource(R.drawable.fail_pair_foregrou

nd);

miniPairStatusImage.setImageResource(R.drawable.fail_pair_fore

ground);

 disconnect();

 // timer

 Runnable runnable = new Runnable() {

 @Override

 public void run() {

 connect();

 }

 };

 Handler handler = new Handler(Looper.getMainLooper());

 handler.postDelayed(runnable, 2000); // delayed 2 s

 }

}

111

Appendix D: ESP32 Code for Transmission System

// include this header file from the library

#include <Servo_ESP32.h>

#include "BluetoothSerial.h"

// initialize variable

char Mode; // store mode of rehabilitation activity

// assign GPIO pin 14 as control pin for left servo

static const int servoPinLeft = 14; //printed G14 on the board

// assign GPIO pin 15 as control pin for right servo

static const int servoPinRight = 15;

int angle =0; // initial angle

int angleStep = 1; // incremental angle

// max angular displacements

int angleMin =0;

int angleMax = 42;

//check if bluetooth is properly enabled

#if !defined(CONFIG_BT_ENABLED)

|| !defined(CONFIG_BLUEDROID_ENABLED)

#error Bluetooth is not enabled! Please run `make menuconfig` to and enable

it

#endif

// create an instance of bluetooth serial

BluetoothSerial SerialBT;

 servoLeft.attach(servoPinLeft); // attaching servo to pin

 servoRight.attach(servoPinRight);

112

 // initialise bluetooth serial device

 SerialBT.begin("ESP32_Control"); //Bluetooth device name

void loop() {

 // receive data from mcu

 if (SerialBT.available()){

 Mode = SerialBT.read();

 if (Mode == '1'){

 // actuate

 // need to alter timer

 for (int timer = 0; timer <=73; timer +=1){

 for(int angle = angleMin; angle <= angleMax; angle +=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 delay(120);

 }

 for(int angle = angleMax; angle >= angleMin; angle -=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 delay(120);

 }

 }

113

 } else {

 if (Mode == '2'){

 for (int timer = 0; timer <=73; timer +=1){

 for(int angle = angleMin; angle <= angleMax; angle +=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 delay(70);

 }

 for(int angle = angleMax; angle >= angleMin; angle -=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 delay(70);

 }

 }

 } else {

 for (int timer = 0; timer <=73; timer +=1){

 for(int angle = angleMin; angle <= angleMax; angle +=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

114

 servoRight.write(angle2);

 delay(30);

 }

 for(int angle = angleMax; angle >= angleMin; angle -=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 delay(30);

 }

 }

 }

 }

 }

}

}

115

Appendix E: Android Application Code for “DevicesFragment2” Activity

package com.project.rehabilitation_system;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.pm.PackageManager;

import android.os.Bundle;

import androidx.annotation.NonNull;

import androidx.fragment.app.Fragment;

import androidx.fragment.app.ListFragment;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

import java.util.ArrayList;

public class DevicesFragment2 extends ListFragment {

 private BluetoothAdapter bluetoothAdapter;

 // initialise array for paired devices

 private final ArrayList<BluetoothDevice> listItems = new

ArrayList<>();

 // adapter to create a view for each item (paired device)

 private ArrayAdapter<BluetoothDevice> listAdapter;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

if(getActivity().getPackageManager().hasSystemFeature(PackageM

anager.FEATURE_BLUETOOTH))

 // create bluetooth adapter

 bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 // create list to show all paired devices and their

addresses

 listAdapter = new

ArrayAdapter<BluetoothDevice>(getActivity(), 0, listItems) {

 @NonNull

 @Override

 public View getView(int position, View view,

@NonNull ViewGroup parent) {

 BluetoothDevice device =

listItems.get(position);

 if (view == null)

 // show the fragment view

 view =

getActivity().getLayoutInflater().inflate(R.layout.device_list

_item2, parent, false);

 TextView text1 =

116

view.findViewById(R.id.text3);

 TextView text2 =

view.findViewById(R.id.text4);

 text1.setText(device.getName());

 text2.setText(device.getAddress());

 return view;

 }

 };

 }

 @Override

 public void onActivityCreated(Bundle savedInstanceState) {

 super.onActivityCreated(savedInstanceState);

 setListAdapter(null);

 View header =

getActivity().getLayoutInflater().inflate(R.layout.fragment_de

vices_header2, null, false);

 getListView().addHeaderView(header, null, false);

 setListAdapter(listAdapter);

 }

 // when go out of app and come back

 @Override

 public void onResume() {

 super.onResume();

 refresh();

 }

 // finding all paired devices and store them into an array

 void refresh() {

 listItems.clear();

 if(bluetoothAdapter != null) {

 for (BluetoothDevice device :

bluetoothAdapter.getBondedDevices())

 if (device.getType() !=

BluetoothDevice.DEVICE_TYPE_LE)

 listItems.add(device);

 }

 listAdapter.notifyDataSetChanged();

 }

 // once a paired device is selected, change fragment to

message terminal

 @Override

 public void onListItemClick(@NonNull ListView l, @NonNull

View v, int position, long id) {

 BluetoothDevice device = listItems.get(position-1);

 Bundle args = new Bundle();

 args.putString("device", device.getAddress());

 Fragment fragment = new ProgressStartFragment();

 fragment.setArguments(args);

getFragmentManager().beginTransaction().replace(R.id.fragment,

fragment, "terminal").addToBackStack(null).commit();

 }

}

117

Appendix F: Android Application Code for “ProgressStartFragment”

Activity

package com.project.rehabilitation_system;

import android.app.Activity;

import android.bluetooth.BluetoothAdapter;

import android.bluetooth.BluetoothDevice;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import androidx.annotation.NonNull;

import androidx.annotation.Nullable;

import androidx.fragment.app.Fragment;

import android.os.Handler;

import android.os.IBinder;

import android.os.Looper;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.ImageView;

import android.widget.TextView;

import android.widget.Toast;

public class ProgressStartFragment extends Fragment implements

ServiceConnection, SerialListener {

 private enum Connected { False, Pending, True }

 // store address of microcontroller

 private String deviceAddress;

 // bluetooth connection service

 private SerialService service;

 private TextView receiveText;

 private TextView mcpStatus;

 private TextView wristStatus;

 // to show status of pairing

 private ImageView pairStatusImage;

 private ImageView miniPairStatusImage;

 // variable storing pairing status

 private Connected connected = Connected.False;

 private boolean initialStart = true;

 private boolean hexEnabled = false;

 private TextView rehabText;

 private StringBuilder message_whole;

 private TextView MCPAngle;

 private TextView WristAngle;

 private TextView MCPUnit;

118

 private TextView WristUnit;

 @Override

 // on create of fragment, get microcontroller id

 public void onCreate(@Nullable Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 //setHasOptionsMenu(true);

 setRetainInstance(true);

 // get device address from devices fragment

 deviceAddress = getArguments().getString("device");

 // store entire message received by microcontroller

 message_whole = new StringBuilder(100);

 }

 // when activity ends, disconnect from microcontroller

 @Override

 public void onDestroy() {

 // if still connected, disconnect

 if (connected != Connected.False)

 disconnect();

 getActivity().stopService(new Intent(getActivity(),

SerialService.class));

 super.onDestroy();

 }

 // when activity starts,

 @Override

 public void onStart() {

 super.onStart();

 if(service != null)

 service.attach(this);

 else

 getActivity().startService(new

Intent(getActivity(), SerialService.class));

 }

 // when activity stop

 @Override

 public void onStop() {

 if(service != null &&

!getActivity().isChangingConfigurations())

 service.detach();

 super.onStop();

 }

 @SuppressWarnings("deprecation")

 @Override

 public void onAttach(@NonNull Activity activity) {

 super.onAttach(activity);

 getActivity().bindService(new Intent(getActivity(),

SerialService.class), this, Context.BIND_AUTO_CREATE);

 }

 @Override

119

 public void onDetach() {

 try { getActivity().unbindService(this); }

catch(Exception ignored) {}

 super.onDetach();

 }

 @Override

 public void onResume() {

 super.onResume();

 if(initialStart && service != null) {

 initialStart = false;

 getActivity().runOnUiThread(this::connect);

 }

 }

 @Override

 public void onServiceConnected(ComponentName name, IBinder

binder) {

 service = ((SerialService.SerialBinder)

binder).getService();

 service.attach(this);

 if(initialStart && isResumed()) {

 initialStart = false;

 getActivity().runOnUiThread(this::connect);

 }

 }

 @Override

 public void onServiceDisconnected(ComponentName name) {

 service = null;

 }

 // view displayed to users when activity starts

 @Override

 public View onCreateView(@NonNull LayoutInflater inflater,

ViewGroup container, Bundle savedInstanceState) {

 View view =

inflater.inflate(R.layout.fragment_progress_start, container,

false);

 pairStatusImage =

view.findViewById(R.id.pairStatusIm);

 miniPairStatusImage =

view.findViewById(R.id.miniPairStatus);

 receiveText = view.findViewById(R.id.receive_text);

 mcpStatus = view.findViewById(R.id.MCP_Status);

 wristStatus = view.findViewById(R.id.Wrist_Status);

 // mini icon is initially invisible

 miniPairStatusImage.setVisibility(View.INVISIBLE);

 mcpStatus.setVisibility(View.INVISIBLE);

 wristStatus.setVisibility(View.INVISIBLE);

 rehabText = view.findViewById(R.id.rehabText);

 // hide text

 rehabText.setVisibility(view.INVISIBLE);

120

 // display MCP and Wrist angles

 MCPAngle = view.findViewById(R.id.MCP_angle);

 WristAngle = view.findViewById(R.id.Wrist_angle);

 MCPUnit = view.findViewById(R.id.unit_MCP);

 WristUnit = view.findViewById(R.id.unit_Wrist);

 MCPUnit.setVisibility(View.INVISIBLE);

 WristUnit.setVisibility(View.INVISIBLE);

 return view;

 }

 // pairing, connect socket

 private void connect() {

 try {

 BluetoothAdapter bluetoothAdapter =

BluetoothAdapter.getDefaultAdapter();

 BluetoothDevice device =

bluetoothAdapter.getRemoteDevice(deviceAddress);

 receiveText.setText(" Connecting...");

pairStatusImage.setImageResource(R.drawable.loading_foreground

);

miniPairStatusImage.setImageResource(R.drawable.loading_foregr

ound);

 connected = Connected.Pending;

 SerialSocket socket = new

SerialSocket(getActivity().getApplicationContext(), device);

 service.connect(socket);

 } catch (Exception e) {

 onSerialConnectError(e);

 }

 }

 // unpair, disconnect socket

 private void disconnect() {

 connected = Connected.False;

 service.disconnect();

 }

 // send message to microcontroller

 private void send(String str) {

 // if not paired

 if(connected != Connected.True) {

 Toast.makeText(getActivity(), "not connected",

Toast.LENGTH_SHORT).show();

 return;

 }

 try {

 byte[] data;

 data = (str).getBytes(); // only string can use

this function to encode into array of bytes

 // send data to microcontroller

121

 service.write(data);

 } catch (Exception e) {

 onSerialIoError(e);

 }

 }

 // receive data from microcontroller

 private void receive(byte[] data) {

 if(hexEnabled) {

 } else {

 message_whole.append(new String (data));

 }

 }

 // Listening to the following statuses

 // status: paired

 @Override

 public void onSerialConnect() {

 receiveText.setText(" Connected");

pairStatusImage.setImageResource(R.drawable.success_pair_foreg

round);

miniPairStatusImage.setImageResource(R.drawable.success_pair_f

oreground);

 connected = Connected.True;

 // hide big pair status picture

 pairStatusImage.setVisibility(View.INVISIBLE);

 receiveText.setVisibility(View.INVISIBLE);

 rehabText.setVisibility(View.VISIBLE);

 mcpStatus.setVisibility(View.VISIBLE);

 wristStatus.setVisibility(View.VISIBLE);

 // CHANGE Pairing status to smaller icon

 miniPairStatusImage.setVisibility(View.VISIBLE);

 // send activity type to microcontroller

 send("2"); // rehabilitation activity

 }

 // status: cannot pair

 @Override

 public void onSerialConnectError(Exception e) {

 receiveText.setText(" Connection failed");

pairStatusImage.setImageResource(R.drawable.fail_pair_foregrou

nd);

miniPairStatusImage.setImageResource(R.drawable.fail_pair_fore

ground);

 disconnect();

122

 // timer

 Runnable runnable = new Runnable() {

 @Override

 public void run() {

 connect();

 }

 };

 Handler handler = new Handler(Looper.getMainLooper());

 handler.postDelayed(runnable, 2000); // delayed 2 s

 }

 // when data sent by microcontroller is read

 @Override

 public void onSerialRead(byte[] data) {

 receive(data);

 if (message_whole.indexOf(":")!=-1){

 // split message into string arrays

 String[] split =

message_whole.toString().split(":");

 // issue with split again

 StringBuffer mcp_b = new StringBuffer();

 StringBuffer wrist_b = new StringBuffer();

 mcp_b.append(split[0]);

 wrist_b.append(split[1]);

 String mcp_s = mcp_b.toString();

 String wrist_s = wrist_b.toString();

 // display angles

 MCPAngle.setText(mcp_s);

 MCPUnit.setVisibility(View.VISIBLE);

 WristUnit.setVisibility(View.VISIBLE);

 WristAngle.setText(wrist_s);

 }

 }

 // when pairing is lost suddenly

 @Override

 public void onSerialIoError(Exception e) {

 receiveText.setText(" Connection Lost");

pairStatusImage.setImageResource(R.drawable.fail_pair_foregrou

nd);

miniPairStatusImage.setImageResource(R.drawable.fail_pair_fore

ground);

 disconnect();

 // timer

 Runnable runnable = new Runnable() {

123

 @Override

 public void run() {

 connect();

 }

 };

 Handler handler = new Handler(Looper.getMainLooper());

 handler.postDelayed(runnable, 2000); // delayed 2 s

 }

}

124

Appendix G: ESP32 Code for Sensing System

// include this header file from the library

#include "BluetoothSerial.h"

// initialize variable

char MCP_data[20]; // character array to store MCP angle

char Wrist_data[20]; // character array to store Wrist angle

float MCP_max_data = 0;

float Wrist_max_data = 0;

// assign GPIO pin 34 as input pin for MCP flex sensor signal

static const int FLEX_MCP_PIN = 34;

// assign GPIO pin 35 as input pin for Wrist flex sensor signal

static const int FLEX_Wrist_PIN = 35;

// Measure the voltage at 5V and the actual resistance of

// 10 k resistor, and enter them below:

const float VCC = 5.17; // Measured voltage

const float R_DIV = 10000.0; // Measured resistance of 10k resistor

// values below can be adjusted during callibration

const float STRAIGHT_RESISTANCE_MCP = 17203.4; // resistance when

straight

const float BEND_RESISTANCE_MCP = 33311.9; // resistance at 90 deg

const float STRAIGHT_RESISTANCE_Wrist = 16864.1; // resistance when

straight

const float BEND_RESISTANCE_Wrist = 26740; // resistance at 60 deg

float angle_MCP;

float angle_Wrist;

125

// create an instance of bluetooth serial

BluetoothSerial SerialBT;

void setup() {

// initialise the serial monitor

 Serial.begin(9600);

 //for MCP joint

 pinMode(FLEX_MCP_PIN, INPUT);

 // for Wrist joint

 pinMode(FLEX_Wrist_PIN, INPUT);

 // initialise bluetooth serial device

 SerialBT.begin("ESP32_Control"); //Bluetooth device name

}

if (SerialBT.available()) {

 for (int timer = 0; timer <=10; timer +=1)

 {

 // Read the ADC values and calculate voltage and resistance

 int flexADC_MCP = analogRead(FLEX_MCP_PIN);

 float flexV_MCP = flexADC_MCP * VCC / 4095.0;

 float flexR_MCP = R_DIV * (VCC / flexV_MCP - 1.0);

 int flexADC_Wrist = analogRead(FLEX_Wrist_PIN);

 float flexV_Wrist = flexADC_Wrist * VCC / 4095.0;

 float flexR_Wrist = R_DIV * (VCC / flexV_Wrist - 1.0);

 // Use the calculated resistance to estimate the sensor's

 // bend angle:

 float angle_MCP_F = map(flexR_MCP,

STRAIGHT_RESISTANCE_MCP, BEND_RESISTANCE_MCP,

126

 0, 90.0);

 float angle_Wrist_F = map(flexR_Wrist,

STRAIGHT_RESISTANCE_Wrist, BEND_RESISTANCE_Wrist,

 0, 60.0);

 // display on Arduino Web Editor’s serial monitor for calibration

 // activities

 Serial.println("Resistance MCP: " + String(flexR_MCP) + " ohms");

 Serial.println("Resistance Wrist: " + String(flexR_Wrist) + " ohms");

 Serial.println("Bend MCP: " + String(angle_MCP_F) + " degrees");

 Serial.println("Bend Wrist: " + String(angle_Wrist_F) + " degrees");

 Serial.println();

 // obtain the maximum angles generated at MCP and Wrist

 if (angle_MCP_F > MCP_max_data){

 angle_MCP = angle_MCP_F;

 MCP_max_data = angle_MCP_F;

 }

 if (angle_Wrist_F > Wrist_max_data){

 angle_Wrist = angle_Wrist_F;

 Wrist_max_data = angle_Wrist_F;

 }

 delay(500);

 }

 // convert float to int

 int angle_MCP_int = (int)angle_MCP;

 int angle_Wrist_int = (int)angle_Wrist;

 // convert from float to character array

 sprintf(MCP_data, "%d", angle_MCP_int);

127

 sprintf(Wrist_data, "%d", angle_Wrist_int);

 // combine the MCP angle data and Wrist angle data together

 strcat(MCP_data, ":");

 strcat(MCP_data, Wrist_data);

 // Send data to android application

 for (int i = 0; i <= 15; i++)

 {

 Serial.println(char (MCP_data[i]));

 SerialBT.write((uint8_t) MCP_data[i]);

 }

 }

 }

 delay(20);

}

128

Appendix H: Ten Sets of Maximum Resistance Values for Sensing System

Calibration

Maximum

Resistance

Generated

During 0° MCP

Joint Flexion

Maximum

Resistance

Generated

During 0°

Radiocarpal Joint

Extension

Maximum

Resistance

Generated

During 90° MCP

Joint Flexion

Maximum

Resistance

Generated

During 60°

Radiocarpal Joint

Extension

17263 16782 33471 26047

17119 16852 33060 27431

16958 15885 33425 29337

17137 17101 33241 27092

16764 16852 32700 24880

16782 17048 33333 26111

17318 17282 33288 28235

17300 16539 33379 23292

18202 17191 33843 26891

17191 17119 33379 28093

129

Appendix I: Android Application Code for “OrigamiVideos” Activity

package com.project.rehabilitation_system;

import androidx.appcompat.app.AppCompatActivity;

import androidx.appcompat.widget.Toolbar;

import android.os.Bundle;

import android.webkit.WebView;

import android.webkit.WebViewClient;

public class OrigamiVideos extends AppCompatActivity {

 // declare variable

 Toolbar toolbar;

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_origami_videos);

 // initialise views

 toolbar = findViewById(R.id.toolbar);

 // sets the toolbar for this activity

 setSupportActionBar(toolbar);

 getSupportActionBar().setTitle("Origami Tutorials");

toolbar.setTitleTextColor(getResources().getColor(android.R.co

lor.black));

 WebView wv = (WebView)findViewById(R.id.my_webview);

 WebView wv2 = (WebView)findViewById(R.id.my_webview2);

 WebView wv3 = (WebView)findViewById(R.id.my_webview3);

 wv.getSettings().setJavaScriptEnabled(true);

 wv2.getSettings().setJavaScriptEnabled(true);

 wv3.getSettings().setJavaScriptEnabled(true);

 wv.setWebViewClient(new WebViewClient());

 wv2.setWebViewClient(new WebViewClient());

 wv3.setWebViewClient(new WebViewClient());

 // embed HTML content into WebView elements

 String customHTML = "<iframe width=\"350\"

height=\"160\"

src=\"https://www.youtube.com/embed/aBRUb0TOHik\"

title=\"YouTube video player\" frameborder=\"0\"

allow=\"accelerometer; autoplay; clipboard-write; encrypted-

media; gyroscope; picture-in-picture\"

allowfullscreen></iframe>";

 wv.loadData(customHTML, "text/html", "UTF-8");

 String customHTML2 = "<iframe width=\"350\"

height=\"160\"

src=\"https://www.youtube.com/embed/vs14JXq8XSk\"

130

title=\"YouTube video player\" frameborder=\"0\"

allow=\"accelerometer; autoplay; clipboard-write; encrypted-

media; gyroscope; picture-in-picture\"

allowfullscreen></iframe>";

 wv2.loadData(customHTML2, "text/html", "UTF-8");

 String customHTML3 = "<iframe width=\"350\"

height=\"160\"

src=\"https://www.youtube.com/embed/mnRMxb8r4v8\"

title=\"YouTube video player\" frameborder=\"0\"

allow=\"accelerometer; autoplay; clipboard-write; encrypted-

media; gyroscope; picture-in-picture\"

allowfullscreen></iframe>";

 wv3.loadData(customHTML3, "text/html", "UTF-8");

 }

}

131

Appendix J: Android Application Code for “HomeDirectory” Activity

package com.project.rehabilitation_system;

 import androidx.appcompat.app.AppCompatActivity;

 import androidx.appcompat.widget.Toolbar;

 import android.content.Intent;

 import android.os.Bundle;

 import android.view.View;

public class HomeDirectory extends AppCompatActivity{

 // declare variable

 Toolbar toolbar;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_home_directory);

 // initialise views

 toolbar = findViewById(R.id.toolbar);

 // sets the toolbar for this activity

 setSupportActionBar(toolbar);

 getSupportActionBar().setTitle("Exoskeleton

Rehabilitation System");

toolbar.setTitleTextColor(getResources().getColor(android.R.co

lor.black));

 }

 // when "start rehabilitation activity" button clicked,

launch paired list activity

 public void GoPairing(View v){

 String value = "Rehab";

 //"this" refers to navigation activity

 Intent i = new Intent(this, RehabConnect.class);

 i.putExtra("activity_mode", value);

 startActivity(i);

 }

 // when "start progress measurement" button clicked,

launch rehabilitation activity

 public void GoProgress(View v){

 String value = "Progress";

 Intent i = new Intent(this, RehabConnect.class);

 i.putExtra("activity_mode", value);

 startActivity(i);

 }

 // when "start learning origami" button clicked, launch

paired list activity

 public void GoVideos(View v){

 //"this" refers to navigation activity

 Intent i = new Intent(this, OrigamiVideos.class);

 startActivity(i);

 }

}

132

Appendix K: Complete Android Application Code

// include this header file from the library

#include <Servo_ESP32.h>

#include "BluetoothSerial.h"

// initialize variable

char Mode; // store mode of rehabilitation activity

char Activity; // store type of activity

char MCP_data[20]; // character array to store MCP angle

char Wrist_data[20]; // character array to store Wrist angle

float MCP_max_data = 0;

float Wrist_max_data = 0;

// assign GPIO pin 14 as control pin for left servo

static const int servoPinLeft = 14; //printed G14 on the board

// assign GPIO pin 15 as control pin for right servo

static const int servoPinRight = 15;

// assign GPIO pin 34 as input pin for MCP flex sensor signal

(voltage divider output)

static const int FLEX_MCP_PIN = 34;

static const int FLEX_Wrist_PIN = 35;

// create an instance of esp32 class

Servo_ESP32 servoLeft;

Servo_ESP32 servoRight;

int angle =0; // initial angle

int angleStep = 1; // incremental angle

// max angular displacements

int angleMin =0;

int angleMax = 42;

// Measure the voltage at 5V and the actual resistance of your

// 47k resistor, and enter them below:

const float VCC = 5.17; // Measured voltage of Ardunio 5V line

const float R_DIV = 10000.0; // Measured resistance of 10k

resistor

// Upload the code, then try to adjust these values to more

// accurately calculate bend degree.

const float STRAIGHT_RESISTANCE_MCP = 17203.4; // resistance

when straight

const float BEND_RESISTANCE_MCP = 33311.9; // resistance at 90

deg

const float STRAIGHT_RESISTANCE_Wrist = 16864.1; // resistance

when straight

const float BEND_RESISTANCE_Wrist = 26740; // resistance at 60

deg

float angle_MCP;

float angle_Wrist;

133

//check if bluetooth is properly enabled

#if !defined(CONFIG_BT_ENABLED) ||

!defined(CONFIG_BLUEDROID_ENABLED)

#error Bluetooth is not enabled! Please run `make menuconfig`

to and enable it

#endif

// create an instance of bluetooth serial

BluetoothSerial SerialBT;

void setup() {

 // initialise th serial monitor

 Serial.begin(9600); // make sure match at serial monitor

 servoLeft.attach(servoPinLeft); // attaching servo to pin

 servoRight.attach(servoPinRight);

 //for MCP joint

 pinMode(FLEX_MCP_PIN, INPUT);

 // for Wrist joint

 pinMode(FLEX_Wrist_PIN, INPUT);

 //////////

 // initialise bluetooth serial device

 SerialBT.begin("ESP32_Control"); //Bluetooth device name

 Serial.println("The device started, now you can pair it with

bluetooth!");

}

void loop() {

 // transmit data out of mcu

 if (Serial.available()) {

 // send data using bluetooth serial, data is obtained from

serial

 SerialBT.write(Serial.read());

 }

 // receive data from mcu

 if (SerialBT.available()) {

 Activity = SerialBT.read();

 if (Activity == '1'){

 // rehabilitation activity

 //void loop()

 for (int timer = 0; timer <=10000; timer +=1) {

 delay(100);

 if (SerialBT.available()){

 Mode = SerialBT.read();

 if (Mode == '1'){

 Serial.write("easy");

 // actuate

 // need to alter timer

 for (int timer = 0; timer <=73; timer +=1){

134

 for(int angle = angleMin; angle <= angleMax; angle

+=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 //Serial.println(angle);

 delay(120);

 }

 for(int angle = angleMax; angle >= angleMin; angle

-=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 //Serial.println(angle);

 delay(120);

 }

 }

 } else {

 if (Mode == '2'){

 Serial.write("intermediate");

 for (int timer = 0; timer <=73; timer +=1){

 for(int angle = angleMin; angle <= angleMax;

angle +=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 //Serial.println(angle);

 delay(70);

 }

 for(int angle = angleMax; angle >= angleMin;

angle -=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 //Serial.println(angle);

 delay(70);

 }

 }

 } else {

 Serial.write("difficult");

 for (int timer = 0; timer <=73; timer +=1){

 for(int angle = angleMin; angle <= angleMax;

angle +=angleStep) {

 int angle2 = 40 - angle;

135

 servoLeft.write(angle);

 servoRight.write(angle2);

 //Serial.println(angle);

 delay(30);

 }

 for(int angle = angleMax; angle >= angleMin;

angle -=angleStep) {

 int angle2 = 40 - angle;

 servoLeft.write(angle);

 servoRight.write(angle2);

 //Serial.println(angle);

 delay(30);

 }

 }

 }

 }

 }

 }

 }else{

 // progress measurement activity

 //void loop()

 for (int timer = 0; timer <=10; timer +=1)

 {

 // Read the ADC, and calculate voltage and resistance

from it

 int flexADC_MCP = analogRead(FLEX_MCP_PIN);

 float flexV_MCP = flexADC_MCP * VCC / 4095.0;

 float flexR_MCP = R_DIV * (VCC / flexV_MCP - 1.0);

 int flexADC_Wrist = analogRead(FLEX_Wrist_PIN);

 float flexV_Wrist = flexADC_Wrist * VCC / 4095.0;

 float flexR_Wrist = R_DIV * (VCC / flexV_Wrist - 1.0);

 // Use the calculated resistance to estimate the

sensor's

 // bend angle:

 float angle_MCP_F = map(flexR_MCP,

STRAIGHT_RESISTANCE_MCP, BEND_RESISTANCE_MCP,

 0, 90.0);

 float angle_Wrist_F = map(flexR_Wrist,

STRAIGHT_RESISTANCE_Wrist, BEND_RESISTANCE_Wrist,

 0, 60.0);

 Serial.println("Resistance MCP: " + String(flexR_MCP)

+ " ohms");

 Serial.println("Resistance Wrist: " +

String(flexR_Wrist) + " ohms");

 Serial.println("Bend MCP: " + String(angle_MCP_F) + "

degrees");

136

 Serial.println("Bend Wrist: " + String(angle_Wrist_F)

+ " degrees");

 Serial.println();

 // obtain the maximum angles generated MCP and Wrist

 if (angle_MCP_F > MCP_max_data){

 angle_MCP = angle_MCP_F;

 MCP_max_data = angle_MCP_F;

 }

 if (angle_Wrist_F > Wrist_max_data){

 angle_Wrist = angle_Wrist_F;

 Wrist_max_data = angle_Wrist_F;

 }

 delay(500);

 }

 // convert float to int

 int angle_MCP_int = (int)angle_MCP;

 int angle_Wrist_int = (int)angle_Wrist;

 // convert from float to character array

 sprintf(MCP_data, "%d", angle_MCP_int);

 sprintf(Wrist_data, "%d", angle_Wrist_int);

 strcat(MCP_data, ":");

 strcat(MCP_data, Wrist_data);

 for (int i = 0; i <= 15; i++)

 {

 Serial.println(char (MCP_data[i]));

 SerialBT.write((uint8_t) MCP_data[i]);

 }

 }

 }

 delay(20);

}

