
 

 

 

IOT BASED DISASTER DETECTION 

USING MULTI-OUTPUT CLASSIFICATION 

 

 

 

 

 

 

 

 

 

 

 

WONG YI JIE 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

 



 

 

 

IOT BASED DISASTER DETECTION 

USING MULTI-OUTPUT CLASSIFICATION 

 

 

 

 

 

 

 

WONG YI JIE 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of Bachelor of Engineering 

(Honours) Biomedical Engineering 

 

 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

April 2022 



i 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except 

for citations and quotations which have been duly acknowledged. I also 

declare that it has not been previously and concurrently submitted for any 

other degree or award at UTAR or other institutions. 

 

 

 

 

Signature :  

Name : Wong Yi Jie 

ID No. : 1703758 

Date : 24th April 2022 

 

 

  



ii 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “IOT BASED DISASTER 

DETECTION USING MULTI-OUTPUT CLASSIFICATION” was 

prepared by WONG YI JIE has met the required standard for submission in 

partial fulfilment of the requirements for the award of Bachelor of 

Engineering (Honours) Biomedical Engineering at Universiti Tunku Abdul 

Rahman. 

 

 

Approved by, 

 

 

Signature :  

Supervisor : Dr. Tham Mau Luen 

Date : 24th April 2022 

 

 

Signature :  

Co-Supervisor : Dr. Kwan Ban Hoe 

Date : 24th April 2022 

 

  



iii 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of 

the copyright Act 1987 as qualified by Intellectual Property Policy of 

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be 

made of the use of any material contained in, or derived from, this report. 

 

 

© 2022, Wong Yi Jie. All right reserved. 

 

 

  



iv 

ACKNOWLEDGEMENTS 

 

 

 

 

 

I would like to thank everyone who had contributed to the successful 

completion of this project. I would like to express my gratitude to my 

research supervisor and co-supervisor, Ir. Ts. Dr. Tham Mau Luen and Dr. 

Kwan Ban Hoe, for their invaluable advice, guidance and enormous patience 

throughout the development of the research. 

In addition, I would also like to express my gratitude to my loving 

parents and friends who had helped and given me full support in this project. 

I appreciate the encouragement given by my supervisors, loving parents, and 

friends. 

 

 

 

 

  



v 

ABSTRACT 

 

Deep learning (DL) can learn useful insights from disaster events and detect 

the number of victims and activity of disaster for an efficient and timely 

rescue operation. Monitoring these disasters at large-scale coverage, however, 

requires a plethora of Internet of things (IoT) devices, which often have 

limited processing capacity. Furthermore, centralized training which demands 

the collection of multiple local datasets contained in each IoT node, is 

impractical for resource-constrained IoT networks. To realize the full 

potential of IoT, this project proposes a holistic IoT-based disaster detection 

framework which optimizes the performance at both training and inference 

levels. The starting point is the design of a YOLO-based multi-task model 

that could jointly perform disaster classification and victim detection. This 

eliminates the straightforward approach of running multiple individual DL 

models. Next, federated learning (FL) in combination with active learning 

(AL), is leveraged to enable collaborative training of a global model among 

IoT devices, without sharing the bandwidth-hungry data. Lastly, at the 

inference stage, Open Visual Inference and Neural Network Optimization 

(OpenVINO) toolkit is utilized to optimize the trained model for real-time 

implementation. Experiment results show that the multi-task model can 

achieve up to 0.7933 F1 score and 0.6938 average precision (AP) for disaster 

classification and victim detection tasks, respectively. For the OpenVINO 

model, the frames per second (FPS) is 16.46, resulting in more than doubled 

the speed achieved by the original model before model optimization and 

compression.  

 

  



vi 

TABLE OF CONTENTS 

 

 

DECLARATION i 

APPROVAL FOR SUBMISSION ii 

ACKNOWLEDGEMENTS iv 

ABSTRACT v 

TABLE OF CONTENTS vi 

LIST OF TABLES viii 

LIST OF FIGURES ix 

LIST OF SYMBOLS / ABBREVIATIONS xi 

 

CHAPTER 

INTRODUCTION 1 

1.1 General Introduction 1 

1.2 Importance of the Study 2 

1.3 Problem Statement 2 

1.4 Aim and Objectives 3 

1.5 Scope and Limitation of the Study 3 

1.6 Contribution of the Study 4 

1.7 Outline of the Report 4 

LITERATURE REVIEW 6 

2.1 Introduction 6 

2.2 Multi-Task Learning in Deep Learning 6 

2.2.1 General Approaches of Multi-Task 

Learning in Deep Learning 6 

2.2.2 Why does Multi-Task Learning work? 8 

2.3 Disaster Classification using Deep Learning 9 

2.4 Multi-Task Learning Involving Object Detection 16 

2.5 Edge Computing 23 

2.6 Federated Learning 24 

2.7 Active Learning 25 

2.8 Summary 28 

METHODOLOGY AND WORK PLAN 29 



vii 

3.1 Introduction 29 

3.2 Work Plan 29 

3.3 Tools to Use 30 

3.3.1 Training Platform 30 

3.3.2 Deep Learning Framework 31 

3.3.3 Federated Learning Framework 33 

3.4 Data Preparation 34 

3.5 Model Architecture 35 

3.5.1 Object Detector Selection for Victim 

Detection 35 

3.5.2 Head Model for Disaster Classification 39 

3.5.3 The Architecture of the Unified MTL 

Model 43 

3.6 Training the MTL Model 44 

3.6.1 Training the Victim Detection Head 

Model 44 

3.6.2 Training the Disaster Classification Head 

Model 48 

3.7 Conversion of the Multi-Task Model into 

Intermediate Representation (IR) to load in 

Inference Engine (IE) 52 

3.8 Summary 52 

RESULTS AND DISCUSSION 54 

4.1 Introduction 54 

4.2 Victim Detection 54 

4.3 Disaster Classification 56 

4.4 Model Optimization using OpenVINO Toolkit 61 

4.5 Summary 64 

CONCLUSIONS AND RECOMMENDATIONS 65 

5.1 Conclusions 65 

5.2 Recommendations for future work 65 

REFERENCES 66 

LIST OF PUBLICATIONS 72 

  



viii 

LIST OF TABLES 

Table 2.1:  Why does Multi-Task Learning Work (Ruder, 2017)? 8 

Table 2.2:  Research Work Related to Disaster Classification. 9 

Table 2.3:  Multi-Task Model that adds Additional Head Model(s) 

for Other Task(s). 16 

Table 2.4:  Multi-Task Model that Makes Minimal Modification to 

the Original Object Detector Model. 19 

Table 2.5:  Object Detection Model that Implements MTL to 

Improve Object Detection. 21 

Table 3.1:  Comparison between Colab and the Workstation Used 

in This Project. 31 

Table 3.2:  Comparison between TensorFlow and PyTorch (Boesch, 

2021). 32 

Table 3.3:  Class Distribution for the Training, Validation and Test 

for Disaster Type Sub-Dataset. 35 

Table 4.1:  Performance of the CL-Trained Head Model with the 

Provided Benchmarks. Bolded Values indicate the Best 

Score in the Particular Metrics, while Gray-Shaded 

Values are the Score for the Proposed Solution. 57 

Table 4.2: Comparison of the Performance of the Disaster 

Classification Head Models trained via CL, FL, and AL-

FL. Methods labelled with an asterisk (*) are trained 

using 3 FL clients. 58 

Table 4.3:   Examples of Images in the Crisis Benchmark Dataset 

that Confused the Model. 60 

Table 4.4:  Comparison of Model’s Inference Speed (FPS) Before 

and After Optimization on Different Processing Units. 62 

Table 4.5:  Comparison of the Accuracy of the Victim Detection 

Head Model Before and After Compression. 63 

Table 4.6:  Comparison of the Accuracy of the Disaster 

Classification Head Model Before and After 

Compression. 63 

 

  



ix 

LIST OF FIGURES 

Figure 2.1:  Hard Parameter Sharing for Multi-Task Learning 

(Ruder, 2017). 7 

Figure 2.2:  Soft Parameter Sharing for Multi-Task Learning (Ruder, 

2017). 8 

Figure 2.3:  Multi-Task Model in Research Work 3 (Wen et al., 

2020) in Table 2.3. Head Models are added for each 

Additional Task. 18 

Figure 2.4:  Multi-Task Model in Research Work 4 (Zhang et al., 

2021) in Table 2.3. Hard Parameter Sharing is used in 

the form of Shared Backbone, while Soft Parameter 

Sharing is applied to the two Head Models in the form 

of TAM. 19 

Figure 2.5:  Multi-Task Model in Research Work 2 (Chen et al., 

2018) in Table 2.4. Instead of Modifying the SSD 

Model, the Authors Introduced Variation on the 

Original Classes/Labels for Additional Tasks. Originally, 

there were M numbers of Labels. N Variations are 

Introduced for Each Label, resulting in M x N Labels. 21 

Figure 2.6:  Multi-Task Model in Research Work 1 (Lee, Na and 

Kim, 2019) in Table 2.5. Additional Tasks are 

Auxiliary Tasks, which are meant to Improve the 

Learning of the Main Task. 22 

Figure 2.7:  The Flowchart of a typical FL Pipeline. Component 1 

represents the Global Model. Component 2 represents 

the Copy of the Global Model in each client, each 

trained on the Local Dataset. Finally, Component 3 is 

the Aggregator Function to Merge all the Local Models 

into one Global Model for the next round of FL. 25 

Figure 2.8:  Decision Boundary of a Given Dataset. 26 

Figure 2.9:  Red-Circled Data Points are Trivial for Model Training. 26 

Figure 2.10:  Red-Circled Data Points are the Informative Data Points, 

which are essential for Model Training. 27 

Figure 3.1:  Gantt Chart for Final Year Project Part 1. 29 

Figure 3.2:  Gantt Chart for Final Year Project Part 2. 30 

Figure 3.3:  Illustration of Bounding Boxes Removal via Non-Max 

Suppression (Redmon et al., 2015). 39 



x 

Figure 3.4:  The Modified Architecture of YOLOv3. 39 

Figure 3.5: Illustration of the Working Principle of Regular 

Convolution. The Spatial Information in the Dk x Dk x 

M Region is Convolved at Once. Since the Output Has 

N Channels, the Region will be Convolved N Times. 

The Entire Process will be Repeated Df x Df Times, 

since the Output has Spatial Width of Df x Df. 40 

Figure 3.6:  Illustration of Depthwise Separable Convolution. The 

Spatial Information in Dk x Dk x M Region will be 

Convolved Separately M Times, Resulting in the 1 x 1 x 

M Region in the Intermediate Output. The 1 x 1 x M 

Region will be Convolved at Once via Regular 

Convolution. Since the Output has N Channels, the 1 x 

1 x M Region will be Convolved N Times. The Entire 

Process will be Repeated Df x Df Times, because the 

Output has Spatial Width of Df x Df. 41 

Figure 3.7:  The Architecture for the Disaster Classification Head 

Model. 43 

Figure 3.8:  The Architecture of the Unified MTL Model for 

Disaster Classification and Victim Detection. 43 

Figure 3.9:  Illustration of Data-Parallelism. 45 

Figure 3.10:  Illustration of Gradient Accumulation. 45 

Figure 3.11:  Pseudocode to Train the Victim Detection Head Models 

using Centralised Learning. 47 

Figure 3.12:  Pseudocode to Train the Victim Detection Head Models 

using Federated Learning. 48 

Figure 3.13:  Pseudocode of the Proposed Active Learning Process. 51 

Figure 3.14:  The Methodology of the Proposed System. 53 

Figure 4.1:  The Precision-Recall Curve for Victim Detection Head 

Model. 55 

Figure 4.2:  Victim Detection at Different Areas: (a) Flood, (b) 

Landslide, (c) Earthquake, (d) Hurricane, (e) Fire, and (f) 

Other Disaster. 56 

Figure 4.3:  The Embeddings of the Top 33% Hardest Images in 

Test Dataset. 59 

  



xi 

LIST OF SYMBOLS / ABBREVIATIONS 

 

AL Active Learning 

AL-FL Active Learning based Federated Learning 

AP Average Precision 

API Application Programming Interface 

BERT Bidirectional Encoder Representations from Transformer 

CL Centralized Learning 

CNN Convolutional Neural Network 

COCO Common Objects in Context 

CPU Central Processing Unit 

CSP Cross Stage Partial Network 

DL Deep Learning 

FAIR Facebook's AI Research Lab 

FedAvg Federated Averaging 

FL Federated Learning 

FPN Feature Pyramid network 

FPGA Field Programmable Gate Array 

FPS Frame Per Second 

GB Gigabytes 

GPU Graphics Processing Units 

IE Inference Engine 

IoT Internet of Things 

IR Intermediate Representation 

INT8 8-bit Integer Type 

mAP Mean Accuracy Precision 

MB Megabytes 

MO Model Optimizer 

MPSO Modified Particle Swarm Optimization 

MTL Multi-Task Learning 

NCS-2 Neural Compute Stick 

NMS Non-Max Suppression 

OpenFL Open Federated Learning 

OpenVINO Open Visual Inference and Neural Network Optimization 



xii 

PA-Net Path Aggregation Network 

R-CNN Region Based Convolutional Neural Networks 

ResNet Residual Neural Network 

SSD Single Shot Detector 

TAM Task-related Attention Module 

TFF TensorFlow Federated 

TPU Tensor Processing Units 

t-SNE t-distributed Stochastic Neighbour Embedding 

VOC Visual Object Classes 

YOLO You Only Look Once 

 

 

 

  



1 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Introduction 

Natural disasters such as hurricanes and wildfires frequently occur around the 

world. Every year, natural disasters cause substantial amounts of damages, 

monetary loss, as well as injuries and deaths. For example, the recent floods 

in China have killed at least 99 people and caused damages estimated to be 

348 million United States dollars (Siqi, 2021). To make things worse, climate 

change has caused natural disasters to increase in recent years. Thus, efforts 

must be focused on improving disaster response systems. 

The first 72 hours after a disaster are critical for rescuing survivors 

(United Nations Office for the Coordination of Humanitarian Affair, 2017). 

Thus, disaster detection is extremely important so that search and rescue 

efforts can be conducted immediately to save as many survivors as possible. 

For efficient manpower planning, understanding the total number of victims 

in a particular region is also essential. With this information, manpower can 

be planned and coordinated properly. Thus, information such as the type of 

disaster and the number of victims in the disaster area is crucial for disaster 

response.  

The lacking of communication capabilities will diminish the 

performance of the rescue actions. Traditionally, rescue actions usually 

comprise three components: command post, scout teams, and rescue teams 

(Boukerche and Coutinho, 2018). A command post is responsible for 

centralising information and coordinating the recuse missions. Scout teams 

are responsible for surveying the impacted area and search for victims. They 

will report their findings to the command post. Lastly, rescue teams will 

coordinate rescue efforts based on the information provided by the command 

post. There are two limitations to the traditional approach. Firstly, the delay 

in information sharing between the teams and the command post may delay 

the timely rescue. Secondly, some manpower has to be allocated for 

surveying instead of rescuing people.  



2 

In recent years, Internet of Things (IoT) is actively adopted to 

improve situational awareness for disaster response. Besides, the increased 

adoption of smart surveillance cameras allows various real-time video 

analytics. These smart surveillance cameras can be integrated into an IoT 

environment for disaster response. Smart cameras can perform image 

analytics, and the analytics information can be shared via the IoT framework. 

With such systems, more manpower can be allocated to the rescue teams 

instead of scout teams. 

 

1.2 Importance of the Study 

Image analytics for disaster response has great potential. Firstly, there are 

many existing smart surveillance cameras in urbanised cities (Khan et al., 

2019; Chaudhuri and Bose, 2019). These cameras can be leveraged for 

situational awareness for disaster response. Besides, cameras can be used to 

detect multiple types of disasters. Most conventional disaster monitoring 

system uses specialised sensors for different disasters. Camera as a sensor 

can assist the existing disaster monitoring sensor, if not replacing them. For 

instance, it is very hard to detect smoke using a smoke sensor in an outdoor 

environment. It is more effective to use a convolutional neural network (CNN) 

for smoke detection and wildfire detection (Khan et al., 2019). Besides 

detecting disasters, smart cameras can also be used for victim detection. CNN 

is proven to be useful for object detection.  

Thus, a CNN can then be deployed in an IoT framework so that 

cataclysmic events can be detected immediately and timely rescue actions 

can be conducted. Meanwhile, the CNN model can be fine-tuned or retrained 

for higher accuracy with more training data collected in each IoT node. To 

achieve this, federated learning can train the CNN model in a decentralized 

manner, using data in each IoT node. 

 

1.3 Problem Statement 

Currently, there is a lack of multi-task models that could perform multiple 

image analytic tasks for disaster response. For instance, separate models are 

used for disaster classification and person detection. A camera device has to 

run an N number of CNN for N tasks. This approach is complicated and not 



3 

feasible since most smart edge devices have limited computational power. 

Thus, a unified multi-task model can be designed to perform the two tasks 

together. A multi-task CNN model can be used in an IoT framework for 

efficient disaster response. Since there is always a bias in the training dataset, 

data collection and model retraining are some of the important phases in a 

machine learning operation (ML Ops) cycle. However, existing work on 

disaster response systems often neglected these phases. Based on this 

intuition, active learning (AL) and federated learning (FL) can be integrated 

into the overall system, making the system sustainable. Besides that, past 

works on disaster response systems often neglected the prohibitive inference 

workload of an edge device to run a deep learning model, which may prohibit 

the widespread deployment of such systems. Thus, this project proposes 

integrating the Open Visual Inference and Neural Network Optimization 

(OpenVINO) into the system, to optimize the model for faster inference 

speed with little performance trade-off. 

 

1.4 Aim and Objectives 

This project aims to develop a multi-task model for disaster response. The 

objectives of this study are: 

i. To design a multi-task model for disaster classification, as well as 

victim detection and counting. 

ii. To deploy the multi-task model in a sustainable machine learning 

operation system. 

iii. To evaluate the performance in terms of accuracy and speed. 

 

1.5 Scope and Limitation of the Study 

Past research works on disaster response and multi-task models are explored 

in the literature review. A multi-task model has been developed for disaster 

classification and victim detection. The multi-task model was trained using 

several strategies, including centralized learning, federated learning, and 

active learning-based federated learning. The performance of the multi-task 

model trained via these methods were compared. 

For disaster classification, the dataset used in this study is the sub-

dataset for disaster types from the “Crisis Image Benchmarks Dataset”. The 



4 

dataset is meant for benchmarking for disaster-related tasks. However, a large 

portion of the images from the dataset are collected from social media or the 

internet. Thus, the training images may not resemble the actual images 

acquired from a smart surveillance camera. Besides, there is no victim 

detection dataset available on the internet. Hence, the dataset for disaster 

classification is annotated for victim detection. The ground truth label for the 

localisation of victims in the images is done using an auto-annotation tool. 

 

1.6 Contribution of the Study 

This project will develop a working system to train a multi-task model in a 

real-world setup, where the dataset is distributed around the edge devices. 

The contributions of this project are listed below: 

i. Discuss past works on disaster response systems. 

ii. Propose a multi-task model for disaster classification and victim 

detection. 

iii. Propose a federated learning pipeline to train the multi-task model. 

iv. Propose an active learning strategy to assist the data labelling. 

 

1.7 Outline of the Report 

This report consists of five chapters. Each chapter will provide the readers 

with an adequate amount of information. The outline of each chapter is 

described below. 

 Chapter 1 discusses the project background, aims and objectives, 

scope and limitation, as well as the contribution of the study, to allow the 

reader to have a basic understanding of the project. 

 Chapter 2 reviews the past works on the related topic, including 

disaster classification system, deep learning multi-task model, federated 

learning and active learning. 

 Chapter 3 explains the methodology of the project. The required 

tools and pipeline for each component of the project will be listed in this 

chapter. The readers will be able to replicate the project following the 

procedures.  



5 

 Chapter 4 demonstrates the findings of the project, mainly on the 

results and analysis of the performance of the multi-task model under 

different training strategies.  

 Chapter 5 concludes this project and provide suggestions for future 

work. 

 

 



6 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

This project aims to develop a multi-task Convolutional Neural Network 

(CNN) for two major tasks, which are (i) disaster classification as well as (ii) 

victim detection and counting. Therefore, this chapter will first cover some 

literature review on Multi-Task Learning (MTL), as well as its application 

involving either disaster prediction and/or object detection. Besides, this 

chapter will cover edge computing as the computing paradigm for machine 

learning deployment. Lastly, federated learning and active learning will be 

introduced later in the chapter as tools to train the multi-task model in a real-

world deployment. 

 

2.2 Multi-Task Learning in Deep Learning 

One of the intuitions of MTL is to perform more tasks using one model, 

without the need of using multiple models for each task. This section will 

discuss the general approaches of MTL and some possible explanations on 

why it works. 

 

2.2.1 General Approaches of Multi-Task Learning in Deep Learning 

In Deep Learning (DL), the general approaches of MTL can be categorized 

into two main methods, which are hard and soft parameter sharing.  

 

Hard Parameter Sharing 

Hard parameter sharing is the most frequently used approach to MTL in DL 

(Ruder, 2017). As illustrated in Figure 2.1, the general idea of hard parameter 

sharing is to share multiple hidden layers for all tasks, which then branched 

out into several task-specific output layers. In the vision domain, the shared 

hidden layers are usually the modern CNN architectures such as VGG16, 

AlexNet, ResNet50, ResNet101, InceptionNet, MobileNet and EfficientNet. 

According to Baxter (1996), hard parameter sharing could lead to better 

generalisation of the neural network. Supposing we have N number of tasks, 



7 

the risk of overfitting the shared parameters is an order N smaller than 

overfitting the task-specific parameters (Baxter, 1997). This is because a 

model that learns several tasks simultaneously needs to find a representation 

that fits all tasks (Ruder, 2017). However, the exact correlation between the 

number of tasks and the impact on generalisation depends on the task domain 

as well as the neural network architecture. Generally, it results in improved 

generalisation if the tasks are related. Although hard parameter sharing is 

useful in many scenarios, it could break down easily if the tasks are not 

closely related or require reasoning on different levels. 

 

 

Figure 2.1: Hard Parameter Sharing for Multi-Task Learning (Ruder, 2017). 

 

Soft Parameter Sharing 

For soft parameter sharing, each task has its own model with its own 

parameters. Specifically, each task has its own backbone, where the 

parameters of each backbone are then regularised to encourage them to be 

similar. These layers are often referred to as the constrained layers. After that, 

each backbone is connected to the task-specific output layers. Figure 2.2 

shows an example of MTL using the soft parameter sharing approach. 

 



8 

 

Figure 2.2: Soft Parameter Sharing for Multi-Task Learning (Ruder, 2017). 

 

2.2.2 Why does Multi-Task Learning work? 

Table 2.1 shows a summary of how MTL works according to Ruder (2017). 

For all examples, it is assumed that there are two related tasks A and B, 

which rely on a common hidden layer representation F. 

 

Table 2.1: Why does Multi-Task Learning Work (Ruder, 2017)? 

Implicit data 

augmentation 

- Different tasks have different noise patterns 

- A model that only learns a single task has a higher 

risk of overfitting to that task 

- A model that learns several tasks simultaneously 

could learn a more general representation F through 

averaging the noise patterns 

Attention 

focusing 

- It can be difficult for a model to differentiate between 

relevant and irrelevant features if (i) a task is very 

noisy, or (ii) data is limited and high-dimensional 

- If a model has difficulties in learning features for 

Task A, the features learnt from Task B could help the 

model to better differentiate between relevant and 

irrelevant features for Task A 

Eavesdropping - Some features G are easy to learn for task A, but 

difficult to learn for another task B 

- This could be either (i) task B interacts with the 



9 

features in a more complex way or (ii) other features 

are impeding the model’s ability to learn features G 

- Therefore, the model could learn features G from task 

A, which will help to improve the performance of the 

model on task B 

Representation 

bias 

- MTL biases the model to prefer representations that 

other tasks also prefer 

- This will help the model to generalise to new tasks in 

the future because a model that performs well for a 

large number of training tasks could also perform well 

for learning novel tasks as long as they are from the 

same environment 

Regularization - MTL could introduce inductive bias, acting as a 

regularise 

- A common form of inductive bias is L1 

regularisation, which biases the model for sparse 

solutions 

 

2.3 Disaster Classification using Deep Learning 

Disaster classification is one of the main tasks in this project. However, there 

are limited works on MTL in the disaster classification domain. Therefore, 

this section will cover relevant works involving disaster classification, which 

are not limited to MTL. Table 2.2 shows a summary of the research work 

related to disaster classification. 

 

Table 2.2: Research Work Related to Disaster Classification. 

 Title Year Dataset Main Highlights 

1 Application of 

Image 

Analytics for 

2019 - Focused on 

Earthquake 

images 

- Proposed a novel 

application of big 

data (particularly the 



10 

Disaster 

Response in 

Smart Cities 

(Chaudhuri 

and Bose, 

2019) 

- Earthquake 

images are 

acquired from 

(i) National 

Hazards Image 

Dataset of the 

National 

Centres for 

Environmental 

Information, 

and (ii) images 

from Google 

visual content by 

surveillance camera) 

in smart cities 

- Used CNN to detect 

the presence of 

victim (binary 

classification of 

victim presence) 

2 Disaster 

Prediction 

System using 

Convolution 

Neural 

Network 

(Padmawar et 

al., 2019) 

2019 - Focused on 

Flood images 

- Images 

obtained from 

Google 

- 137 training 

images, 500 

testing images 

- Input images are 

passed to Modified 

Particle Swarm 

Optimization 

(MPSO) before 

passing to CNN 

- MPSO is used to 

search for the 

optimal parameter 

values from the 

inputs for the CNN 

training process 

3 Flood 

Disaster 

Identification 

and Decision 

Support 

System using 

Crowdsource 

Data Based on 

2020 - Focused on 

Flood images 

- Crowdsourced 

images from 

flood hotspots 

in Thailand  

- The number of 

- Proposed a web 

application for flood 

detection analysis 

- Used CNN to 

identify flood events 

based on the 

uploaded images 



11 

Convolutional 

Neural 

Network and 

3S 

Technology 

(Puttinaovarat 

et al., 2020) 

training 

images is not 

mentioned, but 

200 images are 

used for 

testing  

4 CrisisMMD: 

Multimodal 

Twitter 

Datasets from 

Natural 

Disasters 

(Alam, Ofli 

and Imran, 

2018) 

2018 - Focused on 

several major 

natural 

disasters, 

including 

earthquakes, 

hurricanes, 

wildfires, and 

floods 

- The images 

and texts are 

labelled for 

three tasks, 

which are (i) 

informativenes

s, (ii) 

humanitarian 

categories and 

(iii) damage 

severity 

assessment 

- A total of 

18082 Twitter 

images and 

16058 Twitter 

- The first public 

multimodal dataset 

for natural disasters 

- The dataset is multi-

label as well 

- The CrisisMMD 

dataset is actively 

used in ongoing 

disaster response 

research 



12 

texts are 

collected 

5 Multimodal 

Analysis of 

Disaster 

Tweets 

(Gautam et 

al., 2019) 

2019 - Used a custom 

subset of 

CrisisMMD 

dataset 

- Only focused 

on the 

informativenes

s labels of the 

images and 

texts 

- A total of 

12762 images 

(along with 

tweeter text) 

are used 

- The dataset is 

split into 70, 

10 and 20 

rations for 

training, 

validation and 

testing set, 

respectively 

- The multimodal 

analysis is done on 

the decision level 

instead of the 

features level 

- Separate models are 

used to extract text 

and visual 

features/representatio

n. 

- A policy system is 

used to evaluate 

which systems are 

able to best filter the 

required information 

6 Detecting 

Disaster-

Related 

Tweets Via 

Multimodal 

Adversarial 

2020 - A total of 4000 

texts and 4562 

images are 

extracted from 

the 

CrisisMMD 

- CNN and 

Bidirectional 

Encoder 

Representations from 

Transformer (BERT) 

models are used to 



13 

Neural 

Network (Gao 

et al., 2020) 

dataset as the 

positive 

examples 

- 8415 English 

tweets (with 

pictures) 

irrelevant to 

disasters are 

collected as 

negative 

examples 

- 80 and 20 

rations are 

used for 

training and 

testing dataset, 

respectively 

extract visual and 

text features from the 

input images and 

texts 

- The visual and text 

features are 

concatenated into a 

single multimodal 

feature 

- The multimodal 

feature is then passed 

to two different 

multilayer 

perceptrons for 

disaster 

discrimination and 

tweet detection 

7 Deep 

Learning 

Benchmarks 

and Datasets 

for Social 

Media Image 

Classification 

for Disaster 

Response 

(Alam et al., 

2020) 

2020 - A consolidated 

dataset 

comprised of 

multiple public 

and in-house 

datasets, 

including (i) 

Damage 

Assessment 

Dataset 

(DAD), (ii) 

CrisisMMD, 

(iii) AIDR 

Dataset and 

(iv) Damage 

- The dataset aims to 

provide proper 

baselines for disaster 

prediction related 

tasks 



14 

Multimodal 

Dataset 

(DMD). 

- The dataset is 

labelled for 

four tasks, 

including (i) 

disaster type 

classification, 

(ii) 

informativenes

s, (iii) 

humanitarian 

category and 

(iv) damage 

severity 

8 Social Media 

Images 

Classification 

Models for 

Real-time 

Disaster 

Response 

(Alam et al., 

2021) 

2021 - The 

consolidated 

dataset created 

by research 

work (7) by 

Alam et al. 

(2020) 

- An MTL model is 

used for the four 

tasks labelled in the 

consolidated dataset. 

- MTL can be an ideal 

solution for the real-

time system as it can 

potentially provide 

speed-ups of 

multiple factors 

during inference. 

- However, some tasks 

may perform worse 

than their single task 

settings (in the 

presence of 



15 

incomplete labels). 

 

One of the notable highlights in the summary is the dataset used, 

which are the CrisisMMD and a consolidated dataset for disaster response. 

CrisisMMD dataset was released in 2018. It was the first public multimodal 

dataset for natural disasters, which is multi-labelled as well. The dataset was 

labelled for informativeness, humanitarian categories and damage severity. It 

is used in research work by Gautam, et al. (2019) and Gao, et al. (2020). In 

2020, a consolidated dataset consisting of several datasets such as DAD, 

AIDR, DMD and CrisisMMD was released. There are four sub-datasets in 

this dataset where each of them is labelled for the disaster types, 

informativeness, humanitarian categories and damage severity, respectively. 

The consolidated dataset is meant for benchmarking in deep learning tasks 

related to disaster response. 

Another notable highlight is research work (8) by Alam, et al. (2021) 

in Table 2.2, which contributed to MTL involving disaster classification. The 

consolidated dataset was used in this research, where a multi-task CNN is 

developed for the four tasks: (i) disaster type classification, (ii) 

informativeness, (iii) humanitarian categories, and (iv) damage severity.  

Out of all research works reviewed, there are limited works 

involving victim detection and counting for disaster response. There is room 

for improvements for such tasks in the disaster response domain. 

In short, the main takeaway for this section is: (i) there exists a 

consolidated dataset comprised of multiple reliable public datasets, which is 

split into non-overlapping training, validation and testing set for 

benchmarking, and (ii) there are limited research works on victim detection 

and counting for disaster response. An object detection model for victim 

detection can be incorporated with disaster classification for better disaster 

response. Thus, the next section will discuss MTL applications involving 

object detection. 

 



16 

2.4 Multi-Task Learning Involving Object Detection 

Applications of MTL in computer vision come in various forms. For the 

scope of this project, only MTL involving object detection will be discussed. 

Object detection is a prevalent task in the computer vision domain. An object 

detection task is to localize objects in the image using bounding boxes, and to 

predict the classes of the detected objects. Thus, object detection itself is a 

form of MTL application in computer vision. Table 2.3, Table 2.4 and Table 

2.5 show several applications of MTL in computer vision that involve object 

detection as one of the main tasks. The object detectors used include variants 

of Single Shot Detector (SSD) and Faster Region Based Convolutional 

Neural Networks (R-CNN). 

 

Table 2.3: Multi-Task Model that adds Additional Head Model(s) for Other 

Task(s). 

 Title Year Types of 

Object 

Detector 

Main Highlights 

1 BlitzNet: A 

Real-Time Deep 

Network for 

Scene 

Understanding 

(Dvornik et al., 

2017) 

2017 Single-

stage 

Detector 

(SSD 

Variant) 

- A multi-task model for (i) 

object detection and (ii) 

semantic segmentation of the 

detected object 

- Model architecture: 

a) Backbone: ResNet-50 

b) Neck: Feature Pyramid 

Network (FPN) 

c) Head: Two independent 

head models for the two 

tasks. 

2 DLT-Net: Joint 

Detection of 

Drivable Areas, 

2020 Single-

stage 

Detector 

- A multi-task model for (i) 

traffic object detection, (ii) 

road segmentation and (iii) 



17 

Lane 

Lines, and 

Traffic Objects 

(Qian, Dolan 

and Yang, 2020) 

(SSD 

Variant) 

lane line detection 

- Model architecture: 

a) Backbone: VGG16 

b) Neck: FPN 

c) Head: Three head 

models for the three 

tasks. The road 

segmentation head 

model is shared and 

combined with the other 

two head models. 

3 Multi-scene 

citrus detection 

based on multi-

task deep 

learning network 

(Wen et al., 

2020) 

2020 Two-stage 

Detector 

(Faster R-

CNN) 

- A multi-task model for (i) 

object detection and (ii) 

instance segmentation of 

citrus in a given image, as 

well as (iii) maturity and (iv) 

quality of the detected citrus 

- Two head models for 

maturity and quality 

prediction are added to the 

original RCNN head. 

-  A segmentation head model 

is added into the 

architecture, parallel to the 

RCNN head. 

- Refer to Figure 2.3 for a 

more detailed model 

definition. 

4 A loss-balanced 

multi-task model 

for simultaneous 

2021 Single-

stage 

Detector 

- A multi-task model for (i) 

object detection and (ii) 

semantic segmentation 



18 

detection 

and 

segmentation 

(Zhang et al., 

2021) 

(SSD 

Variant) 

- Model architecture: 

a) Backbone: VGG16 

b) Head: Two head models 

for each task 

- Hard parameter sharing is 

used in the form of a shared 

backbone, while soft 

parameter sharing is applied 

to the two head models using 

Task-related Attention 

Module (TAM) 

- TAM allows the two tasks to 

share related information 

that can aid each other to 

select feature maps 

effectively 

- Refer Figure 2.4 for a more 

detailed model definition. 

 

 

Figure 2.3: Multi-Task Model in Research Work 3 (Wen et al., 2020) in 

Table 2.3. Head Models are added for each Additional Task. 

 



19 

 

Figure 2.4: Multi-Task Model in Research Work 4 (Zhang et al., 2021) in 

Table 2.3. Hard Parameter Sharing is used in the form of Shared 

Backbone, while Soft Parameter Sharing is applied to the two 

Head Models in the form of TAM. 

 

Table 2.4:  Multi-Task Model that Makes Minimal Modification to the 

Original Object Detector Model. 

 Title Year Types of 

Object 

Detector 

Main Highlights 

1 Helmet Use 

Detection of 

Tracked 

Motorcycles 

Using CNN-

Based Multi-

Task Learning 

(Lin et al., 

2020) 

2020 Single-

stage 

Detector 

(SSD 

Variant, 

specifically 

RetinaNet) 

- A multi-task model for (i) 

motorcycle detection and (ii) 

helmet use 

detection/classification 

- No modification was done to 

the original object detector 

model. The additional tasks 

were performed after the 

object detector architecture. 

- Model architecture: 

a) Motorcycle detection: 

RetinaNet 

b) Helmet use classification: 

InceptionV3 is used to 



20 

classify the helmet use of 

each detected 

motorcyclist 

2 Multi-task 

learning for 

dangerous 

object 

detection in 

autonomous 

driving (Chen 

et al., 2018) 

2018 Single-

stage 

Detector 

(SSD 

Variant) 

- A multi-task model for two 

tasks - object detection and 

distance prediction. 

- Instead of using linear multi-

task combination strategy 

(which is often used in MTL 

models), the authors 

proposed a Cartesian product-

based multi-task combination 

strategy. 

- Unlike traditional hard 

parameter sharing method 

(which has separate head 

models for each task), the 

authors proposed to share the 

head models as well. 

- To do so, object classification 

part of the object detection 

task now has two labels, 

which are (i) the class of the 

object and (ii) the distance of 

the object (which has been 

discretized). 

- All possible combination of 

labels is created. For 

instance, given M classes and 

N types of distance to be 

predicted, there will be a total 



21 

of M x N new labels to be 

formed. 

- Refer Figure 2.5 for detailed 

model definition. 

 

 

Figure 2.5: Multi-Task Model in Research Work 2 (Chen et al., 2018) in 

Table 2.4. Instead of Modifying the SSD Model, the Authors 

Introduced Variation on the Original Classes/Labels for 

Additional Tasks. Originally, there were M numbers of Labels. N 

Variations are Introduced for Each Label, resulting in M x N 

Labels. 

 

Table 2.5: Object Detection Model that Implements MTL to Improve Object 

Detection. 

 Title Year Types of 

Object 

Detector 

Main Highlights 

1 Multi-task Self-

supervised 

Object 

Detection via 

Recycling of 

Bounding Box 

2019 Two-stage 

Detector 

- MTL and self-supervised 

learning are used to improve 

the performance of objection 

detection. 

- The feature maps generated 



22 

Annotations 

(Lee, Na and 

Kim, 2019) 

by the region proposal 

network will be used by both 

the main and auxiliary tasks. 

- The main task is object 

detection, while three 

auxiliary tasks are (i) multi-

object soft labels, (ii) 

closeness labels and (iii) 

foreground labels. 

- The output vectors of each 

auxiliary task will serve as a 

“refinement” for the class 

prediction in the main task. 

- Refer Figure 2.6 for a 

detailed model definition. 

 

 

Figure 2.6: Multi-Task Model in Research Work 1 (Lee, Na and Kim, 2019) 

in Table 2.5. Additional Tasks are Auxiliary Tasks, which are 

meant to Improve the Learning of the Main Task. 

 

MTL related to object detection comes in three forms: (i) additional 

head model for the additional task, (ii) minimal modification to the object 

detection model, and (iii) auxiliary tasks to improve the performance of the 

object detection model. For type (i), usually, the additional head model will 

branch out from the backbone or the neck. Type (ii) can be achieved by 



23 

varying the labels, or by adding additional layers after the object detection 

head model. For type (iii), the additional tasks are the auxiliary tasks, which 

have no actual purpose other than aiding the training of object detection. 

Most of the discussed research works apply some forms of hard 

parameter sharing with slight modification as their main approach to MTL. It 

is easier to implement the hard parameter sharing approach, as it is analogous 

to a “plug and play” mechanism. In most examples, a new head model can be 

added for a new task. On the other hand, soft parameter sharing requires a 

more complex architecture to share the parameters between the two tasks. 

The key takeaway in this section is that hard parameter sharing is still 

prevalent in MTL for computer vision. Thus, the multi-task CNN model for 

this project will be based on the hard parameter sharing setup. 

 

2.5 Edge Computing 

Cloud computing has been one of the emerging computing trends in recent 

years. According to Patidar, Rane and Jain (2012), “clouds” refer to a large 

pool of resources, such as hardware and services, which are virtualized so 

that end-user can easily access these resources without the need to own them 

physically. To achieve this, cloud service providers own a massive amount of 

resources, where they rent the resources to the clients as a service. In recent 

years, multiple cloud service providers have provided platforms for machine 

learning developers to train and/or deploy the application via the cloud. 

Machine learning deployment using cloud computing requires the end 

devices to send the data to the cloud, where the cloud server will run the 

prediction model. 

However, cloud computing is unsuitable for applications that 

demand low latency. Therefore, a new computing framework called edge 

computing is introduced to address such application demands. Edge 

computing is a distributed computing framework that brings computation and 

data storage closer to data sources, such as IoT devices or local edge servers 

(Xia et al., 2021). Edge computing coupled with machine learning is a 

promising technology that has a wide field of applications. For a machine 

learning application, edge devices could deploy a machine learning model 

locally without sending the data to the centralized server and waiting for the 



24 

result. This could significantly reduce the latency dramatically as data does 

not need to travel, making edge computing a suitable computing paradigm for 

real-time and time-sensitive applications. However, edge devices generally 

do not have enough computing power to match the supercomputers in the 

central server. Thus, recent efforts in machine learning deployment on the 

edge focus on optimizing the machine learning models via methods such as 

model compression and knowledge distillation (Buciluundefined, Caruana 

and Niculescu-Mizil, 2006; Gou et al., 2020). 

Intel OpenVINO (Open Visual Inference and Neural Network 

Optimization) is a free toolkit developed to facilitate the (i) optimization of 

deep learning models, and to (ii) deploy the optimized model using an 

inference engine onto an Intel Hardware (Intel, 2022). For users who are non-

machine learning researchers, the OpenVINO toolkit also offers various 

pretrained deep learning models that are optimized for inference in their 

Open Model Zoo platform (Intel, 2022). Examples of OpenVINO application 

includes license plate recognition (Castro-Zunti, Yépez and Ko, 2020), 

person tracking (Yrjänäinen et al., 2020) and person reidentification system 

(Izutov, 2018) using CNN. OpenVINO is a mature toolkit that has become 

one of the go-to toolkits for deep learning model optimization and 

inferencing. 

 

2.6 Federated Learning 

Multiple data can be collected throughout the service of an edge device. 

Naturally, the next step is to use the data to train or fine-tune the machine 

learning model. However, the data collected on each edge device are limited 

and may be biased. It is widely known that larger and diverse datasets are 

required to generate a reliable machine learning model (Kaushal, Altman and 

Langlotz, 2020). Although there is no guarantee that more data translates to 

better performance, it is without a doubt the right direction toward improving 

accuracy and reducing bias in a machine learning model (Reina et al., 2021). 

However, collecting data from multiple data sources to a centralized server is 

time-consuming and may raise privacy concerns. Federated Learning (FL) is 

a technique that aims to overcome this issue by training machine learning 

models in a decentralized form. It is a collaborative machine learning 



25 

framework that allows devices from different private datasets to work 

together to train a global model. In this setting, a single global model is 

stored in a central server, while the data are stored locally at where they are 

collected. During training, only the model weights have to be transferred 

across the network, which is faster and easier compared to transferring the 

whole dataset across the network. Figure 2.7 shows the flowchart for a 

typical FL pipeline. 

 

Figure 2.7:  The Flowchart of a typical FL Pipeline. 

Component 1 represents the Global Model. Component 2 

represents the Copy of the Global Model in each client, each 

trained on the Local Dataset. Finally, Component 3 is the 

Aggregator Function to Merge all the Local Models into one 

Global Model for the next round of FL. 

 

2.7 Active Learning 

Active learning (AL) is the process of prioritizing the data which needs to be 

labelled in order to have the highest impact on training a supervised model. 

AL is applied in situations where there is a large amount of unlabeled data, 

where some priority needs to be made to label the data in an intelligent way. 

Figure 2.8 shows an example of the decision boundary of a given dataset with 

two features, which are feature 1 and feature 2. Most of the data points in the 

dataset are trivial for the model, where the model can make a prediction 



26 

easily, as shown in Figure 2.9. On the other hand, data points closer to the 

decision boundary are usually more challenging for the model to accurately 

make the correct prediction, as illustrated in Figure 2.10. These data points 

are more informative for model training, as the model has to be robust 

enough to generate a more accurate decision boundary to predict them. These 

data points are also referred to as informative data, as they are more 

informative than those trivial data points. 

 

Figure 2.8: Decision Boundary of a Given Dataset. 

 

 

Figure 2.9: Red-Circled Data Points are Trivial for Model Training. 



27 

 

Figure 2.10:  Red-Circled Data Points are the Informative Data Points, 

which are essential for Model Training. 

 

 In AL, there are usually three major components which are (i) the 

seed dataset (the initial training dataset for the model, which is usually small 

in size), (ii) a pool of unlabeled dataset, and (iii) a learner (the model trained 

on the seed dataset). There are typically three types of active learning 

querying strategies, which are (i) membership query synthesis, (ii) stream-

based selective sampling, and (iii) pool-based sampling (Settles, 2010). In 

membership query synthesis, the learner constructs an instance from the 

underlying natural distribution, and requests a human annotator to label the 

instance. However, this could be a problem for image datasets, as the instance 

generated by the model could be unrecognizable for humans. On the other 

hand, both stream-based selective and pool-based sampling expect a large 

pool of unlabeled data. The former draws unlabeled instances from the data 

source one by one and lets the learner decide if it wants to query the image 

for human annotation based on its informativeness. On the other hand, the 

latter draws multiple queries from the unlabeled data in a greedy fashion, 

according to the informativeness of the data. Among the three methods, the 

pool-based sampling technique has been deployed in waste and natural 

disaster classification applications (Ahmed et al., 2020). Thus, this sampling 

technique will be used in this project for the AL phase.  



28 

2.8 Summary 

The general approaches of MTL can be categorized into soft and hard 

parameter sharing. While there are various methods used to improve MTL, 

hard parameter sharing is still widely used in MTL for computer vision. In 

the disaster response domain, there are limited works that involve both 

disaster classification and victim detection. Thus, a multi-task model for the 

two tasks will be developed to contribute to disaster response.  

 Besides, the multi-task model has to be optimized before deploying 

it in the edge devices in an IoT setup. Thus, the project will adopt the 

OpenVINO toolkit to optimize the model to be computationally less 

expensive while retaining its performance. In addition, since each edge 

device can collect the dataset during its deployment, naturally, the next step 

is to use it for training. However, it is not practical to collect local datasets 

from all clients to a centralized server for model training. Thus, we can use 

federated learning to train a global model using all datasets from each client, 

without collecting and centralizing the dataset in a data center. Lastly, active 

learning can aid human annotators in selecting informative data for the model 

training, where the pool-based sampling technique will be used in this project. 

 

 



29 

CHAPTER 3 

 

METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter discusses the methodology and work plan of the project. The 

considerations for tools selection, including the training platform, deep 

learning and FL framework, will be covered as well. Then, the architecture of 

the MTL model and the training pipeline will be explained. Finally, the 

trained MTL model is then optimised using the OpenVINO toolkit for faster 

inference speed. 

 

3.2 Work Plan 

Figure 3.1 and Figure 3.2 show the Gantt chart for Part One and Part Two of 

this project. Part One of this project will focus mainly on data preparation 

and the development of the multi-output model. On the other hand, Part Two 

will focus on integrating FL and AL to train the system in a real-world IoT 

setup.  

 

 

Figure 3.1: Gantt Chart for Final Year Project Part 1. 

 



30 

 

Figure 3.2: Gantt Chart for Final Year Project Part 2. 

 

3.3 Tools to Use 

3.3.1 Training Platform 

The prototyping and training of the model will be conducted in two platforms, 

which are (i) Google Colaboratory (hereinafter referred to as Colab) and (ii) a 

workstation.  

Colab is a product from Google Research, where it is a hosted 

Jupyter notebook service that provides free access to computing resources, 

such as Graphics Processing Units (GPUs) and Tensor Processing Units 

(TPUs). The GPUs available in Colab include Nvidia K80s, T4s, P4s and 

P100s. However, Colab resources are not guaranteed and are nowhere 

unlimited. In order to provide its service for free, Colab needs to maintain the 

flexibility to adjust hardware availability to provide the computational 

resources for more users (Google, 2021b). Thus, users cannot choose the type 

of GPU to connect to, and the maximum runtime is only 12 hours.  

Google also provides the paid version of Colab, which are the Colab 

Pro and Colab Pro+. The main benefits of the paid versions include (i) access 

to faster GPUs and TPUs, (ii) more memory, as well as (iii) longer runtimes 

(Google, 2021a). Although better GPUs will be reserved for paid users, there 

is still no guarantee on which types of GPU is provided. Besides, the 

maximum runtime for paid versions is up to 24 hours, roughly twice longer 

than the free version. The non-continuous session in any Colab versions will 

cause issues in storing the dataset. Colab can access the dataset in Drive after 

initializing the session if the dataset can be stored in Drive. However, the 



31 

dataset cannot be downloaded to Drive if the size is too big. The remaining 

option is to download the dataset whenever using Colab.  

On the other hand, a workstation has the benefit of clear hardware 

specifications and continuous runtime. The workstation used in this project 

utilizes the GeForce RTX 2070 SUPER Graphic Cards as its GPU. The 

memory size for the GPU is 8 gigabytes (GB), which is considerably large. 

Besides, the disk space for the workstation is 514.4 GB. The disk space is 

sufficient to store all the required datasets and software dependencies for the 

project. After downloading the required dataset and software dependencies, 

the remaining disk space still has 432.4 GB. 

Due to the limited runtime, Colab is not suitable for continuous 

training of our model. However, most popular Python packages and 

dependencies are ready to be used in Colab. Thus, fast prototyping will be 

performed in Colab, while actual training will be conducted in the 

workstation since there is no time limit constraint. Table 3.1 shows the 

comparison between Colab and the workstation used in this project.  

 

Table 3.1:  Comparison between Colab and the Workstation Used in This 

Project. 

 Colab Workstation 

GPU 

Memory Size 

- 12 GB, 16 GB or 24 

GB (depending on the 

GPU provided) 

- 8 GB 

Available 

Disk Space 

- Roughly 77 GB   - Roughly 514.4GB 

Runtime 

Limit 

- Up to 12 hours for free 

version 

- Up to 24 hours for paid 

versions 

- No limit 

 

3.3.2 Deep Learning Framework 

In 2021, TensorFlow and PyTorch are the most popular deep learning 

frameworks available. TensorFlow is developed by Google Brain, while 

PyTorch is developed by Facebook’s AI Research Lab (FAIR). Both 



32 

frameworks are considerably matured and have a large community 

supporting the frameworks. Table 3.2 shows the comparison between 

TensorFlow and PyTorch as of 2021 (Boesch, 2021). 

 

Table 3.2: Comparison between TensorFlow and PyTorch (Boesch, 2021). 

 TensorFlow PyTorch 

Adoption - Considered the to-go tool 

by many researchers and 

industry professionals. 

- Lack of model serving in 

production. 

- Currently used more in the 

research domain. 

Scalability - Very scalable. 

- Can be deployed on 

every machine, including 

servers and mobile 

devices. 

- Less scalable. 

- Requires conversion of the 

PyTorch code into another 

framework (such as 

Caffe2) to deploy 

applications to servers and 

mobile devices. 

Learning 

Curve 

- Due to the low-level 

implementations of 

neural network structure, 

it is harder to learn. 

- However, it is compatible 

with Keras, which allow 

users to code high-level 

functionality.  

- The syntax is similar to 

conventional. 

Programming languages, 

making it easier to learn. 

 

TensorFlow is preferred if the application is meant for real 

production work. This is because TensorFlow has been widely used for 

production work compared to PyTorch. Hence, the TensorFlow developer 

communities are larger than the latter. For instance, the 2020 Stack Overflow 

Developer Survey reports that 10.4 % of professional developers use 

TensorFlow, while 7.6 % use PyTorch (Stack Overflow, 2020). However, if 

the application is not for real production work, the decision between the two 

frameworks is subject to a preference matter. For this project, TensorFlow is 



33 

used because it has more lower-level functionalities that may be useful for 

the design and training of the MTL model. 

TensorFlow can be executed in two modes, which are (i) graph 

mode and (ii) eager mode. In graph mode, the tensor (high dimensional array) 

computations are executed as a TensorFlow graph. In a TensorFlow graph, all 

the operations are defined and connected into a graph data structure. The 

graph can be optimized, allowing the compiler to run the operations more 

efficiently (TensorFlow, 2021a).  

In eager mode, TensorFlow operations are executed by Python 

operation by operation, without building graphs. After executing each 

operation, the results will be returned immediately to Python, which is then 

used for other operations (TensorFlow, 2021a). Eager mode is better for 

debugging since users can use standard Python debugging tools to identify 

errors. However, it is slower than graph mode since the operations are not 

optimized.   

Graph mode is generally recommended for training, while the eager 

mode is often used for debugging. Both modes will be used in this project, as 

mentioned in Section 3.6. 

 

3.3.3 Federated Learning Framework 

Currently, there are multiple open-source FL frameworks available. This 

section will only discuss FL frameworks that support Python 3 and 

TensorFlow 2.0, since these are the tools used in this project. TensorFlow 

Federated (TFF) and Intel Open Federated Learning (OpenFL) are the more 

popular choices among these frameworks. 

TFF is an FL framework developed by Google. TFF consists of two 

main application programming interface (API) layers, which are (i) Federated 

Learning (FL) API and (i) Federated Core (FC) API. FL API offers a set of 

high-level interfaces with implementations of the existing federated 

algorithm, which developers can directly apply to their existing TensorFlow 

models (TensorFlow, 2022c). On the other hand, FC API serves as the 

foundation for the FL API, where it includes a set of lower-level interfaces to 

build a novel federated algorithm (TensorFlow, 2022c). Although TFF is 



34 

designed with deployment to real devices in mind, it is currently only ready 

for simulations as of the time of writing (TensorFlow, 2022). 

OpenFL is another Python 3 open-source federated learning 

framework that supports TensorFlow 2.0. It was originally developed by Intel 

Labs and the University of Pennsylvania for healthcare applications, and was 

then further developed for general-purpose real-world applications. OpenFL 

works with training pipelines built with TensorFlow and PyTorch, and can be 

extended to other machine learning and deep learning frameworks. It is a 

production-ready platform that is widely adopted in various industries, 

including medical image segmentation (Sheller et al., 2019), medical image 

classification (Baid et al., 2022) and prediction of physiological effects of 

radiation exposure on astronauts (Intel, 2021). The library consists of two 

components: (i) collaborator and (ii) aggregator. Collaborators are the 

devices that use their local dataset to train the global model, and aggregators 

will receive the model updates from each collaborator and combine them to 

create the new global model. 

  TFF currently only allows developers to simulate custom federated 

training plans and design novel federated algorithms. On the other hand, 

OpenFL is a production-ready framework that has been actively deployed in 

real-life applications. Therefore, since this project aims to develop a working 

prototype using FL, OpenFL is chosen as the FL framework instead of TFF. 

 

3.4 Data Preparation 

The images used in the dataset are extracted from the “Crisis Image 

Benchmarks Dataset” – the consolidated dataset for benchmarking mentioned 

earlier. The sub-dataset for disaster types is used to train both the disaster 

classification task and victim detection task. The class label for disaster type 

in the sub-dataset include (i) fire, (ii) hurricane, (iii) flood, (iv) earthquake, (v) 

landslide, (vi) other disasters (to cover the remaining disaster types, such as 

plane crashes) and (vii) not disaster. The distribution of the dataset across the 

classes is listed in Table 3.3. 

 



35 

Table 3.3:  Class Distribution for the Training, Validation and Test for 

Disaster Type Sub-Dataset. 

Class Labels Train Validation Test 

Fire 1270 121 280 

Hurricane 1444 175 352 

Flood 2336 266 599 

Earthquake 2058 207 404 

Landslide 940 123 268 

Other Disaster 1132 143 302 

Not Disaster 3666 435 990 

Total 12846 1470 3195 

 

There is a lack of open-sourced victim detection datasets available 

on the internet. Thus, the disaster type dataset will be annotated for victim 

detection. Due to time constraints, the dataset is labelled using the auto-

annotation method. The tool used is Auto-Annotate, which is built on top of a 

Mask R-CNN model.  The pre-trained Mask R-CNN model has been forked 

1400 times in GitHub, making it a reliable model. In total, 5994, 634 and 

1448 images from the training, validation and testing dataset, respectively, 

are labelled. The remaining images are not used because there is no victim in 

the images.  

 

3.5 Model Architecture 

An MTL model is required for the two tasks for this project, which are (i) 

disaster classification as well as (ii) victim detection and counting. The MTL 

model used in this project will use the hard parameter sharing approach, 

where the backbone network is shared for all tasks. A suitable object detector 

model will be selected. Then, an additional head model will be added for 

disaster classification. 

 

3.5.1 Object Detector Selection for Victim Detection 

An object detection model is required for the victim detection and counting 

task. There are two types of object detection models, which are two-stage 

detectors and one-stage detectors. For two-stage detectors, the detection 



36 

process is separated into the region proposal and the classification stage. 

These models will first propose several object candidates, which is known as 

regions of interest (RoI). In the second step, each proposal is classified, and 

its localization is regressed. Examples of two-stage detectors are the Region-

Based Convolutional Neural Networks (R-CNN) family. On the other hand, 

one-stage detectors contain a single feed-forward fully convolutional network 

that directly provides the bounding boxes and the object classification. One-

stage detectors perform classification and regression on dense anchor boxes 

without generating the RoI. Notable one-stage detectors include the You 

Only Look Once (YOLO) and Single-Shot Detector (SSD) variants. 

Generally, two-stage detectors tend to have higher accuracy than 

one-stage detectors due to the higher computational cost. However, one-stage 

detectors are usually faster because they have a lower computational cost. 

The model developed for this project is meant for real-time applications on 

edge devices, which are computationally constrained. Thus, a one-stage 

object detection model is preferred for this application. There are various 

forms of one-stage object detection models, such as Single Shot Detector 

(SSD) variants and also YOLO variants. Generally, YOLO variants are much 

faster compared to other forms of one-stage detectors. Thus, YOLO is the 

preferred object detection model for the scope of the project.  

YOLO variants are usually named with YOLOvX, which stands for 

YOLO version X. The original YOLO (hereinafter referred to as YOLOv1) 

was introduced by Redmon et al. in 2015. It was the first object detection 

network to combine the bounding boxes and class labels in one evaluation 

(Redmon et al., 2015). YOLOv1 is the first object detector to process images 

in real-time, with an inference rate of 45 frames per second (FPS) on a 

graphic processing unit (GPU). YOLOv1 is faster than Faster R-CNN with 

Zeiler-and-Fergus (ZF) backbone, which is the fastest detector at the time 

with 18 FPS. However, it is less accurate than the most accurate detector at 

the time, which is Faster R-CNN with a VGG-16 backbone. The mean 

accuracy precision (mAP) of the two models on the Visual Object Classes 

(VOC) 2007 dataset are 63.4 and 73.2, respectively. 

 YOLO family has continued to receive updates ever since its initial 

release in 2015. Redmon and Farhadi published YOLOv2 in 2016, where 



37 

several modifications were built on top of the original YOLOv1. Concepts 

including batch normalization and anchor boxes are adopted into the 

architecture of YOLOv2 (Redmon and Farhadi, 2016). YOLOv2 outperforms 

all R-CNN models and the original SSD. At the time, YOLOv2 with a 

resolution of 480 x 480 is the fastest and most accurate object detector, with 

78.6 mAP on the VOC 2007 dataset and an inference rate of 59 FPS.   

 YOLOv3 is the last YOLO contributed by Redmon, which is 

released in 2018. YOLOv3’s backbone adopts the residual network ideas 

from the Residual Neural Network (ResNet), which adds residual 

connections between the layers. YOLOv3 also adopts the FPN as its neck 

model to extract features at three different scales. Three head models are used 

to predict boxes at the three different scales. Previous YOLO incarnations 

often struggled with small objects. By adopting multi-scale prediction, 

YOLOv3 can detect small objects more accurately. Although YOLOv3 is not 

the most accurate detector, it is still faster than any detectors present at the 

time (Redmon and Farhadi, 2018). YOLOv3 with resolution 608 x 608 has an 

accuracy of 57.9 mAP, following closely behind Faster R-CNN (with FPN) 

with 59.1 mAP. The same YOLOv3 slightly outperforms RetinaNet-101 with 

a resolution of 800 x 800, which has 57.5 mAP. 

YOLOv4 is developed by Bochkovskiy, Wang and Liao (2020). The 

research work tested various combinations of features that could improve the 

performance of object detectors. For instance, the authors experimented with 

different architectures for the (i) backbone, (ii) neck and (iii) head models for 

YOLO. After practical testing, YOLOv4 uses Cross Stage Partial Networks 

(CSP), which is based on DenseNet, as its backbone. It also replaces the FPN 

neck in YOLOv3 with Path Aggregation Network (PA-Net). YOLOv4 is 

much of the YOLOv3 architecture in general. YOLOv4 is faster and more 

accurate than all detectors at the time of publication (Bochkovskiy, Wang and 

Liao, 2020). It has an inference rate of ~65 FPS on Tesla V100, and an mAP 

of 65.7. 

On the other hand, YOLOv5 was released by a company called 

Ultralytics in its GitHub repository. Ultralytics claimed YOLOv5 to be state 

of the art among all YOLO variants. However, its legitimacy remained 

questionable in the computer vision community (Kanjee, 2020; Meel, 2021). 



38 

Firstly, YOLOv5 does not introduce any novel improvements to the YOLO 

architecture. YOLOv5 still uses the same backbone and neck used in 

YOLOv4, which are the CSP and PA-Net, respectively. Thus, YOLOv5 is 

not considered a novel implementation to deserve the “version 5” title. In 

addition, YOLOv5 was not published in peer-reviewed research papers that 

supported its architecture and performance. At the time of writing, YOLOv5 

is still yet to be published in any formal research paper. Furthermore, 

YOLOv5 has unvalidated data backing its improvement over YOLOv4. It is 

not tested on the generally accepted Microsoft Common Objects in Context 

(COCO) dataset for benchmark tests (Meel, 2021).  

YOLOv1 and YOLOv2 are very much outdated. Meanwhile, 

YOLOv5 is not a novel implementation compared to YOLOv4, and is yet to 

be supported by any peer-reviewed paper. While YOLOv4 is often 

considered the state-of-the-art model, its general architecture remains similar 

compared to YOLOv3. In 2021, there is still much research focusing on 

designing a lightweight and faster YOLOv3 (Zhang and Fan, 2021; Shi et al., 

2021; Zhang, Li and Zhang, 2021; Zheng, Zhao and Li, 2021). On the 

contrary, there is limited research work on lightweight YOLOv4. A possible 

explanation is that most lightweight YOLOv3s are designed by modifying the 

backbone of the model. However, the main unique feature of YOLOv4 is its 

backbone, while the rest of the model architecture resembles YOLOv3. If the 

backbone for YOLOv4 is changed, then the modified architecture would 

essentially be a YOLOv3 variant. For this project, a YOLOv3 will be 

developed for victim detection. 

Originally in YOLOv3, the outputs of the three head models are the 

feature maps with the spatial information and class labels of the detected 

objects. Ideally, the model should only predict one bounding box for each 

detected object. However, an object detector will likely predict more than one 

bounding box for each object. Thus, non-max suppression (NMS) is applied 

to remove the redundant bounding boxes. After applying NMS, the remaining 

bounding boxes are theoretically the best bounding boxes for the detected 

object. Figure 3.3 illustrates the removal of duplicated bounding boxes using 

NMS. 



39 

 

Figure 3.3:  Illustration of Bounding Boxes Removal via Non-Max 

Suppression (Redmon et al., 2015). 

 

 Since the object detector for this project is only for victim detection, 

all the bounding boxes generated are for the detected victim. Therefore, the 

victim counts can be predicted based on the number of bounding boxes that 

remained after NMS. Victim counts will be returned as a tensor from the 

modified YOLOv3. When deployed in an IoT framework, only the victim 

counts have to be returned by the smart camera to the IoT server. Figure 3.4 

shows the general architecture for the modified YOLOv3.  

 

 

Figure 3.4: The Modified Architecture of YOLOv3. 

 

 

3.5.2 Head Model for Disaster Classification 

A head model for disaster classification will be added to the victim 

detection model. In order to minimise the computation cost, the head model 

will be based on a MobileNet-like architecture.  The main highlight of 



40 

MobileNet architecture is its adoption of depthwise separable convolutions as 

the feature extraction layers. The regular convolution layer is four-

dimensional, where the convolution kernel (K) has a size of Dk x Dk x M x N, 

where (i) Dk is the spatial dimension of the kernel, (ii) M is the number of 

input channel, and (iii) N is the number of output channels defined previously. 

The computation cost of the regular convolution will be Dk x Dk x M x N x 

Df x Df, where Df is the spatial width of the convolution output. Figure 3.5 

shows the illustration of regular convolution.  

 

 

Figure 3.5: Illustration of the Working Principle of Regular Convolution. The 

Spatial Information in the Dk x Dk x M Region is Convolved at 

Once. Since the Output Has N Channels, the Region will be 

Convolved N Times. The Entire Process will be Repeated Df x Df 

Times, since the Output has Spatial Width of Df x Df.  

 

On the other hand, MobileNet adopts depthwise separable 

convolutions in its architecture. Depthwise separable convolution comprises 

two layers, which are the (i) depthwise convolution and (ii) pointwise 

convolution (Howard et al., 2017). In depthwise convolution, the convolution 

is performed layer by layer, instead of the whole volume at once. Thus, the 

kernel size is reduced to Dk x Dk x 1 x M. Depthwise convolution is then 

followed by pointwise convolution, which is a simple 1 x 1 regular 

convolution. A pointwise convolution is applied to create a linear 

combination of the output of the depthwise layer. Together, the two layers 



41 

mimic the traditional convolution layer with lesser parameters.  The total 

computation cost of a depthwise separable convolution is (Dk x Dk x M + M 

x N) x Df x Df. Figure 3.6 shows the illustration of depthwise separable 

convolution. 

 

 

Figure 3.6:  Illustration of Depthwise Separable Convolution. The Spatial 

Information in Dk x Dk x M Region will be Convolved Separately 

M Times, Resulting in the 1 x 1 x M Region in the Intermediate 

Output. The 1 x 1 x M Region will be Convolved at Once via 

Regular Convolution. Since the Output has N Channels, the 1 x 1 

x M Region will be Convolved N Times. The Entire Process will 

be Repeated Df x Df Times, because the Output has Spatial Width 

of Df x Df. 

 

 The total reduction in the computing cost using depthwise separable 

convolution can be expressed in Equation 3.1. MobileNet uses 3 x 3 

depthwise separable convolutions, which means the Dk value in Equation 3.1 

is three. In general, the total computation cost is between one eighth to one-

ninth of the regular convolution, with minimal sacrifice of accuracy (Howard 

et al., 2017). Thus, MobileNet is the go-to network when computation cost is 

a concern. 

 

 



42 

(3.1) (3.1) 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑖𝑛 𝑅𝑎𝑡𝑖𝑜) 

=  
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 𝑆𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑅𝑒𝑔𝑢𝑙𝑎𝑟 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

=  
(𝐷𝑘 ∙  𝐷𝑘  ∙ 𝑀 + 𝑀 ∙ 𝑁)  ∙  𝐷𝑓  ∙  𝐷𝑓

𝐷𝑘 ∙  𝐷𝑘  ∙ 𝑀 ∙ 𝑁 ∙  𝐷𝑓  ∙  𝐷𝑓  
 

=  
𝐷𝑘 ∙  𝐷𝑘  ∙ 𝑀 + 𝑀 ∙ 𝑁

𝐷𝑘 ∙  𝐷𝑘  ∙ 𝑀 ∙ 𝑁 
 

=  
(𝐷𝑘 ∙  𝐷𝑘 + 𝑁)  ∙ 𝑀 

𝐷𝑘 ∙  𝐷𝑘  ∙ 𝑀 ∙ 𝑁 
 

=  
𝐷𝑘 ∙  𝐷𝑘 + 𝑁  

𝐷𝑘 ∙  𝐷𝑘  ∙ 𝑁 
 

=  
1

𝑁
+  

1

(𝐷𝑘)2
 

 

 

For disaster classification task, the head model comprises a feature 

extraction layer and output classification layer. The feature extraction layer is 

based on the depthwise-separable convolution block. It is used to extract 

higher-level features for disaster classification. Lastly, the output 

classification layer is a pointwise layer with seven output nodes since there 

are seven label classes. The activation function of the last layer is softmax for 

multiclass classification. Figure 3.7 illustrates the architecture of the disaster 

classification head model. 



43 

 

Figure 3.7: The Architecture for the Disaster Classification Head Model. 

 

3.5.3 The Architecture of the Unified MTL Model 

Together, the YOLOv3 and disaster classification head model form an MTL 

model for victim detection/counting and disaster classification. Figure 3.8 

shows the illustration of the architecture of the MTL model.  

 

Figure 3.8:  The Architecture of the Unified MTL Model for Disaster 

Classification and Victim Detection. 



44 

 

3.6 Training the MTL Model 

The training of the MTL model can be divided into two parts: the (i) training 

of the victim detection head model and the (ii) training of the head model for 

disaster classification.  

 

3.6.1 Training the Victim Detection Head Model 

YOLOv3 has a considerably large size. In total, the YOLOv3 used in this 

project has 61,576,342 parameters. Therefore, a significant amount of 

memory has to be allocated to the model. The remaining memory will 

determine the maximum batch size that could be used for training. The CPU 

and GPU memory in Colab and the workstation used in this project are 

insufficient to train the YOLOv3 variants in a batch size of more than eight. 

However, a batch size of eight is not optimal, as most training of CNN 

usually requires at least a batch size of 32.  

To overcome this problem, each sample batch can be split into 

smaller mini-batches. Each mini-batch should be small enough, where the 

GPU memory can be satisfied. These mini-batches will be run independently, 

and their gradients should be averaged or summed before updating the model 

parameters. There are two main ways to implement this approach, which are 

(i) data-parallelism and (ii) gradient accumulation.  

 Data-parallelism requires multiple processing units (either CPUs or 

GPUs, although GPUs are usually preferred) in a device, where each 

processing unit is used to train all mini-batches in parallel. The gradients for 

all mini-batches are computed at once, and will be averaged and used to 

update the model parameters. Figure 3.9 illustrates the working principle of 

data-parallelism. On the other hand, gradient accumulation requires only one 

processing unit. Each mini-batches are trained sequentially by the same 

processing unit, where the computed gradients will be accumulated. After 

accumulating all gradients, the accumulated gradients will be averaged. 

Figure 3.10 shows the working principle of gradient accumulation. 

 



45 

 

Figure 3.9: Illustration of Data-Parallelism. 

  

 

Figure 3.10: Illustration of Gradient Accumulation. 

 

Data-parallelism cannot be implemented in this project, since both 

Colab and the workstation used only have one GPU. Thus, gradient 

accumulation will be used in the training of the model. The batch size used is 

64, where each batch will be divided into eight mini-batches. Each mini-

batches then consists of eight training samples. Since TensorFlow does not 

support gradient accumulation, custom training codes have to be written. 



46 

Since a high degree of customisation is required for training, the codes are 

written for TensorFlow eager mode execution (refer to Section 3.3.2) for 

detailed explanation). To update the model parameters manually, the 

GradientTape object in TensorFlow framework will be used. For each mini-

batch, the gradients will be computed using the gradient() method in the 

GradientTape object. After accumulating the gradients for eight mini-batches, 

the averaged gradient resembles the gradient using a batch size of 64. The 

averaged gradient is used to update the model’s parameter via 

apply_gradient() method in the GradientTape object. 

The victim detection model will be trained via two methods, which 

are CL and FL, both using gradient descent to overcome the memory 

limitation problem. 

 

Training Victim Detection Head Models using CL 

The pretrained YOLOv3 weights by Redmon and Farhadi (2018) will be used 

for transfer learning. The Darknet-51 backbone and FPN neck will be reused 

to build the YOLOv3 for victim detection. The weights for the three head 

models for object localisation and classification will be initialised randomly. 

The head models will initially be trained for 10 epochs with 64 batch sizes 

and a learning rate of 1x 10-5. This preliminary training is to warm up the 

head models before intensive training. After that, the head models will be 

trained for another 10 epochs with a learning rate of 1 x 10-4. Figure 3.11 

shows the pseudocode to train the victim detection head model using CL. 

 



47 

 

Figure 3.11:  Pseudocode to Train the Victim Detection Head Models 

using Centralised Learning. 

 

Training the Victim Detection Head Models using FL 

The victim detection head model will be trained using FL on 2-device and 3-

device setups. Firstly, the training dataset will be divided equally on each 

training device. Then, an FL server is initialised, and each training device 

will connect to the server as a client. The server will instantiate a global copy 

of the victim detection model, and send it to each client. In each 

communication round, each client will train their copy of the model using the 

training strategy similar to CL. Then, the FL server will collect the model 

weights from each client, aggregating them into a new global model using the 



48 

Federated Averaging (FedAvg) algorithm proposed by McMahan et al. 

(2016). The entire process will be repeated for 20 rounds. Figure 3.12 shows 

the pseudocode to train the victim detection head model using FL. 

 

 

Figure 3.12:  Pseudocode to Train the Victim Detection Head Models 

using Federated Learning. 

 

3.6.2 Training the Disaster Classification Head Model 

The head model for disaster classification is relatively small compared to the 

FPN neck and head models of YOLOv3. Thus, there are no GPU memory 

constraints, and a larger batch size can be used for training. There is no 

customization required for the training loop, and the model can be trained by 

the existing fit() method in TensorFlow. Hence, the training is conducted in 

TensorFlow graph mode, which is more efficient than the eager mode.   



49 

 The training of the disaster classification head model will be 

performed via CL, FL, and AL-based FL (hereinafter referred to as AL-FL) 

methods. 

 

Training Disaster Classification Head Model using CL 

For the CL method, the head model will be trained using the Cosine Decay 

strategy. The initial learning rate is set as 5 x 10-3, which will be decayed by a 

factor of 100 after 40 epochs of training. Meanwhile, the batch size is set to 

32. Theoretically, a larger batch size can be used to train the disaster 

classification head model, since we have sufficient GPU memory. However, 

the batch size is kept at 32 (which is usually the default batch size) since we 

intend to train the model in edge devices which may have computation 

limitations. 

 

Training Disaster Classification Head Model using FL 

The FL strategy used to train the disaster classification head model is similar 

to the one used to train the victim detection model. The disaster classification 

head model is trained on 2-device and 3-device setups, where the training 

dataset is divided equally among the training devices. OpenFL is used as the 

FL framework, and the training strategy used to train the model for each 

client is similar to the CL method. 

 

Training Disaster Classification Head Model using AL-FL 

There are two types of AL-FL strategy, which are the online and offline AL-

FL. In the former strategy, the AL task is conducted in each communication 

round of FL, meaning that both AL and FL are performed simultaneously. 

The latter strategy would keep the AL task offline, where the FL phase will 

start only after all data in each client has been labelled after the AL phase.  

The AL-FL strategy used in this project is the offline AL method. 

By doing so, the communication rounds in FL could be reduced since the 

query phase usually requires a large amount of AL rounds (Ahmed et al., 

2020). Besides, the FL phase could be deployed smoother when AL is 

separated from FL, since all the required data in each client have been 

labelled beforehand. On the other hand, it would be user-unfriendly to wait 



50 

for human annotators to label the samples query by AL strategy between each 

communication round in an online AL-FL strategy. Thus, it is decided that 

offline AL will be more suitable for the scope of the project. 

Given a pool of unlabelled datasets, a sampling technique is required 

to query samples from the pool for labelling. The sampling technique used in 

this project is margin sampling. It aims to pick samples with the smallest 

difference between the probabilities of the two most probable classes. The 

intuition of this strategy is that: if the classification model is confident in its 

prediction, it should assign most of the probability to the correct class. On the 

other hand, if the classification model is not confident, the probability would 

be distributed among a few classes. Thus, a large difference between the 

probabilities of the two most probable classes would infer that the model is 

struggling to make the correct prediction. This input data would be treated as 

a hard sample that the model will query using margin sampling, where the 

human annotator could label it. 

In this project, several variations of the margin sampling technique 

are proposed to improve the performance. Instead of sampling only the hard 

samples, samples that are trivial (easy) and moderately hard to the model can 

also be sampled. The proposed method will be analysed in Section 4.3. In the 

proposed AL-FL strategy, each client initialises a victim detection model, and 

trains the model using a small labelled dataset. Then, 20 rounds of AL cycle 

are deployed to each client. Each client will sample 32 samples in each round 

comprised of easy, moderately-hard and hard images. After labelling, the 

labelled queries are added to the initial training dataset, where the model will 

be fine-tuned using the expanded dataset for one epoch. Figure 3.13 shows 

the flowchart for the proposed active learning process. 



51 

 

Figure 3.13: Pseudocode of the Proposed Active Learning Process. 

 

After 20 rounds of AL cycle, each device would have labelled two-

thirds of the entire dataset in each client. Then, a global model will be 

instantiated, and the FL training will begin using the new global model and 

the expanded dataset for each client.  

 



52 

3.7 Conversion of the Multi-Task Model into Intermediate 

Representation (IR) to load in Inference Engine (IE) 

Model Optimiser (MO) is a tool provided in OpenVINO that facilitates the 

transition between training and deployment environments. It takes a deep 

learning model trained using some famous frameworks, including 

TensorFlow, to convert it to an Intermediate Representation (IR). Besides, 

MO performs static model analysis, adjusting the models for optimal 

execution on the target devices. In this project, the MO is used to (i) add pre-

processing layers as sub-graphs into the converted model, and (ii) compress 

the model from single-precision floating-point (FP32) to half-precision 

floating-point (FP16) and 8-bit integer type (INT8) format. The former model 

adjustment allows the pre-processing layers of the input data as part of the 

multi-task model itself. The latter adjustment decreases the model size by 

half, and allows higher inference speed. 

 After converting the multi-task model into IR, the IR files are loaded 

into the Inference Engine (IE). Like the MO, which optimises the model 

based on the complexity of the models to improve memory and computation 

times, the IE on the other hand provides hardware-based optimisations. The 

supported devices for the IE includes all Intel hardware, including CPU, GPU, 

neural compute stick (NCS-2), and field-programmable gate array (FPGA). 

In this project, the IE will optimise the models for Intel CPU. 

 

3.8 Summary 

A YOLO-based multi-task model for joint disaster classification and victim 

detection is designed. TensorFlow and OpenFL will be used as the deep 

learning and FL framework for this project. Gradient accumulation will be 

used to solve the memory insufficiency problem. The victim detection head 

model will be trained using CL and FL, while the disaster classification head 

model will be trained CL, FL, and AL-FL. Lastly, the trained multi-task 

model will be optimized using the OpenVINO toolkit, and then deployed in 

Intel CPU hardware. Figure 3.14 illustrate the complete methodology of the 

proposed system. 

 



53 

Figure 3.14: The Methodology of the Proposed System. 

 



54 

CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

The performance of the multi-task model will be evaluated in two parts. 

Section 4.2 will discuss the model’s performance on the victim detection task, 

while Section 4.3 will cover the model’s performance on the disaster 

classification task. The overall designed pipeline for this project will be 

covered.  

 

4.2 Victim Detection 

Since the victim detection models are trained with a custom dataset, there is 

no benchmark to compare the performance of the trained models. The result 

analysis for this task will mainly compare the CL-trained and FL-trained 

models. 

The performance of a single-class object detection model can be 

evaluated using accuracy precision (AP).  Figure 4.1 shows the PR curve for 

the victim detection head model. AP is derived from precision and recall. The 

definition of precision (P) and recall (R) are as shown in Equation 4.1 and 

Equation 4.2, where TP, FP and FN are true-positive counts, false-positive 

counts, and false-negative counts, respectively. Based on P and R, the AP can 

be expressed as the integral of function P of R, as shown in Equation 4.3. In 

other words, AP is the area under the PR curve. 

 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.1) 

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.2) 

𝐴𝑃 =  ∫ 𝑃 (𝑅) 𝑑𝑅

1

0

(4.3) 

  

The CL-trained victim detection head model achieves train, 

validation and test AP of 0.7814, 0.6907 and 0.6938, respectively. The PR 



55 

curve of the CL-trained victim detection head model is shown in Figure 4.1. 

The model is considered robust as it could reach a high test AP of 0.6938, 

considering that a large portion of the detected victim is small or partially 

occluded. Besides, the model has a high inference speed on NVIDIA RTX 

2070 SUPER, with a 20.31 frame per second (FPS) score. This high inference 

speed is expected, as YOLO models are famous for being fast. 

 

 

Figure 4.1: The Precision-Recall Curve for Victim Detection Head Model. 

 

 For the victim detection task, the FL models trained using 2-client 

and 3-client have a test AP score of 0.5902 and 0.5417. Both FL-trained 

models do not outperform the CL-trained model. However, both models 

outperform models trained solely on local datasets on any of the clients. 

Under a 3-client setup, any model trained using any local dataset could only 

achieve an average test AP of 0.3998. This test AP score is 0.1419 lower than 

the test AP of an FL-trained model using 3 clients. Thus, FL is still highly 

recommended if centralising data to a data centre for CL is not possible.  

Besides, the lower test AP score for FL-trained models may be due 

to the limited training dataset. Ahmed et al. (2020) showed that to fully 

exploit FL's potential, each client should have enough training dataset. The 

exact number of the required local dataset is highly dependent on applications. 

But their study shows that there is a significant increase in performance once 



56 

the amount of local training samples exceeds a certain threshold. In this 

project, the training dataset (before splitting into multiple local datasets at 

each client) is 5994. After splitting, the number of local datasets for 2-client 

and 3-client setups are 2997 and 1998, respectively. It is possible that more 

training data for each client is required to reach the threshold, to witness a 

performance boost. Figure 4.2 shows victim detection by the multi-task 

model in different scenarios. 

 

 

 

 

(a)  (b) 

 

 

 

(c)  (d) 

 

 

 

(e)  (f) 

Figure 4.2:  Victim Detection at Different Areas: (a) Flood, (b) Landslide, (c) 

Earthquake, (d) Hurricane, (e) Fire, and (f) Other Disaster. 

 

4.3 Disaster Classification 

Firstly, the performance of the disaster classification head model trained via 

CL will be compared to the benchmarks provided by Alam et al. (2021). 

Then, this CL-trained head model will serve as a benchmark for the models 



57 

trained via FL and AL-FL. Table 4.1 shows the comparison of our model 

with the provided benchmarks. 

 

Table 4.1: Performance of the CL-Trained Head Model with the Provided 

Benchmarks. Bolded Values indicate the Best Score in the 

Particular Metrics, while Gray-Shaded Values are the Score for 

the Proposed Solution. 

Backbone Accuracy Precision Recall F1 Score 

ResNet18 0.812 0.807 0.809 0.809 

ResNet50 0.817 0.81 0.812 0.812 

ResNet101 0.819 0.815 0.816 0.816 

AlexNet 0.755 0.753 0.753 0.753 

VGG16 0.803 0.797 0.798 0.798 

DenseNet (121) 0.817 0.811 0.813 0.813 

SqueezeNet 0.726 0.719 0.717 0.717 

InceptionNet (v2) 0.808 0.801 0.802 0.802 

MobileNet (v2) 0.793 0.788 0.793 0.789 

EfficientNet (b1) 0.838 0.834 0.838 0.835 

Proposed Solution 0.792 0.827 0.769 0.766 

 

 Interestingly, the proposed solution is comparable with most models 

that are trained specifically for disaster classification. The ability to classify 

disasters on top of a victim detection model comes at the cost of only a 4.6% 

and 1.786% accuracy drop compared to the best model (EfficientNet) and 

other models, respectively. As for precision, our model has the second-

highest precision compared to the other models and approximates the best 

model within a 0.7% gap. As for recall and F1 score, the proposed solution 

performs slightly worse than the other models. However, it outperforms 

AlexNet and SqueezeNet, while approximating other models by 4.325% on 

average. Overall, our solution is considered robust given that it has to handle 

both tasks. 

 Since the CL-trained head model is comparable with the provided 

benchmarks, we will use its performance as the benchmark for the models 



58 

trained via FL and AL-FL. Table 4.2 compares the performance of the 

disaster classification head models trained via CL, FL and AL-FL. 

 

Table 4.2: Comparison of the Performance of the Disaster Classification 

Head Models trained via CL, FL, and AL-FL. Methods labelled 

with an asterisk (*) are trained using 3 FL clients. 

Method Accuracy Precision Recall F1 Score 

CL (all data) 0.792 0.827 0.769 0.766 

CL (half data) 0.7542 0.7566 0.7524 0.7427 

CL (1/3 data) 0.7318 0.739 0.7267 0.7213 

FL (2 clients) 0.8001 0.805 0.7941 0.7933 

FL (3 clients) 0.7964 0.8004 0.7896 0.7879 

AL-FL hard* 0.7189 0.7202 0.7198 0.7201 

AL-FL mod/hard* 0.7222 0.7314 0.7146 0.7396 

AL-FL easy/mod/hard* 0.7673 0.7741 0.7592 0.7578 

  

The analysis below will mainly focus on the F1 score of each model, 

as it is a better metric than the other three. Firstly, it is noticed that FL 

outperform CL in the disaster classification task in both 2-client and 3-client 

setups. FL with 2-client and 3-client outperform CL by 2.73% and 2.19% in 

F1 score, respectively. This performance increment is considered a huge 

improvement, as both methods used the same training strategy. Although 

such a performance boost is not anticipated, several research studies have 

shown that FL could outperform CL depending on the applications. For 

instance, Xiong et al. (2020) tested the FL framework on 7 drug solubility 

datasets and showed that the FL-trained model can always outperform 

models built on individual datasets. Asad, Moustafa and Ito (2020) also 

showed that FL outperformed CL for image classification tasks using MNIST 

and CIFAR-10 datasets.  

 The best AL-FL trained model is trained using the proposed AL 

strategy (which queries easy, moderately-hard and hard samples). Its 

performance is comparable with the CL-trained model, using only two-thirds 

of the local dataset in each client. It approximates the CL-trained model 

within 0.82%. Besides, it outperforms the original strategy that queries only 



59 

the hardest samples. As shown in Table 4.2, the F1 score experiences a 1.95% 

boost by querying moderately-hard samples alongside hard samples. By 

adding easy samples, the proposed method could improve the original 

strategy by 3.77%. The performance gain is a worth investigating aspect of 

the research, as sampling using hard samples is usually better. Based on some 

analysis, it is suggested that the proposed AL strategy works for this task 

because the decision boundary for the task is highly ambiguous. To illustrate 

this, t-distributed stochastic neighbour embedding (t-SNE) can be used to 

perform dimension reduction, mapping the features of the images in a two-

dimension plot. The tensors generated before the last classification layer in 

the head model can be treated as the condensed features of an image, 

extracted by all the previous layers. Thus, all images in the test dataset are 

passed into the best head model (trained via FL) to extract the 

beforementioned tensors. Then, t-SNE is used to reduce the dimension of the 

tensors into a two-dimensional matrix, which can be plotted in a two-

dimensional plot. Figure 4.3 shows the embeddings of the top 33% of the 

hardest images from the test dataset. 

 

Figure 4.3: The Embeddings of the Top 33% Hardest Images in Test Dataset. 

   

 From Figure 4.3, it is observed that most of the hardest images, 

regardless of the classes, are almost distributed randomly in this centre of the 



60 

plot. There are no clear decision boundaries, as if the data is scattered all 

around vector space. However, most of the easier data are clustered nicely 

according to their classes, indicating an underlying distribution of the data 

instead of randomness. It is suggested that if the model is trained solely on 

the hardest data, it may not perform well on normal data. This hypothesis is 

backed by our result in Table 4.2, where we can see querying easier data 

points can boost the performance of an AL-Fl-trained model. However, it is 

worth mentioning that this is dependent on the underlying distribution of the 

data. The conventional approach of querying only the hardest data may work 

better for applications with less ambiguous classification. The proposed 

method may only benefit applications with high ambiguity in labelling the 

data, even for human annotators. Table 4.3 shows some examples in the 

Crisis Benchmark Dataset to illustrate the ambiguity of the dataset. For 

instance, a hurricane may cause flooding and collapse some buildings, 

confusing the model to predict the scene as a flood or earthquake.  

  

Table 4.3:   Examples of Images in the Crisis Benchmark Dataset that 

Confused the Model. 

Sample Image Predicted Class Actual Class 

 

 

 

 

Flood 

 

 

 

Hurricane 

 

 

 

 

Earthquake 

 

 

 

Fire 



61 

 

 

 

 

Not Disaster 

 

 

 

Hurricane 

 

 

 

 

Fire 

 

 

 

Not Disaster 

 

The FL-trained and AL-FL trained models are also superior to 

models trained solely on fractions of the dataset. If centralising data is not a 

feasible option, FL or AL-FL is the go-to method (regardless of if they are 

better than CL or not). Training the model solely on any local dataset could 

not outperform collaborative training using FL or AL-FL. Table 4.3 shows 

that if the model is trained solely on any of the local datasets in the three 

clients, the performance is inferior to training the model using all three clients 

via FL and AL-FL.  

In short, all results show that FL and AL-FL is the go-to method if 

centralising the dataset for training is not feasible. The results also suggest 

that FL is better than CL in the disaster classification domain. Another 

observation is that querying easier samples during the AL phase is essential 

for disaster classification due to the noisy data distribution among the hardest 

samples. 

 

4.4 Model Optimization using OpenVINO Toolkit 

In Section 4.2 and Section 4.3, the CL-trained model is used as the 

benchmark to compare the performance of various training methods. In this 



62 

section, the CL-trained model will be optimized using the OpenVINO toolkit, 

and the performance before and after optimization will be compared.  

 The multi-task CL-trained model will be compressed from FP32 to 

FP16 and INT8, as mentioned in Section 3.7. Firstly, Table 4.4 discuss the 

improvement in the model’s inference speed after compression. Device A, 

the NVIDIA RTX 2070 SUPER servers as the benchmark for the comparison. 

On the other hand, device B serves as the edge device which will deploy the 

model in the actual scenario. 

 

Table 4.4:  Comparison of Model’s Inference Speed (FPS) Before and After 

Optimization on Different Processing Units.  

Device Framework Data Format FPS 

A TensorFlow GPU (tf-gpu) FP32 20.31 

B TensorFlow-CPU (tf) FP32 6.55 

B OpenVINO IR Format FP16 9.37 

B OpenVINO IR Format INT8 16.46 

Device A: NVIDIA RTX 2070 SUPER 

Device B: Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz 

 

 When the multi-task model is deployed in Device A, the inference 

speed is as high as 20.31 FPS. If deployed in Device B, the inference drops to 

6.55 FPS. Based on this, it is observed that without a powerful GPU 

accelerator, the inference speed will drop significantly (67.75 % in this case). 

Thus, the OpenVINO toolkit plays a big role in improving the model's 

inference speed without a powerful GPU accelerator. Based on the result in 

Table 4.4, it is observed that the multi-task model with FP16 and INT8 data 

format have an inference speed of 9.37 FPS and 16.46 FPS, respectively. The 

inference speed of the FP16 and INT8 models is 43.05% and 151.30% faster 

than the original inference speed of 6.55 FPS. This shows that model 

compression using OpenVINO can greatly improve the inference speed of the 

model. 

 Due to the intrinsic trade-off between inference speed and accuracy, 

an increase in inference speed may decrease accuracy. Thus, the next part of 



63 

this section is to analyse the trade-off of accuracy and inference speed. The 

evaluation metric used for the victim detection task is AP, as mentioned in 

Section 4.2. The evaluation metric used for the disaster classification task is 

accuracy only, as the OpenVINO toolkit only supports this metric as of the 

time of writing. The results comparison for victim detection and disaster 

classification task is shown in Table 4.5 and Table 4.6.  

 

Table 4.5:  Comparison of the Accuracy of the Victim Detection Head Model 

Before and After Compression. 

Device Framework Data Format Accuracy 

A TensorFlow GPU (tf-gpu) FP32 0.6938 

B TensorFlow-CPU (tf) 

B OpenVINO IR Format FP16 0.6812 

B OpenVINO IR Format INT8 0.6527 

 

 The head model has a similar AP for the victim detection task for 

both FP32 and FP16 formats. The slight decrease of 0.0126 in AP is expected. 

Although FP16 only has half the precision compared to FP32, various 

research projects show that it would only bring a minimal loss in accuracy 

(OpenVINO, 2022; TensorFlow, 2022b). On the other hand, the AP drops 

0.0411 after being compressed to INT8 data format. A more significant 

accuracy drop for this compression is expected since it forcefully changed the 

data format from FP32 to INT8. However, OpenVINO will fine-tune the 

model while compressing to INT8 to ensure the performance drop is under 

control. 

 

Table 4.6:  Comparison of the Accuracy of the Disaster Classification Head 

Model Before and After Compression. 

Device Framework Data Format Accuracy 

A TensorFlow GPU (tf-gpu) FP32 0.7920 

B TensorFlow-CPU (tf) 

B OpenVINO IR Format FP16 0.7931 

B OpenVINO IR Format INT8 0.7963 



64 

 For the disaster classification task, it is observed that there is no 

decrease in accuracy after compression. Instead, there is a slight increase in 

accuracy. The model's accuracy increases by 0.0011 and 0.0043 when 

compressed to FP16 and INT8 models. However, this is not an abnormal 

observation because OpenVINO uses the test dataset to tune the model during 

compression. This is an important step because direct compression from 

FP32 to FP16 and INT8 may ruin the model’s performance. Only 20% of the 

test dataset is used for the model tuning to prevent overfitting in this setup. 

For this task, it is safe to conclude that the accuracy of the disaster 

classification head model retains after compression. 

 

4.5 Summary 

In short, the multi-task model is comparable with the provided benchmark 

regardless of the training method used. Both FL and AL-FL is proven to be 

the go-to method to train the multi-task model if centralizing the dataset for 

CL is not feasible. All results show that the two methods outperform a model 

trained solely on the local dataset from any client. Besides, an FL-trained 

model could outperform a CL-trained model for the disaster classification 

task. AL-FL is proven to be an effective method to train disaster 

classification head models without the need to label all data. Post-training 

quantization using OpenVINO could speed up the inference speed of the 

multi-task model without a GPU accelerator, with minimal accuracy trade-off. 

Together, the three components (AL, FL and OpenVINO) complete the 

training and deployment cycle. 

 

 



65 

 

CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This project has successfully developed a multi-task model for joint disaster 

classification and victim detection. The multi-task model is trained using CL, 

FL, and AL-FL. Based on the results, it is shown that FL and AL-FL are 

recommended if collecting data in a centralized data centre is not possible. 

FL is also proven to be better than CL for the disaster classification task. 

While FL could not outperform CL in the victim detection task, it still 

provides a comparable result, given the small dataset provided for each client. 

It is suggested that with more data on each client, the performance of FL on 

victim detection task could experience a performance boost. The best model 

could achieve a 0.7993 F1 score and a 0.6938 AP for disaster classification 

and the victim detection task. OpenVINO is also shown to be capable of 

decreasing the computation workload of the multi-task model by half, with 

slight performance trade-off. 

 

5.2 Recommendations for future work 

Several improvements can be made to this project. Firstly, the victim 

detection dataset could be expanded, since more data usual translates to better 

performance. A larger dataset can also guarantee that each client has enough 

training data for FL. Besides, an AL-FL strategy could be proposed for the 

victim detection task. Currently, this project only applies the AL-FL strategy 

to disaster classification task, and has shown its feasibility as a core part of 

ML Ops.  

 

 



66 

 

REFERENCES 

 

Ahmed, L., Ahmad, K., Said, N., Qolomany, B., Qadir, J. and Al-Fuqaha, A., 

2020. Active Learning Based Federated Learning for Waste and Natural 

Disaster Image Classification. IEEE Access, 8, pp.208518–208531. 

Alam, F., Alam, T., Ofli, F. and Imran, M., 2021. Social Media Images 

Classification Models for Real-time Disaster Response. CoRR, [online] 

abs/2104.0. Available at: <https://arxiv.org/abs/2104.04184>. 

Alam, F., Ofli, F. and Imran, M., 2018. CrisisMMD: Multimodal twitter 

datasets from natural disasters. In: 12th International AAAI Conference on 

Web and Social Media, ICWSM 2018. [online] pp.465–473. Available at: 

<https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85050637466&partnerID=40&md5=0fb528332fb3182d641214df5e854665>. 

Alam, F., Ofli, F., Imran, M., Alam, T. and Qazi, U., 2020. Deep Learning 

Benchmarks and Datasets for Social Media Image Classification for Disaster 

Response. In: 2020 IEEE/ACM International Conference on Advances in 

Social Networks Analysis and Mining (ASONAM). pp.151–158. 

Asad, M., Moustafa, A. and Ito, T., 2020. Federated Learning Versus 

Classical Machine Learning: A Convergence Comparison. 

Baid, U., Pati, S., Kurc, T.M., Gupta, R., Bremer, E., Abousamra, S., Thakur, 

S.P., Saltz, J.H. and Bakas, S., 2022. Federated Learning for the 

Classification of Tumor Infiltrating Lymphocytes. Available at: 

<https://arxiv.org/abs/2203.16622>. 

Baxter, J., 1997. A Bayesian/Information Theoretic Model of Learning to 

Learn via Multiple Task Sampling. Machine Learning, [online] 28(1), pp.7–

39. Available at: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-

0031187873&doi=10.1023%2FA%3A1007327622663&partnerID=40&md5

=2d2e6b9535edcb98cddf38bba9f8332b>. 

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M., 2020. YOLOv4: Optimal 

Speed and Accuracy of Object Detection. [online] Available at: 

<https://arxiv.org/abs/2004.10934> [Accessed 17 Aug. 2021]. 

Boesch, G., 2021. Pytorch vs Tensorflow: A Head-to-Head Comparison. 

[online] viso.ai. Available at: <https://viso.ai/deep-learning/pytorch-vs-

tensorflow/> [Accessed 15 Jul. 2021]. 

Boukerche, A. and Coutinho, R.W.L., 2018. Smart Disaster Detection and 

Response System for Smart Cities. In: 2018 IEEE Symposium on Computers 

and Communications (ISCC). pp.1102–1107. 



67 

 

Buciluundefined, C., Caruana, R. and Niculescu-Mizil, A., 2006. Model 

Compression. In: Proceedings of the 12th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, KDD ’06. [online] 

New York, NY, USA: Association for Computing Machinery.pp.535–541. 

Available at: <https://doi.org/10.1145/1150402.1150464>. 

Castro-Zunti, R.D., Yépez, J. and Ko, S.B., 2020. License plate segmentation 

and recognition system using deep learning and OpenVINO. IET Intelligent 

Transport Systems, 14(2), pp.119–126. 

Chaudhuri, N. and Bose, I., 2019. Application of Image Analytics for 

Disaster Response in Smart Cities. In: Proceedings of the 52nd Hawaii 

International Conference on System Sciences. 

Chen, Y., Zhao, D., Lv, L. and Zhang, Q., 2018. Multi-task learning for 

dangerous object detection in autonomous driving. Information Sciences, 

[online] 432, pp.559–571. Available at: 

<https://www.sciencedirect.com/science/article/pii/S0020025517308848>. 

Dvornik, N., Shmelkov, K., Mairal, J. and Schmid, C., 2017. BlitzNet: A 

Real-Time Deep Network for Scene Understanding. In: 2017 IEEE 

International Conference on Computer Vision (ICCV). pp.4174–4182. 

Gao, W., Li, L., Zhu, X. and Wang, Y., 2020. Detecting Disaster-Related 

Tweets Via Multimodal Adversarial Neural Network. IEEE MultiMedia, 

27(4), pp.28–37. 

Gautam, A.K., Misra, L., Kumar, A., Misra, K., Aggarwal, S. and Shah, R.R., 

2019. Multimodal Analysis of Disaster Tweets. In: 2019 IEEE Fifth 

International Conference on Multimedia Big Data (BigMM). pp.94–103. 

Google, 2021a. Choose the Colab plan that’s right for you. [online] Google 

Research. Available at: <https://colab.research.google.com/signup> 

[Accessed 17 Jul. 2021]. 

Google, 2021b. Colaboratory - Frequently Asked Questions. [online] Google 

Research. Available at: <https://research.google.com/colaboratory/faq.html> 

[Accessed 14 Jul. 2021]. 

Gou, J., Yu, B., Maybank, S.J. and Tao, D., 2020. Knowledge Distillation: A 

Survey. CoRR, [online] abs/2006.0. Available at: 

<https://arxiv.org/abs/2006.05525>. 

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., 

Andreetto, M. and Adam, H., 2017. MobileNets: Efficient Convolutional 

Neural Networks for Mobile Vision Applications. [online] Available at: 

<https://arxiv.org/abs/1704.04861> [Accessed 22 Aug. 2021]. 



68 

 

Intel, 2021. Intel AI Mentors Seek to Improve Astronaut Health. [online] 

www.intel.com. Available at: 

<https://www.intel.com/content/www/us/en/newsroom/news/intel-ai-

mentors-seek-improve-astronaut-health.html#gs.xui7hw> [Accessed 29 Mar. 

2022]. 

Intel, 2022. Intel® Distribution of OpenVINOTM Toolkit. [online] intel.com. 

Available at: 

<https://www.intel.com/content/www/us/en/developer/tools/openvino-

toolkit/overview.html> [Accessed 15 Mar. 2022]. 

Izutov, E., 2018. Fast and Accurate Person Re-Identification with RMNet. 

CoRR, [online] abs/1812.0. Available at: <http://arxiv.org/abs/1812.02465>. 

Kanjee, R., 2020. YOLOv5 Controversy — Is YOLOv5 Real? [online] 

medium.com. Available at: <https://medium.com/augmented-

startups/yolov5-controversy-is-yolov5-real-20e048bebb08> [Accessed 17 

Aug. 2021]. 

Kaushal, A., Altman, R. and Langlotz, C., 2020. Health Care AI Systems Are 

Biased. [online] Scientific American. Available at: 

<https://www.scientificamerican.com/article/health-care-ai-systems-are-

biased/> [Accessed 3 Mar. 2022]. 

Khan, S., Muhammad, K., Mumtaz, S., Baik, S.W. and de Albuquerque, 

V.H.C., 2019. Energy-Efficient Deep CNN for Smoke Detection in Foggy 

IoT Environment. IEEE Internet of Things Journal, 6(6), pp.9237–9245. 

Lee, W., Na, J. and Kim, G., 2019. Multi-Task Self-Supervised Object 

Detection via Recycling of Bounding Box Annotations. In: 2019 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR). pp.4979–

4988. 

Lin, H., Deng, J.D., Albers, D. and Siebert, F.W., 2020. Helmet Use 

Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning. 

IEEE Access, 8, pp.162073–162084. 

McMahan, H.B., Moore, E., Ramage, D. and y Arcas, B.A., 2016. Federated 

Learning of Deep Networks using Model Averaging. CoRR, [online] 

abs/1602.0. Available at: <http://arxiv.org/abs/1602.05629>. 

Meel, V., 2021. YOLOv5 Is Here! Is It Real or a Fake? [online] viso.ai. 

Available at: <https://viso.ai/deep-learning/yolov5-controversy/> [Accessed 

17 Aug. 2021]. 

OpenVINO, 2022. Compression of a Model to FP16. [online] docs.openvino. 

Available at: 



69 

 

<https://docs.openvino.ai/latest/openvino_docs_MO_DG_FP16_Compressio

n.html> [Accessed 14 Mar. 2022]. 

Padmawar, P.M., Shinde, A.S., Sayyed, T.Z., Shinde, S.K. and Moholkar, K., 

2019. Disaster Prediction System using Convolution Neural Network. In: 

2019 International Conference on Communication and Electronics Systems 

(ICCES). pp.808–812. 

Patidar, S., Rane, D. and Jain, P., 2012. A Survey Paper on Cloud Computing. 

In: 2012 Second International Conference on Advanced Computing 

Communication Technologies. pp.394–398. 

Puttinaovarat, S., Sriklin, T., Dangtia, S. and Khaimook, K., 2020. Flood 

Disaster Identification and Decision Support System using Crowdsource Data 

Based on Convolutional Neural Network and 3S Technology. International 

Journal of Interactive Mobile Technologies (iJIM), [online] 14(20), pp.117–

134. Available at: <https://online-journals.org/index.php/i-

jim/article/view/17243>. 

Qian, Y., Dolan, J.M. and Yang, M., 2020. DLT-Net: Joint Detection of 

Drivable Areas, Lane Lines, and Traffic Objects. IEEE Transactions on 

Intelligent Transportation Systems, 21(11), pp.4670–4679. 

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2015. You Only Look 

Once: Unified, Real-Time Object Detection. [online] Available at: 

<https://arxiv.org/abs/1506.02640> [Accessed 16 Aug. 2021]. 

Redmon, J. and Farhadi, A., 2016. YOLO9000: Better, Faster, Stronger. 

[online] Available at: <http://arxiv.org/abs/1612.08242> [Accessed 16 Aug. 

2021]. 

Redmon, J. and Farhadi, A., 2018. YOLOv3: An Incremental Improvement. 

[online] Available at: <https://arxiv.org/abs/1804.02767> [Accessed 16 Aug. 

2021]. 

Reina, G.A., Gruzdev, A., Foley, P., Perepelkina, O., Sharma, M., Davidyuk, 

I., Trushkin, I., Radionov, M., Mokrov, A., Agapov, D., Martin, J., Edwards, 

B., Sheller, M.J., Pati, S., Moorthy, P.N., Wang, H.S.-H., Shah, P. and Bakas, 

S., 2021. OpenFL: An open-source framework for Federated Learning. CoRR, 

[online] abs/2105.0. Available at: <https://arxiv.org/abs/2105.06413>. 

Ruder, S., 2017. An Overview of Multi-Task Learning in Deep Neural 

Networks. CoRR, [online] abs/1706.0. Available at: 

<http://arxiv.org/abs/1706.05098>. 

Settles, B., 2010. Active Learning Literature Survey. [online] Madison. 

Available at: <https://burrsettles.com/pub/settles.activelearning.pdf>. 



70 

 

Sheller, M.J., Reina, G.A., Edwards, B., Martin, J. and Bakas, S., 2019. 

Multi-institutional deep learning modeling without sharing patient data: A 

feasibility study on brain tumor segmentation. Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 11383 LNCS, pp.92–104. 

Shi, J., Qu, X., Feng, Y. and Wang, C., 2021. A Vehicle Detection Method 

Based on Improved YOLOv3. In: 2021 IEEE 5th Advanced Information 

Technology, Electronic and Automation Control Conference (IAEAC). 

pp.2201–2207. 

Siqi, J., 2021. China floods: economic damage to livestock industry tops 

US$348 million, 6.4 million chickens dead. [online] China Macro Economy. 

Available at: <https://www.scmp.com/economy/china-

economy/article/3142889/chinese-floods-snarl-supply-chains-lead-and-

aluminium-

amid?module=perpetual_scroll&pgtype=article&campaign=3142889> 

[Accessed 30 Aug. 2021]. 

Stack Overflow, 2020. 2020 Stack Overflow Developer Survey. [online] 

Stack Overflow. Available at: 

<https://insights.stackoverflow.com/survey/2020#technology-other-

frameworks-libraries-and-tools-professional-developers3> [Accessed 20 Aug. 

2021]. 

TensorFlow, 2021a. Introduction to graphs and tf.function. [online] 

TensorFLow Core. Available at: 

<https://www.tensorflow.org/guide/intro_to_graphs> [Accessed 20 Jul. 2021]. 

TensorFlow, 2022. Frequently Asked Questions. [online] TensorFlow.org. 

Available at: <https://www.tensorflow.org/federated/faq> [Accessed 23 Feb. 

2022]. 

TensorFlow, 2022b. Post-training quantization. [online] TensorFLow For 

Mobile & Edge. Available at: 

<https://www.tensorflow.org/lite/performance/post_training_quantization> 

[Accessed 12 Mar. 2022]. 

TensorFlow, 2022c. TensorFlow Federated: Machine Learning on 

Decentralized Data. [online] TensorFlow.org. Available at: 

<https://www.tensorflow.org/federated> [Accessed 25 Feb. 2022]. 

United Nations Office for the Coordination of Humanitarian Affair, 2017. 

Five essentials for the first 72 hours of disaster response. [online] OCHA. 

Available at: <https://www.unocha.org/story/five-essentials-first-72-hours-

disaster-response> [Accessed 20 Aug. 2021]. 



71 

 

Wen, C., Zhang, H., Li, H., Li, H., Chen, J., Guo, H. and Cheng, S., 2020. 

Multi-scene citrus detection based on multi-task deep learning network. In: 

2020 IEEE International Conference on Systems, Man, and Cybernetics 

(SMC). pp.912–919. 

Xia, Q., Ye, W., Tao, Z., Wu, J. and Li, Q., 2021. A survey of federated 

learning for edge computing: Research problems and solutions. High-

Confidence Computing, [online] 1(1), p.100008. Available at: 

<https://www.sciencedirect.com/science/article/pii/S266729522100009X>. 

Xiong, Z., Cheng, Z., Xu, C., Lin, X., Liu, X., Wang, D., Luo, X., Zhang, Y., 

Qiao, N., Zheng, M. and Jiang, H., 2020. Facing small and biased data 

dilemma in drug discovery with federated learning. bioRxiv, [online] 

p.2020.03.19.998898. Available at: 

<http://biorxiv.org/content/early/2020/09/26/2020.03.19.998898.abstract>. 

Yrjänäinen, J., Ni, X., Adhikari, B. and Huttunen, H., 2020. Privacy-Aware 

Edge Computing System For People Tracking. In: 2020 IEEE International 

Conference on Image Processing (ICIP). pp.2096–2100. 

Zhang, N. and Fan, J., 2021. A lightweight object detection algorithm based 

on YOLOv3 for vehicle and pedestrian detection. In: 2021 IEEE Asia-Pacific 

Conference on Image Processing, Electronics and Computers (IPEC). 

pp.742–745. 

Zhang, W., Wang, K., Wang, Y., Yan, L. and Wang, F.-Y., 2021. A loss-

balanced multi-task model for simultaneous detection and segmentation. 

Neurocomputing, [online] 428, pp.65–78. Available at: 

<https://www.sciencedirect.com/science/article/pii/S0925231220318105>. 

Zhang, X., Li, N. and Zhang, R., 2021. An Improved Lightweight Network 

MobileNetv3 Based YOLOv3 for Pedestrian Detection. In: 2021 IEEE 

International Conference on Consumer Electronics and Computer 

Engineering (ICCECE). pp.114–118. 

Zheng, Z., Zhao, J. and Li, Y., 2021. Research on Detecting Bearing-Cover 

Defects Based on Improved YOLOv3. IEEE Access, 9, pp.10304–10315. 

 

 

 



72 

 

LIST OF PUBLICATIONS 

 

Tham, M.-L., Wong, Y.J., Kwan, B.H., Owada, Y., Sein, M.M. and Chang, 

Y.C., 2021. Joint Disaster Classification and Victim Detection using Multi-

Task Learning. In: 2021 IEEE 12th Annual Ubiquitous Computing, 

Electronics Mobile Communication Conference (UEMCON). pp.407–412. 


