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ABSTRACT 

 

The staining of haematoxylin and eosin (H&E) in histopathological samples 

leads to inconsistent colour and intensity variations among digital datasets, 

thus hindering the performance of deep learning computer-aided diagnostic 

(CAD) systems. One proposed technique to battle colour invariance among 

digitalised histopathological images is stain normalisation (SN), which 

adjusts the source image colour to match the overall colour distribution of 

other similar images in a dataset. Some studies claimed that SN techniques 

improved CNNs' performance in histopathological classification tasks, while 

several contradicted their claims. Therefore, we attempt to justify the 

importance of SN, specifically Reinhard and Macenko techniques in the 

invasive ductal carcinoma (IDC) grading application using seven selected 

CNN models: EfficientNetB0, EfficientNetV2B0-21k, ResNetV1-50, 

ResNetV2-50, MobileNetV1, and MobileNetV2. Our findings indicated that 

CNN models trained in the original (non-normalised) dataset outperformed 

models trained with SN datasets. Among the two SN techniques, the 

Reinhard average scores topped the Macenko across all evaluation metrics in 

cross validation (cv) and test results while being more consistent in 

performance. Hence, we suggest that SN is considered unnecessary to be 

included in the CNN pre-processing steps to improve CNN performance if 

effective CNN architectures are employed. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Breast cancer, within the vicinity of 2.3 million new cases in 2020, is among 

the most prevalent diagnosed cancers worldwide (Sung, et al., 2021). Breast 

cancer is diagnosed when the breast tissue cells proliferate uncontrollably and 

rapidly, producing a lump in a specific area (American Cancer Society, 2019). 

The most common type of breast cancer is invasive ductal carcinoma (IDC), 

accounting for more than 80 % of all occurrences (Sharma, et al., 2010). 

Early screening and detection are proven to be effective in preventing breast 

cancer (American Cancer Society, 2019). Therefore, one can screen through 

(1) mammography, (2) breast magnetic resonance imaging (MRI), and (3) 

breast ultrasound imaging. In a case where a suspicious lump is discovered, a 

biopsy is conducted to extract the tissue for further breast cancer analysis — 

breast cancer grading (IDC grading) (Rakha, et al., 2010). 

 

1.2 Importance of the Study 

IDC grading provides an insightful prognosis of a patient’s breast cancer 

condition (Rakha, et al., 2010). IDC grading is one of the primary three 

prognostic factors affecting breast cancer treatment, with lymph node (LN) 

condition and tumour size (Shea, Koh and Tan, 2020). Henson, et al. (1991) 

demonstrated that the prediction accuracy for clinical outcomes improved 

when both IDC grade and LN condition were utilised together. Frkovic-

Grazio and Bracko (2002) showed that the IDC grade predicted tumour 

behaviour accurately, especially for early small tumours. Schwartz, et al. 

(2014) showed that high-grade IDC patients who underwent mastectomy 

suffered higher mortality rates and axillary LN frequency than lower grade 

patients. Hence, the IDC grade plays a crucial role in determining breast 

cancer outcomes. 

Pathologists evaluate IDC grades based on the Nottingham Grading 

Scheme (NGS). The NGS criteria include three IDC morphological 

features:(1) mitotic count (number of tumour cells that are proliferating), (2) 
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nuclear pleomorphism (overall appearance of the tumour cell), and (3) degree 

of tubule formation (how well the tumour cells reproduce normal glands) 

(Rakha, et al., 2010). These criteria produce a summation score which is 

categorised to form grades (Grade 1 to 3), indicating the aggressiveness of 

the tumour (A lower grade cancer indicates a less aggressive tumour, while a 

higher grade suggests a more active tumour (Johns Hopkins University, 

2021).  

 

1.3 Problem Statement 

Manual IDC grading stays as the benchmark for IDC diagnosis currently. 

However, manual IDC grading is time-consuming and tedious. Manual IDC 

grading also suffers from high intra- and inter-observation variations among 

pathologists (He, et al., 2012), with only 75.3 % general agreement (Elmore, 

et al., 2015). Therefore, computer-aided diagnostic (CAD) systems in 

histopathological images have developed recently, attempting to overcome 

the limitations of manual IDC grading (Priego-Torres, et al., 2020). 

CAD systems are proven that can reduce interobserver variability 

while improving efficiency in the automated analysis of histopathological 

images (Araujo, et al., 2017; Ramadan, 2020). Throughout the years, IDC 

grading CAD systems have developed from a combination of handcrafted 

feature extraction methods (Dalle, et al., 2008; Doyle, et al., 2008; Naik, et al., 

2008; Basavanhally, et al., 2013; Dimitropoulos, et al., 2017) to deep learning 

techniques (Wan, et al., 2017; Abdelli, et al., 2020; Li, et al., 2020; Yan, et al., 

2020; Senousy, et al., 2021; Zavareh, Safayari and Bolhasani, 2021).  

In order to generate digital histopathological images for CAD systems, 

pathologists are required to prepare the histopathological slides with the 

following procedures: (1) breast cancer tissue collection, (2) formalin fixation, 

(3) paraffin section embedment, (4) staining with haematoxylin and eosin 

(H&E) (Mccann, 2015; McCann, et al., 2015). Finally, the slides are digitised 

using the Whole Slide Imaging (WSI) methods (Ghaznavi, et al., 2013). The 

H&E staining technique, a standard staining protocol, highlights the cell 

nuclei in blue colour (haematoxylin) while other components (cytoplasm and 

connective tissues) with different pink variations (eosin) (Tellez, et al., 2019). 
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Nevertheless, H&E images show overlapping regions in the 

absorption spectrums of multiple stains. As a result, RGB colour transfer can 

result in undesired colour mixing of the resultant image attributed to the 

correlation in each colour channel (Ruifrok and Johnston, 2001). Additionally, 

other factors such as the temperature of the staining solutions, fixation 

characteristics, imaging device characteristics (Bautista, Hashimoto and Yagi, 

2014; Bejnordi, et al., 2016), and slide digitisation conditions (variation in 

light sources, detectors, or optics) (Veta, et al., 2014) may lead to colour and 

intensity variation in histopathological images.  

Colour variation among digital histopathological images poses a 

concern in deep learning CAD systems (Zanjani, et al., 2018). The colour 

difference may negatively affect the model training process (Guo, et al., 

2018). Moreover, colour inconsistency in histopathological images may lead 

to misdiagnosis of malignant cells, as colour facilitates cancer cell detection 

(Roy, Lal and Kini, 2019). Many advanced deep learning approaches trained 

with images originating from a source tend to underperform if images from 

different origins are applied (Goodfellow, et al., 2014; Komura and Ishikawa, 

2018; Veta, et al., 2019). Hence, different methods (grayscale and stain 

normalisations (SN)) are introduced in an attempt to address colour variation 

in digital histopathological images. 

In order to overcome the colour invariance in digital histopathological 

images, two types of methods have been proposed: (1) converting images 

into grayscale using different techniques (Hamilton, et al., 1987; Ruiz, et al., 

2007; Qureshi, et al., 2008); and (2) standardising images with stain 

normalisation (SN) techniques (Reinhard, et al., 2001; Macenko, et al., 2009; 

Bejnordi, et al., 2016; Zanjani, et al., 2018; Lakshmanan, Anand and Jenitha, 

2019; Roy, Lal and Kini, 2019; Stanisavljevic, et al., 2019; Lei, et al., 2020). 

The first solution (grayscale method) provides the average concentration of 

the tissue constituents but ignores each of their relative amounts and the 

colour information. Thus, the method is considered infeasible as colour 

information is proven to be valuable in medical diagnostics (Gupta, et al., 

2017; Zanjani, et al., 2018). The second SN approach employs colour 

modelling to modify the colour of the original image to match the overall 

colour distribution of other comparable images with or without a template 
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image (Khan, et al., 2014). There are two types of SN methods based on their 

stain feature extraction techniques: (1) conventional SN methods (Reinhard, 

et al., 2001; Macenko, et al., 2009; Khan, et al., 2014; Vahadane, et al., 2016) 

and (2) deep learning-based SN methods (Zanjani, et al., 2018; Shaban, et al., 

2019; Lei, et al., 2020; Kang, et al., 2021). 

Despite the claimed benefits, some contradictions are found among 

the literature. Several studies demonstrated that deep learning-based CAD 

systems, such as the convolutional neural network (CNN), improved when 

SN techniques were incorporated (Ruifrok and Johnston, 2001; Bejnordi, et 

al., 2016; Ciompi, et al., 2017; Stanisavljevic, et al., 2019; Munien and Viriri, 

2021). For instance, the accuracy of the CNN in classifying H&E-stained 

colorectal cancer images improved by 20 % when SN was applied (Ciompi, 

et al., 2017). In addition, the performance of EfficientNets in classifying the 

ICIAR2018 dataset (Aresta, et al., 2019) improved when SN algorithms were 

employed during the pre-processing stage (Munien and Viriri, 2021). 

Furthermore, the CNN accuracy in detecting prostate cancer improved when 

the SN technique was incorporated into the CNN pre-processing steps 

(Stanisavljevic, et al., 2019). However, other studies (Gupta, et al., 2017; 

Telle,z et al., 2019) contradicted the importance of SN. For example, Tellez 

et al. (2019) claimed that SN is unnecessary to achieve high performance in 

histopathological image classification; the authors failed to find any 

substantial performance differences between SN styles but surpassed the 

greyscale performance. In addition, Gupta, et al. (2017) concluded that 

employing effective features and classifiers can obviate the need for SN. 

Therefore, we attempt to justify the importance of SN in the classification of 

digitalised histopathological images. To the best of our knowledge, we have 

yet to discover the study of the significance of SN, namely Macenko 

(Macenko, et al., 2009) and Reinhard (Reinhard, et al., 2001) SN methods in 

IDC grading application using CNN. Hence, we aim to fill the knowledge 

gap by providing our findings on the effectiveness of SN methods on 

automated IDC grading applications with different types of CNN 

architectures, from simple low-weight CNNs to complex heavy-weight CNNs. 
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1.4 Aim and Objectives 

This study investigates the importance of SN, specifically Macenko and 

Reinhard techniques in IDC grading with histopathological images using 

CNN. The objectives are listed below: 

i. To validate the role of Macenko and Reinhard techniques in IDC 

grading application with the publicly available breast cancer grading 

dataset – Four Breast Cancer Grades (FBCG) Dataset (Abdelli, et al., 

2020). 

ii. To perform performance analysis on the seven CNN architectures 

trained with histopathological images with and without SN. 

 

1.5 Scope and Limitation of the Study 

This study explored seven types of CNN architectures (EfficientNetB0, 

EfficientNetV2B0, EfficientNetV2B0-21k, ResNetV1-50, ResNetV2-50, 

MobileNetV1, and MobileNetV2) to study the importance of SN, namely 

Reinhard and Macenko SN methods in the automated IDC grading 

application (see Figure 1.1). Conventional SN methods (Reinhard and 

Macenko) were included in the CNN pre-processing pipeline, attributable to 

their wide availability and ease of use. It is acknowledged that conventional 

SN methods depend on one reference image and may not accurately achieve 

the style transformation between image datasets (Kang, et al., 2021). Thus, 

three template images were selected to mitigate this issue. The deep learning-

based SN techniques (Zanjani, et al., 2018; Shaban, et al., 2019; Lei, et al., 

2020; Kang, et al., 2021) were disregarded due to their robustness, high 

computational cost, and not being widely available (Kang, et al., 2021). For 

CNN, the transfer learning technique was adopted to utilise pre-trained 

TensorFlow 2 (TF2) saved CNNs from TensorFlow Hub for image feature 

extraction. The saved CNNs were trained on the ImageNet dataset. Next, our 

proposed method was applied to the Four-Breast-Cancer-Grades (FBCG) 

dataset. It is important to note that our work was performed without fine-

tuning the pre-trained CNN architectures. 
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Original 

(Without SN) 
  

 (a) (b) 

Template 

  
 (c) (d) 

Macenko  

    
 (e) (f) (g) (h) 

Reinhard  

    
 (i) (j) (k) (l) 

Figure 1.1: Illustration of Images after Macenko and Reinhard Techniques 

applied to 2 Randomly Selected Images (H&E stained) IDC 

Histopathological Images (noted that the choice of template 

image only alters the colour of the original images). (a) 

Randomly selected H&E stained Image 1; (b) Randomly selected 

H&E stained Image 2; (c) Randomly selected Template 1 (d) 

Randomly selected Template 2; (e) Macenko-normalised Image 1 

using Template 1; (f) Macenko-normalised Image 2 using 

Template 1; (g) Macenko-normalised Image 1 using Template 2; 

(h) Macenko-normalised Image 2 using Template 2; (i) Reinhard-

normalised Image 1 using Template 1; (j) Reinhard-normalised 

Image 2 using Template 1; (k) Reinhard-normalised Image 1 

using Template 2; (l) Reinhard-normalised Image 2 using 

Template 2. 
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1.6 Contribution of the Study 

Two journals related to this topic were successfully submited throughout the 

project journey. The first journal is titled: "The Breast Cancer 

Histopathological Images Grading Classification using Convolutional Neural 

Network Models: A Comparative Study". This journal has received its first 

revision from Scientific Report, and it is resubmitted currently. The paper 

source code is available through this link: 

https://github.com/wingatesv/IDCGradingTask.git. The second journal, titled: 

"Is Stain Normalisation Important in Breast Invasive Ductal Carcinoma 

Grading?" is submitted to the Computer Methods and Programs in 

Biomedicine, awaiting further review. The paper source code is available at 

this link: https://github.com/wingatesv/StainNormalisationIDCGrading.git. 

Most importantly, this project won first place in the 2nd IEEE 5 Minutes FYP 

Competition in 2021. The presentation video is available at this link: 

https://youtu.be/TnQW-j8xfuw?t=8661. The contributions of this study are 

summarised as below: 

i. This study investigated the importance of SN methods (Macenko and 

Reinhard) with seven CNN architectures on the IDC grading 

application. 

ii. This study found that selecting the right template image may not 

necessarily improve the performance of CNN models if ineffective 

SN is employed. 

iii. This study found that SN may be unnecessary to be included in the 

CNN pre-processing step to improve CNN performance if the 

effective CNN architecture is used. 

 

1.7 Outline of the Report 

This report is structured as follows: In Chapter 2, the development of 

automated IDC grading systems, the development of SN methods and the SN 

techniques employed in various breast cancer histopathological images 

classification tasks are reviewed. Chapter 3 describes the dataset and 

methodology employed in the study. Chapter 4 presents the findings and 

results obtained from the experimentations. Finally, Chapter 5 concludes the 

findings and presents the future works for the study. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This section reviews the development of automated IDC grading applications 

and SN methods throughout the years. The SN techniques can be divided into 

two categories: (1) conventional and (2) deep learning-based approaches. 

Next, this section presents the SN techniques employed in various breast 

cancer histopathological images classification tasks. 

 

2.2 Automated IDC Grading Systems 

This section provides the evolution of automated IDC grading systems from 

traditional feature extraction techniques to deep learning CNN approaches. 

For instance, Doyle, et al. (2008) presented an automated quantitative image 

analysis technique based on spectral clustering and image attributes from the 

textural and architectural domains. Before conducting spectral clustering, the 

textural and architectural characteristics from the images were calculated to 

minimise the feature set's dimensionality. The technique achieved 93.3 % 

accuracy (low vs high IDC grade) when all architectural factors were 

incorporated. Basavanhally, et al. (2013) presented a multi-field-of-view 

(multi-FOV) structure for grading ER+ breast cancers using entire 

histopathology slides. The authors employed a multi-FOV classification 

model that can incorporate image characteristics from considerable different 

sizes of FOVs to predict the breast cancer grade automatically. The approach 

achieved area under curve (AUC) values of 0.93 (low vs high IDC grades), 

0.72 (low vs intermediate IDC grade), and 0.74 (intermediate vs high grades). 

Dimitropoulos, et al. (2017) presented an automated IDC grading approach 

by encoding histological images as Grassmann manifold-based Vector of 

Locally Aggregated Descriptors (VLAD) representations. A new medium-

sized breast cancer grading dataset (refer to Breast Cancer Grading (BCG) 

Dataset onwards) (Zioga, et al., 2017) was created for this study. The study 

outcome showed that the proposed method achieved an average classification 

accuracy of 95.8 % when using an overlapping patch size 8x8 strategy. 
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Nevertheless, these methods are highly feature-based, suffer from high 

computational power, and lack heuristics for feature extraction (Senousy, et 

al., 2021). Hence, recent automated IDC grading studies have shifted their 

techniques towards deep learning (Wan, et al., 2017; Pan, et al., 2020; Yan, et 

al., 2020; Senousy, et al., 2021). 

In automated IDC grading systems, deep learning techniques, 

particularly CNNs, have become more prevalent (Li, et al., 2020; Yan, et al., 

2020; Senousy, et al., 2021). For example, Senousy, et al. (2021) proposed an 

Entropy-Based Elastic Ensemble of deep CNN models (3E-Net) for breast 

cancer grading. From the study, the authors utilised multiple CNNs and an 

ensemble-based uncertainty-measure component to determine the most 

certain image-wise models for the final breast cancer grading. The proposed 

models achieved grading accuracy of 96.15 % and 99.50 %, respectively. 

Despite the success, CNN approaches require much computational power and 

are more complicated than transfer learning. On the other hand, transfer 

learning enhances performance by transferring knowledge to a target domain 

from a source domain (Xu and Dong, 2020). Additionally, transfer learning 

can reduce time consumption in CNN model training and circumvent the 

problem of small datasets (Pan and Yang, 2010). The work of Zavareh, 

Safayari and Bolhasani (2021) employed transfer learning (BCNet) to 

classify the Databiox (Bolhasani, et al., 2020). The BCNet utilised the 

VGG16 to extract image features, achieving 88 % validation and 72 % test 

accuracies in the IDC grading task. Similarly, Abdelli, et al. (2020) devised 

transfer learning to grade breast cancer using two different CNNs. In the 

three-breast cancer grade dataset, the MobileNetV1 achieved 93.48 % 

accuracy, while the ResNetV1-50 achieved 92.39 % accuracy. Additionally, 

the authors developed a novel dataset strategy (Four-Breast-Cancer-Grades 

(FBCG) Dataset) by combining the BCG dataset (Zioga, et al., 2017)  and 

BreaKHis (Spanhol, et al., 2016). The study outcome showed that both 

models performed better on the FBCG dataset than on the original 

(ResNetV1-50: 97.03 % and MobileNetV1: 94.42 %). Therefore, transfer 

learning with CNN is proposed to be employed in our study. 
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2.3 Conventional Stain Normalisation Techniques 

Conventional SN methods primarily entail analysing, converting, and 

matching colour components in histopathological images (Kang, et al., 2021). 

For instance, the SN method proposed by Reinhard, et al. (2001) (refer to 

Reinhard onwards) standardises images by matching the source image’s 

statistical colour properties with a template image. Essentially, Reinhard 

transfers the background colour from the template image to the source images 

while maintaining other colour intensity information. The authors employed a 

group of linear transformations, aligning to each CIELAB colour model 

channel to achieve a unimodal distribution based on the template image. The 

main drawback of Reinhard assumes that the source and reference images 

should have identical statistics, which is unlikely for the unique texture 

property found in each histopathological image (Roy, Lal and Kini, 2019). 

Macenko, et al. (2009) devised a stain separation method (refer to 

Macenko onwards) that automatically locates pixel distribution's fringe in the 

optical density space. The Macenko mainly comprises three processes: (1) 

employs the single value decomposition (SVD) to form a plane with the two 

most significant singular values, (2) projects information to this plane to find 

the corresponding angles, (3) estimates the stain colour matrix with the 

maximum and minimum angles for robust stain normalisation. However, the 

Macenko may generate a poor estimation of the stain vectors in the presence 

of substantial staining variations (Bejnordi, et al., 2016). 

Khan, et al. (2014) conceived a stain normalisation method (refer to 

Khan onwards) based on the non-linear projection of a source image to a 

target image using a colour deconvolution representation. First, the stain 

colour is identified using the Stain Colour Descriptor (SCD). Secondly, a 

supervised colour classification technique (Relevance Vector Machine) is 

utilised to determine the position of each present stainThen, these sets of 

classified pixels estimate the colour formation matrix and stain depth matrix. 

Likewise, a non-linear spline-based colour normalisation technique is utilised 

to transform colour to the source image from the target image locally. 

According to Roy, Lal and Kini (2019), Khan may not entirely maintain the 

source image histogram structure in the output attributable to the non-linear 

function. 
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Vahadane, et al. (2016) presented the structure-preserving colour 

normalisation (SPCN) method (refer to Vahadane onwards), which 

deconstructed images into sparse and non-negative stain density maps. Based 

on the colour of a selected template image, the stain density maps are 

integrated, changing the colour while maintaining the structure of the source 

image. The solution space is reduced with the sparse non-negative matrix 

factorisation (SNMF). Nevertheless, the computation complexity for 

decreasing the solution space has increased extensively, causing local minima 

approximation instead of global minima. According to Roy, Lal and Kini 

(2019), the Vahadane may not preserve the colour variation since only the 

stain depth matrix was preserved in their study. 

Bejnordi, et al. (2016) developed a method known as the whole-slide 

image colour standardiser (WSICS), which utilises colour and spatial 

information to categorise the image pixels into distinct stain elements. The 

chromatic and density distributions of the stain elements in the hue-

saturation-density (HSD) colour model are adjusted to fit the template image 

distribution. WSICS entails six stages: (1) applies HSD conversion; (2) 

extracts the H&E and background classes automatically from the image while 

emanating their chromatic and density distributions; (3) alters the 2D 

chromatic distribution for the dye classes to fit the chromatic distribution of 

the associated class from a reference image; (4) converts the density 

distribution for the dye classes to fit the density distribution of the associated 

class from a reference image; (5) weights the contribution of stains for the 

pixels and acquiring final chromatic and density conversions; (6) applies 

inverse HSD conversion. 

Roy, Lal and Kini (2019) devised a fuzzy-based modified Reinhard 

(FMR) colour normalisation approach to control colour coefficients and 

enhance the contrast of histopathology images. The authors employed fuzzy 

logic to address the constraints of Reinhard: (1) failed to preserve the 

background luminance of the source image in the processed image; (2) 

caused a lower contrast in the processed image when the source image 

exhibited higher contrast than the template image; (3) caused colour fade due 

to the transfer of mean colour across all pixels in the image. 
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Most SN methods (Reinhard, et al., 2001; Macenko, et al., 2009; 

Khan, et al., 2014; Vahadane, et al., 2016) depend on a template image to 

approximate stain patterns. Nonetheless, a single template image poses a 

challenge in including all staining patterns or portraying all input images. As 

a result, reference image dependency may cause faulty approximation of stain 

patterns, thus delivering imprecise results (Zhou, et al., 2019; Zheng, et al., 

2021). 

 

2.4 Deep Learning-Based Stain Normalisation Techniques 

Recently, deep learning-based SN methods have been developed to improve 

the accuracy of SN without any reference image dependency (Zanjani, et al., 

2018; Shaban, et al., 2019; Lei, et al., 2020; Kang, et al., 2021). Zanjani et al. 

(2018) proposed a new SN method using generative adversarial networks 

(GANs) to learn the image structures and their association to their colour 

features. The approach leverages CNNs for non-linear estimation of image 

distribution in a chromatic space, aligning the colour distribution between 

source and target image without using statistical properties of the covariance 

matrix in the chromatic plane. Attributable to the low assumptions of the 

H&E images attributes, the model is applicable to different types of 

histopathological images.  

Shaban, et al. (2019) presented a deep learning-based unsupervised 

SN approach (StainGAN) based on CycleGAN (Zhu, et al., 2017) to convert 

the stain style without needing a reference image. The StainGAN can transfer 

the H&E stain distribution between different locations without the necessity 

for paired data from both domains. The StainGAN comprises two generator 

and discriminator pairs, mapping the images to a domain and then to another 

domain to maintain image structure. Finally, a similar process is repeated in 

the reverse direction. 

Lei, et al. (2020) presented a deep learning-based SN method 

(StainCNNs) to speed up the SPCN stain feature evaluation using deep 

learning. With the TensorFlow framework, the StainCNNs can facilitate the 

stain feature extraction process while implying a GPU-enabled realisation to 

increase the learning rate of stain features. Based on the result, the 

StainCNNs can normalise the whole dataset more efficiently than the SPCN 
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method, which disregards the stain feature distribution in the dataset. 

However, the StainCNNs assume that the global stain colour distribution of 

an image is uniform, which may be false in some conditions in 

histopathological images. 

Kang, et al. (2021) designed a new fast and robust deep learning-

based SN method (StainNet) to maintain the colour distribution between the 

source and template images using the distillation learning that can decrease 

the sophistication of existing deep learning-based SN methods. Without 

needing a hand-picked reference image, the StainNet can learn the colour 

distribution from a dataset while modifying the pixel-by-pixel colour value 

accordingly. The StainNet ensures small size while preventing artefacts in 

stain conversion. The authors claimed that the StainNet outperformed the 

StainGAN (Shaban, et al., 2019) by forty times while retaining the source 

information better and without producing any artefacts.  

Compared to conventional SN methods (Reinhard, et al., 2001; 

Macenko, et al., 2009; Khan, et al., 2014; Bejnordi, et al., 2016; Vahadane, et 

al., 2016; Roy, Lal and Kini, 2019), deep learning-based SN methods 

(Zanjani, et al., 2018; Shaban, et al., 2019; Lei, et al., 2020; Kang, et al., 2021) 

may be outstanding in normalising colour components in histopathological 

images. However, they tend to suffer from high robustness and computational 

efficiency. Likewise, the deep learning-based SN methods are usually heavy-

weighted, thus, requiring high-computing resources (Zheng, et al., 2021). In 

addition, It is found that the recently proposed StainNet lacks empirical 

studies to justify its claim. Therefore, this study proposed to employ the 

conventional SN methods (Reinhard and Macenko) to investigate the 

importance of SN in IDC grading applications. The reason this study utilises 

Macenko, and Reinhard SN methods lie in two folds: (1) publicly available in 

the python package — StainTools (Byfield, 2020); and (2) well-established 

among breast cancer histopathology studies (Araujo, et al., 2017; Wan, et al., 

2017; Nawaz, et al., 2018; Vesal, et al., 2018; Kassani, et al., 2019; Vo, 

Nguyen and Lee, 2019; Munien and Viriri, 2021). 

 



14 

2.5 Breast Cancer Histopathological Images Classifications Studies 

with Stain Normalisation 

This section provides studies that utilise SN techniques in breast cancer 

histopathological images classification tasks. Araujo, et al. (2017) employed 

CNN (as a feature extractor) with a support vector machine (SVM) classifier 

to classify the Bioimaging 2015 dataset (Pêgo and Aguiar, 2015). Based on 

the result, the method achieved 77.8 % accuracy in the 4-class and 80.6 % in 

the 2-class classification tasks. The authors utilised the Macenko method to 

normalise the dataset before model training. Wan, et al. (2017) proposed an 

automated IDC grading method by combining multi-level image features. 

The authors utilised the Khan SN method before performing nuclei 

segmentation. The multi-level features extract structural information for 

accurate cancer morphological classification while cascaded ensembles lower 

computational costs. The method achieved 92 % accuracy (low vs high 

grades), 77 % (low vs intermediate grades), 76 % (intermediate vs high 

grades), and 69 % (low vs intermediate vs high grades). 

Likewise, Vo, Nguyen and Lee (2019) developed a hybrid of an 

ensemble of CNNs and gradient boosting tree classifiers (GBTCs) to classify 

the Bioimaging 2015 dataset. After pre-processing the dataset with Macenko, 

three CNNs (Inception-ResNet-v2) were employed to extract visual features 

and then fed into GBTCs. After merging the GBTCs results with majority 

voting, the method achieved 96.4 % for the 4-class and 99.5 % for the 2-class 

classification tasks. The approach taken by Vesal, et al. (2018) proposed to 

employ transfer learning with Inception-V3 and ResNet50 to classify the 

ICIAR2018 dataset (Aresta, et al., 2019). The Reinhard SN technique was 

employed to normalise the dataset prior to model training. The ResNet50 

outperformed the Inception-V3 CNN with 94 % accuracy in the classification 

task. Similarly, Kassani, et al. (2019) conducted classification tasks on the 

ICIAR2018 dataset (Aresta, et al., 2019) using transfer learning with five 

different CNNs (Inception-ResNet-V2, Xception, Inception-V3, VGG16, and 

VGG19). Simultaneously, Macenko and Reinhard SN methods were 

deployed to study the effect of SN. The result illustrated that the modified 

Xception CNN trained with Reinhard SN images achieved the highest 

accuracy (94 %) among other CNNs. From the study, the Reinhard method 
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outperformed the Macenko SN method. Nevertheless, It was discovered that 

these five studies (Araujo, et al., 2017; Kassani, et al., 2019; Wan, et al., 2017; 

Vesal, et al., 2018; Vo, Nguyen and Lee, 2019) only employed the SN 

techniques without observing the performance outcome with the original 

(non-normalised) dataset. 

The following studies have included the performance comparison 

between CNNs trained with original and SN datasets. Nawaz, et al. (2018) 

leveraged the power of transfer learning to classify the ICIAR2018 dataset 

(Aresta, et al., 2019) using a fine-tuned AlexNet. The method scored 81.25 % 

on validation accuracy and 57 % on test accuracy. Interestingly, the authors 

discovered an improvement in the Macenko-normalised dataset compared to 

the original (non-normalised) dataset. Similarly, Munien and Viriri (2021) 

proposed classifying the ICIAR2018 dataset (Aresta et al., 2019) by 

leveraging transfer learning with seven EfficientNets. In the study, the 

authors measured the impact of Reinhard and Macenko SN techniques on the 

performance of the EfficientNets in the classification task. The study 

outcome showed that the EfficienNet-B2 achieved the highest result (98.33 %) 

with the Reinhard SN method among the Macenko SN method (96.67 %) and 

the original dataset (95.3 %). The study concluded that Macenko and 

Reinhard SN methods were beneficial in improving the performance of the 

EfficienNets in classifying the ICIAR2018 dataset. Therefore, it was found 

that the outcomes of these studies (Nawaz, et al., 2018; Kassani, et al., 2019; 

Munien and Viriri, 2021) emphasised the advantage of incorporating SN 

before CNN model training. 

However, some contradictions were found in the literature regarding 

the claimed benefit of SN. Tellez, et al. (2019) investigated the effects of 

stain normalisation with different histological datasets, including the 

Camelyon17 Challenge dataset (Bándi, et al., 2019). The authors employed 

greyscale, Macenko and Bejnordi SN methods with a custom CNN to 

perform the classification task. The result showed that the SN is unnecessary 

to achieve high performance in histopathological image classification. 

Additionally, the authors failed to find any substantial performance 

differences between SN methods but surpassed the greyscale performance. 

Gupta, et al. (2017) attempted to answer the question: "Is SN important?" by 
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proposing to classify the BreaKHis (Spanhol, et al., 2016) with grayscale, 

colour information and Reinhard SN methods. Different texture descriptors 

and contemporary classifiers were utilised for the classification task. When 

using colour information (with or without SN), the performance is superior to 

using grey level information, thus, highlighting the importance of colour in 

classification. However, with effective features and classifiers, the need for 

SN may be obviated. It was realised that the importance of SN in CNN 

applications lacks definite justification. Furthermore, the study on the effect 

of SN in automated IDC grading applications is even lacking. Therefore, this 

study aims to fill the knowledge gap by providing our findings on the 

effectiveness of SN methods (Reinhard and Macenko) on automated IDC 

grading applications with different types of CNN architectures. 

 

2.6 Summary 

Early works of automated IDC grading applications suffered from high 

computational power, were highly feature dependent and lacked feature 

extraction heuristics. On the other hand, deep learning, specifically transfer 

learning, has spurred in the breast cancer histopathology field, thanks to its 

benefits (time-saving, improved performance and circumventing small 

datasets issues.) (Pan and Yang, 2010). Therefore, this study proposed to 

employ transfer learning. The details of these works are summarised in Table 

2.1. 

Among various SN techniques, deep learning-based SN methods may 

outperform conventional SN methods in normalising colour components in 

histopathological images. However, deep learning-based SN methods may be 

susceptible to high complexity and low computational efficiency. The details 

of these works are summarised in Table 2.2. Therefore, this study proposed to 

employ the conventional SN methods (Reinhard and Macenko) to investigate 

the importance of SN in IDC grading applications, owing to two benefits: (1) 

publicly available in the python package — StainTools (Byfield, 2020); and 

(2) well-established among breast cancer histopathology studies (Araujo, et 

al., 2017; Wan, et al., 2017; Nawaz, et al., 2018; Vesal, et al., 2018; Kassani, 

et al., 2019; Vo, Nguyen and Lee, 2019; Munien and Viriri, 2021).  
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After reviewing several studies that include SN techniques in breast 

cancer histopathological images classification tasks, It was realised that the 

importance of SN in CNN applications lacks definite justification attributable 

to the contradiction found in the literature. The details of the literature are 

summarised in Table 2.3. Moreover, this study has yet to discover the study 

of the effect of SN, namely Reinhard and Macenko SN methods, in the IDC 

grading application using CNN. Therefore, This study intends to investigate 

the effect of SN methods (Reinhard and Macenko) on automated IDC grading 

applications with different types of CNN architectures. 
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Table 2.1: Summary of the Development of Automated IDC Grading Applications. 

Reference Method Dataset Result 

(Doyle, et al., 2008) Spectral clustering with image textural and architecture 
features 
 

Custom 93.3 % accuracy with all 
architecture features 

(Basavanhally, et al., 
2013) 

Multi field-of-view (multi-FOV) classifier Custom AUC values: 
0.93 (low vs high grades), 
0.72 (low vs intermediate 
grades), 
0.74 (intermediate vs high 
grades) 
 

(Dimitropoulos, et al., 
2017) 

Grassmann manifold (Spanhol, et al., 2016; 
Zioga ,et al., 2017) 

95.8 % accuracy (overlapping) 
patch size 8x8 strategy 
 

(Senousy, et al., 2021) Deep learning with automatic feature extraction. 
Entropy-Based Elastic Ensemble of deep convolutional 
network (CNN) models (3E-Net) for breast cancer 
grading 

(Spanhol, et al., 2016; 
Zioga, et al., 2017) 

3E-Net (Version 
A): 96.15 % accuracy 
3E-Net (Version 
B):  99.50 % 
 

(Zavareh, Safayari and 
Bolhasani, 2021) 

Transfer learning (feature extraction) with VGG16 (Bolhasani, et al., 
2020) 

88 % validation accuracy 
72 % test accuracy 
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Table 2.1 (Continued) 

(Abdelli, et al., 2020) Transfer learning (feature extraction) using ResNetV1-50 
and MobileNetV1 

(Spanhol, et al., 2016; 
Zioga, et al., 2017) 

FBCG dataset: 
97.03 % accuracy (ResNet50), 
94.42 % accuracy 
(MobileNet) 
 
BCG dataset: 
92.39 % accuracy (ResNet50), 
93.48 % accuracy 
(MobileNet) 
 

 

Table 2.2: Summary of Stain Normalisation Methods over the Years. 

Reference Type Stain Normalisation Method 

(Reinhard, et al., 
2001) 

Conventional Reinhard Standardises images by aligning the statistical colour 
distribution (mean and standard deviation) of the source 
images (CIELAB model channel) with a template image. 
 

(Macenko, et al., 
2009) 

Conventional Macenko Automatically locates pixel distribution's fringe in the 
optical density space. 
 

(Khan, et al., 2014) Conventional Khan Utilise non-linear mapping of a source image to a target 
image using a colour deconvolution representation. 
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Table 2.2 (Continued) 

(Vahadane, et al., 
2016) 

Conventional Vahadane Uses SPCN to deconstruct images into stain density 
maps with SNMF. 
 

(Bejnordi, et al., 
2016) 

Conventional Whole-Slide Image Colour 
Standardiser (WSICS) 

Utilises colour and spatial information to categorise the 
image pixels into distinct stain elements, then adjusting 
the chromatic and density distributions for the stain 
components in the HSD colour model to fit the 
associated distributions from a template image. 
 

(Roy, Lal and Kini, 
2019) 

Conventional Fuzzy-Based Modified Reinhard 
(FMR) 

Utilised fuzzy logic to overcome the limitations of 
Reinhard by controlling colour coefficients and 
enhancing the contrast of images. 
 

(Zanjani, et al., 
2018) 

Deep learning Generative Adversarial 
Networks (GANs) 

Based on GANs to learn the image structures and their 
relation to their colour attributes for non-linear 
approximation of image data distribution over chromatic 
space without relying on statistics of the covariance 
matrix in a chromatic plane. 
 

(Shaban, et al., 2019) Deep learning StainGAN Based on CycleGAN (Zhu et al., 2017) which comprises 
two generator and discriminator pairs, maps images to a 
domain and then to another domain to ensure structure 
constancy. 
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Table 2.2 (Continued) 

(Lei, et al., 2020) Deep learning StainCNNs Simplify the stain feature extraction in the SPCN 
method while utilising a GPU-enabled realisation to 
increase the stain features learning rate. 
 

(Kang, et al., 2021) Deep learning StainNet Uses the distillation learning to retain the colour 
distribution between the source and target images.  
 

 

Table 2.3: Review of Breast Cancer Histopathological Studies that employed Stain Normalisation Methods. 

Reference SN Method Method Dataset Result 

(Araujo, et al., 
2017) 

Macenko CNN with SVM classifiers (Pêgo and 
Aguiar, 2015) 

4-class: 77.8 % 
2-class: 80.6 % 
 
Did not study the effect of SN. 
 

(Wan, et al., 
2017) 

Khan Deep learning with manual feature 
extraction. 
 
Cascaded ensemble method with 
multi-level image features 
combination (pixel, object, 
semantic) 
 

Custom  92 % (low vs high) 
 77 % (low vs intermediate) 
 76 % (intermediate vs high) 
 69 % (overall) 
 
 Did not study the effect of SN. 
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Table 2.3 (Continued) 

(Vo, Nguyen and 
Lee, 2019) 

Macenko Ensemble CNNs (three Inception-
ResNet-V2) with GBTCs 
 

(Pêgo and 
Aguiar, 2015) 

4-class: 96.4 % 
2-class: 99.5 % 
 
Did not study the effect of SN. 
 

(Vesal, et al., 
2018) 

Reinhard Transfer learning with Inception-V3 
and ResNet-50 
 

(Aresta, et al., 
2019) 

ResNet50: 97.50 % 

Inception-V3: 91.25 % 

Did not observe the outcome of non-
normalised dataset. 
 

(Kassani, et al., 
2019) 

Reinhard and Macenko Transfer learning with VGG16, 
VGG19, Inception-Resnet-V2, 
Xception and Inception-V3 
 

(Aresta, et al., 
2019) 

Best Model: Xception (94 %) with 
Reinhard SN technique. 

Dataset with Reinhard SN generated 
higher accuracy than the dataset with 
Macenko SN. 

Did not investigate the accuracy of 
non-normalised dataset. 
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Table 2.3 (Continued) 

(Nawaz et al., 
2018) 

Mecenko Transfer learning with AlexNet (Aresta, et al., 
2019) 

Validation accuracy: 81.25 %  

Test accuracy: 57 % 

Performance improvement in the 
model trained in Macenko-normalised 
dataset compared to the original (non-
normalised) dataset. 

 
(Munien and 
Viriri, 2021) 

Reinhard and Macenko Transfer learning with seven 
EfficienNets 

(Aresta, et al., 
2019) 

EfficientNetB2 
Reinhard (98.33 %) 
 
EfficientNetB2 
Macenko (96.67 %) 
EfficientNets performance better with 
SN than the original dataset. 
 

(Tellez, et al., 
2019) 

Greyscale, Bejnordi, 
Reinhard and Macenko 

custom CNN (Bándi, et al., 
2019) 

CNN performs better with SN 
compared to greyscale. 
 
CNN performance is not always better 
with SN. 
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Table 2.3 (Continued) 

(Gupta, et al., 
2017) 

Greyscale and Reinhard Seven texture descriptors and Four 
contemporary classifiers 

(Spanhol, et al., 
2016) 

SN is not needed if given with 
effective features and classifiers. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This section describes the methodology of this study. In the pre-processing 

phase, three template images with different conditions: (1) randomly selected, 

(2) randomly selected from the largest class, and (3) the most average image 

were selected to mitigate the risk of underperforming SN methods. 

Subsequently, the FBCG dataset images were stained normalised using the 

Reinhard and Macenko SN techniques with the selected template image. It is 

noted that original (non-normalised) images were also included in the 

experiments to study the impact of SN in automated IDC grading applications. 

Afterwards, three specific data augmentation techniques (flip, rotation and 

zoom) were randomly applied to the images to prevent overfitting. For the 

model training and evaluation phase, each pre-trained CNN architecture was 

extended with several dropout and dense layers (see Figure 3.8) to perform 

classification (IDC grading). Finally, each model was evaluated with three 

performance metrics (balanced accuracy, macro precision, and macro F1-

score) to compare the performances in original (non-normalised), Reinhard-

normalised and Macenko-normalised datasets. Figure 3.1 depicts the 

methodology of this study. It was confirmed that all procedures were carried 

out in accordance with relevant guidelines and regulations. 
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Figure 3.1: The Overall Flow of the Methodology. Initially, a Four-Class 

Dataset (termed the “Four Breast Cancer Grades (FBCG) dataset”) 

is established using the BreaKHis and BCG datasets.  

 

The dataset images are normalised using Reinhard and Macenko 

techniques with three different template images. The normalised and the 

original datasets are fed into seven pre-trained cnn architectures extended 

with several layers for the IDC grading task. All seven models take the 80 % 

of the dataset to perform five-fold stratified cross-validation to evaluate the 

stability of the models. Finally, the seven models are evaluated using the test 

set (20 % of the dataset). 
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3.2 Dataset 

This study employed the FBCG dataset (Abdelli, et al., 2020) to study the 

importance of SN with seven different CNN architectures in the automated 

IDC grading application. The FBCG dataset was created by Abdelli, et al. 

(2020), to address the constraints of small breast cancer datasets. The FBCG 

dataset entails four classes: (1) Grade 0, (2) Grade 1, (3) Grade 2, and (4) 

Grade 3. Images of Grade 0 class originate from the BreaKHis dataset 

(Spanhol, et al., 2016), while Grade 1-3 images are derived from the BCG 

dataset (Zioga, et al., 2017). The distribution of images in the FBCG dataset 

is summarised in Table 3.1. 

 

Table 3.1: The Classes (Grade 0-3) Distribution of the FBCG Dataset. 

 Grade 0 Grade 1 Grade 3 Grade 3 Total 

FBCG 
Dataset 

Train 
set 

 

470 86 82 73 711 

Test set 118 21 20 18 177 
 

Total 588 107 102 91 888 
 

 

BreaKHis dataset (Spanhol, et al., 2016) was assembled by Spanhol, 

et al. (2016), containing 7909 breast cancer histopathological images 

collected from 82 patients. The dataset is mainly split into two categories: 

benign (2480 images) and malignant (5429 images); benign and malignant 

breast tumours can be further classified into four distinct types: Adenosis (A), 

Fibroadenoma (F), Phyllodes Tumour (PT), and Tubular Adenoma (TA) for 

the benign class; and Ductal Carcinoma (DC), Lobular Carcinoma (LC), 

Mucinous Carcinoma (MC), and Papillary Carcinoma (PC) (see Figure 3.2). 

The word "benign" refers to a lesion lacking malignant attributes such as 

metastasis, significant cellular atypia, mitosis, and disruption of basement 

membranes. Furthermore, benign lesions are generally non-aggressive, 

growing slowly, with distinct borders, and localised. However, malignant 

lesions are often locally invasive and have a proclivity to invade distant sites, 

resulting in death. The H&E stained breast tissue biopsy slide was firstly 

captured at four magnification factors (40X, 100X, 200X, and 400X), 
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corresponding to four objective lenses (4X, 10X, 20X, and 40X), then 

processed into digital RGB format with a resolution of 700 x 460 pixels, 

generating the digitalised images. Table 3.2 illustrates the distribution of 

images by class and magnification factor. 
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Figure 3.2: The Images depict H&E Stained Sample Slides with Different 

Breast Tumour Types in 40X, 100X, 200X and 400X 

Magnification Factors under Two Major Classes: (a) Benign, and 

(b) Malignant. This Study regards All Benign Histopathological 

Images as "Grade 0". 
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Table 3.2: The BreaKHis Image Distribution by Two Classes (Benign and 

Malignant) and Four Magnification Factors (40X, 100X, 200X 

and 400X). 

Magnification Benign Malignant Total 

40x 625 1,370 1,995 
 

100x 644 1,437 2,081 
 

200x 623 1,390 2,013 
 

400x 588 1,232 1,820 
 

Total 2,480 5,429 7,909 
 

 

The BCG dataset was published by Zioga, et al. (2017) that contains 

IDC histological images. The dataset comprises 300 images with three IDC 

grades: Grade 1 (107 images), grade 2 (102 images), and grade 3 (91 images) 

that correspond to 21 patients based on their NGS results (see Figure 3.3). 

The IDC H&E stained histological samples were gathered in the Department 

of Pathology at Thessaloniki's "Agios Pavlos" General Hospital, Greece, 

using a Nikon digital camera fitted with a 40X objective lens (equivalent to a 

magnification of 400X in the BreaKHis dataset), capturing in 1280 x 960 

resolution.  

 

      

      

      

(a)  (b)  (c)  

Figure 3.3: These Images are retrieved from the BCG Dataset with Three 

Classes: (a) Grade 1, (b) Grade 2, and (c) Grade 3. 
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3.3 Pre-processing 

Data pre-processing is essential for histopathological images classification 

tasks. The CNN is designed to feed on small inputs (Munien and Viriri, 2021). 

However, the adopted FBCG dataset sizes are much larger (700 x 460 and 

1280 x 960) than the seven CNN architectures (see Table 3.3). Thus, the 

dataset images were shrunk (resized) to ensure that each CNN architecture 

could receive inputs while preserving the image features. Interestingly, it is 

worth mentioning that resizing images may preserve global characteristics 

but ignore local characteristics (Munien and Viriri, 2021). Therefore, the 

performance of each CNN architecture would highly depend on their ability 

to recognise and learn global features. 

3.3.1 Stain Normalisation 

SN techniques (Reinhard, et al., 2001; Macenko, et al., 2009; Bejnordi, et al., 

2016; Zanjani, et al., 2018; Lakshmanan, Anand and Jenitha, 2019; Roy, Lal 

and Kini, 2019; Stanisavljevic, et al., 2019; Lei, et al., 2020) were introduced 

in an attempt to overcome the limitations of colour inconsistency in deep 

learning CAD systems, such as (1) reduced model performance (Goodfellow, 

et al., 2014; Komura and Ishikawa, 2018; Veta, et al., 2019), (2) higher risk 

of misclassification (Roy, Lal and Kini, 2019) and (3) lower ability of 

generalisation (Goodfellow, et al., 2014; Komura and Ishikawa, 2018; Veta, 

et al., 2019). SN generally maps the image colour to modify the source image 

colour to match the overall colour distribution with or without a template 

image. Therefore, this study employed the conventional Reinhard and 

Macenko SN methods to study the effect of SN on the FBCG dataset. Before 

performing SN, the images were transformed from BGR to RGB colour 

space to ensure that both SN techniques worked as expected. It is noted that 

an original (non-normalised) version of the FBCG dataset was included to 

compare the effect of non-normalised vs normalised datasets (see Figure 

1.1).  

 

3.3.1.1 Template Image Selection 

This study selected three different template images from three conditions: (1) 

randomly from the whole dataset, (2) randomly from the largest class (Grade 
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0), and (3) the image that resembles the most colour average in the dataset 

based on the cosine similarity method (see Figure 3.4). It is noted that 

Reinhard and Macenko SN methods rely on one template image and may not 

accurately accomplish the style conversion between image dataset. In 

addition, if the chosen template image does not represent the whole dataset, 

the SN methods may underperform (Kang, et al., 2021). Therefore, selecting 

three template images allows this study to consider the effect of the template 

image on SN while mitigating the risk of underperforming SN. 

 

    

(a) (b) (c) (d) 

Figure 3.4: The Selected Template Images for this Study and the Generated 

Output Image where: (a) Randomly Selected Image from the 

Dataset, (b) Randomly Selected Image  from the Largest Class 

(Grade 0), (c) the Image that resembles the Most Colour Average 

based on Cosine Similarity, and (d) the Output of the Average 

Pixel Intensities of the Dataset. 

 

For selecting the template image that resembles the most colour 

average in the FBCG dataset, all images in the dataset are converted into 

arrays of floating points; then, the arrays are summed up to generate the 

average pixel intensities. Before converting into an 8-bit integer array, the 

average output value is rounded to the nearest even value. Afterwards, an 

output image (see Figure 3.4) is generated from the integer array. Finally, the 

cosine similarity method (see Equation (3.1)) is utilised to compute the 

similarity between the vector of the output image and each dataset image. 

The method computes the dot product of the two vectors and divides it by the 

magnitudes of each vector. 
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(3.1) 

 

where 

A = vector of the average image 

B = vector of the dataset image 

 

3.3.1.2 Reinhard Stain Normalisation 

The Reinhard SN technique normalises images by matching the source 

image's statistical colour properties with a template image. Firstly, both 

source and template images are read as input data. Secondly, the RGB image 

is transformed into lαβ colour space. The image is converted into independent 

XYZ space during LMS cone space conversion, followed by converting the 

XYZ space image to LMS cone space. The skew data in the LMS cone space 

is eliminated by transforming it into the logarithmic space. Similar to the 

RGB image, lαβ colour space includes its distinct colour (l, α and β axis 

denote as achromatic, chromatic blue-yellow, and chromatic green-red 

channels), which is proportional and compact. Thirdly, i = 0 (the number of 

channels) and c = 3 (the number of channels found in the RGB image) are 

initialised. Then, the condition (if i is less than c) is applied, followed by the 

transformation given in the Equation (3.2), (3.3), and (3.4). Finally, the lαβ 

colour space is converted to an RGB image for display attributable to the 

incomparable attributes found between lαβ colour space and RGB colour 

space (Reinhard, et al., 2001; Roy, et al., 2018). The flowchart of the 

Reinhard SM method is illustrated in Figure 3.5. 

 

 ,% = -./0(,$) + 2, − -./0(,)4 .		 ∗ (89:(,$)./89:(,)) (3.2) 

 <% = -./0(<$) + 2< −-./0(<)4 .		 ∗ (89:(<$)./89:(<)) (3.3) 

 =% = -./0(<$) + 2= −-./0(=)4 .		 ∗ (89:(=$)./89:(=)) (3.4) 

 

where 

,% = processed image in l space 



33 

,$ = template image in l space 

, = source image in l space 

<% = processed image in α space 

<$ = template image in α space 

< = source image in α space 

=% = processed image in β space 

=$ = template image in β space 

= = source image in β space 

 

 

Figure 3.5: The Process of Reinhard SN Technique (Roy, et al., 2018). 

 

3.3.1.3 Macenko Stain Normalisation 

The Macenko SN method separates stains automatically by locating the pixel 

distribution fringe in the optical density space. After reading both source and 

template images as input, the RGB source image is converted into lαβ colour 

space. Next, the tolerance for the pseudo-minimum αth and pseudo-

maximum (100 - α)th percentile is initialised, providing a better yield for 

further processing at (1) α = 1, (2) optical density (OD) threshold value for 

translucent pixels β = 0.15, (3) disseminated light intensity Io = 240, (4) H&E 

OD matrix and (5) stain concentration. Subsequently, all image colours are 

transformed into the OD value (see equation (3.5)), offering a linear 

combination of stains space, thus, resulting in a linear combination of OD 



34 

values. After applying the condition on the OD threshold value (if β (OD 

threshold value ) < 0.15), the transparent pixels are eliminated so that the OD 

value is divided into two matrices (see Equation (3.6) and (3.7)) (Macenko, et 

al., 2009; Roy, et al., 2018).  

 

 >? =	−,@A$&(B) (3.5) 

 >? = C ∗ D (3.6) 

 D = C' ∗ >?  (3.7) 

 

where 

OD = optical density values 

S = saturation values of each stain 

V = stain vector matrix 

 

Equations (3.6) and (3.7) locate the stain vector of each image based 

on the colour (OD value = 0 when the pixel colour is white). In the next step, 

the singular SVD decomposition value on the OD value is computed. The 

Geodesic path (Bautista, Hashimoto and Yagi, 2014) is employed to locate 

the direction where the OD transformed pixel can be projected to locate the 

final point of the stain vectors. The following process is followed by 

evaluating the plane formed by vectors (forming a plane with the two vectors 

associated with the most significant singular value decomposition values of 

the OD transformed pixel values). Then, All OD values are projected and 

standardised in the plane. The projected line is plotted, and then the angles in 

all points to the first singular value decomposition direction are computed, 

plotting the direction in the plane. The robust extremes fringes in the linear 

combination of stain vectors are found by calculating the minimum and 

maximum αth and (100 - α )th percentile. Finally, the H&E stain concentration 

is determined to the OD values; stain concentration is normalised, then the 

final image is recreated using a reference mixing matrix (using the H&E 

matrix with the normalised stain concentration) (Macenko, et al., 2009; Roy, 

et al., 2018). The flowchart of the Macenko SN method is illustrated in 

Figure 3.6. 
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Figure 3.6: The Process of Macenko SN Technique (Roy, et al., 2018). 

 

3.3.2 Data Augmentation 

Data augmentation is essential in mitigating overfitting risk during model 

training, especially if the employed dataset is delimited (Shorten and 

Khoshgoftaar, 2019). Hence, the training data was infused with artificial 

diversity via random but realistic transformations to address the overfitting 

issue. Specifically, TensorFlow Keras pre-processing layers were employed 

to augment the training data (the layers are disabled automatically during 

model validation and testing). Three data augmentation techniques were 

utilised: (1) random horizontal and vertical flips, (2) random rotation and (3) 

random zoom (see Table 3.4). Random flipping and rotation were employed 

because the pathologists' ability to examine histopathological images is not 

affected by rotation angles. Hence, it was assumed that different rotation 
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angles would not affect CNN's learning ability. Additionally, random 

zooming was employed to imitate the magnification factor found in 

histopathological images to improve the CNN's generalisation ability. Figure 

3.7 shows the samples of random data augmentation. 

 

    

(a) (b) (c) (d) 

Figure 3.7: These Images are the Sample of Random Data Augmentation 

where: (a) Original Image, (b) Flipped Image, (c) Rotated Image, 

and (d) Zoomed Image. 

 

3.3.3 Data Balancing 

The employed FBCG dataset for this study suffers from a data imbalance 

issue (see Table 3.1). If the problem is unresolved, the model tends to be 

more biased toward predicting the majority class (Grade 0). Therefore, this 

study implemented the class weighting technique from the Scikit-Learn 

Python library to resolve this concern. This technique grants the minority 

class a higher weight in the model cost function to impose a more significant 

penalty on the minority class. As a result, the model can converge to 

minimise errors for the minority class (Analytics Vidhya, 2020). The 

following equation was employed to determine the weight of each class: 

 

 
E =	

F
F( × F)(

 
(3.8) 

 

where 

E =  class weight 

F =  total number of samples 

F* = number of classes 

F)( = number of samples in each class 
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3.4 Transfer Learning 

This study employed transfer learning attributable to three motivations: (1) 

improved CNN performance, (2) time savings, and (3) being able to mitigate 

small datasets issue. In general, transfer learning entails four phases: (1) 

source domain (Ds), (2) target domain (Dt), (3) source learning task (Ts), and 

(4) target learning task (Tt). Transfer learning attempts to enhance the target 

predictive function Dt(.)in Dt with the knowledge in Ds and Ts, where Ds ≠ Dt 

or Ts ≠ Tt (Pan and Yang, 2010). Commonly, a CNN is constructed so that its 

first several layers learn more generic features (edges and generic shapes), 

while the last several layers recognise specific features related to the problem. 

Thus, the transfer learning technique utilises the general features learned in 

the first few layers of the source dataset and then relearns the specific 

features in the target dataset in the several final layers (Xu and Dong, 2020). 

Transfer learning entails two distinct methods for customising a pre-

trained model: (1) feature extraction and (2) fine-tuning. Feature extraction 

leverages a previous network's representations to extract critical features 

from a new dataset by superimposing new classifier layers on top of the pre-

trained model, repurposing the previously learned feature representations on 

the new dataset. Contrarily, fine-tuning unfreezes several top layers of the 

pre-trained model while training both newly added classifier layers and the 

unfrozen layers of the pre-trained model. Fine-tuning the pre-trained model's 

specific feature representations (high-order features) may make the 

representations more applicable for a particular task (TensorFlow, 2021). 

Although fine-tuning may improve model performance, this technique may 

induce overfitting. Hence, this study employed feature extraction using the 

seven pre-trained CNN architecture. Each pre-trained CNN architecture was 

utilised in the form of an image feature vector (a dense 1D tensor describing 

the whole image), reposited in the TensorFlowHub (TensorFlow, 2022). To 

apply the feature vector to our work, the "hub.KerasLayer" was employed to 

integrate the feature vector into our framework. This layer produces a batch 

of feature vectors whose size is proportional to the input size. The seven 

CNN architectures used in this study is summarised in Table 3.3. 
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Table 3.3: Summary of the Seven Pre-Trained CNN Architecture employed 

in this Study in terms of their Contribution, Trained Dataset, 

Flops, Parameters and Input Shape. 

Architecture Contributio

n 

Dataset FLOP

s (B) 

Parameter

s (M) 

Input 

Shap

e 

EfficientNetB0 
(Tan and Le, 
2019) 
 

Compound 
scaling 

ImageNet
-
ILSVRC-
2012-
CLS) 
 

0.39 5.3 224 x 
224 
 
 

EfficientNetV2B
0 
 (Tan and Le, 
2021)  

Progressive 
learning 

ImageNet
-
ILSVRC-
2012-
CLS  

 

0.72 7.1 224 x 
224 

EfficientNetV2B
0-21k 
 (Tan and Le, 
2021)  

 

Progressive 
learning 

ImageNet
-21k 

0.72 7.1 224 x 
224 

ResNetV1-50 
(He, et al., 2015) 

Residual 
learning 

ImageNet
-
ILSVRC-
2012-
CLS  

 

4.1 25.6 224 x 
224 

ResNetV2-50 
(He, et al., 2016) 

Identity 
mapping 

ImageNet
-
ILSVRC-
2012-
CLS  

 

4.1 25.6 224 x 
224 

MobileNetV1 
(Howard, et al., 
2017) 

Depth-wise  
separable 
convolutions  
 

ImageNet
-
ILSVRC-
2012-
CLS  

 

0.6 4.2 224 x 
224 

MobileNetV2 
(Sandler, et al., 
2018) 

Inverted 
residuals and 
linear 
bottlenecks 

ImageNet
-
ILSVRC-
2012-
CLS  

 

0.3 3.4 224 x 
224 
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3.5 Experiment Details 

This study conducted the experiments in the Google Collaboratory, with the 

specifications: (1) 2.30GHz Intel (R) Xeon (R) CPU, (2) 12GB RAM, (3) up 

to 358GB disc space, and (4) 12GB/16GB Nvidia K80/T4 GPU. The FBCG 

dataset was divided into train-test sets with a spilt of 80 %-20 % without 

overlapping. the test set images were selected through the stratification 

process by extracting the selected first portion of images in the dataset. The 

distribution of images in the FBCG dataset is summarised in Table 3.1. It is 

noted that the images in the dataset were stained normalised (Reinhard and 

Macenko techniques) using the StainTools (Byfield, 2020) python package. 

Next, the train set was further divided into five folds to accomplish the 

stratified five-fold cross-validation (CV). The stratified CV ensures that each 

training set fold acquires identical observations with a given label while 

ensuring that each CNN model is appropriately trained. 

After creating the CV folds, the Keras ImageDataGenerator (from 

TensorFlow Keras preprocessing.image) was employed along with its 

designated function (flow_from_dataframe) to generate batches of processed 

(rescaled, resized, and shuffled) input data. It is noted that the seed value was 

remained the same during experimentations to ensure training and validation 

data remained identical. The implementation details are summarised in Table 

3.4. To implement each pre-trained CNN architecture, the corresponded 

feature vector publicly available from the TensorFlowHub was deployed. The 

feature vector was integrated with several other layers (input layer, data 

augmentation layer, drop out layers and dense layers) to form a CNN model. 

The final structure of the model entails seven layers: 

i. An input layer. 

ii. A data augmentation layer. 

iii. The feature vector. 

iv. A dropout layer(rate = 0.5) . 

v. A dense layer  (256 neurons and ReLU activation function). 

vi. A dropout layer (rate = 0.4). 

vii. A dense layer (4 neurons and SoftMax activation function). 
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The seven adopted pre-trained CNN architectures were standardised 

with the same framework and hyperparameters to ensure a fair comparison. 

The architecture of the model framework is depicted in Figure 3.8. First, the 

input layer assigns a specific shape to the input data (image resolution). 

Second, the data augmentation layer augments (randomly flips, rotates, and 

zooms) the input data in model training. After data augmentation, the input 

data is fed into the feature vector to extract general features. Then, the output 

data flows through the first dropout layer (rate = 0.5), the fully connected 

layer (256 neurons), the second dropout layer (rate = 0.4), and the output 

fully connected layer (4 neurons). Finally, the SoftMax function converts the 

model output to a vector of probabilities for each class's input data (A 

dropout rate describes the rate at which input units are assigned to 0 in a 

dropout layer. If the input units are not assigned to 0, they are scaled up by 

1/(1-rate) to maintain the same sum of all inputs (Keras, 2021)). 

 

Figure 3.8: The Standardised Model Framework for this Study where: (a) 

Input Layer, (b) Augmentation Layer, (c) Feature Vector (Pre-

Trained CNN), (d) Dropout Layer (Rate = 0.5), (e) Dense Layer 

(256 Neurons), (f) Dropout Layer (Rate = 0.4), and (g) Dense 

Layer (4 Neurons). 

 

Each model was compiled with the Adam Optimiser (learning rate = 

0.001). Deciding on a suitable learning rate is essential for model training 

since it influences the time required for the model to converge to local 

minima. A rapid learning rate may render the model deviate from its local 

minima. Contrarily, a slow learning rate may impede model training, 
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resulting in increased computational cost (Zulkifli, 2018). Therefore, after 

several empirical tests, this study selected the 0.001 learning rate as the 

optimal value. Likewise, the weighted categorical cross-entropy loss function 

was implemented for the classification task that utilises the weight class 

technique and the metrics parameter "accuracy." Finally, each fold was 

trained for 100 epochs. The details of the model's compilation are 

summarised in Table 3.4. The weighted categorical cross-entropy loss 

function is defined as: 

 

 
EHI =	−J+ ∗ ,@A K

.)!

∑ .)"(
+

L 
(3.9) 

 

 	  

where 

EHI =  weighted categorical cross-entropy 

D, =  positive output score 

D+ = other classes output scores 

J+ =  classes weights 

 

Table 3.4: Summary of the Data Pre-Processing, Data Augmentation, And 

Model Compilation Details for this Study. 

 
 

Parameters Values 

Pre-processing 
(flow_from_dataframe) 

target_size N x N (see Table 3.3) 
 

batch_size 16 
 

shuffle True 
 

seed 123 
 

class_mode categorical 
 

Data Augmentation RandomFlip horizontal_and_vertical 
 

RandomRotation 0.2 
 

RandomZoom 0.2 
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Table 3.4 (Continued) 

Model Compilation Optimiser Adam Optimiser 
 

Learning rate 0.001 
 

Loss function Weighted Categorical Cross 
Entropy 
 

Metrics Accuracy 
 

Epochs 100 
 

 

3.6 Performance Evaluation Metrics 

For this study, three evaluation metrics were employed to assess the 

performance of the seven CNN architectures due to data imbalance: (1) 

balanced accuracy, (2) macro precision, and (3) macro F1-score. Adapted 

from the Scikit Library, the balance accuracy score calculates the average of 

recall acquired in each class. Next, the macro-average technique calculates 

each class metric independently and averages the results, thus, ensuring that 

all classes are treated equally. It is noted that the standard evaluation metrics 

(accuracy, precision, recall and F1-score) were disregareded since the 

adopted FBCG dataset is imbalanced. Finally, the model's ability to 

differentiate between classes was quantified with the Area Under the 

Receiver Operating Characteristic (ROC) Curve (AUC) (Bex, 2021). The 

following mathematical expressions define the evaluation metrics: 
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where 

TP = True positive 

FN = False negative 

G = Number of Classes 

 

3.7 Summary 

This study employed the FBCG dataset, which entails four classes (Grade 0, 

Grade 1, Grade 2, and Grade 3) for the automated IDC grading application 

(see Table 3.1). All the images in the dataset were normalised with Reinhard 

and Macenko SN techniques (see Figure 1.1) using StainTools (Byfield, 

2020). The Reinhard SN technique normalises images by matching the source 

image's statistical colour properties with a template image (see Figure 3.5). 

Likewise, the Macenko SN method separates stains automatically by locating 

the pixel distribution fringe in the optical density space (see Figure 3.6). Both 

SN techniques require a template image; thus, three template images from 

different conditions were selected to reduce the risk of underperforming SN 

techniques. The original (non-normalised) dataset was included in the 

experiment to compare the effect of SN. Subsequently, three data 

augmentation methods (flip, rotation and zoom) were applied to the images 

using the Keras pre-processing layers before model training (see Figure 3.7). 

The FBCG dataset was divided into an 80 %-20 % train-test split; the 

train set was split into the stratified five-fold CV. The images were processed 

into batches with the Keras ImageDataGenerator before feeding into each 

pre-trained CNN architecture (see Table 3.3) extended with several dropout 

and dense layers (see Figure 3.8) to perform classification. The 

implementation details are summarised in Table 3.4. Finally, each model was 

evaluated with three performance metrics (balanced accuracy, macro 

precision, and macro F1-score) to compare the results. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This section provides the performance evaluations (balanced accuracy, macro 

precision and macro F1 scores) of the seven pre-trained CNN architectures 

trained in the original, Reinhard-normalised, and Macenko-normalised FBCG 

datasets with three different template images. The illustrations of accuracy 

and loss curves, confusion matrices, ROC curves and the visual comparison 

of the t-distributed Stochastic neighbour embedding (t-SNE) of the best and 

worst CNN models are provided for further analysis. The limitations and 

challenges of the study are elaborated to describe the scope and difficulties 

faced in the experimentations. 

 

4.2 Analysis of Results 

Seven state-of-the-art pre-trained CNN architectures: 1) EfficientNetB0, 

EfficientNetV2B0, EfficientNetV2B0-21k, ResNetV1-50, ResNetV2-50, 

MobileNetV1, and MobileNetV2 were employed to classify the original, 

Reinhard-normalised and Macenko-normalised FBCG datasets with three 

different template images. Based on Table 4.1, Table 4.3 and Table 4.5, SN 

methods referred to Template 1 (T1) image outperformed other template 

images across all average metrics (0.8917 ± 0.0277, 0.8814 ± 0.0307, 0.8829 

± 0.0297) in cv results. On the other hand, the Template 2 (T2) image 

achieved the highest average score across all metrics (0.8835 ± 0.0239, 

0.8753 ± 0.0277, 0.8762 ± 0.0252) among other template images for test 

results. Among the CNN models trained on SN T1 datasets, the ResNetV1-50 

achieved the highest score across all metrics in the Macenko T1 stained cv 

results. Likewise, the EfficientNetB0 ranked as the top achiever in balanced 

accuracy (0.9239), whereas the ResNetV2-50 outperformed all CNN models 

in macro precision (0.9063) and macro F1-score (0.9060) in Macenko T1 

stained test results. In SN T2 stained cv results, the MobileNetV1 scored the 

top across all metrics (0.9208 ± 0.0292, 0.9253 ± 0.0425, 0.9212 ± 0.0343) 

when stained using the Macenko technique.  
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However, the EfficientNetV2B0-21k outperformed other CNN 

models in balanced accuracy (0.9294) and macro F1-score (0.9117), while 

the MobileNetV1 scored the highest macro precision (0.9041) in Macenko T2 

stained test results. For the worst-performing Template 3 (T3), the 

EfficientNetV2B0-21k appeared to be the top scorer across all metrics 

(0.8840 ± 0.0424, 0.8805 ± 0.0281, 0.874 ± 0.0387) in Reinhard T3 stained 

cv results whereas the ResNetV2-50 achieved the top scores across all 

metrics (0.9030, 0.9012, 0.8992) in Reinhard T3 stained test results.  

Although most top-performing CNN models were being trained on 

Macenko-normalised datasets, the average scores for the Reinhard technique 

across all metrics in cv and test results still outperformed the Macenko 

technique. Hence, this finding suggests that the Reinhard technique performs 

more consistently than the Macenko technique. Among the three template 

images, this study hypothesized that T3 would outperform T1 and T2 images 

since T3 resembles the most colour average image found in the dataset and, 

thus, able to represent the whole dataset. Nevertheless, both T1 and T2 

images achieved better performances than T3, proving our hypothesis 

otherwise. Therefore, this study suggests that selecting the right template 

image may not necessarily improve the performance of CNN models if 

ineffective SN is employed. 

Table 4.2, Table 4.4, and Table 4.6 illustrate the balanced accuracy, 

macro precision, and macro F1-score of the seven CNN models acquired 

from the five-fold stratified cv and test sets trained in the original, Reinhard 

and Macenko FBCG datasets. The experimental results show that the highest 

overall performance of the seven CNN models was achieved on the original 

FBCG dataset instead of SN. The average score ranked the highest in all 

performance metrics when the original dataset was used for model training, 

followed by Reinhard and the Macenko technique. Overall, the 

EfficientNetV2B0-21k achieved the top score across all metrics (0.9666 ± 

0.0185, 0.9646 ± 0.0174, 0.9642 ± 0.0184) in the cv results and the balanced 

accuracy (0.9524) in test results with the original dataset. Likewise, the 

MobileNetV1 scored the highest across all metrics (0.9545, 0.9524, 0.9487) 

in test results with the original dataset. When the FBCG dataset was stained 

using the Reinhard technique, the EfficientNetV2B0-21k achieved the 
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highest score across all metrics (0.9058 ± 0.0196, 0.8970 ± 0.0170, 0.8971 ± 

0.0206) in cv results.  

However, in the test results, the ResNetV1-50 emerged as the top 

performer across all metrics (0.9027±0.0077, 0.8945±0.0175,   0.8944 ± 

0.0161). Similarly, the ResNetV1-50 achieved the highest score across all 

metrics (0.8917 ± 0.0423, 0.8817 ± 0.0490, 0.8822 ± 0.0484) in cv results, 

macro precision (0.8691 ± 0.0409) and macro F1-score (0.8706 ± 0.0301) in 

test results when the model was trained on Macenko-normalised FBCG 

dataset. For the balanced accuracy of test results, the EfficientNetB0 ranked 

as the top performer (0.8795 ± 0.0461). The Reinhard technique 

outperformed the Macenko technique in the IDC grading application, 

aligning with the findings published by this study (Munien and Viriri, 2021).  

Nevertheless, CNN models trained in the original FBCG dataset 

outperformed both SN techniques (see Figure 4.1). From the bar charts in 

Figure 4.2 and Figure 4.3, a significant performance disparity can be 

observed in the IDC grading classification performance using images without 

SN compared to those CNN models using Reinhard and Macenko techniques. 

Furthermore, it is found that the results generated from CNN models trained 

without SN show the highest stability compared to those trained with SN (see 

Figure 4.4). Our result contested the general presumption that SN is essential 

to accomplish top performance in the histopathological classification tasks, 

similar to the results published by Tellez, et al. (2019). Therefore, this study 

considers that SN may be unnecessary to be included in the CNN pre-

processing step to improve CNN performance if the effective CNN 

architecture is used. 

The graphs in Figure 4.5 depict the accuracy and loss curves of the 

best and worst-performing CNN models in the original and SN FBCG test 

sets. The curves describe the process of the training and validation accuracy 

and loss (per epoch) in the CNN models training. No sign of model 

overfitting is observed since the validation accuracy curves are higher than 

the training accuracy curves, whereas the validation loss curves are lower 

than the training loss curves. The validation loss curves are significantly 

lower than the training curves are most likely the result of implementing 

dropout layers in the CNN model frameworks. Another reason for the gap is 
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that the CNN models find the validation set easier to predict than the training 

set, attributed to its unrepresentativeness of the whole dataset (Munien and 

Viriri, 2021). 

Figure 4.7 illustrates the normalised confusion matrices of the best 

and worst-performing CNN models in the original and SN FBCG test sets. 

The matrices demonstrate that all the chosen CNN models achieved the 

highest performance in classifying Grade 0 but the lowest in identifying 

Grade 1 except for the Macenko T3 EfficientNetV2-B0. 

Figure 4.6 illustrates the ROC curves of the best and worst-

performing CNN models in the original and SN FBCG test sets. The ROC 

curves are generated by computing and generating the true positive rate 

versus the false-positive rate for a binary classifier over a range of threshold 

values. The area under the curve (AUC) values of the figures show that all 

chosen CNN models demonstrate the highest performance in identifying 

Grade 0 and the lowest performance in identifying Grade 1 except for the 

Macenko T3 EfficientNetV2-B0. The original EfficientNetV2-B0-21k (top 

left) achieved the highest overall AUC scores, whereas the Macenko T3 

EfficientNetV2-B0 scored the lowest overall AUC score. 

Figure 4.8 shows the visual comparison of the distribution of learned 

features using t-distributed Stochastic neighbour embedding (t-SNE) of the 

best and worst-performing CNN models in the original and SN FBCG test 

sets. The t-SNE is a statistical approach for visualising high-dimensional 

information by assigning a position to each point on a two dimensional map. 

The figure shows that the CNN models can separate different grading 

explicitly into distinct groupings based on characteristics extracted from the 

models. The t-SNE revealed that the SN has indistinct effect on the 

separation of the classes compared to the original FBCG dataset, thus 

supporting that SN is unnecessary in the CNN pre-processing step to improve 

CNN performance. 
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Table 4.1: Balanced Accuracy Results of Seven CNN Models trained in Reinhard (denoted as R) and Macenko (denoted as M) FBCG Datasets 

with Three Different Templates (denoted as T1, T2 and T3).  

 

SN Models Balanced Accuracy 

T1 T2 T3 

CV 

(mean±std) 

Test CV 

(mean±std) 

Test CV 

(mean±std) 

Test 

R EfficientNetB0 0.8777±0.0310 

 

0.8975 0.8702±0.0516 0.8877 0.8202±0.0497 0.8257 

EfficientNetV2B0 0.8845±0.0307 

 

0.8772 0.8524±0.0503 0.8871 0.7764±0.0509 0.7828 

EfficientNetV2B0-21k 0.9218±0.0393 
 

0.8844 0.9116±0.0377 0.8469 0.8840±0.0424 0.7746 

ResNetV1-50 0.8990±0.0197 

 

0.8983 0.8921±0.0415 0.9115 0.8542±0.0622 0.8990 

ResNetV2-50 0.8975±0.0259 

 

0.8955 0.8814±0.0369 0.8865 0.8470±0.0672 0.9030 

MobileNetV1 0.9043±0.0299 

 

0.8345 0.8740±0.0737 0.8661 0.8513±0.0691 0.8333 

MobileNetV2 0.8812±0.0399 

 

0.8509 0.8898±0.0514 0.8897 0.8673±0.0364 0.8641 
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Table 4.1 (Continued) 

 

 Average 
(mean±std) 

 

0.8951±0.0154 
 

0.8769±0.0250 

 

0.8816±0.0188 

 

0.8822±0.0204 
 

0.8429±0.0352 

 

0.8404±0.0514 

 

M EfficientNetB0 0.8684±0.0434 

 

0.9239 0.8681±0.0359 0.8828 0.8221±0.0508 0.8319 

EfficientNetV2B0 0.8248±0.0307 

 

0.8077 0.8250±0.0335 0.8448 0.7527±0.0225 0.7128 

EfficientNetV2B0-21k 0.8937±0.0423 

 

0.8975 0.9077±0.0451 0.9294 0.7837±0.0358 0.7500 

ResNetV1-50 0.9287±0.0234 
 

0.8960 0.9008±0.0380 0.8879 0.8456±0.0227 0.8542 

ResNetV2-50 0.9179±0.0304 

 

0.9088 0.9018±0.0337 0.8685 0.8354±0.0240 0.8076 

MobileNetV1 0.9184±0.0230 

 

0.8878 0.9208±0.0292 0.9123 0.8146±0.0265 0.7884 

MobileNetV2 0.8660±0.0389 

 

0.8515 0.8702±0.0410 0.8677 0.7745±0.0297 0.8139 

Average 
(mean±std) 

0.8883±0.0373 
 
 

0.8819±0.0396 

 

0.8849±0.0327 

 

0.8848±0.0286 
 

0.8041±0.0343 

 

0.7941±0.0487 

 

 Average 
(mean±std) 

0.8917±0.0277 
 

 

0.8794±0.0319 

 

0.8833±0.0257 

 

0.8835±0.0239 
 

0.8235±0.0390 

 

0.8172±0.0537 
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Table 4.2: Balanced Accuracy Results of Seven CNN Models trained in the Original, Reinhard and Macenko FBCG Datasets. 

Models Balanced Accuracy 

Original Reinhard Macenko 

CV 

(mean±std) 

Test Mean CV 

(mean±std) 

Mean Test 

(mean±std) 

Mean CV 

(mean±std) 

Mean Test 

(mean±std) 

EfficientNetB0 0.9303±0.0322 

 

0.9518 0.8560±0.0313 0.8703±0.0389 0.8529±0.0266 0.8795±0.0461 

EfficientNetV2B0 0.9076±0.0398 

 

0.9024 0.8378±0.0555 0.8490±0.0576 0.8008±0.0417 0.7884±0.0681 

EfficientNetV2B0-
21k 

 

0.9666±0.0185 0.9524 0.9058±0.0196 0.8353±0.0558 0.8617±0.0679 0.8590±0.0957 

ResNetV1-50 0.9253±0.0310 

 
0.9239 0.8818±0.0241 0.9029±0.0074 0.8917±0.0423 0.8794±0.0222 

ResNetV2-50 0.9346±0.0156 

 

0.9198 0.8753±0.0258 0.8950±0.0083 0.8850±0.0437 0.8616±0.0509 

MobileNetV1 0.9518±0.0232 

 

0.9524 0.8765±0.0266 0.8446±0.0186 0.8846±0.0606 0.8628±0.0656 

MobileNetV2 0.9362±0.0322 

 

0.9128 0.8794±0.0114 0.8682±0.0197 0.8369±0.0541 0.8444±0.0276 

Average 
(mean±std) 

0.9361±0.0189 
 
 

0.9308±0.0211 
 

0.8732±0.0214 

 

0.8665±0.0255 

 

0.8591±0.0325 

 

0.8536±0.0312 
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Table 4.3: Macro Precision Results of Seven CNN Models trained in Reinhard (denoted as R) and Macenko (denoted as M) FBCG Datasets 

with Three Different Templates (denoted as T1, T2 and T3).  

SN Models Macro Precision 

T1 T2 T3 

CV 

(mean±std) 

Test CV 

(mean±std) 

Test CV 

(mean±std) 

Test 

R EfficientNetB0 0.8679±0.0348 

 

0.8879 0.8509±0.0493 0.8865 0.7937±0.0479 0.7941 

EfficientNetV2B0 0.8856±0.0328 

 

0.8750 0.8627±0.0382 0.8953 0.7790±0.0390 0.7452 

EfficientNetV2B0-21k 0.9144±0.0385 
 

0.8937 0.8960±0.0491 0.8406 0.8805±0.0281 0.7892 

ResNetV1-50 0.9010±0.0235 

 

0.8951 0.8892±0.0468 0.9117 0.8471±0.0677 0.8768 

ResNetV2-50 0.8882±0.0167 

 

0.8869 0.8870±0.0419 0.8898 0.8589±0.0418 0.9012 

MobileNetV1 0.8977±0.0317 

 

0.8410 0.8877±0.0642 0.8388 0.8459±0.0670 0.8740 

MobileNetV2 0.8668±0.0493 

 

0.8238 0.8785±0.0490 0.8873 0.8443±0.0541 0.8125 

Average 
(mean±std) 

0.8888±0.0174 
 
 

0.8719±0.0282 0.8789±0.0163 0.8786±0.0279 0.8356±0.0361 0.8276±0.0572 
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Table 4.3 (Continued) 

 

 

 

M EfficientNetB0 0.8516±0.0237 

 

0.8845 0.8196±0.0355 0.8333 0.7668±0.0488 0.7813 

EfficientNetV2B0 0.8172±0.0299 

 

0.8056 0.8185±0.0253 0.8425 0.6976±0.0499 0.6117 

EfficientNetV2B0-21k 0.8809±0.0265 

 

0.8873 0.8997±0.0414 0.8955 0.7364±0.0361 0.7009 

ResNetV1-50 0.9233±0.0279 
 

0.8871 0.8940±0.0466 0.8980 0.8277±0.0279 0.8223 

ResNetV2-50 0.9145±0.0226 

 

0.9063 0.8923±0.0327 0.8800 0.8047±0.0133 0.7619 

MobileNetV1 0.8943±0.0340 

 

0.8787 0.9253±0.0425 0.9041 0.7963±0.0463 0.7410 

MobileNetV2 0.8367±0.0425 

 

0.8188 0.8291±0.0518 0.8506 0.7457±0.0223 0.7785 

Average 
(mean±std) 

0.8741±0.0401 
 
 

0.8669±0.0385 0.8684±0.0445 0.8720±0.0293 0.7679±0.0450 0.7425±0.0688 

Average 
(mean±std) 

0.8814±0.0307 
 

 

0.8694±0.0325 0.8736±0.0326 

 

0.8753±0.0277 0.8018±0.0527 

 

0.7850±0.0751 
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Table 4.4: Macro Precision Results of Seven CNN Models trained in the Original, Reinhard and Macenko FBCG Datasets. 

Models Macro Precision 

Original Reinhard Macenko 

CV 

(mean±std) 

Test Mean CV 

 (mean±std) 

Mean test 

(mean±std) 

Mean CV 

(mean±std) 

Mean test 

(mean±std) 

EfficientNetB0 
 

0.9161±0.0408 0.9511 0.8375±0.0389 0.8562±0.0538 0.8127±0.0428 0.8330±0.0516 

EfficientNetV2B0 
 

0.8988±0.0429 0.9046 0.8424±0.0561 0.8385±0.0814 0.7778±0.0694 0.7533±0.1240 

EfficientNetV2B0-21k 
 

0.9646±0.0174 0.9524 0.8970±0.0170 0.8412±0.0523 0.8390±0.0894 0.8279±0.1101 

ResNetV1-50 
 

0.9244±0.0358 0.9169 0.8791±0.0283 0.8945±0.0175 0.8817±0.0490 0.8691±0.0409 

ResNetV2-50 
 

0.9199±0.0276 0.9012 0.8780±0.0166 0.8926±0.0076 0.8705±0.0581 0.8494±0.0769 

MobileNetV1 
 

0.9526±0.0180 0.9545 0.8771±0.0275 0.8513±0.0197 0.8720±0.0673 0.8413±0.0878 

MobileNetV2 
 

0.9339±0.0251 0.9028 0.8632±0.0174 0.8412±0.0403 0.8038±0.0505 0.8160±0.0361 

Average 
(mean±std) 

0.9300±0.0224 
 

0.9262±0.0253 
 

0.8678±0.0214 

 

0.8594±0.0242 

 

0.8368±0.0399 

 

0.8271±0.0367 
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Table 4.5:  Macro F1-Score Results of Seven CNN Models trained in Reinhard (denoted as R) and Macenko (denoted as M) FBCG Datasets 

with Three Different Templates (denoted as T1, T2 and T3).  

SN Models Macro F1-score 

T1 T2 T3 

CV 

(mean±std) 

Test CV 

(mean±std) 

Test CV 

(mean±std) 

Test 

R EfficientNetB0 
 

0.8693±0.0311 0.8925 0.8553±0.0539 0.8852 0.7963±0.0573 0.8082 

EfficientNetV2B0 
 

0.8798±0.0311 0.8740 0.8448±0.0513 0.8899 0.7668±0.0512 0.7540 

EfficientNetV2B0-21k 
 

0.9155±0.0383 0.8790 0.9010±0.0423 0.8400 0.8748±0.0387 0.7604 

ResNetV1-50 
 

0.8979±0.0217 0.8920 0.8875±0.0461 0.9113 0.8478±0.0632 0.8793 

ResNetV2-50 
 

0.8886±0.0217 0.8911 0.8794±0.0334 0.8860 0.8432±0.0633 0.8992 

MobileNetV1 
 

0.8965±0.0289 0.8319 0.8736±0.0754 0.8494 0.8458±0.0669 0.8874 

MobileNetV2 
 

0.8684±0.0459 0.8363 0.8778±0.0535 0.8848 0.8512±0.0475 0.8163 

Average 
(mean±std) 

 

0.8880±0.0170 
 

0.8710±0.0262 

 

0.8742±0.0190 

 

0.8781±0.0247 
 

0.8323±0.0372 

 

0.8293±0.0603 
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Table 4.5 (Continued) 

 

 

M EfficientNetB0 
 

0.8559±0.0342 0.9013 0.8405±0.0346 0.8552 0.7841±0.0527 0.8039 

EfficientNetV2B0 
 

0.8147±0.0214 0.7947 0.8128±0.0281 0.8377 0.7113±0.0350 0.6418 

EfficientNetV2B0-21k 
 

0.8841±0.0352 0.8920 0.9001±0.0422 0.9117 0.7332±0.0240 0.7076 

ResNetV1-50 
 

0.9244±0.0253 0.8891 0.8928±0.0444 0.8868 0.8294±0.0132 0.8359 

ResNetV2-50 
 

0.9143±0.0234 0.9060 0.8938±0.0339 0.8690 0.8085±0.0184 0.7825 

MobileNetV1 
 

0.9020±0.0282 0.8785 0.9212±0.0343 0.9044 0.7934±0.0343 0.7589 

MobileNetV2 
 

0.8494±0.0408 0.8319 0.8429±0.0482 0.8557 0.7419±0.0252 0.7883 

Average 
(mean±std) 

0.8778±0.0396 
 

0.8705 

±0.0415 

 

0.8720±0.0397 

 

0.8744 
±0.0275 

 

0.7717±0.0434 

 

0.7598 

±0.0655 

 

Average 
(mean±std) 

 

0.8829±0.0297 
 

0.8707±0.0333 

 

0.8731±0.0299 

 

0.8762±0.0252 
 

0.8020±0.0500 

 

0.7946±0.0704 
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Table 4.6: Macro F1-Score Results of Seven CNN Models trained in the Original, Reinhard and Macenko FBCG Datasets. 

Models Macro F1-score 

Original Reinhard Macenko 

CV 

(mean±std) 

Test Mean CV 

(mean±std) 

Mean test 

(mean±std) 

Mean CV 

(mean±std) 

Mean test 

(mean±std) 

EfficientNetB0 
 

0.9211±0.0378 0.9494 0.8403±0.0387 0.8620±0.0467 0.8268±0.0378 0.8535±0.0487 

EfficientNetV2B0 
 

0.9000±0.0416 0.8982 0.8305±0.0578 0.8393±0.0743 0.7796±0.0592 0.7581±0.1030 

EfficientNetV2B0-21k 
 

0.9642±0.0184 0.9484 0.8971±0.0206 0.8265±0.0604 0.8391±0.0921 0.8371±0.1126 

ResNetV1-50 
 

0.9206±0.0334 0.9175 0.8777±0.0264 0.8942±0.0161 0.8822±0.0484 0.8706±0.0301 

ResNetV2-50 
 

0.9259±0.0202 0.9096 0.8704±0.0240 0.8921±0.0067 0.8722±0.0561 0.8525±0.0634 

MobileNetV1 
 

0.9506±0.0214 0.9487 0.8720±0.0254 0.8562±0.0284 0.8722±0.0689 0.8473±0.0776 

MobileNetV2 
 

0.9314±0.0305 0.9058 0.8658±0.0135 0.8458±0.0352 0.8114±0.0603 0.8253±0.0342 

Average 
(mean±std) 

 

0.9305±0.0211 
 

0.9254±0.0227 
 

0.8648±0.0226 

 

0.8594±0.0257 

 

0.8405±0.0376 

 

0.8349±0.0367 
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Figure 4.1: Comparing Balanced Accuracy of the CNN Models with SN and without SN across 7 CNN Architectures (EfficientNetB0, 

EfficientNetV2B0, EfficientNetV2B0-21k, MobileNetV1, MobileNetV2, ResNetV1-50, and ResNetV2-50) on Test Set.  

 

The value in the SN bar represents the average balanced accuracy of the CNN models generated from Reinhard and Macenko 

normalised images. The graph demonstrates that CNN models without SN perform consistently better on all the tested CNN architectures. 
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Figure 4.2: Comparison of Balanced Accuracy (on Test Images) of IDC Grading Classification using Images pre-processed by: 1) Reinhard 

Technique (in blue) using Templates 1, 2, 3 (denoted by RT1, RT2, RT3, respectively); 2) Macenko Technique (in gold) using 

Template 1, 2, 3 (denoted by MT1, MT2, and MT3, respectively); and 3) without SN.  

 

The value in the bar represents the average value of balanced accuracy across seven selected CNN models. The exact balanced accuracy 

for each model on test images can be found in Table 4.1 and Table 4.2. The red dashes represent the average balanced accuracy obtained from 

Reinhard and Macenko techniques. This graph demonstrates the key findings that the IDC grading classification performance using images 

without SN outperforms those cnn models using Reinhard and Macenko techniques. This finding is consistent with other metrics such as macro 

precision and macro F1-score (referring to Table 4.3, Table 4.4, Table 4.5, and Table 4.6 respectively). This key finding is opposed to the 

common practice of applying both SN in IDC grading classification and thus is impactful to guiding future design of automated IDC grading 

classification systems. The underlying cause for this finding, however, remains unknown. 
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Figure 4.3: Five-Fold CV on the Training Set. The Value in the Bar represents the Average Balanced Accuracy (Five-Fold Cross-Validation) 

across Seven Selected CNN Models in Grading Classification.  

 

The red dashes represent the average balanced accuracy obtained from Reinhard and Macenko Techniques. The details of the result of 

CV can be found in Table 4.1. The graph demonstrates that the result from CV aligns with the key findings from Figure 4.1 (IDC grading 

classification using images without SN outperforms IDC grading classification with images stained using Reinhard and Macenko techniques), 

implying that the result of the critical finding is reliable and that the result remains valid on a different combination of test images. 
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Figure 4.4: Standard Deviation of Balanced Accuracy (on Test Images) across Seven Selected CNN Models by (1) Reinhard Technique, (2) 

Macenko Technique, and (3) without using SN.  

 

It is noted that the value in the bar of Reinhard or Macenko represents the standard deviation for 27 balanced accuracies (produced by 

grading classification’s balanced accuracy on test images using seven CNNs repeated for three templates). The result shows that the standard 

deviation for category “No SN” is the lowest, indicating that models trained without SN give the highest stability. 
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EfficienNetV2B0-21k EfficientNetV2B0 

T3 

  

ResNetV1-50 EfficientNetV2B0 

 

Figure 4.5: Accuracy and Loss Curves of the Best and Worst-Performing 

CNN Models in the Original and SN FBCG Test Sets (20 per cent 

of the FBCG Dataset).  

 

None of the model curves indicates model overfitting since the 

validation accuracy curves are higher than the training accuracy curves and 

the validation loss curves are lower than the training loss curves. The 

validation loss curves are significantly lower than the training curves are 

most likely the result of the implementation of dropout layers in the CNN 

model frameworks. 
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T3 

  

ResNetV1-50 EfficientNetV2B0 

Figure 4.6: ROC Curves of the Best and Worst-Performing CNN Models in 

the Original and SN FBCG Test Sets (20 per cent of the FBCG 

Dataset).  

 

It shows that, on average, all the chosen CNN models (except 

Macenko T3 EfficientNetV2-B0) exhibit the highest performance in 

identifying Grade 0 and the lowest performance in identifying Grade 1. The 

original EfficientNetV2-B0-21k (top left) scored the top overall AUC scores, 

whereas the Macenko T3 EfficientNetV2-B0 scored the lowest, supporting 

that IDC grading classification performance using images without SN 

outperforms those CNN models using Reinhard and Macenko techniques. 
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T3 

  

ResNetV1-50 EfficientNetV2B0 

Figure 4.7: Normalised Confusion Matrices of the Best and Worst-

Performing CNN Models in the Original and SN FBCG Test Sets 

(20 per cent of the FBCG Dataset).  

 

The confusion matrices indicate that all the chosen CNN models 

(except Macenko T3 EfficientNetV2-B0) exhibit the highest performance in 

identifying Grade 0 and the lowest in identifying Grade 1. 
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EfficienNetV2B0-21k EfficientNetV2B0 

T3 

  

ResNetV1-50 EfficientNetV2B0 

Figure 4.8: Visual Comparison of the Distribution of Learned Features t-SNE 

of the Best And Worst-Performing CNN Models in the Original 

and SN FBCG Test Sets.  

 

The test set is shown in colours for different classes; orange refers to 

Grade 0, blue refers to Grade 1, green refers to Grade 2, and purple refers to 

Grade 3. The figure shows that all selected CNN models can separate Grade 

0 well from other grades. The figure also depicts that SN has no distinct 

effect on the separation of the classes. 
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4.3 Limitation of Study 

In this study, the employed dataset was inspired by Abdelli, et al. (2020). As 

a result, the experimental results are applicable to the FBCG dataset and 

comparable to the work of Abdelli, et al. (2020) only. This study examined 

seven state-of-the-art CNN architectures (EfficientNetB0, EfficientNetV2B0-

21k, ResNetV1-50, ResNetV2-50, MobileNetV1, and MobileNetV2); 

additional CNN architectures were omitted due to time constraints and 

limited resources. The methodology involved end-to-end feature extraction 

via transfer learning using pre-trained CNN architectures from TensorFlow 

Hub. Nonetheless, this study omitted fine-tuning of pre-trained CNN 

architecture. If fine-tuning is performed in the correct location within the 

model architecture, it may improve the performance of CNNs without 

inducing overfitting. Two conventional SN techniques (Reinhard and 

Macenko) were included in the CNN pre-processing pipeline via StainTools 

(Byfield, 2020). This study omitted deep learning-based SN techniques. 

Hence,  the study outcome is only applicable to similar studies that employed 

Reinhard and Macenko techniques in histopathological classification tasks. 

This study only explored three different selection conditions for template 

images. Hence, these images may not fully represent the colour 

characteristics of the whole FBCG dataset. 

 

4.4 Challenges of Study 

Among the challenges encountered in this study is the issue of overfitting. 

The adopted FBCG dataset is relatively small compared to other 

histopathological breast cancer datasets (BreaKHis). As a result, overfitting 

may occur when training with more complex CNN architectures. Hence, 

several augmentation layers (random flip, random rotation, and random zoom) 

were included in the CNN pipeline to augment the dataset while generating 

more inputs. Furthermore, two dropout layers were included in the CNN 

framework to randomly nullify input units at a specified rate during model 

training, mitigating the risk of overfitting. Working with an unbalanced 

dataset is another of the hardships encountered in this study. As a result, the 

CNN model was prone to predict the majority class. Thus, the class 

weighting technique was applied by giving the minority class a higher weight 
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in the model cost function to impose a more significant penalty on the 

minority class.  

 

4.5 Summary 

In this study, seven pre-trained CNN architectures: (1) EfficientNetB0, (2) 

EfficientNetV2B0, (3) EfficientNetV2B0-21k, (4) ResNetV1-50, (5) 

ResNetV2-50, (6) MobileNetV1, and (7) MobileNetV2 were adopted to 

classify the original, Reinhard-normalised and Macenko-normalised FBCG 

datasets with three different template images. The findings indicate that 

templates T1 and T2 outperformed T3 in the IDC grading task, suggesting 

that selecting the right template image may not necessarily improve the 

performance of CNN models if ineffective SN is employed. Furthermore, the 

results show that CNN models trained in the original FBCG dataset 

outperformed both SN techniques (see Figure 4.1, Figure 4.2 and Figure 4.3) 

with the highest stability (see Figure 4.4). Our result challenged the general 

presumption that SN is essential for top performance in histopathological 

classification tasks. Thus, SN may be unnecessary to be included in the CNN 

pre-processing step to improve CNN performance if the effective CNN 

architecture is employed. 

The limitations of the study include the adoption of (1) one specific 

dataset (FBCG dataset), (2) seven pre-trained CNN architectures, (3) end-to-

end feature extraction via transfer learning, (4) two SN techniques (Reinhard 

and Macenko) via StainTools (), and (5) three template images only. The 

main challenges faced in this study are the risk of overfitting and an 

unbalanced dataset. Therefore, augmentation and dropout layers and the class 

weighting technique are utilised, attempting to overcome these challenges. 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This study investigated the importance of Reinhard and Macenko SN 

techniques in IDC grading with histopathological images using CNN. Seven 

pre-trained CNN architectures were employed to classify the Four-Breast-

Cancer-Grades (FBCG) dataset into four classes via transfer learning: Grade 

0, Grade 1, Grade 2, and Grade 3. Based on the experimental results, CNN 

models trained in the original FBCG dataset outperformed both SN 

techniques, contesting the general presumption that SN is vital to achieving 

top performance in the histopathological classification tasks. Comparing the 

two SN techniques, Reinhard average scores outperformed the Macenko 

across all evaluation metrics in cv and test results while being more 

consistent in performance. Therefore, this study suggests that SN is not 

considered a necessary step to be included in the CNN pre-processing step to 

improve CNN performance, given that the effective CNN architecture is used. 

Finally, the outcome of three template images suggests that selecting the right 

template image may not necessarily enhance the performance of CNN 

models if ineffective SN is employed. 

 

5.2 Recommendations for future work 

In our future development, our study may expand to employ deep learning-

based SN techniques in CNN pre-processing steps to compare the 

performance against original (non-normalised) datasets to support our 

findings further. Furthermore, this study may consider more recent state-of-

the-art CNN architectures and other breast cancer histopathological datasets 

to conduct our study. Based on the results, it is hypothesised that SN 

techniques may strip distinct colour features in each IDC grade, leading to 

poorer CNN performance. Therefore, our study may consider conducting an 

ablation study regarding the impact of colour features in IDC 

histopathological images to validate our claim in the future.
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Appendix A: Tables 

TableA-1:  A list of website links for project source code, employed datasets 

and pre-trained CNN architectures. 

Item Link 

Project Source Code https://github.com/wingatesv/IDCGradingTask.git 
 
https://github.com/wingatesv/StainNormalisationI
DCGrading.git 
 

BreaKHis Dataset https://web.inf.ufpr.br/vri/databases/breast-
cancerhistopathological-database-breakhis/ 
 

BCG Dataset https://zenodo.org/record/834910#.WXhxt4jrPcs 
 

EfficientNetB0 https://tfhub.dev/tensorflow/efficientnet/b0/feature-
vector/1 
 

EfficientNetV2B0 https://tfhub.dev/google/imagenet/efficientnet_v2_i
magenet1k_b0/feature_vector/2 
 

EfficientNetV2B0-21k https://tfhub.dev/google/imagenet/efficientnet_v2_i
magenet21k_b0/feature_vector/2 
 

ResNetV1-50 https://tfhub.dev/google/imagenet/resnet_v1_50/fea
ture_vector/5 
 

ResNetV2-50 https://tfhub.dev/google/imagenet/resnet_v2_50/fea
ture_vector/5 
 

MobileNetV1 https://tfhub.dev/google/imagenet/mobilenet_v1_1
00_224/feature_vector/5 
 

MobileNetV2 https://tfhub.dev/google/imagenet/mobilenet_v2_1
00_224/feature_vector/5 
 

 


