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ABSTRACT 

 

Introduction: Gait analysis is essential for diagnosis, assessment, monitoring 

purpose, and prediction of gait disorder. However, the objective analysis 

method is less feasible in hospital environments for treatment purposes due to 

limited coverage of sources. Thus, this study aims to develop a classification 

algorithm that can effectively classify subjects with relatively simplified 

input data. Methods: This study employed several datasets acquired from 

PhysioNet containing subjects’ gait data of three classes. The training dataset 

contains at total of 48318 instances of three target classes (young healthy 

adults, old healthy adults, and Parkinson’s disease patients). Two 

classification algorithms were developed: Support Vector Machine (SVM) 

classification algorithm and Artifical Neural Network (ANN). Preprocessing 

was performed to the original dataset which includes data cleaning, data 

normalisation and new features generation. Next, fine-tuning on the 

manipulating hyperparameters was performed, and k-fold cross validation of 

k = 10 was used to obtain the average performance of the model. Results: 

The optimum confifuration of SVM model can generate an accuracy of 93.01% 

and F1 score of 92.58% with 43 minutes of computational time. On the 

contrary, the optimum configuration ANN classifier generates an accuracy of 

90.56% and F1 score of 89.69% with 112 minutes computational time. 

Conclusion: In conclusion, comparing both of the proposed classification 

algorithms, the SVM classifier is more effectively than ANN classifier as 

overall for the gait dataset used in this study. In addtion, after compared with 

other state-of-the-arts of gait classification algorithms, our proposed 

classification algorithm produced comparable results with other state-of-arts 

using a smaller dataset with fewer training features. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Human gait is a series of alternating sinuous movements of different body 

segments in a rhythmic pattern that results in bipedal, biphasic forward 

propulsion of the centre of gravity of the human body with minimal energy 

expenditure (Hall, 2019). Therefore, evaluation and analysis are done by 

professionals to research and assess human gait is called gait analysis. Here is 

a brief introduction to the human gait cycle to further explain this topic. One 

complete gait cycle consists of many phases, but it can ultimately be split into 

two global phases: the stance and swing (Nigg and Herzog, 2007). The stance 

phase refers to the foot first touching the ground and ends when the same foot 

leaves the ground, this phase makes up approximately 60% of one gait cycle. 

For swing phase begins when the foot first leaves the ground and ends when 

the same foot touches the ground again, this phase makes up approximately 

40% of one gait cycle. Both of these phases can be further narrowed down to 

more specific subphases. The stance phase consists of five subphases which 

are: (1) heel strike, (2) loading response, (3) mid-stance, (4) terminal stance 

and (5) pre-swing. Next, the swing phase consists of three subphases which 

are: (1) initial swing, (2) mid-swing and (3) terminal swing (Nigg and Herzog, 

2007). Figure 1.1, as shown below, illustrates and visualises the human gait 

cycle. 

 

 

Figure 1.1: Phases in human gait cycle (Pirker and Katzenschlager, 2017). 
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Gait analysis is a study in the clinical field, especially in the field of 

rehabilitation. Richard A. Brand had proposed four leading reasons for 

performing gait analysis in the clinical area: (1) diagnosis between disease 

entities, (2) assessment of the severity, extent or nature of a disease or injury, 

(3) monitoring progress in the presence or absence of intervention, and (4) 

prediction of the outcome of intervention (Brand, 1989). These findings 

emphasise the importance of applying biomechanics in clinical areas in 

performing various clinical applications and activities such as patient 

monitoring, risk prevention, diagnosis of disease, etc. (Baker, 2006). Based 

on the development and implementation of biomechanics in the clinical field 

up to date, gait analysis can be break into wearable and non-wearable systems 

(Muro-de-la-Herran, Garcia-Zapirain and Mendez-Zorrilla, 2014). A 

wearable system uses an inertial sensor to be attached to the subject's body to 

acquire data. 

On the other hand, a non-wearable system can be classified into two 

subgroups. Firstly, a motion-image capturing system requires controlled 

image capture facilities and image processing. Secondly, a floor-based 

system measures the data when the subject steps on the floor as they walk. 

Since the data acquired from all three techniques are very much different 

from each other, thus distinct analysing approaches are developed and 

implemented for each of the systems to carry out the analysing work. 

Therefore, choosing the suitable method will directly affect the accuracy and 

effectiveness of solving our problem.  

Aforementioned, there are four main reasons for performing gait 

analysis in the clinical field. In this project, the scope focus on the diagnosis 

purpose of the gait cycle. Diagnosis of disease entities in gait analysis mainly 

implies the identification of gait disorder/abnormalities. Gait disorders are the 

abnormalities found in the gait pattern of the subject caused by problems in 

the nervous system and musculoskeletal system. Gait disorder can be 

generally classified into neurological gait disorder and non-neurological gait 

disorder. Examples of neurological disorders are sensory ataxia (18 %) and 

parkinsonian (16 %) gait disorders. Whereas non-neurological disorders such 

as musculoskeletal disorders (Pirker and Katzenschlager, 2017). Besides the 

common examples of diseases mentioned, many different gait disorder 
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patterns can be analysed from human gait. Parkinson's disease is one of the 

most popular and well-known gait disorder diseases out of all these gait 

disorder patterns. Parkinson's disease is caused by the death or impairment of 

neurons in the brain that controls movement, which then causes the patient to 

be unable to control his muscle for movement. For this project, the scope is to 

develop a classification algorithm to classify patients with Parkinson's 

disease.  

 

1.2 Importance of the Study 

Gait disorder is a degradation of the neurological and musculoskeletal system 

in the human body, leading to a loss of personal freedom, falls and injuries, 

and depletion of quality of life. According to a study, the chances of getting 

gait disorders/abnormalities show a drastic increase from 10 % in people aged 

between 60 to 69 years to more than 60 % in people over 80 years (Pirker and 

Katzenschlager, 2017). This project highlights Parkinson's disease, a type of 

gait disorder caused by the death or impairment of brain neurons that control 

movement, giving rise to the patient's inability to maintain his muscle for 

movement. As compared to healthy individuals of the same age, Parkinson's 

disease patients are observed to have characteristics such as shorter stride 

length, higher cadence, an increase in double limb support phase, limbs 

imbalance increase in axial rigidity of hip, knee and ankle motions in their 

walking gait pattern (Zanardi et al., 2021). These characteristics in walking 

gait will cause the Parkinson's disease patients to experience inconvenience 

in movements and an increase in the prevalence of falling.  

In recent years, four gait assessment methods have been commonly 

practised in this area of study. The first method is semi-subjective analysis 

techniques. Specialists analyse clinical conditions by observing and 

evaluating the subject's gait parameters through several pre-determined 

tests/courses (Muro-de-la-Herran, Garcia-Zapirain and Mendez-Zorrilla, 

2014). The other three assessment methods are image processing, floor-based 

sensors and wearable sensor, which are considered objective analysis 

techniques.  

These gait assessment methods are typically performed to analyse 

and extract meaningful information from the gait pattern of patients. The 



4 

process requires more professional supervision and does not specify a 

specific disease or gait disorder. Besides, unlike the gait recognition method 

that observes the different gait features in patients, a gait classification 

algorithm can generate a simpler result using classification, which can target 

a specific problem. For example, in this project, the particular problem is 

targeted to Parkinson’s disease patients. Hence, a classification algorithm is 

useful in determining whether the test subject has Parkinson’s disease or is 

old or young. Therefore, a classification algorithm designed and developed, 

particularly for Parkinson’s disease, can make the process of gait assessment 

for Parkinson’s disease patients more intuitive and straightforward.  

 

1.3 Problem Statement 

The engineering problem is that the objective analysis method is less 

practical and feasible in hospital environments such as rehabilitation centres, 

clinics, and hospitals for treatment purposes. Therefore, a classification 

algorithm that combines the pros of both semi-objective and objective 

methods can effectively perform gait recognition, particularly for Parkinson's 

disease cases, using relatively simplified input data with lesser gait 

parameters. This approach allows quantitative analysis to classify Parkinson's 

disease patients more practical and effective in a hospital environment due to 

the simplified input data. In other words, those advanced and professional 

equipment is not required, and the data acquisition process can be practical 

and quickly done in the hospital environment. 

In addition, many existing gait recognition algorithms only focus on 

classifying Parkinson’s and non-Parkinson’s disease patients. Therefore, 

developing a classification algorithm that can recognise more classes in 

subjects such as old healthy, young healthy and Parkinson’s disease can help 

improve the prevention and diagnosis process of Parkinson’s disease 

treatment.  

 

1.4 Aim and Objectives 

This project aims to develop a classification algorithm that can effectively 

identify young healthy, old healthy and Parkinson's disease subjects using 
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relatively simplified input data with lesser gait parameters. The objectives to 

be done to achieve the goal include:  

• To study and review various existing gait analysis methods. 

• To develop and evaluate a Support Vector Machine (SVM) 

classification model and an Artificial Neural Network (ANN) 

classification model. 

• To compare the performance of both classification models and 

with the current state-of-the-art. 

 

1.5 Scope and Limitation of the Study 

The scope of the study is to develop a classification algorithm that can 

effectively classify old healthy, young healthy and Parkinson’s disease 

patients. First, the study of gait-affecting factors is important for the overall 

understanding of the project and helps justify the findings from the project 

results. Next, the study of gait analysis methods is useful for selecting and 

processing input data. In addition, the study of classification algorithms is the 

most important scope of the project because it directly affects the selection 

and development of classification algorithms.  

Limitations include data collection was not conducted for this 

project due to the COVID-19 pandemic, and gait datasets from other 

researchers were used for developing the classification algorithm. Besides, 

the dataset consists of unbalanced examples for different classes due to the 

constraint that the Parkinson’s disease subjects cannot walk for a long time 

compared to old and young subjects. Therefore, in order to overcome these 

limitations, other gait datasets should be used to validate the developed 

classification algorithm. 

 

1.6 Contribution of the Study 

This study’s findings will redound to society’s benefit, especially for the 

elderly groups, considering that gait analysis plays a vital role in gait research, 

rehabilitation and biomechanics today. Furthermore, as the knowledge and 

technology in the gait analysis field grow, the objective gait analysis method 

will become more important and superior to subjective gait analysis because 

objective approach is more accurate and reliable. Thus, findings from this 
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study can make the objective gait analysis more practical and trustworthy to 

be done in an outpatient hospital environment without needing of advanced 

equipment. This can contribute to popularizing objective gait assessment to 

people in society. In addition, this study’s findings can contribute to the 

development of state-of-the-art gait classification on Parkinson’s disease 

subjects as the training dataset used focuses on gait data of Parkinson’s 

disease subjects. 

 

1.7 Outline of the Report 

Chapter 2 covers a comprehensive literature review of the recent progression 

of various gait-affecting factors, modern state-of-art gait analysis methods, 

and classification algorithms. This is followed by Chapter 3, which discusses 

the methodology in detail on the overall project's progression, which includes 

preprocessing of study datasets, development of classification algorithms, 

performance evaluation of classification algorithm, and work plan. Next, 

Chapter 4 presents and discusses the performance results of the classification 

algorithms and suggests the optimum configuration for the classification 

algorithm. Lastly, Chapter 5 covers the conclusion and the recommendations 

for future research.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Gait-affecting factors  

The two direct gait-affecting factors to patients are physiological factor and 

psychological factor. Physiological factors are directly related to the human 

physical body, and psychological factors are related to human mental states. 

In addition, external factors such as environmental factors and sensor induced 

factors that affect gait patterns were discussed.  

 

2.1.1 Physiological factors 

2.1.1.1 Age  

Gait disorder is one of the most dominant factors contributing to falling in the 

elderly. From recent studies, one-third of the population of elderly 

experiences falls at least once a year (Kojima et al., 2008). The chances of 

falling increase steadily with age. The statement is supported by a statistical 

study by Laurence Z. Rubenstein (2006), the prevalence of falling rise 

steadily with age, and the rate of loss in older-elderly (aged above 75 years) 

is shown to be twice of the younger-elderly population (aged 65-75 years) 

(Rubenstein, 2006). Thus, the falling incident is highly related to gait 

abnormalities caused by ageing since 70% of falls in the elderly occur during 

walking (Norton et al., 1997).  

As the effects of ageing, humans will experience a decline in the 

nervous system and musculoskeletal system. The decrease in these body 

systems will cause a degradation in muscle strength during movement and 

difficulty controlling body muscles, leading to gait disorder. Therefore, a 

literature review on the parameters of gait patterns affected by ageing is done. 

Investigations of gait changes due to ageing are commonly done by 

comparing gait patterns between the elderly and the young. It is found that 

out of various gait parameters measured, not all of them are affected due to 

ageing. Compared to the young, the gait pattern of the elderly shows 

characteristics of a decrease in stride length, gait velocity and single-leg 

support time. As the body strength and control of muscles decrease, the 
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elderly tend to decrease their gait speed by taking shorter steps, which 

increases double support time to maintain the dynamic balance (Ngo et al., 

2014). 

Furthermore, gait parameters such as swing time of contralateral leg 

and double support duration do not show significant age-related differences 

between the elderly and young. In addition, fallers offer a notable drop in 

stride length and step length and lead to slower walking speed (Auvinet et al., 

1997). Thus, this further supports the statement that gait disorder due to 

ageing is the main factor of falling in the elderly because the risk factors that 

cause falling are highly overlapping with the gait characteristic of the elderly. 

In a study carried out by Ngo et al. (2014), the impact of age on gait 

performance was discussed by applying the authentication performance 

method. The authentication performance method is evaluated using 

Detection Error Trade-off (DET) graph. This DET graph plots False Reject 

Rate (FRR) against False Accept Rate (FAR), which also can be interpreted 

as false-negative rate vs false positive rate (Precise Biometrics, 2021).  The 

curve in the DET graph represents the trade-off between FRR and FAR in 

different authentication scenarios. In other words, as the y-axis represents the 

number of false-negative (match errors), the curve closest to the bottom of 

the plot has the best performance and vice versa. Figure 2.1 shows the DET 

graph gait authentication for different age groups from the research by Ngo et 

al., 2014.  

 

 

Figure 2.1: Detection Error Trade-off graph of gait authentication for each 

age interval (Ngo et al., 2014). 
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From Figure 2.1, the study was conducted on subjects every 10-year 

interval. The graph shows that the under-10 group and over-50 group 

authentication performance are the worst among all groups. The result for the 

over-50 group is understandable as the group is the oldest of them all, and 

subjects from this group may experience different levels of degradation in the 

nervous system and musculoskeletal system due to ageing, leading to weaker 

strength when walking. The reason for the under-10 group to show bad 

performance is mainly because of the immaturity of their walking skill (Ngo 

et al., 2014). Subjects from the under-10 group are still developing their 

walking style, which leads to an unstable gait pattern that contributes to lousy 

authentication performance. For the 40s group, the performance is better, but 

the fluctuation is more significant. This is because the body strength starts to 

degrade at this stage as age increases (Ngo et al., 2014). Finally, in the range 

between 10-30 years, the 10s and 30s group show good performance and the 

20s group has the best performance. The reason is that the body strength and 

walking pattern are excellent and stable (Ngo et al., 2014).  

As a result of ageing, most body functions will degrade. Three of the 

main factors closely related to gait in old age include lower limb muscle 

function, vision function and knee joint function. According to Demura et al. 

(2014), within the test subjects of older women with no visual acuity problem 

and knee joint pain, those with more muscular knee extension strength will 

have superior results over weaker knee extension strength (Demura et al., 

2014). More muscular knee extension strength will help prevent a decrease in 

stride length and walking speed which are the main risk factors of falling and 

gait disorder. Next, researchers also report that age is not a direct factor that 

affects visual acuity and fall risk. 

In addition, fall risk increases when visual acuity decreases and this 

relationship does not affect by age (Demura et al., 2014). Furthermore, it is 

reported that patients with knee joint pain due to knee joint disease such as 

osteoarthritis will show characteristics of gait abnormalities such as a 

decrease in stride length, step length and walking speed, and an increase in 

stance time and step width. These gait patterns are caused by the unconscious 

gait strategy of the elderly to relieve the pain in their knee when walking.  
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2.1.1.2 Gender 

According to findings, women will need to take more steps than men to walk 

at a similar walking speed. In other words, females have shorter stride lengths, 

and females usually walk slower than males (Ko et al., 2011). This difference 

is not correlated with height. One of the gait-affecting features that differ by 

gender is the hip and ankle range of motion (ROM). It is found that women 

tend to have a more extended second knee flexion period and longer second 

ankle plantar flexion compared to men. These two characteristics might be 

one of the reasons for shorter stride length in women because the early onset 

of knee flexion causes the foot to touch the ground earlier than in men. 

Therefore, men rely more on hip angular motion during walking motion, 

whereas women rely more on ankle angular motion (Ko et al., 2011). Due to 

the dependence of ankle angular motion in women, women tend to have more 

energy absorbed in the knee and joint, explaining the higher chances of knee 

osteoarthritis or other joint-related illness in women (Hunt et al., 2006).  

In the study of Kobayashi, Kakihana and Kimura (2014), the 

findings show that there is a significant effect of gender on the gait symmetry 

during walking. Researchers also point out that previous studies in earlier 

stages have reported that gender to gait symmetry and stability are 

insignificant (Auvinet et al., 1997). In addition, it is found that older women 

have higher gait variability in stride time and double support time (Ngo et al., 

2014). Gait control in older women is more unstable and inefficient than in 

older men; thus, they will unconsciously increase the double support time to 

stabilise their gait when walking. In my opinion, gender differences will have 

a significant effect on gait. However, the result will only become notable for 

the elderly. Although for the average adult population (not the elderly), 

gender is not a key factor affecting gait, age has more impact on gait than 

gender difference.  

 

2.1.2 Psychological factors 

In a study conducted by Nagano et al. (2019), the researchers studied the 

relationship between mental health and gait asymmetry. The study is 

conducted in three steps: mental health assessment, gait assessment and 

correlation analysis (Nagano et al., 2019). The participants are residents of 
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Konosu City (Japan) aged over 50 years, and each of them undergoes a 

General Health Questionnaire 12 (GHQ-12). The questionnaire consists of 12 

questions, and the final score will range from 0 to 12; as such lower score 

indicates good mental health and an oppositely higher score reflects less 

positive mental health (Nagano et al., 2019). The gait analysis is conducted 

using an image capture system; and the correlation analysis is done using 

multiple regression analysis (SPSS, Inc., Chicago, IL, USA) to determine the 

correlation of GHQ-12 score with parameters of variables, step length, step 

width, double support time, and foot-ground clearance (MFC). The result is 

presented in Table 2.1. The meaningful findings that can be interpreted are 

that higher scores (poorer mental health) subjects tend to have higher gait 

asymmetry and walk with broader steps and lower foot-ground clearance 

(Nagano et al., 2019).  

 

Table 2.1: Result table of correlation of GFH-12 score with gait parameters. 

Correlations with GHQ-12 r P value 

Step length (SI) 0.366 <0.001 

Step length SD (SI) 0.401 <0.001 

Step width (SI) 0.545 <0.001 

Step width SD (SI) 0.537 <0.001 

Double support (SI) 0.436 <0.001 

Double support SD (SI) 0.480 <0.001 

MFC (SI) 0.379 <0.001 

MFC (SI) 0.545 <0.001 

 

Examples of psychological factors that may affect the gait pattern 

are depression and fear of falling, commonly found in the elderly. 

Particularly for fear of falling, the elderly tend to slow down their walking 

speed and takes smaller steps to increase double stance time to maintain their 

balance. These changes in gait are done unconsciously, and it will impact gait 

pattern and gait variability. Another literature from William R. Young, Toby 

J. Ellmers, Noel P. Kinrade, John Cossar, and Adam J. Cocks (2020) 

demonstrates that psychological factors have a notable impact on gait 
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patterns. The approach in this study tries to prove the statement from a 

different perspective. Researchers try to prove that a gait prediction model 

built using data from questionnaires regarding psychological factors can 

effectively predict the changes in gait (Young et al., 2020). The questionnaire 

model is called Gait-specific Attention Profile (GSAP). The questionnaire 

consists of four types of psychological factors, which is shown in Table 2.2. 

The data is collected from 224 older adults with a mean age of 76.53 

and a standard deviation of 8.85. The information is then processed through 

conscious movement processing (CMP) to score out the data. After that, the 

same participants will complete a walk on a 6-meter automated GAITRite 

walkway to collect the gait parameters. As the result of prediction, the 

GSAPCMP model can significantly predict the changes such as slower velocity, 

shorter step length and longer double-limb support time in participants' gait 

(Young et al., 2020). P-value is used to determine the level of confidence for 

the prediction. The definition of P-value in the statistic is the level of 

significance in which the null hypothesis would be rejected. In this case, the 

null hypothesis is the correct prediction of gait parameters. In other words, 

the smaller the P-value, the more significant the result. Thus, the P-value for 

velocity, step length, and double-limb support is 0.033, 0.032 and 0.015. 

Theoretically, P-value less than 0.1 would consider highly significant, and 

thus the prediction of the GSAPCMP is deemed to be substantial, which proves 

that psychological factors impact gait patterns.  

 

Table 2.2: Factor names and associated Gait-Specific Attentional Profile. 

Factor 

Number 

Factor Name Item 

Factor 1 Anxiety • Feeling of strained 

• Feeling of concerned about what people 

think of my movements 

• Tense 

Factor 2 Conscious 

Movement 

Processing 

• Always think about how I walk or move.  

• Attempt to control my movements 

• Always check the way I walk/move 
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Factor 3 Fall-related 

Ruminations 

• Always imagine falling experience  

• Always think about what would happen 

if I fell 

• Always worried about falling run 

through my mind 

Factor 4 Processing 

efficiency 

• Confusion and making not logical 

decision 

• Cannot concentrate on two things at 

once 

 

In summary, the psychological factors do have a beneficial impact 

on gait pattern, although the consequences are rather indirect and unscientific 

compared to physiological factors such as age and gender.  

 

2.1.3 Environmental factors 

Environment factors are the manipulating factors that act on the subject when 

walking. Some environmental factors discussed are shoe types, condition of 

the surface to walk on, and ground slope.  

A study has shown that shoe types have a significant impact on gait 

patterns. It turns out that heavy shoes will have negative effects on gait 

performance. Gafurov et al. (2011) reported that subjects wearing heavier 

shoes would have more unsatisfactory gait recognition performance, 

reflecting changes in gait pattern due to heavy shoes (Gafurov, Bours and 

Snekkenes, 2011). This is mainly because the weight footwear requires more 

energy to walk; the bigger and bulkier footwear can be uncomfortable to 

walk on. The next factor is the type of surface. According to Sprager and 

Zazula (2011), the effect of surface conditions on gait is limited and can be 

neglected as the difference is not significant (Sprager and Zazula, 2011). In 

this study, the gait performances of the subject walking on four different 

surfaces: ground, gravel, stone plate and grass are similar. However, the 

study does not address surfaces with more extreme conditions such as wet 

surfaces, surfaces covered with holes and surfaces with water puddles. 

Although walking on a surface with more extreme conditions will change the 
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gait pattern, the changes are relatively less reliable as the change in gait is to 

avoid the obstacles on the walkway. 

Furthermore, the ground slope to walking gait may not be as 

significant as people and researchers think. For example, a study by Arnold et 

al., 2015 demonstrated that gait performances of subjects walking on incline 

slope (+5% gradient) and decline slope (-5% gradient) are similar to the 

performance of walking on a flat surface (Arnold, LaRose and Agu, 2015). 

Therefore, the inference that can be made is that as long as the change in 

surface slope does not change the movement mode, the gait pattern will not 

experience significant changes as the body muscle can adapt to the change in 

environment.  

 

2.1.4 Sensor induced factors 

In practice, change in gait pattern may not only cause by the factors that arose 

from subjects and environment; sensor-induced factors also need to be 

controlled to yield good gait analysis data. Sensor induced factors typically 

occur in the wearable system as the sensors are attached to different body 

parts of the subject. Wearable systems can utilise many different types of 

sensors such as capacitive pressure sensors, accelerometers, and gyroscopes 

to record body gait data in multiple aspects consisting of specific force, 

angular rate, and 3D inertial data. The data collected are generally one-

dimensional for other gait analysis methods such as image processing and 

force plate. The placement is fixed as a fixed-motion capture camera system 

in the image processing method and fixed force plate. The sensor induced 

factors can be classified into position/location factor and orientation factor. 

The position of sensors is vital in wearable system gait analysis. 

This is because each inertial sensor can only measure single-point motion 

trajectories (Sprager and Zazula, 2011). Therefore, the result will have a 

notable difference in gait pattern even though there is a slight variation in the 

position of sensors. For instance, the placement of sensors at the foot ankle 

can measure more intensive and valuable gait data than the sensor placed at 

body parts that are more rigid while performing walking gait, such as the 

centre back. Thus, consideration of kinetic and kinematic factors of interest 

body parts needs to be done carefully to select placement points of sensors. 
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Ngo et al. (2014) also reported that the gait performance for the sensor 

placement at the front and the back of the waist is quite similar (Ngo et al., 

2014). This finding further supports that the more rigid part of the body 

yields less valuable data, and focussing too much on collecting data from 

these parts will not be a good decision. In addition, the gait data collected 

will also be affected by the way the sensors are attached to the body. In 

practice, the assumption is that all measurements are performed with the 

sensors placed precisely at the desired spot for every repetition. The 

assumption is valid for professional analysis by specialists as specialists will 

ensure that the sensors are attached as firmly as possible at the desired spot. 

However, in some commercialised gait monitoring systems that subjects 

themselves can do, the result would be more likely to be less discriminative 

(Sprager and Zazula, 2011). The reason for this is that users prefer sensor 

positions that is more common such as inside trouser pocket, inside purse or 

wallet, and even holding them in hand during gait measurement.  

Problem orientation invariance in gait analysis of wearable inertial 

sensors has become an issue throughout wearable gait analysis systems 

development. Early-stage approaches focus on implementing acceleration 

signals from an accelerometer, which is invariant and insensitive to measure 

orientation. Therefore, the problem arises as the computation only utilises the 

orientation invariance signal. As a result, there will be a significant loss of 

information and a decrease in the distinction of gait patterns (Sprager and 

Zazula, 2011). Another study introduced a system utilising a triaxial 

accelerometer and gyroscope with calibration with transformation logic in 

recognition procedure to resolve sensor orientation inconsistency (Sun, Wang 

and Banda, 2014). According to Ngo et al. (2014), four dissimilarity measure 

models are used to identify the accuracy between accelerometer and 

gyroscope, as shown in Figure 2.2. Accelerometer produces better 

authentication performance in all dissimilarity measures except for 

TANIMOTO model (Ngo et al., 2014). These results indicate that including 

an orientation-variant signal from a gyroscope can measure more informative 

and multidimensional data. Still, the drawback is the complexity will reduce 

the performance of the recognition model. Over the years, more advanced 

and effective approaches were introduced to resolve orientation inconsistency 
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in gait analysis. For example, Zhong et al. (2014) proposed an invariant gait 

representation model that implemented 2D representation gait dynamic 

images capable of capturing consistent motion dynamics over time from data 

acquired from accelerometer and gyroscope (Zhong and Deng, 2014).  

 

 

Figure 2.2: Equal error rate for dissimilarity measures versus sensor types 

(Ngo et al., 2014).  

 

2.2 Gait analysis methods 

A semi-subjective analysis is an analysis method widely spread in clinical 

fields, especially in rehabilitation centres, clinics and hospitals for clinical 

treatment purposes. One of the advantages of this method is that the result is 

more on a qualitative result. Thus, the result is relatively easy to understand 

by patients themselves and easier to record and evaluate by a specialist. 

However, although this approach is informative in certain situations, the 

results from these observations are usually considered restricted and less 

accurate due to the qualitative nature of the study and the reliance on the 

experience of the specialist who performed the assessment (Muñoz Ospina et 

al., 2019).  

On the other hand, objective gait analysis methods are often applied 

for research and experiment purposes. Compared to the semi-qualitative 

analysis, objective analysis is more on quantitative methods. Thus, the results 

data collected are more accurate and informative. Furthermore, the data can 
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be processed and analysed by a specialist using statistical tools or analysed 

by classification/recognition algorithm to identify better gait disorder of the 

subject (Djurić-Jovicić et al., 2014). The limitation of objective gait analysis 

is that advanced and professional equipment and analytic tools are required, 

limiting their application in rehabilitation centres and hospitals.  

 

2.2.1 Semi-objective analysis 

Entirely subjective based gait analysis is uncommon now as analysis 

nowadays can only be more reliable and convincing enough to people when 

there is data to support it. Therefore, a semi-objective approach is introduced 

and commonly used as a primary assessment tool for treatment purposes by 

specialists in the hospital environment. Furthermore, semi-objective is 

helpful in direct clinical practice. This method can overview patient gait 

abilities through a faster and easier procedure without or with minimum 

equipment compared to the objective gait analysis approach (Moissenet and 

Armand, 2015).   

 

2.2.1.1 Questionnaire-based scales 

The aim is to give an overall score that helps evaluate a patient's gait ability 

by answering questionnaires. Questionnaires that measure for Parkinson's 

Disease include the SF-12 health survey, fall status, Short Falls Efficacy 

Scale-International (Short FES-I), the visual analogue scale (VAS) for pain, 

UPDRS (parts I, II, and III), and H&Y staging (disease stage) (Toosizadeh et 

al., 2015). SF-12 health survey focuses on physical and mental components 

in evaluating the generic health status of patients. FES-I is used to estimate 

the level of fear of falling to the falling rate among older people. Toosizadeh 

et al. (2015) suggested that a shorter validated version of the SF-12 health 

survey (12 instead of 35 items) and FES-I (7 instead of 16 items) can be 

adapted to evaluate the patients when the assessment procedure has to be 

done in one visit (Toosizadeh et al., 2015). Next, VAS assessment assesses 

pain attributes as it usually comes with Parkinson's disease. Finally, UPDRS 

consists of three parts which correspond to rate patient's disability on 

behaviour and mood (Part 1), activities of daily living (Part 2), and motor 

examination (Part 3). To ensure the validity and understanding of the 
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questionnaire, it is crucial to make sure the questionnaires are adapted 

according to the target age or disorder; and valid with correct translation 

(Moissenet and Armand, 2015). 

 

2.2.1.2 Observation-based scales 

Observation-based scales aim to evaluate patients' gait patterns and gait 

performance through specialists' direct or indirect (video recordings) 

approach. There are generally four aspects to conduct during qualitative 

observation assessment, and the steps are elaborated in Table 2.3 (Malani, 

2008).  

 

Table 2.3: Different aspects to observe during qualitative assessment. 

Aspects Description 

Preliminary 

evaluation 

• Perform a neurologic test on cranial (controls visual 

fields and acuity), cerebellar (heel to the shin, 

Rhomberg) and peripheral nervous systems. 

• Check for foot sensation and proprioception. 

• Check for musculoskeletal abnormalities and 

deformities. 

Standing and 

balance 

• Observe how the patient rises and stands from a sitting 

position.  

• Observe the performance of the patient turn 360 degrees 

with eyes closed. 

Walking  • Observe whether the patient has difficulty when 

walking, such as hesitancy or multiple attempts. 

• Observe the step height of both feet and the symmetry 

of the left and right sides.  

Endurance  • Observe the sign of fatigue during walking.  

 

Many classification systems can help researchers and specialists to 

conduct qualitative gait assessments. One of the most well-known 

classification systems is Gross Motor Function Classification System 

(GMFCS) (Moissenet and Armand, 2015).  
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Table 2.4: Detailed description of Gross Motor Function Classification 

System.  

Level Description 

Level 1 Children take walks at home, school, outside, and in the 

neighbourhood. They are able to climb stairs without using a 

guardrail. Children perform gross motor abilities such as 

running and jumping, but their speed, balance, and coordination 

are limited. 

Level 2 Children walk and ascend stairs while holding onto a railing in 

most situations. Due to uneven terrain, inclines, or cramped 

quarters, they may have trouble walking long distances and 

balance in busy settings or limited spaces. Over extended 

distances, children can walk with physical help, a hand-held 

mobility device, or wheeled mobility. Gross motor skills such as 

running and jumping are limited in children. 

Level 3 In most indoor situations, children walk with a hand-held 

mobility device. They can ascend steps with supervision or 

support while holding on to a handrail. When travelling lengthy 

distances, children use wheeled mobility and may self-propel 

for lesser distances. 

Level 4 Children adopt means of movement that need physical help or 

powered mobility in most situations. They can walk short 

distances at home with physical help or use powered mobility or 

a body support walker after they are properly positioned. At 

school, outside, and in the community, children either use a 

manual wheelchair or motorised mobility. 

Level 5 In all contexts, children are conveyed in a manual wheelchair. 

As a result, maintaining antigravity head and trunk positions 

and controlling leg and arm motions are difficult for children. 
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2.2.1.3 Techniques to measure the performance of gait 

In semi-objective analysis, tests and techniques will be applied to patients to 

collect quantitative data on patients' gait. These tests require minimum 

demand of equipment and are easy to perform. The parameters measured in 

these tests may not be as advanced and detailed as those measured in 

objective analysis. However, these tests help specialists quickly overview the 

patient's gait performance, which is very useful to complete the assessment. 

Some of the most common and popular techniques used in clinical practice 

are discussed in Table 2.5 (Muro-de-la-Herran, Garcia-Zapirain and Mendez-

Zorrilla, 2014).  

 

Table 2.5: Techniques used to measure the gait performance of patients 

during semi-objective analysis.  

Techniques Description 

Timed 25-Foot Walk 

(T25-FW) 

In this test, a specialist will record the time 

taken for the subject to walk in a 7.5m long 

straight line. This test is also used in the 

Multiple Sclerosis Functional Composite 

(MSFC) as the first assessment part. MSFC is a 

standardised quantitative evaluation 

instrumentation module that uses clinical 

studies, especially in multiple sclerosis (Cutter 

et al., 1999). 

Tinetti Performance-

Oriented Mobility 

Assessment (POMA) 

In this test, the patient must stand up from the 

chair and walk forward for at least 3 meters, 

turn 180 degrees, and walk back to the chair in 

a quicker manner. This test can effectively 

evaluate balance and gait disorders in the 

elderly. 

Timed Get up and Go 

(TUG) 

In this test, time is recorded for the patient to 

complete a standardised series of movements. 

For example, starting from a sitting position, 

standing up, performing a short distance walk 
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forward, turning around, returning to the chair, 

and sitting down. 

Multiple Sclerosis 

Walking Scale (MSWS-

12) 

This test assesses the gait performance of the 

subject through 12 parameters. The 12 

parameters are concluded by the researchers 

based on the result of interviews with 30 

patients, expert advice and feedback, and 

literature review regarding the effect of 

multiple sclerosis on a patient's gait (Hobart et 

al., 2003).   

Extra-Laboratory Gait 

Assessment Method 

(ELGAM) 

This method is gait evaluation, used commonly 

in-home or in the community. In this method, 

parameters in gait are collected and analyse the 

gait performance. Examples of the gait 

parameters include step length, step speed, gait 

style, and ability to turn the head while walking 

and balance in a static position. 

 

2.2.2 Objective analysis 

In contrast to semi-objective gait analysis, objective gait analysis makes use 

of different devices to capture and measure various gait parameters that can 

represent the gait pattern of patients. There are two types of objective gait 

analysis methods, wearable system and non- wearable system.  

 

2.2.2.1 Wearable system 

A wearable gait analysis system is done by attaching wearable sensors to the 

subject's body to measure different gait parameters and gait characteristics. 

Some commonly used sensors to conduct the wearable gait analysis include 

force sensors, pressure sensors, accelerometers, gyroscopes, etc. In practice, 

there are three main achievements of the application of wearable sensors: 

kinematics, kinetic and electromyogram (EMG) (Tao et al., 2012). Therefore, 

in this part of the literature review, the methods and sensors used are 

reviewed based on these three research areas.  
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Kinematics of the human gait describes the movements of body 

parts in gait, including the major joints and lower extremity’s components, 

without considering forces (di Biase et al., 2020). An accelerometer is used to 

measure the acceleration motion of the body part it is attached to. Three types 

of accelerometers are usually used in practice: piezoelectric, piezoresistive, 

and capacitive accelerometers. Piezoresistive and capacitive accelerometers 

can give dual acceleration components and are more stable (Tao et al., 2012). 

In the early stage of the study of kinematics application of wearable 

accelerometers, Mathie et al. (2004) discussed the use of accelerometer-based 

systems in human movement, including monitoring a range of motion (ROM), 

measuring physical activity levels, and identifying and classifying 

movements performed by subjects (Mathie et al., 2004). They also discussed 

a real-time human movement classifier using a triaxial accelerometer for 

ambulatory monitoring (Karantonis et al., 2006). As accelerometer alone can 

only collect a limited amount of information, other sensors such as 

gyroscopes and magnetometers are combined with accelerometers to form the 

inertial sensor. Gyroscopes can measure the angular rate and the angle of 

various joints on the lower extremities; a magnetometer can measure relative 

results for body orientation (Tao et al., 2012). Inertial Measurement Units 

(IMUs) are one of the most popular types of inertial sensor used by 

researcher in gait analysis. In some circumstances, goniometers are used to 

measure the angles for ankles, knees, hips and metatarsals.  

Secondly, gait kinetic studies forces and moments that contribute to 

the movement of body segments and gait motion (di Biase et al., 2020). 

Feature of kinetic generally focuses on the Ground Reaction Force (GRF) 

measurement between foot and joints such as the ankle, knee, hip, and pelvis 

with the ground. Earlier methods use stationary systems to perform kinetics 

studies on human gaits, such as force plates and instrumented treadmill 

devices. However, wearable pressure and force sensors are slowly replacing 

conventional methods due to the limitation of the force plate and treadmill, 

such as low portability, availability, cost, etc. In addition, pressure and force 

sensors come in much smaller sizes and are cost-effective. For example, 

some of the commonly used sensors in practice include resistive sensors, in 

which their resistance decreases when the force applied to them increases; 
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piezoelectric sensors, in which the deformation of gel is measured as pressure 

is applied to them; and capacitive sensors, in which the condenser capacity 

changes according to different parameters. Liu, Inoue and Shibata (2010) 

designed a wearable GRF system prototype, as shown in Figure 2.3. Five 

small triaxial force sensors were used to build the prototype (Liu, Inoue and 

Shibata, 2010). GRF and CoP can be easily calculated using the triaxial 

forces Fxi, Fyi, and Fzi measured from the five small triaxial force sensors. 

Liu, Inoue and Shibata, 2010 reported that wearable sensor systems could be 

used in clinical applications, namely clinical decisions, and assist in medical 

diagnosis as the measured data is suitable to analyse the kinetics of the ankle, 

knee, and hip joints (Liu, Inoue and Shibata, 2010). 

 

 

Figure 2.3: A wearable Gound Reaction Force sensor system prototype built 

using five small triaxial force sensors. (a) The ordinate of sensors 

and sensor mechanism; (b) Prototype of an instrumented shoe for 

the right foot (Liu, Inoue and Shibata, 2010).  

 

An electromyogram is an electrical manifestation of muscle 

contraction (either a voluntary or involuntary muscle contraction) by 

measuring the small electric current produced during muscle contraction (Tao 

et al., 2012). EMG technique can be used to observe muscle activity during 

human walking gait. The measuring equipment for EMG can be surface 



24 

electrodes (non-invasive) or using wire or needle electrodes (invasive) 

(Muro-de-la-Herran, Garcia-Zapirain and Mendez-Zorrilla, 2014). EMG data 

of walking gait is a piece of precious information in clinical gait analysis. 

With the development of wireless technology in EMG sensor applications, 

EMG has become a mature and reliable wearable measurement tool for gait 

analysis. 

Furthermore, surface EMG is a valid non-invasive assessment for 

pathophysiological mechanisms that may affect the gait function, such as 

changes in passive muscle-tendon properties, paresis, spasticity, and loss of 

selectivity of motor output in functionally antagonist muscles (Frigo and 

Crenna, 2009). Besides, EMG analysis can recognise the neural injury or 

compression, denervated muscles, or primary pathological processes of the 

specific localised muscle group. This application is beneficial, particularly in 

studying exercise physiology, athletic training, ergonomics, physical therapy, 

and physical medicines (Dietz et al., 1995; Dietz, Leenders and Colombo, 

1997; Whittle, 1996). A more recent study by Wentink et al. (2014) reported 

that EMG data measured from the prosthetic leg could predict the initial 

movement in gait initiation with a latency up to 138ms in advance (Wentink 

et al., 2014).  

Analysis techniques for gait recognition and identification of gait 

characteristics can generally be divided into functional analysis and machine 

learning approach (Rueterbories et al., 2010). First, functional analysis is a 

mathematical approach to extract features by curve sketching and analysis, 

and this method is commonly used to indicate certain gait phases or events. 

Next, the machine learning approach is more to gait recognition. Common 

algorithms used for wearable systems include neural networks, mutual 

information classifiers, fuzzy computational algorithms, and support vector 

machines (Rueterbories et al., 2010). In addition, in the context of kinetic 

analysis, the inverse dynamics method is another commonly used approach 

due to its simplicity and ease of application (Tao et al., 2012).  
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2.2.2.2 Non-wearable system 

2.2.2.2.1  Floor-based system 

A floor-based system is a stationary gait measurement system that 

implements a sensor or device along the floor for the subject to walk on. A 

floor-based system is suitable for measuring GRF with exact accuracy. In 

addition, it can compute more gait information such as length, time and speed 

parameters for step and stride by measuring the pressure over time data. 

Floor-based instrumentations commonly utilise a combination of pressure 

and force sensors to acquire the desired data, such as GRF in 3-axis, the 

centre of gravity, and shear and moment components of applied forces 

(Robertson et al., 2013). There are three types of floor-based systems that 

have been researched in a practical situation in gait analysis.  

Firstly, a force plate device is a complex sensor matrix consisting of 

pressure and force sensors. Force plates can measure GRF in multiple axes 

and the centre of pressure very accurately on the area of the plates. However, 

several studies have reported that force plate is not suitable for gait analysis 

due to its constraint. Force plates can provide accurate measurement within 

the plate area, but the size/area for subjects to stand on restricts the 

measurement for more than one stride. Thus, to perform gait analysis for 

continuous walking across certain distances, a complicated system 

comprising many force plates and a data fusion method must be constructed 

(Rabuffetti and Frigo, 2001; Chen et al., 2010). Therefore, force plates are 

more suitable for stationary applications such as balance training, 

development of balancing medical devices and sports analysis like vertical 

jump analysis.  

Secondly, it is the floor sensor mat. The concept of this approach is 

to place the force sensors embedded in a mat and the mat placed on the floor 

to form a walkway for subjects to walk on. A prototype of floor sensors mat 

from Middleton et al. (2015) is depicted in Figure 2.4. The prototype utilises 

capacitors as pressure sensors. The mat consists of 16 by 96 sensors, and the 

sensors are arranged into grids with the assumption that the subjects' 

footsteps do not overlap along the line of their forward motion to avoid the 

ghosting effect (Middleton et al., 2005). As a result, the prototype can collect 
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foot profile and gait pressure data over time, as illustrated in Figure 2.5 and 

Figure 2.6. The advantage of this approach is that the construction method 

and process are simple and cheap, and it can measure continuous walking 

behaviour (Middleton et al., 2005; Leusmann et al., 2011).  

 

 

Figure 2.4: Prototype of sensor mat on the floor (Middleton et al., 2005). 

 

 

Figure 2.5: Footsteps profile (Middleton et al., 2005). 

 

 

Figure 2.6: The pressure of four footsteps on the sensor mat (Middleton et al., 

2005) 
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Thirdly, instrumented treadmills have all of the functionality of 

ordinary treadmills but with pressure or force sensors to measure kinetics 

characteristics of gait. Instrumented treadmills provide spatiotemporal gait 

information and GRF in an almost instantaneous manner. The data are 

reported to have a high-reliability level, with coefficients of variation (CVs) 

of less than 10% for data collected using this system (Kesar et al., 2011). 

Reed et al. (2013) reported that newer instrumented treadmill technology that 

incorporates pressure transducers demonstrates high reliability and accuracy 

compared to the conventional technology, which implements force sensors 

(Reed, Urry and Wearing, 2013). The system up to date has been used in 

research areas related to gait analysis, for example, fundamental control 

mechanisms in gait, disturbances associated with neurological disorders, 

including Parkinson's disease and cerebellar ataxia; and as an assessment tool 

to evaluate the effectiveness of various clinical, and neurorehabilitation trials; 

and for monitoring the progression of ergonomic training programs (Reed, 

Urry and Wearing, 2013). In the study conducted by Donath et al., 2016, an 

instrumented treadmill compromising a high-quality capacitive force sensors 

matrix and analysis software is compared to a portable gait analysis system, 

RehaGait to evaluate the validity and reliability of gait data collected (Donath 

et al., 2016). The result shows that the RehaGait system can obtain a similar 

result to the instrumented treadmill most of the time. However, the RehaGait 

system is observed to overestimate the data of stride length (+2.7 %) and 

stride time (+0.8 %) and underestimate the cadence (−1.5 %) (Donath et al., 

2016). Therefore, the instrumented treadmill can provide data with superior 

accuracy, and the versatility to adjust the slope and speed still makes it the 

essential instrumentation in gait analysis. However, constraints still exist as 

the assessment on the treadmill will always be along a straight line, and the 

subjects cannot experience turning or direction changes that reflect the 

performance during real-life activities.   

2.2.2.2.2  Image processing system 

An image processing method is a non-invasive human gait analysis as there 

are no sensors attached to the human body. This method uses several digital 

or analogue cameras with lens that can be used to gather gait-related 
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information. Compared to a motion capture system that requires markers to 

be attached to the human body, the process to deliver this analysis is 

simplified by a lot as the preparation time is reduced. Besides, there is no 

more restriction to the human body when assessing, allowing accurate and 

efficient motion assessment in more applications.  

In the image processing analysis, one parameter is very important to 

control in the analysis: depth measurement (Muro-de-la-Herran, Garcia-

Zapirain and Mendez-Zorrilla, 2014). The depth information data can 

increase the dimensionality of the image to a 2.5D depth image. A 2.5D 

image is technically 2D but with depth information. Therefore, less work 

needs to be done to process this type of image as the 2.5D dimension 

simplified the task for foreground/background subtraction. Four techniques 

can be applied during image capture phase to capture 2.5D depth images. The 

techniques are organised and discussed in Table 2.6. 

 

Table 2.6: Different image capturing techniques in the image processing 

method. 

Techniques Description 

Stereoscopic 

Vision 

A stereo camera system is used to capture the image of the 

subject. The stereo images will undergo stereo matching 

process to identify the depth measurement in the image. In 

the stereo matching process, the first step is to identify the 

corresponding feature points in a pair of stereo image. Next, 

the disparity of all of the matching points is calculated. 

Then, using the disparity, the known calibrating parameter 

and known 2D coordinate to recover into 3D coordinate and 

form 3D image (Liu, Cao and Wang, 2010).  
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Time-of-

Flight 

Systems (ToF) 

ToF image capturing system uses cameras with signal 

modulation to measure distances and translate to images 

based on the phase-shift principle. 

 

Structured 

Light 

A special light projector modulated by a spatial light 

modulator is used to project onto the desired scene. A 

device that is commonly used for this purpose is the Kinect 

sensor. An active illumination pattern is captured. The 

pattern varies depending on the designed 2D structured 

illumination with varying intensity patterns projected from 

the source. Then, 3D information can be computed by 

analysing the deformation of the projection of the pattern 

onto the scene with respect to the original projected pattern 

(Geng, 2011). 
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Infrared 

Thermography 

Infrared thermography refers to the process of forming 

differential images that are visualised with colours based on 

the object's surface temperature. This technology can apply 

to the human body because the body skin's emissivity is 

0.98 ± 0.01, which is free of limitations of visualising 

thermography images such as pigmentation, absorptivity, 

reflectivity, and transmissivity. This technique was applied 

in the research by Xue et al. in 2010, and the result for gait 

recognition is quite promising, which is 78%–91% (Xue et 

al., 2010).  

 

One of the newer methods that provide promising results and is used 

frequently in recent studies is the ToF system. Advantages of Tof system 

such as only requiring a single camera and not requiring manual depth 

parameter calculations, make it stand out compared to methods. In the 

research done by Samson et al., the use of ToF system in higher resolution 

calculation of pressure for dynamic footprint analysis is demonstrated 

(Samson et al., 2012). Compared to all of the methods discussed, the ToF and 

Infrared Thermography system requires a more expensive data acquisition 

instrument (Derawi, Ali and Alaya Cheikh, 2011). The stereoscopic method 

does not require a special camera for capturing data, but high computational 

cost is needed for computing stereoscopic data to determine the distance and 

position of the subject (Liu, Cao and Wang, 2010). A structured light method 

is known for its higher versatility and availability of sensors compared to 

other methods (Gabel et al., 2012).  
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Image data used for gait recognition are mostly in the form of a 

silhouette. According to Benabdelkader, Cutler and Davis, 2004, the first step 

of pre-processing for raw colour image data is motion segmentation. Motion 

segmentation can be computed using a nonparametric background 

modelling/subtraction model, which is robust and good at handling issues 

such as lighting changes, camera jitter, and the presence of shadows. Motion 

segmentation is an important step as it removes the non-interest background 

and outlines the subject's segment of motion. Once the segmentation is 

detected, the motion of the subject is tracked in the subsequence frames for N 

consecutive frames. Then, a sequence of N successive frames silhouette 

template is created, corresponding to the gait motion of interest 

(Benabdelkader, Cutler and Davis, 2004).  Since the size of the subject 

segment may vary as the distance of the subject from the camera system can 

change during the recording of the motion, the scaling and aligning process is 

required to compute a sequence of silhouette templates that is more robust 

and more accurate. Lastly, threshold filtering which converts the image to 

black and white is performed depending on the needs of the study (Muro-de-

la-Herran, Garcia-Zapirain and Mendez-Zorrilla, 2014). 

Three outcomes can be obtained after pre-processing of images 

depending on the needs and nature of the study: (1) original/greyscale image, 

(2) foreground segment image, and (3) binary image (Benabdelkader, Cutler 

and Davis, 2004). The three types of images are illustrated in Figure 2.7. 

These three types of templates have their own trade-off when computing for 

gait recognition. The original image is more robust to segmentation errors; 

the binary image is more robust for clothing and background errors; and the 

foreground image is the middle option of these two, robust to background 

errors but sensitive to segmentation and clothing variations.  
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Figure 2.7: Silhouette images corresponding to the original, foreground, or 

binary images (from left to right). Retrieved from (Benabdelkader, 

Cutler and Davis, 2004).  

 

Before training the gait recognition model, feature extraction is 

normally taken to extract the significant information/features from the images 

(Pratheepan, Condell and Prasad, 2009). Since the dimensionality of the 

dataset of images generally is very big. For example, the resolution for one 

coloured image taken for analysis is 128 x 128 x 3 = 49152 pixels (two-

dimensional image times three for three of the red, green and blue colour 

contours). This number will increase with the resolution of the image taken 

and the example of image in dataset. Feature extraction techniques that are 

commonly used in this type of application are principal component analysis 

(PCA) and linear discriminant analysis (LDA). After feature extraction, the 

classification algorithm used to train and test the model is Nearest 

Neighbours. The feature extraction techniques and classification algorithm 

were implemented by Benabdelkader, Cutler and Davis (2004) with the 

promising performance of their gait recognition is very promising with 94% 

and 100% accuracy for PCA and LDA, respectively with binary image 

dataset; and 94% accuracy for both PCA and LDA with foreground image 

dataset (Benabdelkader, Cutler and Davis, 2004). A detailed review of the 

feature extraction techniques and classification algorithms used in gait 

recognition will be elaborated in the next chapter of the literature review.  

Out of so many feature points that can be extracted and identified in 

the silhouette images, some are significant, and some are irrelevant, such as 

background and clothing. Those significant can further be categorised into 
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static and dynamic components. The static components refer to the parts of 

the body that stay rigid during gaits, such as head and body trunk, whereas 

dynamic components refers to the swings of arms and legs (Veres et al., 

2004). Identifying which component contributes more to gait recognition is 

important so that adjustments and fine-tuning can be made to improve the 

performance of the model. Veres et al. (2004) reported that static component 

information would impact gait recognition more than dynamic component 

information. In their study, training silhouette images are processed into 

average silhouettes and differential silhouettes (Veres et al., 2004). The 

average silhouette is the average appearance of each recorded sequence 

formed by averaging the sum of all silhouettes representing a full cycle; the 

differential silhouette is obtained by applying a differential equation on 

silhouettes representing a full cycle (Veres et al., 2004). The gait recognition 

performance result shows that the static components consistently demonstrate 

a superior impact over the dynamic components in either dataset.  

In addition, similar findings have also been reported by Pratheepan, 

Condell and Prasad (2009). Three datasets that are extracted from the same 

source dataset can be biased to different feature points which are Dynamic 

Static Silhouette Template (DSST), Dynamic Silhouette Template (DST) and 

Static Silhouette Template (SST) (Pratheepan, Condell and Prasad, 2009). 

DSST consists of dynamic and static components, DST consists of dynamic 

components and SST consists of static components. The gait recognition 

result is demonstrated in Table 2.7 (Pratheepan, Condell and Prasad, 2009). 

Besides that, a study introduced Cumulative Match Score (CMS) evaluation 

method to evaluate the performance (Pratheepan, Condell and Prasad, 2009). 

The rank parameter in CMS evaluation indicates the accuracy of the N 

number of top matches for the particular test sample. For instance, the Rank 1 

result for DSST is 77.8% suggests the classification model can predict 77.8% 

of N=1 top matches. Therefore, the higher the rank, the less value its result 

delivers. Overall, DSST gives the best result among the three, and SST has a 

better performance than DST, which indicates that static component 

information in silhouette contributes more to gait recognition (Pratheepan, 

Condell and Prasad, 2009).  
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Table 2.7: Performance result for each dataset. 

 Rank 1 (%) Rank 2 (%) Rank 3 (%) 

GEI 55.6 66.7 77.8 

SST 61.1 77.8 83.3 

DST 61.1 72.2 88.9 

DSST 77.8 83.3 88.9 

 

2.2.2.3 Comparison between wearable and non-wearable systems 

The non-wearable system (NWS) method is implemented more in 

professional applications because it requires laboratory or controlled 

conditions where gait data capturing equipment and devices such as cameras, 

laser depth sensor, force plate, pressure mat and instrumented treadmill are 

set up. The major advantage of these systems is that they can exclude the 

external factors to subjects' body that may restrict and cause discomfort 

during the assessment. Thus, under the controlled conditions, the 

repeatability and reproducibility level of the assessment becomes higher, and 

a more ideal and natural walking gait can be observed from subjects (Muro-

de-la-Herran, Garcia-Zapirain and Mendez-Zorrilla, 2014). The greatest 

disadvantage of NWS systems is that evaluation cannot be done during 

subjects' daily activities, and short and repetitive study does not 100% reflect 

the patient's condition in real life. For example, the image processing system 

needs the patient to walk within a certain range of cameras and sensors; and 

floor-based system needs the patient to walk on a sensor mat or instrumented 

treadmill that has limitations in direction and distance.  

On the contrary, for wearable systems (WS), the main advantage 

addresses the disadvantage of NWS. Through the development of 

miniaturised sensors and wireless communication systems such as Bluetooth 

or Zigbee, and the simplicity of the sensor system, WS can deliver gait 

evaluation for patients during daily activities outside of the laboratory (Muro-

de-la-Herran, Garcia-Zapirain and Mendez-Zorrilla, 2014). Besides, by 

utilising accelerometer, gyroscopes, and pressure sensors, WS can provide a 

cheaper gait analysis approach with no limitation of location either inside or 

outside the laboratory. On the other hand, disadvantages of WS include 

amplification of the measurement error which occur when estimating speed 
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and distance travelled using integration method; high level of complexity for 

computing result; and uncomfortable or intrusive for patients during gait 

analysis which may affect the performance (Horak and Mancini, 2013).  

The summary comparison between NWS and WS is illustrated in 

Table 2.8. In short, every gait analysis method has its pros and cons and is 

practical for general analytical purposes. Thus, choosing a suitable and 

adequate method is important to increase accuracy and performance. We can 

all agree that the approach that can provide simultaneous, in-depth analysis 

with a higher number of parameters is the combination of NWS methods and 

WS methods in the laboratory environment. However, WS methods deliver 

their value as a cost-effective and non-intrusive alternative method for gait 

analysis.  

 

Table 2.8: Summary comparison between non-wearable system and 

wearable system. 

System Advantages Disadvantages 

Non-wearable System 

(NWS) 

• High repeatability, 

reproducibility and 

less external factor 

interference due to 

controlled 

environment. 

• Non-intrusive. 

• Analysis process is 

controlled in real-

time by the specialist 

in a controlled 

environment. 

• Subject's gait may 

be altered due to the 

restriction of 

walking space. 

• Expensive 

equipment, test and 

environment.  

• Hard to monitor gait 

performance outside 

of laboratory.  

Wearable System 

(WS) 

• Lower cost.  

• No limitations on 

location for gait 

analysis.  

• Transparent analysis  

• Can used to monitor 

subject's gait during 

daily activities.  

• Complex algorithm 

to compute results.  

• Limits to a smaller 

amount of gait 

parameters. 

• Noise and 

interference from 

external forces, 

especially outside 

the laboratory where 

there is no 

supervision from 

specialists.  
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2.2.3 Comparison between semi-objective and objective approach 

In many clinical scenarios, semi-objective gait analysis is often performed to 

rate the gait performance of patients as the necessity to implement objective 

analysis is low. The advantage of this approach is that advanced and 

professional equipment is not required to carry out the test. As long as there 

is a trained specialist, they can obtain an overview of the gait performance of 

the patient in a much easier and faster manner than objective analysis. In 

most clinical practice, based on the observation from experienced specialists, 

they can provide suitable treatment and prescriptions to the patient. However, 

due to the subjective nature of the semi-objective approach, the accuracy, 

exactitude, repeatability and reproducibility of the measurements are highly 

questionable (Muro-de-la-Herran, Garcia-Zapirain and Mendez-Zorrilla, 

2014).  

Semi-objective analysis suffers from several severe limitations. First, 

this method highly relies on the experience and skill of the observer. Thus, it 

is challenging to avoid assessor bias because there is no guarantee that each 

assessment's condition and observer are the same. Therefore, comparative 

and objective results are challenging to obtain. Toosizadeh et al. (2015) 

reported that the in-clinic evaluation of motor impairment in Parkinson's 

disease generates better results than in-home assessment. In-home assessment 

happens when the patient's caregiver is taught how to perform an assessment 

at home to monitor the condition and improvement of the patient (Toosizadeh 

et al., 2015). Because specialists do not supervise in-home evaluation, there 

may be errors in performing the assessment, such as not using standardised 

chairs for the TUG test and completing the assessment during the medication 

period. Next, due to the limitation of human eyes, forces and high-speed 

movement are impossible to measure and observe. Although, a video 

recording approach has been introduced, which can help resolve the 

limitations of eyes in some circumstances. However, the subjective nature of 

this method is still the same, so it does not resolve the accuracy and reliability 

problems of this method.  

In comparison, objective analysis, which implements advanced and 

professional data capturing technologies and analysing tools, can better 

quantify different gait characteristics of the subject. Therefore, this method 
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can produce a more accurate and informative analysis of human gait (Muro-

de-la-Herran, Garcia-Zapirain and Mendez-Zorrilla, 2014). Furthermore, 

these advanced sensor technologies and analysing tools can better capture 

different gait parameters in human gait and more likely discover helpful 

information that cannot be provided in semi-objective analysis by simply 

watching a patient walk.  

In short, the objective analysis should be put in higher priority than 

semi-objective analysis when performing gait assessment. Although semi-

objective analysis has the advantage of being fast and straightforward, the 

serious limitations will significantly decrease the accuracy and reliability of 

the evaluation. In recent years, objective analysis shows a trend to replace 

semi-objective analysis in clinical practice as technology development has 

reduced the difficulty of implementing objective analysis.  

 

2.3 Gait classification 

2.3.1 Data preprocessing 

The vast majority of real-world raw data sources are imperfect and cannot 

deploy directly to human or manual applications. Thus, data preprocessing is 

an essential step to minimise or to get rid of the imperfections in the data 

source. This process becomes more crucial when dealing with Big Data 

scenario in which the volume, velocity and variety of data are higher. There 

are four main data preprocessing tasks: instance reduction, missing value 

imputation, data normalisation, and noise reduction.  

 

2.3.1.1 Instance reduction 

Instance reduction techniques are popular in minimising the effect of a very 

large data set in data mining algorithm. The method can decrease the number 

of instances/samples in the data set without sacrificing the quality of its 

interpretation. There are two steps involved in instance reduction: instance 

selection and instance generation.  

Instance selection is perceived as the essential step in instance 

reduction. The purpose of instance selection is to identify suitable examples 

from many instances and remove the unwanted, not valuable data, including 

duplicate data, irrelevant data, and outliers (García et al., 2016). Duplicate 
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data has a high chance to happen, especially after combining data from 

multiple places or parties, and it is the main problem to address in instance 

selection. Irrelevant data refers to the data that do not fit with the problem 

statement of machine learning. Outliers are those observations out of the 

range of data trends that are likely to be bad data points (Tableau Software, 

2021). The filter and wrapper approaches are the two approaches to 

performing instance selection. The filter approach does not consider activities 

when performing data reduction; the wrapper approach emphasises machine 

learning and uses certain machine learning algorithms to reduce data 

(Kotsiantis, Kanellopoulos and Pintelas, 2006).  

Unlike instance selection, it is not a must for instance reduction. For 

instance generation methods, besides selecting data, can generate and replace 

the original data with new artificial data. Instance generation techniques can 

be used to fill regions in the problem domain that lacks representative and 

valuable samples (García et al., 2016).  

 

2.3.1.2 Missing value imputation 

Missing values treatment is very important in data preprocessing. Most of the 

data mining and machine learning algorithms do not accept missing values 

because results will not be optimal and valid. The presence of missing values 

in data sets can cause deficiency and strong biases in extracting information 

and data training. Therefore, missing values treatment has to be handled 

carefully as inappropriate approaches may cause poor knowledge extraction 

and wrong conclusion (García et al., 2016). The first option of treatment is to 

drop the instances that contain missing values. This option is simple, but it is 

rarely beneficial because it may produce a bias in the learning process and 

cause loss of information. The second option is to fill in the missing values 

based on observation. Once again, the approach must be handled carefully as 

there is a chance to the loss of integrity of data since it is operated based on 

assumptions. There are several methods to perform the second option 

(Lakshminarayan, Harp and Samad, 1999):  

a) Most Common Feature Value: The highest occurrence 

value is chosen to fill in the missing value of the feature.  
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b) Concept Most Common Feature Value: The value of the 

feature that has the most occurrence within the same class is 

chosen to fill in the missing values of the feature.  

c) Mean substitution: The mean value of the feature is 

determined to fill the missing values of the feature.  

d) Hot deck imputation: Identify the most similar instance to 

the instance with missing values and substitute the missing 

value with the respective value from the most similar 

instance.  

e) Treating Missing Feature Values as Special Values: The 

missing values are treated as "unknown" as a new value.  

2.3.1.3 Data normalisation 

Data normalisation is a "scaling down" transformation to restrict the range of 

features. There might be a great difference within a feature between the 

minimum and maximum values, for example, 0.01 and 1000. After 

normalisation, the value magnitude will be scaled to appreciable low values 

(Kotsiantis, Kanellopoulos and Pintelas, 2006). Data normalisation is 

important in normalising the scale of different features with different ranges 

(e.g., Age: 20-70 and Salary: 3000-10000) in the data set to compare those 

different features on common grounds. Two common methods to perform 

data normalisation are: 

 

Min-max normalisation: 

𝑣′ =
𝑣 −min(𝑣)

max(𝑣) − min(𝑣)
(𝑛𝑒𝑤max(𝑣) − 𝑛𝑒𝑤min(𝑣)) + 𝑛𝑒𝑤min(𝑣) (2.1) 

  

 

Z-score normalisation: 

𝑣′ =
𝑣 −𝑚𝑒𝑎𝑛𝐴
𝑠𝑡𝑎𝑛𝑑𝑑𝑒𝑣𝐴

(2.2) 

    

2.3.1.4 Noise reduction 

As seen in the previous section, raw data sources are rarely in perfect 

condition, defections and corruption are often found. Noise in data refers to 
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the parts in data that are meaningless and cannot be interpreted and 

understood by machines. In supervised approach, noise can affect the quality 

of input and output features (García et al., 2016). Noise in input features is 

called attribute noise, whereas noise in output attributes that increase the bias 

is called class noise. The first method to deal with noisy data is by using data 

polishing methods, especially effective when related to the labelling problem 

of instances. However, this method is very complex, therefore, usually apply 

to a small amount of noise (Zhu and Wu, 2004). Next, the second method is 

by using noise filter. Noise filter can identify and take out the noise 

components in data and it does not affect the data mining and machine 

learning algorithm.  

 

2.3.2 Feature selection 

Dataset with high dimensional data consists of many features that can be 

irrelevant, misleading, or redundant, which increase search space size. That 

condition will result in difficulty to process data further and thus affect the 

performance of machine learning. Therefore, feature selection technique is 

applied to remove irrelevant, misleading and redundant features to prevent 

overfitting and difficulty in training. Feature selection methods can be 

categorised into wrapper, filter, and embedded/hybrid (Kotsiantis, 2007).  

Wrapper methods use cross-validation on the induction algorithm to 

predict and evaluate the meaningfulness of adding or removing a feature from 

the feature subset.  Wrapper methods can perform better than the filter 

method because the feature selection process can choose the best features and 

optimise the classifier's usage. However, wrapper methods are more 

expensive than other methods because of the computational cost when 

dealing with a large dimensional dataset.  Recursive Feature Elimination 

(SVM-RFE) is an example of the wrapper method, which performs backward 

elimination. The weight vector is used as a ranking criterion in SVM-REF to 

determine the m features leading to the greatest class separation margin 

(Guyon et al., 2002).  

Filter methods select features based on information content: 

interclass distance or statistic dependence.  Compared to wrapper approaches, 

filter methods have a lower computational cost and are faster, but they have 
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lower classification reliability and are better suited to high-dimensional data 

sets. The subset search algorithm is one of the filter methods. There are three 

steps in the characterisation of subset search algorithm, namely (1) search 

organisation, (2) generation of successor and (3) evaluation measure (Ladha, 

2011). First, search organisations search through the dataset by three types of 

search: exponential, sequential and random. Next is the generation of 

successor (subsets) through five operator options: Forward, Backward, 

Compound, Weighted, and Random. Lastly, the successors (features) will be 

evaluated through evaluation functions: Divergence, Dependence, Interclass 

Distance, Information or Consistency Evaluation.  

Then lastly, the embedded/hybrid method is a feature selection 

method developed more recently, utilising the advantages of both filter and 

wrapper methods. When selecting meaningful features, the embedded 

approach implements both an independent test and performance evaluation 

function to the feature subset. (Veerabhadrappa and Rangarajan, 2010).  

 

2.3.3 Feature extraction 

The feature extraction technique generates new subsets of more significant 

features by performing a transformation algorithm on the original features. 

The feature extraction aims to reduce the complexity of feature sets by 

representing each variable in feature space as a linear combination of the 

original input variable (Khalid, Khalil and Nasreen, 2014).  

The most popular feature extraction method is Principal Component 

Analysis (PCA), introduced by Karl Pearson in 1901. This method is a simple 

non-parametric linear transformation to extract the most useful information 

from a data set by minimising the redundancy and noise in data and 

maximising the information (Khalid, Khalil and Nasreen, 2014). The PCA 

method extracts new features projecting the input data into a lower 

dimensional subspace and analyses multivariate statistical instances' 

covariance structure (Engel, Hüttenberger and Hamann, 2012). Many variants 

of PCA have been proposed to improve the limitations of original PCA 

(Storcheus, Dmitry; Rostamizadeh, Afshin; Kumar, 2015). For example, 

Probabilistic PCA (PPCA) resolve the constraints of lack of probabilistic 

model structure in modelling by giving an isotropic structure to noise 
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component; the Kernel PCA (KPCA) can perform non-linear dimensionality 

reduction using kernel function; and Probabilistic Kernel PCA (PKPCA) is 

the combination of PPCA and KPCA (Zhou, 2003). The computation of the 

PCA transformation matrix S is given as (Elavarasan and Mani, 2015): 

 

𝑆 = (∑(𝑌𝑖 −𝑚)(𝑌𝑖 −𝑚)𝜏
𝑛

𝑖=1

) (2.3) 

   

Where,  

n is the number of instances 

Yi is the i-th instance 

m is the mean vector of the input data 

 

Another technique is Linear Discriminant Analysis (LDA) proposed 

by Hastie and Tibshirani (Hastie and Tibshirani, 1996). LDA apply the notion 

of distance metric learning through parametrising the class of metric 

functions. This technique projects the high-dimensional data into lower-

dimensional feature space. As a result, the between-class distance is 

maximised, and the within-class distance is minimised in the low 

dimensionality space (Elavarasan and Mani, 2015). The computation for 

LDA is given as: 

 

𝑓(𝑋) = 𝑡𝑟𝑎𝑐𝑒((𝑆𝑇𝑆𝑤𝑋)
−1(𝑆𝑇𝑆𝑏𝑋)) (2.4) 

  

Where, 

Sb is the between-class matrix 

Sw is the within-class matrix 

Xi is the index set of i-th class 

Ci is the mean vector of i-th class. 

 

2.3.4 Classification algorithms 

There are generally two types of approaches in machine learning: supervised 

learning and unsupervised learning. The main distinction between the two 
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approaches is that supervised learning uses labelled datasets while 

unsupervised does not. This project aims to classify young healthy, old 

healthy, and Parkinson's disease subjects. Thus, classification algorithms 

under supervised learning are studied in this literature review.  

 

2.3.4.1 Artificial neural network 

An artificial neural network (ANN) is a multi-layer map consisting of many 

units (neurons) linked together in a patterned connection, as illustrated in 

Figure 2.8. A neural network can be segregated into three part: input layer, 

which input the data to be processed/trained; output layer, which output the 

result of processing/training; and hidden layers, layers in between the input 

and output layer. When designing a neural network, the size of hidden layers 

and hidden units is the most crucial part to consider. An insufficient number 

of neurons can cause poor performance in generalisation and approximation. 

In contrast, an excessive number of nodes can lead to overfitting and increase 

the difficulty of searching for a global optimum (Kotsiantis, 2007).  

Three aspects built up an ANN: input and activation functions of the 

unit, network architecture, and each input connection's weight (F.Y et al., 

2017). The first two aspects are predefined before the initiation of ANN and 

fixed throughout the process; thus, the behaviour and performance of ANN 

depend on the current weights values. When starting the training of ANN, 

weights of the net are set to random values. Next, input data in deployment 

through the ANN and output results are acquired. The backpropagation 

algorithm is used to estimate the difference of output value of ANN with the 

desired output of this instance. Then, the weights in the net are adjusted in the 

direction that would generate output closer to the desired result according to 

the value determined using the Backpropagation algorithm in the next 

repetition. The process is repeated until the output value of ANN is 

converged, and this process is called Gradient Descent.  
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Figure 2.8: Artificial Neural Network structure (Kotsiantis, 2007). 

 

The development of ANN is done by implementing the Keras 

library that can be imported from TensorFlow library. Keras is an open-

source library that allowed users to develop ANN in Python environment. 

The Keras library provided an easy developing process for ANN. Moreover, 

it allowed high flexibility configurations of different parameters in ANN, 

such as number of hidden layers, number of neurons in layers, activation 

function, loss function, etc.  

2.3.4.1.1 Sequential model 

A sequential model is a plain stack of layers in which every layer will have 

one input tensor and one output tensor, and the data will go through every 

layer and eventually output a prediction. The sequential model allows 

developers to configure the number of hidden layers, number of neurons and 

the type of activation function used in every layer. Generally, a neural 

network consists of three layers: input layers that take raw untrained data 

from the domain, hidden layers that take input from the previous layer and 

perform training using activation function and then output to the next layer, 

and an output layer that output a prediction. Activation functions are 

commonly used in hidden layers and output layers. Activation functions are 

used to process the data from previous layer to help the neural network learn 

complex patterns of data and outputs the processed data to the next layer. 

Table 2.9 shows the summary of activation functions used for hidden layer 

and output layer.  
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Table 2.9: Summary of activation functions used for hidden layer and output 

layer. (Reynolds, Woods and Baker, 2006) 

 Activation 

functions  

Explanation 

Hidden 

layer 

Logistic 

function 

(Sigmoid) 

• The default activation function in the 1990s.  

• Sigmoid function turns input data into output 

values ranging from 0 to 1.  

• Susceptible to vanishing gradient problem. 

• Output closer to 1 represents greater input, and 

output closer to 0 represents smaller input. 

• The figure below shows the example plot of 

input against output for Sigmoid output.  

 

Hyperbolic 

tangent 

function 

(Tanh) 

• The default activation function in the 1990s to 

2010s.  

• Tanh function turns input data into output 

values in the range -1 to 1.  

• Susceptible to vanishing gradient problem.  

• Similar to the Sigmoid function, an output 

value closer to 1 represents larger input and an 

output value closer to -1 represents smaller 

input.  

• The figure below shows the example of input 

against output for Tanh output.  
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Rectified 

linear 

activation 

function 

(ReLU) 

• The most common activation function 

nowadays.  

• The function is simple to implement, memory 

efficient and less susceptible to vanishing 

gradient problems.  

• Outputs value 0 if the input value is negative 

and returns the input value if the input value is 

positive. 

• The figure below shows the example plot of 

input against output for ReLU output.  

 

Output 

layer 

Linear 

function 

• The method is also called “no activation”. 

• The function returns the input value directly.  
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• Commonly used for regression problems. 

• The figure below shows the example plot of 

input against output for linear function.  

 

Logistic 

regression 

(Sigmoid)  

• The characteristics are same as in the previous 

section.  

• Commonly used for binary classification and 

multilabel classification.  

Softmax 

function 

• The function computes a vector of values that 

represents the probabilities of each class as 

output.  

• Commonly used for multiclass classification.  

 

2.3.4.1.2 Loss function 

The loss function calculates the difference between model-predicted output 

and the true test data of every example. The loss function can be configured 

using compile method in Keras, and it is one of the components for the back-

propagation. Keras library provides various loss functions, and choosing the 

suitable loss function for different kinds of problems is essential. Generally, 

there are three types of problems: regression, binary, and multi-class 

classification (Brownlee, 2019).  

 A regression problem refers to problems that requires model to 

predict the real-value quantity as output. Next, a binary classification 

problem is where examples are assigned with one of two labels and need 
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model to predict the label of the examples. A multiclass classification 

problem is different from a binary classification problem because the 

examples are assigned with one or more than one label of multiple labels. 

The suggested loss functions suitable for various problems are summarized in 

Table 2.10 below.  

 

Table 2.10: Summary of loss functions for various problems. (Brownlee, 

2019) 

Type of 

problem 

Loss function Description 

Regression  Mean Squared 

Error Loss 

This function calculates the average 

value of the squared differences 

between predicted and actual values. 

This is the default function for 

regression problems. 

 Mean Squared 

Logarithmic Error 

Loss 

The function is similar to Mean 

Squared Error Loss, except it 

computes the logarithm of each 

predicted and actual value then 

computes for the mean squared error. 

This function is commonly used when 

dealing with widely spread data and 

making large value predictions. The 

reason is that for these kinds of 

problems, the computational load 

using Mean Squared Logarithmic 

Error Loss is lesser.  

 Mean Absolute 

Error Loss 

This function computes the average 

value of the absolute difference 

between predicted and actual values. 

The loss function is helpful when 

dealing with data with Gaussian 

distribution and contains a certain 
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amount of outliers.  

Binary 

classification  

Binary cross-

entropy loss 

This function is the default function 

for binary classification with a binary 

target value (0 or 1). The function 

computes the cross-entropy loss 

between actual and predicted values.  

Hinge loss Hinge loss function is commonly used 

for binary classification problems 

with a target value of -1 or 1. The 

hinge loss function also calculates the 

average difference between actual and 

predicted values, but it will assign 

more errors when the sign of actual 

and predicted values are different.  

Squared hinge loss The squared hinge loss is one of the 

extensions of the hinge loss function. 

Similar to hinge loss, this function 

works for binary classification with a 

target value of -1 or 1, and it 

calculates the squared hinge loss 

between actual and predicted values.  

Multi-class 

classification 

Multi-Class Cross-

Entropy Loss 

The default function for multi-class 

classification problems is that the 

target variable has multiple classes. 

The function computes the average 

difference of probability distribution 

of all classes between actual and 

predicted output, and the target value 

needs to be in one-hot encoding 

representation.   

 Sparse Multiclass 

Cross-Entropy 

Loss 

The function is identical to the multi-

class cross-entropy loss function, 

except that this function does not 
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require the target variable to be in 

one-hot encoding. This property is 

useful when the number of labels is 

large, and the target variable in one-

hot encoding may cause difficulty in 

training.  

 Kullback Leibler 

Divergence (KL-

divergence) Loss 

The KL-divergence loss calculates the 

probability distribution of predicted 

output with baseline distribution. 

Although the behaviour of KL-

divergence is similar to the cross-

entropy function, KL-divergence loss 

is more suitable for models that try to 

predict more complex classification 

problems.  

 

2.3.4.1.3 Optimiser 

The optimiser is the second argument in the compile method in Keras and it 

is also one of the components in the back-propagation in ANN sequential 

model. The purpose of optimiser is to tune and update the hyperparameters 

(weights and biases) of neural network in the next iteration to minimize the 

cost function. There is a slight difference between a lost function and a cost 

function. A lost function calculates the difference in distance between the 

predicted and actual output of every example, whereas a cost function is 

basically the average of the lost functions (Brownlee, 2016). The commonly 

used optimisers are summarized in Table 2.11. 

 

Table 2.11: Various popular optimisers in Keras library. (Ketkar, 2017) 

Type of optimiser Description 

Stochastic gradient 

descent (SDG) 

• A gradient descent optimizer with momentum. 

This type of optimizer requires learning rate 

tuning to produce good results and is not 
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suitable for sparse data.  

• The characteristic of SDG is that the updates of 

hyperparameters are frequent, and the variance 

is high.  

• This characteristic allows the prediction 

function to have higher chance to jump to better 

local minima, but this can also contribute to 

convergence in specific local minima.  

Adagrad (Duchi, 

Hazan and Singer, 

2011) 

• An adaptive optimizer. This type of optimizer 

does not require learning rate tuning and is good 

with sparse data.  

• Adagrad optimizer updates the hyperparameters 

depending on the occurrence of the features. It 

will perform small updates for updated 

parameters and big updates for parameters with 

less frequent updates.  

• Because Adagrad optimizer adjusts the learning 

rate of hyperparameters depending on the past 

gradients, vanishing gradient problem may 

happen as the learning rate becomes very small 

after a high number of iteration in training.  

Adadelta (Zeiler, 

2012) 

• Adadelta optimizer is the improvement of 

Adagrad as it combine the advantage of 

Adagrad and SDG optimizers.  

• Adadelta can overcome the vanishing gradient 

problem present in Adagrad by considering a 

fixed number of past gradients during model 

training. It does not require manual selection of 

learning rate.  

RMSprop (Hinton, 

Srivastava and 

Swersky, 2012) 

• An unpublished adaptive optimizer proposed by 

Geoff Hinton in 2012. 

• RMSprop is very similar to Adadelta except for 

the way they handle the past gradients. 
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RMSprop computes the learning rate by 

dividing to the average of exponentially 

decaying square of past gradients.  

Adam (Kingma and 

Ba, 2014) 

• An optimizer that adds up the advantages of 

Adadelta and RMSprop.  

• High computational efficiency, little memory 

demand, works well with large data and 

invariant to diagonal rescaling gradients 

 

2.3.4.2 Support vector machine (SVM) 

Support vector machine (SVM) is a statistical learning theory-based machine 

learning method. In the case of linearly separable data, the basic idea is 

illustrated in Figure 2.9. Once the optimum hyperplane that separates the two 

classes is found, the instances that lie on the hyperplane margin are known as 

support vectors. Support vectors are the data points that lie closest to the 

decision hyperplane. SVM implies that only support vectors are important for 

classification whereas other instances are ignorable. In addition, the maximal 

margin classifier is the basic SVM method that helps determine the 

classification problem in linear separable training data with binary 

classification (Wu et al., 2008).  

 

 

Figure 2.9: Optimal separating surface (Kotsiantis, 2007). 

 

However, most of the real-world cases will consist of non-linear 

separable data, and the classification solution will not be as simple as 
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mentioned previously. One solution for problems with data that cannot be 

linearly separated is to map the data points onto a higher dimensional space 

(feature space) and determine the classification hyperplane there. However, 

the computational cost for mapping the data points to higher-dimensional 

space is expensive, especially when dealing with high-dimensionality 

problems. Therefore, a "kernel trick" or "kernel function" is introduced to 

reduce the computational cost. A "kernel function" is a special class of 

function that can calculate inner products directly in feature space without 

performing the process of mapping data points to higher-dimensional space 

(Scholkopf, Burges and Smola, 1998). 

The main advantage of SVM is that it can work for many kinds of 

classification problems, including problems with high dimensional and non-

linear separable data sets. In contrast, the major limitation of SVM is the 

tuning for the key parameters is important to attain good classification results 

(Soofi and Awan, 2017).  

 

2.3.4.3 Decision tree 

Decision tree provides easy to control technique for classification and 

simplified modelling process. The data will be split into features that can best 

divide the training data through numerous techniques like Gini Index, Chi-

square, information gain, and reduction variance. Murthy, 1998 reported that 

there is no best method; comparison between individual methods is important 

to choose the most suitable method for a particular data set (Murthy, 1998). 

The feature that can best split the data will be the root of decision tree. The 

decision tree branches downward and the step is repeated for each partition of 

splitting node, creating branches and sub-tree until the training data is divided 

into the same class category (Kotsiantis, 2007).  

The decision tree approach is very likely for the model to overfit 

training data. Overfit happens when the desired hypothesis (h) has a smaller 

error than other hypotheses (h’) in training set, but has a larger error than h’ 

when tested in the entire data set. Generally, two approaches will be 

considered to deal with overfitting problem: (1) Stop the training model 

before the training data gets fit perfectly in the training dataset, (2) Pruning of 

decision tree. Most algorithms adapt the pruning method. Pruning is a data 



54 

compression technique in machine learning that reduces the size of decision 

trees by removing the not meaningful and redundant parts (leaves) of the tree 

to help prevent overfitting of training data (Elomaa, 1999).  

2.3.4.4 Bayesian network 

The structure of the Bayesian network is a directed acyclic graph (DAG) with 

only one parent (unobserved node) and possibly several children (observed 

nodes). The nodes in S have strong independence among the child nodes to 

have a one-to-one correspondence with their parent node (Kotsiantis, 2007). 

For example, node X is considered the parent node of node Y when an arrow 

connects the pair of nodes from node X to node Y. Moreover, a node is 

conditionally independent from another non-descendent node given its 

parents (Soofi and Awan, 2017). Thus, two subtasks build a complete 

Bayesian network: learning the network structure and parameter 

determination. 

One of the exciting characteristics of the Bayesian network over 

other algorithms such as decision trees or neural network is the possibility to 

consider the structural relationships among its features of given problems. 

Other advantages of Bayesian network include small influence on the 

working system when minor changes are made in the network; flexible 

adaptation of the same Bayesian model for regression and classification 

model problems; and suitable for handling missing data (Uusitalo, 2007). 

A drawback of Bayesian network classification is that it is 

unsuitable for high dimensionality (many features) datasets as an extensive 

network is not time and space-effective in Bayesian network method. Besides, 

the training attributes have to be class features; therefore, continuous 

attributes need to be discretised. During the discretisation of continuous data, 

loss of information and consciousness may occur (Wang, Gao and Wang, 

2016). 

 

2.3.4.5 K-nearest neighbours 

K-nearest neighbour (KNN) algorithm is one of the most popular algorithms 

for instance-based learning. The characteristics of instance-based learning 

algorithms are less computation time during the training phase but require 

more computation time for the classification process. In the classification 
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process, an instance is placed into an n-dimensional instance space where 

each n-dimensions correspond to the n-features. The class for the example is 

determined based on the k number of nearest neighbours in the instance space. 

Users can control the k number during the training phase, in which the 

suitable k number that produces the best classification will vary depending on 

different datasets. The relative distance of the instance in the space is more 

critical than the absolute distance when deciding on the nearest neighbour. 

Examples of distance metrics to calculate relative distance are Minkowski 

Distance, Manhattan Distance, Euclidean Distance, Cosine Distance, and 

Hamming Distance (Witten and Frank, 2002).  

Advantages of the KNN technique include high effectiveness for 

large training data and can work robustly on noisy data (Teknomo, 2017). In 

contrast, the limitations of KNN are as such: (1) requirement for large storage 

space, (2) the output is sensitive to the similarity function used to compare 

instances, (3) lack of standardised procedure to choose k value, and (4) long 

classification time (Viswanath and Sarma, 2011; Kotsiantis, 2007). One 

example of a straightforward technique that the researcher practices is 

filtering out the useful input features as training data. This method can 

enhance classification accuracy and reduce the classification time (Lopez de 

Mantaras and Armengol, 1998).  

 

2.4 Summary of findings 

To conclude this chapter, literature reviews on several important topics useful 

in developing the classification algorithm for this project are discussed. 

Firstly, the different gait-affecting factors are reviewed. The purpose of 

reviewing the various factors is to understand how gait-affecting factors can 

influence the gait pattern in humans, particularly Parkinson's disease patients. 

Understanding their relationship with gait patterns can help in the design and 

tuning process of the classification algorithm and aid in explaining the result 

of my classification algorithm. Next, reviewing different gait analysis 

methods is important for understanding the overall general concept of gait 

analysis in practice. Thus, having a better comprehension of how the data 

acquisition process works for different gait analysis methods and direction in 

choosing the suitable classification algorithm based on the method used. 
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Furthermore, data preprocessing techniques and classification 

algorithms are reviewed. Feature selection and feature extraction are 

highlighted in this subtopic. Feature extraction is essential when processing 

the input data because this technique can extract useful new features from the 

original features. In comparison, feature selection is not compulsory as it will 

remove the less valuable features from the dataset, which can be helpful in 

large datasets that have many irrelevant, misleading and redundant and 

insignificant features. However, applying feature selection to a small dataset 

would be a bad decision as reducing features may cause loss of information 

in the dataset. The training algorithm cannot perform well when the 

information and knowledge in the training dataset are less.  
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This project aimed to develop a classification algorithm that can effectively 

recognise young healthy, old healthy and Parkinson’s disease subjects using 

relatively simplified input data. The project is quantitative research because 

the performance was evaluated according to the accuracy of classification of 

the developed model, and the input data for training and testing are 

quantitative data. In addition, due to the COVID-19 pandemic, practical data 

collection is not feasible, so a dataset by other researchers was used to 

develop the classification algorithm. The general methodological approach 

was summarised in Figure 3.1. Details of the methodology will be explained 

in-depth in the subsequent subsections.  

 

 

Figure 3.1: Overview of methodology. 
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3.2 Requirement/ Specification 

3.2.1 Software 

Equipment involved in this project only consisted of software equipment 

which included: 

I. Google Colab (Google Corporations, 2021) 

II. Microsoft 365 Excel (Microsoft 365, 2021) 

 

3.2.2 Training dataset 

Due to the COVID-19 pandemic and the nature of our project, practical gait 

data collection was not feasible and unnecessary. Therefore, in FYP Part I, 

one dataset from other researchers was chosen as the input dataset for this 

project. The dataset (denoted as D1) chosen was obtained from PhysioNet 

website. The name of the dataset was Gait in Aging and Disease Database 

(Massachusetts Institute of Technology, 1999).  

The dataset consists of data from 15 subjects which includes five 

healthy young adults (between 23 to 29 years old), five healthy old adults 

(between 71 to 77 years old), and five Parkinson’s disease old adults 

(between 60 to 77 years old). For each subject, there are two columns of 

feature data. The first column is the foot strike time (seconds), and the second 

column is the stride interval (seconds). The total size of the raw dataset is 

9129 rows x 2 columns which refer to 9129 instances and two features in the 

dataset.  

The reason for selecting this particular dataset was because of the 

simplicity of the data, as the data only contains two features: time of foot 

strike and stride interval. The data in the dataset is collected using wearable 

sensors which is the cheapest and most straightforward gait analysis method 

to perform compared to the other two gait analysis methods: image 

processing system and floor-based system. Besides, unlike the other two 

methods, the wearable sensors in this experiment only measured the time of 

foot strike and stride interval, which do not require inertial sensors and other 

advanced equipment. This characteristic granted the simplicity of the data 

and data collection process. In addition, datasets acquired using image 

processing and floor-based systems were not considered because of the 

requirement of advanced and professional equipment and the higher 



59 

complexity of data to process. These two factors did not comply with my aim 

to develop an effective classification algorithm using simple gait data that can 

be easily acquired in the hospital environment.  

In FYP Part II, a new dataset denoted D2 was introduced to this 

project. The reason for adding another dataset was to increase the volume of 

the dataset used for training and testing of classification algorithms because 

the D1 only contained 9129 instances. The D2 dataset was a processed 

dataset that extracted useful data from two open-source databases of research 

by Goldberger et al. (2000) and Hausdorff et al. (2000). First, the dataset 

from Goldberger et al. (2000) study measured the stride fluctuation of ten 

healthy young men aged 18-29 years (Goldberger et al., 2000). Next, the 

dataset from Hausdorff et al. (2000) study contained gait data of subjects with 

neuro-degenerative disease, including Parkinson’s disease, Hungtinton’s 

disease, and amyotrophic lateral sclerosis (Goldberger et al., 2000). Because 

D2 needs to be used for training and testing the classification model, hence 

D2 need to have similar features and label classes with D1. Therefore, these 

two datasets were chosen. The stride time data for healthy young and 

Parkinson’s disease class were extracted, which form 7376 instances of 

healthy young label and 31813 instances of Parkinson’s disease label, in a 

total of 48318 additional instances.  

 

3.2.3 Dataset preprocessing 

Generally, raw data collected contains imperfection factors, so direct 

implementations are not recommended. Data preprocessing minimised the 

imperfections in the raw data so that the training algorithm can better 

recognise the useful information and knowledge. Three preprocessing 

procedures were done in this project: data cleaning, data normalisation, and 

derivation of new features.  

For data cleaning, tasks like missing values imputation and outlier 

removal were performed. After scanning through the dataset of each of the 

subjects using Microsoft Excel 365, there were no missing values found. 

Thus, missing values treatment was not required. Next, outlier removal was 

performed. The outliers in the dataset were those instances that contained 

zero value in features. The outliers were generally the first instances in each 
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dataset because the time of foot strike feature and stride speed feature was 

zero value. The outlier instances can be directly removed from the dataset 

because the number was small (one outlier in each subject’s dataset) and the 

effect of outlier removal was negligible.  

Next, data normalisation was performed to normalise the scale of 

different features with different ranges in the dataset to become comparable 

and relevant. Data normalisation was applied using a python code called 

StandardScaler imported from sklearn library. The normalisation calculation 

of the StandardScaler function was z-score normalisation shown in Equation 

2.2 in Chapter 2. Another importance of data normalisation was because the 

classification algorithm implemented for this project was SVM algorithm, 

and the algorithm was not scale-invariant (Scikit-learn, 2021).  

Thirdly, the derivation of new features was done. The raw dataset of 

D1 only contained two features, time of foot strike and stride interval, and 

two features alone were not capable of effective algorithm training. Thus, 

new features were derived from the original ones: stride count and stride 

speed. The stride count feature was an incremental number count started from 

the count of one. Stride speed was computed by dividing the stride count by 

the accumulated time of foot strike with the unit of stride/seconds. As for the 

D2 dataset, the raw dataset only consisted of one column of stride time 

features and one column of class label. Therefore, the feature augmentation 

was performed on D2 as well. In the end, both of the datasets will consist of 

four columns of features: stride time, accumulate time, stride count and stride 

speed; and one column of class label.  

In short, preprocessing datasets was essential in developing a 

classification algorithm that could not be skipped. In addition, data 

preprocessing was useful for improving the dataset’s quality so that the 

algorithm’s training process could be more effective and efficient. However, 

in this project, dimensionality reduction was not implemented. This was 

because the dimension and the size of this dataset were small. Therefore, 

dimensionality reduction was not needed to prevent the loss of information.  
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3.3 Classification algorithms 

This sub-section will discuss the methodology of designing the classification 

algorithms. Two classification algorithms, Support Vector Machine (SVM) 

and Artificial Neural Network (ANN) were chosen to be developed in the 

project. 

 

3.3.1  Support Vector Machine 

SVMs were chosen because of key characteristics such as memory efficiency, 

high versatility as various parameters can be tuned, and effectiveness for low 

and high dimensional spaces (Scikit-learn, 2021). There were three classes in 

SVMs, namely SVC, NuSVC and LinearSVC. NuSVC was not suitable 

because it only works with data in the range of -1 to 1; LinearSVC lacks 

versatility because it only uses linear kernel as default. Therefore, SVC was 

chosen as the method to build the classification algorithm. 

For the SVC method, kernel selection was important because it can 

directly affect the classification process’s performance. Kernels referred to 

the decision boundary for classification, as shown in Figure 3.2. There are 

three types of kernel: linear, RBF and polynomial. The selection of kernel 

was highly dependent on the input dataset. The input dataset used consisted 

of three subjects (old healthy, young healthy, and Parkinson’s disease 

subjects. The instances for old healthy and young healthy subjects were more 

than Parkinson’s disease subjects. Therefore, the RBF kernel was the most 

suitable option because it was suitable for multi-class classification and 

datasets with imbalanced classes. In contrast, the linear kernel had high 

chances to perform poorly for multi-class classification problems and 

imbalanced datasets, and alternately, the polynomial kernel was suitable for 

high dimensionality datasets.  
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Figure 3.2: Illustration of classification results using different kernels (Scikit-

learn, 2021).  

 

There were two parameters that can be adjusted to get the best result 

using RBF kernel: c and gamma. The parameter C is the regularisation 

parameter in SVM classification algorithm. A lower C makes the decision 

function smoother and simpler, resulting in a larger decision margin. 

Therefore, higher misclassification of training examples, while a higher C 

aims to classify all training examples correctly by making the decision 

margin smaller. On the other hand, the gamma parameter defines the degree 

of curvature of the decision boundary, and the larger gamma, the larger the 

curvature.  

 

3.3.2 Artificial Neural Network 

3.3.2.1 ANN baseline model 

For the application of this project, a three layers neural network is shown in 

Figure 3.3 was implemented, consisting of one input layer, two hidden layers, 

and one output layer. According to the notational convention, the input layer 

is known as layer zero; hence the notation of a neural network does not 

include the input layer as an official layer.  
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Figure 3.3: Screenshot of baseline model configuration. 

 

 The two main factors that need to be considered when designing the 

ANN sequential model are the number of hidden layers and the number of 

neurons/nodes in the layer. As mentioned above, the size of the ANN model 

implemented in the project is a three layers ANN model, which consists of 

two hidden layers. Theoretically, Keras library allowed developers to add as 

many hidden layers as possible and form a “deep” neural network. However, 

there is no theoretical reason that the performance of the model is directly 

proportional to the number of hidden layers and neurons (Heaton, 2008). In 

fact, most practical ANN solutions do not use more than two layers of hidden 

layer in their model. Therefore, the guidelines shown in Table 3.1 were 

considered before implementing two hidden layers in the ANN for this 

project.  

The next factor is the number of neurons in each hidden layer. The 

number of neurons was the manipulating variable/parameter in this study, 

unlike other parameters in the Keras sequential model. The number of 

neurons has a big influence on the architecture and performance of the neural 

network model. Ultimately, there is no standard number of neurons for every 

problem, so it always comes down to trial and error. However, several rule-

of-thumb methods were considered when deciding the starting point for this 

study (Heaton, 2008): 

I. Choose the number of neurons in between the size of the 

input and output layer. 

II. Take 2/3 of the input layer's size plus with the output layer's 

size. 

III. The number of neurons should not exceed twice the output 

layer’s size.  
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Table 3.1: Relationship between the number of hidden layers with the 

desired results. (Heaton, 2008) 

Number of hidden layers Results 

0 
Can make predictions on linearly separable data 

or function. 

1 

Can make predictions on datasets that contain 

continuous mapping across multiple finite 

spaces. 

2 

Can make predictions based on random 

decision boundary using rational activation 

functions. 

 

Furthermore, the activation function for every layer was something 

to choose wisely to implement a robust and effective model. For hidden layer, 

there are generally three most popular activation functions to choose from, 

which are logistic regression (Sigmoid), Hyperbolic Tangent (Tanh) and 

Rectified Linear Activation (ReLU). Sigmoid and Tanh activation functions 

are default activation functions in the 1900s to 2010s. However, in modern 

ANN classification solutions, the default activation function for the hidden 

layer is the ReLU function as Sigmoid and Tanh functions are considered 

“outdated” for ANN classification problems (Goodfellow, Bengio and 

Courville, 2016). This is because the ReLU function can overcome the main 

limitation in the Sigmoid and Tanh function, which is the vanishing gradient 

problem that will cause the model not to be appropriately trained. Therefore, 

the activation function used for the hidden layers of the baseline model was 

ReLU function.  

There are three popular options for the output layer: 

regression/linear, Sigmoid, and Softmax. Because this project is a 

classification problem, the regression activation function that predicts a 

numerical value was removed from consideration. After that, for 

classification problems, there were generally three cases: (1) binary 

classification, which uses a Sigmoid function, (2) multi-class classification 

that uses a Softmax function and (3) multilabel classification that uses a 

Sigmoid function. Because the target data for our dataset was not a binary 
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type data, and every instance is assigned only one class. Therefore, this 

project was a multi-class classification problem, and the activation function 

used for the output layer was the Softmax function.  

 

3.3.2.2 ANN model training configurations 

After designing the sequential model of the ANN classification model, the 

model was configured for training using Keras’s model training application 

program interface (API): model.compile() and model.fit(). Three parameters 

in the compile method were configured: loss function, optimiser, and metrics. 

Firstly, the loss function can be generally divided into three categories: 

regression, binary classification, and multi-class classification. In addition, 

there were several suggested loss functions for different prediction purposes 

as shown in Table 3.2 (Brownlee, 2019).  

 

 

Figure 3.4: Screenshot of the compilation of model. 

 

In this project, the multi-class classification was implemented; hence 

the three loss functions illustrated in Table 3.2 were considered. The multi-

class cross-entropy loss function and the sparse multi-class cross-entropy loss 

function are identical except that they are suited for different label data types. 

The multi-class cross-entropy suits the label in one-hot encoding 

representation, whereas the sparse multi-class cross-entropy suits label in 

integer representation. As for the Kullback Leibler divergence (KL 

divergence) loss function is more suitable for a higher complexity problem. 

Therefore, the multi-class cross-entropy function was used for the 

classification model because the label data of our dataset was preprocessed 

into one-hot encoding format. The pretesting results in Figure 4.9 showed 

that using KL divergence function does not necessarily produce better results.  
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Table 3.2: Keras loss function. (Brownlee, 2019) 

Loss function type Suitable loss functions 

Regression • Mean squared error function 

• Mean squared logarithmic error function 

• Mean absolute error function 

Binary classification • Binary cross-entropy function 

• Hinge loss function 

• Squared hinge loss function 

Multi-class 

classification 

• Multi-class cross-entropy loss function 

• Sparse multi-class cross-entropy loss function 

• Kullback Leibler divergence (KL divergence) 

 

 Next, the choice of optimiser was the Adam optimiser. The main 

reason was that Adam optimiser is an adaptive optimiser and adaptive 

optimiser has advantages over the gradient descent optimiser in terms of good 

when dealing with sparse data and no need for learning rate fine-tuning. In 

addition, Adam optimiser has the characteristics that include high 

computational efficiency, little memory demand, works well with large data 

and is invariant to diagonal rescaling gradients. These characteristics make 

Adam optimiser the best in general compared to the other three adaptive 

optimisers. Lastly, the fit method was used to configure the training of the 

classification model. The fit method required training input/feature data and 

training target/label data as input. The training parameters: epochs and batch 

size were set to 200 and 16, respectively. This means that the model will take 

in 16 training examples for each iteration to run through the ANN sequential 

model (forward-propagation) and then perform loss calculation and update 

the hyperparameters (back-propagation). The method was repeated for 200 

iterations, and the final prediction was made.  

 

3.4 Performance evaluation of classification algorithms 

3.4.1 K-fold cross-validation 

The k-fold cross-validation can be considered the improved method of the 

standard train-test split method. The k-fold cross-validation was a very 
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effective way to prevent the classification model from being overfitted to 

training data because it can evaluate the performance of the classification 

algorithm when making predictions on data that were not used during the 

training of the model. Another reason k-fold cross-validation is essential in 

this project is that the SVM classification model could not directly provide 

probability estimates of the classification performance. Figure 3.5 

demonstrates the overview of k-fold cross-validation.  

 

Figure 3.5: Illustration of k-fold cross-validation (Goyal, 2021). 

 

The general concept of k-fold cross-validation is explained in this 

paragraph. Firstly, the dataset was shuffled randomly and split into k groups. 

The first group was taken as the test dataset for the first iteration, and the 

remaining groups were the training dataset. Next, the model was trained 

using the training dataset and evaluated using the test dataset. Then, the 

evaluation score was recorded. The steps were repeated for k iterations, and 

for each consecutive iteration, the next group was taken as a test dataset. 

After finishing all the k iterations, the average score was determined for all 

the k iterations.  

 

3.4.2 Training and testing datasets of the classification algorithm 

There were two X and Y datasets for both training and testing datasets. X 

dataset contained all the features for each instance, and Y dataset was the 

class of the instances. For example, in our input datasets, X should contain 

four features: foot strike time, stride interval, stride count and stride speed, 
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whereas Y contained one class column with numbers 1, 2, and 3 

corresponded to class old healthy, young healthy and Parkinson’s disease.  

Therefore, the methodology used in this project is summarized in 

this paragraph. Firstly, the k-fold splitting process was performed separately 

on three datasets: old healthy, young healthy, and Parkinson’s disease. In this 

project, k =10 was used, corresponding to 10 iterations so that each array will 

contain ten subsets from index 0 to 9.  

For example, in the class old healthy datasets, four arrays were 

created: X_train_df1, X_test_df1, Y_train_df1 and Y_test_df1, to store k-fold 

datasets. Then, the old subject X dataset was split into ten subsets. Subset 0 

was the testing set stored as X_train_df1[0] for the first round, and subsets 1-

9 were the training sets stored as X_test_df1[0]. For the second round, subset 

1 was the testing dataset stored as X_train_df1[1], and subset 0, 2-9 were the 

training sets stored as X_test_df1[1]. The process was repeated for the rest of 

the iterations. The method was similar for X_test_df1, Y_train_df1 and 

Y_test_df1, and the steps were performed repeatedly for young and 

Parkinson’s disease datasets. Then, four arrays of X_train, X_test, Y_train 

and Y_test were created to store the real dataset for training and testing the 

model. Take X_train as an example, a for loop was used to append the data 

from X_train_df1, X_train_df2 and X_train_df3 to X_train array according to 

the respective index. For example, data of X_train_df1[0], X_train_df2[0] 

and X_train_df3[0] were appended and stored as X_train[0]. Similarly, the 

process was repeated for X_test, Y_train and Y_test. As a result, X_train, 

X_test, Y_train and Y_test each contained ten subsets corresponding to 10-

fold cross-validation. Therefore, for each iteration, 9/10 of instances for each 

class in the training dataset and 1/10 instances in the testing dataset. The 

evenly weighted exampled from each class in the training and testing dataset 

allowed better and more robust model training.  

 

3.4.3 Performance metrics for the classification algorithms 

For SVM classification model, the manipulating hyperparameters were the c 

and gamma values. On the other hand, the manipulating hyperparameters for 

the ANN classification model were the number of neurons in hidden layers. 

The classification models were trained and tested with different datasets 
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using different configurations manipulating hyperparameters. After that, the 

performance of the classification models was evaluated using performance 

metrics. 

The performance metrics used in this study were accuracy and F1 

score. The accuracy metric is the most intuitive and typical metric used to 

determine the accuracy of the classifier's prediction. As for the F1 score, 

although it is not as intuitive as accuracy, the F1 score was usually more 

informative than accuracy. This is because it took both false positives and 

false negatives into account. F1 score is beneficial for datasets with uneven 

classes distribution where the cost for false positive and false negative has a 

greater difference. These metrics were imported from sklearn library, and the 

details of the measurements were summarized in Table 3.3. The 10-folds 

cross-validation was applied when evaluating the performance of the 

classification models. The accuracy and F1 score for each iteration were 

calculated, and the average values were computed.  

 

Table 3.3: Summary of performance metrics.  

Measurements Description 

Accuracy Accuracy is the percentage of the correct predicted 

cases out of the total cases.  

F1 score F1 score is the weighted average of precision and 

recall. Precision is the ratio of correctly predicted 

cases to total predicted cases. Recall is the ratio of 

correctly predicted cases to total cases in the actual 

class.  The equation for the F1 score is: 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

3.5 Work plan 

The project planning for FYP 1 and FYP 2 was done using Gantt chart as 

showed in Figure 3.6 and Figure 3.7. The allocated tasks were followed 

strictly according to the Gantt chart and timeline, and all the tasks were 

accomplished by the end of the course UEGE4118 Project as shown in Table 

3.4 and Table 3.5.  
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Figure 3.6: Gantt chart of Final Year Project 1. 

 

 

Figure 3.7: Gantt chart of Final Year Project 2.  

 

Table 3.4: Final Year Project 1 milestones.  

Milestones Planned tasks 

Completion date 

Planned 

Is it achieved 

before the 

deadline? 

Project title 

formulation and 

planning 

1.1 Project title selection 

11 June 

Yes 

1.2 Preparation of work 

schedule and Gantt chart 
Yes 

1.3 Determine outputs Yes 
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and tasks 

Problem 

formulation and 

background study 

2.1 Formulation of 

problem statement, aim 

and objectives 
18 June 

Yes 

2.2 Background study to 

understand the project 

title 

Yes 

Literature review 3.1 Review on various 

gait-affecting factors 

30 July 

Yes 

3.2 Review on various 

gait analysis methods 
Yes 

3.3 Review on 

classification algorithms 
Yes 

Preliminary 

investigation 

4.1 Dataset preprocessing 

20 Aug 

Yes 

4.2 Algorithm 

development and testing 
Yes 

Report writing 

and presentation 

5.1 Writing progress 

report 3 Sept 
Yes 

5.2 Prepare presentation Yes 

 

Table 3.5: Final Year Project 2 milestones.  

Milestones Planned tasks 

Completion date 

Planned 

Is it achieved 

before the 

deadline? 

Poject planning 

and improvising 

existing 

classification 

algorithm 

1.1 Validate the 

performance of previous 

model using new dataset. 

11 Feb 

Yes 

1.2 Fine-tuning the 

hyperparameters of SVM 

model for better results. 

Yes 

1.3 Plan the tasks for this 

semester. 
Yes 
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Development of 

another 

classification 

algortihm with 

Neural Networks 

2.1 Train and test 

different dataset using 

different combinations of 

hyperparameters. 
4 Mar 

Yes 

2.2 Tabulate the results 

for comparison. 
Yes 

2.3 ANN model 

development 
 

Performance 

comparision and 

validation of 

algorithms with 

new data sets 

3.1 Tabulate the results 

of performance metrics 

and computatinal tiime 

for both SVM and ANN 

model. 
25 Mar 

Yes 

3.2 Generate comparison 

graphs for SVM and 

ANN. 

Yes 

3.3 Tabulate the results 

for comparison. 
Yes 

Report writing, 

poster 

presentation, and 

oral presentation 

4.1 Report writing 

24 April 

Yes 

4.2 Prepare FYP poster Yes 

4.3 Prepare presentation 
 

 

3.6 Summary 

In summary, the methodology and work plan of the project was discussed in 

detail in this chapter. The overview flowchart of methodology and work plan 

for the project was introduced. Next, the project's requirements and 

specifications were discussed, including the software used, training dataset, 

and data preprocessing. Furthermore, detailed methodology for developing 

gait classification algorithms was addressed. In addition, the methodology to 

evaluate the performance of gait classification algorithms was explained in 

detail.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter presents and discusses the performance results of different 

configurations of both the SVM and ANN models. Besides, the optimum 

practical configuration of both SVM and ANN models was justified and 

compared. Three datasets were used to validate the performance of 

classification models. D1 is the original dataset which contained 9129 

instances of three classes; D2 is the second dataset implemented in FYP Part 

2, which included 39189 examples of two classes; and D3 is the merged 

dataset of D1 and D2, which contained a total of 48318 instances of three 

classes. 

 

4.2 Support Vector Machine classification model 

In this section, the performance results of SVM model with different 

configurations and using three different datasets were illustrated. The two 

manipulating hyperparameters studied were the c value and gamma value. 

 

4.2.1 Performance results 

4.2.1.1 Tabulation of performance results  

Table 4.1 shows the performance results of SVM classifier with different 

configurations on D1, D2 and D3 datasets. For all three datasets, the 

configuration of c = 1000 and gamma = 10 will produce the best performance 

score. The results imply that higher c and gamma value can generate better 

performance. 
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Table 4.1: Performance results of Support Vector Machine classification 

model.  

Dataset Gamma 

value 

Computational 

time (minutes) 

Performance metrics 

Accuracy 

(%) 

F1 score 

(%) 

c = 100 

D1 0.01 1.5 68.56 63.92 

0.1 0.5 94.61 94.19 

1 0.18 99.12 99.11 

10 0.7 99.04 99.04 

D2 0.01 7 83.32 79.39 

0.1 27 86.46 83.92 

1 30 89.88 88.55 

10 28 92.61 92.12 

D3 0.01 14 76.13 68.35 

0.1 15 82.61 78.74 

1 30 89.7 88.36 

10 43 93.01 92.58 

c = 1000 

D1 0.01 94 85.39 84.08 

0.1 34 98.04 97.98 

1 13 99.5 99.5 

10 44 99.06 99.06 

D2 0.01 10 84.12 80.83 

0.1 30 87.45 85.31 

1 90 91.22 90.26 

10 104 93.56 93.30 

D3 0.01 22 80.23 74.92 

0.1 40 85.49 82.74 

1 150 90.7 89.6 

10 210 93.53 93.27 
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4.2.1.2 Graphs of performance results 

Figure 4.1 to Figure 4.3 show the plot of SVM performance metrics results of 

D1, D2, D3 training datasets, respectively.  

 

 

Figure 4.1: Support Vector Machine performance metrics of D1 dataset: 

Accuracy (left) and F1-score (right). 

 

   

Figure 4.2: Support Vector Machine performance metrics of D2 dataset: 

Accuracy (left) and F1-score (right).  

 

 

Figure 4.3: Support Vector Machine performance metrics of D3 dataset: 

Accuracy (left) and F1-score (right). 
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4.2.1.3 Graphs of computational time 

Figure 4.4 to Figure 4.6 show the plot of SVM computational time of D1, D2, 

D3 training datasets, respectively 

 

Figure 4.4: Support Vector Machine computational time of D1 dataset.  

 

Figure 4.5: Support Vector Machine computational time of D2 dataset. 
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Figure 4.6: Support Vector Machine computational time of D3 dataset.  

 

4.2.2 Results discussion 

4.2.2.1 Performance metrics results 

The presentation of performance results was illustrated in section 4.2.1. The 

section demonstrated the tabulation of detail values of performance metrics 

and the graphs of manipulating hyperparameters against the performance 

metrics and computational time. The graphs can give an overview of 

performance metrics results using different configurations of manipulating 

hyperparameters.  

In this study, the two manipulating hyperparameters for configuring 

SVM were c and gamma values. As a recap, the c value controls the shape of 

the decision function and the size of the decision margin. A higher c value 

results in a more rigid decision function and smaller decision margin. As for 

the gamma value, this parameter defines the influence of points in the dataset 

to the hyperplane. In this study, the c value were 100 and 1000, and the 

gamma value ranged from 0.01 to 10 on an increment logarithmic scale of 

base 10. In addition, the hyperparameters that were kept constant were the 

number of cross-validation of 10, and kernel type of RBF kernel. 

Observing the graphs in section 4.2.1.2, an increase in gamma value 

will increase the accuracy score and F1 score. A low gamma value will cause 

the decision boundary to have less curvature and fail to capture the shape of 

the dataset well. Conversely, higher gamma values will have more curvature 
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in decision boundary, capture the shape of datasets well, and make more 

accurate predictions.  

As shown in the graphs in section 4.2.1.2, the classification model 

with a c value of 1000 generally produced better results in three different 

datasets. When a low c value was applied, the penalty of misclassifying 

points was low, and the classifier could maximise the decision margin. 

Furthermore, the c value above 1000 was not included in the study because a 

large c value will cause overfitting problems in model training that leads to 

poor performance results. On the other hand, for large c values, the penalty of 

misclassification is high. Hence, the classifier tends to separate the data in the 

training dataset as perfect as possible, causing the decision boundary to be 

overfitted and cannot predict effectively for other testing datasets.  

 

4.2.2.2 Computational time 

As shown in the graphs in section 4.2.1.3, the computational time for 

different datasets and configurations was illustrated. Generally, three factors 

affect the computational time: the size of datasets, c value, and gamma value.  

By observing the tabulation of results comparing the computational 

between different datasets of the same c value and gamma value, the D3 

dataset has the highest computational time, and the D1 dataset has the 

shortest computational time. The highest computational time is 210 min (3 

hours 30 minutes) for classifying D3 dataset with c value of 1000 and gamma 

value of 10. Compared to D3 dataset (48318 examples), D1 dataset (9129 

examples) and D2 dataset (39189 examples) with the same hyperparameters 

took a significantly shorter computational time of 44 seconds and 104 

minutes, respectively. Because when the size of the dataset increases, the 

number of example increase, which will cause the classification model to 

take a longer time to run through the whole dataset and generate the decision 

boundary and decision margin. Hence, the larger the dataset size, the longer 

the computational time.  

Next, similar to performance metrics results, computational time 

increases for higher c and gamma values because the classification model 

needs to generate better decision boundaries for making predictions with 

higher accuracy. However, for the D1 dataset, it was interesting that the 
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computational time was higher for gamma = 0.01 and 10, and shorter for 

gamma = 0.1 and 1. This may be due to the shape of D1 being more suitable 

for gamma in the range of 0.1 to 1. On the contrary, D2 and D3 followed the 

trend that increasing the gamma value would increase the computational time. 

As for c value, different c values have significant differences in 

computational time for D2 and D3 datasets, whereas for D1, the difference is 

less significant. The reason may be that D2 and D3 are larger in dataset size 

and have a more complex distribution of data points than the D1 dataset.  

 

4.2.3 Optimum practical configuration 

This section suggested and justified the optimum practical configuration for 

the SVM classifier.  

 The results of performance metrics and computational time were 

shown and discussed in detail in previous sections. It is clear that the higher 

the c and gamma value, the higher the performance metrics and the longer the 

computational time. Therefore, the resource and performance trade-offs were 

considered thoroughly when deciding the optimum configuration. The 

performance refers to the results of performance metrics in which we want to 

achieve as high as possible; and the resource refers to the computational time.  

 From the graphs in section 4.2.1.2, the increase in gamma value 

improves the performance metrics score. Thus, the optimum gamma value of 

10 is suggested to achieve the highest possible performance metrics results. 

Next, to decide the optimum c value, the results of D3 dataset were used. The 

reason is that D3 dataset has the largest size of data example to provide the 

most comprehensive reference. Referring to Table 4.1, when gamma of 10 

was applied to D3 dataset, the accuracy of c = 100 is 93.01 compared to c = 

1000 is 93.53. As for computational time, using c = 100 is 43 minutes and for 

c = 1000 is 210 minutes. Therefore, using c = 100, the accuracy decreased by 

0.5560% but can save 79.52% of the computational time compared to using c 

= 1000. Figure 4.7 below shows the graph to illustrate the relationship of 

accuracy and computational time of different configurations of SVM 

classifier.  
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Figure 4.7: Graph of accuracy and computational time of different 

configurations of Support Vector Machine classifier.  

 

 In short, the optimum configuration suggested is using c value of 

100 and gamma of 10, which can produce 93.01% accuracy with a 

computational time of 43 minutes. This configuration consumes reasonably 

low resources with the minimum trade-off of performance. It can still predict 

with high accuracy and F1 score but with much shorter computational time 

than other configurations.  

Figure 4.8 below shows the confusion matrix of prediction results 

from optimum SVM configuration. The precision score for class old healthy, 

young healthy, and Parkinson’s disease are 96.08%, 92.88% and 92.21% 

respectively, and the overall precision is 93.72%. Besides, the recall score for 

class old healthy, young healthy, and Parkinson’s disease are 97.81%, 98.64% 

and 67.74% respectively, and the overall recall score is 88.06%. Interestingly, 

the recall score for class Parkinson’s disease is significantly lower than the 

other two classes. This shows that the trained SVM model faces some 

problems identifying the input that is class Parkinson’s because only 67.74% 

out of all the actual Parkinson’s disease examples were predicted correctly.  
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Figure 4.8: Confusion matrix of Support Vector Machine optimum 

configuration. The labels 0, 1, and 2 referred to old healthy, 

young healthy, and Parkinson’s disease. 

 

4.3 Artificial Neural Network classification model 

In this section, the performance results of SVM model with different 

configurations and using three different datasets were illustrated. The 

manipulating hyperparameter is the number of neurons in the layer. The 

constant hyperparameters include ReLU activation function, cross-entropy 

loss function, ADAM optimiser, 200 training epochs and batch size of 16 as 

mentioned in Section 3.3.2 in Methodology.  

 

4.3.1 Pretesting to decide the constant hyperparameters 

4.3.1.1 Deciding loss function 

Figure 4.9 compares the accuracy score of loss functions using different 

number of neurons in ANN classifier. The loss functions compared are the 

cross-entropy loss and KL-divergence loss. The other hyperparameters are 

kept constant as mentioned before. From Figure 4.9, it is observed that KL-

divergence loss produces higher accuracy than cross-entropy loss at a smaller 

number of neurons; while cross-entropy loss performs better at a greater 

number of neurons. Although the accuracy difference between these two loss 

functions is relatively small (the difference is less than 2%). But since higher 

performance is desired, thus cross-entropy loss is used. 
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Figure 4.9: Comparison of accuracy score of different loss functions. 

 

4.3.1.2 Deciding training epochs 

Table 4.2 and Figure 4.10 show the results of applying different epochs in the 

ANN classifier for one iteration in 10-folds cross-validation. ANN classifier 

is applying gradient descent; thus to achieve better prediction results, we 

want to minimize the losses.  

From Figure 4.10, the learning rate (the slope of the curve) decreases 

as the number of epochs increases. This shows that the training of the 

classifier is getting less effective with the increase in number of epochs. From 

Table 4.2, the training loss and validation loss of 300 epochs decreased by 

8.85% compared to 200 epochs, but the computational time increased by 

100%. Therefore, the number of epochs used for the project is fixed to 200. 

The computational time will be too long when performing K-fold cross-

validation and the increase in performance is not significant.  

 

Table 4.2: Losses using a various number of epochs in Artificial Neural 

Network classifier.  

Epochs Training loss Validation loss Computational 

time (minutes) 

100 0.3561 0.3496 6 

200 0.2881 0.2881 10 

300 0.2626 0.2657 20 
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Figure 4.10: Plot of loss against epochs.  

 

4.3.2 Performance results 

4.3.2.1 Tabulation of performance results 

Table 4.3 shows the performance results of ANN classifier on D1, D2, and 

D3 datasets. 

 

Table 4.3: Performance results of Artificial Neural Network classification 

model.  

Dataset Number of 

neurons 

Computational 

time (minutes) 

Performance metrics 

Accuracy 

(%) 

F1 score 

(%) 

D1 6 20 94.7 94.53 

8 17 97.17 97.15 

10 20 98.26 98.24 

12 22 98.47 98.45 

14 20 98.79 98.79 

16 20 98.79 98.78 

18 22 98.87 98.86 

20 23 98.8 98.8 

D2 6 90 86.97 85.43 
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8 84 87.64 86.08 

10 100 88.20 86.64 

12 100 88.24 86.69 

14 103 89.4 88.12 

16 83 89.94 88.83 

18 100 89.91 88.77 

20 84 90.47 89.5 

D3 6 100 82.55 79.98 

8 108 85.12 83.28 

10 120 87.06 85.51 

12 100 88.45 87.15 

14 120 89.12 87.95 

16 100 89.58 88.5 

18 110 90.03 89.13 

20 112 90.56 89.69 

 

4.3.2.2 Graphs of performance results 

Figure 4.11 to Figure 4.13 show the graphs of ANN performance results of 

D1, D2 and D3 training datasets, respectively. 

 

 

Figure 4.11: Artificial Neural Network performance metrics of D1 

dataset. 
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Figure 4.12: Artificial Neural Network performance metrics of D2 

dataset.  

 

Figure 4.13: Artificial Neural Network performance metrics of D3 

dataset.  

 

4.3.2.3 Graphs of computational time 

Figure 4.14 to Figure 4.16 show the graphs of ANN computational time of 

D1, D2, and D3 training datasets, respectively.  

 



86 

 

Figure 4.14: Artificial Neural Network computational time of D1 dataset.  

 

 

Figure 4.15: Artificial Neural Network computational time of D2 dataset.  



87 

 

Figure 4.16: Artificial Neural Network computational time of D3 dataset.  

 

4.3.3 Results discussion 

4.3.3.1 Performance metrics results 

The presentation of performance results was illustrated in section 4.3.2. The 

section demonstrated the tabulation of detailed values of performance metrics 

and the graphs to illustrate the performance metrics and computational time 

of ANN classifier. The graphs can give an overview of performance metrics 

results when manipulating the configuration of the ANN classifier.  

In this study, the number of neurons is the manipulating variable for 

configuring the ANN model. The constant hyperparameters are ReLU 

activation function, cross-entropy loss function, ADAM optimiser, 200 

training epochs and batch size of 16.  

From the graphs in section 4.3.2.2, it is observed that increasing the 

number of neurons of hidden layers in ANN classifier improves the score of 

performance metrics. However, there are cases where the performance 

metrics score did not grow. For example, in D2 dataset, increasing the 

number of neurons to 12 did not improve the score compared to 10 neurons. 

However, the metrics curves show a growing trend for all datasets D1, D2 

and D3. Besides, the accuracy scores are greater than F1 score. This may be 

because accuracy simply measures all the correct predicted cases over all the 

cases; whereas F1 score takes into account precision and recall while 

measuring the classifier's performance.  
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4.3.3.2 Computational time 

From section 4.3.2.3, the computational time of different configurations of 

ANN classifier are shown. The factors that affect the computational time 

include the size of the dataset and the number of neurons.  

 From the tabulation of data and graphs, the computational time of 

D1 dataset that carries the least examples (9129 examples) is the shortest, 

ranged from 17 to 22 minutes. On the other hand, the D2 dataset (39189 

examples) and D3 dataset (48318 examples) require computational time 

ranging from 83 to 100 minutes and 100 to 120 minutes, respectively. As the 

number of training examples increases, the classification model needs to take 

more time to calculate the losses and update the parameters for every 

iteration. Hence, the larger the dataset size, the longer the computational time.  

 Next, when the number of neurons increases, the computational time 

shows a fluctuation trend. Unlike SVM model, where increasing the c and 

gamma value will increase the computational time, ANN model does not 

show a patterned trend of computational time when the number of neurons 

increases. Take D3 dataset as an example, the computational time fluctuates 

in the range of 100 to 120 minutes. Hence, from the observation of the results, 

the computational time of ANN model does not positively proportional to 

number of neurons. 

4.3.4 Optimum practical configuration  

This section suggested and justified the optimum practical configuration for 

the ANN classifier.  

 In previous sections, the performance metrics results and 

computational time of different configurations of ANN classifier were 

discussed thoroughly. To summarize, increasing the number of neurons can 

help improve the classifier's performance, and computational time is directly 

influenced by the size of the training dataset, but not directly influenced by 

the number of neurons. Therefore, the resource and performance trade-offs 

were considered thoroughly when deciding the optimum configuration. The 

performance refers to the performance metrics scores which we want to 

achieve as high as possible, and the resource refers to the computational time. 

 Figure 4.17 below shows the relationship between accuracy score 

and computational time with the number of neurons for D3 dataset. When 



89 

applying 20 neurons in hidden layers for ANN classifier produced the highest 

results among all the configurations. Next, the longest computational time is 

120 minutes using ten and 14 neurons. The shortest computational time is 

100 using 12 neurons and 16 neurons.  

 

 

Figure 4.17: Graph of accuracy and computational time against number 

of neurons of D3 dataset.  

 

 In short, the optimum configuration suggested is using 20 neurons 

for hidden layers in ANN classifier, which can produce 90.56% accuracy and 

a computational time of 112 minutes. Based on Figure 4.17, ANN classifier 

with 20 neurons consumes reasonably resources (around the average 

computational time) and produces the best results. The results of the D3 

dataset are used to justify the selection of optimum configuration because the 

D3 dataset has the largest training examples to provide the most 

comprehensive reference.  

 Figure 4.18 below shows the confusion matrix of prediction results 

from optimum ANN configuration. The precision score for class old healthy, 

young healthy, and Parkinson’s disease are 94.78%, 90.37% and 88.62%, 

respectively, and the overall precision is 91.25%. Besides, the recall score for 

class old healthy, young healthy, and Parkinson’s disease are 97.66%, 98.16% 
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and 55.66%, respectively, and the overall recall score is 83.97%. Like the 

optimum SVM classifier, the recall score for class Parkinson’s disease is 

significantly lower than the other two classes in the ANN classifier. This 

shows that the trained ANN model faces some problems identifying the input 

that is class Parkinson’s. 55.66% out of all the actual Parkinson’s disease 

examples were predicted correctly using ANN classifier, which is lower than 

SVM model.  

 

 

Figure 4.18: Confusion matrix of Artificial Neural Network optimum 

configuration. The labels 0, 1, and 2 referred to old healthy, 

young healthy, and Parkinson’s disease. 

 

4.4 Comparison with state-of-the-art of gait classification 

algorithms 

In conclusion, the performance results for both developed classification 

algorithms were discussed thoroughly. Comparing the optimum configuration 

of SVM and ANN classifiers, SVM classifier is more suitable and effective 

for the dataset used in this study. This inference can be justified in terms of 

performance metrics results and computational time. In terms of performance 

metrics results, the optimum SVM model can generate an accuracy of 93.01% 

and F1 score of 92.58%; whereas ANN classifier generates an accuracy of 

90.56% and F1 score of 89.69%. On the contrary, the computational time for 

optimum SVM configuration and ANN configuration is 43 minutes and 112 
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minutes, respectively. Therefore, the SVM classifier is more effectively than 

ANN classifier as overall for the gait dataset used in this study.  

 Next, the results from the SVM classifier developed in this study 

were compared with the state-of-the-art of gait classification in similar 

applications. Table 4.4 shows the comparison of state-of-art of gait 

classification. The accuracy of our study's proposed classifier is not 

outstanding compared to other classification algorithms developed by other 

researchers in the table. From the table, the algorithm with the highest 

accuracy is developed by Samà et al. (2013) using SVM with Gaussian kernel 

with image processing system dataset. However, our gait classification model 

can achieve comparable results with other algorithms from other research on 

similar gait applications. In addition, the dataset used in this study contains 

lesser information as the number of features and size of the dataset are not 

large compared to other datasets, such as a image processing dataset and 

wearable sensors dataset, which have larger data size and more training 

features.  

 

Table 4.4: Comparison of state-of-art of gait classification. 

Studies Type of gait dataset Classification 

algorithms 

Accuracy 

(%) 

Koh Chee Hong Gait in Aging and 

Disease Database 

SVM with RBF 

kernel 

93.01 

(Derawi and Bours, 

2013) 

Wearable system 

dataset 

SVM using 

Dynamic Time 

Warping (DTW) 

distance metric 

92.00 

(Tien, Glaser and 

Aminoff, 2010) 

SVM 84.60 

(Samà et al., 2013) Image processing 

system dataset 

SVM with Gaussian 

kernel 

96.40 

(Abdulhay et al., 

2018) 

SVM with Gaussian 

RBF kernel 

92.70 

(LeMoyne et al., Floor-based sensors SVM 80.00 
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2015) dataset 

(Tahir and Manap, 

2012) 

SVM 95.80 

 

 

 

 

 

 

 



93 

 

CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, this report presented the performance of SVM and ANN 

classifiers on gait classification problems in differentiating three classes of 

subjects: young healthy, old healthy and Parkinson’s disease. In this project, 

two classification algorithms were developed. By manipulating and testing 

different combinations of hyperparameters, the optimum configuration for 

both classifiers was determined and justified. Then, the performance of the 

two classifiers was compared, and the SVM model was chosen as the 

proposed solution for the gait classification problem of this study. The 

proposed SVM classifier produces accuracy and f1 score of 93.01% and 

90.56%, respectively, with a computational time of 43 minutes. After that, 

the proposed optimum SVM model was compared to other state-of-arts of 

gait classification algorithms in similar gait applications. Although, the 

performance results of the proposed SVM classifier were not outstanding 

compared to other gait classification algorithms developed by other 

researchers. However, our proposed classification algorithm produced 

comparable results with other state-of-arts using a smaller dataset with fewer 

training features. This suggests that the proposed SVM classifier can help in 

the approach of performing effective and accurate objective gait analysis 

using simpler gait data as input. Therefore, the problem statement was 

addressed, and the aim and objectives of this study were achieved.  

 

5.2 Recommendations for future work 

Future research of this problem should focus on validating the performance 

of the proposed classifier in classifying Parkinson’s disease using gait data 

collected physically in a real-life practical environment. Furthermore, 

improvements in the classifier's robustness are required by applying more 

training data. In addition, the training dataset used for training should have 
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more information, such as a wider range in age, race and evenly distributed 

gender.  
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