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ABSTRACT 

 

 

DEVELOPMENT OF DISTRIBUTION-FREE DOUBLE 

EXPONENTIALLY AND HOMOGENEOUSLY 

WEIGHTED MOVING AVERAGE LEPAGE SCHEMES 

 

 

CHAN KOK MING 

 

 

 

 

A control scheme is well-known as the most powerful and significant device in 

statistical process monitoring (SPM). A control scheme no longer only serves 

the manufacturing sector; instead, it is now playing a remarkable role in the new 

stage of smart monitoring. Following the current trend, the development of the 

distribution-free or nonparametric SPM (NSPM)-type scheme is at an active 

pace. This is because an NSPM-type scheme has a robust in-control (𝐼𝐶) run-

length (𝑅𝐿) distribution, regardless of the underlying process distribution. 

Furthermore, most of the recent research no longer focuses on a single 

parameter monitoring, but joint monitoring of location-scale parameters attracts 

researchers’ attention. One may notice that most of the available memory-type 

schemes available in the literature focus on the well-known cumulative sum 

(CUSUM)- and exponentially weighted moving average (EWMA)-type 

scheme. Nevertheless, researchers have found that the extension of the EWMA-

type scheme, i.e., the double EWMA (DEWMA)-type scheme and the newly 

proposed homogeneously weighted moving average (HWMA)-type scheme 

have a better performance in detecting small to moderate shifts in the process 

compared to the CUSUM- and EWMA-type scheme. In order to capitalise on 

the strength of the DEWMA- and HWMA-type schemes and the beauty of joint 



 

iii 

monitoring NSPM-type scheme, two novel NSPM-type joint monitoring 

schemes based on the popular Lepage statistic are presented in this dissertation. 

Precisely, they are the DEWMA-Lepage (𝐷𝐿) and HWMA-Lepage (𝐻𝐿) 

schemes. The proposed schemes are studied and compared with the existing 

memoryless Shewhart Lepage (𝑆𝐿) and memory-type EWMA-Lepage (𝐸𝐿) 

schemes through simulation and a real data study regarding e-commerce 

activity. An upper control limit (𝑈𝐶𝐿) is employed in all the monitoring 

schemes, such that the 𝑆𝐿 scheme only has a steady-state 𝑈𝐶𝐿, while the 𝐸𝐿, 

𝐷𝐿, and 𝐻𝐿 schemes have both time-varying and steady-state 𝑈𝐶𝐿s. The results 

show that the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is not recommended in 

practice due to its high early false alarm rate (FAR). Generally, from both the 

simulation and real data studies, the performance of the 𝐷𝐿 scheme with the 

time-varying 𝑈𝐶𝐿 is outstanding, especially in detecting a small to moderate 

disturbance. Therefore, it is believed that the proposed 𝐷𝐿 scheme with the 

time-varying 𝑈𝐶𝐿 can benefit various industries in this smart monitoring era. 

 



 

iv 

ACKNOWLEDGEMENTS 

 

 

 

 

 First and foremost, I would like to grab this opportunity to express my 

most profound thankfulness to my supervisor, Dr. Lee How Chinh and co-

supervisors, Dr. Ng Peh Sang and Dr. Chong Zhi Lin, for their invaluable help 

and guidance. Under their supervision, I am able to complete my Master’s study 

successfully and grab a lot of valuable experience and knowledge from them. 

 

 

 Besides, I would like to acknowledge Universiti Tunku Abdul Rahman 

for awarding me the Research Scholarship Scheme under Fundamental 

Research Grant Schemes (FRGS), no. FRGS/1/2019/STG06/UTAR/02/2, in 

conducting my research. I would also like to thank Professor Dr. Amitava 

Mukherjee from Xavier School of Management, XLRI, India, for his ideas and 

suggestions to improve the contents of my journal article published in 

Computers & Industrial Engineering. 

 

 

 Finally, I would like to extend my thanks and gratitude to all my beloved 

family members for their constant love and moral support. Their utmost wisdom 

and unconditional faith in me indeed served as a driving force to keep me going 

in this long and bumpy road journey. Further, I would also like to extend my 

gratitude to all my friends who have rendered me their assistance, friendship, 

and moral support — much appreciated to all of you!



 

v 

APPROVAL SHEET 

 

 

 

This dissertation/thesis entitled “DEVELOPMENT OF DISTRIBUTION-

FREE DOUBLE EXPONENTIALLY AND HOMOGENEOUSLY 

WEIGHTED MOVING AVERAGE LEPAGE SCHEMES” was prepared 

by CHAN KOK MING and submitted as partial fulfillment of the requirements 

for the degree of Master of Science at Universiti Tunku Abdul Rahman. 

 

 

 

 

Approved by: 

 

 

 

 

____________________________ 

(DR. LEE HOW CHINH)    Date:………………….. 

Supervisor 

Department of Physical and Mathematical Science 

Faculty of Science 

Universiti Tunku Abdul Rahman 

 

 

 

 

 

____________________________ 

(DR. NG PEH SANG)    Date:………………….. 

Co-Supervisor 

Department of Physical and Mathematical Science 

Faculty of Science 

Universiti Tunku Abdul Rahman 

 

 

 

 

 

____________________________ 

(DR. CHONG ZHI LIN)    Date:………………….. 

Co-Supervisor 

Department of Mathematical and Actuarial Sciences 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

23/12/2021

24/12/2021

24/12/2021



 

vi 

FACULTY OF SCIENCE 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

 

Date: 23 December 2021 

 

 

 

 

SUBMISSION OF DISSERTATION 

 

 

 

It is hereby certified that Chan Kok Ming (ID No: 20ADM00688) has 

completed this dissertation entitled “DEVELOPMENT OF DISTRIBUTION-

FREE DOUBLE EXPONENTIALLY AND HOMOGENEOUSLY 

WEIGHTED MOVING AVERAGE LEPAGE SCHEMES” under the 

supervision of Dr. Lee How Chinh (Supervisor) and Dr. Ng Peh Sang (Co-

Supervisor) from the Department of Physical and Mathematical Science, 

Faculty of Science, Universiti Tunku Abdul Rahman, and Dr. Chong Zhi Lin 

(Co-Supervisor) from the Department of Mathematical and Actuarial Sciences, 

Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul 

Rahman. 

 

 

I understand that University will upload softcopy of my dissertation in pdf 

format into UTAR Institutional Repository, which may be made accessible to 

UTAR community and public. 

 

 

Yours truly, 

 

 

 

 

__________________ 

(CHAN KOK MING)



 

vii 

DECLARATION 

 

 

 

I CHAN KOK MING hereby declare that the dissertation is based on my 

original work except for quotations and citations which have been duly 

acknowledged. I also declare that it has not been previously or concurrently 

submitted for any other degree at UTAR or other institutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

__________________ 

(CHAN KOK MING) 

 

 

Date: 23 December 2021 

 



 

viii 

TABLE OF CONTENTS 

 

 

 Page 

ABSTRACT ii 

ACKNOWLEDGEMENTS iv 

APPROVAL SHEET v 

SUBMISSION SHEET vi 

DECLARATION vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xii 

LIST OF FIGURES xv 

LIST OF ABBREVIATIONS / NOTATIONS xvi 

 

CHAPTER 

 

1.0 INTRODUCTION 1 

 1.1 Statistical Process Monitoring (SPM) 1 

 1.2 Control Scheme 4 

 1.3 Problem Statement 10 

 1.4 Objectives of the Research 11 

 1.5 Significance of the Research 12 

 1.6 Flowchart of the Research Methodology 15 

 1.7 Organisation of the Dissertation 16 

 

2.0 LITERATURE REVIEW 18 

 2.1 Introduction 18 

 2.2 Development of the Parametric SPM-Type Joint 

Monitoring Scheme 

19 

 2.3 Development of the Parametric Exponentially Weighted 

Moving Average (EWMA)-Type Scheme 

22 

 2.4 Development of the Parametric Double EWMA 

(DEWMA)-Type Scheme 

25 



 

ix 

 2.5 Development of the Parametric Homogeneously 

Weighted Moving Average (HWMA)-Type Scheme 

28 

 2.6 Development of the Nonparametric SPM (NSPM)-Type 

Scheme 

30 

  2.6.1 Single-Parameter NSPM-Type Scheme 31 

  2.6.2 Two-Parameter Joint NSPM-Type Scheme 32 

 2.7 Development of the Lepage-Type Scheme 34 

 2.8 Statistical Framework and Preliminaries of the Lepage 

Statistic 

37 

 2.9 Related Lepage-Type Schemes 39 

  2.9.1 The Shewhart-Lepage (𝑆𝐿) Scheme and Its 

Implementation 

39 

  2.9.2 The EWMA-Lepage (𝐸𝐿) Scheme and Its 

Implementation 

41 

 

3.0 RESEARCH METHODOLOGY 44 

 3.1 Introduction 44 

 3.2 The Proposed DEWMA-Lepage (𝐷𝐿) and HWMA-

Lepage (𝐻𝐿) Schemes and Their Implementations 

44 

 3.3 The Time-Varying 𝑈𝐶𝐿s for the 𝐷𝐿 and 𝐻𝐿 Schemes 48 

  3.3.1 Derivations of 𝜇𝐷𝐿𝑖 and 𝜎𝐷𝐿𝑖  for the 𝐷𝐿 Scheme 49 

  3.3.2 Derivations of 𝜇𝐻𝐿𝑖 and 𝜎𝐻𝐿𝑖  for the 𝐻𝐿 Scheme 51 

 3.4 Determination of 𝑈𝐶𝐿s 52 

 3.5 𝑅𝐿 Metrics for Performance Evaluation of A Scheme 54 

 

4.0 RESULTS AND DISCUSSION 56 

 4.1 Introduction 56 

 4.2 𝐼𝐶 Performance Analysis of the 𝑆𝐿, 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 

Schemes 

56 

  4.2.1 The Charting Constants 58 

  4.2.2 𝐼𝐶 Performance Comparative Study 60 

   4.2.2.1 𝐼𝐶 Performance of the 𝐸𝐿 and 𝐷𝐿 

Schemes 

64 



 

x 

   4.2.2.2 𝐼𝐶 Performance of the 𝐻𝐿 Scheme 65 

   4.2.2.3 𝐼𝐶 Performance of the 𝑆𝐿 Scheme 67 

   4.2.2.4 Summary 67 

 4.3 𝑂𝑂𝐶 Performance Analysis of the 𝑆𝐿, 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 

Schemes at Micro Level 

68 

  4.3.1 𝑂𝑂𝐶 Performance of the Schemes under the 

Normal Distribution 

70 

  4.3.2 𝑂𝑂𝐶 Performance of the Schemes under the 

Laplace Distribution 

76 

  4.3.3 𝑂𝑂𝐶 Performance of the Schemes under the 

Shifted Exponential Distribution 

81 

 4.4 𝑂𝑂𝐶 Performance Analysis of the 𝑆𝐿, 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 

Schemes at Macro Level 

86 

 4.5 Implementation in e-Commerce 92 

  4.5.1 Phase-I Retrospective Analysis of Exit Rate 93 

  4.5.2 Phase-II Monitoring of Exit Rate 101 

 

5.0 CONCLUSIONS AND FUTURE RESEARCH 106 

 5.1 Introduction 106 

 5.2 Findings and Contributions of this Dissertation 107 

 5.3 Limitations of Research 109 

 5.4 Propositions for Future Research 110 

 

REFERENCES 113 

APPENDICES  

Appendix A Lemma for the Derivation of the Time-Varying 𝑈𝐶𝐿 

for the 𝐷𝐿 Scheme 

126 

 A.1 Lemma 1 126 

 A.2 Lemma 2 127 

Appendix B Computer Programs for Monte-Carlo Simulation 128 

 B.1 R Program Code for 𝜉1 and 𝜉2 Estimation 128 

 B.2 R Program Code for the 𝐸𝐿 Scheme 129 

 B.3 R Program Code for the 𝐷𝐿 Scheme 131 



 

xi 

 B.4 R Program Code for the 𝐻𝐿 Scheme 134 

 B.5 R Program Code for the 𝑆𝐿 Scheme 136 

Appendix C Publication 138 



 

xii 

LIST OF TABLES 

 

 

 

Table  Page 

4.1 The Estimated Values of 𝜉1 and 𝜉2 for Some Selected (𝑚, 𝑛) 57 

4.2 The Charting Constants of Various Schemes with Time-

Varying 𝑈𝐶𝐿s when 𝐴𝑅𝐿0 ≈ 250 

58 

4.3 The Charting Constants of Various Schemes with Steady-

State 𝑈𝐶𝐿s when 𝐴𝑅𝐿0 ≈ 250 

59 

4.4 The Charting Constants of Various Schemes with Time-

Varying 𝑈𝐶𝐿s when 𝐴𝑅𝐿0 ≈ 370 

59 

4.5 The Charting Constants of Various Schemes with Steady-

State 𝑈𝐶𝐿s when 𝐴𝑅𝐿0 ≈ 370 

59 

4.6 The Charting Constants of Various Schemes with Time-

Varying 𝑈𝐶𝐿s when 𝐴𝑅𝐿0 ≈ 500 

60 

4.7 The Charting Constants of Various Schemes with Steady-

State 𝑈𝐶𝐿s when 𝐴𝑅𝐿0 ≈ 500 

60 

4.8 The 𝐼𝐶 Performance of Various Schemes when 𝐴𝑅𝐿0 ≈ 500 

and 𝜆 = 0.05 for the Memory-Type Schemes 

61 

4.9 The 𝐼𝐶 Performance of Various Schemes when 𝐴𝑅𝐿0 ≈ 500 

and 𝜆 = 0.10 for the Memory-Type Schemes 

62 

4.10 The 𝐼𝐶 Performance of Various Schemes when 𝐴𝑅𝐿0 ≈ 500 

and 𝜆 = 0.20 for the Memory-Type Schemes 

63 

4.11 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.05 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Normal Distribution 

73 



 

xiii 

4.12 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.10 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Normal Distribution 

74 

4.13 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.20 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Normal Distribution 

75 

4.14 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.05 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Laplace Distribution 

78 

4.15 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.10 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Laplace Distribution 

79 

4.16 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.20 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Laplace Distribution 

80 

4.17 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.05 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Shifted Exponential Distribution 

83 

4.18 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.10 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Shifted Exponential Distribution 

84 

4.19 The 𝑂𝑂𝐶 Performance of Various Schemes when (𝑚, 𝑛) =

(100, 5) and 𝜆 = 0.20 for the Memory-Type Schemes when 

𝐴𝑅𝐿0 ≈ 500 under the Shifted Exponential Distribution 

85 

4.20 Four Scenarios of 𝑂𝑂𝐶 Cases Studied in Macro Level 87 

4.21 𝐸𝐴𝑅𝐿 Values of Various Schemes when (𝑚, 𝑛) = (100, 5) 

and 𝐴𝑅𝐿0 ≈ 500 under the Normal Distribution 

90 



 

xiv 

4.22 𝐸𝐴𝑅𝐿 Values of Various Schemes when (𝑚, 𝑛) = (100, 5) 

and 𝐴𝑅𝐿0 ≈ 500 under the Laplace Distribution 

91 

4.23 𝐸𝐴𝑅𝐿 Values of Various Schemes when (𝑚, 𝑛) = (100, 5) 

and 𝐴𝑅𝐿0 ≈ 500 under the Shifted Exponential Distribution 

91 

4.24 The Ljung-Box Test for the Revised Phase-I Sample 100 

4.25 Charting Constants of Various Schemes when (𝑚, 𝑛) =

(1880, 20) and 𝜆 = 0.05 for the Memory-Type Schemes 

when 𝐴𝑅𝐿0 ≈ 500 

101 

4.26 𝑂𝑂𝐶 Signals Detected by Various Schemes in Monitoring 

Exit Rate 

104 

4.27 Follow-Up Procedure of the 𝑂𝑂𝐶 Signals Detected 105 

 



 

xv 

LIST OF FIGURES 

 

 

 

Figure  Page 

2.1 Graphical Description of A Standard 𝑆𝐿 Scheme 36 

4.1 Phase-I Analysis of Exit Rate with the RS/P Approach 95 

4.2 Phase-I Analysis of Exit Rate with the Multi-Sample Lepage 

Statistic 

96 

4.3 Phase-I Analysis of Exit Rate with the Multi-Sample 

Cucconi Statistic 

96 

4.4 Revised Phase-I Analysis of Exit Rate with the RS/P 

Approach 

97 

4.5 Revised Phase-I Analysis of Exit Rate with the Multi-

Sample Lepage Statistic 

98 

4.6 Revised Phase-I Analysis of Exit Rate with the Multi-

Sample Cucconi Statistic 

98 

4.7 Kernel Density Plots of the Removed and Revised Samples 99 

4.8 Phase-II 𝐸𝐿 Scheme for Monitoring Exit Rate 102 

4.9 Phase-II 𝐷𝐿 Scheme for Monitoring Exit Rate 102 

4.10 Phase-II 𝐻𝐿 Scheme for Monitoring Exit Rate 103 

4.11 Phase-II 𝑆𝐿 Scheme for Monitoring Exit Rate 103 

 



 

xvi 

LIST OF ABBREVIATIONS / NOTATIONS 

 

 

 

The notations and abbreviations used in this dissertation are listed as follows: 

AEWMA Adaptive exponentially weighted moving average 

𝐴𝐵  Ansari-Bradley 

𝐴𝐵𝑖  Ansari-Bradley statistic corresponding to the 𝑖th test sample 

𝐴𝑅𝐿  Average run length 

𝐴𝑅𝐿0  Average run length (in-control) 

𝐴𝑅𝐿1  Average run length (out-of-control) 

𝐶𝑣𝑀  Cramér-von Mises 

𝐶𝐷𝐹  Cumulative distribution function 

𝐹𝑋  𝐶𝐷𝐹 of Phase-I sample 𝑋 

𝐹𝑌  𝐶𝐷𝐹 of Phase-II sample 𝑌 

𝜐1  Conditional mean of the 𝑖th Lepage statistic, 𝐸(𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) 

𝜉2  Conditional mean of 𝜐2, 𝐸(𝜐2|𝐼𝐶) 

𝜐2  Conditional variance of the 𝑖th Lepage statistic, 𝑉𝑎𝑟(𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) 

𝜉1  Conditional variance of 𝜐1, 𝑉𝑎𝑟(𝜐1|𝐼𝐶) 

CUSUM Cumulative sum 

𝐶𝐶  CUSUM-Cucconi 

𝐶𝐿  CUSUM-Lepage 

DEWMA Double exponentially weighted moving average 

𝐷𝐿  DEWMA-Lepage 

𝐷𝐿𝑖  DEWMA-Lepage scheme (the 𝑖th plotting statistic) 

𝐸𝐴𝑅𝐿  Expected average run-length 

𝐸𝑊𝑅𝐿  Expected weighted run-length 

EWMA Exponentially weighted moving average 

𝐸𝐶  EWMA-Cucconi 

𝐸𝐿  EWMA-Lepage 

𝐸𝐿𝑖  EWMA-Lepage scheme (the 𝑖th plotting statistic) 

FAR False alarm rate 

𝐹𝑆𝐿  Fuzzy Shewhart-Lepage 



 

xvii 

𝐺𝑂𝐹  Goodness-of-fit 

HWMA Homogeneously weighted moving average 

𝐻𝐿  HWMA-Lepage 

𝐻𝐿𝑖  HWMA-Lepage scheme (the 𝑖th plotting statistic) 

𝐼𝐶  In-control 

IR4.0 Industrial Revolution 4.0 

𝐾𝑆  Kolmogorov-Smirnov 

𝐿𝑖  Lepage statistic corresponding to the 𝑖th test sample 

𝐿𝐶𝐿  Lower control limit 

𝐿𝑊𝐿  Lower warning limit 

𝑀𝑊  Mann-Whitney 

𝜇𝐴𝐵  Mean of Ansari-Bradley statistic in an 𝐼𝐶 state 

𝜇𝐷𝐿𝑖  Mean of 𝐷𝐿 scheme with time-varying 𝑈𝐶𝐿 at 𝑖th test sample 

𝜇𝐸𝐿𝑖  Mean of 𝐸𝐿 scheme with time-varying 𝑈𝐶𝐿 at 𝑖th test sample 

𝜇𝐻𝐿𝑖  Mean of 𝐻𝐿 scheme with time-varying 𝑈𝐶𝐿 at 𝑖th test sample 

𝜇𝑊𝑅𝑆  Mean of Wilcoxon rank-sum statistic in an 𝐼𝐶 state 

𝑀𝑅𝐿  Median run-length 

NSPM Nonparametric statistical process monitoring 

OC-JM One-chart joint monitoring 

𝑂𝑂𝐶  Out-of-control 

𝑃𝐷𝐹  Probability density function 

𝑝𝐴
∗   𝑝-value of the 𝐴𝐵 test for Phase-I and cumulative Phase-II 

samples 

𝑝𝐴  𝑝-value of the 𝐴𝐵 test for Phase-I and individual Phase-II 

samples 

𝑝𝑊
∗   𝑝-value of the 𝑊𝑅𝑆 test for Phase-I and cumulative Phase-II 

samples 

𝑝𝑊  𝑝-value of the 𝑊𝑅𝑆 test for Phase-I and individual Phase-II 

samples 

𝑋  Phase-I in-control reference sample 

𝑌  Phase-II test sample 

𝑋𝑚⃗⃗ ⃗⃗  ⃗  Random sample of an in-control process 



 

xviii 

𝑌𝑛𝑖⃗⃗⃗⃗  ⃗  Random sample of the 𝑖th test sample 

𝑅  Range of sample 

RS/P Recursive segmentation and permutation 

𝑅𝐿  Run-length 

ℤ+  Set of all positive integers 

𝑆𝐶  Shewhart-Cucconi 

𝑆𝐿  Shewhart-Lepage 

𝑁  Size of combined 𝑋𝑚⃗⃗ ⃗⃗  ⃗ and 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ samples 

𝑚  Size of Phase-I sample 

𝑛  Size of Phase-II sample 

𝜆  Smoothing parameter of the 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes 

𝑆  Standard deviation of sample 

𝜎𝐴𝐵  Standard deviation of Ansari-Bradley statistic in an 𝐼𝐶 state 

𝜎𝐷𝐿𝑖  Standard deviation of 𝐷𝐿 scheme with time-varying 𝑈𝐶𝐿 at 𝑖th 

test sample 

𝜎𝐸𝐿𝑖  Standard deviation of 𝐸𝐿 scheme with time-varying 𝑈𝐶𝐿 at 𝑖th 

test sample 

𝜎𝐻𝐿𝑖  Standard deviation of 𝐻𝐿 scheme with time-varying 𝑈𝐶𝐿 at 𝑖th 

test sample 

𝑆𝐷𝑅𝐿  Standard deviation of run-length 

𝑆𝐷𝑅𝐿0  Standard deviation of run-length (in-control) 

𝑆𝐷𝑅𝐿1  Standard deviation of run-length (out-of-control) 

𝜎𝑊𝑅𝑆  Standard deviation of Wilcoxon rank-sum statistic in an 𝐼𝐶 state 

SPM Statistical process monitoring 

SS 𝑈𝐶𝐿 Steady-state upper control limit 

Ψ𝐷𝐿  Steady-state upper control limit of the 𝐷𝐿 scheme 

Ψ𝐸𝐿  Steady-state upper control limit of the 𝐸𝐿 scheme 

Ψ𝐻𝐿  Steady-state upper control limit of the 𝐻𝐿 scheme 

Ψ𝑆𝐿  Steady-state upper control limit of the 𝑆𝐿 scheme 

𝑡  Student’s 𝑡 distribution 

TV 𝑈𝐶𝐿 Time-varying upper control limit 

Ψ𝐷𝐿(𝑖)  Time-varying upper control limit of the 𝐷𝐿 scheme 
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CHAPTER 1 

 

 
INTRODUCTION 

 

 

 

 

1.1 Statistical Process Monitoring (SPM) 

 

 

 In this 21st century, customers’ satisfaction is of utmost importance to 

every seller because customers can now easily leave their feedback and review 

at their fingertips, which will somewhat affect a seller’s business. Hence, 

improving the quality and productivity of a product as well as the quality of 

service of a seller are crucial that lead to a successful and competitive business. 

Garvin (1987) proposed eight components or dimensions that can evaluate a 

product’s quality, namely performance, reliability, durability, serviceability, 

aesthetics, features, perceived quality, and conformance to standards. There are 

five dimensions to assess service quality on the flip side, i.e., tangibles, 

reliability, responsiveness, assurance, and empathy (Parasuraman et al., 1985). 

Generally, there are many definitions of quality from different quality gurus, 

but one should know that customers are the ones who define quality because 

“customer is always right”. 

 

 

 Consequently, continuous quality improvement or more famously 

known as Kaizen, is crucial to ensure that a business is thriving and sustainable. 

To this end, Statistical Process Control (called Statistical Process Monitoring, 

termed as SPM hereafter) is a collection of powerful analytical tools that can be 
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used to achieve this objective. SPM ensures the performance of a production 

process can be improved, and higher quality control is sustained by reducing 

the process variability (Smith, 1998). The statistical strategies in SPM involve 

real-time analysis by optimising the amount of information required that is used 

in decision-making for process improvement (Madanhire and Mbohwa, 2016). 

 

 

 The applications of SPM are greatly expanded during and after World 

War II (WW II). During WW II, quality plays a crucial role in war and safety 

because it is intolerable with any military equipment that is unsafe for operation. 

For instance, the War Department of the United States published some 

guidelines to interpret the process data through a control chart (called control 

scheme or scheme hereafter) in 1940. Further, from 1940 to 1943, Bell 

Laboratories consulted the forces to use sampling inspection to ensure the safety 

of military equipment (Montgomery, 2019). 

 

 

 On the other hand, during the post-WW II era, United States assigned a 

few quality gurus to Japan to help in rebuilding the country after the war. For 

instance, W. Edwards Deming was invited to Japan to run some seminars for 

the management teams of Japanese industries so that they know the importance 

of quality in helping their business. One of the most significant contributions 

from Deming is his knowledge and idea influenced a lot of Japan’s homegrown 

quality experts; one of them is Genichi Taguchi. Other than Deming, Joseph M. 

Juran became the speaker to the leaders of Japanese industries when Japan 

started its industrial transformation (Magnier, 1999; Montgomery, 2019). 
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 From the history of the development of SPM, it is undeniable that in the 

early stage, SPM was employed primarily to monitor the processes in the 

manufacturing sector. However, in recent years, the role played by SPM is far 

beyond the manufacturing industries with the emergence of Industrial 

Revolution 4.0 (IR4.0). As such, SPM is now playing an essential role in 

multiple sectors. For example, Bersimis et al. (2017) employed SPM in 

environmental assessment. Besides, Mukherjee and Marozzi (2017a), 

Mukherjee and Sen (2018), and Song et al. (2020b) capitalised on SPM to 

monitor the service quality. Further, Chong et al. (2020) and Sanusi et al. (2020) 

showed that SPM could also be used in monitoring water quality. In addition, 

Scagliarini et al. (2021) discussed the application of SPM in healthcare 

monitoring. 

 

 

 A quality practitioner can control, monitor, and improve processes by 

analysing the process through some simple yet elegant graphical tools. There 

are seven paramount quality graphical tools in SPM, known as the “Magnificent 

Seven”, which includes check sheet, control scheme, scatter diagram, Pareto 

chart, cause-and-effect diagram (or Ishikawa diagram), histogram, and defect 

concentration diagram. (Montgomery, 2019). A quality practitioner can obtain 

immediate or online information about the production process with the help of 

these seven simple tools (Lashley, 1995). 
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1.2 Control Scheme 

 

 

 In general, a control scheme is a time-sequence plot of the statistics used 

to explain the quality characteristic(s) of a product or service with “decision 

lines” added, such as the lower and upper warning limits, abbreviated as 𝐿𝑊𝐿 

and 𝑈𝑊𝐿, respectively, lower and upper control limits, denoted as 𝐿𝐶𝐿 and 

𝑈𝐶𝐿, respectively. With the emergence of advanced and modern computer 

technology in this era of science and technology, data collection and analysis 

can be performed in real-time. This strength leads to the continuous 

development of control schemes, and control schemes are now used utterly in 

management control. 

 

 

 A control scheme is an excellent and irreplaceable SPM tool among the 

“Magnificent Seven”, keeping a process predictable. This is because a control 

scheme offers a straightforward graphical display to examine the stability of a 

process, i.e., whether an underlying process is in-control (𝐼𝐶) or out-of-control 

(𝑂𝑂𝐶). For instance, a process is deemed to be statistically 𝐼𝐶 if the plotting 

statistics are all within the 𝐿𝐶𝐿 and 𝑈𝐶𝐿, where the process variability is due to 

common or natural causes. On the flip side, a process is 𝑂𝑂𝐶 if there is any 

plotting statistic beyond the 𝐿𝐶𝐿 or 𝑈𝐶𝐿, such that the observed variability is 

relatively larger than expected, and it is due to the occurrence of assignable or 

special causes. 

 

 

 Shewhart (1926) mentioned that it is impracticable for a manufacturer 

to produce every single unit of a product identically due to non-assignable 
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causes of variation in the quality of the product. Thus, as a manufacturer, the 

aim is to produce uniform and controlled products. To achieve this objective, 

the manufacturer needs to identify the assignable cause by applying the control 

scheme and rectify it without changing the whole process. In particular, a good 

control scheme should have the ability to differentiate between chance causes 

of variation or “background noise” and abnormal variation. This can ensure that 

actions are only taken when the process is 𝑂𝑂𝐶, in order to avoid any 

unnecessary process adjustment when the process is 𝐼𝐶. 

 

 

 There are two main types of control schemes, i.e., variable control 

schemes and attribute control schemes. Gitlow et al. (1995) elucidated that a 

variable control scheme is employed to monitor quality characteristics that are 

expressed as continuous data. The scheme helps to achieve a continuous 

reduction in process variations and a never-ending process improvement. In 

contrast, an attribute control scheme is used to monitor characteristics that are 

in the form of categorical data, i.e., the inspected items are categorised into 

conforming or nonconforming units. The scheme is used to achieve a zero-

defect process by preventing defects. 

 

 

 Furthermore, control schemes also can be categorised into two big 

families, i.e., the memoryless- and memory-type schemes. The traditional 

Shewhart-type control scheme is known as the memoryless-type control 

scheme. This is because the scheme only considers the observation collected at 

the current time point, while all the historical data are ignored in detecting 

process variation. Hence, this type of control scheme only effectively detects a 
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large shift in the process (Qiu, 2014; Montgomery, 2019). To overcome this 

weakness, memory-type control schemes are proposed. A memory-type control 

scheme incorporates all the observations available from the beginning until the 

current time points. Hence, memory-type control schemes have a better 

performance in detecting small to moderate disturbances in the process. 

 

 

 The two major memory-type control schemes practically used are the 

cumulative sum (CUSUM)- and exponentially weighted moving average 

(EWMA)-type schemes, which were proposed by Page (1954) and Roberts 

(1959), respectively. Although these two schemes take past observations into 

account, the way they account for the observations is distinct. For instance, the 

EWMA-type scheme assigns a specific weight to the current observation, and 

the weight to the previous observations geometrically decreases. In other words, 

the weight decreases as the observation became older. Some other famous 

memory-type control scheme includes the extension of the EWMA-type 

scheme, i.e., the double EWMA (DEWMA)-type scheme developed by 

Shamma and Shamma (1992), and homogenously weighted moving average 

(HWMA)-type scheme proposed by Abbas (2018) recently. 

 

 

 In the 20th century, and even for the past twenty years, the majority of 

the monitoring schemes developed are known as parametric SPM-type control 

schemes. This is because, in order to employ those schemes, certain 

assumptions related to the underlying process distribution need to be made, such 

as the normality assumption. However, those assumptions are easily infringed, 

which causes by the convolutions of the current era. Further, the performance 
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of the parametric SPM-type schemes is often unreliable if the normality 

assumption is violated (Qiu and Li, 2011). For instance, the 𝐼𝐶-average run-

length (𝐴𝑅𝐿), abbreviated as 𝐴𝑅𝐿0, for a CUSUM-type scheme will be smaller 

than the nominal 𝐴𝑅𝐿0. This is because there are many false alarms caused by 

skewed process distribution and a small number of degrees of freedom. 

 

 

 Besides, if the underlying process distribution is not known, the 

sufficiency of the subgroup size will significantly affect the reliability of the 

estimation of the process parameters. Quesenberry (1993) proposed that there 

should be at least 100 subgroups with a subgroup size of 5 for the traditional �̅� 

scheme or the equivalent 𝑄(�̅�) scheme with a known mean and standard 

deviation presented by Quesenberry (1991) to perform as well as a scheme with 

known parameters. Also, at least 2000 observations, which are equivalent to 400 

subgroups with a size of 5, are required to estimate the parameters of the 

EWMA-type scheme with a smoothing constant of 𝜆 = 0.1, where this is quite 

impractical in the industrial sector (Jones et al., 2001). 

 

 

 Further, it is strenuous to identify the actual underlying parametric 

distribution of a process due to insufficient prior knowledge. Therefore, in 

recent years, the distribution-free or nonparametric SPM (NSPM)-type scheme 

attracts the attention of researchers. The main advantage of the NSPM-type 

scheme over the parametric SPM-type scheme is its robustness towards 

different distributions. For instance, Chapters 8 and 9 of the book by Qiu (2014) 

have a brief introduction to the NSPM-type scheme. On the other hand, Qiu 

(2018) discussed some more recent and newfangled NSPM-type schemes. 
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 In the early stage of the development of control schemes, regardless of 

the parametric SPM- or NSPM-type schemes, a control scheme is employed 

primarily to monitor a single parameter of a process, particularly the location 

parameter. For instance, the �̅� statistic is famously used to monitor the location 

parameter of a normally distributed process for a parametric SPM-type scheme. 

On the other hand, the nonparametric Wilcoxon signed-rank (𝑊𝑆𝑅) statistic that 

is capable in monitoring the location parameter of any distribution is employed 

in the NSPM-type scheme. However, researchers know that all these schemes 

are not perfect and have the main limitation, i.e., it is insufficient to justify the 

stability of a process by solely monitoring the process location parameter. 

 

 

 To this end, two-parameter joint monitoring schemes draw attention 

from researchers in more recent times. For instance, �̅� & 𝑅 and �̅� & 𝑆 schemes 

are the two famous parametric SPM-type schemes used to monitor the location 

and scale parameters of a normally distributed process. On the flip side, the 

development of the NSPM-type joint monitoring scheme only blossoms in 

recent decades. Among the NSPM-type joint monitoring schemes, the Lepage- 

and Cucconi-type schemes are the most well-known. A Lepage-type scheme 

employs the statistic of Lepage (1971) and it was initiated by Mukherjee and 

Chakraborti (2012). On the flip side, Chowdhury et al. (2014) initiated the 

Cucconi-type scheme by employing the Cucconi (1968) statistic. These two 

statistics can jointly monitor both the location and scale parameters of any 

continuous process under a single statistic. 
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 Until here, one may notice that there are different kinds of control 

schemes available for quality practitioners. Also, more advanced and 

sophisticated control schemes are proposed as time goes. However, the typical 

steps in constructing any control scheme, in practice, can be illustrated as 

follows (Xie et al., 2002): 

Step I. Collect a sequence of plotting statistics representing a quality 

characteristic of interest. 

Step II. Compute the mean and standard deviation of the plotting statistics, 

where the mean is set as the centre line of the scheme. 

Step III. Establish the 𝐿𝐶𝐿 and 𝑈𝐶𝐿. For instance, if an SPM-type scheme 

is considered, the 𝐿𝐶𝐿 and 𝑈𝐶𝐿 are 3-standard deviations from the 

centre line. 

Step IV. Plot and connect all the plotting statistics with a straight line. 

Step V. If any plotting statistic beyond the 𝐿𝐶𝐿 or 𝑈𝐶𝐿, find and eliminate 

the assignable cause(s). Then, revise the centre line, 𝐿𝐶𝐿, and 

𝑈𝐶𝐿. 

Step VI. Continue plotting whenever a new plotting statistic is obtained. 

 

 

 In practice, there are two phases in employing a control scheme, namely 

Phase-I and Phase-II. The production process is properly set up during Phase-I 

so that it can run stably due to the fact that the process is not known much at the 

beginning. However, it is not always the case when primary data is obtained, 

and it is hard to guarantee that the dataset obtained is collected from a correctly 

set up process. Hence, a control scheme is used retrospectively to analyse the 

Phase-I dataset. Once the Phase-I dataset is found to be 𝐼𝐶, and is suitable to be 
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treated as a reference sample, the data points here are used to estimate the 𝐼𝐶 

run-length (𝑅𝐿) distribution of the quality characteristics. See Chakraborti et al. 

(2009) and Jones-Farmer et al. (2014) for a more comprehensive description of 

Phase-I control schemes. 

 

 

 In contrast, in Phase-II or better known as the monitoring phase, the 𝐼𝐶 

process will be monitored online to ensure that it can still run stably. Here, a 

control scheme is adopted prospectively to detect any disturbances in the 

process being monitored. In SPM, Phase-II monitoring is the primary goal 

because it is crucial that an 𝑂𝑂𝐶 process needs to be rectified into statistically 

𝐼𝐶 (Jensen et al., 2006). This is why most of the SPM control schemes available 

in the literature are designed for Phase-II monitoring. 

 

 

1.3 Problem Statement 

 

 

 The world nowadays is more complicated and advanced as compared to 

the old-time. This undeniably increases the difficulty of fitting any data with 

statistical probability distributions. To this end, the reliability and suitability of 

the parametric SPM-type schemes significantly deteriorate due to the violation 

of assumption(s) (Qiu and Li, 2011). This indirectly increases the demand for 

the NSPM-type scheme, which acts as complementary to the weakness of the 

SPM-type scheme. However, one may notice that the development of the 

NSPM-type schemes, especially the two-parameter joint monitoring schemes, 

only active since twenty-tens, which causes the available literature to be very 

limited. 
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 Further, one may notice that the available literature in modifying and 

improving memory-type schemes mainly focused on the traditional CUSUM- 

and EWMA-type. However, some researchers, such as Zhang and Chen (2005), 

Abbas (2018), among others, found that the DEWMA- and HWMA-type 

schemes have a better performance than the well-known CUSUM- and EWMA-

type schemes, especially in detecting a small to moderate shift. Nevertheless, 

the literature on the development of the DEWMA- and the newly-born HWMA-

type schemes, especially the NSPM-type joint monitoring of these schemes, are 

bounded. This indirectly indicates that there are still many research 

opportunities that have not been explored in modifying and improving the 

DEWMA- and HWMA-type schemes. 

 

 

1.4 Objectives of the Research 

 

 

 The main objective of this dissertation is to develop two new Phase-II 

distribution-free memory-type control schemes that can jointly monitor both the 

location and scale parameters of a process based on the Lepage statistic, namely 

the DEWMA-Lepage (𝐷𝐿) and HWMA-Lepage (𝐻𝐿) schemes. 

 

 

 Then, the specific objectives are shown in the following: 

1. To derive the time-varying 𝑈𝐶𝐿 for the proposed 𝐷𝐿 and 𝐻𝐿 schemes, 

and provide some charting constants of the schemes in order to ease 

quality practitioners when implementing the schemes. 

2. To compare the 𝐼𝐶 performances of the two proposed control schemes 

with the existing memoryless Shewhart-Lepage (𝑆𝐿) schemes and 
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memory-type EWMA-Lepage (𝐸𝐿), in terms of 𝐴𝑅𝐿0, 𝐼𝐶-standard 

deviation of 𝑅𝐿 (𝑆𝐷𝑅𝐿), denoted as 𝑆𝐷𝑅𝐿0, some 𝐼𝐶-percentiles (5th, 

25th, 50th, 75th, and 95th percentiles) of the 𝑅𝐿, and the false alarm rate 

(FAR). 

3. To compare the 𝑂𝑂𝐶 performance of the two proposed control schemes 

with the existing 𝑆𝐿 and 𝐸𝐿 schemes, in terms of 𝑂𝑂𝐶-𝐴𝑅𝐿 (𝐴𝑅𝐿1) and 

𝑂𝑂𝐶-𝑆𝐷𝑅𝐿 (𝑆𝐷𝑅𝐿1). 

4. To evaluate the performance of the two proposed control schemes with 

the existing 𝑆𝐿 and 𝐸𝐿 schemes in a specific range of shift sizes by 

assessing their expected 𝐴𝑅𝐿 (𝐸𝐴𝑅𝐿) values. 

5. To apply the existing 𝑆𝐿, 𝐸𝐿, and the two proposed schemes using e-

commerce real data in detecting 𝑂𝑂𝐶 signal(s). 

 

 

1.5 Significance of the Research 

 

 

 The majority of the existing NSPM-type joint monitoring schemes, 

especially the Lepage-type schemes, are memoryless Shewhart type, which has 

a weaker ability to detect a small to moderate shift in a process. Although more 

research is done recently on the memory-type Lepage scheme, only the well-

known CUSUM- and EWMA-type schemes are being considered. However, 

one should admit the fact that the development of memory-type control schemes 

is vigorous and never-ending. Prior to this dissertation, there is no other 

memory-type Lepage scheme, except the CUSUM- and EWMA-type, in the 

literature. Hence, this dissertation attempts to fill this research gap by 

developing two new memory-type Lepage schemes by capitalising on the 
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beauty of DEWMA- and HWMA-type schemes. To this end, the novel 𝐷𝐿 and 

𝐻𝐿 schemes are proposed. 

 

 

 The best selling point of the proposed schemes in this research is the 

ability in detecting a small to moderate 𝑂𝑂𝐶 disturbance of a process that 

appears as faster than the existing memoryless 𝑆𝐿 scheme as well as the 

memory-type 𝐸𝐿 scheme. Hence, a hastier detection of an 𝑂𝑂𝐶 process leads 

to minimising scraps and reworks, yielding high-quality products. In turn, cost 

and time are saved, and most importantly, consumers feel more confident with 

the quality of products or services purchased. In other words, the proposed 

schemes can help maintain and sustain the success of an organisation. 

 

 

 One of the main differences between memory- and memoryless-type 

control schemes is the types of control limit. For instance, a memoryless 

Shewhart-type scheme only has a steady-state control limit. On the other hand, 

any memory-type scheme can have either steady-state or actual time-varying 

control limits. To this end, in this dissertation, the time-varying 𝑈𝐶𝐿 of the 

proposed 𝐷𝐿 and 𝐻𝐿 schemes are derived using a theoretical approach. Further, 

the estimated value of the two important components in obtaining the time-

varying control limit, i.e., the conditional mean and conditional variance of the 

Lepage statistic, are included in this dissertation. This enables quality 

practitioners to develop other memory-type Lepage schemes more 

conveniently, which will significantly enhance the development of the NSPM-

type schemes in the future. 

 

 



 

14 

 Furthermore, a step-by-step charting procedure for the proposed 

schemes is also included in order to ease quality practitioners to employ these 

schemes. Thereafter, some charting constants to implement the schemes for 

some common nominal 𝐴𝑅𝐿0 are also tabulated to grant quality practitioners to 

execute these schemes efficiently. Next, the effects of selection of different 

parameters, such as the size of the Phase-I sample (𝑚), size of the Phase-II 

sample (𝑛), and smoothing parameter for the memory-type 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 

schemes (𝜆) are examined, in terms of their 𝐼𝐶 and 𝑂𝑂𝐶 performances. Also, 

the proposed 𝐷𝐿 and 𝐻𝐿 are compared with the existing 𝑆𝐿 and 𝐸𝐿 schemes. 

From the Monte-Carlo simulation study, the results showed that the proposed 

schemes, particularly the 𝐷𝐿 scheme, outperforms and superior to both the 𝑆𝐿 

and 𝐸𝐿 schemes, especially in detecting a small to moderate shift in the process. 

Finally, the implementation of the proposed schemes is illustrated on a real 

dataset; precisely, the schemes are used in monitoring the e-commerce activity, 

i.e., online shoppers’ intentions. 
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1.6 Flowchart of the Research Methodology 
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1.7 Organisation of the Dissertation 

 

 
 The basic idea of SPM and the control scheme are briefly presented in 

Chapter 1. Also, this chapter discusses the problem statement, objectives, 

significance, and the research methodology of this research. In Chapter 2, the 

literature review of the development of the parametric SPM- and NSPM-type 

schemes are discussed in detail. For instance, the development of the parametric 

SPM-type scheme from monitoring a single parameter to joint monitoring two 

parameters is firstly introduced in this chapter. Then, the literature review on 

EWMA-, DEWMA-, and HWMA-type schemes are also explored. It follows 

with the discussion on the development of the NSPM-type schemes, ranging 

from single-parameter monitoring schemes to two-parameter joint monitoring 

schemes. Lastly, this chapter reveals the development of the distribution-free 

Lepage-type scheme, which is able to joint monitor both the location and scale 

parameters of a process, particularly the existing 𝑆𝐿 and 𝐸𝐿 schemes. 

 

 

 Chapter 3 illustrates the step-by-step charting procedure to implement 

the proposed 𝐷𝐿 and 𝐻𝐿 schemes. In addition, the derivation of their time-

varying 𝑈𝐶𝐿s is also scrutinised. Next, the method of determination of both the 

time-varying and steady-state 𝑈𝐶𝐿s for all the schemes, i.e., the standard 

searching algorithm to ensure that the nominal 𝐴𝑅𝐿0 is attained, is explained. 

With this, the Monte-Carlo simulation is also explained. Lastly, all the 𝑅𝐿 

metrics used to evaluate the performance of a scheme are also studied. 
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 In Chapter 4, the 𝐼𝐶 performance of the proposed 𝐷𝐿 and 𝐻𝐿 schemes 

are studied and compared with the existing memoryless 𝑆𝐿 and memory-type 

𝐸𝐿 schemes. Here, 𝐴𝑅𝐿0, 𝑆𝐷𝑅𝐿0, and some 𝐼𝐶-percentiles (5th, 25th, 50th, 

75th, and 95th) of the 𝑅𝐿 are employed as the indicators for the comparison 

study. Next, all the schemes are also compared by their 𝑂𝑂𝐶 performance at 

micro and macro levels under three different underlying statistical distributions, 

i.e., Normal, Laplace, and Shifted Exponential distributions. For instance, 𝐴𝑅𝐿1 

and 𝑆𝐷𝑅𝐿1 are used for the 𝑂𝑂𝐶 comparison study at the micro level, while the 

𝐸𝐴𝑅𝐿 is the indicator for 𝑂𝑂𝐶 comparison study when a specific range of shift 

sizes is considered at the macro level. Lastly, this chapter presents an illustrative 

example of implementing the proposed schemes using actual data obtained from 

the Kaggle website. Precisely, the dataset explained the online shoppers’ 

intentions, where the schemes are employed to monitor e-commerce activity. 

 

 

 Last but not least, the foremost contributions of this research are 

summarised in Chapter 5. Further, Chapter 5 also presents the limitations of this 

research along with some ideas, recommendations, and directions for future 

research. Some important lemma for the derivation of the time-varying 𝑈𝐶𝐿 for 

the 𝐷𝐿 scheme and numerous programs written in the R programming software 

are provided in Appendix A and Appendix B, respectively. 
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CHAPTER 2 

 

 
LITERATURE REVIEW 

 

 

 

 

2.1 Introduction 

 

 

 In this chapter, the relevant literature that is essential for this research is 

reviewed. Yang et al. (2012) mentioned that there exists a big gap between the 

research field and the actual industrial application of SPM. For instance, the 

most fundamental and traditional Shewhart �̅� scheme is still broadly used in the 

manufacturing industries nowadays to monitor the process mean, even though 

more advanced computer systems and more efficient control schemes are 

available. Although the application of SPM in the industrial sector appears to 

be not up-to-date, at least this indicates that SPM is still widely used in the 

industrial field to help improve the quality of a product. However, it is 

insufficient only to monitor the process mean of a process to determine the 

process stability. Hence, the development of the parametric SPM-type joint 

monitoring schemes is discussed in Section 2.2. 

 

 

 Besides, one knows that the Shewhart �̅� scheme is comparatively 

insensitive than the memory-type schemes towards small to moderate shifts in 

the process mean. To this end, some significant researches on selected memory-

type parametric SPM-type schemes are discussed in this chapter. This includes 

the EWMA-, DEWMA-, and HWMA-type schemes, respectively, studied in 

Sections 2.3, 2.4, and 2.5. 
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 The major weakness of those parametric SPM-type schemes is the 

underlying process distribution is assumed to follow some theoretical 

probability distribution, such as the normal distribution. However, this 

assumption is not always valid in real life. As mentioned in the previous chapter, 

the parametric SPM-type scheme is unreliable if any assumptions are breached. 

Therefore, Section 2.6 reveals the development of the NSPM-type schemes 

from single-parameter monitoring to two-parameter joint monitoring. 

 

 

 In recent decades, the joint monitoring NSPM-type schemes receive 

growing attention among researchers. Among them, the Lepage-type scheme is 

the most famous. Therefore, the development of the Lepage-type scheme and 

the fundamental of the Lepage statistic are reviewed in Sections 2.7 and 2.8, 

respectively. Lastly, some existing Lepage-type schemes, i.e., the 𝑆𝐿 and 𝐸𝐿 

schemes, are discussed in Section 2.9. 

 

 

2.2 Development of the Parametric SPM-Type Joint Monitoring 

 Scheme 

 

 

 Researchers and quality practitioners knew that it is not convincing to 

conclude that a particular process is statistically 𝐼𝐶 or 𝑂𝑂𝐶 by just monitoring 

the process location, i.e., the mean under a parametric set-up. Therefore, in the 

early days of SPM, practitioners used two individual and separate schemes 

(called two-charts joint monitoring scheme, abbreviated as TC-JM scheme 

hereafter). For instance, when the underlying process distribution is normally 

distributed, �̅� scheme is used to monitor the process mean, while 𝑆 or 𝑅 scheme 

monitors the process variance. With such, the Shewhart �̅� & 𝑅 and �̅� & 𝑆 are 
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the two most well-known TC-JM schemes. Nevertheless, a TC-JM scheme may 

be a combination of any Shewhart-, EWMA-, or CUSUM-type. For example, 

one may use EWMA-�̅� and Shewhart-𝑆 to monitor the mean and variance of a 

process, respectively. 

 

 

 The TC-JM scheme has been popular in the industry for many years 

because it seems intrinsic to some quality practitioners. Further, the �̅� and 𝑆 

statistics are stochastically independent. However, the TC-JM scheme costs 

more time, personnel, and resource than a single charting scheme (Cheng and 

Thaga, 2006). Hawkins and Deng (2009) mentioned that the control limits of 

the �̅� scheme are functions of 𝑆𝐷𝑅𝐿0. Hence, a false signal may be seen on the 

�̅� scheme when the variability increases, and vice versa. Also, a TC-JM scheme, 

such as the �̅� & 𝑅 and �̅� & 𝑆 schemes ignore the relationship between the 

process mean and process variance. Moreover, the fact is, one can never neglect 

the tendency that a bi-aspect phenomenon, i.e., a simultaneous shift in the mean 

and variance, occur. It is discriminatory to deal with a bivariate case by using 

two marginals. 

 

 

 To this end, a combined charting method (called one-chart joint 

monitoring scheme, termed as OC-JM scheme hereafter) is proposed in the 20th 

century, in order to deal with this weakness. The two prominent OC-JM 

schemes are the max- and distance-type schemes, respectively, introduced by 

Chen and Cheng (1998) and Ramzy (2005). Again, both of these schemes 

assume that the process follows a normal distribution. For instance, the plotting 

statistic of a max-type scheme is the maximum value of the absolute values of 
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two normalised statistics, where one for the mean and one for the variance, i.e., 

the 𝑖th plotting statistic of a max-type scheme, 𝑀𝑖, is defined as 

𝑀𝑖 = max (|
�̅�𝑖−𝜇

𝜎 √𝑛𝑖⁄
| , |Φ−1 {𝐹 [

(𝑛𝑖−1)𝑆𝑖
2

𝜎2
;   𝑛𝑖 − 1]}|), (2.1) 

where 𝐹(𝑤; 𝑣) is the cumulative distribution function (𝐶𝐷𝐹) of a chi-square 

distribution with 𝑣 degrees of freedom, 𝑛𝑖 is the size of the 𝑖th sample, and 

Φ−1{. } is the inverse 𝐶𝐷𝐹 of a standard normal distribution. 

 

 

 The main strength of the OC-JM scheme is it is more straightforward 

than the TC-JM scheme because only a single plotting statistic is required. Most 

of these schemes available in the literature are categorised as the “Case K” 

schemes because all the relevant process parameters are standard known. 

Nevertheless, the assumption of “Case K” is not practical because there exist 

some parameters that are unknown and unspecified. To this end, “Case U” 

schemes, where the relevant parameters are standard unknown, are developed. 

 

 

 For the “Case U” scheme, even the underlying process distribution is 

known, the estimation of the parameters, such as the mean and variance, 

depends statistically on the data. On top of that, the construction of the trial 

control limits also depends on the data. All these factors leading a “Case U” 

scheme is more challenging (see, for example, Chakraborti et al., 2009). There 

are a few “Case U” schemes for joint monitoring that are available in the 

literature. For instance, McCracken et al. (2013) revised the previous works in 

order to monitor a normally distributed process when both the mean and 

variance are unknown. Besides, Yeh et al. (2004) considered a pair of CUSUM 
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mean and variance statistics, which is computed from some suitable functions 

of �̅� and 𝑆, then probability integral transformation is applied. 

 

 

 Besides the normal distribution, parametric SPM-type joint monitoring 

for the shifted exponential distribution also received growing attention among 

researchers. This is because the shifted exponential distribution plays an 

essential role in time-to-event modelling for reliability and life testing. For 

instance, this distribution is very functional in predicting light bulbs’ life span 

or cancer patients’ life expectancy (Basu, 1971). Noting the importance of this 

distribution, Mukherjee et al. (2015) developed Case K control schemes to 

jointly monitor a shifted exponential distribution parameters. Then, a Case U 

joint monitoring scheme for the two unknown parameters was introduced by 

Chong et al. (2021) recently. 

 

 

2.3 Development of the Parametric Exponentially Weighted Moving 

 Average (EWMA)-Type Scheme 

 

 

 For most cases, particularly in practical applications, the memory-type 

schemes have a better performance than the memoryless Shewhart-type scheme, 

especially in detecting small to moderate shifts in a process. To this end, an 

EWMA-type scheme was proposed by Roberts (1959), which can be used to 

monitor and control a statistical process. An EWMA-type scheme assigns a 

weight to the current observation, while the weight decreases exponentially as 

the observation becomes older. For instance, the 𝑖th plotting statistic of an 

EWMA �̅� scheme, 𝐸𝑖, is defined as 
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𝐸𝑖 = 𝜆�̅�𝑖 + (1 − 𝜆)𝐸𝑖−1, (2.2) 

where 𝜆 ∈ (0, 1] is the smoothing parameter of an EWMA-type scheme. A 

small value of 𝜆 is preferred for the EWMA-type scheme to monitor a small 

disturbance in the process and vice versa. 

 

 

 Since then, a bundle of extension works on the EWMA-type scheme was 

done. For instance, Crowder (1987) employed the integral equation to evaluate 

the statistical properties of an EWMA-type scheme in monitoring the shift of 

the process mean. Unlike Crowder (1987), Lucas and Saccucci (1990) used the 

Markov Chain method to evaluate the performance of the EWMA-type scheme. 

On top of that, Lucas and Saccucci (1990) did a comparison study between 

EWMA- and CUSUM-type schemes. They concluded that both schemes have 

nearly the same performance. 

 

 

 The traditional EWMA-type scheme is a two-sided scheme because it 

has two control limits, i.e., 𝐿𝐶𝐿 and 𝑈𝐶𝐿, where this type of EWMA-type 

scheme is studied extensively in the literature. However, the weakness of this 

scheme is it might suffer from the inertial effect if the EWMA plotting statistic 

is distant from the centre line and it is in the opposite direction just before there 

is a process mean shift (Woodall and Mahmoud, 2005). The inertial effect 

happens as the EWMA-type scheme takes several periods to react to the process 

shift (Montgomery, 2019). The consequence of this problem is an 𝑂𝑂𝐶 signal 

may be delayed if the value of 𝜆 is small. This is because a small value of 𝜆 

indicates that the current observation has a small weight. Therefore, the 

performance of an EWMA-type scheme deteriorates caused by the inertial 
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issue. To this end, Lucas and Saccucci (1990) recommended a combined 

Shewhart-EWMA-type scheme, i.e., the Shewhart-type control limit is added to 

the EWMA-type scheme, in order to curb the inertial effect. 

 

 

 Except for the combined Shewhart-EWMA-type scheme, many more 

schemes are developed to alleviate the inertial effect of an EWMA-type scheme. 

For instance, Capizzi and Masarotto (2003) designed an adaptive EWMA 

(AEWMA)-type scheme, i.e., a combined Shewhart-EWMA-type scheme with 

a variable smoothing parameter. Therefore, the AEWMA-type scheme can 

detect all types of shifts in the process, ranging from small to large, and the 

impact of the inertial issue is reduced. Besides, an improved one-sided EWMA 

�̅� scheme was proposed by Shu et al. (2007), which is beneficial for the 

industrial sector, such as milling operations or hole-finishing. The proposed 

scheme is useful when the cost of quality incurred is distinct, such as the cost 

of oversized quality characteristics is different from that of undersized. 

 

 

 Since then, more adaptive strategies, such as the variable sampling 

interval (VSI) and variable sample size (VSS) are adopted in the EWMA-type 

scheme. These adaptive features can improve the sensitivity and effectiveness 

of an EWMA-type scheme in detecting a process shift. For example, Saccucci 

et al. (1992) developed a VSI-EWMA �̅� scheme, where the sampling interval 

is varied and depends on the present plotting statistic. They showed that the 

proposed scheme is better and more efficient than the traditional EWMA-type 

scheme with a fixed sampling interval. On the other hand, Amiri et al. (2014) 

designed a novel VSS-EWMA �̅� scheme to monitor the process mean, where 
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the sample size is determined using an integer linear function. They showed that 

this proposed scheme is superior to the traditional EWMA- and VSS-EWMA-

type schemes. Besides, an optimal VSS-EWMA 𝑆2 scheme to monitor the 

process dispersion was developed by Castagliola et al. (2008). They found that 

the proposed scheme outperforms the EWMA 𝑆2 scheme with a fixed sample 

size. 

 

 

2.4 Development of the Parametric Double EWMA (DEWMA)-Type 

 Scheme 

 

 

 Shamma and Shamma (1992) first conceptualised the DEWMA-type 

scheme, which is an extension of the ideas of the fundamental EWMA-type 

scheme. With such, the 𝑖th DEWMA �̅� plotting statistic, termed as 𝐷𝑖, is defined 

as 

𝐷𝑖 = 𝜆𝐸𝑖 + (1 − 𝜆)𝐷𝑖−1, (2.3) 

where 0 < 𝜆 ≤ 1 is the smoothing parameter of the DEWMA-type scheme and 

𝐸𝑖 statistic is computed by using Equation (2.2). They showed that the 

DEWMA-type scheme is able to predict a disturbance in the process mean, 

which is as good as the EWMA-type scheme. Besides, in terms of detecting a 

small to moderate shift in the process mean, the DEWMA-type scheme is 

superior to the Shewhart-type scheme. 

 

 

 Different from Shamma and Shamma (1992), a variant of the DEWMA-

type scheme with distinct smoothing parameters is designed by Zhang and Chen 

(2005). For instance, the 𝑖th EWMA and DEWMA �̅� plotting statistics, 𝑦𝑖 and 

𝑧𝑖, respectively, defined by Zhang and Chen (2005) are 
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𝑦𝑖 = 𝜆1�̅�𝑖 + (1 − 𝜆1)𝑦𝑖−1 (2.4) 

and  

𝑧𝑖 = 𝜆2𝑦𝑖 + (1 − 𝜆2)𝑧𝑖−1, (2.5) 

where 𝜆1 ∈ (0, 1] and 𝜆2 ∈ (0, 1] are, respectively, the smoothing parameters 

of the EWMA �̅� and DEWMA �̅� schemes. Therefore, it is evident that the 

DEWMA-type scheme proposed by Shamma and Shamma (1992) is a special 

case of the DEWMA-type scheme proposed by Zhang and Chen (2005), i.e., 

when 𝜆1 = 𝜆2 = 𝜆. It is worth mentioning that Zhang and Chen (2005) 

concluded that the performance of the DEWMA-type scheme in detecting a 

small shift in the process mean is better than the EWMA-type scheme. 

 

 

 Thenceforth, a host of researches were done to improve the DEWMA-

type scheme, especially the DEWMA-type scheme developed by Shamma and 

Shamma (1992) due to its simplicity compared to the scheme presented by 

Zhang and Chen (2005). Most of the new DEWMA-type schemes proposed are 

also compared with their counterpart of the EWMA-type scheme. For instance, 

Khoo et al. (2010) presented a single Max-DEWMA scheme, where the plotting 

statistic of the scheme is the maximum of the absolute values of two DEWMA 

statistics (one for the mean and variance, respectively). They showed that the 

Max-DEWMA scheme has a better performance than its counterpart, i.e., the 

Max-EWMA scheme, in terms of small to moderate shifts in the location and/or 

scale parameters of a process. 

 

 

 Most of the researches done on the EWMA- and DEWMA-type schemes 

have a normality assumption, where it is not always true. Hence, Borror et al. 
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(1999) studied the performance of an EWMA-type scheme under some skewed 

distributions. They concluded that the 𝐴𝑅𝐿 performance of an EWMA-type 

scheme is robust towards non-normality. This finding motivated Alkahtani 

(2013) to study the robustness of a DEWMA-type scheme towards non-

normality. Alkahtani (2013) showed that a DEWMA-type scheme outperforms, 

i.e., has a lower 𝐴𝑅𝐿1, compared to the EWMA-type scheme if the underlying 

process distribution is skewed. Further, the author also found that the robustness 

of the DEWMA-type scheme towards non-normality has a positive relationship 

with the value of the smoothing parameter. 

 

 

 Similar to parametric SPM-type schemes, the development of the 

parametric DEWMA-type scheme is not only limited to the normal distribution, 

but different kinds of the statistical probability distribution are explored. This 

includes the DEWMA-type scheme to monitor Poisson data presented by Zhang 

et al. (2003). The results showed that the Poisson-DEWMA scheme detects an 

𝑂𝑂𝐶 signal faster than the Poisson-EWMA scheme. Particularly, the Poisson-

DEWMA scheme is more sensitive than the Poisson-EWMA scheme in terms 

of identifying a small downward shift in the process mean. 

 

 

 Recently, a DEWMA-type scheme to monitor a process that follows a 

zero-inflated Poisson (ZIP) distribution, abbreviated as the ZIP-DEWMA 

scheme, was proposed by Alevizakos and Koukouvinos (2020). Similarly, the 

proposed scheme was then compared with its counterpart, i.e., the ZIP-EWMA 

scheme. The results found that the ZIP-DEWMA scheme performs better in 
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detecting a small shift in the process, while the ZIP-EWMA scheme is superior 

in detecting a moderate to large shift in the process. 

 

 

 Further, Haq et al. (2020) proposed a novel DEWMA-type scheme to 

monitor the process mean. The proposed scheme is named the DEWMA-𝑡 

scheme because the plotting statistic of the scheme follows a Student’s 𝑡 

distribution. They found that the proposed scheme is uniformly and 

substantially outperforms the EWMA-𝑡 scheme counterpart, regardless of the 

types of shifts in the process mean. 

 

 

2.5 Development of the Parametric Homogeneously Weighted Moving 

 Average (HWMA)-Type Scheme 

 

 

 With a different weighting design as the traditional EWMA- and 

DEWMA-type schemes, Abbas (2018) originated a new process monitoring 

scheme named the HWMA-type scheme recently. To be precise, the HWMA-

type scheme assigns a predetermined weight to the current observation, and then 

all the previous observations are equally important, such that the remaining 

weight is divided fairly to them. For instance, the HWMA �̅� scheme has the 𝑖th 

plotting statistic, 𝐻𝑖, which is defined as 

𝐻𝑖 = 𝜆�̅�𝑖 + (
1−𝜆

𝑖−1
) [�̅�𝑖−1 + �̅�𝑖−2 +⋯+ �̅�2 + �̅�1], (2.6) 

where 𝜆 ∈ (0, 1] is the smoothing parameter of the HWMA-type scheme. For 

the special case, when 𝑖 = 1, the plotting statistic of the HWMA �̅� scheme is 

𝐻1 = 𝜆�̅�1 + (1 − 𝜆)�̅�0. The author proved that the latest HWMA-type scheme 
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is superior to other memory-type schemes in most kinds of shifts in the process 

mean, including the well-known EWMA-type scheme. 

 

 

 Thenceforward, some researchers turn their focus to this novel and 

interesting idea. To this end, there are a few advanced HWMA-type schemes 

available in the literature. For instance, an auxiliary HWMA-type scheme to 

monitor the process mean was presented by Adegoke et al. (2019). The 

proposed scheme employs both the quality characteristic monitored and its 

auxiliary variables under a regression estimator. The estimate of the process 

mean obtained by this method is more efficient and unbiased. The results 

showed that the proposed scheme has an outstanding performance in detecting 

a small shift in the process mean compared to some existing memory-type 

schemes, including the HWMA-type scheme. However, they found that the 

proposed scheme is less sensitive to non-normality. 

 

 

 Besides, Adeoti and Koleoso (2020) proposed a new hybrid HWMA-

type scheme, where the hybrid HWMA-type scheme is obtained by 

implementing the HWMA concept on the HWMA statistic. Precisely, let the 𝑖th 

plotting statistics of the HWMA �̅� and hybrid HWMA �̅�, denoted as 𝑦𝑖 and 𝑧𝑖 

be defined as 

𝑦𝑖 = 𝜆1�̅�𝑖 + (
1−𝜆1

𝑖−1
) [�̅�𝑖−1 + �̅�𝑖−2 +⋯+ �̅�2 + �̅�1]  (2.7) 

and  

𝑧𝑖 = 𝜆2𝑦𝑖 + (
1−𝜆2

𝑖−1
) [𝑦𝑖−1 + 𝑦𝑖−2 +⋯+ 𝑦2 + 𝑦1], (2.8) 

where 𝜆1 ∈ (0, 1] and 𝜆2 ∈ (0, 1], are respectively, the smoothing parameters 

of the HWMA �̅� and hybrid HWMA �̅� schemes. The results proved that the 
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proposed hybrid HWMA-type scheme is superior to some existing memory-

type schemes in most situations. 

 

 

 Slightly different from Adeoti and Koleoso (2020), a double HWMA-

type scheme was proposed by Abid et al. (2020), with the 𝑖th plotting statistic, 

𝐷𝐻𝑖, is defined as 

𝐷𝐻𝑖 = 𝜆2�̅�𝑖 + (
1−𝜆2

𝑖−1
) [�̅�𝑖−1 + �̅�𝑖−2 +⋯+ �̅�2 + �̅�1], (2.9) 

where 0 < 𝜆 ≤ 1 is the smoothing parameter of the double HWMA �̅� scheme. 

The results showed that the proposed scheme performs efficiently for various 

shifts and dominates some well-known memory-type schemes. Other than 

monitor the process mean, monitoring the process dispersion is also of utmost 

importance. To this end, Riaz et al. (2020) developed an HWMA-type scheme 

to monitor a small shift in the process dispersion. From the results, it is 

concluded that the proposed scheme outperforms its competitors. 

 

 

2.6 Development of the Nonparametric SPM (NSPM)-Type Scheme 

 

 

 All of the schemes discussed earlier in this chapter, and the majority of 

the available literature, are focused on the parametric SPM-type scheme. The 

selling point of a parametric SPM-type scheme is that the underlying process 

distribution is known, and therefore it is easy to develop. At the same time, this 

is also the main weakness of a parametric SPM-type scheme. This is because a 

parametric SPM-type scheme is no longer reliable and convincible if the 

underlying process distribution does not follow the assumption. Hence, an 

NSPM-type scheme acts as a remedy to overcome this issue because the 
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underlying process needs not follow a specific probability distribution for an 

NSPM-type scheme. 

 

 

2.6.1 Single-Parameter NSPM-Type Scheme 

 

 

 In the early stage of the development of the NSPM-type scheme, 

research is done on developing NSPM-type schemes that can only monitor a 

single parameter of a process, especially the location parameter. For instance, 

the 𝑊𝑆𝑅 statistic, which is one of the famous nonparametric statistics used to 

monitor the location parameter, is embedded in the NSPM-type schemes. Some 

of the 𝑊𝑆𝑅 statistic related NSPM-type schemes include the CUSUM-, 

EWMA-, and Shewhart-type, presented by Bakir and Reynolds (1979), Amin 

and Searcy (1991), and Bakir (2004), respectively. Other than the 𝑊𝑆𝑅 statistic, 

the sign statistic was also embedded in the NSPM-type schemes, such as the 

Shewhart- and CUSUM-type schemes proposed by Amin et al. (1995). 

 

 

 The research field of NSPM-type schemes continues to grow rapidly, 

especially in the twenty-tens. Hence, more new and advanced NSPM-type 

schemes have been added to the literature. These include the distribution-free 

CUSUM- and EWMA-type schemes based on the Wilcoxon rank-sum (𝑊𝑅𝑆) 

statistic developed by Li et al. (2010). Besides, a nonparametric change-point 

scheme based on the Mann-Whitney (𝑀𝑊) statistic was introduced by Hawkins 

and Deng (2010). Further, Mukherjee et al. (2013) designed a distribution-free 

CUSUM-type scheme based on the exceedance statistic. To this end, there are 

a few works of literature that present the overall review of the distribution-free 
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Shewhart-, CUSUM-, and EWMA-type schemes that are used to monitor a 

single parameter, such as Chakraborti et al. (2001; 2011). 

 

 

 One may notice that most of the literature regarding the NSPM-type 

scheme is the famous memoryless Shewhart-type or memory-type CUSUM- 

and EWMA-type schemes. Therefore, the literature on the NSPM DEWMA- 

and especially the HWMA-type schemes are currently very limited. Some of 

the available NSPM DEWMA-type schemes include the nonparametric 

DEWMA scheme using a transformed random variable to monitor the location 

parameter proposed by Riaz and Abbasi (2016). Recently, NSPM DEWMA-

type schemes to monitor the process location using the 𝑊𝑆𝑅 and 𝑊𝑅𝑆 statistics 

were, respectively, presented by Raza et al. (2020a) and Malela-Majika (2020). 

Apart from the NSPM DEWMA-type scheme, two NSPM HWMA-type 

schemes based on the sign and 𝑊𝑆𝑅 statistics were proposed by Raza et al. 

(2020b). 

 

 

2.6.2 Two-Parameter Joint NSPM-Type Scheme 

 

 

 Similar to the SPM-type scheme, it is also insufficient to conclude the 

stability of a process by just monitoring the process location using an NSPM-

type scheme. To this end, the two-parameter joint NSPM-type scheme attracts 

the researchers’ attention. For instance, an NSPM EWMA-type scheme based 

on the goodness-of-fit (𝐺𝑂𝐹) test was proposed by Zou and Tsung (2010). The 

results showed that the scheme effectively detects shifts in the location, scale, 

and shape parameters of a process. 
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 Apart from the 𝐺𝑂𝐹 test, Mukherjee and Chakraborti (2012) employed 

the famous nonparametric statistic for the location-scale test, i.e., the Lepage 

(1971) statistic in the Shewhart-type scheme, termed as the 𝑆𝐿 scheme. Two 

years later, Chowdhury et al. (2014) embedded another well-known 

distribution-free statistic that can jointly monitor the location and scale 

parameters, but with a simpler expression, i.e., the Cucconi (1968) statistic in 

the Shewhart-type scheme, named as the Shewhart-Cucconi (𝑆𝐶) scheme. Since 

then, the two-parameter joint NSPM-type schemes, particularly the Lepage- and 

Cucconi-type schemes, continue to grow at a rapid pace. 

 

 

 Comparatively, the Lepage-type schemes receive more attention from 

researchers than the Cucconi-type schemes. Moreover, two novel Lepage-type 

schemes will be proposed in this dissertation. To this end, the development of 

some related Lepage-type schemes will be discussed in-depth in the next few 

sections. On the other hand, since the 𝑆𝐶 scheme proposed by Chowdhury et al. 

(2014), there are a few Phase-II Cucconi-type schemes introduced and available 

in the literature. For instance, Mukherjee and Marozzi (2017a) presented a 

CUSUM-type scheme based on the Cucconi statistic, termed as the CUSUM-

Cucconi (𝐶𝐶) scheme. Further, an EWMA-type scheme by employing the 

Cucconi statistic, i.e., the EWMA-Cucconi (𝐸𝐶) scheme, was developed by 

Xiang et al. (2019). Recently, Song et al. (2020b) modified the 𝑆𝐶 scheme 

proposed by Chowdhury et al. (2014), and they presented a one-sided 𝑆𝐶 

scheme. Other than the Phase-II Cucconi-type schemes, Li et al. (2020) 

developed a Phase-I scheme using multi-sample Cucconi statistic. 
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 Other than the Lepage- and Cucconi-type distribution-free schemes, 

Zhang et al. (2017) developed a novel NSPM-type scheme based on the Cramér-

von Mises (𝐶𝑣𝑀) test. Precisely, they embedded the test in the EWMA-type 

scheme so that the proposed scheme can be used to monitor the location and 

scale parameters of a process jointly. Recently, Song et al. (2020a) studied and 

compared the performance of various kinds of two-parameter joint NSPM 

EWMA-type schemes, which include the Lepage-, Cucconi-, 𝐶𝑣𝑀-, and 

Kolmogorov-Smirnov (𝐾𝑆)-type schemes. Further, they also proposed the 

component-wise Lepage- and Cucconi-type schemes, i.e., the Lepage and 

Cucconi statistics are decomposed into two individual statistics, one for the 

location and one for the scale. For the up-to-date overall review of the single-

parameter and two-parameter joint NSPM-type schemes, one may refer to 

Chakraborti and Graham (2019). 

 

 

2.7 Development of the Lepage-Type Scheme 

 

 

 The first nonparametric Lepage-type scheme available in the literature 

is coined by Mukherjee and Chakraborti (2012), i.e., the 𝑆𝐿 scheme. Precisely, 

they embedded the Lepage (1971) statistic, which is a quadratic combination of 

the standardised 𝑊𝑅𝑆 and standardised Ansari-Bradley (𝐴𝐵) statistics, i.e., to 

test the location and scale parameters, respectively, in the traditional Shewhart-

type scheme. Further, the 𝑆𝐿 scheme has a post-signal diagnostic process, which 

can determine the nature of the shift easily. 
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 Since then, various explorations on the NSPM Lepage-type scheme are 

introduced in the literature. For instance, the memoryless 𝑆𝐿 scheme is extended 

to various memory-type schemes, such as the CUSUM- and EWMA-type, i.e., 

the CUSUM-Lepage (𝐶𝐿) and 𝐸𝐿 schemes, proposed by Chowdhury et al. 

(2015) and Mukherjee (2017), respectively. The 𝐶𝐿 scheme presented by 

Chowdhury et al. (2015) uses a steady-state 𝑈𝐶𝐿, and it is shown that the 

proposed scheme is superior to the memoryless 𝑆𝐿 scheme and memory-type 

CUSUM-𝐶𝑣𝑀 and CUSUM-𝐾𝑆 schemes. Unlike Chowdhury et al. (2015), 

Mukherjee (2017) studied 𝐸𝐿 scheme with both steady-state and time-varying 

𝑈𝐶𝐿s. The results indicated that the 𝐸𝐿 scheme performs significantly better 

than the 𝑆𝐿 and 𝐶𝐿 schemes in most cases. 

 

 

 Moreover, Mukherjee and Marozzi (2017b) extended the 𝑆𝐿 scheme, 

i.e., from a standard control scheme to a novel circular grid control scheme by 

modifying the Lepage statistic. For instance, the traditional 𝑆𝐿 scheme uses an 

𝑈𝐶𝐿 to identify the stability of a process. As depicted in Figure 2.1, the process 

is considered 𝑂𝑂𝐶 if the plotting statistic is beyond the 𝑈𝐶𝐿, and vice versa. If 

an 𝑂𝑂𝐶 signal is generated, a follow-up procedure is conducted to identify the 

nature of the shift. Comparatively, it is much convenient to identify a shift and 

its nature using the circular-grid modified 𝑆𝐿 scheme. This is because the nature 

of an 𝑂𝑂𝐶 signal can be identified easily from the plotting statistic belongs to, 

without performing any follow-up procedure. 
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Figure 2.1: Graphical Description of A Standard 𝑺𝑳 Scheme 

 

 

 Furthermore, Chong et al. (2017) presented a premier 𝑆𝐿 scheme, and 

precisely it is a Fuzzy 𝑆𝐿 (𝐹𝑆𝐿) scheme, i.e., both the max- and distance-type 

schemes are used simultaneously. The results showed that the 𝐹𝑆𝐿 scheme 

outperforms the 𝑆𝐿 scheme and other competing schemes. Besides, Mukerjee 

and Sen (2018) presented some generalised 𝑆𝐿 schemes using an adaptive 

approach. To be exact, they employed some percentile modifications of ranks, 

or better known as the adaptive Gastwirth Score in their proposed schemes. 

 

 

 One may note that all the aforementioned Lepage-type schemes are 

known as Phase-II schemes. Researchers are also aware that the Phase-I type 

scheme is important in process monitoring. To this end, the first distribution-

free location-scale joint monitoring Phase-I scheme with a single statistic, i.e., 

the multi-sample Lepage statistic, was proposed by Li et al. (2019). The authors 

compared the proposed scheme with some existing Phase-I schemes, and the 

results revealed that the proposed scheme is superior in various cases. 



 

37 

2.8 Statistical Framework and Preliminaries of the Lepage Statistic 

 

 

 Assume that the 𝐶𝐷𝐹s of the Phase-I reference sample 𝑋 and Phase-II 

test sample 𝑌 be 𝐹𝑋 and 𝐹𝑌, respectively. Then, it can be expressed that 𝐹𝑌(𝑦) =

𝐹𝑋 (
𝑥−𝜃

𝛿
), where 𝜃 ∈ (−∞,∞) is the unknown location parameter of a process 

and 𝛿 ∈ (0,∞) is the unknown scale parameter of the process. Hence, it is very 

obvious that when the process is 𝐼𝐶, the unknown location and scale parameters 

are 0 and 1, respectively, i.e., (𝜃, 𝛿) = (0, 1). Otherwise, a process is 𝑂𝑂𝐶 if 

(𝜃, 𝛿) ≠ (0, 1). 

 

 

 Suppose that 𝑋𝑚⃗⃗ ⃗⃗  ⃗ = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} is a random sample collected 

from an 𝐼𝐶 process with size 𝑚, where it is suitable to be employed as a 

reference sample. Then, 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ = {𝑌1𝑖, 𝑌2𝑖 , 𝑌3𝑖, … , 𝑌𝑛𝑖} is the 𝑖th test sample, where 

𝑖 ∈ ℤ+, assembled during the Phase-II monitoring of a process. Next, the 

samples 𝑋𝑚⃗⃗ ⃗⃗  ⃗ and 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ are combined with size 𝑁 = 𝑚 + 𝑛, and all the observations 

in the combined samples are ranked. To this end, let the 𝑛 sample ranks of the 

𝑌 observations corresponding to 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ in the combined samples, be 𝑅1𝑖 ≤ 𝑅2𝑖 ≤

𝑅3𝑖 ≤ ⋯ ≤ 𝑅𝑛𝑖. 

 

 

 Hence, the 𝑊𝑅𝑆 and 𝐴𝐵 statistics corresponding to the 𝑖th test sample 

are defined as 

𝑊𝑅𝑆𝑖 = ∑ 𝑅𝑗𝑖
𝑛
𝑗=1   (2.10) 

and  
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𝐴𝐵𝑖 = ∑ |𝑅𝑗𝑖 −
𝑁+1

2
|𝑛

𝑗=1 , (2.11) 

respectively. When the process is 𝐼𝐶, the mean of the 𝑊𝑅𝑆𝑖 and 𝐴𝐵𝑖 are, 

respectively, defined as 

𝜇𝑊𝑅𝑆 = 𝐸(𝑊𝑅𝑆𝑖|𝐼𝐶) =
𝑛(𝑁+1)

2
  (2.12) 

and  

𝜇𝐴𝐵 = 𝐸(𝐴𝐵𝑖|𝐼𝐶) = {

𝑛(𝑁2−1)

4𝑁
if 𝑁 is odd  

𝑛𝑁

4
if 𝑁 is even

. (2.13) 

In addition, the standard deviations of the 𝑊𝑅𝑆𝑖 and 𝐴𝐵𝑖 in an 𝐼𝐶 state are 

𝜎𝑊𝑅𝑆 = √𝑉𝑎𝑟(𝑊𝑅𝑆𝑖|𝐼𝐶) = √
𝑚𝑛(𝑁+1)

12
  (2.14) 

and  

𝜎𝐴𝐵 = √𝑉𝑎𝑟(𝐴𝐵𝑖|𝐼𝐶) =

{
 

 √
𝑚𝑛(𝑁+1)(𝑁2+3)

48𝑁2
if 𝑁 is odd   

√
𝑚𝑛(𝑁2−4)

48(𝑁−1)
if 𝑁 is even

, (2.15) 

respectively. Therefore, the 𝑖th Lepage statistic, termed as 𝐿𝑖, which is defined 

as the Euclidean distance-based quadratic combination of the standardised 

𝑊𝑅𝑆𝑖 and standardised 𝐴𝐵𝑖, can be expressed as 

𝐿𝑖 = (
𝑊𝑅𝑆𝑖−𝜇𝑊𝑅𝑆

𝜎𝑊𝑅𝑆
)
2

+ (
𝐴𝐵𝑖−𝜇𝐴𝐵

𝜎𝐴𝐵
)
2

. (2.16) 
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2.9 Related Lepage-Type Schemes 

 

 

 In this section, a brief discussion on the implementation procedure of 

two competing Lepage-type scheme is presented. These two existing Lepage-

type schemes will also be studied and compared with the two proposed Lepage-

type schemes in Chapter 4. The two competing Lepage-type schemes include 

the memoryless 𝑆𝐿 and memory-type 𝐸𝐿 schemes. 

 

 

2.9.1 The Shewhart-Lepage (𝑺𝑳) Scheme and Its Implementation 

 

 

 The 𝑆𝐿 scheme is developed with only a single control limit. This is 

because 𝐿𝑖 ≥ 0 by definition. Further, it is known that 𝐸(𝐿𝑖|𝐼𝐶) = 2, where a 

shift in the process might lead to 𝐸(𝐿𝑖|𝐼𝐶) > 2. Thus, an 𝑂𝑂𝐶 signal is 

suspected if the value of 𝐿𝑖 is high. To this end, the 𝑆𝐿 scheme employes an 

upper one-sided monitoring procedure, i.e., an upper control limit (𝑈𝐶𝐿) is 

employed. 

 

 

 The implementing steps of the 𝑆𝐿 scheme are described below. 

Step I. A reference sample with size 𝑚, 𝑋𝑚⃗⃗ ⃗⃗  ⃗ = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} from a 

process that is assumed to be 𝐼𝐶, is collected. 

Step II. The 𝑖th test sample with size 𝑛, 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ = {𝑌1𝑖, 𝑌2𝑖, 𝑌3𝑖 , … , 𝑌𝑛𝑖} is 

collected. 

Step III. The 𝑖th plotting statistic, i.e., the 𝐿𝑖 is computed using Equation 

(2.16). 
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Step IV. The 𝐿𝑖 is plotted against the steady-state 𝑈𝐶𝐿, denoted as Ψ𝑆𝐿. 

Note that the determination of Ψ𝑆𝐿 will be discussed in Section 

3.4. 

Step V. The process is declared 𝐼𝐶 if 𝐿𝑖 < Ψ𝑆𝐿 and the next test sample is 

examined. Otherwise, the process is 𝑂𝑂𝐶 at the 𝑖th test sample and 

assignable cause(s) are investigated. 

Step VI. When the process is 𝑂𝑂𝐶 at the 𝑖th test sample, a follow-up 

procedure is conducted. Here, all the observations in 𝑋𝑚⃗⃗ ⃗⃗  ⃗ are 

treated as the first sample, while all the observations in 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ are 

treated as the second sample. Then, the 𝑝-values for the two-tailed 

𝑊𝑅𝑆 test (𝑝𝑊) for location and two-tailed 𝐴𝐵 test (𝑝𝐴) for scale 

are computed. 

a. If 𝑝𝑊 is significant but 𝑝𝐴 is insignificant, it indicates a 

pure location shift in the process. 

b. If 𝑝𝑊 is insignificant but 𝑝𝐴 is significant, it indicates a 

pure scale shift is in the process. 

c. If 𝑝𝑊 and 𝑝𝐴 are both significant, it indicates a mixed shift 

in the location and scale parameters of the process. 

d. If 𝑝𝑊 and 𝑝𝐴 are both insignificant, it indicates a 

complicated simultaneous shift in the location and scale 

parameters, or it is just a false alarm. 
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2.9.2 The EWMA-Lepage (𝑬𝑳) Scheme and Its Implementation 

 

 

 The 𝐸𝐿 scheme presented by Mukherjee (2017) employed the max-

approach, which has a better performance in reducing the inertial effect 

compared to the traditional set-up. However, the inertial effect is not considered 

in this dissertation since the main objective of this dissertation is to propose two 

new control schemes, and it usually starts from a basic scheme without many 

adaptive features. Thus, the 𝐸𝐿 scheme studied here is not exactly the one 

presented by Mukherjee (2017). On the other hand, the basic and traditional 𝐸𝐿 

scheme, which has a weaker performance if an inertial issue occurred, as 

presented by Chakraborti and Graham (2019) and Song et al. (2020a), is 

considered here. To this end, the 𝑖th plotting statistic of the 𝐸𝐿 scheme is defined 

as 

𝐸𝐿𝑖 = 𝜆𝐿𝑖 + (1 − 𝜆)𝐸𝐿𝑖−1, (2.17) 

where 𝜆 ∈ (0, 1] is the smoothing parameter of the 𝐸𝐿 scheme. 

 

 

 Using the same argument discussed in Section 2.9.1, the 𝐸𝐿 scheme 

studied in this research is also considered as an upper one-sided monitoring 

scheme, i.e., an 𝑈𝐶𝐿 is used to monitor a process. However, there are two types 

of 𝑈𝐶𝐿s which will be considered for the 𝐸𝐿 scheme, i.e., the time-varying 𝑈𝐶𝐿, 

Ψ𝐸𝐿(𝑖) and the steady-state 𝑈𝐶𝐿, Ψ𝐸𝐿. Again, the determination of two types of 

𝑈𝐶𝐿s will be covered in Section 3.4. Further, it is assumed that 𝐿0 = 𝐸𝐿0 = 2 

(Mukherjee, 2017; Song et al., 2020a). 
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 Mukherjee (2017) defined that the time-varying 𝑈𝐶𝐿 for the 𝐸𝐿 scheme, 

Ψ𝐸𝐿(𝑖) can be expressed as 

Ψ𝐸𝐿(𝑖) = 𝜇𝐸𝐿𝑖 + 𝐿𝐸𝐿𝜎𝐸𝐿𝑖, (2.18) 

where 𝜇𝐸𝐿𝑖 and 𝜎𝐸𝐿𝑖 are the 𝑖th mean and standard deviation of the 𝐸𝐿 scheme 

with time-varying 𝑈𝐶𝐿, respectively, while 𝐿𝐸𝐿 is the charting constant of the 

𝐸𝐿 scheme with time-varying 𝑈𝐶𝐿. With the notation of 𝐸(𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜐1 and 

𝑉𝑎𝑟(𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜐2, Mukherjee (2017) proved that 

𝜇𝐸𝐿𝑖 = 2 (2.19) 

and  

𝜎𝐸𝐿𝑖 = √
𝜆

2−𝜆
[1 − (1 − 𝜆)2𝑖]𝜉2 + [1 − (1 − 𝜆)𝑖]2𝜉1, (2.20) 

where 𝜉1 = 𝑉𝑎𝑟(𝜐1|𝐼𝐶) and 𝜉2 = 𝐸(𝜐2|𝐼𝐶). 

 

 

 Then, the step-by-step implementing procedure of the 𝐸𝐿 scheme is 

described below. 

Step I. A reference sample with size 𝑚, 𝑋𝑚⃗⃗ ⃗⃗  ⃗ = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} from a 

process that is assumed to be 𝐼𝐶, is collected. 

Step II. The 𝑖th test sample with size 𝑛, 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ = {𝑌1𝑖, 𝑌2𝑖, 𝑌3𝑖 , … , 𝑌𝑛𝑖} is 

collected. 

Step III. The 𝑖th plotting statistic, i.e., the 𝐸𝐿𝑖 is computed using Equation 

(2.17). 

Step IV. The 𝐸𝐿𝑖 is plotted against the 𝑈𝐶𝐿s, either Ψ𝐸𝐿(𝑖) or Ψ𝐸𝐿. 
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Step V. The process is declared 𝐼𝐶 if 𝐸𝐿𝑖 < Ψ𝐸𝐿(𝑖) (or Ψ𝐸𝐿) and the 

following test sample is examined. Otherwise, the process is 𝑂𝑂𝐶 

at the 𝑖th test sample and assignable cause(s) are investigated. 

Step VI. When the process is 𝑂𝑂𝐶 at the 𝑖th test sample, a follow-up 

procedure is done. Here, all the observations in 𝑋𝑚⃗⃗ ⃗⃗  ⃗ is treated as 

the first sample, while all the observations in the 1st until 𝑖th test 

samples, with a total of size 𝑛𝑖 is treated as the second sample. 

Then, the 𝑝-values for the two-tailed 𝑊𝑅𝑆 test (𝑝𝑊
∗ ) for location 

and two-tailed 𝐴𝐵 test (𝑝𝐴
∗ ) for scale are computed. 

a. If 𝑝𝑊
∗  is significant but 𝑝𝐴

∗  is insignificant, it indicates a 

pure location shift in the process. 

b. If 𝑝𝑊
∗  is insignificant but 𝑝𝐴

∗  is significant, it indicates a 

pure scale shift is in the process. 

c. If 𝑝𝑊
∗  and 𝑝𝐴

∗  are both significant, it indicates a mixed shift 

in the location and scale parameters of the process. 

d. If 𝑝𝑊
∗  and 𝑝𝐴

∗  are both insignificant, it indicates a 

complicated simultaneous shift in the location and scale 

parameters, or it is just a false alarm. 
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CHAPTER 3 

 

 
RESEARCH METHODOLOGY 

 

 

 

 

3.1 Introduction 

 

 

 The proposed 𝐷𝐿 and 𝐻𝐿 schemes and their implementations are firstly 

presented in Section 3.2. This includes the explanation of the plotting statistics 

for these two novel schemes. Then, in Section 3.3, the time-varying 𝑈𝐶𝐿s for 

the two proposed schemes are derived theoretically. Next, the determination of 

𝑈𝐶𝐿s for the two proposed schemes and two competing schemes, i.e., the 𝑆𝐿 

and 𝐸𝐿 schemes, are discussed in Section 3.4. Further, the Monte-Carlo 

simulation is also explained here. Lastly, Section 3.5 presents the various types 

of 𝑅𝐿 metrics that will be employed in this dissertation for the performance 

evaluation of a control scheme. 

 

 

3.2 The Proposed DEWMA-Lepage (𝑫𝑳) and HWMA-Lepage (𝑯𝑳) 

 Schemes and Their Implementations 

 

 

 The 𝑖th plotting statistic of the 𝐸𝐿 scheme as depicted in Equation (2.17) 

is extended to the proposed 𝐷𝐿 scheme with the idea of Shamma and Shamma 

(1992). To this end, the 𝑖th plotting statistic of the 𝐷𝐿 scheme is defined as 

𝐷𝐿𝑖 = 𝜆𝐸𝐿𝑖 + (1 − 𝜆)𝐷𝐿𝑖−1, (3.1) 

where 𝜆 ∈ (0, 1] is the smoothing parameter of the 𝐷𝐿 scheme and 𝐸𝐿𝑖 is 

computed with Equation (2.17). 
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 Similar to the discussion for the implementation of the 𝑆𝐿 and 𝐸𝐿 

schemes, the 𝐷𝐿 scheme proposed is used to monitor the process with an 𝑈𝐶𝐿, 

either the time-varying 𝑈𝐶𝐿, Ψ𝐷𝐿(𝑖) or the steady-state 𝑈𝐶𝐿, Ψ𝐷𝐿. The 

expression of Ψ𝐷𝐿(𝑖) will be derived in the next section, whereas the 

determination of Ψ𝐷𝐿(𝑖) and Ψ𝐷𝐿 will be covered in Section 3.4. Then, it is 

assumed that 𝐿0 = 𝐸𝐿0 = 𝐷𝐿0 = 2. 

 

 

 Next, the charting procedures for the implementation of the 𝐷𝐿 scheme 

are delineated below. 

Step I. A reference sample with size 𝑚, 𝑋𝑚⃗⃗ ⃗⃗  ⃗ = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} from a 

process that is assumed to be 𝐼𝐶, is collected. 

Step II. The 𝑖th test sample with size 𝑛, 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ = {𝑌1𝑖, 𝑌2𝑖, 𝑌3𝑖 , … , 𝑌𝑛𝑖} is 

collected. 

Step III. The 𝑖th plotting statistic, i.e., the 𝐷𝐿𝑖 is computed using Equation 

(3.1). 

Step IV. The 𝐷𝐿𝑖 is plotted against the 𝑈𝐶𝐿s, either Ψ𝐷𝐿(𝑖) or Ψ𝐷𝐿. 

Step V. The process is declared 𝐼𝐶 if 𝐷𝐿𝑖 < Ψ𝐷𝐿(𝑖) (or Ψ𝐷𝐿) and the 

following test sample is examined. Otherwise, the process is 𝑂𝑂𝐶 

at the 𝑖th test sample and assignable cause(s) are investigated. 

Step VI. When the process is 𝑂𝑂𝐶 at the 𝑖th test sample, a follow-up 

procedure is done. Here, all the observations in 𝑋𝑚⃗⃗ ⃗⃗  ⃗ is treated as 

the first sample, while all the observations in the 1st until 𝑖th test 

samples, with a total of size 𝑛𝑖 is treated as the second sample. 
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Then, the 𝑝-values for the two-tailed 𝑊𝑅𝑆 test (𝑝𝑊
∗ ) for location 

and two-tailed 𝐴𝐵 test (𝑝𝐴
∗ ) for scale are computed. 

a. If 𝑝𝑊
∗  is significant but 𝑝𝐴

∗  is insignificant, it indicates a 

pure location shift in the process. 

b. If 𝑝𝑊
∗  is insignificant but 𝑝𝐴

∗  is significant, it indicates a 

pure scale shift is in the process. 

c. If 𝑝𝑊
∗  and 𝑝𝐴

∗  are both significant, it indicates a mixed shift 

in the location and scale parameters of the process. 

d. If 𝑝𝑊
∗  and 𝑝𝐴

∗  are both insignificant, it indicates a 

complicated simultaneous shift in the location and scale 

parameters, or it is just a false alarm. 

 

 

 On the flip side, adopting the idea of the HWMA-type scheme proposed 

by Abbas (2018), the 𝑖th plotting statistic of the 𝐻𝐿 scheme is defined as 

𝐻𝐿𝑖 = {
𝜆𝐿1 + (1 − 𝜆)𝐿0 if 𝑖 = 1

𝜆𝐿𝑖 + (
1−𝜆

𝑖−1
) (𝐿𝑖−1 + 𝐿𝑖−2 +⋯+ 𝐿2 + 𝐿1) if 𝑖 > 1

, (3.2) 

where 𝜆 ∈ (0, 1] is the smoothing parameter of the 𝐻𝐿 scheme, while Equation 

(2.16) is used to compute 𝐿𝑖. 

 

 

 Similarly, an 𝑈𝐶𝐿, either the time-varying 𝑈𝐶𝐿, Ψ𝐻𝐿(𝑖) or the steady-

state 𝑈𝐶𝐿, Ψ𝐻𝐿 is employed in the 𝐻𝐿 scheme. Note that in Section 3.3, the 

derivation of Ψ𝐻𝐿(𝑖) is discussed, while Section 3.4 presents the determination 

of Ψ𝐻𝐿(𝑖) and Ψ𝐻𝐿. Further, the assumption of 𝐿0 = 2 is still upheld in the 𝐻𝐿 

scheme. 
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 To this end, the implementation steps of the 𝐻𝐿 scheme are 

demonstrated below. 

Step I. A reference sample with size 𝑚, 𝑋𝑚⃗⃗ ⃗⃗  ⃗ = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} from a 

process that is assumed to be 𝐼𝐶, is collected. 

Step II. The 𝑖th test sample with size 𝑛, 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ = {𝑌1𝑖, 𝑌2𝑖, 𝑌3𝑖 , … , 𝑌𝑛𝑖} is 

collected. 

Step III. The 𝑖th plotting statistic, i.e., the 𝐻𝐿𝑖 is computed using Equation 

(3.2). 

Step IV. The 𝐻𝐿𝑖 is plotted against the 𝑈𝐶𝐿s, either Ψ𝐻𝐿(𝑖) or Ψ𝐻𝐿. 

Step V. The process is declared 𝐼𝐶 if 𝐻𝐿𝑖 < Ψ𝐻𝐿(𝑖) (or Ψ𝐻𝐿) and the next 

test sample is examined. Otherwise, the process is 𝑂𝑂𝐶 at the 𝑖th 

test sample and assignable cause(s) are investigated. 

Step VI. When the process is 𝑂𝑂𝐶 at the 𝑖th test sample, a follow-up 

procedure is done. Here, all the observations in 𝑋𝑚⃗⃗ ⃗⃗  ⃗ is treated as 

the first sample, while all the observations in the 1st until 𝑖th test 

samples, with a total of size 𝑛𝑖 is treated as the second sample. 

Then, the 𝑝-values for the two-tailed 𝑊𝑅𝑆 test (𝑝𝑊
∗ ) for location 

and two-tailed 𝐴𝐵 test (𝑝𝐴
∗ ) for scale are computed. 

a. If 𝑝𝑊
∗  is significant but 𝑝𝐴

∗  is insignificant, it indicates a 

pure location shift in the process. 

b. If 𝑝𝑊
∗  is insignificant but 𝑝𝐴

∗  is significant, it indicates a 

pure scale shift is in the process. 

c. If 𝑝𝑊
∗  and 𝑝𝐴

∗  are both significant, it indicates a mixed shift 

in the location and scale parameters of the process. 
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d. If 𝑝𝑊
∗  and 𝑝𝐴

∗  are both insignificant, it indicates a 

complicated simultaneous shift in the location and scale 

parameters, or it is just a false alarm. 

 

 

3.3 The Time-Varying 𝑼𝑪𝑳s for the 𝑫𝑳 and 𝑯𝑳 Schemes 

 

 

 Similar to the time-varying 𝑈𝐶𝐿 of the 𝐸𝐿 scheme, the time-varying 

𝑈𝐶𝐿s of the 𝐷𝐿 and 𝐻𝐿 schemes can be expressed, respectively, as 

Ψ𝐷𝐿(𝑖) = 𝜇𝐷𝐿𝑖 + 𝐿𝐷𝐿𝜎𝐷𝐿𝑖 (3.3) 

and  

Ψ𝐻𝐿(𝑖) = 𝜇𝐻𝐿𝑖 + 𝐿𝐻𝐿𝜎𝐻𝐿𝑖, (3.4) 

where 𝜇𝐷𝐿𝑖, 𝜎𝐷𝐿𝑖, 𝜇𝐻𝐿𝑖, and 𝜎𝐻𝐿𝑖 are the mean and standard deviation of the 𝐷𝐿 

and 𝐻𝐿 schemes with time-varying 𝑈𝐶𝐿s corresponding to the 𝑖th test sample, 

respectively. On the other hand, 𝐿𝐷𝐿 and 𝐿𝐻𝐿 are, respectively, the charting 

constants of the 𝐷𝐿 and 𝐻𝐿 schemes with time-varying 𝑈𝐶𝐿s. 

 

 

 Using the same notation explained before, i.e., 𝜐1 = 𝐸(𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) and 

𝜐2 = 𝑉𝑎𝑟(𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) with 𝜉1 = 𝑉𝑎𝑟(𝜐1|𝐼𝐶) and 𝜉2 = 𝐸(𝜐2|𝐼𝐶), the 

derivations of 𝜇𝐷𝐿𝑖 and 𝜎𝐷𝐿𝑖 for the 𝐷𝐿 scheme will be discussed in Section 

3.3.1, while the derivation of 𝜇𝐻𝐿𝑖 and 𝜎𝐻𝐿𝑖 for the 𝐻𝐿 scheme will be explained 

in Section 3.3.2. 
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3.3.1 Derivations of 𝝁𝑫𝑳𝒊 and 𝝈𝑫𝑳𝒊 for the 𝑫𝑳 Scheme 

 

 

 Using the idea discussed in Riaz and Abbasi (2016), the 𝑖th plotting 

statistic of the 𝐷𝐿 scheme, i.e., 𝐷𝐿𝑖, as displayed in Equation (3.1) can also be 

expressed as 

𝐷𝐿𝑖 = 𝜆∑ (1 − 𝜆)𝑗[𝜆∑ (1 − 𝜆)𝑘𝐿𝑖−𝑗−𝑘
𝑖−𝑗−1
𝑘=0 + (1 − 𝜆)𝑖−𝑗𝐸𝐿0]

𝑖−1
𝑗=0 +

(1 − 𝜆)𝑖𝐷𝐿0. 

(3.5) 

Since it is assumed that 𝐸𝐿0 = 𝐷𝐿0 = 2, Equation (3.5) can be further 

expressed as 

𝐷𝐿𝑖 = 𝜆
2[𝐿𝑖 + 2(1 − 𝜆)𝐿𝑖−1 + 3(1 − 𝜆)

2𝐿𝑖−2 +⋯+ 𝑖(1 − 𝜆)
𝑖−1𝐿1] +

2(1 + 𝑖𝜆)(1 − 𝜆)𝑖. 

(3.6) 

 

 

 It is straightforward to show that 𝜇𝐷𝐿𝑖 = 2, as shown below. 

(i) 𝐸(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝐸{𝜆
2[𝐿𝑖 + 2(1 − 𝜆)𝐿𝑖−1 + 3(1 − 𝜆)

2𝐿𝑖−2 +⋯+ 𝑖(1 −

𝜆)𝑖−1𝐿1] + 2(1 + 𝑖𝜆)(1 − 𝜆)
𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶}  

(ii) 𝐸(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜆
2[1 + 2(1 − 𝜆) + 3(1 − 𝜆)2 +⋯+ 𝑖(1 − 𝜆)𝑖−1]𝜐1 +

2(1 + 𝑖𝜆)(1 − 𝜆)𝑖  

From Equation (A.1) derived in Lemma 1, which is shown in Appendix A, it is 

obvious that when 𝑟 = 1 − 𝜆 or equivalent to 1 − 𝑟 = 𝜆, the equation can be 

expressed as 

(iii) 𝐸(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜆
2 [
1−(1−𝜆)𝑖

𝜆2
−
𝑖(1−𝜆)𝑖

𝜆
] 𝜐1 + 2(1 + 𝑖𝜆)(1 − 𝜆)

𝑖  

(iv) 𝐸(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = [1 − (1 − 𝜆)
𝑖 − 𝑖𝜆(1 − 𝜆)𝑖]𝜐1 + 2(1 + 𝑖𝜆)(1 − 𝜆)

𝑖  

(v) 𝐸(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = [1 − (1 + 𝑖𝜆)(1 − 𝜆)
𝑖]𝜐1 + 2(1 + 𝑖𝜆)(1 − 𝜆)

𝑖  

Then, since 𝜐1 = 𝐸(𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶), it is reasonable that 𝐸(𝜐1|𝐼𝐶) = 2. Hence, 

𝜇𝐷𝐿𝑖                                                                                                                          (3.7) 
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= 𝐸[𝐸(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)] = 2[1 − (1 + 𝑖𝜆)(1 − 𝜆)
𝑖] + 2(1 + 𝑖𝜆)(1 − 𝜆)𝑖 

= 2                                                                                                                          

 

 

 On the flip side, the derivation of 𝜎𝐷𝐿𝑖 is slightly more complicated, 

which can be done as below. 

(i) 𝑉𝑎𝑟(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝑉𝑎𝑟{𝜆
2[𝐿𝑖 + 2(1 − 𝜆)𝐿𝑖−1 + 3(1 − 𝜆)

2𝐿𝑖−2 +⋯+

𝑖(1 − 𝜆)𝑖−1𝐿1] + 2(1 + 𝑖𝜆)(1 − 𝜆)
𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶}  

(ii) 𝑉𝑎𝑟(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜆
4[1 + 22(1 − 𝜆)2 + 32(1 − 𝜆)4 +⋯+ 𝑖2(1 −

𝜆)2(𝑖−1)]𝜐2  

Then, refers to Equation (A.2) derived in Lemma 2, which is available in 

Appendix A, it is obtained that 𝑟 = 1 − 𝜆, which implies that 1 − 𝑟2 =

𝜆(2 − 𝜆), the equation is now expressed as 

(iii) 𝑉𝑎𝑟(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜆
4 {

2[1−(1−𝜆)2𝑖]

[𝜆(2−𝜆)]3
+
𝑖2(1−𝜆)2(𝑖+1)+(1−2𝑖−𝑖2)(1−𝜆)2𝑖−1

[𝜆(2−𝜆)]2
} 𝜐2  

(iv) 𝑉𝑎𝑟(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = {
2𝜆[1−(1−𝜆)2𝑖]

(2−𝜆)3
+
𝜆2[𝑖2(1−𝜆)2(𝑖+1)+(1−2𝑖−𝑖2)(1−𝜆)2𝑖−1]

(2−𝜆)2
} 𝜐2  

(v) (𝜎𝐷𝐿𝑖)
2
= 𝐸[𝑉𝑎𝑟(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)] + 𝑉𝑎𝑟[𝐸(𝐷𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)]  

(vi) (𝜎𝐷𝐿𝑖)
2
= {

2𝜆[1−(1−𝜆)2𝑖]

(2−𝜆)3
+
𝜆2[𝑖2(1−𝜆)2(𝑖+1)+(1−2𝑖−𝑖2)(1−𝜆)2𝑖−1]

(2−𝜆)2
} 𝜉2  

+[1 − (1 + 𝑖𝜆)(1 − 𝜆)𝑖]
2
𝜉1  

To this end, 𝜎𝐷𝐿𝑖 is expressed as 

𝜎𝐷𝐿𝑖 = √(𝜎𝐷𝐿𝑖)
2
. (3.8) 
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3.3.2 Derivations of 𝝁𝑯𝑳𝒊 and 𝝈𝑯𝑳𝒊 for the 𝑯𝑳 Scheme 

 

 

 For the derivations of 𝜇𝐻𝐿𝑖 and 𝜎𝐻𝐿𝑖, it is essential to divide the proof 

into two cases, i.e., 𝑖 = 1 and 𝑖 > 1. Easily, it can be shown that 𝜇𝐻𝐿𝑖 = 2, i.e., 

1. When 𝑖 = 1, 

(i) 𝐸(𝐻𝐿1|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝐸[𝜆𝐿1 + (1 − 𝜆)𝐿0|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶]  

(ii) 𝐸(𝐻𝐿1|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜆𝜐1 + 2(1 − 𝜆)  

Then, 𝜇𝐻𝐿1 = 𝐸[𝐸(𝐻𝐿1|𝑋𝑚
⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)] = 𝜆(2) + 2(1 − 𝜆) = 2. 

 

2. When 𝑖 > 1, 

(i) 𝐸(𝐻𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝐸 [𝜆𝐿𝑖 + (
1−𝜆

𝑖−1
) (𝐿𝑖−1 + 𝐿𝑖−2 +⋯+ 𝐿1)|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶]  

(ii) 𝐸(𝐻𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜆𝜐1 + (
1−𝜆

𝑖−1
) (𝑖 − 1)𝜐1 = 𝜐1  

Then, 𝜇𝐻𝐿𝑖 = 𝐸[𝐸(𝐻𝐿𝑖|𝑋𝑚
⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)] = 2. 

 

 

 On the other hand, the standard deviation of the 𝐻𝐿 scheme with time-

varying 𝑈𝐶𝐿 corresponding to the 𝑖th test sample can be derived as below. 

1. When 𝑖 = 1, 

(i) 𝑉𝑎𝑟(𝐻𝐿1|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝑉𝑎𝑟[𝜆𝐿1 + (1 − 𝜆)𝐿0|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶]  

(ii) 𝑉𝑎𝑟(𝐻𝐿1|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜆
2𝜐2  

(iii) (𝜎𝐻𝐿1)
2
= 𝐸[𝑉𝑎𝑟(𝐻𝐿1|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)] + 𝑉𝑎𝑟[𝐸(𝐻𝐿1|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)]  

(iv) (𝜎𝐻𝐿1)
2
= 𝜆2𝜉2 + 𝜆

2𝜉1 = 𝜆
2(𝜉1 + 𝜉2)  

Therefore, it is obtained that 

𝜎𝐻𝐿1 = √𝜆2(𝜉1 + 𝜉2). (3.9) 

 



 

52 

2. When 𝑖 > 1, 

(i) 𝑉𝑎𝑟(𝐻𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝑉𝑎𝑟 [𝜆𝐿𝑖 + (
1−𝜆

𝑖−1
) (𝐿𝑖−1 + 𝐿𝑖−2 +⋯+ 𝐿1)|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶]  

(ii) 𝑉𝑎𝑟(𝐻𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = 𝜆
2𝜐2 + (

1−𝜆

𝑖−1
)
2
(𝑖 − 1)𝜐2  

(iii) 𝑉𝑎𝑟(𝐻𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶) = [𝜆
2 +

(1−𝜆)2

𝑖−1
] 𝜐2  

(iv) (𝜎𝐻𝐿𝑖)
2
= 𝐸[𝑉𝑎𝑟(𝐻𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)] + 𝑉𝑎𝑟[𝐸(𝐻𝐿𝑖|𝑋𝑚⃗⃗ ⃗⃗  ⃗, 𝐼𝐶)]  

(v) (𝜎𝐻𝐿𝑖)
2
= [𝜆2 +

(1−𝜆)2

𝑖−1
] 𝜉2 + 𝜉1  

Thus, it is shown that 

𝜎𝐻𝐿𝑖 = √[𝜆
2 +

(1−𝜆)2

𝑖−1
] 𝜉2 + 𝜉1. (3.10) 

 

 

To this end, it is summarised that 

𝜎𝐻𝐿𝑖 = {
√𝜆2(𝜉1 + 𝜉2) if 𝑖 = 1

√[𝜆2 +
(1−𝜆)2

𝑖−1
] 𝜉2 + 𝜉1 if 𝑖 > 1

. (3.11) 

 

 

3.4 Determination of 𝑼𝑪𝑳s 

 

 

 One may notice that in order to obtain the time-varying 𝑈𝐶𝐿s for the 

memory-type 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes, it is of utmost importance to have the 

values of 𝜉1 and 𝜉2. Since 𝜉1 and 𝜉2 depend on the Phase-I reference sample, 

𝑋𝑚⃗⃗ ⃗⃗  ⃗, then it is hard to obtain their exact forms. To this end, the Monte-Carlo 

simulation can be employed to estimate the values of 𝜉1 and 𝜉2 for some selected 

pairs of (𝑚, 𝑛). 
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 Then, the time-varying 𝑈𝐶𝐿s for 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes, i.e., Ψ𝐸𝐿(𝑖), 

Ψ𝐷𝐿(𝑖), and Ψ𝐻𝐿(𝑖) are now depending on the value of the charting constants, 

𝐿𝐸𝐿, 𝐿𝐷𝐿, and 𝐿𝐻𝐿, respectively. To this end, all the charting constants 𝐿𝐸𝐿, 𝐿𝐷𝐿, 

and 𝐿𝐻𝐿 (time-varying 𝑈𝐶𝐿s) and Ψ𝑆𝐿, Ψ𝐸𝐿, Ψ𝐷𝐿, and Ψ𝐻𝐿 (steady-state 𝑈𝐶𝐿s) 

are determined by using a standard searching algorithm under a targeted 𝐴𝑅𝐿0 

through Monte-Carlo simulation. The standard searching algorithm is described 

below. 

Step I. A reference sample with size 𝑚, 𝑋𝑚⃗⃗ ⃗⃗  ⃗ = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑚} is 

simulated from a standard normal distribution. 

Step II. Then, the 𝑖th test sample with size 𝑛, 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ = {𝑌1𝑖, 𝑌2𝑖, 𝑌3𝑖 , … , 𝑌𝑛𝑖} is 

also simulated from a standard normal distribution. 

Step III. All the 𝑖th plotting statistics are then computed, and compared 

with the trial 𝑈𝐶𝐿 inputted. 

Step IV. i. If the 𝐴𝑅𝐿0 obtained at the end of the simulation is nearly 

the same as the nominal value, then the trial 𝑈𝐶𝐿 is the 

desired 𝑈𝐶𝐿. 

ii. If the 𝐴𝑅𝐿0 obtained at the end of the simulation is less 

than the nominal value, repeat the steps with a larger value 

of trial 𝑈𝐶𝐿. 

iii. If the 𝐴𝑅𝐿0 obtained at the end of the simulation is more 

than the nominal value, repeat the steps with a smaller 

value of trial 𝑈𝐶𝐿. 

 

 

 It is worth mentioning that it is not compulsory to use a standard normal 

distribution, but other continuous statistical probability distributions can also be 
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used. This is because the schemes studied here are distribution-free, so all the 

continuous distributions would output almost the same 𝐼𝐶 result. Again, the 

rationale of employing the Monte-Carlo simulation here is because there is no 

closed-form expression for the 𝑅𝐿 distribution of the schemes. Further, it is not 

suitable to use the asymptotic theory in SPM due to the size of the test sample, 

𝑛 is habitually small. 

 

 

3.5 𝑹𝑳 Metrics for Performance Evaluation of A Scheme 

 

 

 The most commonly used 𝑅𝐿 metric in evaluating the performance of a 

scheme is 𝐴𝑅𝐿. For instance, when the process is 𝐼𝐶, the desired 𝐴𝑅𝐿0 should 

be large so that the FAR is reduced. On the flip side, if the process is 𝑂𝑂𝐶, the 

𝐴𝑅𝐿1 should be small so that the 𝑂𝑂𝐶 signal can be detected hastily 

(Montgomery, 2019). However, it is known that the 𝑅𝐿 distribution of a control 

scheme is not symmetric, but it is highly positively (right) skewed, such that the 

distribution of 𝑅𝐿 has a long tail on the right side. Therefore, it is inconvincible 

that interpretation solely based on the 𝐴𝑅𝐿 is sufficient to measure the 

performance of a control scheme. To this end, other 𝑅𝐿 properties, such as the 

𝑆𝐷𝑅𝐿, and percentiles of the 𝑅𝐿, such as 5th, 25th, 50th, 75th, and 95th 

percentiles are also utilised to evaluate the performance of a control scheme. 

 

 

 As discussed in Section 3.4, it is hard to obtain the exact- or closed-form 

expressions of all the 𝑅𝐿 metrics of the schemes. Hence, all the 𝑅𝐿 metrics will 

only be obtained from the Monte-Carlo simulation study. Further, all these 𝑅𝐿 

metrics are only meaningful if the exact shift size of the parameter(s) in the 



 

55 

process is known. Nevertheless, the exact shift size is commonly unknown in 

real life applications. To this end, a scheme with better overall performance, i.e., 

the scheme performs well within a specific predefined range of shift sizes, is 

more fancied by quality practitioners. 

 

 

 Ryu et al. (2010) employed the expected weighted 𝑅𝐿 (𝐸𝑊𝑅𝐿), which 

is an index used to evaluate the overall performance of a scheme. Among the 

various expressions of the 𝐸𝑊𝑅𝐿 index, the expected 𝐴𝑅𝐿, termed as 𝐸𝐴𝑅𝐿 is 

the most straightforward index, which leads to the vast usage of 𝐸𝐴𝑅𝐿. 

Recently, Mukherjee and Marozzi (2017a), Mukherjee and Sen (2018), and 

Song et al. (2020a) considered this index to assess the performance of the 

control schemes proposed. For instance, when a scheme is only used to monitor 

a single parameter, says the location parameter 𝜃, then the 𝐸𝐴𝑅𝐿 of a scheme 

when the possible shift in the location considered [𝜃min, 𝜃max] is defined as 

𝐸𝐴𝑅𝐿 =
1

𝜃max−𝜃min
∫ 𝐴𝑅𝐿(𝜃)
𝜃max
𝜃min

 𝑑𝜃. (3.12) 

 

 

 Then, extending the idea of 𝐸𝐴𝑅𝐿 to a two-parameter joint monitoring 

scheme. The 𝐸𝐴𝑅𝐿 of a scheme when the possible location-scale parameters 

shift considered is [𝜃min, 𝜃max] × [𝛿min, 𝛿max], will be defined as 

𝐸𝐴𝑅𝐿 =
1

(𝜃max−𝜃min)(𝛿max−𝛿min)
∫ ∫ 𝐴𝑅𝐿(𝜃, 𝛿)

𝜃max
𝜃min

𝛿max
𝛿min

 𝑑𝜃 𝑑𝛿. (3.13) 
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CHAPTER 4 

 

 
RESULTS AND DISCUSSION 

 

 

 

 

4.1 Introduction 

 

 

 This chapter firstly present the charting constants for all the Lepage-type 

schemes studied here, i.e., the 𝑆𝐿, 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes under some chosen 

𝑚, 𝑛, 𝜆, and 𝐴𝑅𝐿0. Also, the 𝐼𝐶 performance comparison among all the schemes 

is then studied. Some of the 𝑅𝐿 metrics used are 𝐴𝑅𝐿0, 𝑆𝐷𝑅𝐿0, and 𝐼𝐶-

percentiles of the 𝑅𝐿. Further, the FAR of all the schemes is also determined by 

assessing the 𝐼𝐶-percentiles of the 𝑅𝐿. Next, Sections 4.3 and 4.4 reveal the 

𝑂𝑂𝐶 performance comparison among all the schemes at the micro and macro 

levels, respectively. Three probability distributions are considered here, namely 

the Normal, Laplace, and Shifted Exponential distributions. Note that 𝐴𝑅𝐿1, 

𝑆𝐷𝑅𝐿1, and 𝐸𝐴𝑅𝐿 are employed to evaluate the performance of each scheme in 

the 𝑂𝑂𝐶 case. Lastly, an illustrative example using a real dataset regarding the 

online shoppers’ intention is given in Section 4.5. 

 

 

4.2 𝑰𝑪 Performance Analysis of the 𝑺𝑳, 𝑬𝑳, 𝑫𝑳, and 𝑯𝑳 Schemes 

 

 

 Note that as in Song et al. (2020a), the essential parameters for the 

NSPM-type schemes considered in this dissertation are 𝑚 ∈ {100, 300, 500}, 

𝑛 ∈ {5, 10, 15}, and the smoothing parameter for the memory-type 𝐸𝐿, 𝐷𝐿, and 
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𝐻𝐿 schemes is 𝜆 ∈ {0.05, 0.10, 0.20}. Before employing any control scheme, it 

is of utmost importance to obtain the control limits first, where it is the 𝑈𝐶𝐿 

here. The 𝑈𝐶𝐿s for all the schemes are obtained through the Monte-Carlo 

simulation with 50,000 replicates and a winsorisation limit of 5,000, as 

employed by Mukherjee and Marozzi (2017b), such that the nominal value of 

𝐴𝑅𝐿0 is approximately equal to some standard values, i.e., 250, 370, and 500. 

The two important components in the time-varying 𝑈𝐶𝐿s, i.e., 𝜉1 and 𝜉2 for nine 

pairs of (𝑚, 𝑛) are estimated from the Monte-Carlo simulation of 25,000 

replicates, then tabulated in Table 4.1. 

 

 

Table 4.1: The Estimated Values of 𝝃𝟏 and 𝝃𝟐 for Some Selected (𝒎, 𝒏) 

𝒎 𝒏 𝝃𝟏 𝝃𝟐 

100 

5 0.02665 3.5257 

10 0.04685 3.6909 

15 0.07875 3.7288 

300 

5 0.00755 3.5758 

10 0.01052 3.7673 

15 0.01474 3.8306 

500 

5 0.00447 3.5867 

10 0.00553 3.7811 

15 0.00719 3.8482 

 

 

 Mukherjee (2017) argued that using the large sample theory, 𝜉1 and 𝜉2 

are approximately 0 and 4, respectively. From Table 4.1, one may notice that 

the estimation of 𝜉1 and 𝜉2 are reasonably accurate because when the value of 

𝑚 and/or 𝑛 increases, the estimated values of 𝜉1 and 𝜉2 appear to be converging 

to the estimated values with the large sample theory. However, due to the natural 

selection of the small sample size in industrial applications, the asymptotic 

theory is not effectively applicable in SPM. Therefore, it is more accurate and 

appropriate to use the estimations of 𝜉1 and 𝜉2 as displayed in Table 4.1. 
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4.2.1 The Charting Constants 

 

 

 The charting constants 𝐿𝐸𝐿, 𝐿𝐷𝐿, and 𝐿𝐻𝐿 for the time-varying 𝑈𝐶𝐿s of 

the 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes, respectively, when 𝐴𝑅𝐿0 ≈ 250, for different 

triplets (𝑚, 𝑛, 𝜆) are juxtaposed in Table 4.2. On the other hand, the charting 

constants for the steady-state 𝑈𝐶𝐿s of the 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes, i.e., Ψ𝐸𝐿, 

Ψ𝐷𝐿, and Ψ𝐻𝐿, respectively, for the same (𝑚, 𝑛, 𝜆), when 𝐴𝑅𝐿0 ≈ 250 are 

tabulated in Table 4.3. Besides, Ψ𝑆𝐿, i.e., the charting constant for the 𝑆𝐿 scheme 

with the steady-state 𝑈𝐶𝐿, for the same pairs of (𝑚, 𝑛) is also included in Table 

4.3. 

 

 

 Then, when 𝐴𝑅𝐿0 ≈ 370, the charting constants for the schemes with 

time-varying and steady-state 𝑈𝐶𝐿s are, respectively, tabulated in Tables 4.4 

and 4.5. Lastly, Tables 4.6 and 4.7 presents the charting constants of the 

schemes with time-varying and steady-state 𝑈𝐶𝐿s, respectively, when 𝐴𝑅𝐿0 ≈

500. 

 

 

Table 4.2: The Charting Constants of Various Schemes with Time-

Varying 𝑼𝑪𝑳s when 𝑨𝑹𝑳𝟎 ≈ 𝟐𝟓𝟎 

𝒎 𝒏 

𝑬𝑳 (𝑳𝑬𝑳) 𝑫𝑳 (𝑳𝑫𝑳) 𝑯𝑳 (𝑳𝑯𝑳) 

𝝀 𝝀 𝝀 

0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20 

100 

5 1.585 2.180 2.811 0.701 1.249 1.876 1.211 2.395 3.451 

10 1.407 2.022 2.682 0.545 1.094 1.751 0.902 2.004 3.134 

15 1.167 1.811 2.515 0.369 0.897 1.557 0.612 1.617 2.818 

300 

5 1.982 2.505 3.084 1.093 1.589 2.153 1.973 3.129 3.959 

10 1.946 2.466 3.042 1.047 1.559 2.125 1.837 2.979 3.841 

15 1.886 2.425 3.007 0.980 1.504 2.090 1.686 2.835 3.737 

500 

5 2.071 2.567 3.145 1.179 1.665 2.211 2.163 3.285 4.071 

10 2.051 2.549 3.112 1.166 1.654 2.197 2.081 3.183 3.966 

15 2.031 2.533 3.092 1.139 1.629 2.183 2.011 3.112 3.921 
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Table 4.3: The Charting Constants of Various Schemes with Steady-State 

𝑼𝑪𝑳s when 𝑨𝑹𝑳𝟎 ≈ 𝟐𝟓𝟎 

𝒎 𝒏 

𝑬𝑳 (𝚿𝑬𝑳) 𝑫𝑳 (𝚿𝑫𝑳) 𝑯𝑳 (𝚿𝑯𝑳) 
𝑺𝑳 

(𝚿𝑺𝑳) 
𝝀 𝝀 𝝀 

0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20 

100 

5 2.512 2.984 3.809 2.141 2.400 2.866 2.335 2.755 3.548 9.999 

10 2.492 2.971 3.798 2.115 2.375 2.855 2.293 2.711 3.513 9.910 

15 2.445 2.922 3.751 2.076 2.331 2.807 2.236 2.651 3.453 9.818 

300 

5 2.600 3.089 3.952 2.213 2.480 2.962 2.433 2.871 3.705 10.504 

10 2.608 3.110 3.981 2.214 2.486 2.980 2.425 2.869 3.715 10.527 

15 2.604 3.107 3.981 2.205 2.483 2.979 2.415 2.856 3.694 10.481 

500 

5 2.617 3.114 3.987 2.228 2.495 2.985 2.459 2.898 3.739 10.608 

10 2.632 3.134 4.020 2.232 2.506 3.004 2.457 2.901 3.752 10.673 

15 2.634 3.142 4.029 2.231 2.509 3.012 2.449 2.895 3.748 10.662 

 

 

Table 4.4: The Charting Constants of Various Schemes with Time-

Varying 𝑼𝑪𝑳s when 𝑨𝑹𝑳𝟎 ≈ 𝟑𝟕𝟎 

𝒎 𝒏 

𝑬𝑳 (𝑳𝑬𝑳) 𝑫𝑳 (𝑳𝑫𝑳) 𝑯𝑳 (𝑳𝑯𝑳) 

𝝀 𝝀 𝝀 

0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20 

100 

5 1.779 2.394 3.067 0.869 1.438 2.087 1.451 2.743 3.836 

10 1.584 2.226 2.917 0.695 1.265 1.943 1.088 2.287 3.489 

15 1.329 2.001 2.738 0.499 1.047 1.738 0.763 1.840 3.116 

300 

5 2.211 2.754 3.377 1.292 1.810 2.392 2.368 3.616 4.426 

10 2.169 2.711 3.318 1.247 1.769 2.355 2.194 3.441 4.286 

15 2.100 2.661 3.269 1.171 1.710 2.313 1.991 3.256 4.161 

500 

5 2.307 2.829 3.442 1.395 1.892 2.449 2.619 3.818 4.547 

10 2.285 2.803 3.399 1.377 1.874 2.435 2.515 3.703 4.449 

15 2.261 2.786 3.374 1.345 1.851 2.415 2.407 3.602 4.359 

 

 

Table 4.5: The Charting Constants of Various Schemes with Steady-State 

𝑼𝑪𝑳s when 𝑨𝑹𝑳𝟎 ≈ 𝟑𝟕𝟎 

𝒎 𝒏 

𝑬𝑳 (𝚿𝑬𝑳) 𝑫𝑳 (𝚿𝑫𝑳) 𝑯𝑳 (𝚿𝑯𝑳) 
𝑺𝑳 

(𝚿𝑺𝑳) 
𝝀 𝝀 𝝀 

0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20 

100 

5 2.584 3.089 3.976 2.192 2.470 2.969 2.391 2.835 3.689 10.678 

10 2.562 3.075 3.963 2.166 2.449 2.959 2.349 2.789 3.652 10.603 

15 2.515 3.026 3.912 2.121 2.401 2.909 2.294 2.730 3.585 10.455 

300 

5 2.677 3.205 4.139 2.269 2.556 3.076 2.485 2.956 3.863 11.275 

10 2.688 3.224 4.165 2.270 2.564 3.095 2.475 2.953 3.869 11.308 

15 2.683 3.223 4.162 2.262 2.558 3.093 2.465 2.936 3.847 11.230 

500 

5 2.696 3.230 4.177 2.285 2.574 3.099 2.509 2.983 3.901 11.399 

10 2.712 3.253 4.210 2.290 2.586 3.121 2.506 2.985 3.915 11.477 

15 2.715 3.262 4.217 2.289 2.589 3.130 2.499 2.977 3.903 11.434 
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Table 4.6: The Charting Constants of Various Schemes with Time-

Varying 𝑼𝑪𝑳s when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

𝒎 𝒏 

𝑬𝑳 (𝑳𝑬𝑳) 𝑫𝑳 (𝑳𝑫𝑳) 𝑯𝑳 (𝑳𝑯𝑳) 

𝝀 𝝀 𝝀 

0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20 

100 

5 1.945 2.582 3.278 1.011 1.588 2.255 1.652 3.031 4.158 

10 1.729 2.393 3.112 0.818 1.407 2.097 1.249 2.518 3.758 

15 1.462 2.159 2.918 0.608 1.169 1.882 0.897 2.028 3.358 

300 

5 2.387 2.947 3.602 1.445 1.976 2.573 2.684 4.004 4.791 

10 2.344 2.901 3.533 1.398 1.935 2.530 2.473 3.796 4.628 

15 2.272 2.853 3.492 1.317 1.869 2.485 2.248 3.599 4.502 

500 

5 2.487 3.026 3.671 1.565 2.066 2.636 2.988 4.233 4.919 

10 2.464 2.997 3.615 1.541 2.047 2.617 2.863 4.098 4.802 

15 2.435 2.971 3.591 1.503 2.021 2.596 2.723 3.981 4.708 

 

 

Table 4.7: The Charting Constants of Various Schemes with Steady-State 

𝑼𝑪𝑳s when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

𝒎 𝒏 

𝑬𝑳 (𝚿𝑬𝑳) 𝑫𝑳 (𝚿𝑫𝑳) 𝑯𝑳 (𝚿𝑯𝑳) 
𝑺𝑳 

(𝚿𝑺𝑳) 
𝝀 𝝀 𝝀 

0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20 

100 

5 2.642 3.172 4.113 2.234 2.527 3.057 2.436 2.901 3.810 11.247 

10 2.620 3.158 4.093 2.208 2.508 3.042 2.392 2.853 3.764 11.106 

15 2.573 3.109 4.038 2.162 2.457 2.993 2.341 2.792 3.689 10.947 

300 

5 2.735 3.294 4.281 2.311 2.614 3.162 2.525 3.022 3.988 11.889 

10 2.747 3.315 4.307 2.313 2.624 3.185 2.519 3.019 3.985 11.915 

15 2.741 3.311 4.308 2.303 2.618 3.183 2.504 2.999 3.966 11.824 

500 

5 2.757 3.321 4.321 2.328 2.634 3.184 2.548 3.048 4.027 12.040 

10 2.773 3.345 4.355 2.335 2.648 3.210 2.546 3.051 4.038 12.098 

15 2.775 3.350 4.360 2.333 2.649 3.218 2.538 3.043 4.023 12.048 

 

 

4.2.2 𝑰𝑪 Performance Comparative Study 

 

 

 For brevity, the 𝐼𝐶 performance of all the schemes are studied and 

compared by only considering 𝐴𝑅𝐿0 ≈ 500. By using the charting constants 

tabulated in Tables 4.6 and 4.7, the obtained 𝐴𝑅𝐿0, 𝑆𝐷𝑅𝐿0, and 𝐼𝐶-𝑅𝐿 

percentiles (5th, 25th, 50th, 75th, and 95th) from the Monte-Carlo simulation 

are tabulated in Tables 4.8, 4.9, and 4.10, respectively, when 𝜆 = 0.05, 𝜆 =

0.10, and 𝜆 = 0.20. Due to the space constraints, the time-varying and steady-

state 𝑈𝐶𝐿s, are abbreviated as TV 𝑈𝐶𝐿 and SS 𝑈𝐶𝐿, respectively. Note that 
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each cell contains 𝐴𝑅𝐿0, 𝑆𝐷𝑅𝐿0 in a bracket, and followed by the five 𝐼𝐶 

percentiles of the 𝑅𝐿. 

 

 

Table 4.8: The 𝑰𝑪 Performance of Various Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

and 𝝀 = 𝟎. 𝟎𝟓 for the Memory-Type Schemes 

𝒎 𝒏 

Memory-Type Schemes (𝝀 = 𝟎. 𝟎𝟓) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

100 

5 

499.06 

(899.70) 

2,33,160, 

517,2293 

505.15 

(853.38) 

15,70,198, 

531,2119 

502.14 

(1013.94) 

1,9,107, 

448,2724 

501.67 

(899.61) 

20,63,175, 

483,2246 

498.37 

(936.46) 

1,31,156, 

483,2362 

496.35 

(1198.58) 

2,2,6, 

229,4195 

503.62 

(670.35) 

18,104,271, 

629,1771 

10 

500.08 

(944.82) 

1,19,131, 

496,2462 

500.91 

(875.39) 

12,57,176, 

513,2216 

499.70 

(1051.99) 

1,4,72, 

408,2959 

500.38 

(934.48) 

16,49,151, 

464,2391 

500.82 

(1048.52) 

1,8,87, 

415,2942 

501.68 

(1232.86) 

2,2,6, 

186,4730 

499.57 

(667.38) 

17,99,266, 

624,1786 

15 

499.96 

(1004.00) 

1,10,94, 

448,2748 

502.27 

(923.55) 

10,44,151, 

486,2381 

500.51 

(1121.42) 

1,2,37, 

346,3444 

500.46 

(992.70) 

12,35,118, 

431,2677 

502.09 

(1143.16) 

1,4,38, 

316,3652 

503.50 

(1266.65) 

2,2,5, 

135,5000 

499.16 

(684.73) 

15,94,258, 

620,1797 

300 

5 

499.87 

(704.01) 

3,79,256, 

629,1834 

496.38 

(640.82) 

23,110,277, 

625,1705 

498.36 

(781.34) 

1,43,218, 

603,1991 

499.42 

(684.45) 

30,107,266, 

604,1774 

499.79 

(581.50) 

7,153,326, 

633,1537 

502.84 

(1081.38) 

2,2,8, 

411,3107 

503.69 

(570.81) 

23,129,319, 

669,1606 

10 

500.97 

(709.74) 

2,73,253, 

626,1876 

501.14 

(661.11) 

23,106,274, 

624,1752 

498.55 

(791.87) 

1,37,207, 

599,2052 

499.55 

(693.97) 

29,102,258, 

602,1790 

499.30 

(623.61) 

4,129,308, 

627,1641 

504.78 

(1098.80) 

2,2,8, 

394,3182 

499.63 

(565.50) 

22,126,315, 

664,1607 

15 

502.18 

(737.20) 

2,65,239, 

622,1918 

498.35 

(672.45) 

21,98,262, 

622,1783 

498.67 

(822.93) 

1,27,187, 

581,2126 

499.31 

(710.06) 

27,95,249, 

594,1822 

502.27 

(698.56) 

3,100,274, 

616,1785 

502.58 

(1125.66) 

2,2,7, 

337,3401 

499.66 

(567.74) 

22,123,311, 

667,1619 

500 

5 

498.59 

(636.11) 

3,92,285, 

656,1717 

500.27 

(595.49) 

26,123,303, 

647,1629 

502.04 

(714.80) 

1,59,254, 

641,1865 

499.63 

(610.83) 

34,124,295, 

631,1657 

499.21 

(480.05) 

26,192,368, 

651,1391 

498.99 

(1028.47) 

2,2,9, 

477,2828 

498.70 

(538.41) 

24,133,328, 

674,1546 

10 

499.07 

(641.30) 

3,89,281, 

655,1741 

502.34 

(600.04) 

26,121,301 

651,1654 

500.71 

(715.43) 

1,53,247, 

645,1902 

500.89 

(611.85) 

34,121,293, 

639,1680 

498.68 

(499.07) 

15,180,359, 

653,1430 

499.18 

(1043.59) 

2,2,9, 

455,2895 

500.71 

(545.47) 

23,132,327, 

676,1560 

15 

501.81 

(660.11) 

3,86,277, 

656,1765 

500.90 

(610.40) 

25,117,295, 

649,1668 

498.33 

(729.64) 

1,47,236, 

636,1904 

500.75 

(623.70) 

32,116,286, 

634,1712 

500.38 

(528.10) 

8,164,346, 

658,1487 

500.44 

(1065.78) 

2,2,8, 

428,3027 

501.70 

(555.54) 

22,130,322, 

675,1586 
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Table 4.9: The 𝑰𝑪 Performance of Various Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

and 𝝀 = 𝟎. 𝟏𝟎 for the Memory-Type Schemes 

𝒎 𝒏 

Memory-Type Schemes (𝝀 = 𝟎. 𝟏𝟎) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

100 

5 

498.64 

(795.55) 

4,64,212, 

570,2008 

498.80 

(771.88) 

16,79,223, 

564,1961 

499.01 

(884.60) 

1,40,172, 

526,2227 

499.66 

(830.08) 

18,74,203, 

527,2079 

498.01 

(726.58) 

18,107,253, 

568,1828 

504.52 

(1010.85) 

2,3,72, 

482,2753 

503.62 

(670.35) 

18,104,271, 

629,1771 

10 

499.47 

(833.67) 

2,50,189, 

553,2115 

499.49 

(796.47) 

13,69,209, 

557,2028 

502.12 

(926.23) 

1,26,146, 

510,2398 

504.00 

(867.43) 

16,62,185, 

521,2197 

500.92 

(805.22) 

4,76,214, 

551,2008 

498.89 

(1036.01) 

2,3,51, 

440,2865 

499.57 

(667.38) 

17,99,266, 

624,1786 

15 

502.93 

(887.12) 

2,37,166, 

531,2289 

500.90 

(849.62) 

11,57,183, 

535,2152 

498.67 

(978.62) 

1,12,108, 

470,2596 

499.69 

(901.13) 

13,50,157, 

493,2313 

499.32 

(889.44) 

2,45,166, 

514,2258 

504.02 

(1079.43) 

2,3,39, 

400,3113 

499.16 

(684.73) 

15,94,258, 

620,1797 

300 

5 

500.49 

(643.14) 

8,103,283, 

646,1714 

501.64 

(625.87) 

24,116,292, 

638,1694 

499.44 

(688.18) 

2,83,264, 

632,1793 

500.49 

(644.55) 

27,113,281, 

626,1713 

500.45 

(508.68) 

60,180,348, 

641,1440 

498.11 

(847.27) 

2,3,140, 

614,2200 

503.69 

(570.81) 

23,129,319, 

669,1606 

10 

500.46 

(644.32) 

7,100,280, 

643,1746 

502.73 

(629.31) 

21,113,287, 

640,1722 

499.87 

(699.02) 

1,77,256, 

631,1876 

500.55 

(650.85) 

26,109,278, 

621,1750 

499.42 

(529.68) 

52,169,338, 

637,1488 

502.85 

(875.91) 

2,3,125, 

605,2316 

499.63 

(565.50) 

22,126,315, 

664,1607 

15 

499.00 

(661.86) 

6,93,271, 

640,1776 

499.75 

(644.23) 

21,106,279, 

634,1739 

499.66 

(722.54) 

1,68,241, 

619,1915 

504.07 

(675.06) 

25,104,268, 

623,1774 

501.62 

(565.07) 

43,156,324, 

633,1574 

501.43 

(893.15) 

2,3,110, 

587,2360 

499.66 

(567.74) 

22,123,311, 

667,1619 

500 

5 

498.86 

(591.19) 

9,113,304, 

665,1636 

502.23 

(576.60) 

25,128,314, 

663,1606 

501.86 

(642.72) 

2,96,287, 

656,1723 

499.92 

(582.95) 

30,128,308, 

648,1623 

502.38 

(460.92) 

69,199,369, 

654,1379 

499.82 

(800.44) 

2,3,160, 

659,2100 

498.70 

(538.41) 

24,133,328, 

674,1546 

10 

498.29 

(591.66) 

9,111,301, 

665,1649 

500.40 

(575.47) 

25,124,309, 

662,1623 

501.80 

(646.52) 

2,90,282, 

658,1756 

501.76 

(587.02) 

30,126,305, 

652,1641 

499.69 

(469.00) 

66,193,363, 

650,1387 

501.69 

(830.43) 

2,3,147, 

642,2197 

500.71 

(545.47) 

23,132,327, 

676,1560 

15 

499.38 

(603.16) 

9,109,298, 

663,1667 

499.21 

(581.16) 

24,123,306, 

658,1623 

498.12 

(652.00) 

2,86,277, 

648,1750 

501.78 

(601.49) 

28,122,298, 

653,1657 

502.16 

(480.51) 

62,187,359, 

655,1420 

499.38 

(834.58) 

2,3,139, 

639,2197 

501.70 

(555.54) 

22,130,322, 

675,1586 
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Table 4.10: The 𝑰𝑪 Performance of Various Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

and 𝝀 = 𝟎. 𝟐𝟎 for the Memory-Type Schemes 

𝒎 𝒏 

Memory-Type Schemes (𝝀 = 𝟎. 𝟐𝟎) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

100 

5 

499.44 

(731.46) 

9,84,242, 

596,1882 

500.27 

(723.02) 

16,90,247, 

596,1861 

501.50 

(793.33) 

3,69,215, 

573,2006 

501.54 

(764.68) 

17,83,228, 

577,1927 

501.26 

(678.37) 

32,116,270, 

598,1771 

501.52 

(816.19) 

2,39,199, 

584,2120 

503.62 

(670.35) 

18,104,271, 

629,1771 

10 

501.54 

(762.24) 

8,74,228, 

585,1954 

498.96 

(747.45) 

14,79,232, 

582,1923 

500.50 

(816.79) 

2,56,197, 

565,2098 

501.81 

(793.35) 

15,73,215, 

563,2006 

499.38 

(711.47) 

23,100,250, 

589,1831 

502.57 

(846.74) 

2,27,175, 

574,2192 

499.57 

(667.38) 

17,99,266, 

624,1786 

15 

500.57 

(791.06) 

5,62,209, 

576,2024 

499.07 

(777.42) 

11,69,214, 

573,1982 

498.28 

(860.97) 

1,41,167, 

541,2191 

498.00 

(829.00) 

12,60,190, 

538,2124 

499.24 

(749.99) 

16,84,228, 

578,1946 

499.08 

(873.74) 

2,21,155, 

548,2283 

499.16 

(684.73) 

15,94,258, 

620,1797 

300 

5 

502.42 

(604.68) 

16,116,302, 

659,1648 

498.79 

(591.58) 

22,121,303, 

653,1618 

500.28 

(632.85) 

8,105,290, 

650,1689 

497.23 

(607.88) 

24,118,294, 

636,1661 

499.78 

(534.35) 

46,157,331, 

650,1519 

500.40 

(679.78) 

2,65,265, 

662,1816 

503.69 

(570.81) 

23,129,319, 

669,1606 

10 

501.47 

(608.80) 

15,113,298, 

654,1674 

500.17 

(599.43) 

21,118,300, 

649,1657 

501.74 

(645.85) 

6,100,281, 

648,1757 

500.44 

(613.07) 

23,117,295, 

645,1669 

499.17 

(545.35) 

43,149,326, 

649,1547 

498.74 

(690.67) 

2,56,253, 

656,1854 

499.63 

(565.50) 

22,126,315, 

664,1607 

15 

500.74 

(620.36) 

14,108,291, 

651,1712 

498.54 

(608.60) 

21,113,293, 

646,1687 

500.52 

(655.13) 

5,94,275, 

644,1768 

499.29 

(629.42) 

22,111,285, 

638,1717 

500.12 

(563.78) 

41,145,318, 

641,1587 

498.49 

(703.85) 

2,53,243, 

653,1886 

499.66 

(567.74) 

22,123,311, 

667,1619 

500 

5 

502.14 

(568.19) 

17,124,317, 

672,1617 

500.27 

(559.22) 

24,129,318, 

666,1594 

498.15 

(590.72) 

9,113,306, 

664,1646 

500.74 

(572.68) 

27,128,313, 

659,1619 

500.48 

(502.55) 

49,167,346, 

661,1471 

499.44 

(627.22) 

2,74,287, 

682,1730 

498.70 

(538.41) 

24,133,328, 

674,1546 

10 

498.32 

(567.99) 

18,123,312, 

666,1606 

502.18 

(564.67) 

24,128,317, 

670,1608 

502.54 

(601.82) 

8,112,303, 

669,1665 

499.93 

(567.92) 

26,127,311, 

665,1602 

499.31 

(508.34) 

48,162,342, 

658,1473 

499.18 

(651.30) 

2,65,275, 

675,1787 

500.71 

(545.47) 

23,132,327, 

676,1560 

15 

500.28 

(572.52) 

16,122,312, 

672,1609 

499.19 

(563.07) 

23,127,314, 

669,1590 

499.43 

(603.94) 

7,108,300, 

661,1671 

501.46 

(574.62) 

25,126,312, 

667,1617 

499.64 

(514.14) 

47,159,338, 

659,1493 

500.50 

(663.67) 

2,62,268, 

674,1813 

501.70 

(555.54) 

22,130,322, 

675,1586 

 

 

 The first inception that can be made from Tables 4.8 – 4.10 is the 𝐼𝐶 𝑅𝐿 

distributions of all the schemes are positively skewed. One may easily observe 

that the 𝑅𝐿 distribution of all the schemes has a long right tail. On top of that, 

the 𝐴𝑅𝐿0 value is higher than the 50th percentile (median) of the 𝑅𝐿. Further, 

the difference between the 75th and 50th percentiles is bigger than that of the 

50th and 25th percentiles. All these indications suggest that it is insufficient to 

study the 𝐼𝐶 performance of all the schemes purely based on 𝐴𝑅𝐿0 due to the 
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𝑅𝐿 distribution is asymmetric. To this end, it is also vital to evaluate other 𝐼𝐶 

𝑅𝐿 metrics, such as 𝑆𝐷𝑅𝐿0 and 𝐼𝐶 percentiles. 

 

 

4.2.2.1 𝑰𝑪 Performance of the 𝑬𝑳 and 𝑫𝑳 Schemes 

 

 

 Refers to Tables 4.8 – 4.10, one can see that the 𝐼𝐶 performance of the 

𝐸𝐿 scheme with the steady-state 𝑈𝐶𝐿 is slightly better than its counterpart with 

the time-varying 𝑈𝐶𝐿. By evaluating the 5th and 25th of the 𝐼𝐶 percentiles of 

the 𝑅𝐿 distributions, it is noticed that the scheme is apparently weaker if the 

time-varying 𝑈𝐶𝐿 is considered. This is because the 5th and 25th of the 𝐼𝐶 

percentiles of the scheme with the time-varying 𝑈𝐶𝐿 are lower than those of the 

steady-state 𝑈𝐶𝐿, which indicates the 𝐸𝐿 scheme with the time-varying 𝑈𝐶𝐿 

has a higher FAR at the early monitoring stage. The same conclusion can also 

be made for the 𝐷𝐿 scheme.  

 

 

 However, if one ignores the performance of the 5th and 25th percentiles, 

the performance of the time-varying and steady-state 𝑈𝐶𝐿s for these two 

schemes are almost the same. For instance, the 𝐴𝑅𝐿0 is located between the 

50th and 75th percentiles for these two schemes, regardless of the types of 

𝑈𝐶𝐿s, with some exceptions. These include (𝑚, 𝑛, 𝜆) = (100, 15, 0.05) for the 

𝐸𝐿 scheme and additionally (100, 10, 0.05) for the 𝐸𝐿 scheme with the time-

varying 𝑈𝐶𝐿. On the flip side, the exception for the 𝐷𝐿 schemes are (𝑚, 𝜆) =

(100, 0.05) and (𝑚, 𝑛, 𝜆) = (100, 15, 0.10). Note that the 𝐴𝑅𝐿0 is located 

between the 75th and 95th percentiles for all these exceptions. 
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 Besides, regardless of the types of 𝑈𝐶𝐿, when the value of 𝑚 increases, 

most of the percentiles of these two schemes also increase, except the 95th 

percentile, which has a negative relationship with 𝑚. However, the effect of 𝑚 

on the 5th percentile of these two schemes with time-varying 𝑈𝐶𝐿s is minimal. 

This is because the 5th percentile remains almost constant when 𝜆 = 0.05 for 

the two schemes with the time-varying 𝑈𝐶𝐿s, and additionally 𝜆 = 0.10 for the 

𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿. Further, the 𝑆𝐷𝑅𝐿0 decreases as 𝑚 

increases. 

 

 

 When the value of 𝜆 increases, one may notice almost the same pattern 

as 𝑚 increases. On the contrary, the increment in 𝑛 yields a totally contradicting 

effect as the increment in 𝑚 or 𝜆. For example, as 𝑛 increases, all the percentiles 

decrease, except the 95th percentile and 𝑆𝐷𝑅𝐿0. 

 

 

 To this end, the 𝐼𝐶 performance of these two schemes can be improved 

if one uses a larger 𝑚 and 𝜆, but with a smaller 𝑛. Both time-varying and steady-

state 𝑈𝐶𝐿s of these two schemes are acceptably employable. However, 

comparatively, it will be much better to use these schemes with steady-state 

𝑈𝐶𝐿s due to the lower early FAR than their time-varying 𝑈𝐶𝐿s counterparts. 

 

 

4.2.2.2 𝑰𝑪 Performance of the 𝑯𝑳 Scheme 

 

 

 The 𝐻𝐿 scheme displays an opposite pattern compared to the 𝐸𝐿 and 𝐷𝐿 

schemes, as observed in Tables 4.8 – 4.10. This is because the 𝐻𝐿 scheme with 

the time-varying 𝑈𝐶𝐿 has a better 𝐼𝐶 performance than its counterpart with the 
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steady-state 𝑈𝐶𝐿. Notably, the 5th and 25th percentiles of the scheme with the 

steady-state 𝑈𝐶𝐿 are significantly lower than that of the time-varying 𝑈𝐶𝐿, 

except (𝑚, 𝜆) = (100, 0.05). It is worth mentioning that the 5th percentile of 

the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is fixed at 2, for every (𝑚, 𝑛, 𝜆). 

 

 

 Further, the 25th percentile of the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 

when 𝜆 = 0.05 and 𝜆 = 0.10 are very unsatisfactory, i.e., 2 and 3, respectively. 

This indicates the scheme with the steady-state 𝑈𝐶𝐿 has a high tendency of 

signalling a false alarm at the beginning of process monitoring, i.e., by the 3rd 

test sample, in 25% of the time. However, when 𝜆 = 0.20, the 25th percentile 

of the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is more acceptable. In addition, the 

50th percentile of the 𝑅𝐿 when 𝜆 = 0.05 is very unsatisfactory, i.e., less than 

10. Nevertheless, the value of 50th percentile appears to improve as the value 

of 𝜆 increases. 

 

 

 In general, the 𝐴𝑅𝐿0 is located between the 50th and 75th percentiles for 

the 𝐻𝐿 scheme with the time-varying 𝑈𝐶𝐿, except (𝑚, 𝜆) = (100, 0.05). 

Comparatively, the 𝐴𝑅𝐿0 of the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is located 

between the 75th and 95th percentiles when 𝜆 = 0.05, which indicates that the 

𝑅𝐿 distribution is extremely right-skewed. However, when 𝜆 ≥ 0.10, the 𝐴𝑅𝐿0 

is situated between the 50th and 75th percentiles, except (𝑚, 𝜆) = (100, 0.10). 

As usual, the 𝐼𝐶 percentiles, except 95th percentile of the 𝐻𝐿 scheme, tend to 

increase as 𝑚 or 𝜆 increases. The opposite trend is observed for the 𝐼𝐶 

percentiles and 𝑆𝐷𝑅𝐿0 as 𝑛 changing. On the flip side, when 𝑚 or 𝜆 decreases, 

the 95th percentile and 𝑆𝐷𝑅𝐿0 tend to increase. 
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 To this end, one can conclude that the 𝐻𝐿 scheme with the time-varying 

𝑈𝐶𝐿 is a better choice. This is because the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 

has a very high probability of giving false alarms at the early stage of 

monitoring, especially 𝜆 = 0.05. However, the 𝐼𝐶 performance of the 𝐻𝐿 

scheme with the steady-state 𝑈𝐶𝐿 gets better as the value of 𝜆 increases. 

Therefore, in order to employ 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿, it is better 

to choose 𝜆 ≥ 0.20. 

 

 

4.2.2.3 𝑰𝑪 Performance of the 𝑺𝑳 Scheme 

 

 

 The 𝐼𝐶 performance of the 𝑆𝐿 scheme is almost the same as that of the 

𝐸𝐿 and 𝐷𝐿 schemes with steady-state 𝑈𝐶𝐿s. Refers to Tables 4.8 – 4.10, one 

can see that the 𝐴𝑅𝐿0 is positioned between the 50th and 75th percentiles.  

Similarly, in order to have a better 𝐼𝐶 performance, one should use a larger 𝑚 

and a smaller 𝑛 when employing the 𝑆𝐿 scheme. 

 

 

4.2.2.4 Summary 

 

 

 Some of the remarks on the 𝐼𝐶 performance of all the schemes are listed 

down below. 

1. When the 𝐸𝐿 or 𝐷𝐿 scheme is used to monitor a process, both time-

varying and steady-state 𝑈𝐶𝐿s are acceptable. However, the scheme 

with the steady-state 𝑈𝐶𝐿 is preferable due to the two facts below. 

i. The 𝐼𝐶 performance of the scheme with the steady-state 𝑈𝐶𝐿 is 

comparatively better than its time-varying 𝑈𝐶𝐿 counterpart. 
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ii. It is easier to implement the scheme with a steady-state 𝑈𝐶𝐿. 

2. When the 𝐻𝐿 scheme is used for process monitoring, the time-varying 

𝑈𝐶𝐿 is preferable due to its lower early FAR. However, if one wishes to 

use the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 due to easier 

implementation, it is suggestible that one should choose 𝜆 ≥ 0.20. 

3. A larger value of 𝑚 and a smaller value of 𝑛 is preferable to implement 

all of the 𝑆𝐿, 𝐸𝐿, 𝐷𝐿, or 𝐻𝐿 schemes. 

 

 

4.3 𝑶𝑶𝑪 Performance Analysis of the 𝑺𝑳, 𝑬𝑳, 𝑫𝑳, and 𝑯𝑳 Schemes at 

 Micro Level 

 

 

 Again, the Monte-Carlo simulation is employed to evaluate the 𝑂𝑂𝐶 

performance of each scheme, but with 25,000 replicates and a winsorisation 

limit of 5,000. Note that 𝐴𝑅𝐿1 and 𝑆𝐷𝑅𝐿1 are used to compare the 𝑂𝑂𝐶 𝑅𝐿 

properties of various schemes. There are three famous probability distributions 

considered in this dissertation, where two of them follow symmetric 

distribution, and the other follows an asymmetric distribution. The distributions 

considered are 

1. Symmetric thin-tailed Normal distribution with a probability density 

function (𝑃𝐷𝐹) of 𝑓(𝑥) =
1

𝛿√2𝜋
exp [−

(𝑥−𝜃)2

2𝛿2
], 𝑥 ∈ (−∞,∞), where 𝜃 

and 𝛿 are the location and scale parameters, respectively. 

2. Symmetric heavy-tailed Laplace distribution with a 𝑃𝐷𝐹 of 𝑓(𝑥) =

1

2𝛿
exp [−

|𝑥−𝜃|

𝛿
], 𝑥 ∈ (−∞,∞). 

3. Asymmetric Shifted Exponential distribution with a 𝑃𝐷𝐹 of 𝑓(𝑥) =

1

𝛿
exp (

𝑥−𝜃

𝛿
), 𝑥 ∈ [𝜃,∞). 
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 In the simulation study, 𝑋𝑚⃗⃗ ⃗⃗  ⃗ is simulated from the corresponding 

distribution under the setting of 𝜃 = 0 and 𝛿 = 1. Then, there are a total of 34 

𝑂𝑂𝐶 cases considered for comparison, such that 𝑌𝑛𝑖⃗⃗⃗⃗  ⃗ is simulated from the same 

distribution with 𝜃 ∈ {0, 0.1, 0.25, 0.5, 1, 1.5, 2} and 𝛿 ∈ {1, 1.25, 1.5, 1.75, 2}. 

In this dissertation, the 𝑂𝑂𝐶 performance of all the schemes are studied and 

compared under the setting of (𝑚, 𝑛) = (100, 5) and 𝐴𝑅𝐿0 ≈ 500. 

 

 

 For each shift size, the corresponding 𝐴𝑅𝐿1 and 𝑆𝐷𝑅𝐿1 for the Normal, 

Laplace, and Shifted Exponential distributions are reported in Tables 4.11 – 

4.13, 4.14 – 4.16, and 4.17 – 4.19, respectively. As discussed previously, the 

early FAR of the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is very high if 𝜆 < 0.20. 

Therefore, when 𝜆 = 0.05 and 𝜆 = 0.10, only six approaches will be studied 

and compared, i.e., 𝐸𝐿 and 𝐷𝐿 scheme (two types of 𝑈𝐶𝐿s), 𝐻𝐿 scheme (time-

varying 𝑈𝐶𝐿 only), and 𝑆𝐿 scheme (steady-state 𝑈𝐶𝐿). On the other hand, when 

𝜆 = 0.20, all the seven approaches will be studied. 

 

 

 To this end, in Tables 4.11 – 4.13, 4.14 – 4.16, and 4.17 – 4.19, the cell 

that is filled with grey colour indicates that it appears to have the best 

performance. For instance, when 𝜆 = 0.05 and 𝜆 = 0.10, the grey coloured cell 

has the lowest 𝐴𝑅𝐿1 among the six approaches. On the flip side, the grey 

coloured cell in these tables with 𝜆 = 0.20 indicates that its 𝐴𝑅𝐿1 is the least 

among the seven approaches. 
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4.3.1 𝑶𝑶𝑪 Performance of the Schemes under the Normal Distribution 

 

 

 Tables 4.11, 4.12, and 4.13 present the 𝑂𝑂𝐶 𝑅𝐿 properties of various 

schemes when the underlying process is normally distributed such that the 

smoothing parameter for the memory-type schemes (𝐸𝐿, 𝐷𝐿, and 𝐻𝐿) are 𝜆 =

0.05, 𝜆 = 0.10, and 𝜆 = 0.20, respectively. Refers to Tables 4.11 – 4.13, some 

of the conclusions that can be made if the process follows a Normal distribution 

are as below: 

 

1. One can easily notice that in none of the case the 𝑆𝐿 scheme performs 

the best if compared with the memory-type 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes, 

even in terms of detecting a large disturbance in the process. 

 

2. Comparatively, both the 𝐸𝐿 and 𝐷𝐿 schemes seem to perform better 

with their time-varying 𝑈𝐶𝐿s, if compared with their steady-state 𝑈𝐶𝐿s. 

The opposite pattern is observed for the 𝐻𝐿 scheme. 

 

3. When the value of 𝜆 increases, excluding the 𝐷𝐿 scheme with the steady-

state 𝑈𝐶𝐿, the memory-type schemes’ performance appears to 

deteriorate, especially in terms of detecting a small to moderate pure or 

mixed shift. Their performance in detecting a large shift is almost 

constant or slightly worsen. For instance, 

a. The performance of the 𝐸𝐿 and 𝐷𝐿 schemes with time-varying 

𝑈𝐶𝐿s, and 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 significantly 

deteriorates in detecting pure or mixed shifts with 𝜃 < 1.5. 
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b. The 𝐸𝐿 scheme with the steady-state 𝑈𝐶𝐿 performs significantly 

worse in detecting a shift with 𝜃 < 1 and/or 𝛿 < 2. 

c. The performance of the 𝐻𝐿 scheme with the time-varying 𝑈𝐶𝐿 

substantially worsens in detecting shifts with 𝜃 < 2. 

 

4. In terms of detecting a small to moderate shift, the performance of the 

𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿 also seems to deteriorate when 𝜆 

value increases. However, its performance in detecting a moderate to 

large shift, says 𝜃 ≥ 1 and/or 𝛿 ≥ 1.75, significantly improves. 

 

5. Generally, when 𝜆 = 0.05 and excluding the 𝐻𝐿 scheme with the 

steady-state 𝑈𝐶𝐿 due to its high early FAR, it is observed that 

a. The 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes with time-varying 𝑈𝐶𝐿s are 

performing almost equally good in detecting a large pure or 

mixed shift with 𝜃 ≥ 1.5 in the process. 

b. The 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 appears to have the 

best performance in general, except in detecting a small and pure 

location shift, i.e., (𝜃, 𝛿) = (0.1, 1) where the 𝐻𝐿 scheme with 

the time-varying 𝑈𝐶𝐿 able to detect it the fastest. 

 

6. When 𝜆 = 0.10 and excluding the 𝐻𝐿 scheme with the steady-state 

𝑈𝐶𝐿, again, the 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 seems to have 

the best overall performance in detecting all shift sizes in the process. 

This is true except for a very small shift in the location, i.e., (𝜃, 𝛿) =
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(0.1, 1), such that the 𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿 is 

apparently better. 

 

7. The 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 and the 𝐻𝐿 scheme with the 

steady-state 𝑈𝐶𝐿 perform equally good when 𝜆 = 0.20, such that 

a. The 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 seems better in 

detecting a pure location shift, except for (𝜃, 𝛿) = (1, 1). Also, 

it is good in detecting a large mixed shift with 𝜃 ≥ 1.5. 

b. For the rest of the cases, the 𝐻𝐿 scheme with the steady-state 

𝑈𝐶𝐿 appears to superior 
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Table 4.11: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟎𝟓 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Normal Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟎𝟓) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
419.3 

(810.4) 

414.7 

(742.6) 

411.3 

(900.9) 

429.3 

(836.0) 

410.5 

(829.7) 

400.4 

(1058.2) 

445.9 

(615.9) 

0.25 1 
168.6 

(429.5) 
181.5 

(413.9) 
154.2 

(482.1) 
165.1 

(408.4) 
159.2 

(425.7) 
133.6 

(551.4) 
257.3 

(400.7) 

0.5 1 
19.3 

(42.5) 

26.1 

(51.4) 

14.3 

(30.8) 

26.8 

(48.0) 

18.4 

(42.6) 

8.8 

(48.4) 

68.4 

(105.9) 

1 1 
2.4 

(2.1) 

4.4 

(2.7) 

1.9 

(1.8) 

7.9 

(2.5) 

2.6 

(2.1) 

2.1 

(1.0) 

7.7 

(8.8) 

1.5 1 
1.2 

(0.6) 

2.1 

(1.0) 

1.1 

(0.4) 

4.9 

(1.0) 

1.3 

(0.8) 

1.5 

(0.6) 

2.2 

(1.7) 

2 1 
1.0 

(0.2) 
1.4 

(0.5) 
1.0 

(0.1) 
3.7 

(0.6) 
1.0 

(0.3) 
1.2 

(0.4) 
1.2 

(0.6) 

Pure 

Shift 

in 𝛿 

0 1.25 
37.3 

(72.4) 

47.1 

(67.3) 

30.3 

(64.1) 

45.6 

(57.4) 

35.9 

(65.0) 

17.2 

(58.7) 

102.1 

(125.3) 

0 1.5 
9.3 

(12.4) 

14.7 

(12.9) 

7.7 

(11.0) 

17.8 

(10.8) 

9.4 

(12.3) 

4.7 

(7.0) 

37.3 

(41.9) 

0 1.75 
4.7 

(5.1) 

8.3 

(5.7) 

4.0 

(4.8) 

12.0 

(4.9) 

4.9 

(5.1) 

3.1 

(2.7) 

19.0 

(20.2) 

0 2 
3.2 

(3.0) 

5.9 

(3.6) 

2.7 

(2.8) 

9.6 

(3.2) 

3.4 

(3.1) 

2.5 

(1.5) 

11.6 

(11.8) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
34.3 

(71.8) 
43.8 

(60.3) 
28.2 

(62.8) 
42.8 

(54.7) 
32.8 

(59.2) 
16.6 

(65.9) 
95.2 

(117.1) 

0.1 1.5 
9.1 

(12.1) 

14.2 

(12.2) 

7.5 

(10.7) 

17.4 

(10.4) 

9.2 

(11.8) 

4.5 

(6.6) 

36.2 

(41.0) 

0.1 1.75 
4.7 

(5.0) 

8.2 

(5.6) 

3.9 

(4.7) 

11.9 

(4.9) 

4.9 

(5.0) 

3.0 

(2.5) 

18.6 

(19.8) 

0.1 2 
3.2 

(3.0) 

5.9 

(3.6) 

2.6 

(2.8) 

9.6 

(3.2) 

3.4 

(3.1) 

2.5 

(1.5) 

11.5 

(11.7) 

0.25 1.25 
23.4 

(46.1) 
31.3 

(43.8) 
18.8 

(36.0) 
32.0 

(37.2) 
22.4 

(41.5) 
10.7 

(45.9) 
70.2 

(89.9) 

0.25 1.5 
7.8 

(9.6) 

12.6 

(10.4) 

6.5 

(9.1) 

16.0 

(8.9) 

7.9 

(9.7) 

4.1 

(5.5) 

30.0 

(33.6) 

0.25 1.75 
4.4 

(4.6) 

7.8 

(5.3) 

3.7 

(4.3) 

11.5 

(4.6) 

4.6 

(4.6) 

2.9 

(2.3) 

16.6 

(17.4) 

0.25 2 
3.1 

(2.9) 

5.6 

(3.4) 

2.6 

(2.7) 

9.4 

(3.0) 

3.3 

(2.9) 

2.5 

(1.5) 

10.8 

(10.9) 

0.5 1.25 
9.0 

(12.6) 
13.9 

(13.3) 
7.4 

(11.1) 
17.2 

(11.5) 
9.1 

(12.1) 
4.6 

(7.8) 
30.9 

(38.4) 

0.5 1.5 
5.2 

(5.8) 

8.9 

(6.7) 

4.4 

(5.6) 

12.5 

(5.7) 

5.4 

(5.8) 

3.2 

(3.1) 

18.1 

(19.9) 

0.5 1.75 
3.6 

(3.5) 

6.4 

(4.3) 

3.0 

(3.4) 

10.1 

(3.7) 

3.8 

(3.6) 

2.7 

(1.8) 

12.0 

(12.3) 

0.5 2 
2.8 

(2.5) 

5.1 

(3.1) 

2.3 

(2.3) 

8.7 

(2.8) 

3.0 

(2.5) 

2.4 

(1.3) 

8.8 

(8.6) 

1 1.25 
2.5 

(2.1) 

4.5 

(2.8) 

2.0 

(1.9) 

7.9 

(2.6) 

2.7 

(2.2) 

2.2 

(1.1) 

6.8 

(7.1) 

1 1.5 
2.4 

(2.0) 

4.2 

(2.6) 

2.0 

(1.8) 

7.7 

(2.4) 

2.6 

(2.1) 

2.2 

(1.1) 

6.1 

(6.0) 

1 1.75 
2.2 

(1.8) 

3.9 

(2.3) 

1.9 

(1.6) 

7.4 

(2.2) 

2.4 

(2.0) 

2.1 

(1.0) 

5.5 

(5.2) 

1 2 
2.0 

(1.6) 

3.7 

(2.1) 

1.7 

(1.4) 

7.1 

(2.0) 

2.2 

(1.7) 

2.1 

(0.9) 

4.9 

(4.6) 

1.5 1.25 
1.4 

(0.7) 

2.3 

(1.2) 

1.2 

(0.6) 

5.2 

(1.2) 

1.5 

(1.0) 

1.6 

(0.6) 

2.5 

(2.1) 

1.5 1.5 
1.5 

(0.8) 

2.5 

(1.3) 

1.3 

(0.7) 

5.5 

(1.3) 

1.6 

(1.1) 

1.7 

(0.7) 

2.7 

(2.2) 

1.5 1.75 
1.5 

(0.9) 

2.6 

(1.4) 

1.3 

(0.8) 

5.6 

(1.4) 

1.7 

(1.2) 

1.7 

(0.7) 

2.8 

(2.3) 

1.5 2 
1.5 

(0.9) 
2.6 

(1.4) 
1.3 

(0.8) 
5.6 

(1.4) 
1.7 

(1.2) 
1.7 

(0.7) 
2.9 

(2.4) 

2 1.25 
1.1 

(0.3) 

1.6 

(0.7) 

1.0 

(0.2) 

4.0 

(0.7) 

1.1 

(0.4) 

1.3 

(0.5) 

1.4 

(0.8) 

2 1.5 
1.1 

(0.4) 

1.7 

(0.8) 

1.1 

(0.3) 

4.3 

(0.9) 

1.2 

(0.6) 

1.4 

(0.5) 

1.6 

(1.0) 

2 1.75 
1.2 

(0.5) 

1.9 

(0.9) 

1.1 

(0.4) 

4.5 

(0.9) 

1.3 

(0.7) 

1.4 

(0.6) 

1.8 

(1.2) 

2 2 
1.2 

(0.6) 
2.0 

(1.0) 
1.1 

(0.4) 
4.7 

(1.0) 
1.3 

(0.8) 
1.5 

(0.6) 
1.9 

(1.3) 

Note: The 𝐻𝐿 scheme with the SS 𝑈𝐶𝐿 is not considered for comparison due to its extraordinary high early FAR. 
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Table 4.12: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟏𝟎 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Normal Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟏𝟎) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
428.9 

(726.0) 

419.5 

(693.7) 

421.2 

(800.6) 

414.8 

(734.2) 

422.5 

(645.9) 

432.8 

(925.4) 

445.9 

(615.9) 

0.25 1 
191.0 

(402.4) 
196.9 

(396.0) 
170.6 

(429.3) 
177.4 

(390.8) 
196.7 

(350.7) 
167.3 

(505.7) 
257.3 

(400.7) 

0.5 1 
27.0 

(58.7) 

30.4 

(57.6) 

20.2 

(40.4) 

28.2 

(62.2) 

33.9 

(50.9) 

14.6 

(52.1) 

68.4 

(105.9) 

1 1 
2.9 

(2.6) 

4.3 

(2.8) 

2.4 

(2.2) 

6.4 

(2.4) 

3.9 

(3.2) 

2.2 

(1.2) 

7.7 

(8.8) 

1.5 1 
1.3 

(0.7) 

2.0 

(1.0) 

1.2 

(0.5) 

3.8 

(0.9) 

1.6 

(1.1) 

1.5 

(0.6) 

2.2 

(1.7) 

2 1 
1.1 

(0.2) 
1.3 

(0.5) 
1.0 

(0.2) 
2.9 

(0.6) 
1.1 

(0.4) 
1.2 

(0.4) 
1.2 

(0.6) 

Pure 

Shift 

in 𝛿 

0 1.25 
49.7 

(81.7) 

54.5 

(80.9) 

40.3 

(71.8) 

49.8 

(67.7) 

62.2 

(77.5) 

30.8 

(86.4) 

102.1 

(125.3) 

0 1.5 
12.6 

(15.3) 

15.9 

(15.3) 

10.3 

(13.2) 

16.7 

(12.4) 

18.0 

(18.0) 

6.8 

(11.3) 

37.3 

(41.9) 

0 1.75 
6.2 

(6.4) 

8.5 

(6.4) 

5.1 

(5.7) 

10.4 

(5.3) 

8.7 

(8.1) 

3.7 

(3.9) 

19.0 

(20.2) 

0 2 
4.0 

(3.7) 

5.9 

(4.0) 

3.4 

(3.4) 

8.0 

(3.3) 

5.6 

(4.8) 

2.8 

(2.1) 

11.6 

(11.8) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
46.1 

(78.8) 
50.8 

(74.4) 
37.3 

(65.6) 
46.5 

(63.7) 
57.9 

(73.1) 
27.2 

(65.8) 
95.2 

(117.1) 

0.1 1.5 
12.2 

(14.8) 

15.2 

(14.5) 

10.0 

(12.6) 

16.3 

(12.3) 

17.4 

(17.6) 

6.5 

(10.6) 

36.2 

(41.0) 

0.1 1.75 
6.0 

(6.2) 

8.4 

(6.3) 

5.1 

(5.7) 

10.3 

(5.3) 

8.6 

(7.9) 

3.7 

(3.9) 

18.6 

(19.8) 

0.1 2 
4.0 

(3.7) 

5.8 

(3.9) 

3.4 

(3.4) 

7.9 

(3.2) 

5.6 

(4.7) 

2.8 

(2.1) 

11.5 

(11.7) 

0.25 1.25 
31.5 

(55.5) 
35.2 

(49.7) 
25.3 

(42.3) 
33.5 

(39.4) 
40.3 

(48.7) 
17.8 

(44.4) 
70.2 

(89.9) 

0.25 1.5 
10.4 

(12.3) 

13.2 

(12.2) 

8.7 

(10.7) 

14.7 

(10.4) 

14.9 

(14.9) 

5.8 

(8.7) 

30.0 

(33.6) 

0.25 1.75 
5.6 

(5.7) 

7.9 

(5.9) 

4.7 

(5.2) 

9.8 

(4.9) 

7.9 

(7.2) 

3.5 

(3.5) 

16.6 

(17.4) 

0.25 2 
3.9 

(3.5) 

5.7 

(3.7) 

3.2 

(3.2) 

7.7 

(3.2) 

5.3 

(4.5) 

2.7 

(2.0) 

10.8 

(10.9) 

0.5 1.25 
12.1 

(16.6) 
15.0 

(16.9) 
9.9 

(13.4) 
16.1 

(13.6) 
16.9 

(18.9) 
6.6 

(12.1) 
30.9 

(38.4) 

0.5 1.5 
6.7 

(7.3) 

9.0 

(7.3) 

5.7 

(6.6) 

10.9 

(6.2) 

9.6 

(9.2) 

4.0 

(4.8) 

18.1 

(19.9) 

0.5 1.75 
4.5 

(4.3) 

6.4 

(4.6) 

3.8 

(4.0) 

8.5 

(3.9) 

6.3 

(5.5) 

3.1 

(2.6) 

12.0 

(12.3) 

0.5 2 
3.4 

(3.0) 

5.0 

(3.2) 

2.9 

(2.8) 

7.1 

(2.8) 

4.6 

(3.8) 

2.6 

(1.7) 

8.8 

(8.6) 

1 1.25 
3.0 

(2.6) 

4.4 

(2.9) 

2.5 

(2.4) 

6.4 

(2.5) 

4.0 

(3.3) 

2.3 

(1.4) 

6.8 

(7.1) 

1 1.5 
2.8 

(2.4) 

4.2 

(2.7) 

2.4 

(2.2) 

6.3 

(2.4) 

3.8 

(3.1) 

2.3 

(1.4) 

6.1 

(6.0) 

1 1.75 
2.6 

(2.1) 

3.9 

(2.4) 

2.2 

(2.0) 

6.0 

(2.2) 

3.5 

(2.7) 

2.2 

(1.2) 

5.5 

(5.2) 

1 2 
2.4 

(1.9) 

3.5 

(2.1) 

2.0 

(1.7) 

5.6 

(1.9) 

3.2 

(2.4) 

2.1 

(1.1) 

4.9 

(4.6) 

1.5 1.25 
1.5 

(0.9) 

2.2 

(1.1) 

1.3 

(0.7) 

4.1 

(1.1) 

1.9 

(1.3) 

1.6 

(0.6) 

2.5 

(2.1) 

1.5 1.5 
1.6 

(1.0) 

2.4 

(1.3) 

1.4 

(0.9) 

4.3 

(1.2) 

2.1 

(1.4) 

1.7 

(0.7) 

2.7 

(2.2) 

1.5 1.75 
1.7 

(1.1) 

2.5 

(1.4) 

1.5 

(1.0) 

4.4 

(1.3) 

2.2 

(1.5) 

1.8 

(0.7) 

2.8 

(2.3) 

1.5 2 
1.7 

(1.1) 
2.5 

(1.4) 
1.5 

(1.0) 
4.4 

(1.3) 
2.2 

(1.5) 
1.8 

(0.8) 
2.9 

(2.4) 

2 1.25 
1.1 

(0.4) 

1.5 

(0.6) 

1.1 

(0.3) 

3.1 

(0.7) 

1.3 

(0.7) 

1.3 

(0.5) 

1.4 

(0.8) 

2 1.5 
1.2 

(0.5) 

1.7 

(0.8) 

1.1 

(0.4) 

3.3 

(0.8) 

1.4 

(0.8) 

1.4 

(0.5) 

1.6 

(1.0) 

2 1.75 
1.3 

(0.6) 

1.8 

(0.9) 

1.2 

(0.5) 

3.5 

(0.9) 

1.5 

(1.0) 

1.5 

(0.6) 

1.8 

(1.2) 

2 2 
1.3 

(0.7) 
1.9 

(0.9) 
1.2 

(0.6) 
3.6 

(0.9) 
1.6 

(1.0) 
1.5 

(0.6) 
1.9 

(1.3) 

Note: The 𝐻𝐿 scheme with the SS 𝑈𝐶𝐿 is not considered for comparison due to its extraordinary high early FAR. 
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Table 4.13: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟐𝟎 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Normal Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟐𝟎) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
435.9 

(677.2) 

435.9 

(666.8) 

430.2 

(724.6) 

429.1 

(686.9) 

431.5 

(604.9) 

434.8 

(739.9) 

445.9 

(615.9) 

0.25 1 
215.6 

(398.2) 
216.9 

(391.6) 
194.4 

(408.1) 
198.2 
(388) 

220.0 
(350.4) 

204.1 
(439.4) 

257.3 
(400.7) 

0.5 1 
37.0 

(74.3) 

38.9 

(73.7) 

27.7 

(51.8) 

31.8 

(61.9) 

45.1 

(65.6) 

27.8 

(65.4) 

68.4 

(105.9) 

1 1 
3.6 

(3.2) 

4.4 

(3.3) 

2.9 

(2.6) 

5.0 

(2.5) 

5.1 

(4.1) 

2.7 

(2.3) 

7.7 

(8.8) 

1.5 1 
1.5 

(0.8) 

1.9 

(1.0) 

1.3 

(0.7) 

2.8 

(0.8) 

1.9 

(1.2) 

1.5 

(0.6) 

2.2 

(1.7) 

2 1 
1.1 

(0.3) 
1.3 

(0.5) 
1.0 

(0.2) 
2.1 

(0.4) 
1.2 

(0.5) 
1.2 

(0.4) 
1.2 

(0.6) 

Pure 

Shift 

in 𝛿 

0 1.25 
63.9 

(92.8) 

66.6 

(92.3) 

51.7 

(82.2) 

58.1 

(83.0) 

78.0 

(93.0) 

51.2 

(90.0) 

102.1 

(125.3) 

0 1.5 
17.0 

(20.4) 

18.7 

(20.4) 

13.3 

(16.4) 

16.8 

(15.8) 

23.9 

(22.0) 

11.9 

(18.2) 

37.3 

(41.9) 

0 1.75 
8.0 

(8.2) 

9.3 

(8.2) 

6.4 

(6.7) 

9.2 

(6.4) 

11.8 

(9.8) 

5.4 

(6.4) 

19.0 

(20.2) 

0 2 
5.1 

(4.6) 

6.1 

(4.6) 

4.2 

(3.9) 

6.6 

(3.6) 

7.5 

(5.9) 

3.6 

(3.5) 

11.6 

(11.8) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
58.9 

(85.4) 
61.5 

(84.9) 
47.5 

(75.1) 
54.4 

(82.2) 
72.2 

(84.7) 
47.2 

(84.8) 
95.2 

(117.1) 

0.1 1.5 
16.3 

(19.5) 

18.1 

(19.5) 

12.9 

(15.4) 

16.3 

(15.3) 

23.1 

(21.3) 

11.6 

(17.2) 

36.2 

(41.0) 

0.1 1.75 
7.8 

(7.9) 

9.1 

(7.9) 

6.4 

(6.6) 

9.1 

(6.2) 

11.6 

(9.7) 

5.3 

(6.3) 

18.6 

(19.8) 

0.1 2 
5.0 

(4.5) 

6.1 

(4.6) 

4.1 

(3.9) 

6.6 

(3.6) 

7.4 

(5.8) 

3.6 

(3.3) 

11.5 

(11.7) 

0.25 1.25 
41.1 

(63.9) 
43.4 

(63.4) 
32.9 

(50.2) 
38.4 

(57.0) 
51.3 

(59.8) 
31.5 

(58.7) 
70.2 

(89.9) 

0.25 1.5 
13.8 

(16.2) 

15.4 

(16.1) 

11.0 

(12.9) 

14.2 

(12.7) 

19.8 

(18.5) 

9.5 

(13.5) 

30.0 

(33.6) 

0.25 1.75 
7.2 

(7.1) 

8.4 

(7.1) 

5.9 

(6.0) 

8.6 

(5.6) 

10.7 

(8.8) 

4.9 

(5.5) 

16.6 

(17.4) 

0.25 2 
4.8 

(4.4) 

5.8 

(4.4) 

4.0 

(3.7) 

6.4 

(3.4) 

7.1 

(5.5) 

3.5 

(3.2) 

10.8 

(10.9) 

0.5 1.25 
15.9 

(21.8) 
17.4 

(21.7) 
12.6 

(16.4) 
16.2 

(18.0) 
22.1 

(23.7) 
11.2 

(17.9) 
30.9 

(38.4) 

0.5 1.5 
8.7 

(9.3) 

10.0 

(9.3) 

7.1 

(7.9) 

9.9 

(7.5) 

12.6 

(11.1) 

6.0 

(7.5) 

18.1 

(19.9) 

0.5 1.75 
5.6 

(5.3) 

6.7 

(5.4) 

4.7 

(4.6) 

7.2 

(4.3) 

8.3 

(6.8) 

4.0 

(4.1) 

12.0 

(12.3) 

0.5 2 
4.2 

(3.6) 

5.1 

(3.7) 

3.5 

(3.2) 

5.8 

(3.0) 

6.1 

(4.7) 

3.1 

(2.7) 

8.8 

(8.6) 

1 1.25 
3.6 

(3.2) 

4.4 

(3.2) 

3.0 

(2.7) 

5.1 

(2.6) 

5.1 

(4.1) 

2.7 

(2.3) 

6.8 

(7.1) 

1 1.5 
3.4 

(2.9) 

4.1 

(3.0) 

2.9 

(2.6) 

5.0 

(2.4) 

4.8 

(3.7) 

2.7 

(2.1) 

6.1 

(6.0) 

1 1.75 
3.1 

(2.5) 

3.8 

(2.6) 

2.6 

(2.3) 

4.7 

(2.2) 

4.4 

(3.3) 

2.5 

(1.8) 

5.5 

(5.2) 

1 2 
2.8 

(2.2) 

3.5 

(2.3) 

2.4 

(2.0) 

4.4 

(1.9) 

3.9 

(2.9) 

2.3 

(1.5) 

4.9 

(4.6) 

1.5 1.25 
1.7 

(1.0) 

2.1 

(1.2) 

1.5 

(0.9) 

3.0 

(1.0) 

2.2 

(1.5) 

1.7 

(0.7) 

2.5 

(2.1) 

1.5 1.5 
1.8 

(1.2) 

2.3 

(1.3) 

1.6 

(1.1) 

3.2 

(1.2) 

2.4 

(1.7) 

1.8 

(0.8) 

2.7 

(2.2) 

1.5 1.75 
1.9 

(1.3) 

2.4 

(1.4) 

1.7 

(1.1) 

3.3 

(1.2) 

2.5 

(1.8) 

1.8 

(0.9) 

2.8 

(2.3) 

1.5 2 
1.9 

(1.3) 
2.4 

(1.4) 
1.7 

(1.2) 
3.3 

(1.2) 
2.6 

(1.8) 
1.8 

(0.9) 
2.9 

(2.4) 

2 1.25 
1.2 

(0.5) 

1.4 

(0.6) 

1.1 

(0.4) 

2.3 

(0.5) 

1.4 

(0.7) 

1.3 

(0.5) 

1.4 

(0.8) 

2 1.5 
1.3 

(0.6) 

1.6 

(0.8) 

1.2 

(0.5) 

2.5 

(0.7) 

1.5 

(0.9) 

1.4 

(0.5) 

1.6 

(1.0) 

2 1.75 
1.4 

(0.7) 

1.7 

(0.9) 

1.3 

(0.6) 

2.6 

(0.8) 

1.7 

(1.0) 

1.5 

(0.6) 

1.8 

(1.2) 

2 2 
1.5 

(0.8) 
1.8 

(0.9) 
1.3 

(0.7) 
2.7 

(0.8) 
1.8 

(1.1) 
1.5 

(0.6) 
1.9 

(1.3) 
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4.3.2 𝑶𝑶𝑪 Performance of the Schemes under the Laplace Distribution 

 

 

 When the process follows the Laplace distribution, the 𝑂𝑂𝐶 𝑅𝐿 

properties of various schemes are juxtaposed in Tables 4.14 – 4.16. As such, 

Tables 4.14, 4.15, and 4.16, are respectively, for the setting of the memory-type 

schemes when 𝜆 = 0.05, 𝜆 = 0.10, and 𝜆 = 0.20. If the underlying distribution 

of a process follows the Laplace distribution, from Tables 4.14 – 4.16, almost 

the same patterns as the Normal distribution are observed. The details are as 

below: 

 

1. Similarly, there is no shift size that the 𝑆𝐿 scheme is superior. Further, 

compared to the time-varying 𝑈𝐶𝐿, the 𝐻𝐿 scheme appears to be better 

with its steady-state 𝑈𝐶𝐿. However, one is not encouraged to use the 𝐻𝐿 

scheme with the steady-state 𝑈𝐶𝐿 even though it has a lower 𝐴𝑅𝐿1 due 

to its high early FAR when 𝜆 < 0.20. The opposite pattern is observed 

for the 𝐸𝐿 and 𝐷𝐿 schemes. 

 

2. Again, excluding the 𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿, the 

performance of the memory-type schemes worsens as 𝜆 value increases. 

However, their performance is deteriorating in a wider range if 

compared to that of the Normal distribution. For instance, the 𝐸𝐿 and 

𝐷𝐿 schemes with time-varying 𝑈𝐶𝐿s perform significantly worse in 

detecting the shift with 𝜃 < 2, which is wider compared to 𝜃 < 1.5 for 

the Normal distribution. 
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3. When 𝜆 < 0.20, in general, if one ignores the 𝐻𝐿 scheme with the 

steady-state 𝑈𝐶𝐿, the 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 seems to 

outperform other schemes, with some remarks as following. 

a. The 𝐸𝐿 and 𝐻𝐿 schemes with time-varying 𝑈𝐶𝐿s are also 

equally good in detecting large pure or mixed shifts with 𝜃 ≥ 2 

when 𝜆 = 0.05. 

b. The proposed 𝐻𝐿 scheme with the time-varying 𝑈𝐶𝐿 also 

appears to perform well in detecting a small pure or mixed shift 

with 𝜃 ≤ 0.5 or 𝛿 ≤ 1.5 when 𝜆 = 0.05. 

c. In detecting a small and pure shift in the location, i.e., (𝜃, 𝛿) =

(0.1, 1), the 𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿 is apparently 

better when 𝜆 < 0.20. 

 

4. Similarly, when 𝜆 = 0.20, the 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 

appears to be the best in detecting a pure location shift and large mixed 

shifts, except (𝜃, 𝛿) = (1, 1). Then, the 𝐻𝐿 scheme with the steady-state 

𝑈𝐶𝐿 appears to be the best for the remaining 𝑂𝑂𝐶 cases. 
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Table 4.14: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟎𝟓 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Laplace Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟎𝟓) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
462.8 

(866.4) 

457.0 

(806.2) 

452.8 

(952.9) 

446.7 

(835.8) 

458.6 

(893.2) 

453.5 

(1145.0) 

478.5 

(653.0) 

0.25 1 
269.8 

(612.3) 
277.6 

(575.0) 
248.1 

(670.1) 
261.0 

(593.9) 
263.6 

(633.3) 
246.6 

(822.6) 
365.7 

(549.4) 

0.5 1 
51.2 

(175.9) 

58.5 

(163.4) 

38.0 

(155.9) 

50.4 

(125.1) 

47.0 

(168.5) 

29.8 

(212.8) 

161.0 

(301.4) 

1 1 
3.4 

(4.2) 

6.3 

(5.0) 

2.6 

(3.4) 

9.8 

(4.3) 

3.6 

(4.0) 

2.5 

(2.0) 

20.1 

(41.1) 

1.5 1 
1.5 

(0.9) 

2.8 

(1.4) 

1.3 

(0.7) 

5.9 

(1.5) 

1.6 

(1.1) 

1.7 

(0.6) 

4.1 

(5.2) 

2 1 
1.1 

(0.4) 
1.8 

(0.8) 
1.1 

(0.3) 
4.5 

(0.9) 
1.2 

(0.6) 
1.4 

(0.5) 
1.8 

(1.4) 

Pure 

Shift 

in 𝛿 

0 1.25 
73.3 

(159.2) 

85.3 

(170.1) 

66.5 

(201.0) 

80.3 

(148.6) 

70.8 

(161.6) 

48.5 

(247.1) 

152.9 

(197.8) 

0 1.5 
18.8 

(36.3) 

25.6 

(30.5) 

14.9 

(27.9) 

27.2 

(25.8) 

18.6 

(33.2) 

8.2 

(20.5) 

67.0 

(80.8) 

0 1.75 
8.5 

(11.0) 

13.7 

(12.3) 

6.9 

(10.3) 

16.6 

(9.5) 

8.5 

(11.0) 

4.4 

(6.2) 

36.6 

(41.9) 

0 2 
5.2 

(6.1) 

9.1 

(6.6) 

4.3 

(5.4) 

12.7 

(5.6) 

5.3 

(6.0) 

3.2 

(3.3) 

23.0 

(25.3) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
68.9 

(154.4) 
79.2 

(152.4) 
60.1 

(172.1) 
75.3 

(149.1) 
65.7 

(150.3) 
41.7 

(197.7) 
147.0 

(191.2) 

0.1 1.5 
18.1 

(38.1) 

25.0 

(31.7) 

14.4 

(26.7) 

26.7 

(26.8) 

17.9 

(31.2) 

8.1 

(22.1) 

64.8 

(78.2) 

0.1 1.75 
8.3 

(10.8) 

13.1 

(11.2) 

6.7 

(9.8) 

16.4 

(9.5) 

8.4 

(10.9) 

4.2 

(5.8) 

35.7 

(41.3) 

0.1 2 
5.2 

(5.9) 

9.0 

(6.5) 

4.2 

(5.4) 

12.5 

(5.4) 

5.3 

(5.9) 

3.2 

(3.1) 

22.7 

(25.0) 

0.25 1.25 
48.1 

(114.6) 
59.0 

(111.9) 
41.3 

(126.7) 
54.7 

(111.1) 
46.3 

(114.6) 
27.4 

(147.2) 
120.9 

(165.1) 

0.25 1.5 
14.8 

(28.7) 

21.1 

(24.6) 

11.8 

(20.6) 

23.3 

(21.8) 

14.7 

(22.9) 

6.9 

(19.2) 

56.5 

(70.1) 

0.25 1.75 
7.5 

(9.7) 

12.0 

(10.1) 

6.1 

(8.9) 

15.4 

(8.5) 

7.6 

(9.6) 

3.9 

(5.2) 

32.2 

(37.1) 

0.25 2 
4.9 

(5.4) 

8.4 

(6.0) 

3.9 

(5.0) 

12.1 

(5.2) 

5.0 

(5.4) 

3.0 

(2.7) 

21.0 

(23.1) 

0.5 1.25 
17.5 

(40.6) 
24.4 

(41.7) 
13.8 

(33.8) 
25.5 

(34.4) 
17.2 

(36.9) 
8.3 

(41.1) 
66.4 

(101.1) 

0.5 1.5 
8.6 

(12.8) 

13.5 

(13.8) 

6.9 

(11.5) 

16.6 

(11.8) 

8.6 

(12.2) 

4.4 

(8.7) 

36.4 

(47.1) 

0.5 1.75 
5.5 

(6.7) 

9.2 

(7.4) 

4.4 

(6.1) 

12.8 

(6.1) 

5.6 

(6.6) 

3.2 

(3.4) 

23.3 

(27.8) 

0.5 2 
3.9 

(4.2) 

7.1 

(4.9) 

3.2 

(3.8) 

10.7 

(4.1) 

4.1 

(4.2) 

2.7 

(2.1) 

16.4 

(18.4) 

1 1.25 
3.3 

(3.6) 

5.9 

(4.4) 

2.6 

(3.4) 

9.5 

(3.8) 

3.4 

(3.5) 

2.4 

(1.7) 

14.1 

(20.4) 

1 1.5 
3.0 

(3.0) 

5.4 

(3.7) 

2.4 

(2.7) 

9.0 

(3.3) 

3.2 

(3.0) 

2.4 

(1.4) 

11.2 

(13.9) 

1 1.75 
2.7 

(2.5) 

4.9 

(3.1) 

2.2 

(2.2) 

8.5 

(2.8) 

2.9 

(2.5) 

2.3 

(1.3) 

9.3 

(10.7) 

1 2 
2.4 

(2.1) 

4.4 

(2.7) 

2.0 

(1.9) 

8.0 

(2.5) 

2.6 

(2.2) 

2.2 

(1.1) 

7.9 

(8.6) 

1.5 1.25 
1.6 

(1.0) 

2.9 

(1.6) 

1.3 

(0.8) 

6.1 

(1.6) 

1.7 

(1.3) 

1.8 

(0.7) 

4.1 

(4.6) 

1.5 1.5 
1.6 

(1.1) 

3.0 

(1.6) 

1.4 

(0.9) 

6.2 

(1.6) 

1.8 

(1.3) 

1.8 

(0.7) 

4.1 

(4.3) 

1.5 1.75 
1.6 

(1.1) 

3.0 

(1.6) 

1.4 

(0.9) 

6.2 

(1.6) 

1.8 

(1.3) 

1.8 

(0.7) 

4.0 

(4.0) 

1.5 2 
1.6 

(1.1) 
3.0 

(1.6) 
1.4 

(0.9) 
6.2 

(1.6) 
1.8 

(1.3) 
1.8 

(0.7) 
3.9 

(3.8) 

2 1.25 
1.2 

(0.5) 

2.0 

(0.9) 

1.1 

(0.4) 

4.7 

(1.0) 

1.3 

(0.7) 

1.5 

(0.6) 

2.0 

(1.6) 

2 1.5 
1.2 

(0.6) 

2.1 

(1.0) 

1.1 

(0.4) 

4.9 

(1.0) 

1.3 

(0.8) 

1.5 

(0.6) 

2.2 

(1.8) 

2 1.75 
1.3 

(0.6) 

2.2 

(1.0) 

1.1 

(0.5) 

5.0 

(1.1) 

1.4 

(0.9) 

1.6 

(0.6) 

2.3 

(1.9) 

2 2 
1.3 

(0.6) 
2.2 

(1.0) 
1.2 

(0.5) 
5.1 

(1.1) 
1.4 

(0.9) 
1.6 

(0.6) 
2.4 

(1.9) 

Note: The 𝐻𝐿 scheme with the SS 𝑈𝐶𝐿 is not considered for comparison due to its extraordinary high early FAR. 
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Table 4.15: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟏𝟎 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Laplace Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟏𝟎) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
467.0 

(774.4) 

455.2 

(730.4) 

454.0 

(837.9) 

451.9 

(785.3) 

466.2 

(708.7) 

450.0 

(946.6) 

478.5 

(653.0) 

0.25 1 
297.5 

(580.0) 
292.4 

(549.5) 
265.4 

(589.4) 
270.2 

(560.2) 
305.2 

(532.2) 
267.5 

(701.1) 
365.7 

(549.4) 

0.5 1 
70.1 

(197.5) 

72.9 

(185.8) 

50.6 

(157.8) 

58.9 

(153.8) 

79.3 

(179.9) 

50.9 

(235.2) 

161.0 

(301.4) 

1 1 
4.6 

(6.4) 

6.4 

(6.3) 

3.5 

(4.7) 

8.2 

(5.0) 

6.4 

(7.5) 

2.8 

(3.5) 

20.1 

(41.1) 

1.5 1 
1.7 

(1.2) 

2.7 

(1.5) 

1.4 

(0.9) 

4.7 

(1.4) 

2.2 

(1.6) 

1.8 

(0.7) 

4.1 

(5.2) 

2 1 
1.2 

(0.5) 
1.7 

(0.8) 
1.1 

(0.4) 
3.5 

(0.7) 
1.4 

(0.8) 
1.4 

(0.5) 
1.8 

(1.4) 

Pure 

Shift 

in 𝛿 

0 1.25 
92.4 

(178.9) 

97.4 

(165.6) 

82.1 

(188.1) 

91.6 

(168.2) 

106.7 

(156.3) 

64.6 

(191.4) 

152.9 

(197.8) 

0 1.5 
25.7 

(42.5) 

29.4 

(35.9) 

20.4 

(32.6) 

28.4 

(31.5) 

34.7 

(41.3) 

14.4 

(41.0) 

67.0 

(80.8) 

0 1.75 
11.3 

(13.5) 

14.5 

(14.2) 

9.2 

(12.2) 

15.7 

(11.8) 

16.4 

(17.0) 

6.2 

(10.3) 

36.6 

(41.9) 

0 2 
6.9 

(7.6) 

9.4 

(7.7) 

5.6 

(6.5) 

11.1 

(6.2) 

9.9 

(9.5) 

4.0 

(4.6) 

23.0 

(25.3) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
85.9 

(158.4) 
91.7 

(157.9) 
75.1 

(168.5) 
85.2 

(158.8) 
101.0 

(149.3) 
63.0 

(195.5) 
147.0 

(191.2) 

0.1 1.5 
24.7 

(42.0) 

28.5 

(37.2) 

19.7 

(31.8) 

27.4 

(30.7) 

33.5 

(40.2) 

13.5 

(32.4) 

64.8 

(78.2) 

0.1 1.75 
11.1 

(13.3) 

14.3 

(13.9) 

9.0 

(12.0) 

15.2 

(10.7) 

16.0 

(16.4) 

6.0 

(9.6) 

35.7 

(41.3) 

0.1 2 
6.8 

(7.5) 

9.3 

(7.6) 

5.5 

(6.4) 

10.9 

(6.0) 

9.7 

(9.3) 

3.9 

(4.6) 

22.7 

(25.0) 

0.25 1.25 
63.1 

(127.0) 
68.0 

(122.6) 
53.3 

(131.4) 
62.4 

(117.7) 
76.3 

(122.1) 
42.1 

(128.6) 
120.9 

(165.1) 

0.25 1.5 
20.1 

(33.4) 

24.1 

(29.8) 

16.1 

(26.2) 

23.3 

(23.8) 

27.9 

(33.3) 

10.9 

(25.5) 

56.5 

(70.1) 

0.25 1.75 
10.0 

(12.1) 

12.9 

(12.0) 

8.1 

(10.6) 

14.1 

(10.4) 

14.2 

(14.5) 

5.5 

(8.4) 

32.2 

(37.1) 

0.25 2 
6.4 

(6.8) 

8.7 

(7.0) 

5.2 

(6.1) 

10.5 

(5.7) 

9.0 

(8.6) 

3.7 

(4.1) 

21.0 

(23.1) 

0.5 1.25 
24.2 

(51.8) 
27.8 

(45.7) 
19.1 

(44.9) 
26.7 

(42.4) 
31.9 

(50.5) 
13.8 

(53.3) 
66.4 

(101.1) 

0.5 1.5 
11.6 

(16.5) 

14.7 

(17.9) 

9.3 

(13.7) 

15.4 

(13.0) 

16.4 

(19.1) 

6.3 

(12.3) 

36.4 

(47.1) 

0.5 1.75 
7.2 

(8.3) 

9.6 

(8.4) 

5.9 

(7.5) 

11.2 

(7.0) 

10.2 

(10.4) 

4.1 

(5.3) 

23.3 

(27.8) 

0.5 2 
5.1 

(5.3) 

7.2 

(5.3) 

4.2 

(4.6) 

9.1 

(4.5) 

7.2 

(6.7) 

3.2 

(3.0) 

16.4 

(18.4) 

1 1.25 
4.2 

(4.7) 

6.0 

(5.2) 

3.3 

(4.2) 

7.9 

(4.1) 

5.8 

(6.1) 

2.8 

(2.5) 

14.1 

(20.4) 

1 1.5 
3.7 

(3.8) 

5.4 

(4.0) 

3.0 

(3.3) 

7.4 

(3.4) 

5.1 

(4.9) 

2.6 

(2.1) 

11.2 

(13.9) 

1 1.75 
3.3 

(3.1) 

4.8 

(3.3) 

2.7 

(2.8) 

6.9 

(2.8) 

4.5 

(4.0) 

2.5 

(1.6) 

9.3 

(10.7) 

1 2 
2.9 

(2.6) 

4.4 

(2.9) 

2.4 

(2.3) 

6.5 

(2.4) 

4.0 

(3.3) 

2.3 

(1.4) 

7.9 

(8.6) 

1.5 1.25 
1.8 

(1.3) 

2.8 

(1.6) 

1.5 

(1.1) 

4.8 

(1.5) 

2.4 

(1.8) 

1.8 

(0.7) 

4.1 

(4.6) 

1.5 1.5 
1.9 

(1.4) 

2.9 

(1.6) 

1.6 

(1.2) 

4.9 

(1.5) 

2.5 

(1.8) 

1.9 

(0.8) 

4.1 

(4.3) 

1.5 1.75 
1.9 

(1.4) 

2.9 

(1.6) 

1.6 

(1.2) 

4.9 

(1.5) 

2.5 

(1.8) 

1.9 

(0.8) 

4.0 

(4.0) 

1.5 2 
1.9 

(1.3) 
2.9 

(1.6) 
1.6 

(1.2) 
4.9 

(1.5) 
2.5 

(1.8) 
1.9 

(0.8) 
3.9 

(3.8) 

2 1.25 
1.3 

(0.6) 

1.9 

(0.9) 

1.2 

(0.5) 

3.7 

(0.9) 

1.5 

(1.0) 

1.5 

(0.6) 

2.0 

(1.6) 

2 1.5 
1.3 

(0.7) 

2.0 

(1.0) 

1.2 

(0.5) 

3.8 

(0.9) 

1.6 

(1.1) 

1.5 

(0.6) 

2.2 

(1.8) 

2 1.75 
1.4 

(0.7) 

2.1 

(1.0) 

1.2 

(0.6) 

3.9 

(1.0) 

1.7 

(1.1) 

1.6 

(0.6) 

2.3 

(1.9) 

2 2 
1.4 

(0.8) 
2.1 

(1.1) 
1.2 

(0.6) 
4.0 

(1.0) 
1.8 

(1.2) 
1.6 

(0.6) 
2.4 

(1.9) 

Note: The 𝐻𝐿 scheme with the SS 𝑈𝐶𝐿 is not considered for comparison due to its extraordinary high early FAR. 
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Table 4.16: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟐𝟎 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Laplace Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟐𝟎) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
471.1 

(710.9) 

473.4 

(706.1) 

468.2 

(772.4) 

462.2 

(724.9) 

472.0 

(665.2) 

468.7 

(784.3) 

478.5 

(653.0) 

0.25 1 
322.4 

(567.0) 
325.0 

(560.3) 
294.4 

(569.3) 
298.0 

(543.4) 
331.7 

(524.0) 
307.9 

(603.8) 
365.7 

(549.4) 

0.5 1 
94.5 

(230.6) 

97.0 

(229.3) 

69.0 

(184.6) 

74.3 

(188.0) 

106.6 

(218.9) 

85.2 

(258.7) 

161.0 

(301.4) 

1 1 
6.2 

(9.5) 

7.3 

(9.6) 

4.6 

(6.5) 

7.0 

(5.8) 

9.0 

(11.1) 

4.2 

(7.7) 

20.1 

(41.1) 

1.5 1 
2.0 

(1.5) 

2.6 

(1.6) 

1.6 

(1.2) 

3.5 

(1.3) 

2.7 

(2.0) 

1.8 

(0.9) 

4.1 

(5.2) 

2 1 
1.3 

(0.6) 
1.6 

(0.8) 
1.2 

(0.5) 
2.5 

(0.7) 
1.6 

(0.9) 
1.4 

(0.5) 
1.8 

(1.4) 

Pure 

Shift 

in 𝛿 

0 1.25 
110.8 

(181.1) 

113.8 

(179) 

97.5 

(182.8) 

102.2 

(170.7) 

125.7 

(164.7) 

96.0 

(183.7) 

152.9 

(197.8) 

0 1.5 
34.2 

(48.6) 

36.5 

(49.4) 

26.6 

(40.0) 

31.8 

(47.3) 

45.1 

(49.9) 

25.7 

(45.2) 

67.0 

(80.8) 

0 1.75 
15.5 

(18.7) 

17.2 

(18.7) 

11.9 

(14.6) 

15.4 

(14.3) 

22.1 

(20.8) 

10.6 

(15.8) 

36.6 

(41.9) 

0 2 
9.1 

(9.6) 

10.5 

(9.6) 

7.2 

(7.9) 

10.1 

(7.6) 

13.5 

(11.6) 

6.2 

(7.9) 

23.0 

(25.3) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
104.6 

(173.8) 
107.2 

(171.4) 
92.2 

(177.9) 
95.8 

(155.5) 
119.9 

(159.8) 
88.6 

(177.9) 
147.0 

(191.2) 

0.1 1.5 
33.1 

(48.6) 

35.4 

(48.0) 

25.6 

(37.8) 

30.8 

(46.5) 

43.6 

(48.4) 

24.3 

(43.7) 

64.8 

(78.2) 

0.1 1.75 
15.1 

(18.2) 

16.9 

(18.4) 

11.7 

(14.4) 

15.1 

(14.3) 

21.8 

(20.8) 

10.6 

(16.4) 

35.7 

(41.3) 

0.1 2 
8.9 

(9.5) 

10.3 

(9.5) 

7.0 

(7.8) 

10.0 

(7.4) 

13.3 

(11.4) 

6.0 

(7.5) 

22.7 

(25.0) 

0.25 1.25 
78.6 

(136.7) 
81.3 

(136.1) 
65.7 

(127.5) 
71.4 

(122.7) 
92.8 

(134.0) 
65.8 

(140.3) 
120.9 

(165.1) 

0.25 1.5 
27.5 

(42.6) 

29.7 

(42.8) 

21.2 

(31.2) 

25.6 

(35.2) 

36.9 

(40.9) 

20.2 

(35.6) 

56.5 

(70.1) 

0.25 1.75 
13.3 

(15.6) 

15.0 

(15.7) 

10.4 

(13.0) 

13.8 

(12.6) 

19.5 

(18.5) 

9.2 

(14.4) 

32.2 

(37.1) 

0.25 2 
8.3 

(8.8) 

9.7 

(8.8) 

6.5 

(7.1) 

9.4 

(6.8) 

12.4 

(10.7) 

5.6 

(7.1) 

21.0 

(23.1) 

0.5 1.25 
33.0 

(64.3) 
35.0 

(63.7) 
25.3 

(56.0) 
29.4 

(52.6) 
42.7 

(63.8) 
25.9 

(62.7) 
66.4 

(101.1) 

0.5 1.5 
15.7 

(21.5) 

17.3 

(21.6) 

12.1 

(17.6) 

15.5 

(17.2) 

22.1 

(23.9) 

11.0 

(19.9) 

36.4 

(47.1) 

0.5 1.75 
9.5 

(11.0) 

10.9 

(11.2) 

7.4 

(8.9) 

10.3 

(8.5) 

13.9 

(13.2) 

6.4 

(9.2) 

23.3 

(27.8) 

0.5 2 
6.6 

(6.7) 

7.8 

(6.8) 

5.2 

(5.6) 

7.9 

(5.2) 

9.7 

(8.4) 

4.5 

(5.2) 

16.4 

(18.4) 

1 1.25 
5.4 

(7.0) 

6.5 

(7.0) 

4.2 

(5.5) 

6.7 

(4.7) 

7.9 

(8.2) 

3.7 

(4.9) 

14.1 

(20.4) 

1 1.5 
4.7 

(4.9) 

5.7 

(4.9) 

3.7 

(4.1) 

6.1 

(3.8) 

6.8 

(6.3) 

3.3 

(3.6) 

11.2 

(13.9) 

1 1.75 
4.1 

(4.0) 

5.0 

(4.0) 

3.3 

(3.2) 

5.6 

(3.0) 

5.9 

(5.1) 

3.0 

(2.7) 

9.3 

(10.7) 

1 2 
3.6 

(3.2) 

4.5 

(3.3) 

2.9 

(2.7) 

5.1 

(2.5) 

5.2 

(4.1) 

2.7 

(2.2) 

7.9 

(8.6) 

1.5 1.25 
2.1 

(1.6) 

2.8 

(1.7) 

1.8 

(1.3) 

3.6 

(1.4) 

2.9 

(2.2) 

1.9 

(1.0) 

4.1 

(4.6) 

1.5 1.5 
2.2 

(1.7) 

2.8 

(1.8) 

1.8 

(1.4) 

3.7 

(1.5) 

3.0 

(2.3) 

2.0 

(1.0) 

4.1 

(4.3) 

1.5 1.75 
2.2 

(1.7) 

2.8 

(1.8) 

1.9 

(1.4) 

3.7 

(1.5) 

3.1 

(2.2) 

2.0 

(1.0) 

4.0 

(4.0) 

1.5 2 
2.2 

(1.6) 
2.8 

(1.7) 
1.8 

(1.4) 
3.7 

(1.4) 
3.0 

(2.2) 
2.0 

(1.0) 
3.9 

(3.8) 

2 1.25 
1.4 

(0.7) 

1.8 

(0.9) 

1.2 

(0.6) 

2.7 

(0.8) 

1.7 

(1.1) 

1.5 

(0.6) 

2.0 

(1.6) 

2 1.5 
1.5 

(0.8) 

1.9 

(1.0) 

1.3 

(0.7) 

2.8 

(0.9) 

1.9 

(1.2) 

1.6 

(0.6) 

2.2 

(1.8) 

2 1.75 
1.5 

(0.9) 

2.0 

(1.0) 

1.3 

(0.7) 

2.9 

(0.9) 

2.0 

(1.3) 

1.6 

(0.7) 

2.3 

(1.9) 

2 2 
1.6 

(0.9) 
2.0 

(1.1) 
1.4 

(0.8) 
2.9 

(1.0) 
2.0 

(1.3) 
1.6 

(0.7) 
2.4 

(1.9) 
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4.3.3 𝑶𝑶𝑪 Performance of the Schemes under the Shifted Exponential 

 Distribution 

 

 

 The 𝑂𝑂𝐶 𝑅𝐿 properties of various schemes are presented in Tables 4.17 

– 4.19 by assuming that the process follows a Shifted Exponential distribution. 

Precisely, when the smoothing parameter for the memory-type NSPM Lepage-

type schemes are 𝜆 = 0.05, 𝜆 = 0.10, and 𝜆 = 0.20, the results are, 

respectively, tabulated in Tables 4.17, 4.18, and 4.19. From Tables 4.17 – 4.19, 

considers a process that follows the Shifted Exponential distribution, most of 

the observations are similar to that of the Normal and Laplace distributions, with 

some exceptions. To be precise, 

 

1. Surprisingly, for the small and pure shift in the location parameter, i.e., 

(𝜃, 𝛿) = (0.1, 1), the 𝑆𝐿 scheme appears to outperform all the other 

memory-type schemes. 

 

2. As expected, generally, both 𝐸𝐿 and 𝐷𝐿 schemes seem to perform better 

with their time-varying 𝑈𝐶𝐿s if compared with their respective steady-

state 𝑈𝐶𝐿s. The opposite pattern is observed for the 𝐻𝐿 scheme. 

 

3. Also, when 𝜆 value is increasing, excluding the 𝐷𝐿 scheme with the 

steady-state 𝑈𝐶𝐿, the performance of other schemes appears to 

deteriorate, in terms of detecting a small to moderate shift. However, 

particularly, the performance in detecting (𝜃, 𝛿) = (0.1, 1) of the 

memory-type schemes appears to significantly improve when 𝜆 value 

increases, except the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿. 
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4. Particularly, in terms of detecting a mixed shift that involves 𝜃 ≥ 2, all 

the schemes, except the 𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿, are 

performing equally well. 

 

5. In general, the 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 seems to be 

superior when 𝜆 ∈ {0.05, 0.10}. In addition, the other two memory-type 

schemes with time-varying 𝑈𝐶𝐿s also appear to perform well, in terms 

of detecting a large disturbance in the process. 

 

6. Generally, the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 seems to be 

superior in detecting a pure scale shift and small to moderate mixed shift 

when 𝜆 = 0.20. Then, in terms of detecting a pure location shift, the 𝐷𝐿 

scheme with the time-varying 𝑈𝐶𝐿 appears to be the best. 
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Table 4.17: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟎𝟓 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Shifted Exponential Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟎𝟓) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
1029.9 

(1532.4) 

993.2 

(1456.1) 

1025.3 

(1643.1) 

1032.3 

(1550.9) 

1061.3 

(1597.7) 

912.5 

(1719.7) 

879.9 

(1144.6) 

0.25 1 
128.1 

(469.2) 
136.5 

(458.5) 
100.1 

(463.6) 
113.7 

(433.3) 
119.3 

(472.9) 
96.7 

(540.5) 
510.1 

(787.2) 

0.5 1 
5.8 

(7.0) 

9.9 

(6.9) 

3.2 

(4.0) 

12.5 

(4.2) 

5.4 

(5.7) 

2.5 

(26.9) 

161.8 

(298.2) 

1 1 
1.7 

(1.1) 

3.6 

(1.6) 

1.2 

(0.5) 

7.0 

(1.7) 

1.8 

(1.2) 

1.8 

(0.4) 

16.7 

(38.5) 

1.5 1 
1.0 

(0.2) 

1.8 

(0.6) 

1.0 

(0.1) 

4.6 

(0.8) 

1.0 

(0.2) 

1.3 

(0.5) 

2.2 

(3.4) 

2 1 
1.0 

(0.0) 
1.2 

(0.4) 
1.0 

(0.0) 
3.7 

(0.5) 
1.0 

(0.0) 
1.0 

(0.2) 
1.1 

(0.4) 

Pure 

Shift 

in 𝛿 

0 1.25 
122.0 

(303.5) 

133.4 

(275.0) 

107.3 

(323.6) 

126.9 

(283.1) 

113.0 

(288.0) 

89.2 

(398.9) 

195.3 

(278.6) 

0 1.5 
24.3 

(48.5) 

32.1 

(48.7) 

19.5 

(42.9) 

32.7 

(41.4) 

23.4 

(44.0) 

11.3 

(56.3) 

68.5 

(93.2) 

0 1.75 
9.2 

(13.1) 

14.2 

(15.5) 

7.5 

(11.5) 

17.1 

(12.0) 

9.2 

(12.6) 

4.6 

(8.3) 

30.5 

(38.0) 

0 2 
5.2 

(6.0) 

8.6 

(6.8) 

4.3 

(5.7) 

12.2 

(5.8) 

5.3 

(5.9) 

3.2 

(3.5) 

16.8 

(19.6) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
121.4 

(354.4) 
127.0 

(325.1) 
113.1 

(411.7) 
125.4 

(360.5) 
111.6 

(343.3) 
86.8 

(432.4) 
182.0 

(294.8) 

0.1 1.5 
19.3 

(37.6) 

26.4 

(42.8) 

15.5 

(36.4) 

27.5 

(38.5) 

18.4 

(32.6) 

9.5 

(58.0) 

56.9 

(79.5) 

0.1 1.75 
7.5 

(10.2) 

12.0 

(11.4) 

6.2 

(9.7) 

15.3 

(9.5) 

7.6 

(9.8) 

4.1 

(6.5) 

25.7 

(32.3) 

0.1 2 
4.5 

(4.9) 

7.7 

(5.8) 

3.7 

(4.7) 

11.2 

(5.0) 

4.7 

(4.9) 

2.9 

(2.5) 

14.5 

(16.9) 

0.25 1.25 
22.6 

(67.3) 
29.3 

(78.1) 
16.1 

(75.6) 
27.9 

(68.4) 
20.1 

(54.1) 
9.7 

(71.7) 
110.5 

(184.8) 

0.25 1.5 
8.1 

(11.6) 

12.8 

(13.2) 

6.0 

(10.1) 

15.3 

(9.7) 

7.8 

(10.5) 

3.8 

(7.1) 

38.0 

(52.8) 

0.25 1.75 
4.6 

(5.0) 

7.9 

(6.0) 

3.5 

(4.4) 

11.3 

(5.0) 

4.7 

(4.8) 

2.8 

(2.3) 

18.3 

(22.7) 

0.25 2 
3.2 

(3.0) 

5.7 

(3.7) 

2.5 

(2.7) 

9.3 

(3.3) 

3.4 

(3.0) 

2.4 

(1.5) 

10.9 

(12.5) 

0.5 1.25 
4.1 

(3.9) 
7.4 

(4.5) 
2.5 

(2.5) 
10.7 
(3.3) 

4.0 
(3.4) 

2.2 
(1.7) 

43.2 
(71.3) 

0.5 1.5 
3.0 

(2.5) 

5.5 

(3.2) 

2.0 

(1.7) 

9.0 

(2.7) 

3.1 

(2.4) 

2.1 

(0.7) 

17.8 

(24.7) 

0.5 1.75 
2.3 

(1.8) 

4.4 

(2.4) 

1.7 

(1.2) 

7.8 

(2.2) 

2.5 

(1.8) 

1.9 

(0.6) 

9.8 

(11.9) 

0.5 2 
1.9 

(1.4) 

3.6 

(1.9) 

1.5 

(0.9) 

7.0 

(1.8) 

2.1 

(1.5) 

1.9 

(0.5) 

6.4 

(7.0) 

1 1.25 
1.4 

(0.8) 

2.9 

(1.3) 

1.1 

(0.4) 

6.1 

(1.4) 

1.5 

(0.9) 

1.7 

(0.4) 

6.5 

(10.0) 

1 1.5 
1.3 

(0.6) 

2.4 

(1.0) 

1.1 

(0.3) 

5.5 

(1.2) 

1.3 

(0.7) 

1.6 

(0.5) 

3.8 

(4.7) 

1 1.75 
1.2 

(0.4) 

2.2 

(0.9) 

1.0 

(0.2) 

5.1 

(1.0) 

1.2 

(0.6) 

1.5 

(0.5) 

2.7 

(2.8) 

1 2 
1.1 

(0.4) 

2.0 

(0.8) 

1.0 

(0.2) 

4.8 

(0.9) 

1.1 

(0.5) 

1.4 

(0.5) 

2.2 

(2.0) 

1.5 1.25 
1.0 

(0.1) 

1.7 

(0.6) 

1.0 

(0.0) 

4.3 

(0.7) 

1.0 

(0.1) 

1.2 

(0.4) 

1.6 

(1.5) 

1.5 1.5 
1.0 

(0.1) 

1.5 

(0.6) 

1.0 

(0.0) 

4.1 

(0.6) 

1.0 

(0.1) 

1.2 

(0.4) 

1.3 

(0.9) 

1.5 1.75 
1.0 

(0.1) 

1.4 

(0.5) 

1.0 

(0.0) 

3.9 

(0.6) 

1.0 

(0.1) 

1.1 

(0.3) 

1.2 

(0.6) 

1.5 2 
1.0 

(0.1) 
1.3 

(0.5) 
1.0 

(0.0) 
3.8 

(0.6) 
1.0 

(0.1) 
1.1 

(0.3) 
1.1 

(0.5) 

2 1.25 
1.0 

(0.0) 

1.2 

(0.4) 

1.0 

(0.0) 

3.6 

(0.5) 

1.0 

(0.0) 

1.0 

(0.1) 

1.0 

(0.2) 

2 1.5 
1.0 

(0.0) 

1.1 

(0.3) 

1.0 

(0.0) 

3.4 

(0.5) 

1.0 

(0.0) 

1.0 

(0.1) 

1.0 

(0.1) 

2 1.75 
1.0 

(0.0) 

1.1 

(0.3) 

1.0 

(0.0) 

3.3 

(0.5) 

1.0 

(0.0) 

1.0 

(0.1) 

1.0 

(0.1) 

2 2 
1.0 

(0.0) 
1.1 

(0.2) 
1.0 

(0.0) 
3.3 

(0.4) 
1.0 

(0.0) 
1.0 

(0.1) 
1.0 

(0.1) 

Note: The 𝐻𝐿 scheme with the SS 𝑈𝐶𝐿 is not considered for comparison due to its extraordinary high early FAR. 
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Table 4.18: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟏𝟎 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Shifted Exponential Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟏𝟎) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
967.4 

(1377.8) 

944.7 

(1332.5) 

982.4 

(1485.2) 

972.2 

(1424.9) 

952.1 

(1310.3) 

951.6 

(1556.8) 

879.9 

(1144.6) 

0.25 1 
165.9 

(467.3) 
161.9 

(440.7) 
118.7 

(436.7) 
125.2 

(416.2) 
166.5 

(427.2) 
137.1 

(543.4) 
510.1 

(787.2) 

0.5 1 
9.3 

(11.5) 

11.6 

(10.9) 

5.2 

(6.4) 

10.9 

(5.6) 

12.2 

(11.8) 

3.1 

(4.8) 

161.8 

(298.2) 

1 1 
2.2 

(1.6) 

3.5 

(1.8) 

1.5 

(0.9) 

5.5 

(1.5) 

3.0 

(2.1) 

1.9 

(0.3) 

16.7 

(38.5) 

1.5 1 
1.1 

(0.3) 

1.7 

(0.7) 

1.0 

(0.1) 

3.5 

(0.7) 

1.2 

(0.6) 

1.4 

(0.5) 

2.2 

(3.4) 

2 1 
1.0 

(0.0) 
1.1 

(0.4) 
1.0 

(0.0) 
2.9 

(0.4) 
1.0 

(0.1) 
1.0 

(0.2) 
1.1 

(0.4) 

Pure 

Shift 

in 𝛿 

0 1.25 
140.2 

(280.5) 

145.1 

(273.1) 

127.1 

(299.9) 

137.9 

(291.8) 

152.7 

(253.4) 

115.3 

(344.4) 

195.3 

(278.6) 

0 1.5 
32.2 

(58.0) 

37.3 

(57.9) 

26.4 

(51.3) 

34.7 

(51.4) 

41.7 

(57.2) 

19.3 

(58.8) 

68.5 

(93.2) 

0 1.75 
12.1 

(16.0) 

15.3 

(17.7) 

10.0 

(14.1) 

16.2 

(14.8) 

16.9 

(18.6) 

6.5 

(11.3) 

30.5 

(38.0) 

0 2 
6.6 

(7.5) 

8.8 

(7.7) 

5.6 

(6.7) 

10.7 

(6.4) 

9.3 

(9.4) 

3.9 

(4.8) 

16.8 

(19.6) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
137.4 

(326.8) 
139.2 

(302.9) 
124.8 

(354.9) 
133.7 

(343.0) 
139.7 

(274.0) 
106.6 

(368.1) 
182.0 

(294.8) 

0.1 1.5 
26.0 

(45.8) 

29.7 

(48.4) 

20.9 

(41.8) 

28.5 

(44.4) 

33.4 

(43.7) 

14.5 

(41.9) 

56.9 

(79.5) 

0.1 1.75 
10.0 

(13.1) 

12.7 

(14.1) 

8.2 

(11.5) 

13.9 

(10.8) 

14.0 

(15.2) 

5.5 

(9.7) 

25.7 

(32.3) 

0.1 2 
5.7 

(6.2) 

7.7 

(6.4) 

4.8 

(5.6) 

9.7 

(5.5) 

8.0 

(7.8) 

3.6 

(3.9) 

14.5 

(16.9) 

0.25 1.25 
32.9 

(82.3) 
35.8 

(80.6) 
23.1 

(78.5) 
30.2 

(62.6) 
38.9 

(64.1) 
17.3 

(72.3) 
110.5 

(184.8) 

0.25 1.5 
11.2 

(15.7) 

14.1 

(16.3) 

8.4 

(12.4) 

14.2 

(12.8) 

15.4 

(17.1) 

5.5 

(10.6) 

38.0 

(52.8) 

0.25 1.75 
6.0 

(6.7) 

8.1 

(7.0) 

4.8 

(5.6) 

9.7 

(5.4) 

8.3 

(8.2) 

3.4 

(3.7) 

18.3 

(22.7) 

0.25 2 
4.0 

(3.8) 

5.7 

(4.2) 

3.3 

(3.4) 

7.7 

(3.3) 

5.5 

(4.9) 

2.7 

(2.0) 

10.9 

(12.5) 

0.5 1.25 
6.0 

(5.9) 
8.1 

(6.0) 
3.8 

(3.6) 
8.9 

(3.6) 
8.0 

(7.1) 
2.6 

(2.2) 
43.2 

(71.3) 

0.5 1.5 
4.0 

(3.5) 

5.7 

(3.7) 

2.8 

(2.5) 

7.4 

(2.6) 

5.4 

(4.3) 

2.3 

(1.3) 

17.8 

(24.7) 

0.5 1.75 
2.9 

(2.4) 

4.4 

(2.6) 

2.2 

(1.8) 

6.3 

(2.1) 

3.9 

(3.0) 

2.1 

(0.9) 

9.8 

(11.9) 

0.5 2 
2.4 

(1.8) 

3.6 

(2.0) 

1.8 

(1.3) 

5.6 

(1.7) 

3.1 

(2.3) 

1.9 

(0.7) 

6.4 

(7.0) 

1 1.25 
1.7 

(1.1) 

2.8 

(1.4) 

1.3 

(0.6) 

4.8 

(1.2) 

2.2 

(1.5) 

1.7 

(0.4) 

6.5 

(10.0) 

1 1.5 
1.4 

(0.8) 

2.3 

(1.1) 

1.2 

(0.5) 

4.3 

(1.0) 

1.8 

(1.2) 

1.6 

(0.5) 

3.8 

(4.7) 

1 1.75 
1.3 

(0.6) 

2.1 

(0.9) 

1.1 

(0.4) 

3.9 

(0.9) 

1.6 

(1.0) 

1.6 

(0.5) 

2.7 

(2.8) 

1 2 
1.2 

(0.5) 

1.9 

(0.8) 

1.1 

(0.3) 

3.7 

(0.8) 

1.4 

(0.9) 

1.5 

(0.5) 

2.2 

(2.0) 

1.5 1.25 
1.0 

(0.2) 

1.5 

(0.6) 

1.0 

(0.1) 

3.3 

(0.6) 

1.1 

(0.4) 

1.2 

(0.4) 

1.6 

(1.5) 

1.5 1.5 
1.0 

(0.2) 

1.4 

(0.5) 

1.0 

(0.1) 

3.2 

(0.5) 

1.1 

(0.3) 

1.2 

(0.4) 

1.3 

(0.9) 

1.5 1.75 
1.0 

(0.1) 

1.3 

(0.5) 

1.0 

(0.0) 

3.1 

(0.4) 

1.0 

(0.2) 

1.1 

(0.3) 

1.2 

(0.6) 

1.5 2 
1.0 

(0.1) 
1.3 

(0.4) 
1.0 

(0.0) 
3.0 

(0.4) 
1.0 

(0.2) 
1.1 

(0.3) 
1.1 

(0.5) 

2 1.25 
1.0 

(0.0) 

1.1 

(0.3) 

1.0 

(0.0) 

2.8 

(0.4) 

1.0 

(0.0) 

1.0 

(0.1) 

1.0 

(0.2) 

2 1.5 
1.0 

(0.0) 

1.1 

(0.2) 

1.0 

(0.0) 

2.7 

(0.5) 

1.0 

(0.0) 

1.0 

(0.1) 

1.0 

(0.1) 

2 1.75 
1.0 

(0.0) 

1.0 

(0.2) 

1.0 

(0.0) 

2.6 

(0.5) 

1.0 

(0.0) 

1.0 

(0.1) 

1.0 

(0.1) 

2 2 
1.0 

(0.0) 
1.0 

(0.2) 
1.0 

(0.0) 
2.6 

(0.5) 
1.0 

(0.0) 
1.0 

(0.1) 
1.0 

(0.1) 

Note: The 𝐻𝐿 scheme with the SS 𝑈𝐶𝐿 is not considered for comparison due to its extraordinary high early FAR. 
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Table 4.19: The 𝑶𝑶𝑪 Performance of Various Schemes when (𝒎,𝒏) =

(𝟏𝟎𝟎, 𝟓) and 𝝀 = 𝟎. 𝟐𝟎 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 

under the Shifted Exponential Distribution 

Case 𝜽 𝜹 

Memory-Type Schemes (𝝀 = 𝟎. 𝟐𝟎) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

Pure 

Shift 

in 𝜃 

0.1 1 
917.3 

(1247.7) 

914.7 

(1234.7) 

929.6 

(1332.1) 

947.2 

(1328.5) 

909.0 

(1203.8) 

930.8 

(1345.8) 

879.9 

(1144.6) 

0.25 1 
231.2 

(504.3) 
231.2 

(496.5) 
153.6 

(441.1) 
155.7 

(432.0) 
238.3 

(480.2) 
209.1 

(537.4) 
510.1 

(787.2) 

0.5 1 
17.6 

(25.9) 

18.9 

(25.8) 

8.1 

(11.0) 

10.8 

(11.5) 

22.7 

(25.3) 

8.8 

(19.2) 

161.8 

(298.2) 

1 1 
2.9 

(2.6) 

3.7 

(2.6) 

2.0 

(1.4) 

4.2 

(1.4) 

4.2 

(3.3) 

2.0 

(1.0) 

16.7 

(38.5) 

1.5 1 
1.2 

(0.4) 

1.6 

(0.7) 

1.0 

(0.2) 

2.5 

(0.6) 

1.4 

(0.8) 

1.4 

(0.5) 

2.2 

(3.4) 

2 1 
1.0 

(0.1) 
1.1 

(0.3) 
1.0 

(0.0) 
2.0 

(0.2) 
1.0 

(0.2) 
1.0 

(0.2) 
1.1 

(0.4) 

Pure 

Shift 

in 𝛿 

0 1.25 
160.9 

(275.5) 

163.9 

(271.7) 

147.1 

(294.1) 

150.1 

(273.1) 

172.5 

(255.7) 

139.0 

(284.8) 

195.3 

(278.6) 

0 1.5 
42.0 

(67.7) 

44.2 

(67.1) 

34.2 

(60.0) 

38.6 

(58.3) 

51.8 

(65.6) 

32.9 

(69.0) 

68.5 

(93.2) 

0 1.75 
15.8 

(20.4) 

17.5 

(20.7) 

12.8 

(17.6) 

16.1 

(18.7) 

22.1 

(23.0) 

11.4 

(18.3) 

30.5 

(38.0) 

0 2 
8.4 

(9.7) 

9.7 

(9.7) 

7.0 

(7.9) 

9.7 

(8.0) 

12.2 

(11.3) 

5.8 

(7.8) 

16.8 

(19.6) 

Mixed 

Shift 

in 𝜃 

and 𝛿 

0.1 1.25 
151.0 

(297.1) 
153.5 

(293.4) 
140.5 

(329.1) 
144.0 

(316.7) 
156.7 

(266.7) 
131.4 

(314.3) 
182.0 

(294.8) 

0.1 1.5 
33.8 

(54.3) 

35.9 

(54.1) 

27.0 

(47.6) 

31.4 

(49.3) 

42.0 

(52.2) 

26.0 

(59.0) 

56.9 

(79.5) 

0.1 1.75 
13.1 

(16.9) 

14.6 

(17.2) 

10.5 

(13.9) 

13.6 

(14.5) 

18.3 

(18.7) 

9.3 

(16.7) 

25.7 

(32.3) 

0.1 2 
7.2 

(8.0) 

8.4 

(8.1) 

6.0 

(6.6) 

8.5 

(6.4) 

10.4 

(9.5) 

5.1 

(6.4) 

14.5 

(16.9) 

0.25 1.25 
49.1 

(97.2) 
51.1 

(96.3) 
32.7 

(83.4) 
36.4 

(80.3) 
56.2 

(85.2) 
35.2 

(86.7) 
110.5 

(184.8) 

0.25 1.5 
16.1 

(23.7) 

17.7 

(24.0) 

11.4 

(16.7) 

14.4 

(16.1) 

21.6 

(24.0) 

10.6 

(18.6) 

38.0 

(52.8) 

0.25 1.75 
8.0 

(9.4) 

9.2 

(9.5) 

6.1 

(6.9) 

8.7 

(6.6) 

11.3 

(10.6) 

5.3 

(7.4) 

18.3 

(22.7) 

0.25 2 
5.1 

(5.0) 

6.0 

(5.0) 

4.1 

(4.0) 

6.4 

(3.8) 

7.3 

(6.3) 

3.5 

(3.6) 

10.9 

(12.5) 

0.5 1.25 
9.2 

(11.0) 
10.4 

(11.0) 
5.4 

(5.5) 
7.9 

(4.9) 
12.8 

(11.9) 
5.1 

(8.1) 
43.2 

(71.3) 

0.5 1.5 
5.5 

(5.5) 

6.5 

(5.5) 

3.8 

(3.4) 

6.1 

(3.3) 

7.7 

(6.5) 

3.3 

(3.7) 

17.8 

(24.7) 

0.5 1.75 
3.8 

(3.3) 

4.6 

(3.3) 

2.8 

(2.4) 

5.0 

(2.2) 

5.3 

(4.2) 

2.6 

(2.0) 

9.8 

(11.9) 

0.5 2 
2.9 

(2.3) 

3.6 

(2.4) 

2.3 

(1.8) 

4.3 

(1.7) 

4.0 

(3.0) 

2.2 

(1.3) 

6.4 

(7.0) 

1 1.25 
2.1 

(1.5) 

2.8 

(1.6) 

1.5 

(1.0) 

3.6 

(1.1) 

2.9 

(2.0) 

1.8 

(0.6) 

6.5 

(10.0) 

1 1.5 
1.7 

(1.1) 

2.3 

(1.2) 

1.3 

(0.7) 

3.1 

(0.9) 

2.3 

(1.5) 

1.7 

(0.5) 

3.8 

(4.7) 

1 1.75 
1.5 

(0.8) 

2.0 

(1.0) 

1.2 

(0.6) 

2.9 

(0.8) 

1.9 

(1.2) 

1.6 

(0.5) 

2.7 

(2.8) 

1 2 
1.3 

(0.7) 

1.8 

(0.8) 

1.2 

(0.4) 

2.7 

(0.7) 

1.7 

(1.0) 

1.5 

(0.5) 

2.2 

(2.0) 

1.5 1.25 
1.1 

(0.3) 

1.4 

(0.6) 

1.0 

(0.2) 

2.3 

(0.5) 

1.2 

(0.6) 

1.3 

(0.4) 

1.6 

(1.5) 

1.5 1.5 
1.1 

(0.2) 

1.3 

(0.5) 

1.0 

(0.1) 

2.2 

(0.4) 

1.2 

(0.5) 

1.2 

(0.4) 

1.3 

(0.9) 

1.5 1.75 
1.0 

(0.2) 

1.2 

(0.5) 

1.0 

(0.1) 

2.1 

(0.4) 

1.1 

(0.4) 

1.1 

(0.3) 

1.2 

(0.6) 

1.5 2 
1.0 

(0.2) 
1.2 

(0.4) 
1.0 

(0.1) 
2.1 

(0.3) 
1.1 

(0.3) 
1.1 

(0.3) 
1.1 

(0.5) 

2 1.25 
1.0 

(0.0) 

1.1 

(0.2) 

1.0 

(0.0) 

2.0 

(0.1) 

1.0 

(0.1) 

1.0 

(0.1) 

1.0 

(0.2) 

2 1.5 
1.0 

(0.0) 

1.0 

(0.2) 

1.0 

(0.0) 

2.0 

(0.1) 

1.0 

(0.1) 

1.0 

(0.1) 

1.0 

(0.1) 

2 1.75 
1.0 

(0.0) 

1.0 

(0.1) 

1.0 

(0.0) 

2.0 

(0.1) 

1.0 

(0.1) 

1.0 

(0.1) 

1.0 

(0.1) 

2 2 
1.0 

(0.0) 
1.0 

(0.1) 
1.0 

(0.0) 
2.0 

(0.1) 
1.0 

(0.1) 
1.0 

(0.1) 
1.0 

(0.1) 
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4.4 𝑶𝑶𝑪 Performance Analysis of the 𝑺𝑳, 𝑬𝑳, 𝑫𝑳, and 𝑯𝑳 Schemes at 

 Macro Level 

 

 

 From the 𝑂𝑂𝐶 performance comparison study in Section 4.3, one might 

think that, on average, the 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 appears to be 

the best choice to use for process monitoring if 𝜆 < 0.20. Then, if one uses 𝜆 =

0.20, both the 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 and the 𝐻𝐿 scheme with 

the steady-state 𝑈𝐶𝐿 seem to be competitively good. To this end, quality 

practitioners prefer to use a scheme with the best overall performance due to the 

exact shift size is hardly known in real life. To achieve this objective, the 𝐸𝐴𝑅𝐿 

index of various schemes are assessed. Similar to the 𝑂𝑂𝐶 performance 

comparison study done in Section 4.3, only the setting of (𝑚, 𝑛) = (100, 5) 

with 𝐴𝑅𝐿0 ≈ 500 is implemented here. 

 

 

 To compare the 𝑂𝑂𝐶 performance of various schemes at the macro 

level, four scenarios will be considered, which are explained in Table 4.20. One 

may find that the possible downward shift in the scale parameter is not included 

here. This is because, in many contexts, especially the manufacturing sectors, 

the reduction of scale is not treated as an issue; instead, it is regarded as a 

process improvement. 
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Table 4.20: Four Scenarios of 𝑶𝑶𝑪 Cases Studied in Macro Level 

Scenario 
Possible shift Description on 

𝜽 × 𝜹 Location (L) parameter Scale (S) parameter 

I (LUB-SUB) U in B U in B [0, 3] × [1, 3] 

II (LDB-SUB) D in B U in B [−3, 0] × [1, 3] 

III (LUM-SUM) U in M U in M [0, 1.5] × [1,2] 

IV (LDM-SUM) D in M U in M [−1.5, 0] × [1,2] 

Note: 

(i) U indicates an upward shift, while D indicates a downward shift. 

(ii) B indicates a broader region, while M indicates a small to moderate region. 

 

 

 The 𝐸𝐴𝑅𝐿 values of all the schemes under Normal, Laplace, and Shifted 

Exponential distributions are tabulated in Tables 4.21, 4.22, and 4.23, 

respectively. Refers to Tables 4.21 – 4.23, one can easily notice that the 𝐸𝐴𝑅𝐿 

value of the 𝑆𝐿 scheme is always the highest among all the schemes. This 

indicates that the 𝑆𝐿 scheme performs the worst because it requires more test 

samples to signal an 𝑂𝑂𝐶 signal in general. Hence, it is much interesting to 

study and compare the performance of the memory-type 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 

schemes. 

 

 

 Some of the observations regarding the memory-type schemes that can 

be made by referring to Tables 4.21 – 4.23 are 

 

1. Regardless of the probability distribution and scenarios, the 𝐸𝐿 and 𝐷𝐿 

schemes seem to perform better with their time-varying 𝑈𝐶𝐿s, compared 

to their respective steady-state 𝑈𝐶𝐿s. This is because their 𝐸𝐴𝑅𝐿 values 

with time-varying 𝑈𝐶𝐿s are lower. On the other hand, the 𝐻𝐿 scheme 

displays an opposite pattern, i.e., the 𝐻𝐿 scheme with the steady-state 

𝑈𝐶𝐿 outperforms the 𝐻𝐿 scheme with the time-varying 𝑈𝐶𝐿. These 

findings are probably related to the 𝐼𝐶’s performance of the schemes. 
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Typically, a scheme with a better 𝐼𝐶 performance will have a wider 

control band, which makes the detection of any 𝑂𝑂𝐶 signal to be slower. 

Hence, the 𝑂𝑂𝐶’s performance of the scheme appears as the opposite of 

its 𝐼𝐶’s performance. Therefore, since the 𝐻𝐿 scheme with the time-

varying 𝑈𝐶𝐿 has a better 𝐼𝐶 performance compared to the 𝐻𝐿 scheme 

with the steady-state 𝑈𝐶𝐿, the latter scheme has a better 𝑂𝑂𝐶 

performance compared to the former scheme. 

 

2. The 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 has the lowest 𝐸𝐴𝑅𝐿 value, 

regardless of the distribution and scenarios. This indicates that this 

scheme appears to be superior. However, as discussed previously, the 

𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is not recommended due to its 

extraordinary high early FAR when 𝜆 < 0.20. To this end, 

a. When 𝜆 = 0.05 and 𝜆 = 0.10, the 𝐷𝐿 scheme with the time-

varying 𝑈𝐶𝐿 appears to be the better option due to its lowest 

𝐸𝐴𝑅𝐿 value. 

b. It is worth mentioning that when 𝜆 = 0.05, both the proposed 

𝐷𝐿 and 𝐻𝐿 schemes with time-varying 𝑈𝐶𝐿s seem to be the two 

best performers, where the 𝐷𝐿 scheme with the time-varying 

𝑈𝐶𝐿 is marginally better. 

c. When 𝜆 = 0.20, both the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 

and the 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 seem to be good 

choices, where the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is 

marginally better, except under the LDB-SUB and LDM-SUM 

scenarios of the Laplace distribution. 
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3. When the value of 𝜆 value increases, it is noticed that the performance 

of all the memory-type schemes, except the 𝐷𝐿 scheme with the steady-

state 𝑈𝐶𝐿, deteriorates (𝐸𝐴𝑅𝐿 value increases). For the 𝐷𝐿 scheme with 

the steady-state 𝑈𝐶𝐿, when 𝜆 value increases, 

a. Its performance improves under the LUB-SUB and LDB-SUB 

scenarios of the Normal and Shifted Exponential distributions. 

b. Its performance deteriorates under the LUM-SUM and LDM-

SUM scenarios of the Normal and Laplace distributions. 

c. Its performance improves, but it deteriorates if one keeps on 

increasing 𝜆 value under the LUB-SUB and LDB-SUB scenarios 

of the Laplace distribution, and under the LUB-SUB and LDB-

SUB scenarios of the Shifted Exponential distribution. 

 

4. One can find that the value of the smoothing parameter plays an essential 

role in determining the performance of a scheme. For instance, 

a. 𝜆 value should be small, says 0.05, for all the schemes, except 

the 𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿. 

b. For the 𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿, 𝜆 value should be 

slightly larger, says 0.10. 

 

5. Under a symmetric distribution, the performance of a scheme in 

detecting an upward shift or a downward shift in the location parameter 

is almost similar. For instance, under the Normal distribution, from 

Table 4.21, it is observed that the 𝐸𝐴𝑅𝐿 value of all the schemes in the 
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LUB-SUB and LDB-SUB scenarios are nearly the same. Similarly, the 

𝐸𝐴𝑅𝐿 value in the LUM-SUM and LDM-SUM scenarios are also nearly 

the same. Note that the same deduction can be made for the symmetric 

Laplace distribution (refers to Table 4.22). 

 

6. On the flip side, for the asymmetric Shifted Exponential distribution 

(Table 4.23), one may see that all the schemes appear to be better in 

detecting a downward location shift (lower 𝐸𝐴𝑅𝐿 value). For instance, 

the 𝐸𝐴𝑅𝐿 values of all the schemes in the LDB-SUB scenario are 

relatively lower than their corresponding 𝐸𝐴𝑅𝐿 value in the LUB-SUB 

scenario. The same findings are obtained by comparing the LDM-SUM 

and LUM-SUM scenarios. 

 

 

Table 4.21: 𝑬𝑨𝑹𝑳 Values of Various Schemes when (𝒎, 𝒏) = (𝟏𝟎𝟎, 𝟓) 

and 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 under the Normal Distribution 

(I) 

LUB-

SUB 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 10.050 11.933 9.244 14.510 9.814 8.308 

17.374 0.10 11.382 12.464 10.309 13.759 12.669 9.629 

0.20 12.791 13.463 11.605 13.612 14.459 11.450 

(II) 

LDB-

SUB 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 10.048 11.982 9.294 14.433 9.868 8.378 

17.329 0.10 11.368 12.506 10.380 13.823 12.759 9.542 

0.20 12.782 13.475 11.688 13.625 14.602 11.417 

(III) 

LUM-

SUM 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 29.807 33.558 27.586 35.588 28.783 24.024 

49.247 0.10 33.631 35.469 30.640 35.684 36.699 28.191 

0.20 37.573 38.756 34.358 37.332 41.443 33.728 

(IV) 

LDM-

SUM 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 29.813 33.731 27.760 35.331 28.974 24.265 

49.148 0.10 33.597 35.625 30.880 35.904 37.011 27.900 

0.20 37.552 38.807 34.638 37.389 41.927 33.624 
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Table 4.22: 𝑬𝑨𝑹𝑳 Values of Various Schemes when (𝒎, 𝒏) = (𝟏𝟎𝟎, 𝟓) 

and 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 under the Laplace Distribution 

(I) 

LUB-

SUB 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 14.222 16.565 13.036 18.902 13.944 12.005 

26.189 0.10 16.150 17.464 14.595 18.417 18.037 13.511 

0.20 18.373 19.250 16.478 18.638 20.814 16.466 

(II) 

LDB-

SUB 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 14.211 16.548 13.031 18.862 13.938 11.862 

26.251 0.10 16.156 17.439 14.596 18.439 18.026 13.567 

0.20 18.389 19.238 16.447 18.624 20.823 16.492 

(III) 

LUM-

SUM 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 42.518 46.963 39.316 47.809 41.370 35.641 

72.496 0.10 47.883 49.909 43.660 48.902 52.327 40.128 

0.20 53.905 55.402 48.920 51.889 59.412 48.821 

(IV) 

LDM-

SUM 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 42.499 46.906 39.299 47.680 41.367 35.173 

72.675 0.10 47.922 49.837 43.660 48.990 52.331 40.323 

0.20 54.001 55.407 48.823 51.883 59.495 48.913 

 

 

Table 4.23: 𝑬𝑨𝑹𝑳 Values of Various Schemes when (𝒎, 𝒏) = (𝟏𝟎𝟎, 𝟓) 

and 𝑨𝑹𝑳𝟎 ≈ 𝟓𝟎𝟎 under the Shifted Exponential Distribution 

(I) 

LUB-

SUB 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 16.907 18.048 16.131 20.351 16.687 14.623 

27.139 0.10 17.786 18.285 16.699 19.396 18.279 15.796 

0.20 19.090 19.545 17.590 19.263 20.008 17.570 

(II) 

LDB-

SUB 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 7.833 9.439 7.308 12.111 7.834 6.775 

13.048 0.10 8.771 9.714 8.057 11.246 9.901 7.560 

0.20 9.733 10.325 8.920 10.729 11.200 8.641 

(III) 

LUM-

SUM 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 53.003 55.347 50.769 57.248 52.264 45.647 

82.394 0.10 55.467 56.125 52.296 56.255 56.452 49.315 

0.20 59.192 60.087 54.806 57.308 61.292 54.688 

(IV) 

LDM-

SUM 

𝝀 
𝑬𝑳 𝑫𝑳 𝑯𝑳 𝑺𝑳 

(SS 𝑼𝑪𝑳) TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

0.05 22.088 24.895 20.798 27.331 21.859 18.675 

34.170 0.10 24.556 25.978 22.762 27.025 27.020 21.007 

0.20 26.927 27.889 25.003 27.345 30.034 24.007 
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4.5 Implementation in e-Commerce 

 

 

 In this era of globalisation, the internet and mobile data are no longer 

exclusive to the rich; instead, they are now important for everybody. This 

indirectly encourages the development of e-commerce, where it is convenient 

to both sellers and buyers since everything is done online. The development of 

e-commerce also causes this sector to become more and more competitive. 

Hence, as e-commerce sellers, they need to understand, and even better, if they 

can predict the purchasing intention of online shoppers. To this end, an online 

seller can benefit from some assistants provided by the Google company. This 

is because Google Analytics introduces various indicators or metrics to help an 

e-commerce seller to understand their customers more, such as bounce rate, exit 

rate, page value, among others. 

 

 

 Sakar et al. (2019) employed a few selection methods to classify and 

predict the purchasing intention of online shoppers in real-time. The techniques 

they used are minimum redundancy maximum relevance, mutual information, 

and correlation, which can improve the performance of the system’s 

classification. From the results, they found that the exit rate metric plays an 

important role in the classification, i.e., it is ranked in the Top 3 among all the 

variables they studied. The exit rate is defined as the frequency that visitors left 

a site from a single page, where this metric can help e-commerce sellers to 

understand their page’s performance. 
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 In this dissertation, the dataset used by Sakar et al. (2019), which is 

available on the Kaggle website, is used as an illustrative example for 

implementing the schemes. In the dataset, all the behaviours of customers in an 

e-commerce website from February to December of a given year are recorded. 

There are 12330 observations for each variable in this dataset. However, only 

the exit rate is monitored with 𝑆𝐿, 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes in this dissertation. 

Note that there is no data recorded for April; hence April is treated as a break. 

To this end, the observations before the break, i.e., 184 and 1907 observations 

from February and March, respectively, are treated as the Phase-I dataset. The 

stability of this Phase-I dataset is examined in Section 4.5.1. Next, the 

observations after the break is used for Phase-II monitoring. Since there are 

many data available for Phase-II monitoring, instead of using all, only the 

observations straight after the break, i.e., 3364 observations in May are regarded 

as the Phase-II dataset. 

 

 

4.5.1 Phase-I Retrospective Analysis of Exit Rate 

 

 

 As discussed in Chapter 1, in SPM, one should first ensure that the 

Phase-I reference sample is statistically 𝐼𝐶. Then, it is suitable to be used as a 

reference or benchmark in the Phase-II monitoring. Therefore, in this 

dissertation, a total of three Phase-I analysis methods are used to check the 

stability and suitability of the Phase-I sample, i.e., 

1. The conventional recursive segmentation and permutation (RS/P) 

method, which was proposed by Capizzi and Masarotto (2013). 



 

94 

2. The nonparametric Phase-I scheme based on the multi-sample Lepage 

statistic, which was proposed by Li et al. (2019). 

3. The nonparametric Phase-I scheme based on the multi-sample Cucconi 

statistic, which was proposed by Li et al. (2020). 

 

 

 There are 2091 (i.e., 184 + 2091) data points available in the Phase-I 

dataset. In this case study, the subgroup size of a sample is chosen as 𝑛 = 20, 

which yields 104 samples (104 × 20 = 2080 data points) and 11 redundant 

data points that have to be omitted. Since it is online monitoring, dropping older 

data points is better than omitting more recent data points. Consequently, the 11 

observations from the beginning are omitted. Note that anyone can randomly 

skip 11 points, and this will hardly affect the result. Further, the FAR of the 

Phase-I analysis is set as 0.10 so that a fair comparison among the three 

aforementioned methods can be made. 

 

 

 The results for Phase-I analysis with the RS/P method, multi-sample 

Lepage statistic, and multi-sample Cucconi statistic, are depicted in Figures 4.1, 

4.2, and 4.3, respectively. The Phase-I sample is deemed statistically 𝐼𝐶 if one 

uses multi-sample Lepage statistic (Figure 4.2) and multi-sample Cucconi 

statistic (Figure 4.3). This is because none of the plotting statistics falls beyond 

their respective 𝑈𝐶𝐿s. However, the RS/P approach suggests that the Phase-I 

sample is not statistically 𝐼𝐶 in both the location and scale parameters. From 

Figure 4.1, both the 𝑝-values for testing the location parameter (less than 0.001) 

and the scale parameter (0.052), are smaller than the FAR chosen. Precisely, it 

is observed that the plotting statistics of the first ten samples are relatively 
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higher than the rest, as shown in Figure 4.1. This incident is known as a step 

shift, where it is not surprising that the RS/P approach performs better than the 

other two Phase-I approaches to detect this kind of shift. 

 

 

 

Figure 4.1: Phase-I Analysis of Exit Rate with the RS/P Approach 
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Figure 4.2: Phase-I Analysis of Exit Rate with the Multi-Sample Lepage 

Statistic 

 

 

 
Figure 4.3: Phase-I Analysis of Exit Rate with the Multi-Sample Cucconi 

Statistic 
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 Then, suppose that the assignable cause(s) of variation in the first ten 

samples (10 × 20 = 200 observations) is detected, and all these observations 

are removed. To this end, the revised Phase-I sample is only left with 94 

samples, or equivalent to 1880 observations. Again, the three approaches are 

employed to test the stability of this revised Phase-I sample. The results are then 

displayed in Figures 4.4, 4.5, and 4.6, respectively, for the RS/P approach, 

multi-sample Lepage statistic, and multi-sample Cucconi statistic. 

 

 

 

Figure 4.4: Revised Phase-I Analysis of Exit Rate with the RS/P 

Approach 
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Figure 4.5: Revised Phase-I Analysis of Exit Rate with the Multi-Sample 

Lepage Statistic 

 

 

 
Figure 4.6: Revised Phase-I Analysis of Exit Rate with the Multi-Sample 

Cucconi Statistic 
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 In conclusion, the revised Phase-I sample is said to be statistically 𝐼𝐶 

based on all three approaches. This is because, with the RS/P method, the 𝑝-

values for testing the location and scale parameters depicted in Figure 4.4, are 

all more than FAR, i.e., both are 1. Moreover, from the multi-sample Lepage 

and Cucconi statistics, none of the 94 plotting statistics is above the 𝑈𝐶𝐿s as 

illustrated in Figures 4.5 and 4.6. 

 

 

 In order to justify the necessity of removing the first ten samples, the 

estimated kernel densities of the removed 200 data points (10 samples) and the 

remaining 1880 data points (94 samples) are plotted in Figure 4.7. 

 

 

 

Figure 4.7: Kernel Density Plots of the Removed and Revised Samples 

 



 

100 

 Obviously, from Figure 4.7, the 200 removed observations appear 

significantly different from the 1880 revised observations. Further, it is found 

that the density plot of the 1880 revised observations does not follow any 

statistical probability distribution. To this end, the parametric SPM-type 

schemes cannot be used to monitor the exit rate in this dataset. Thus, the 

nonparametric NSPM-type schemes will be the ideal alternatives. This includes 

the 𝑆𝐿, 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 schemes, to be studied in this case study. 

 

 

Table 4.24: The Ljung-Box Test for the Revised Phase-I Sample 

lag 5 7 10 20 29 52 75 100 150 200 

p-value 0.320 0.179 0.313 0.565 0.562 0.824 0.811 0.941 0.631 0.725 

 

 

 Further, it is appropriate to assume that all the observations in the revised 

Phase-I sample are independent. This is because each of the sessions available 

in the dataset belongs to a distinct online shopper. Besides, the 1880 

observations are statistically independent with the Ljung-Box test, which is 

tabulated in Table 4.24. Hassani and Yeganegi (2020) suggested some suitable 

lags be used in the Ljung-Box test. For instance, when there are 1000 

observations, the selected lags could be 5, 7, 10, 20, 29, and 52. Since the 

number of observations here is more than 1000, some extra lags, such as 75, 

100, 150, and 200, are also considered. From Table 4.11, it is observed that all 

the 𝑝-values at every lag are more than 0.10, which suggests that the 1880 

observations available in the revised Phase-I sample are independent. 
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4.5.2 Phase-II Monitoring of Exit Rate 

 

 

 There are 3364 observations available in the Phase-II sample. Similar to 

Phase-I analysis, the subgroup size of a test sample in Phase-II monitoring is 

also fixed as 𝑛 = 20. Therefore, there are 168 test samples (168 × 20 = 3360 

observations) available and four redundant observations. Since Phase-II 

monitoring is done straight after the April break, the first 3360 observations are 

considered as the Phase-II sample by omitting the last four observations. 

 

 

 In this case study, the targeted 𝐴𝑅𝐿0 is set as 500, and the smoothing 

parameter of the memory-type schemes is 𝜆 = 0.05. Then, when 𝑚 = 1880 

and 𝑛 = 20, the estimated values of 𝜉1 and 𝜉2 are 0.00166 and 3.8981, 

respectively. Hence, with the standard searching algorithm, the charting 

constants of various schemes are tabulated in Table 4.25. Next, the 168 plotting 

statistics of various schemes are calculated and plotted against their respective 

𝑈𝐶𝐿s. 

 

 

Table 4.25: Charting Constants of Various Schemes when (𝒎, 𝒏) =

(𝟏𝟖𝟖𝟎, 𝟐𝟎) and 𝝀 = 𝟎. 𝟎𝟓 for the Memory-Type Schemes when 𝑨𝑹𝑳𝟎 ≈

𝟓𝟎𝟎 

Memory-Type Schemes (𝝀 = 𝟎. 𝟎𝟓) 
𝑺𝑳 

(SS 𝑼𝑪𝑳) 
𝑬𝑳 𝑫𝑳 𝑯𝑳 

TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 TV 𝑼𝑪𝑳 SS 𝑼𝑪𝑳 

𝑳𝑬𝑳 𝚿𝑬𝑳 𝑳𝑫𝑳 𝚿𝑫𝑳 𝑳𝑯𝑳 𝚿𝑯𝑳 𝚿𝑺𝑳 

2.595 2.812 1.693 2.362 3.257 2.574 12.277 

 

 



 

102 

 

Figure 4.8: Phase-II 𝑬𝑳 Scheme for Monitoring Exit Rate 

 

 

 

Figure 4.9: Phase-II 𝑫𝑳 Scheme for Monitoring Exit Rate 
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Figure 4.10: Phase-II 𝑯𝑳 Scheme for Monitoring Exit Rate 

 

 

 

Figure 4.11: Phase-II 𝑺𝑳 Scheme for Monitoring Exit Rate 
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 The exit rate is monitored with 𝐸𝐿, 𝐷𝐿, 𝐻𝐿, and 𝑆𝐿 schemes, and 

respectively, plotted in Figures 4.8, 4.9, 4.10, and 4.11. Out of the 168 test 

samples, the 𝑂𝑂𝐶 signals that are detected by the schemes are juxtaposed in 

Table 4.26. From Table 4.26, note that the 𝐻𝐿 scheme with the time-varying 

𝑈𝐶𝐿 and 𝑆𝐿 scheme with the steady-state 𝑈𝐶𝐿 are not identifying any 𝑂𝑂𝐶 

signals, while the remaining schemes are signalling some 𝑂𝑂𝐶 signals. 

 

 

Table 4.26: 𝑶𝑶𝑪 Signals Detected by Various Schemes in Monitoring Exit 

Rate 

Scheme Type of 𝑼𝑪𝑳 𝑶𝑶𝑪 Signals (𝒊th Test Sample) 

𝑬𝑳 
TV 𝑼𝑪𝑳 36th and 37th 

SS 𝑼𝑪𝑳 36th, 37th, and 163rd 

𝑫𝑳 
TV 𝑼𝑪𝑳 36th continuously until 55th 

SS 𝑼𝑪𝑳 37th continuously until 55th 

𝑯𝑳 
TV 𝑼𝑪𝑳 None 

SS 𝑼𝑪𝑳 6
th
, 25

th
, 30

th
, 33

rd
 continuously until 39

th
, and 46

th
 

𝑺𝑳 SS 𝑼𝑪𝑳 None 

 

 

 Comparatively, the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 detects an 

𝑂𝑂𝐶 signal the fastest, i.e., at the 6th test sample. However, it is known that the 

early FAR of this scheme is very high, and the 𝑂𝑂𝐶 signals detected might be 

false alarms. Besides, the 𝐷𝐿 scheme, regardless of the types of 𝑈𝐶𝐿, is able to 

signal a vast number of 𝑂𝑂𝐶 signals. Even though the first 𝑂𝑂𝐶 indication 

signalled by the 𝐷𝐿 scheme is the same as the 𝐸𝐿 scheme, i.e., at the 36th test 

sample, suggests that these two schemes are apparently equally good. 

Nevertheless, if one sees Figure 4.9 carefully, an upward trend is observed 

starting from the 16th test sample. Montgomery (2019) mentioned that if there 

are six consecutive plotting statistics that display an increasing trend, it is an 

𝑂𝑂𝐶 signal too. To this end, the 𝐷𝐿 scheme has signalled an 𝑂𝑂𝐶 indication as 

early as the 21st test sample. 
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 In order to check the nature of the shifts detected by the 𝐸𝐿, 𝐷𝐿, and 𝐻𝐿 

schemes, a follow-up procedure with 𝑝𝑊
∗  and 𝑝𝐴

∗  are computed and tabulated in 

Table 4.27. From Table 4.27, only the 𝑝𝑊
∗  and 𝑝𝐴

∗  of the 6th test sample detected 

by the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 are insignificant. Noting the results 

obtained from the simulation study, it is highly suspected that this is an early 

false alarm. Then, the remaining test samples detected are all facing a pure 

location shift due to 𝑝𝑊
∗ ≤ 0.0001 and 𝑝𝐴

∗  is insignificant. Further, the 

increasing trend observed in the 𝐷𝐿 scheme, which is signalled at the 21st test 

sample is also facing a pure location shift. 

 

 

Table 4.27: Follow-Up Procedure of the 𝑶𝑶𝑪 Signals Detected 

Sample 𝑝𝑊
∗  𝑝𝐴

∗  Sample 𝑝𝑊
∗  𝑝𝐴

∗  

6 0.0122 0.1943 43 <0.0001 0.7068 

21 0.0001 0.9563 44 <0.0001 0.6336 

25 <0.0001 0.5278 45 <0.0001 0.6695 

30 <0.0001 0.6362 46 <0.0001 0.5386 

33 <0.0001 0.6012 47 <0.0001 0.6431 

34 <0.0001 0.6588 48 <0.0001 0.6407 

35 <0.0001 0.5229 49 <0.0001 0.5821 

36 <0.0001 0.5898 50 <0.0001 0.4738 

37 <0.0001 0.5865 51 <0.0001 0.3701 

38 <0.0001 0.5879 52 <0.0001 0.372 

39 <0.0001 0.5055 53 <0.0001 0.3963 

40 <0.0001 0.5007 54 <0.0001 0.4838 

41 <0.0001 0.5421 55 <0.0001 0.5811 

42 <0.0001 0.5927 163 <0.0001 0.04271 

 

 

 In this case study, even though the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 

is found to be the most sensitive scheme, i.e., detect a shift the fastest, this 

scheme is still not recommended due to its high early FAR. Further, it is not 

surprising that the memoryless 𝑆𝐿 scheme is the worst because it cannot detect 

any 𝑂𝑂𝐶 signal. To this end, the 𝐷𝐿 scheme, regardless of the types of 𝑈𝐶𝐿, 

outperforms other schemes in monitoring the exit rate.  
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CHAPTER 5 

 

 
CONCLUSIONS AND FUTURE RESEARCH 

 

 

 

 

5.1 Introduction 

 

 

 SPM or NSPM plays a contributing role in ensuring the quality of a 

product or service can meet or even exceed the customer’s expectation. Among 

the SPM or NSPM tools, the control scheme is the most significant tool for 

achieving this goal. Following the current trend of big data and IR4.0, a control 

scheme is not only limited to monitor the manufacturing process; instead, it can 

be one of the vital contributors in accelerating the pace of IR4.0. In this 

dissertation, a case study is conducted using a few NSPM-type control schemes, 

precisely the popular Lepage-type schemes, in monitoring e-commerce activity. 

The results showed that if an online shopping platform seller knows how to 

employ a control scheme, he or she will be able to identify the customer’s 

purchasing intention easily. Besides, he or she can rectify an issue immediately 

if something wrong is detected with the help of a control scheme. 

 

 

 To this end, in this chapter, the findings and contribution of this 

dissertation is firstly revealed in Section 5.2. Then, Section 5.3 discusses some 

of the research limitations, precisely, the limitations of the NSPM-type schemes 

proposed here. Lastly, a few propositions for future research are suggested in 

Section 5.4. 
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5.2 Findings and Contributions of this Dissertation 

 

 

 The NSPM-type schemes are generally preferred and act as a good 

complement to the parametric SPM-type schemes, especially when there is a 

lack of prior knowledge and details regarding the underlying process 

distribution. Further, the stability of a process is more reliable and convincible 

if both the location and scale parameters of the process are statistically 𝐼𝐶, rather 

than only the location parameter being stable. Accordingly, two novel memory-

type Lepage-type schemes, which can monitor the location-scale of a process 

jointly, namely the 𝐷𝐿 and 𝐻𝐿 schemes, are presented in this dissertation. Two 

types of 𝑈𝐶𝐿s of the proposed schemes, i.e., the time-varying 𝑈𝐶𝐿s and steady-

state 𝑈𝐶𝐿s are also derived and explained in-depth in this dissertation (see 

Chapter 3). In addition, the charting procedures of the proposed schemes are 

also described step-by-step. This eases quality practitioners in implementing the 

proposed schemes in monitoring any process. 

 

 

 In the simulation study and the illustrative example, it is obvious that 

the performance of the two novel memory-type schemes outshines the existing 

memoryless 𝑆𝐿 scheme, even in terms of detecting a large shift in the process. 

For instance, the 𝑆𝐿 scheme has the worst performance, as displayed in the 

simulation study, because this scheme takes more samples to detect an 𝑂𝑂𝐶 

signal. Further, in the case study of monitoring the exit rate, both the proposed 

schemes, especially the 𝐷𝐿 scheme, detect 𝑂𝑂𝐶 signals hastily so that remedial 

action can be taken quickly. On the flip side, the 𝑆𝐿 scheme is unable to identify 

any 𝑂𝑂𝐶 situation, which gives a wrong perception, as the exit rate appears to 
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be 𝐼𝐶 even though it is 𝑂𝑂𝐶. Even though the Shewhart-type scheme is shown 

to be less effective in detecting a small disturbance of a process, the significance 

of the Shewhart-type scheme cannot be neglected. This is because, in a real 

application, one will never know the exact shift level of a process, and there is 

a tendency that the process is facing a large disturbance, which is the situation 

where the Shewhart-type scheme performs well. 

 

 

 Besides, the supremacy of the two proposed schemes over the traditional 

𝐸𝐿 scheme can also be spotted in the simulation and case studies. By assessing 

the 𝐸𝐴𝑅𝐿 value, the proposed 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿 seems to 

have the best performance when 𝜆 < 0.20, while the 𝐻𝐿 scheme with the 

steady-state 𝑈𝐶𝐿 appears to have the best performance when 𝜆 = 0.20. Note 

that the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is not considered when 𝜆 < 0.20 

due to its high early FAR, and it is recommended to select 𝜆 ≥ 0.20 when 

employing this scheme in process monitoring. Note that Montgomery (2019) 

mentioned that typically for detecting a large shift in the process, the selection 

of 𝜆 is large, says, 0.20. However, the statement claimed is based on the 

EWMA-type scheme, and it is not necessarily held for the HWMA-type 

scheme. In addition, based on the simulation study, one can easily notice that 

the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 is able to detect small shifts in the 

process well even though one uses 𝜆 = 0.20. Further, in terms of detecting the 

small to moderate disturbances of a process, one can easily find that the 

proposed schemes also appear to outperform the 𝐸𝐿 scheme. For instance, the 

𝐷𝐿 and 𝐻𝐿 schemes with time-varying 𝑈𝐶𝐿s are regarded as the two best 

performers when 𝜆 = 0.05. In addition, it is worth emphasising that in the case 
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study, the 𝐷𝐿 scheme, regardless of the types of 𝑈𝐶𝐿, surpasses all the schemes 

because it can detect the 𝑂𝑂𝐶 signal the fastest without giving any false alarms. 

 

 

 To this end, this dissertation provides some better alternatives to quality 

practitioners so that they are not limited only to the CUSUM- or EWMA-type 

schemes when they want to employ a memory-type scheme. Precisely, the 𝐷𝐿 

scheme with the time-varying 𝑈𝐶𝐿 appears as a better option due to its superior 

performance, or one may also choose the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 

when 𝜆 ≥ 0.20. 

 

 

5.3 Limitations of Research 

 

 

 Some of the limitations of this research are: 

1. Unlike the parametric SPM-type schemes, the expression of all the 𝑅𝐿 

metrics of the NSPM-type schemes, which includes the proposed 𝐷𝐿 

and 𝐻𝐿 schemes, are hard to obtain. To this end, one has to use the 

Monte-Carlo simulation with a sufficient amount of replicates to obtain 

all the 𝑅𝐿 metrics. 

 

2. By comparing the 𝐼𝐶 performance of various schemes, it is noticed that 

the performance of the 𝐸𝐿 and 𝐷𝐿 schemes with their steady-state 𝑈𝐶𝐿s 

are relatively better than their time-varying 𝑈𝐶𝐿s. However, it is still 

acceptable to use any type of 𝑈𝐶𝐿s for these two schemes. On the other 

hand, the performance of the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿, 

especially when 𝜆 < 0.20, is definitely unacceptable due to its 
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extraordinary high early FAR. To this end, the best performer in 

detecting 𝑂𝑂𝐶 signals, i.e., the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿 

when 𝜆 < 0.20, is not recommended in practical situations. 

 

3. The design of the schemes follow the standard-setting, such that the 

scheme is designed so that the targeted 𝐴𝑅𝐿0 is achieved. However, one 

knows that the 𝑅𝐿 distribution of any control scheme is asymmetric, i.e., 

they are right-skewed. To this end, it seems unsatisfied to compare the 

performance of the schemes by evaluating the mean values, i.e., 𝐴𝑅𝐿0 

and 𝐴𝑅𝐿1. 

 

4. Besides, the schemes are designed without considering the inertial 

effect. To this end, the schemes naturally have a weaker performance if 

the inertial effect exists. 

 

 

5.4 Propositions for Future Research 

 

 

 Following the current trend in the research field of statistical quality 

control and some limitations of the schemes proposed, all the following research 

ideas are precious to investigate. 

1. From the simulation study, especially by referring to the 𝐸𝐴𝑅𝐿 value, it 

is found that the value of the smoothing parameter chosen should be 

small, says 𝜆 = 0.05. However, this is not true for the 𝐷𝐿 scheme with 

the steady-state 𝑈𝐶𝐿. The results show that the value of 𝜆 value should 

be slightly larger, says, 𝜆 = 0.10. Therefore, effectively optimising the 
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value of 𝜆 not only for the 𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿, but for 

all the control schemes is an interesting topic. 

 

2. It is found that the early FAR for some of the schemes, especially the 

𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿, is unacceptable. Further, the 𝑅𝐿 

distributions for all the control schemes are not symmetrical. Therefore, 

rather than fixing the 𝐴𝑅𝐿0, a better design of the schemes is worth 

studying. For instance, one can design the schemes by fixing the 𝐼𝐶-

𝑀𝑅𝐿 or employ the percentile-based approach as in Faraz et al. (2019) 

so that the percentile of 𝑅𝐿 meets some nominal value. In order to reduce 

the early FAR, one may fix the 5th percentile of 𝑅𝐿, says, equal to 25. 

 

3. Another design of the schemes, which have a better performance if the 

inertial effect has occurred, can be considered. For instance, one may 

follow the charting design proposed by Mukherjee (2017), i.e., employs 

the max-approach in getting the plotting statistic, or one may include the 

adaptive feature in the schemes. 

 

4. In this dissertation, the extension of the EWMA-type scheme, i.e., the 

DEWMA-type scheme, is studied. Another inspiring idea is to further 

extend the DEWMA-type scheme to a triple EWMA (TEWMA)-type 

scheme. To be precise, a distribution-free TEWMA-type, such as the 

TEWMA-Lepage scheme, can be explored. 
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5. The literature shows that the Lepage-type scheme is currently the most 

popular location-scale monitoring scheme. However, one should not 

forget that the Cucconi-type scheme is also another important location-

scale monitoring scheme. To this end, developing new Cucconi-type 

schemes, such as the DEWMA-Cucconi and HWMA-Cucconi schemes, 

are also worth studying. 
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APPENDIX A 

 

 
LEMMA FOR THE DERIVATION OF THE TIME-VARYING 𝑼𝑪𝑳 

FOR THE 𝑫𝑳 SCHEME 

 

 

 

 

A.1 Lemma 1 

 

 

 It is defined as 

1 + 2𝑟 + 3𝑟2 +⋯+ (𝑖 − 1)𝑟𝑖−2  + 𝑖𝑟𝑖−1 =
1−𝑟𝑖

(1−𝑟)2
−

𝑖𝑟𝑖

1−𝑟
. (A.1) 

Proof of Lemma 1 

Firstly, let the summation be 𝑆, i.e., 

𝑆 = 1 + 2𝑟 + 3𝑟2 +⋯+ (𝑖 − 1)𝑟𝑖−2  + 𝑖𝑟𝑖−1. 

Then, multiply the equation above by 𝑟, and it is obtained that 

𝑟𝑆 = 𝑟 + 2𝑟2 + 3𝑟3 +⋯+ (𝑖 − 1)𝑟𝑖−1 + 𝑖𝑟𝑖, 

and thus, 

𝑆 − 𝑟𝑆 = 1 + 𝑟 + 𝑟2 +⋯+ 𝑟𝑖−1 − 𝑖𝑟𝑖  

(1 − 𝑟)𝑆 =
1−𝑟𝑖

1−𝑟
− 𝑖𝑟𝑖. 

Finally, the summation is expressed as 

𝑆 =
1−𝑟𝑖

(1−𝑟)2
−

𝑖𝑟𝑖

1−𝑟
. 
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A.2 Lemma 2 

 

 

 It is defined as 

1 + 22𝑟2 + 32𝑟4 +⋯+ 𝑖2𝑟2(𝑖−1)  

=
2(1−𝑟2𝑖)

(1−𝑟2)3
+
𝑖2𝑟2(𝑖+1)+(1−2𝑖−𝑖2)𝑟2𝑖−1

(1−𝑟2)2
. 

(A.2) 

Proof of Lemma 2 

Firstly, let the summation be 𝑆, i.e., 

𝑆 = 1 + 22𝑟2 + 32𝑟4 +⋯+ 𝑖2𝑟2(𝑖−1). 

Then, multiply the equation above by 𝑟2, and it is obtained that 

𝑟2𝑆 = 𝑟2 + 22𝑟4 + 32𝑟6 +⋯+ (𝑖 − 2)2𝑟2(𝑖−2) + (𝑖 − 1)2𝑟2(𝑖−1) + 𝑖2𝑟2𝑖, 

and thus, 

𝑆 − 𝑟2𝑆 = 1 + 3𝑟2 + 5𝑟4 +⋯+ (2𝑖 − 3)𝑟2(𝑖−2) + (2𝑖 − 1)𝑟2(𝑖−1) − 𝑖2𝑟2𝑖  

(1 − 𝑟2)𝑆 = 1 + 3𝑟2 +⋯+ (2𝑖 − 3)𝑟2(𝑖−2) + (2𝑖 − 1)𝑟2(𝑖−1) − 𝑖2𝑟2𝑖. 

Next, multiply the equation above by 𝑟2, and it is obtained that 

𝑟2(1 − 𝑟2)𝑆 = 𝑟2 + 3𝑟4 +⋯+ (2𝑖 − 3)𝑟2(𝑖−1) + (2𝑖 − 1)𝑟2𝑖 − 𝑖2𝑟2(𝑖+1), 

and thus, 

(1 − 𝑟2)𝑆 − 𝑟2(1 − 𝑟2)𝑆 = 1 + 2𝑟2 + 2𝑟4 +⋯+ 2𝑟2(𝑖−1) + (1 − 2𝑖 −

𝑖2)𝑟2𝑖 + 𝑖2𝑟2(𝑖+1), 

which can be simplified as 

(1 − 𝑟2)2𝑆 =
2(1−𝑟2𝑖)

1−𝑟2
+ [𝑖2𝑟2(𝑖+1) + (1 − 2𝑖 − 𝑖2)𝑟2𝑖 − 1]. 

Finally, the summation is expressed as 

𝑆 =
2(1−𝑟2𝑖)

(1−𝑟2)3
+
𝑖2𝑟2(𝑖+1)+(1−2𝑖−𝑖2)𝑟2𝑖−1

(1−𝑟2)2
. 
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APPENDIX B 

 

 
COMPUTER PROGRAMS FOR MONTE-CARLO SIMULATION 

 

 

 

 

B.1 R Program Code for 𝝃𝟏 and 𝝃𝟐 Estimation 

 

 

 The program below is used to estimate the values of 𝜉1 and 𝜉2, which 

are the two important components in the time-varying 𝑈𝐶𝐿. 

rm(list=ls(all=TRUE)) 

 

const=function(m,n,sim_num=25000,win_lim=25000) 

{ 

  N=m+n 

  x=rep(0,m) 

  y=rep(0,n) 

  z=rep(0,n) 

  lep=rep(0,win_lim) 

  Ex_Lj=rep(0,sim_num) 

  Var_Lj=rep(0,sim_num) 

 

  for (i in 1:sim_num) 

  { 

    x=rnorm(m,0,1) 

 

    for (j in 1:win_lim) 

    { 

      y=rnorm(n,0,1) 

      R=rank(c(x,y)) 

      WRS=((sum(R[(m+1):N]))-

(0.5*n*(N+1)))/sqrt((m*n*(N+1)/12)) 

         

      for(k in 1:n) {z[k]=abs(R[m+k]-(0.5*(N+1)))} 

      if((N%%2)==0) {AB=((sum(z[1:n]))-

(0.25*n*N))/sqrt(((m*n*((N*N)-4)/(48*(N-1)))))} 

      else {AB=((sum(z[1:n]))-(0.25*n*((N*N)-

1))/N)/sqrt(((m*n*(N+1)*((N*N)+3)/(48*N*N))))} 

         

      lep[j]=(WRS*WRS)+(AB*AB) 

    } 

 

    Ex_Lj[i]=mean(lep) #It is E(Lj|Xm, IC) 

    Var_Lj[i]=var(lep) #It is Var(Lj|Xm, IC) 

  } 

 

  Var_Ex_Lj=var(Ex_Lj) #It is Var[E(Lj|Xm, IC)] 

  Ex_Var_Lj=mean(Var_Lj) #It is E[Var(Lj|Xm, IC)] 

  print(c(Var_Ex_Lj,Ex_Var_Lj)) 

} 
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#Example 

const(m=100, n=5) 

 

 

B.2 R Program Code for the 𝑬𝑳 Scheme 

 

 

 The program below is used to obtain the 𝐼𝐶 and 𝑂𝑂𝐶 performances of 

the 𝐸𝐿 scheme with the time-varying 𝑈𝐶𝐿. 

library(doParallel) 

library(foreach) 

 

rm(list=ls(all=TRUE)) 

 

el_tv=function(case,m,n,C,win_lim=5000,sim_num=50000,loc,sca,la

m) 

{ 

  N=m+n 

  x=rep(0,m) 

  y=rep(0,n) 

  z=rep(0,n) 

  lep=rep(0,win_lim) 

  comp=rep(0,win_lim) 

  ewma=rep(0,win_lim) 

  

evl=c(3.52572525,3.69092682,3.72876761,3.575762399,3.76727793,3

.83059074,3.586651011,3.781145634,3.848191288) #E[Var(Lj|Xm, 

IC)] 

  

vel=c(0.02665154,0.04685424,0.07874633,0.007554594,0.01052258,0

.01474126,0.004471669,0.005533597,0.007193758) #Var[E(Lj|Xm, 

IC)] 

   

  grp=makeCluster(7) 

  registerDoParallel(grp) 

   

  rl=rep(0,sim_num) 

  rl=foreach(i=1:sim_num,.combine=c)%dopar% 

    { 

      x=rnorm(m,0,1) 

      j=0 

       

      repeat 

      { 

        j=j+1 

        y=rnorm(n,loc,sca) 

        R=rank(c(x,y)) 

         

        WRS=((sum(R[(m+1):N]))-

(0.5*n*(N+1)))/sqrt((m*n*(N+1)/12)) 

         

        for(k in 1:n) {z[k]=abs(R[m+k]-(0.5*(N+1)))} 

        if((N%%2)==0) {AB=((sum(z[1:n]))-

(0.25*n*N))/sqrt(((m*n*((N*N)-4)/(48*(N-1)))))} 
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        else {AB=((sum(z[1:n]))-(0.25*n*((N*N)-

1))/N)/sqrt(((m*n*(N+1)*((N*N)+3)/(48*N*N))))} 

         

        lep[j]=(WRS*WRS)+(AB*AB) 

        for (a in 1:j) {comp[a]=lam*((1-lam)^(j-a))*lep[a]} 

        value=sum(comp[1:j])+((1-lam)^j)*2 

        ewma[j]=value 

         

        part_one=((lam)/(2-lam))*(1-((1-lam)^(2*j))) 

        part_two=(1-((1-lam)^j))^2 

        

var_elj=((part_one)*(evl[case]))+((part_two)*(vel[case])) 

        H=2+(C*(sqrt(var_elj))) 

        if((ewma[j]>=H)||(j==win_lim)) break 

      } 

      rl[i]=j 

    } 

  stopCluster(grp) 

   

  print(c(m,n,lam,C,loc,sca, 

mean(rl),sqrt(var(rl)/sim_num),sd(rl),min(rl),quantile(rl,c(0.0

5,0.25,0.50,0.75,0.95)),max(rl))) 

} 

 

#Example 

el_tv(case=1, m=100, n=5, C=1.945, loc=0, sca=1, lam=0.05) 

 

 

 The program below is used to obtain the 𝐼𝐶 and 𝑂𝑂𝐶 performances of 

the 𝐸𝐿 scheme with the steady-state 𝑈𝐶𝐿. 

library(doParallel) 

library(foreach) 

 

rm(list=ls(all=TRUE)) 

 

el_ss=function(m,n,H,win_lim=5000,sim_num=50000,loc,sca,lam) 

{ 

  N=m+n 

  x=rep(0,m) 

  y=rep(0,n) 

  z=rep(0,n) 

  lep=rep(0,win_lim) 

  comp=rep(0,win_lim) 

  ewma=rep(0,win_lim) 

   

  grp=makeCluster(7) 

  registerDoParallel(grp) 

   

  rl=rep(0,sim_num) 

  rl=foreach(i=1:sim_num,.combine=c)%dopar% 

    { 

      x=rnorm(m,0,1) 

      j=0 

       

      repeat 

      { 

        j=j+1 

        y=rnorm(n,loc,sca) 
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        R=rank(c(x,y)) 

         

        WRS=((sum(R[(m+1):N]))-

(0.5*n*(N+1)))/sqrt((m*n*(N+1)/12)) 

         

        for(k in 1:n) {z[k]=abs(R[m+k]-(0.5*(N+1)))} 

        if((N%%2)==0) {AB=((sum(z[1:n]))-

(0.25*n*N))/sqrt(((m*n*((N*N)-4)/(48*(N-1)))))} 

        else {AB=((sum(z[1:n]))-(0.25*n*((N*N)-

1))/N)/sqrt(((m*n*(N+1)*((N*N)+3)/(48*N*N))))} 

         

        lep[j]=(WRS*WRS)+(AB*AB) 

        for (a in 1:j) {comp[a]=lam*((1-lam)^(j-a))*lep[a]} 

        value=sum(comp[1:j])+((1-lam)^j)*2 

        ewma[j]=value 

         

         

        if((ewma[j]>=H)||(j==win_lim)) break 

      } 

      rl[i]=j 

    } 

  stopCluster(grp) 

   

  print(c(m,n,lam,H,loc,sca, 

mean(rl),sqrt(var(rl)/sim_num),sd(rl),min(rl),quantile(rl,c(0.0

5,0.25,0.50,0.75,0.95)),max(rl))) 

} 

 

#Example 

el_ss(m=100, n=5, H=2.642, loc=0, sca=1, lam=0.05) 

 

 

B.3 R Program Code for the 𝑫𝑳 Scheme 

 

 

 The program below is used to obtain the 𝐼𝐶 and 𝑂𝑂𝐶 performances of 

the 𝐷𝐿 scheme with the time-varying 𝑈𝐶𝐿. 

library(doParallel) 

library(foreach) 

 

rm(list=ls(all=TRUE)) 

 

dl_tv=function(case,m,n,C,win_lim=5000,sim_num=50000,loc,sca,la

m) 

{ 

  N=m+n 

  x=rep(0,m) 

  y=rep(0,n) 

  z=rep(0,n) 

  lep=rep(0,win_lim) 

  comp=rep(0,win_lim) 

  dewma=rep(0,win_lim) 

  

evl=c(3.52572525,3.69092682,3.72876761,3.575762399,3.76727793,3
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.83059074,3.586651011,3.781145634,3.848191288) #E[Var(Lj|Xm, 

IC)] 

  

vel=c(0.02665154,0.04685424,0.07874633,0.007554594,0.01052258,0

.01474126,0.004471669,0.005533597,0.007193758) #Var[E(Lj|Xm, 

IC)] 

   

  grp=makeCluster(7) 

  registerDoParallel(grp) 

   

  rl=rep(0,sim_num) 

  rl=foreach(i=1:sim_num,.combine=c)%dopar% 

    { 

      x=rnorm(m,0,1) 

      j=0 

       

      repeat 

      { 

        j=j+1 

        y=rnorm(n,loc,sca) 

        R=rank(c(x,y)) 

         

        WRS=((sum(R[(m+1):N]))-

(0.5*n*(N+1)))/sqrt((m*n*(N+1)/12)) 

         

        for(k in 1:n) {z[k]=abs(R[m+k]-(0.5*(N+1)))} 

        if((N%%2)==0) {AB=((sum(z[1:n]))-

(0.25*n*N))/sqrt(((m*n*((N*N)-4)/(48*(N-1)))))} 

        else {AB=((sum(z[1:n]))-(0.25*n*((N*N)-

1))/N)/sqrt(((m*n*(N+1)*((N*N)+3)/(48*N*N))))} 

         

        lep[j]=(WRS*WRS)+(AB*AB) 

        for (a in 1:j) {comp[a]=((j-a+1)*(lam^2))*((1-lam)^(j-

a))*lep[a]} 

        value=sum(comp[1:j])+(1+j*lam)*((1-lam)^j)*2 

        dewma[j]=value 

         

        part_one_a=((2*lam)/((2-lam)^3))*(1-((1-lam)^(2*j))) 

        part_one_b=((lam^2)/((2-lam)^2))*((j*j*((1-

lam)^(2*(j+1))))+((1-(2*j)-(j*j))*((1-lam)^(2*j)))-1) 

        part_one=part_one_a+part_one_b 

        part_two=1-((1+(j*lam))*((1-lam)^j)) 

        

var_dlj=((part_one)*(evl[case]))+((part_two)*(part_two)*(vel[ca

se])) 

        H=2+(C*(sqrt(var_dlj))) 

        if((dewma[j]>=H)||(j==win_lim)) break 

      } 

      rl[i]=j 

    } 

  stopCluster(grp) 

   

  print(c(m,n,lam,C,loc,sca, 

mean(rl),sqrt(var(rl)/sim_num),sd(rl),min(rl),quantile(rl,c(0.0

5,0.25,0.50,0.75,0.95)),max(rl))) 

} 

 

#Example 

dl_tv(case=1, m=100, n=5, C=1.011, loc=0, sca=1, lam=0.05) 
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 The program below is used to obtain the 𝐼𝐶 and 𝑂𝑂𝐶 performances of 

the 𝐷𝐿 scheme with the steady-state 𝑈𝐶𝐿. 

library(doParallel) 

library(foreach) 

 

rm(list=ls(all=TRUE)) 

 

dl_ss=function(m,n,H,win_lim=5000,sim_num=50000,loc,sca,lam) 

{ 

  N=m+n 

  x=rep(0,m) 

  y=rep(0,n) 

  z=rep(0,n) 

  lep=rep(0,win_lim) 

  comp=rep(0,win_lim) 

  dewma=rep(0,win_lim) 

   

  grp=makeCluster(7) 

  registerDoParallel(grp) 

   

  rl=rep(0,sim_num) 

  rl=foreach(i=1:sim_num,.combine=c)%dopar% 

    { 

      x=rnorm(m,0,1) 

      j=0 

       

      repeat 

      { 

        j=j+1 

        y=rnorm(n,loc,sca) 

        R=rank(c(x,y)) 

         

        WRS=((sum(R[(m+1):N]))-

(0.5*n*(N+1)))/sqrt((m*n*(N+1)/12)) 

         

        for(k in 1:n) {z[k]=abs(R[m+k]-(0.5*(N+1)))} 

        if((N%%2)==0) {AB=((sum(z[1:n]))-

(0.25*n*N))/sqrt(((m*n*((N*N)-4)/(48*(N-1)))))} 

        else {AB=((sum(z[1:n]))-(0.25*n*((N*N)-

1))/N)/sqrt(((m*n*(N+1)*((N*N)+3)/(48*N*N))))} 

         

        lep[j]=(WRS*WRS)+(AB*AB) 

        for (a in 1:j) {comp[a]=((j-a+1)*(lam^2))*((1-lam)^(j-

a))*lep[a]} 

        value=sum(comp[1:j])+(1+j*lam)*((1-lam)^j)*2 

        dewma[j]=value 

         

        if((dewma[j]>=H)||(j==win_lim)) break 

      } 

      rl[i]=j 

    } 

  stopCluster(grp) 

   

  print(c(m,n,lam,H,loc,sca, 

mean(rl),sqrt(var(rl)/sim_num),sd(rl),min(rl),quantile(rl,c(0.0

5,0.25,0.50,0.75,0.95)),max(rl))) 

} 
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#Example 

dl_ss(m=100, n=5, H=2.234, loc=0,sca=1, lam=0.05) 

 

 

B.4 R Program Code for the 𝑯𝑳 Scheme 

 

 

 The program below is used to obtain the 𝐼𝐶 and 𝑂𝑂𝐶 performances of 

the 𝐻𝐿 scheme with the time-varying 𝑈𝐶𝐿. 

library(doParallel) 

library(foreach) 

 

rm(list=ls(all=TRUE)) 

 

hl_tv=function(case,m,n,C,win_lim=5000,sim_num=50000,loc,sca,om

e) 

{ 

  N=m+n 

  x=rep(0,m) 

  y=rep(0,n) 

  z=rep(0,n) 

  lep=rep(0,win_lim) 

  hwma=rep(0,win_lim) 

  

evl=c(3.52572525,3.69092682,3.72876761,3.575762399,3.76727793,3

.83059074,3.586651011,3.781145634,3.848191288) #E[Var(Lj|Xm, 

IC)] 

  

vel=c(0.02665154,0.04685424,0.07874633,0.007554594,0.01052258,0

.01474126,0.004471669,0.005533597,0.007193758) #Var[E(Lj|Xm, 

IC)] 

     

  grp=makeCluster(7) 

  registerDoParallel(grp) 

   

  rl=rep(0,sim_num) 

  rl=foreach(i=1:sim_num,.combine=c)%dopar% 

    { 

      x=rnorm(m,0,1) 

      j=0 

       

      repeat 

      { 

        j=j+1 

        y=rnorm(n,loc,sca) 

 

        R=rank(c(x,y)) 

        WRS=((sum(R[(m+1):N]))-

(0.5*n*(N+1)))/sqrt((m*n*(N+1)/12)) 

         

        for(k in 1:n) {z[k]=abs(R[m+k]-(0.5*(N+1)))} 

        if((N%%2)==0) {AB=((sum(z[1:n]))-

(0.25*n*N))/sqrt(((m*n*((N*N)-4)/(48*(N-1)))))} 

        else {AB=((sum(z[1:n]))-(0.25*n*((N*N)-

1))/N)/sqrt(((m*n*(N+1)*((N*N)+3)/(48*N*N))))} 
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        lep[j]=(WRS*WRS)+(AB*AB) 

         

        if (j==1) {value=ome*lep[j]+(1-ome)*2} 

        else {value=ome*lep[j]+((1-ome)/(j-1))*sum(lep[1:j-1])} 

        hwma[j]=value 

         

        if (j==1) {H=2+(C*sqrt(ome*ome*(vel[case]+evl[case])))} 

        else {H=2+(C*sqrt((evl[case]*((ome*ome)+((1-ome)*(1-

ome)/(j-1))))+vel[case]))} 

        if((hwma[j]>=H)||(j==win_lim)) break 

      } 

      rl[i]=j 

    } 

  stopCluster(grp) 

   

  print(c(m,n,ome,C,loc,sca, 

mean(rl),sqrt(var(rl)/sim_num),sd(rl),min(rl),quantile(rl,c(0.0

5,0.25,0.50,0.75,0.95)),max(rl))) 

} 

 

#Example 

hl_tv(case=1, m=100, n=5, C=1.652, loc=0, sca=1, ome=0.05) 

 

 

 The program below is used to obtain the 𝐼𝐶 and 𝑂𝑂𝐶 performances of 

the 𝐻𝐿 scheme with the steady-state 𝑈𝐶𝐿. 

library(doParallel) 

library(foreach) 

 

rm(list=ls(all=TRUE)) 

 

hl_ss=function(m,n,H,win_lim=5000,sim_num=50000,loc,sca,ome) 

{ 

  N=m+n 

  x=rep(0,m) 

  y=rep(0,n) 

  z=rep(0,n) 

  lep=rep(0,win_lim) 

  hwma=rep(0,win_lim) 

   

  grp=makeCluster(7) 

  registerDoParallel(grp) 

   

  rl=rep(0,sim_num) 

  rl=foreach(i=1:sim_num,.combine=c)%dopar% 

    { 

      x=rnorm(m,0,1) 

      j=0 

       

      repeat 

      { 

        j=j+1 

        y=rnorm(n,loc,sca) 

 

        R=rank(c(x,y)) 

        WRS=((sum(R[(m+1):N]))-

(0.5*n*(N+1)))/sqrt((m*n*(N+1)/12)) 
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        for(k in 1:n) {z[k]=abs(R[m+k]-(0.5*(N+1)))} 

        if((N%%2)==0) {AB=((sum(z[1:n]))-

(0.25*n*N))/sqrt(((m*n*((N*N)-4)/(48*(N-1)))))} 

        else {AB=((sum(z[1:n]))-(0.25*n*((N*N)-

1))/N)/sqrt(((m*n*(N+1)*((N*N)+3)/(48*N*N))))} 

         

        lep[j]=(WRS*WRS)+(AB*AB) 

         

        if (j==1) {value=ome*lep[j]+(1-ome)*2} 

        else {value=ome*lep[j]+((1-ome)/(j-1))*sum(lep[1:j-1])} 

        hwma[j]=value 

         

        if((hwma[j]>=H)||(j==win_lim)) break 

      } 

      rl[i]=j 

    } 

  stopCluster(grp) 

   

  print(c(m,n,ome,H,loc,sca, 

mean(rl),sqrt(var(rl)/sim_num),sd(rl),min(rl),quantile(rl,c(0.0

5,0.25,0.50,0.75,0.95)),max(rl))) 

} 

 

#Example 

hl(m=100, n=5, H=2.436, loc=0, sca=1, ome=0.05) 

 

 

B.5 R Program Code for the 𝑺𝑳 Scheme 

 

 

 The program below is used to obtain the 𝐼𝐶 and 𝑂𝑂𝐶 performances of 

the 𝑆𝐿 scheme with the steady-state 𝑈𝐶𝐿. 

library(doParallel) 

library(foreach) 

 

rm(list=ls(all=TRUE)) 

 

sl=function(m,n,H,win_lim=5000,sim_num=50000,loc,sca) 

{ 

  N=m+n 

  x=rep(0,m) 

  y=rep(0,n) 

  z=rep(0,n) 

  lep=rep(0,win_lim) 

  shew=rep(0,win_lim) 

   

  grp=makeCluster(7) 

  registerDoParallel(grp) 

   

  rl=rep(0,sim_num) 

  rl=foreach(i=1:sim_num,.combine=c)%dopar% 

    { 

      x=rnorm(m,0,1) 

      j=0 
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      repeat 

      { 

        j=j+1 

        y=rnorm(n,loc,sca) 

        R=rank(c(x,y)) 

         

        WRS=((sum(R[(m+1):N]))-

(0.5*n*(N+1)))/sqrt((m*n*(N+1)/12)) 

         

        for(k in 1:n) {z[k]=abs(R[m+k]-(0.5*(N+1)))} 

        if((N%%2)==0) {AB=((sum(z[1:n]))-

(0.25*n*N))/sqrt(((m*n*((N*N)-4)/(48*(N-1)))))} 

        else {AB=((sum(z[1:n]))-(0.25*n*((N*N)-

1))/N)/sqrt(((m*n*(N+1)*((N*N)+3)/(48*N*N))))} 

         

        lep[j]=(WRS*WRS)+(AB*AB) 

        shew[j]=lep[j] 

        if((shew[j]>=H)||(j==win_lim)) break 

      } 

      rl[i]=j 

    } 

  stopCluster(grp) 

   

  print(c(m,n,H,loc,sca, 

mean(rl),sqrt(var(rl)/sim_num),sd(rl),min(rl),quantile(rl,c(0.0

5,0.25,0.50,0.75,0.95)),max(rl))) 

} 

 

#Example 

sl(m=100, n=5, H=11.247) 
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