

EXTREME ACTION RECOGNITION FROM REAL-TIME VIDEO

USING TIME-SERIES DEEP LEARNING MODEL

GOH QING HAO

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2021

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : GOH QING HAO

ID No. : 17UEB00099

Date : 25th September 2021

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “EXTREME ACTION

RECOGNITION FROM REAL-TIME VIDEO USING TIME-SERIES

DEEP LEARNING MODEL” was prepared by GOH QING HAO has met

the required standard for submission in partial fulfilment of the requirements for

the award of Bachelor of Engineering (Honours) Mechatronics Engineering at

Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ir. Ts. Dr. Hum Yan Chai

Date : 25th September 2021

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2021, Goh Qing Hao. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor for the guidance and

motivation he has given me throughout this Final Year Project and UTAR for

providing me with the opportunity to take part in the Final Year Project. My

most profound appreciation to my parents, who have encouraged me and funded

this research.

v

ABSTRACT

The development of an extreme action recognition model to automate police

surveillance can improve police deployment speed to crime scenes such as

assault, robbery, kidnapping and other offences. However, the existing solution

of extreme action recognition is insufficient to be deployed with high

confidence. This study proposed a time-series deep learning model to perform

extreme action recognition, built with an efficient dual streams Convolutional

Neural Network integrating with Convolutional Long-Short Term Memory.

Notably, a novel attempt to employ background-subtracted pose keypoints as

input for the recognition. Furthermore, the proposed method demonstrated

improved background noise resistance when tested in the datasets of Hockey,

Movies, Violent-Flow, and RWF-2000. As a result, the ablation study shows

that complementing the RGB frame difference with pose keypoints will improve

the framework's accuracy. The performance of the proposed framework is

comparable to the existing state-of-the-arts on the RWF-2000 dataset at 87.00%

accuracy, 100% accuracy on the Movie dataset, 97.00% accuracy on the Hockey

dataset, and Violent-Flows dataset at 92% accuracy. The findings discovered in

this study hold enormous potential to advance the current framework of extreme

action recognition.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xiii

CHAPTER

1 INTRODUCTION 1

1.1 Introduction to Extreme Action Recognition 1

1.2 Importance of the Study 1

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 4

1.7 Outline of the Report 4

2 LITERATURE REVIEW 5

2.1 Extreme Action Dataset 5

2.1.1 Movies Fight Dataset 5

2.1.2 Hockey Fight Dataset 6

2.1.3 Violent-Flows Dataset 6

2.1.4 UCF-101 Dataset 7

2.1.5 RWF-2000 dataset 8

2.1.6 Summary of datasets 8

2.2 Artificial Neuron and Neural Network 9

2.2.1 Artificial Neuron 9

2.2.2 Feedforward Neural Network 11

2.2.3 2D Convolutional Neural Network 12

vii

2.3 Transfer Learning 15

2.4 Time-series Network 16

2.4.1 3D Convolutional Neural Network 16

2.4.2 Long short-term memory 17

2.4.3 Convolutional LSTM 19

2.5 Extreme Action Recognition 20

2.5.1 Recognition with SVM as classifier 20

2.5.2 Recognition with 3D CNN as classifier 23

2.5.3 Recognition with ConvLSTM as classifier 28

2.5.4 Motivation 29

3 METHODOLOGY AND WORK PLAN 32

3.1 Introduction 32

3.2 Dataset to be used for framework training 33

3.3 Proposed framework 33

3.3.1 Input of the framework 33

3.3.2 Pose estimation 34

3.3.3 Background subtraction 37

3.3.4 2D CNN feature extractor 38

3.3.5 ConvLSTM spatio-temporal encoder 39

3.3.6 Classification 40

3.3.7 Overall framework 41

3.4 Experiment and ablation study 42

3.5 Development environment 42

RESULTS AND DISCUSSION 44

4.1 Quantitative Results 44

4.1.1 Accuracy 44

4.1.2 Training analysis 45

4.1.3 Training time 46

4.2 Qualitative Results 47

4.3 Summary of critical findings 53

5.1 Conclusions 54

5.2 Recommended Solutions 54

REFERENCES 56

viii

LIST OF TABLES

Table 2.1: Table of datasets available that is dedicated to

development of extreme action time-series model. 9

Table 2.2: Comparison of Accuracy for Reviewed Methodologies. 30

Table 3.1: Table of available options for pose estimation model

tested on the COCO test-dev dataset. (Güler, Neverova

and Kokkinos, 2018; Cao et al., 2021; Zhang et al., 2021) 35

Table 3.2: Tables of object detection framework showing available

options for open-source object detection frameworks

(Bochkovskiy, Wang and Liao, 2020) 36

Table 3.3: Table of open-source options of 2D CNN that can be used

for feature extraction. (PyTorch, no date; Howard et al.,

2019; Véstias, 2019) 38

Table 3.4: Architecture of Classification layers for the proposed

framework. 40

Table 3.5: Specification of hardware for deep learning. 43

Table 3.6: Two popular options of cloud computing solutions

showing the estimated monthly cost, the GPU availability,

and the runtime limit. (Google Colab, no date) 43

Table 4.1: Accuracy obtained with proposed framework and ablation

study compared to major benchmarks from previous

studies. 44

Table 4.2: Result obtained from ablation study. 45

ix

LIST OF FIGURES

Figure 1.1: Crime index ratio of each states in Malaysia,

calculated per 100,000 population ratios.

(Mahidin, 2020) 2

Figure 2.1: Sample images of fighting scenes extracted from

movies dataset. (Gracia et al., 2015) 5

Figure 2.2: Samples images of fighting scene from the

hockey fight dataset. (Gracia et al., 2015) 6

Figure 2.3: Sample of images from violent flows dataset

depicting scenes of crowd activities and crowd

violence. (Hassner, Itcher and Kliper-Gross,

2012) 7

Figure 2.4: Sample images of punching and rafting labels

from UCF-101 dataset. (Soomro, Zamir and Shah,

2012) 7

Figure 2.5: Sample of images from RWF-2000 dataset

depicting scenes of retrieved from CCTV

footages. (Cheng, Cai and Li, 2019) 8

Figure 2.6: Graphical representation of human neuron

anatomy. (Freudenrich and Boyd, 2021) 10

Figure 2.7: Schematics of a basic artificial neuron.

(Rosebrock, 2019) 11

Figure 2.8: Example of feedforward neural network.

(Rosebrock, 2019) 11

Figure 2.9: Schematics of feedforward neural network for

MNIST numeric digit prediction. (Github, 2021) 12

Figure 2.10: Basic structure of CNN for multi-class

classification with feature learning layers and

classification layers. (Matlab, 2021) 13

Figure 2.11: Graphical depiction of convolution function.

(IBM Cloud Education, 2020) 13

Figure 2.12: Graphic depiction of max pooling operation with

2x2 kernel and stride of two (Rosebrock, 2019) 14

x

Figure 2.13: Schematics of AlexNet CNN architecture.

(Wayne, 2020) 15

Figure 2.14: Transfer Learning, Pre-trained Model Utilised as

Fixed Feature Extractor. (Oquab et al., 2014) 16

Figure 2.15: Graphical depiction of 3D CNN convolution

repeated across time. (Ji et al., 2013) 17

Figure 2.16: Schematics of a single LSTM memory cell. (Yu

et al., 2019) 19

Figure 2.17: The convolution of input across sequence of

time-steps occurring at the input of ConvLSTM.

(Shi et al., 2015) 20

Figure 2.18: Model Architecture of Multi-Stream Learning.

(Carneiro et al., 2019) 22

Figure 2.19: Example of human pose information extracted in

the study with OpenPose. (Nova, Ferreira and

Cortez, 2019) 23

Figure 2.20: Model Architecture of method SSD + 3D CNN.

(Ullah et al., 2019) 24

Figure 2.21: Graph of epochs plotted against loss, showing

long period of no improvements after 1000

epochs. (Ullah et al., 2019) 25

Figure 2.22: Model Architecture of method SSD combined

with Optical Flow and 3D CNN, the recognition

framework is separated into localisation branch

and recognition branch. (Xu, See and Lin, 2019) 26

Figure 2.23: The model architecture of end-to-end 3D CNN

capable of recognition without pre-processing

steps. (Li et al., 2019) 26

Figure 2.24: Model architecture of densePose RCNN

combined with 3D CNN. (Calzavara, 2020) 27

Figure 2.25: Model architecture of 2D CNN combined with

ConvLSTM. (Sudhakaran and Lanz, 2017) 28

Figure 2.26: Model architecture of dual-stream 2D CNN +

Separable ConvLSTM. (Islam et al., 2021) 29

xi

Figure 3.1: Initial plan to develop the extreme action re

framework, each box illustrates the process

involved. 32

Figure 3.2: The image shown on the left is the original video

frame before pose estimation; the image on the

right shows pose keypoints of the pedestrians

drawn on the black canvas after pose estimation. 37

Figure 3.3: Graphical model of convolutional long-short

term memory cell. 40

Figure 3.4: The proposed framework of this project showing

all significant components. 41

Figure 4.1: Graph of loss and accuracy for method of RGB +

EfficientPose C on all datasets during training,

plotted against epoch. 46

Figure 4.2: Training time taken per epoch for different

method training on RWF-2000 dataset. 47

Figure 4.3: False positive case with method

RGB+EfficientPose C with sample from hockey

dataset showing incorrect pose estimation 48

Figure 4.4: False positive case with method

RGB+EfficientPose C with sample from RWF-

2000. The pose estimation correctly predicted the

pose keypoints in most cases. 49

Figure 4.5: Dispersed red colour static noises observed from

the RGB frame difference in the false positive

case with method RGB+EfficientPose C with

sample from RWF-2000. 49

Figure 4.6: False positive case with method

RGB+EfficientPose C with test sample from

RWF-2000, drastic scene change observed at the

final frame. 50

Figure 4.7: False negative case with method

RGB+EfficientPose C with sample from RWF-

2000 dataset depicting correct pose estimation,

but subjects of interest were too small. 51

xii

Figure 4.8: False negative case with method

RGB+EfficientPose C with sample from Violent-

Flows crowd dataset depicting incorrect pose

estimation and excessive noise in RGB frame

difference. 52

xiii

LIST OF SYMBOLS / ABBREVIATIONS

f forget gate

i gate component

�̃� memory cell component

o output gate

c cell state

h hidden state

t time steps

x input vector

I image input vector

w weight vector

b bias vector

𝜎 sigmoid function

tanh hyperbolic tangent function

∗ convolution function

𝑛 sequence of {1,…,N}

L total number of frames in video

N sequence length

i index of frame to be sampled

1D one-dimensional

2D two-dimensional

3D three-dimensional

AI artificial intelligence

CCTV closed-circuit Television

CNN convolutional neural network

CONV convolutional

ConvLSTM convolutional long short-term memory

CPU central processing unit

FC fully connected

FPS frames per second

xiv

GPU graphics processing unit

MMACC million multiply-accumulation

mAP mean average precision

mAR mean average recall

OS operating system

PL pooling

RAM random access memory

RGB red, green, blue

RNN recurrent neural network

ROI region of interest

SVM support vector machine

SOTA state of the art

SSD single shot setector

VRAM video random-access memory

1

CHAPTER 1

1 INTRODUCTION

1.1 Introduction to Extreme Action Recognition

Extreme action recognition is an artificial intelligence (AI) framework to

monitor incidents of activities such as fighting through closed-circuit television

(CCTV) surveillance footage. When an extreme action is detected in a particular

place, police and ambulance can be notified to intervene and help to prevent

injuries or death.

Most extreme action recognition is still performed manually, with

security guards monitoring an array of CCTV surveillance footage. However,

manual vision monitoring can be unreliable because it is dull labour and requires

a high level of focus and attention, prone to failure when the person monitoring

the CCTV surveillance footage becomes distracted or drowsy. Hence,

developing a powerful action recognition solution assisted or fully automated

with AI would significantly improve surveillance efficiency.

Extreme action recognition from real-time video footage using AI is

still an emerging technology; thus, no reliable solution exists. Computer science

researchers have been developing an AI model architecture dedicated to

performing reliable extreme action recognition; nevertheless, the existing

solution of extreme action recognition is insufficient to be deployed with high

confidence.

1.2 Importance of the Study

The findings of this study will ultimately improve public safety through

contribution to the development of an extreme action recognition framework.

For instance, public safety can be improved by equipping police authorities with

AI-assisted extreme action recognition; the recognition framework deployed at

crime hotspots can automatically alert the police force of incidences of robbery

and assault. Early detection of crime leads to rapid deployment of the police

force, increasing effectiveness in preventing bodily injuries and death.

2

1.3 Problem Statement

The rapid urbanisation of Malaysia has led to an increased frequency of street

crimes; the most urbanised states of Kuala Lumpur, Johor, Selangor, and Pinang

together contributed 70% of all street crimes occurring in Malaysia. In 2010, the

government of Malaysia proposed the Government Transformation Programme

roadmap targeted to reduce the crime rate in the urban area through the

installation of surveillance cameras monitored by the Royal Malaysia Police.

(Soh, 2012)

However, by 2019 the urbanised states of Kuala Lumpur, Selangor,

Sembilan, Pinang, Melaka, and Johor continue to display a high crime index

ratio by ranking higher than the remaining less urbanised states, as shown in

Figure 1.1. Notably, the crime index in the capital region of Kuala Lumpur leads

the national average by 130% despite the installation of 40,000 surveillance

cameras in the highly urbanised Kuala Lumpur. (Adilah, 2017)

Figure 1.1: Crime index ratio of each states in Malaysia, calculated per

100,000 population ratios. (Mahidin, 2020)

The increased number of surveillance cameras does not guarantee

crime reduction; an effective surveillance system requires constant monitoring.

The installed cameras are mostly hidden and monitored only upon the report of

a crime. As a result, the deterrence capability of surveillance cameras is

3

minimised. The adaptation of AI-assisted extreme action recognition that

actively monitors the camera and alerts the police in case of anomaly may

significantly improve the effectiveness of surveillance in crime deterrence and

criminal apprehension.

1.4 Aim and Objectives

This project will aim to develop an extreme action recognition based on deep

learning time-series model that can recognise extreme action from video clips.

The objectives of this project to accomplish the aim are:

(i) Conduct literature reviews of extreme action recognition.

(ii) Identify suitable datasets for training and performance

benchmarks.

(iii) Develop the extreme action recognition framework with deep

learning.

(iv) Train and test the developed model.

(v) Evaluate the test results and identify the root cause of failure

for the developed model.

(vi) Proposed suggestions for improvement.

1.5 Scope and Limitation of the Study

This project's scope is to develop a method to perform extreme action

recognition trained with some popular benchmarks. The use of popular

benchmarks allows the developed method to be compared to other related works.

The reliability of the extreme action recognition AI model depends on

the quality, diversity, and volume of the dataset. Unlike the ImageNet dataset

dedicated to training object recognition, which contains over 1.2 million static

labelled images, the labelled large-scale dataset for extreme action is limited.

Hence, one of the limitations of this study is the availability of an extreme action

dataset.

Project time constraint is also a limitation. AI deep learning

computation requires hours for a single epoch. Typically, thousands of epochs

are needed to train a model at the optimal learning rate fully. Thus, a suitable

number of epochs and learning rate was chosen to reduce training time to ensure

completion of the project within the available project time.

4

1.6 Contribution of the Study

The existing extreme action recognition frameworks state of the art (SOTA)

exaggerate background noises when background subtraction is computed on

unprocessed input. This study proposed and evaluated a novel method to

improve noise resistance by complementing unprocessed input with pose

keypoints using dual streams convolutional neural network (CNN) integrated

with convolutional long-short term memory (ConvLSTM).

In addition, this work implemented EfficientPose to give a pose

keypoints with improved mean average precision and recall compared to

DensePose and OpenPose used by previous works. Three experiments were

conducted with different versions of EfficientPose to evaluate the correlation

between pose estimation accuracy and recognition accuracy. Lastly, an ablation

study was performed to determine the effectiveness of combining pose

keypoints with ConvLSTM. The combination of pose keypoints with

ConvLSTM is the first attempt in literature at the time of writing.

1.7 Outline of the Report

This report presented a critical review of existing extreme action recognition

solutions, methodology to implement the proposed framework, and analysis of

results obtained with the proposed framework. Chapter 1 introduced the

potential of an automated police surveillance system with extreme action

recognition and the problem statement on the lack of an existing solution.

Finally, the aims and objectives to develop a solution were written, along with

the scientific community's scope, limitation, and contribution.

Chapter 2 presented the study's motivations based on the limitations

found in the literature reviews on existing extreme action recognition datasets

and solutions. The existing solutions reviewed were categorised into three

groups based on different classifiers: Support Vector Machine (SVM), Three-

Dimensional (3D) CNN, and ConvLSTM.

The methodology to develop the solution to achieve the aims and

objectives of this study was described in chapter 3; the results obtained with the

proposed method was analysed in chapter 4. Lastly, chapter 5 concludes the

critical findings observed in this project and recommends potential

improvements in future work.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Extreme Action Dataset

In training an AI model for extreme action recognition, datasets consisting of

video clips of extreme action is essential. This sub-section reviews the open-

access extreme action dataset available on the internet.

2.1.1 Movies Fight Dataset

Gracia et al. (2015) introduced the Movies dataset consisting of video clips

extracted from action movies and 200 video clips; each of the 200 videos is

labelled either as “Fight” or “Non-fight” and the dataset is evenly split between

the two labels. Each video clip consists of 50 video frames, resized to a

resolution of 720x576 and played at 25 frames per second (FPS). The videos in

this dataset have distinctly different scales, backgrounds, and content. Figure

2.1 shows four sample images of this dataset.

Figure 2.1: Sample images of fighting scenes extracted from movies dataset.

(Gracia et al., 2015)

6

2.1.2 Hockey Fight Dataset

The Hockey dataset was published along with the Movies dataset, consisting of

1000 video segments clipped from the broadcast of hockey games from the

National Hockey League; each of the 1000 videos is labelled either as “Fight”

or “Non-fight”, and the dataset is evenly split between the two labels. Each

video clip consists of 50 video frames, resized to a resolution of 320x240 and

played at 25 FPS. The videos in this dataset have identical scales, backgrounds,

and content. Figure 2.2 shows four sample images of this dataset. (Gracia et al.,

2015)

Figure 2.2: Samples images of a fighting scene from the hockey fight dataset.

(Gracia et al., 2015)

2.1.3 Violent-Flows Dataset

Published by Hassner, Itcher and Kliper-Gross (2012), the Violent-Flows

dataset is dedicated to benchmarking extreme action recognition among a crowd

of people. The dataset consists of 246 video clips evenly split between two

labels of “Violence” and “Non-Violence”. Each video clip has a varying length

of video frames, a fixed resolution of 320x240 and played at either 25 FPS or

30 FPS. Figure 2.3 shows four sample images of this dataset.

7

Figure 2.3: Sample of images from violent flows dataset depicting scenes of

crowd activities and crowd violence. (Hassner, Itcher and Kliper-Gross, 2012)

2.1.4 UCF-101 Dataset

The UCF-101 dataset is a large-scale human action class dataset consisting of

video clips extracted from YouTube and labelled at the video level, and it

consists of 13,320 video clips split across 101 different class labels. Each video

clip has a varying length of video frames, a fixed resolution of 320x240 pixels,

and a fixed 25 FPS. This dataset has a broad spectrum of labels, including

actions such as walking, running, biking, boxing, and so forth. Most labels are

related to sports and regular human activity; however, a few labels such as

punching, sumo wrestling, and fencing may be considered a form of extreme

action. Figure 2.4 shows two sample images of this dataset. (Soomro, Zamir and

Shah, 2012)

Figure 2.4: Sample images of punching and rafting labels from the UCF-101

dataset. (Soomro, Zamir and Shah, 2012)

8

2.1.5 RWF-2000 dataset

Cheng, Cai and Li (2019) published the RWF-200 dataset, a large-scale extreme

action dataset containing 2000 video clips extracted from YouTube. The 2,000

video clips are evenly split between two labels of “Fight” and “Non-Fight” with

a pre-defined train-test split ratio of 80:20. Each video clip has a fixed time

length of 5 seconds with varying resolutions. The videos in this dataset are all

surveillance-based footage with slightly elevated viewpoints, and each clip has

a distinctly different scale, FPS, background, and content. Figure 2.5 shows

several sample images from the RWF-2000 dataset.

Figure 2.5: Sample of images from RWF-2000 dataset depicting scenes

retrieved from CCTV footages. (Cheng, Cai and Li, 2019)

2.1.6 Summary of datasets

Table 2.1 summarises the datasets reviewed in sub-chapter 2.1. Among the five

datasets, UCF-101 has the greatest number of videos. However, among the 101

different labels, there were no consensus or guidelines of what should be

considered extreme action. Therefore, different existing research that evaluated

their framework on UCF-101 cannot be compared.

9

Table 2.1: Table of datasets available that is dedicated to the development of

extreme action time-series model.

Datasets Description
Number

of Videos

Number

of labels

UCF-101

Broad spectrum of human

activity
13,320 101

Violent-Flows

Violent and non-violent

activity in crowd
246 2

Hockey

Violent and non-violent

activity in National Hockey

League broadcast

1000 2

Movies

Violent and non-violent

activity in Hollywood movies
200 2

RWF-2000 Violent and non-violent

activity recorded in

surveillance footages

2000 2

This study has found that the Movies, Hockey, Violent-Flows, RWF-

2000 datasets have been used in existing literature as the benchmarks of

recognition performance. These four datasets were chosen as they have simple

true/false label to differentiate whether the action is extreme.

2.2 Artificial Neuron and Neural Network

This section of the literature review briefly reviews the basic concepts of

artificial intelligence utilised in this project; in subsections 2.2.1 and 2.2.2,

artificial neurons and feedforward neural networks are discussed. In 2.2.3, the

various building blocks of CNN and the AlexNet variant of CNN were reviewed.

2.2.1 Artificial Neuron

As shown in Figure 2.6, brain neuron cell consists of a cell body, dendrites,

axons, and synapses. The human brain consists of many neurons interconnected

to each other, wherein synapses of a neuron are connected to the dendrites of

10

another neuron. Hence, a complex neural pathway is created. The dendrites can

be thought of as the input, synapses the output, and cell body the decision-maker.

Each neuron receives electrochemical signals from other neurons through its

dendrites, and if the aggregation of the electric potential of these signals is

strong enough, the cell body becomes activated and will transmit signals to other

neurons. (Rosebrock, 2019; Freudenrich and Boyd, 2021)

Figure 2.6: Graphical representation of human neuron anatomy. (Freudenrich

and Boyd, 2021)

An artificial neuron is an attempt to artificially create intelligence using

a modern computing system inspired by a neuron's working principles in a brain.

A schematic of the artificial neuron, as illustrated in Figure 2.7, consists of

inputs, weights, weighted sum, transfer function, and output. The input and

output are analogous to the dendrite and synapses, respectively, whereas the

weights, weighted sum, and transfer function form the decision-maker,

analogous to the cell body. When an artificial neuron receives inputs, the value

of each input is multiplied with the respective weights and summed together.

The transfer function, in this case, a step function, will become activated and

sends a signal to the output if the weighted sum exceeds a certain threshold;

otherwise, the step function remains inactivated, and no signal will be sent.

(Suzuki, 2011)

11

Figure 2.7: Schematics of a basic artificial neuron. (Rosebrock, 2019)

2.2.2 Feedforward Neural Network

A feedforward neural network can be created by interconnecting artificial

neurons with each other in a layer as shown in Figure 2.8, whereby the first layer

of neurons is connected to the input, and they can be activated depending on the

input data, and in turn, output their signals to next layer of neurons. The cycle

repeats until the signal is propagated to the output layer, which gives the

prediction. (Rosebrock, 2019)

Figure 2.8: Example of a feedforward neural network. (Rosebrock, 2019)

An example of a feedforward neural network in image-based

prediction is the prediction of a numeric digit based on images from the MNIST

database. As shown in Figure 2.9, the feedforward neural network input layer

12

consists of 784 inputs, each corresponding to a pixel on the input image. The

first layer in the network consists of 10 artificial neurons, in which each artificial

neuron can become activated depending on the type of input. The output layer

also consists of 10 artificial neurons that correspond to 10 digits from 0 to 9.

Prediction occurs at the output layer, whereby only one of the output neurons

will be activated. For example, in Figure 2.9, when an image of 8 was put into

the network, the expected result is that only the output neuron representing eight

will become activated. (Github, 2021)

Figure 2.9: Schematics of feedforward neural network for MNIST numeric

digit prediction. (Github, 2021)

2.2.3 2D Convolutional Neural Network

Two-dimensional (2D) CNN is a class of neural networks that is consisted of

more components compared to the feedforward neural network introduced in

sub-chapter 2.2.2. The components of a typical 2D CNN shown in Figure 2.10

are separated into two sections: the Feature Learning section with alternating

convolutional (CONV) and pooling (PL) layers and the Classification Section

with multiple fully-connected (FC) layers. (Matlab, 2021)

13

Figure 2.10:Basic structure of CNN for multi-class classification with feature

learning layers and classification layers. (Matlab, 2021)

The CONV layer is a set of filters that convolve every region of the

image. Each filter is connected to a small local region of the input image, and

multiple filters are used to ensure every region of the input image is connected

to a filter. If the image has a depth of three, then three different filters will be

connected to the same region. The output of each filter in the CONV layer is

individually connected to an artificial neuron, which is analogous to other kernel

filters such as the average filter. The weights of neurons input can be changed

based on the deep learning process, whereas the weights of the kernel filter are

fixed. Figure 2.11 depicts the operation of the CONV layer with regards to an

input image, wherein the values inside the filter are equivalent to the weights of

the artificial neuron. (Wood, 2021; IBM Cloud Education, 2020)

Figure 2.11:Graphical depiction of convolution function. (IBM Cloud

Education, 2020)

14

The PL layer is applied to reduce the spatial size of the input without

losing information or context from the input. For example, the PL layer in Figure

2.12 sub-divides the input into the smaller region and retains only the maximum

value within the sub-region. Implementing the Pooling layer is essential to

reduce the number of inputs, which, in turn, significantly reduces computer

resource requirements. (Rosebrock, 2019)

Finally, the FC layer is used as the prediction and output layer. The

principle of the FC layer works the same as the feedforward neural network

introduced in sub-chapter 2.2.2, whereby the only difference is that the input

layer is connected to the output of the pooling layer instead of pixels on the

image. (Rosebrock, 2019)

Figure 2.12: Graphic depiction of max pooling operation with 2x2 kernel and

stride of two (Rosebrock, 2019)

One famous example is the AlexNet CNN Architecture designed and

initially proposed by Krizhevsky, Sutskever and Hinton (2012) that won the

2012 ImageNet competition. As shown in Figure 2.13, the model architecture is

separated into two sections: the ConvNet Feature Extractor and the

Classification Head. The ConvNet Feature Extractor consists of alternating

CONV and PL layers that extract local features from the input image. The

Classification Head consists of only FC layers to perform the prediction and

output. As a result, the AlexNet CNN can predict 1000 different classes of

images ranging from different types of animals, fruits, cars, and ships with an

error rate of only 15.3%.

15

Figure 2.13: Schematics of the AlexNet CNN architecture. (Wayne, 2020)

2.3 Transfer Learning

Transfer learning is a deep learning method of transferring the model that had

learnt to solve a certain problem, to become the starting point for a new deep

learning process to solve a new and different problem. For example, the features

of a model that had learnt to perform face detection can be used to create a new

model in performing facial recognition. In addition, transfer learning is used to

train models in insufficient data available or limited computational resources.

(Chollet, 2020; Chilamkurthy, 2017)

There are two common approaches to perform transfer learning, the

first approach is to fine-tune the pre-trained model to adapt to solve a new

problem in the same target environment. The pre-trained model architecture

remains unchanged, and the model is fine-tuned with additional data, such that

the model becomes updated.

In the second approach, a part of the pre-trained model as a feature

extractor to solve a problem in a different environment. As shown in Figure 2.14,

the pre-trained model architecture is altered whereby the last few FC layers of

the network are removed, and new adaptation FC layers of a different design

with randomly initialised weights are then attached, and the modified

architecture is trained on the new target tasks. (Oquab et al., 2014; Chilamkurthy,

2017)

16

Figure 2.14: Transfer learning of a pre-trained model utilised as a fixed feature

extractor. (Oquab et al., 2014)

2.4 Time-series Network

Time-series problems such as weather forecasting, action recognition, stock

market prediction are common but are highly complex and challenging. The AIs

are expected to make predictions based on aggregated information extracted

from every given time frame.

The current AI architectures, such as the AlexNet 2D CNN introduced

in sub-chapter 2.2.3, are limited to making predictions on a temporal-

independent image within the scope of computer vision. For example, the AI

can predict what is in the image, the position of the person relative to the image

and draw segmentation masks across different objects within the image.

However, it was difficult for AI to draw inferences on the patterns in a sequence

of images. In recent years, researchers have proposed several novel neural

network architectures that can encode temporal features to solve time-series

problems, and this chapter will briefly introduce some of these neural networks

and their state of development.

2.4.1 3D Convolutional Neural Network

To date, there are numerous variants of 3D CNN implementations, one of the

variants for human action recognition was proposed by Ji, Xu, Yang, and Yu

(2013). The variant can encode temporal features alongside spatial features.

17

This work extended the 2D CNN by one additional dimension to accommodate

the temporal features.

The image processing kernels of the convolution are used to extract

separate feature maps in 5 channels from each frame containing gradient in the

X-Y direction, optical flow in the X-Y direction, and grayscale; subsequently,

as shown in Figure 2.15, the extracted feature maps are repeated across time to

become a sequence which represents time-series data. The convolution is

continued deeper into the network until a linear feature vector is produced,

which is connected to the FC layers to make predictions. (Ji et al., 2013)

Figure 2.15: Graphical depiction of 3D CNN convolution repeated across time.

(Ji et al., 2013)

2.4.2 Long short-term memory

The Long Short-Term Memory (LSTM), a variant of Recurrent Neural Network

(RNN), has been used extensively to solve time-series problems such as speech

recognition and translation. Proposed by Hochreiter and Schmidhuber (1997), a

memory cell contains forget gate, update gate, and output gate as the three major

18

components. The memory cell is trainable using feedforward and

backpropagation like a CNN.

Each gate is represented by mathematical equations, whereby the

forget gate is represented by Equation 2.1. The forget gate determines what

information stored inside the cell state is no longer relevant and should be

forgotten. Equation 2.2, Equation 2.3, and Equation 2.4 collectively form the

input gate. The gate component and memory cell component at the input gate

determine what information should be stored in the cell state. The output gate

represented in Equation 2.5 and Equation 2.6 determines the output and hidden

state by inferring the input and cell state. In Figure 2.16, the connections

between the gates and their respective equations are illustrated. (Hochreiter and

Schmidhuber, 1997; Yu et al., 2019)

 𝑓𝑡 = 𝜎(𝑤𝑥
𝑓
𝑥𝑡 + 𝑤ℎ

𝑓
ℎ𝑡−1 + 𝑏𝑓) (2.1)

 𝑖𝑡 = 𝜎(𝑤𝑥
𝑖𝑥𝑡 + 𝑤ℎ

𝑖ℎ𝑡−1 + 𝑏𝑖) (2.2)

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑥
𝑐̃𝑥𝑡 + 𝑤ℎ

𝑐̃ℎ𝑡−1 + 𝑏𝑐̃) (2.3)

 𝑐𝑡 = �̃�𝑡𝑖𝑡 + 𝑐𝑡−1𝑓𝑡 (2.4)

 𝑜𝑡 = 𝜎(𝑤𝑥
𝑜𝑥𝑡 +𝑤ℎ

𝑜ℎ𝑡−1 + 𝑏𝑜) (2.5)

 ℎ𝑡 = 𝑜𝑡tanh⁡(𝑐𝑡) (2.6)

where

f = forget gate

i = gate component

�̃� = memory cell component

o = output gate

c = cell state

h = hidden state

t = time steps

x = input vector

w = weight vector

b = bias vector

𝜎 = sigmoid function

tanh = hyperbolic tangent function

19

Figure 2.16: Schematics of a single LSTM memory cell. (Yu et al., 2019)

Furthermore, multiple LSTM memory cells are commonly stacked

together across a sequence of input. For example, if the input window is 20-time

steps, 20 LSTM memory cells would be connected. The output of one memory

cell will propagate to the input of the next cell; the propagation of cell states

from one cell to another act as a memory to preserve important information that

is critical to perform prediction on the time-series problem. During training, the

connection between LSTM cells at cell state and hidden state allows

backpropagation through time, training the entire sequence together.

2.4.3 Convolutional LSTM

LSTM is limited to using a one-dimensional (1D) input vector, for example,

predicting sequence from an input of text, voice segment and numbers. However,

images are 2D, and LSTM cannot be used to make a prediction from a sequence

of images. In order to overcome this limitation, an article by Shi, Chen, Wang,

and Yeung (2015) proposed the ConvLSTM, whereby it convolves its input, x(t),

20

output, h(t), and cell state, c(t), from 2D vector into 1D vector. The memory cell

structure of ConvLSTM remains identical to LSTM, as shown in Figure 2.17.

(Shi et al., 2015)

Figure 2.17: The convolution of input across sequence of time-steps occurring

at the input of ConvLSTM. (Shi et al., 2015)

2.5 Extreme Action Recognition

Extreme action recognition is an AI framework that aims to recognise actions

of violent events, including actions such as punching, wrestling and crowd

violence. Extreme action recognition can be considered a niche sub-field of

action recognition, where the framework is dedicated specifically to detecting

one type of action instead of detecting a broad spectrum of different actions.

Much like the development process of action recognition, extreme

action recognition requires an AI that can interpret patterns in the temporal and

spatial domains. Hence, the complexity of the problem increases, and the use of

a time-series network becomes a necessity.

The current standard approach to a recognition framework typically

uses one or a combination of feature extractors such as 2D CNN, optical flow,

background subtraction, pose estimation, and ConvLSTM, to extract the salient

spatio-temporal features from an image. A classifier would then be used on the

extracted feature to make a prediction. Examples of the classifier are SVM, 3D

CNN, or FC layer. This sub-chapter explores the existing extreme action

recognition framework developed by researchers.

2.5.1 Recognition with SVM as classifier

As of now, the SOTA AI classifiers are CNN and the RNN. However, the SVM

remains a popular choice as a classifier due to their low computational cost and

21

high speed. The work by Bilinski et al. (2018) explored the possibility of

building a violent behaviour detection AI without using any neural network for

each video, the histogram of oriented gradients, histogram of optical flow,

trajectory shape, and motion boundary histogram in both X-Y directions were

used to capture spatial features. The extracted spatial features were then

processed with Improved Fisher Vector to obtain a temporal representation of

the sequence of the frames.

By conducting the classification using SVM, the authors achieved 93.7%

accuracy on the Hockey dataset, 99.5% accuracy on the Movies dataset, and

96.4% accuracy on the Violent-Flows dataset. In Bilinski’s work, a detection

framework using sliding windows was also implemented to locate the

boundaries of the fight. However, in the dataset, no bounding box ground truth

was provided. Hence, the Intersection of the Union of detection cannot be

evaluated. (Bilinski et al., 2018)

As shown by Bilinski et al. (2018) approach, extreme action

recognition can be performed without reliance on neural networks. Therefore, a

baseline for the usage of neural networks is set. However, the use of SVM meant

that parameters of SVM is limited to a particular dataset and must be tuned to

each specific dataset.

In a different work by Carneiro et al. (2019), multi-feature extraction

and multi-stream 2D CNN were combined as the feature extractors and SVM

were used as the classifier. The multiple features extracted from a video were

optical flow, depth, visual rhythm and red, green, blue (RGB) images. The four

features were each connected to an independent stream of VGG-16 2D CNN,

and as a result, four distinctly different features could be learnt by CNN without

conflict.

The VGG-16 was modified that the last two dense layers are trainable

individual stream learners, and the network weights were initialized by transfer

learning with weights trained from ImageNet. The output of the final dense layer

from each stream was concatenated into an ensemble. The ensemble served as

the input of SVM, which performed the classification. The described

architecture is illustrated in Figure 2.18, showing the type of extracted features

of optical flow, depth, visual rhythm, and RGB from counting top to bottom,

respectively. (Carneiro et al., 2019)

22

Figure 2.18: Model Architecture of Multi-Stream Learning. (Carneiro et al.,

2019)

According to the author, 88.62% on the Hockey dataset and 100%

accuracy on the Movies dataset were reported. If the visual rhythm stream were

removed, the accuracy of the Hockey dataset would improve to 89.10%.

Nevertheless, the work by Carneiro et al. (2019) had limitations, such as the

model was slow and computationally intensive. As a result of using four

independent VGG-16 streams and one non-trainable depth estimation CNN in

the framework, it is the most computationally intensive framework presented in

this sub-chapter. In addition, although VGG-16, which has a relatively lower

number of layers, was selected by the author for his work, upon inspection, the

overall computation cost is actually much higher than other CNN models

available to the author.

For example, to perform one forward pass, VGG-16 need to perform

7,800 Million Multiply-Accumulations (MMACCs) operations, whereas

MobileNet V2 published in 2018 only has to perform 569 MMACC, both of the

networks have a similar top-5 error of 10%. The training process also did not

utilise regularisation; thus, the trained model may tend towards overfitting.

A different work by Nova, Ferreira and Cortez (2019) attempted to use

human pose information as an input feature for the recognition framework. The

OpenPose CNN was used to estimate human poses in an image. However,

OpenPose is incapable of establishing multi-person pose estimation. Therefore,

the pose tracking technique was performed using kernelised correlation filters

to draw each person's region of interest (ROI) before performing the pose

estimation. Once the pose estimation was performed, human pose information

23

such as body joints velocities and body shape boundary were derived. Examples

of this human pose information are demonstrated in Figure 2.19. The human

pose information was used as an input for the SVM for learning and recognition

output. The author reported a true positive accuracy of 85% and true negative

accuracy of 92% when tested on the ISR-UOL 3D Social Activity dataset. This

work demonstrated that identifying human poses may function well as an

extreme action recognition input feature as the movements of joints is a potential

indication of a fight. However, because the ISR-UOL 3D dataset is not a notable

benchmark for extreme action recognition, a comparison cannot be drawn

between this work and other works. (Nova, Ferreira and Cortez, 2019)

Figure 2.19: Example of human pose information extracted in the study with

OpenPose. (Nova, Ferreira and Cortez, 2019)

2.5.2 Recognition with 3D CNN as classifier

As an extension of the established 2D CNN, 3D CNN is currently the most

popular option in training an AI for extreme action recognition framework, as it

is implemented in most deep learning python libraries such as Tensorflow, Caffe,

and Pytorch with complete documentation of use.

24

Ullah et al. (2019) proposed a framework using a combination of

Single Shot Detector (SSD) and 3D CNN. First, the SSD was used to draw

bounding boxes on an area of the image where there were people, and the

bounding boxes served as a region of interest to perform classification. Then,

the bounding box area was extracted and sent as an input to 3D CNN for

recognition. The architecture described can be seen in Figure 2.20. Using a

bounding box for recognition helps reduce noise by removing part of the

background and allowing the 3D CNN to learn only on the area where there is

a person. The best performance reported by the author achieved an accuracy of

96% on the hockey dataset, 99.9% on the movies dataset, and 98% on the violent

crowd dataset.

Figure 2.20: Model Architecture of method SSD + 3D CNN. (Ullah et al.,

2019)

One notable observation can be made from the data provided by the

author; although the author has trained the model for up to 5000 epochs, test

results from training were recorded once every 500 epochs. As shown in the

trained model inFigure 2.21, there has been no performance improvement since

the first test result as it plateaued between 1000 to 5000 epochs. In order to

prevent overfitting, an early stopping mechanism can be implemented together

with an increase in test frequency.

25

Figure 2.21:Graph of epochs plotted against loss, showing long period of no

improvements after 1000 epochs. (Ullah et al., 2019)

A different work by Xu, See, and Lin (2019) proposed using SSD in

combination with an optical flow motion activation map to more accurately

localise the region of interest for extreme action recognition. The methodology

implemented by the author in Figure 2.22 was to separate the framework into

two branches: the localisation branch and the recognition branch.

In the localisation branch, SSD was used to detect and draw bounding

boxes of each person, together with the optical motion activation map to draw

bounding boxes on the image area where motion was intense. The multiple

bounding boxes output from SSD and optical motion activation map were

merged into several ROI using non-max suppression (NMS) with custom

alignment criterion; as a result, each ROI included a cluster of few persons. (Xu,

See and Lin, 2019)

In the recognition branch, a two-stream 3D CNN takes the input of the

unprocessed RGB frame, motion acceleration map, and the ROI from the

localisation branch to compute the recognition output. This method obtained

98.6% accuracy on Hockey and 99.8% on Movies. (Xu, See and Lin, 2019)

26

Figure 2.22:Model Architecture of method SSD combined with Optical Flow

and 3D CNN, the recognition framework is separated into localisation branch

and recognition branch. (Xu, See and Lin, 2019)

Both methodology by Xu, See, and Lin (2019) and Ullah et al. (2019)

included extracting a local region of interest as input for 3D CNN. In contrast,

Li et al. (2019) showed that it is possible to train an end-to-end EAR framework

using only 3D CNN, without the need for other explicit regions of interest, and

the input was RGB image frames from the video. The model architecture shown

in Figure 2.23 demonstrated that no pre-processing was required. The author

tested their work on three datasets and obtained 98.3% accuracy on the Hockey

dataset, 100% accuracy on the Movies dataset, and 97.17% on the Violent-

Flows dataset.

Figure 2.23:The model architecture of end-to-end 3D CNN capable of

recognition without pre-processing steps. (Li et al., 2019)

27

Calzavara (2020) extended on the work of Li et al. (2019) by adding a

DensePose-RCNN pose estimation pre-processing step to the 3D CNN

developed by Li et al. (2019). Illustrated in Figure 2.24, the model architecture

of DensePose-RCNN developed by the author would draw a mask of human

keypoints over every person detected within the frame. Subsequently, the 3D

CNN would learn and make a prediction on the output from DensePose-RCNN

instead of using RGB input frames directly. Calzavara (2020) reported that the

addition of the pose estimation pre-processing step yielded an accuracy of 96.7%

on hockey, 100% on movies, 97.2% on Violent-Flows.

Figure 2.24: Model architecture of densePose RCNN combined with 3D

CNN. (Calzavara, 2020)

The pose estimation pre-processing step is implemented on the premise

that the movements of human limbs and torso are critical factors in deciding

whether a person is fighting. However, based on the work done by Calzavara

(2020), the addition of the pre-processing step does not significantly impact the

accuracy, most likely due to the errors introduced by the use of DensePose-

RCNN. Nevertheless, a more accurate pose estimation AI may improve results.

28

2.5.3 Recognition with ConvLSTM as classifier

LSTM, like other RNNs, has only been used in applications where input is a 1D

vector such as translation and speech recognition. However, using LSTM in

computer vision has been made possible with the introduction of ConvLSTM

by Shi, Chen, Wang, and Yeung (2015). Although the effectiveness of

ConvLSTM in extreme action recognition remains a topic to be researched,

compared to many well-established methods such as SVM and 3D CNN, there

are fewer research articles that use ConvLSTM as the classifier.

An article published by Sudhakaran and Lanz (2017) utilised

ConvLSTM to build an extreme action recognition framework. The model

architecture illustrated in Figure 2.25 shows that the image was first pre-

processed to extract motion information by performing background subtraction

between image frames. AlexNet 2D CNN without the classification layer was

then used to extract spatial features. Next, the extracted features were sent to

ConvLSTM to encode spatial features into spatial-temporal features. Lastly, the

FC layer was connected to the last memory cell of ConvLSTM to make a

prediction.

Figure 2.25: The model architecture of 2D CNN combined with ConvLSTM.

(Sudhakaran and Lanz, 2017)

Sudhakaran and Lanz (2017) reported an accuracy of 97.1% on the

Hockey dataset, 100% on the Movies dataset, and 94.57% on the Violent-Flows

dataset. However, there was a limitation on the author’s work; even though

AlexNet was relatively advanced at the time of publication, it is considered

obsolete as a feature extractor by current standards. There are more effective

and efficient 2D CNN being published in more recent works. Changing the

29

AlexNet to a newer 2D CNN such as MobileNet V3 may improve the result

substantially.

A SOTA was achieved by Islam et al. (2021) using two-stream

separable ConvLSTM. In the first stream, the model architecture illustrated in

Figure 2.26 shows that RGB image frame with background suppression was

taken as input, MobileNetV2 was used to extract spatial features, and lastly,

ConvLSTM was used to encode spatio-temporal information. The second

stream was similar, except that the input was pre-processed with frame

difference. The outputs of the separable ConvLSTM from both streams were

then concatenated into an ensemble, and the prediction was made using the FC

regression layer on the ensemble.

Moreover, Islam et al. (2021) demonstrated the effectiveness of

ConvLSTM with Hockey Dataset at 99.50% accuracy and the Movies dataset at

100% accuracy. Notably, 89.75% was obtained for the RWF-2000 dataset, the

primary benchmark with one of the highest number of videos dedicated for

extreme action recognition.

Figure 2.26: Model architecture of dual-stream 2D CNN + Separable

ConvLSTM. (Islam et al., 2021)

2.5.4 Motivation

The results of the literature reviewed in sub-chapter 2.5.1 to sub-chapter 2.5.3

can be summarized in Table 2.2. The (-) symbol indicates that the method did

not perform any test with that specific dataset.

30

Table 2.2: Comparison of Accuracy for Reviewed Methodologies.

Method

Dataset Benchmark (% accuracy)

Hockey Movies VF RWF

IFV + SVM

Bilinski et al. (2018)
93.70 99.50 96.40 -

Multistream 2D CNN + SVM

Carneiro et. al. (2019)
88.62 100.00 89.10 -

OpenPose + SVM

Nova, Ferreira and Cortez (2019)
- - - -

SSD + 3D CNN

Ullah et al. (2019)
96.00 99.90 98.00 -

SSD + Optical Flow + Two-stream

3D CNN

Xu, See and Lin (2019)

98.60 99.80 - -

3D CNN

Li et al. (2019)
98.30 100.00 97.17 -

DensePose + 3D CNN

Calzavara (2020)
96.70 100.00 97.20 -

2D CNN + ConvLSTM

Sudhakaran and Lanz (2017)
97.10 100.00 94.57 -

Two-stream 2D CNN + ConvLSTM

Islam et al. (2021)
99.50 100.00 - 89.75

As of date, there is no existing research that specifically used pose

information as the input for 2D CNN spatial feature extraction + ConvLSTM

spatio-temporal encoder. In both articles featuring ConvLSTM, the techniques

used for pre-processing were background suppression or frame differences. This

study believes that developing a framework that uses pose information as an

input feature will be worthwhile. The hypothesis is that background suppression,

and background subtraction would impart background movements from non-

human moving objects; objects such as cars on roads and highways will show

up as giant blobs of motion, leading to false-positive detection. In comparison,

31

by utilising the pose information of the human body, the trained model will be

relatively unperturbed by noises, leading to an increase in recognition

performance.

Although this hypothesis is not founded on a theoretical basis, there is

evidence suggesting that using pose information as the input can improve

performance. In work by Calzavara (2020), a pose information pre-processing

step was added to the model developed by Li et al. (2019), and despite the

addition of an inaccurate pose estimation AI to generate pose information to use

as input, Calzavara (2020) has managed to achieve near-identical performance.

This study believes that should a more accurate SOTA pose estimation model

be used, the accuracy may well surpass the model that did not implement pose

information.

This study is motivated to use pose information as the input for 2D

CNN feature extraction based on the hypothesis. The choice of using 2D CNN

as the feature extraction is supported by the results obtained in the work by

Sudhakaran and Lanz (2017). In his work, high accuracy can be achieved even

with the obsolete AlexNet, and this study believes that 2D CNN has a strong

ability to extract spatial information. Subsequently, in work by Islam et al.

(2021), ConvLSTM outperforms other spatio-temporal encoding methods.

Hence, in this study, the ConvLSTM network is chosen.

Lastly, Islam et al. (2021) and Ullah et al. (2019) have shown that the

complexity of Hockey, Movies and VF datasets are not sufficient as the error

approaches Bayes error. Therefore, the emerging dataset of RWF-2000 should

be used in addition to the three datasets, as the RWF-2000 dataset allows model

evaluation at a larger scale.

32

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In Figure 3.1, the initial plan to develop the EAR framework is shown. The

framework consists of an N-1 number of time-series networks, serially

connected at the spatio-temporal encoder. Each time-series network takes input

from two images that are adjacent to each other as a sequence. Thus, for example,

the first network input is the sequence of images one and two, and the following

network input is the sequence of images two and three. The network will then

propagate through the entire length of the videos.

Figure 3.1: Initial plan to develop the extreme action recognition framework,

each box illustrates the process involved.

Each time-series network is split into two streams, and the first stream

pre-processes its input of two images by pose estimation to extract pose

keypoints images. Background subtraction is then performed on the pose

keypoints images to emphasise motion between pose keypoints images.

33

Subsequently, a trainable 2D CNN will be used to extract features from the

subtracted pose keypoint image. The first stream is planned based on this study’s

hypothesis, which believes that including pose information as part of the input

will improve recognition accuracy. Furthermore, pose estimation is necessary

as existing benchmarks only provided RGB images for both training and testing

datasets.

The second stream is identical to the first, except pose estimation and

background subtraction is directly performed on the RGB input images. The

purpose of the second stream is to complement the model in situations where

pose estimation did not perform as desired. The two-stream setup has been

shown to work extraordinarily well in work by Islam et al. (2021), and in this

study, a two-stream setup is used to examine the effectiveness of pose

information in the extreme action recognition.

The outputs of the 2D CNNs from both streams will be concatenated

to form an ensemble for spatio-temporal encoding. Then, the spatio-temporal

encoders are serially connected to form a linked memory network, and the

spatio-temporal encoder of the final network will be connected to the

classification layer that outputs a true/false label.

3.2 Dataset to be used for framework training

Based on the findings from sub-chapter 2.1.6, this study has selected the Hockey,

Movies, VF, and RWF-2000 datasets for training and testing. The training and

testing will be conducted on each dataset separately, which allow the model’s

performance to be compared to existing literature. In addition, the train-test split

will be randomised to 80/20 split for Hockey, Movies, and VF datasets, whereas

RWF-2000 dataset has a fixed 80/20 split pre-determined by the author of the

dataset.

3.3 Proposed framework

3.3.1 Input of the framework

Each video in the datasets is typically a few seconds long, and depending on the

dataset, each video may contain between 90 to 270 frames. In order to reduce

computational costs, not all the frames are utilised in this study. An even sample

34

of 20 images from each video is extracted as a sequence to represent the overall

motion in the video. The equation for even sampling is shown in Equation (3.1

𝑖 = 𝑟𝑜𝑢𝑛𝑑 ((𝑛 − 1) ×

𝐿

𝑁 − 1
⁡) (3.1)

where

𝑛 = sequence of {1,…,N}

L = Total number of frames in video

N = sequence length

i = index of frame to be sampled

3.3.2 Pose estimation

Pose information is extracted from an RGB image using a pose estimation 2D

CNN model in the pre-processing step. As discussed in the literature review, it

is crucial to select a pose estimation model as accurately as possible to minimise

the amount of error introduced into the input.

Furthermore, it is essential to select an efficient model. For example, if

a sequence length is 20 images, then for each sequence, the pose estimation

model needs to perform 20 inferences on each image. Hence, it is essential to

choose an efficient model that will reduce computational costs. This study has

identified EfficientPose as the most suitable pose estimation to be used. This

selection is justified in Table 3.1. By comparing EfficientPose to other pose

estimation models available to date, EfficientPose can achieve excellent mean

Average Precision (mAP) and mean Average Recall (mAR) with low

computational cost. Moreover, EfficientPose outperforms DensePose, chosen

by Calzavara (2020) and OpenPose, chosen by Nova, Ferreira and Cortez (2019).

35

Table 3.1: Table of available options for pose estimation model tested on the

COCO test-dev dataset. (Güler, Neverova and Kokkinos, 2018; Cao et al.,

2021; Zhang et al., 2021)

Method Backbone GFLOPs mAP mAR

Mask-RCNN ResNet-50-FPN - 63.1 -

G-RMI ResNet-101 57.0 64.9 69.7

CFN - - 72.6 -

RMPE PyraNet 26.7 72.3 -

CPN ResNet-Inception - 72.1 78.5

SimpleBaseLine ResNet-50 8.9 70.0 75.6

SimpleBaseLine ResNet-152 15.7 71.6 77.3

HRNet-W32 HRNet-W32 16.0 74.9 80.1

HRNet-W48 HRNet-W48 32.9 75.5 80.5

LPN ResNet-50 1.0 68.7 74.5

LPN ResNet-101 1.4 70.0 75.7

LPN ResNet-152 1.8 70.4 76.2

PNFS MobileNet-V2 4.0 67.4 73.1

PNFS ResNet-50 11.4 70.9 76.6

DensePose + Mask - - 52.8 62.0

OpenPose - - 61.8 -

EfficientPose A NAS searched 0.5 66.5 -

EfficientPose B NAS searched 1.1 70.5 76.1

Efficient Pose C NAS searched 1.6 70.9 76.5

Multi-person pose estimation is essential in this study as extreme

actions typically involve more than one person. However, EfficientPose cannot

be directly deployed to be used for multi-person pose estimation in an image. In

order to overcome this limitation, this study refers to the open-source HRNet

single-person pose estimation.

HRNet was successful at implementing multi-person pose estimation

using a single-person model. In their work, Faster R-CNN was first used to draw

bounding boxes on every person within an image, followed by performing

single-person pose estimation in every bounding box. The methodology

36

implemented by HRNet is replicated in this study, except for choice for person

detection; the SOTA object detection framework YOLOv5 is used instead of

Faster R-CNN. As of date, the journal publication on YOLOv5 has not been

completed; however, it is the improved version of YOLOv4 with higher frames

per second (FPS) and mAP, and YOLOv4 has been shown to outperform Faster-

RCNN and other available options shown in Table 3.2. (Wang et al., 2020)

Table 3.2: Tables of object detection framework showing available options for

open-source object detection frameworks (Bochkovskiy, Wang and Liao, 2020)

Method Backbone Size FPS mAP

EfficientDet-D0 Efficient-B0 512 62.5 33.8

EfficientDet-D1 Efficient-B1 640 50.0 39.6

EfficientDet-D2 Efficient-B2 768 41.7 43.0

YOLOv3 + ASFF* Darknet-53 320 60 38.1

YOLOv3 + ASFF* Darknet-53 416 54 40.6

YOLOv3 + ASFF* Darknet-53 608 45.5 42.4

RFBNet HarDNet68 512 41.5 33.9

RFBNet HarDNet85 512 37.1 36.8

Faster-RCNN ResNet-50 - 9.4 39.8

YOLOv4 (P) CSPDarknet-53 416 54 41.2

YOLOv4 (P) CSPDarknet-53 512 43 43.0

YOLOv4 (P) CSPDarknet-53 608 33 43.5

YOLOv4 CSPDarknet-53 416 96 41.2

YOLOv4 CSPDarknet-53 512 83 43.0

YOLOv4 CSPDarknet-53 608 62 43.5

The output of the pose estimation is in the form of a keypoints

coordinate list. This study uses the keypoints coordinate list to draw the joints

over a black canvas without background or contextual information, as shown in

Figure 3.2. The removal of background aims to minimise the effect of

background noise. As a result, this study theorises that the pose information

stream will thoroughly learn from the pose, and any contextual information will

be learned in the RGB stream.

37

Figure 3.2: The image shown on the left is the original video frame before

pose estimation; the image on the right shows pose keypoints of the

pedestrians drawn on the black canvas after pose estimation.

3.3.3 Background subtraction

The frame differencing approach is chosen for background subtraction in this

study to capture motion information in the form of change in pixels. In addition,

frame differencing does not require a specific background to be defined and only

requires two images to function. In contrast, other approaches such as mean and

median filters require more than two images to establish a running average,

which puts additional demand on computational resources. The Frame

difference technique assumes that the background of the current frame is the

same as the previous frame and computes the difference by taking the absolute

value of subtraction between the current frame and the previous frame. Frame

differences are mathematically computed between adjacent frames at the pixel

level with Equation (3.2. (Tamersoy, 2009)

 𝐵𝑥,𝑦,𝑧,𝑛 = |𝑃𝑥,𝑦,𝑧,𝑛 − 𝑃𝑥,𝑦,𝑧,𝑛−1| (3.2)

where

𝐵 = background subtracted pixel

𝑃 = pixel value of frame

𝑥 = index of image width

𝑦 = index of image height

𝑧 = index of colour channel

𝑛 = index of image sequence

38

3.3.4 2D CNN feature extractor

In a framework, a feature extractor is an essential part that extracts salient

features from the image. In this study, the selected feature extractor has to

perform up to 20 inferences for each prediction. For this reason, the use of an

efficient network will reduce overall inference time and training time to an

acceptable length of time.

As shown in Table 3.3, MobileNet V2 and V3 can achieve performance

comparable to the previous SOTA of VGG 16 or GoogleNet with less

computational cost. This study selects Mobilenet V3, as it has lower latency

compared to MobileNet V2. Specifically, MobiletNet V3 large is selected for

the pose information stream, and MobileNet V3 small for the RGB stream to

emphasise pose information while reducing the training and inference time.

(PyTorch, 2021; Howard et al., 2019; Véstias, 2019)

Table 3.3: Table of open-source options of 2D CNN that can be used for feature

extraction. (Véstias, 2019; Howard et al., 2019; PyTorch, 2021)

Method MMACCs Latency

(ms)

Top-5

Accuracy (%)

Top-1

Accuracy (%)

AlexNet 650 - 79.07 56.52

VGG 16 7800 - 90.38 71.59

ResNet 101 3800 - 93.55 77.37

ResNet 152 5650 - 94.05 78.31

Inception V3 5700 - 93.45 77.29

GoogleNet 750 - 89.53 69.78

DenseNet 201 1500 - 93.37 76.90

MobileNet V2 300 162 90.29 71.88

MobileNet V3

Small
- 43 87.40 67.67

MobileNet V3

Large
- 119 91.34 74.04

39

3.3.5 ConvLSTM spatio-temporal encoder

The equations of the ConvLSTM used in this study are identical to those

described in sub-chapter 2.4.2, incorporated with convolution principles

described in sub-chapter 2.4.3. The convolution aspect is evident in the forget

gate equation in Equation 3.3, the gate component at Equation 3.4, the memory

cell component at Equation 3.5, and the output gate at Equation 3.6, wherein the

weight (w), input (I), and hidden state (h) convolve, instead of direct

multiplication as used in standard LSTM. (Shi et al., 2015)

 𝑓𝑡 = 𝜎(𝑤𝑥
𝑓
∗ 𝐼𝑡 + 𝑤ℎ

𝑓
∗ ℎ𝑡−1 + 𝑏𝑓) (3.3)

 𝑖𝑡 = 𝜎(𝑤𝑥
𝑖 ∗ 𝐼𝑡 + 𝑤ℎ

𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖) (3.4)

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑥
𝑐̃ ∗ 𝐼𝑡 + 𝑤ℎ

𝑐̃ ∗ ℎ𝑡−1 + 𝑏𝑐̃) (3.5)

 𝑜𝑡 = 𝜎(𝑤𝑥
𝑜 ∗ 𝐼𝑡 + 𝑤ℎ

𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜) (3.6)

 𝑐𝑡 = �̃�𝑡⨀𝑖𝑡 + 𝑐𝑡−1⨀𝑓𝑡 (3.7)

 ℎ𝑡 = 𝑜𝑡⨀tanh⁡(𝑐𝑡) (3.8)

where

f = forget gate

i = gate component

�̃� = memory cell component

o = output gate

c = cell state

h = hidden state

t = time steps

I = image input vector

w = weight vector

b = bias vector

𝜎 = sigmoid function

tanh = hyperbolic tangent function

∗ = convolution function

The direct multiplication of Equation (3.7 and Equation (3.8 likewise

is replaced with the Hadamard product to accommodate the multiplication of

40

2D arrays. The ConvLSTM equations are better illustrated as a whole in Figure

3.3; similar to standard LSTM shown in Figure 2.16, each memory cell can be

connected serially at the cell and hidden state.

Figure 3.3: Graphical model of a ConvLSTM memory cell.

3.3.6 Classification

The architecture of the linear layer is shown in Table 3.4, where the hidden state

of the final ConvLSTM cell is connected to the first layer of the classification

layers. The first layer max pool the hidden state from a 3D array of size

(1536,7,7) to (1536,3,3) with a kernel size of (2,2) and stride of two, and

automatically flatten the 3D array to 1D vector from (1536,3,3) to (13824).

Layers 2 to 8 learn predict the occurrence of extreme action from the flattened

hidden state.

Table 3.4: Architecture of Classification layers for the proposed framework.

Layer Number Layer type Input Output

1 Maxpool (1536,7,7) 13824

2 Linear 13824 1536

3 Batch normalisation 1536 1536

4 ReLU 1536 1536

5 Linear 1536 512

6 ReLU 512 512

41

Table 3.4 (Continued)

7 Linear 512 10

8 ReLU 10 2

9 Linear 10 2

3.3.7 Overall framework

Figure 3.4 summarises all components described from sub-chapter 3.3.1 to 3.3.6

and is consistent with the initial plan shown in Figure 3.1. The multi-person

pose estimation stream will be processed using a combination of YOLOv5 with

EfficientPose to produce keypoints frames, and the weights of both pose

estimations will be frozen and set to untrainable. Frame difference background

subtraction is computed for keypoints frames and RGB frames; subsequently,

feature extraction is performed on the frame difference using MobileNet V3

large for keypoints frame, and MobileNet V3 small for RGB frames. The

extracted features are concatenated and spatio-temporally encoded with

ConvLSTM through time. The networks are serially stacked at the point of

ConvLSTM hidden state and cell states. Hidden state output from the final

ConvLSTM is sent to the classification layers for prediction. The trainable

components in the network include the MobileNet V3 feature extractors,

ConvLSTM, and linear layers in the classification layers.

Figure 3.4: The proposed framework of this project showing all significant

components.

42

3.4 Experiment and ablation study

The experiment will be set up to train the model with 100 epochs, and test results

will be collected at every epoch. The low number of epochs for training in this

study is decided based on the occurrence of overfitting in work by Ullah et al.

(2019), evidenced by a long period of no improvement in Figure 2.21; a higher

number of epochs can only be justified if loss continues to be minimised at 100

epochs.

Quantitative results of train/test accuracy, false-positive rate, and false-

negative rate will be collected at every epoch for analysis to evaluate the

performance of the proposed framework. Epoch numbers at the point of no

improvement will be collected to evaluate the model complexity and identify

the occurrence of overfitting. Pose keypoints frames and RGB frame differences

for failure cases will be recorded for qualitative analysis on potential causes of

failure.

An ablation study will be conducted to identify the overall

effectiveness of the framework by training and testing the framework with either

one of the streams being disabled. Each stream is expected to have the predictive

capability on its own, but the predictive capability of using each stream alone

should be lower than using both streams combined.

3.5 Development environment

The specifications of the deep learning hardware used in this study are listed in

Table 3.5. The cloud computing solution was considered but not chosen; the

comparison between two popular options for cloud computing is shown in Table

3.6. Colab is free of charge; however, the graphics processing unit (GPU)

availability is limited, and the runtime limit is capped at 12 hours, whereas

Colab Pro guarantee GPU availability with a runtime limit increased to 24 hours.

Having a runtime limit of 24 hours is risky to the project because deep learning

training can easily exceed 24 hours. Other better cloud computing options such

as Microsoft Azure and Amazon Web Service has a minimum rental period

which is not suitable for this study. (Google Colab, 2021)

43

Table 3.5: Specification of hardware for deep learning.

Component Model

CPU AMD Ryzen 3700X

GPU Nvidia RTX3080 10GB VRAM

RAM 64GB DDR4 3200MHz

Memory 2TB read/write speed: 3.5/3.0GHz

OS Ubuntu 20.04

Table 3.6: Two popular options of cloud computing solutions showing the

estimated monthly cost, the GPU availability, and the runtime limit. (Google

Colab, 2021)

Specification
Type of Cloud Computing Solution

Colab Free Colab Pro

Cost/month Free RM 41.26

GPU availability Limited use Nvidia K80 Nvidia P100

Runtime limit 12 hours 24 hours

The framework is written entirely in Python 3.8 on the PyCharm

community version. Among other popular options such as Matlab or C++,

Python was chosen for its extensiveness of diversity in modules. Pythons allow

industry-leading deep learning modules such as TensorFlow, Caffe, or Pytorch

to be imported and used as a library to accelerate framework development. In

addition, multi-threaded backpropagation can be computed using functions

provided by the deep learning modules, which reduces training time.

The deep learning library chosen in this study is PyTorch 1.8.0 for its

computational graph checkpoint function. This function overcomes the

limitation of having low video random-access memory (VRAM) in the

RTX3080. RTX3080 is a GPU designed for the gaming market with a limited

10GB VRAM, and training CNN + ConvLSTM with only 10GB VRAM is not

practical without reducing batch size. By default, all intermediate activations

computed during forward-pass are stored in the VRAM for backpropagation.

The checkpoint function computes intermediate activations on-demand in

backpropagation by tracking weights and inputs during forward-pass. The on-

demand computation lowers the training speed, which, in turn, allows large

models to be trained with limited VRAM.

44

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Quantitative Results

4.1.1 Accuracy

Table 4.1 shows the accuracy obtained with the framework proposed in this

study with different variations in methods. Unfortunately, the proposed method

of RGB + EfficientPose C did not outperform the models developed in the

existing literature. However, it did obtain results comparable to the model

developed by Sudhakaran and Lanz (2017) regarding the Hockey, Movies, and

VF datasets. In addition, the proposed model was able to perform with 2.75%

lower accuracy than the current SOTA developed by Islam et al. (2021) in the

most complex dataset of RWF-2000.

Table 4.1: Accuracy obtained with proposed framework and ablation study

compared to major benchmarks from previous studies.

Method

Dataset Benchmark (% accuracy)

Hockey Movies VF RWF

IFV + SVM

Bilinski et al. (2018)
93.70 99.50 96.40 -

Multistream 2D CNN + SVM

Carneiro et. al. (2019)
88.62 100.00 89.10 -

SSD + 3D CNN

Ullah et al. (2019)
96.00 99.90 98.00 -

SSD + Optical Flow + Two-stream

3D CNN

Xu, See and Lin (2019)

98.60 99.80 - -

3D CNN; Li et al. (2019) 98.30 100.00 97.17 -

DensePose + 3D CNN

Calzavara (2020)
96.70 100.00 97.20 -

45

Table 4.2 (Continued)

2D CNN + ConvLSTM

Sudhakaran and Lanz (2017)

97.10

100.00

94.57

-

Two-stream 2D CNN + ConvLSTM

Islam et al. (2021)
99.50 100.00 - 89.75

Method conducted in this study Hockey Movies VF RWF

RGB + EfficientPose A 96.00 100.00 94.00 86.25

RGB + EfficientPose B 96.50 100.00 94.00 86.25

RGB + EfficientPose C (Proposed) 97.00 100.00 92.00 87.00

A trend is observed with different variations of EfficientPose. The

increase of pose estimation accuracy tends to improve framework performance

on Hockey and RWF datasets, and diminishing return is observed on the

Violent-Flow dataset. This observation suggests that the pose estimation model

was overwhelmed in crowded scenarios.

Table 4.3: Result obtained from ablation study.

Method

Dataset Benchmark (% accuracy)

Hockey Movies VF RWF

RGB only 96.00 100.00 94.00 85.00

EfficientPose C only 93.50 100.00 88.00 83.50

4.1.2 Training analysis

Figure 4.1 aggregates the training characteristics of the proposed method,

RGB+EfficientPose C, for all datasets. One distinct observation made on the

graphs of train and test loss, except for the Movies dataset, is that the model

overfitted within the first two epochs when trained with Hockey, Violent-Flows,

and RWF-2000 datasets. However, despite overfitting, the model still exhibited

excellent accuracy performance. The most probable cause was exploding

gradients; the gradients computed from the backpropagation were too big. The

large gradients caused a rapid increase in accuracy and decrease in loss, and the

large gradients eventually caused the loss to overshoot and oscillate around a

46

local minimum point. The effects of exploding gradients can be minimised using

gradient clipping techniques and decreasing the value of weights initialisation.

Figure 4.1: Graph of loss and accuracy for method of RGB + EfficientPose C

on all datasets during training, plotted against epoch.

4.1.3 Training time

Figure 4.2 shows the training time for different methods, and a disadvantage is

seen for the proposed method. The stream without pose estimation required 40

seconds to train per epoch, whereas the stream using pose estimation required

529 seconds. Likewise, the proposed method of RGB+EfficientPose C utilised

pose estimation and required 591 seconds to train, resulting in approximately

47

1377% more time to train. Training time scales linearly with the size of the

dataset. Hence, datasets larger than RWF-2000 will require an even longer

training time per epoch.

Figure 4.2: Training time taken per epoch for different method training on

RWF-2000 dataset.

4.2 Qualitative Results

The qualitative analysis conducted in this sub-chapter will focus on failure

analysis on the proposed method of RGB+EfficientPose C. Videos that the

framework failed to predict will be analysed to identify root causes of failure in

the framework.

Figure 4.3 next page depicts eight frames extracted from the Hockey

dataset that were incorrectly predicted as a fighting scene. In the unprocessed

image, the hockey player maintained an upright posture; however, the pose

estimation process failed to estimate correctly and represented the hockey player

with exaggerated motions shown at the bottom eight frames. Thus, the false

positive was most likely caused by incorrect poses estimation by analysing the

poses keypoints.

48

Figure 4.3: False positive case with method RGB+EfficientPose C with

sample from hockey dataset showing incorrect pose estimation

The video clips in Figure 4.4 next page depict an argument in a café

with multiple people entering and exiting the scene; although there were

movements in the video, no fights were occurring. Thus, both the pose

estimation and RGB frame difference appear to function as intended. However,

by analysing part of the RGB frame difference in detail, as shown in Figure 4.5,

dispersed red colour static noises can be observed. Thus, the movement of the

people in the scene combined with the erratic appearances of the noises most

likely caused the framework to make a false-positive prediction.

49

Figure 4.4: False positive case with method RGB+EfficientPose C with

sample from RWF-2000. The pose estimation correctly predicted the pose

keypoints in most cases.

Figure 4.5: Dispersed red colour static noises observed from the RGB frame

difference in the false positive case with method RGB+EfficientPose C with

sample from RWF-2000.

50

Figure 4.6 shows the scene of some pedestrians walking in a car park

before cutting to a different scene inside a building. The pose keypoints and

RGB frame difference both appear to function well. However, the scene change

caused an apparent shift in poses, and the final frame in frame difference became

overwhelmed. Thus, the scene change during time-series inference may have

been falsely predicted to be extreme action.

Figure 4.6: False positive case with method RGB+EfficientPose C with test

sample from RWF-2000, drastic scene change observed at the final frame.

51

Figure 4.7: False negative case with method RGB+EfficientPose C with

sample from RWF-2000 dataset depicting correct pose estimation, but subjects

of interest were too small.

Figure 4.7 depicts a false negative case in a video from RWF-2000. A

fight occurred at the bottom right corner of the video, and pose estimations were

computed with remarkable accuracy despite the size of the persons in the image.

However, the framework fails to recognise the fight, most likely due to camera

placement being too far away and the subjects of interest were too small for the

framework to extract useful motion information. Similarly, the frame difference

stream cannot discern any indication of motions that could suggest extreme

52

action. A region of interest pre-processing algorithm may help to improve

accuracy by isolating the subjects of interest.

Figure 4.8 shows a false negative case from Violent-Flows. Crowd

fights were occurring in the scene; however, the pose estimation failed to

capture keypoints of people in the frame due to the poor sharpness of the image.

The RGB frame difference stream similarly failed to capture any meaningful

motions due to the motion of the camera and noise of the image.

Figure 4.8: False negative case with method RGB+EfficientPose C with sample

from Violent-Flows crowd dataset depicting incorrect pose estimation and

excessive noise in RGB frame difference.

53

4.3 Summary of critical findings

The results obtained in this project revealed several critical findings. Firstly,

complementing the RGB frame difference with pose keypoints will improve the

framework's accuracy in most cases, as shown in the ablation study. However,

the pose estimation model increased computation cost drastically despite the

improvement, evidenced by the 1377% training and testing time increase.

Training analysis displayed indications of exploding gradient in

framework during training with the datasets of Hockey, Violent-Flows, and

RWF-2000. Therefore, gradient clipping should be added to prevent exploding

gradients, and the learning rate should also be tuned with a smaller initialisation

weight.

Furthermore, qualitative analysis shows the framework appears to be

resistant against background noises such as the motion of cars, as no instances

of such failure cases can be observed. However, the framework remains

susceptible to static noise, sudden scene changes, small subjects, and blurry

images. Lastly, the framework has been shown to consistently fail when pose

estimation cannot accurately predict the person's pose keypoints in the image.

54

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusions

In conclusion, this project proposed an extreme action recognition framework

with dual-stream MobileNet V3 CNN integrated with ConvLSTM. The

development of the proposed framework was motivated by the need to

overcome the existing limitation identified in literature reviews. The proposed

framework was trained on standard datasets of Hockey, Movies, Violent-Flows,

and RWF-2000.

The proposed framework obtained comparable performance to existing

SOTA on the RWF-2000 dataset at 87.00% accuracy, 100% accuracy on the

Movie dataset, 97.00% accuracy on the Hockey dataset; however, the proposed

method performed poorly on the Violent-Flows dataset at 92% accuracy.

Ablation study shows that dual-stream RGB frame difference with pose

keypoints will improve the framework's accuracy at the cost of 1377% increase

in training and testing time, and training analysis revealed indications of

exploding gradient for framework trained and tested with Hockey, Violent-

Flows, and RWF-2000 datasets.

Lastly, qualitative analysis shows that the proposed framework

displays exceptional noise resistance against background motion consistent with

the hypothesis of this study; however, the framework remains susceptible to

static noises, scene change, small subjects, blurry image, and failure of pose

estimation.

5.2 Recommended Solutions

In future work, semantic segmentation can be considered an alternative to pose

estimation to filter background noises. Currently, the computational resources

required to use pose estimation may prove challenging for most practical

applications, such as home surveillance using edge devices. In addition, pose

estimation have been observed in qualitative analysis to make frequent mistakes.

Although semantic segmentation cannot discriminate between pose keypoints

55

of each person, it can provide a comparatively more accurate human body

contour at a reduced computational cost than pose estimation.

Furthermore, the learning rate and weight initialisation should be tuned

for each dataset and the implementation of gradient clipping to reduce the

exploding gradient. Moreover, adding a region proposal algorithm will allow

the framework to focus on the region of interest that will reduce framework

susceptibility to small subjects. Finally, the effects due to blurry images and

static noises may be reduced by adding denoising algorithm pre-processing.

56

REFERENCES

Adilah, A., 2017. 40,000 CCTV cameras to make FT smart and safe. Malay

Mail. [online] 15 Dec. Available at:

<https://www.malaymail.com/news/malaysia/2017/12/15/40000-cctv-

cameras-to-make-ft-smart-and-safe/1532911>.

Bilinski, P., Bremond, F., Bilinski, P., Bremond, F., Violence, H., Videos, S.,

Bilinski, P., Bremond, F. and Antipolis, I.S., 2018. Human Violence

Recognition and Detection in Surveillance Videos To cite this version : HAL

Id : hal-01849284 Human Violence Recognition and Detection in Surveillance

Videos.

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M., 2020. YOLOv4: Optimal

Speed and Accuracy of Object Detection. [online] Available at:

<http://arxiv.org/abs/2004.10934>.

Calzavara, I., 2020. Human pose augmentation for facilitating Violence

Detection in videos : a combination of the deep learning Ivan Calzavara.

Cao, Z., Hidalgo, G., Simon, T., Wei, S.E. and Sheikh, Y., 2021. OpenPose:

Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 43(1), pp.172–186.

Carneiro, S.A., Da Silva, G.P., Guimaraes, S.J.F. and Pedrini, H., 2019. Fight

detection in video sequences based on multi-stream convolutional neural

networks. Proceedings - 32nd Conference on Graphics, Patterns and Images,

SIBGRAPI 2019, pp.8–15.

Cheng, M., Cai, K. and Li, M., 2019. RWF-2000: An Open Large Scale Video

Database for Violence Detection. [online] Available at:

<http://arxiv.org/abs/1911.05913>.

Chilamkurthy, S., 2017. TRANSFER LEARNING FOR COMPUTER VISION

TUTORIAL. [online] PyTorch. Available at:

<https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html>

[Accessed 16 Apr. 2021].

Chollet, F., 2020. Transfer learning & fine-tuning. [online] Available at:

<https://keras.io/guides/transfer_learning/> [Accessed 16 Apr. 2021].

Freudenrich, C. and Boyd, R., 2021. How Your Brain Works. [online] Available

at: <https://science.howstuffworks.com/life/inside-the-mind/human-

brain/brain1.htm> [Accessed 16 Apr. 2021].

Github, 2021. Looking inside neural nets. [online] Available at:

<https://ml4a.github.io/ml4a/looking_inside_neural_nets/> [Accessed 16 Apr.

2021].

57

Google Colab, 2021. Choose the Colab plan that’s right for you. [online]

Available at: <https://colab.research.google.com/signup> [Accessed 6 Sep.

2021].

Gracia, I.S., Suarez, O.D., Garcia, G.B. and Kim, T.K., 2015. Fast fight

detection. PLoS ONE, 10(4), pp.1–19.

Güler, R.A., Neverova, N. and Kokkinos, I., 2018. DensePose: Dense Human

Pose Estimation in the Wild. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp.7297–7306.

Hassner, T., Itcher, Y. and Kliper-Gross, O., 2012. Violent flows: Real-time

detection of violent crowd behavior. In: IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops. [online] Providence, RI,

USA: IEEE.pp.1–6. Available at:

<https://ieeexplore.ieee.org/document/6239348>.

Hochreiter, S. and Schmidhuber, J., 1997. Long Short-Term Memory. Neural

Computation, [online] 9(8), pp.1735–1780. Available at:

<https://direct.mit.edu/neco/article/9/8/1735-1780/6109>.

Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.C., Tan, M., Chu, G.,

Vasudevan, V., Zhu, Y., Pang, R., Le, Q. and Adam, H., 2019. Searching for

mobileNetV3. Proceedings of the IEEE International Conference on Computer

Vision, 2019-October, pp.1314–1324.

IBM Cloud Education, 2020. Convolutional Neural Networks. [online]

Available at: <https://www.ibm.com/cloud/learn/convolutional-neural-

networks> [Accessed 16 Apr. 2021].

Islam, Z., Rukonuzzaman, M., Ahmed, R., Kabir, M.H. and Farazi, M., 2021.

Efficient Two-Stream Network for Violence Detection Using Separable

Convolutional LSTM. [online] Available at: <http://arxiv.org/abs/2102.10590>.

Ji, S., Xu, W., Yang, M. and Yu, K., 2013. 3D Convolutional neural networks

for human action recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 35(1), pp.221–231.

Li, J., Jiang, X., Sun, T. and Xu, K., 2019. Efficient violence detection using 3D

convolutional neural networks. 2019 16th IEEE International Conference on

Advanced Video and Signal Based Surveillance, AVSS 2019, (October 2020).

Mahidin, M.U., 2020. CRIME STATISTICS, MALAYSIA, 2020. [online]

Available at:

<https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=455&

bul_id=UFZxVnpONEJqUU5pckJIbzlXeEJ1UT09&menu_id=U3VPMldoYU

xzVzFaYmNkWXZteGduZz09>.

Matlab, 2021. Convolutional Neural Network. [online] Available at:

<https://www.mathworks.com/discovery/convolutional-neural-network-

matlab.html> [Accessed 16 Apr. 2021].

58

Nova, D., Ferreira, A. and Cortez, P., 2019. A Machine Learning Approach to

Detect Violent Behaviour from Video BT - Intelligent Technologies for

Interactive Entertainment. pp.85–94.

Oquab, M., Bottou, L., Laptev, I. and Sivic, J., 2014. Learning and transferring

mid-level image representations using convolutional neural networks.

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp.1717–1724.

PyTorch, 2021. TORCHVISION.MODELS. [online] Available at:

<https://pytorch.org/vision/stable/models.html> [Accessed 6 Sep. 2021].

Rosebrock, A., 2019. Deep Learning for Computer Vision with Python. 3rd ed.

Pyimagesearch.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W. and Woo, W., 2015.

Convolutional LSTM Network: A Machine Learning Approach for

Precipitation Nowcasting. Journal of Sensors, [online] 2018, pp.1–9. Available

at: <http://arxiv.org/abs/1506.04214>.

Soh, M.B.C., 2012. Crime and Urbanization: Revisited Malaysian Case.

Procedia - Social and Behavioral Sciences, 42(July 2010), pp.291–299.

Soomro, K., Zamir, A.R. and Shah, M., 2012. UCF101: A Dataset of 101

Human Actions Classes From Videos in The Wild. [online] (November).

Available at: <http://arxiv.org/abs/1212.0402>.

Sudhakaran, S. and Lanz, O., 2017. Learning to detect violent videos using

convolutional long short-term memory. arXiv.

Suzuki, K., 2011. ARTIFICIAL NEURAL NETWORKS- ARCHITECTURES AN

APPLICATIONS Edited by Kenji Suzuki.

Tamersoy, B., 2009. Background Subtraction. [online] Available at:

<https://www.cs.utexas.edu/~grauman/courses/fall2009/slides/lecture9_backgr

ound.pdf> [Accessed 6 Sep. 2021].

Ullah, F.U.M., Ullah, A., Muhammad, K., Haq, I.U. and Baik, S.W., 2019.

Violence detection using spatiotemporal features with 3D convolutional neural

network. Sensors (Switzerland), 19(11), pp.1–15.

Véstias, M.P., 2019. A survey of convolutional neural networks on edge with

reconfigurable computing. Algorithms, 12(8).

Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y.,

Tan, M., Wang, X., Liu, W. and Xiao, B., 2020. Deep High-Resolution

Representation Learning for Visual Recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, (March), pp.1–1.

59

Wayne, 2020. Scratch to SOTA: Build Famous Classification Nets 2

(AlexNet/VGG). [online] Medium. Available at:

<https://medium.com/swlh/scratch-to-sota-build-famous-classification-nets-2-

alexnet-vgg-50a4f55f7f56> [Accessed 16 Apr. 2021].

Wood, T., 2021. Convolutional Neural Network. [online] DeepAI. Available at:

<https://deepai.org/machine-learning-glossary-and-terms/convolutional-

neural-network> [Accessed 16 Apr. 2021].

Xu, Q., See, J. and Lin, W., 2019. Localization guided fight action detection in

surveillance videos. Proceedings - IEEE International Conference on

Multimedia and Expo, 2019-July, pp.568–573.

Yu, Y., Si, X., Hu, C. and Zhang, J., 2019. A Review of Recurrent Neural

Networks: LSTM Cells and Network Architectures. Neural Computation,

[online] 31(7), pp.1235–1270. Available at: <http://arxiv.org/abs/1803.01446>.

Zhang, W., Fang, J., Wang, X. and Liu, W., 2021. EfficientPose: Efficient

human pose estimation with neural architecture search. Computational Visual

Media, 7(3), pp.335–347.

