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ABSTRACT 

 

The development of an extreme action recognition model to automate police 

surveillance can improve police deployment speed to crime scenes such as 

assault, robbery, kidnapping and other offences. However, the existing solution 

of extreme action recognition is insufficient to be deployed with high 

confidence. This study proposed a time-series deep learning model to perform 

extreme action recognition, built with an efficient dual streams Convolutional 

Neural Network integrating with Convolutional Long-Short Term Memory. 

Notably, a novel attempt to employ background-subtracted pose keypoints as 

input for the recognition. Furthermore, the proposed method demonstrated 

improved background noise resistance when tested in the datasets of Hockey, 

Movies, Violent-Flow, and RWF-2000. As a result, the ablation study shows 

that complementing the RGB frame difference with pose keypoints will improve 

the framework's accuracy. The performance of the proposed framework is 

comparable to the existing state-of-the-arts on the RWF-2000 dataset at 87.00% 

accuracy, 100% accuracy on the Movie dataset, 97.00% accuracy on the Hockey 

dataset, and Violent-Flows dataset at 92% accuracy. The findings discovered in 

this study hold enormous potential to advance the current framework of extreme 

action recognition. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Introduction to Extreme Action Recognition 

Extreme action recognition is an artificial intelligence (AI) framework to 

monitor incidents of activities such as fighting through closed-circuit television 

(CCTV) surveillance footage. When an extreme action is detected in a particular 

place, police and ambulance can be notified to intervene and help to prevent 

injuries or death.  

Most extreme action recognition is still performed manually, with 

security guards monitoring an array of CCTV surveillance footage. However, 

manual vision monitoring can be unreliable because it is dull labour and requires 

a high level of focus and attention, prone to failure when the person monitoring 

the CCTV surveillance footage becomes distracted or drowsy. Hence, 

developing a powerful action recognition solution assisted or fully automated 

with AI would significantly improve surveillance efficiency.  

Extreme action recognition from real-time video footage using AI is 

still an emerging technology; thus, no reliable solution exists. Computer science 

researchers have been developing an AI model architecture dedicated to 

performing reliable extreme action recognition; nevertheless, the existing 

solution of extreme action recognition is insufficient to be deployed with high 

confidence. 

 

1.2 Importance of the Study 

The findings of this study will ultimately improve public safety through 

contribution to the development of an extreme action recognition framework. 

For instance, public safety can be improved by equipping police authorities with 

AI-assisted extreme action recognition; the recognition framework deployed at 

crime hotspots can automatically alert the police force of incidences of robbery 

and assault. Early detection of crime leads to rapid deployment of the police 

force, increasing effectiveness in preventing bodily injuries and death.  
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1.3 Problem Statement 

The rapid urbanisation of Malaysia has led to an increased frequency of street 

crimes; the most urbanised states of Kuala Lumpur, Johor, Selangor, and Pinang 

together contributed 70% of all street crimes occurring in Malaysia. In 2010, the 

government of Malaysia proposed the Government Transformation Programme 

roadmap targeted to reduce the crime rate in the urban area through the 

installation of surveillance cameras monitored by the Royal Malaysia Police. 

(Soh, 2012) 

However, by 2019 the urbanised states of Kuala Lumpur, Selangor, 

Sembilan, Pinang, Melaka, and Johor continue to display a high crime index 

ratio by ranking higher than the remaining less urbanised states, as shown in 

Figure 1.1. Notably, the crime index in the capital region of Kuala Lumpur leads 

the national average by 130% despite the installation of 40,000 surveillance 

cameras in the highly urbanised Kuala Lumpur. (Adilah, 2017) 

 

 

Figure 1.1: Crime index ratio of each states in Malaysia, calculated per 

100,000 population ratios. (Mahidin, 2020) 

 

The increased number of surveillance cameras does not guarantee 

crime reduction; an effective surveillance system requires constant monitoring. 

The installed cameras are mostly hidden and monitored only upon the report of 

a crime. As a result, the deterrence capability of surveillance cameras is 
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minimised. The adaptation of AI-assisted extreme action recognition that 

actively monitors the camera and alerts the police in case of anomaly may 

significantly improve the effectiveness of surveillance in crime deterrence and 

criminal apprehension. 

 

1.4 Aim and Objectives 

This project will aim to develop an extreme action recognition based on deep 

learning time-series model that can recognise extreme action from video clips. 

The objectives of this project to accomplish the aim are: 

(i) Conduct literature reviews of extreme action recognition. 

(ii) Identify suitable datasets for training and performance 

benchmarks. 

(iii) Develop the extreme action recognition framework with deep 

learning. 

(iv) Train and test the developed model. 

(v) Evaluate the test results and identify the root cause of failure 

for the developed model. 

(vi) Proposed suggestions for improvement. 

 

1.5 Scope and Limitation of the Study 

This project's scope is to develop a method to perform extreme action 

recognition trained with some popular benchmarks. The use of popular 

benchmarks allows the developed method to be compared to other related works. 

The reliability of the extreme action recognition AI model depends on 

the quality, diversity, and volume of the dataset. Unlike the ImageNet dataset 

dedicated to training object recognition, which contains over 1.2 million static 

labelled images, the labelled large-scale dataset for extreme action is limited. 

Hence, one of the limitations of this study is the availability of an extreme action 

dataset. 

Project time constraint is also a limitation. AI deep learning 

computation requires hours for a single epoch. Typically, thousands of epochs 

are needed to train a model at the optimal learning rate fully. Thus, a suitable 

number of epochs and learning rate was chosen to reduce training time to ensure 

completion of the project within the available project time. 



4 

1.6 Contribution of the Study 

The existing extreme action recognition frameworks state of the art (SOTA) 

exaggerate background noises when background subtraction is computed on 

unprocessed input. This study proposed and evaluated a novel method to 

improve noise resistance by complementing unprocessed input with pose 

keypoints using dual streams convolutional neural network (CNN) integrated 

with convolutional long-short term memory (ConvLSTM).  

In addition, this work implemented EfficientPose to give a pose 

keypoints with improved mean average precision and recall compared to 

DensePose and OpenPose used by previous works. Three experiments were 

conducted with different versions of EfficientPose to evaluate the correlation 

between pose estimation accuracy and recognition accuracy. Lastly, an ablation 

study was performed to determine the effectiveness of combining pose 

keypoints with ConvLSTM. The combination of pose keypoints with 

ConvLSTM is the first attempt in literature at the time of writing. 

 

1.7 Outline of the Report 

This report presented a critical review of existing extreme action recognition 

solutions, methodology to implement the proposed framework, and analysis of 

results obtained with the proposed framework. Chapter 1 introduced the 

potential of an automated police surveillance system with extreme action 

recognition and the problem statement on the lack of an existing solution. 

Finally, the aims and objectives to develop a solution were written, along with 

the scientific community's scope, limitation, and contribution.  

Chapter 2 presented the study's motivations based on the limitations 

found in the literature reviews on existing extreme action recognition datasets 

and solutions. The existing solutions reviewed were categorised into three 

groups based on different classifiers: Support Vector Machine (SVM), Three-

Dimensional (3D) CNN, and ConvLSTM. 

The methodology to develop the solution to achieve the aims and 

objectives of this study was described in chapter 3; the results obtained with the 

proposed method was analysed in chapter 4. Lastly, chapter 5 concludes the 

critical findings observed in this project and recommends potential 

improvements in future work.
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Extreme Action Dataset 

In training an AI model for extreme action recognition, datasets consisting of 

video clips of extreme action is essential. This sub-section reviews the open-

access extreme action dataset available on the internet. 

 

2.1.1 Movies Fight Dataset 

Gracia et al. (2015) introduced the Movies dataset consisting of video clips 

extracted from action movies and 200 video clips; each of the 200 videos is 

labelled either as “Fight” or “Non-fight” and the dataset is evenly split between 

the two labels. Each video clip consists of 50 video frames, resized to a 

resolution of 720x576 and played at 25 frames per second (FPS). The videos in 

this dataset have distinctly different scales, backgrounds, and content. Figure 

2.1 shows four sample images of this dataset. 

 

 

Figure 2.1: Sample images of fighting scenes extracted from movies dataset. 

(Gracia et al., 2015) 
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2.1.2 Hockey Fight Dataset 

The Hockey dataset was published along with the Movies dataset, consisting of 

1000 video segments clipped from the broadcast of hockey games from the 

National Hockey League; each of the 1000 videos is labelled either as “Fight” 

or “Non-fight”, and the dataset is evenly split between the two labels. Each 

video clip consists of 50 video frames, resized to a resolution of 320x240 and 

played at 25 FPS. The videos in this dataset have identical scales, backgrounds, 

and content. Figure 2.2 shows four sample images of this dataset. (Gracia et al., 

2015) 

 

 

Figure 2.2: Samples images of a fighting scene from the hockey fight dataset. 

(Gracia et al., 2015) 

 

2.1.3 Violent-Flows Dataset 

Published by Hassner, Itcher and Kliper-Gross (2012), the Violent-Flows 

dataset is dedicated to benchmarking extreme action recognition among a crowd 

of people. The dataset consists of 246 video clips evenly split between two 

labels of “Violence” and “Non-Violence”. Each video clip has a varying length 

of video frames, a fixed resolution of 320x240 and played at either 25 FPS or 

30 FPS. Figure 2.3 shows four sample images of this dataset. 
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Figure 2.3: Sample of images from violent flows dataset depicting scenes of 

crowd activities and crowd violence. (Hassner, Itcher and Kliper-Gross, 2012) 

 

2.1.4 UCF-101 Dataset 

The UCF-101 dataset is a large-scale human action class dataset consisting of 

video clips extracted from YouTube and labelled at the video level, and it 

consists of 13,320 video clips split across 101 different class labels. Each video 

clip has a varying length of video frames, a fixed resolution of 320x240 pixels, 

and a fixed 25 FPS. This dataset has a broad spectrum of labels, including 

actions such as walking, running, biking, boxing, and so forth. Most labels are 

related to sports and regular human activity; however, a few labels such as 

punching, sumo wrestling, and fencing may be considered a form of extreme 

action. Figure 2.4 shows two sample images of this dataset. (Soomro, Zamir and 

Shah, 2012) 

 

 

Figure 2.4: Sample images of punching and rafting labels from the UCF-101 

dataset. (Soomro, Zamir and Shah, 2012)  
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2.1.5 RWF-2000 dataset 

Cheng, Cai and Li (2019) published the RWF-200 dataset, a large-scale extreme 

action dataset containing 2000 video clips extracted from YouTube. The 2,000 

video clips are evenly split between two labels of “Fight” and “Non-Fight” with 

a pre-defined train-test split ratio of 80:20. Each video clip has a fixed time 

length of 5 seconds with varying resolutions. The videos in this dataset are all 

surveillance-based footage with slightly elevated viewpoints, and each clip has 

a distinctly different scale, FPS, background, and content. Figure 2.5 shows 

several sample images from the RWF-2000 dataset. 

 

 
Figure 2.5: Sample of images from RWF-2000 dataset depicting scenes 

retrieved from CCTV footages. (Cheng, Cai and Li, 2019) 

 

2.1.6 Summary of datasets 

Table 2.1 summarises the datasets reviewed in sub-chapter 2.1. Among the five 

datasets, UCF-101 has the greatest number of videos. However, among the 101 

different labels, there were no consensus or guidelines of what should be 

considered extreme action. Therefore, different existing research that evaluated 

their framework on UCF-101 cannot be compared.  
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Table 2.1: Table of datasets available that is dedicated to the development of 

extreme action time-series model. 

Datasets Description 
Number 

of Videos 

Number 

of labels 

UCF-101 

 

Broad spectrum of human 

activity 
13,320 101 

Violent-Flows 

 

Violent and non-violent 

activity in crowd  
246 2 

Hockey 

 

Violent and non-violent 

activity in National Hockey 

League broadcast 

1000 2 

Movies 

 

Violent and non-violent 

activity in Hollywood movies 
200 2 

RWF-2000 Violent and non-violent 

activity recorded in 

surveillance footages 

2000 2 

 

This study has found that the Movies, Hockey, Violent-Flows, RWF-

2000 datasets have been used in existing literature as the benchmarks of 

recognition performance. These four datasets were chosen as they have simple 

true/false label to differentiate whether the action is extreme. 

 

2.2 Artificial Neuron and Neural Network 

This section of the literature review briefly reviews the basic concepts of 

artificial intelligence utilised in this project; in subsections 2.2.1 and 2.2.2, 

artificial neurons and feedforward neural networks are discussed. In 2.2.3, the 

various building blocks of CNN and the AlexNet variant of CNN were reviewed. 

 

2.2.1 Artificial Neuron 

As shown in Figure 2.6, brain neuron cell consists of a cell body, dendrites, 

axons, and synapses. The human brain consists of many neurons interconnected 

to each other, wherein synapses of a neuron are connected to the dendrites of 
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another neuron. Hence, a complex neural pathway is created. The dendrites can 

be thought of as the input, synapses the output, and cell body the decision-maker. 

Each neuron receives electrochemical signals from other neurons through its 

dendrites, and if the aggregation of the electric potential of these signals is 

strong enough, the cell body becomes activated and will transmit signals to other 

neurons. (Rosebrock, 2019; Freudenrich and Boyd, 2021) 

 

  

Figure 2.6: Graphical representation of human neuron anatomy. (Freudenrich 

and Boyd, 2021) 

 

An artificial neuron is an attempt to artificially create intelligence using 

a modern computing system inspired by a neuron's working principles in a brain.  

A schematic of the artificial neuron, as illustrated in Figure 2.7, consists of 

inputs, weights, weighted sum, transfer function, and output. The input and 

output are analogous to the dendrite and synapses, respectively, whereas the 

weights, weighted sum, and transfer function form the decision-maker, 

analogous to the cell body. When an artificial neuron receives inputs, the value 

of each input is multiplied with the respective weights and summed together. 

The transfer function, in this case, a step function, will become activated and 

sends a signal to the output if the weighted sum exceeds a certain threshold; 

otherwise, the step function remains inactivated, and no signal will be sent. 

(Suzuki, 2011) 
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Figure 2.7: Schematics of a basic artificial neuron. (Rosebrock, 2019) 

 

2.2.2 Feedforward Neural Network 

A feedforward neural network can be created by interconnecting artificial 

neurons with each other in a layer as shown in Figure 2.8, whereby the first layer 

of neurons is connected to the input, and they can be activated depending on the 

input data, and in turn, output their signals to next layer of neurons. The cycle 

repeats until the signal is propagated to the output layer, which gives the 

prediction. (Rosebrock, 2019) 

 

 

Figure 2.8: Example of a feedforward neural network. (Rosebrock, 2019) 

 

An example of a feedforward neural network in image-based 

prediction is the prediction of a numeric digit based on images from the MNIST 

database. As shown in Figure 2.9, the feedforward neural network input layer 
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consists of 784 inputs, each corresponding to a pixel on the input image. The 

first layer in the network consists of 10 artificial neurons, in which each artificial 

neuron can become activated depending on the type of input. The output layer 

also consists of 10 artificial neurons that correspond to 10 digits from 0 to 9. 

Prediction occurs at the output layer, whereby only one of the output neurons 

will be activated. For example, in Figure 2.9, when an image of 8 was put into 

the network, the expected result is that only the output neuron representing eight 

will become activated. (Github, 2021) 

  

 

Figure 2.9: Schematics of feedforward neural network for MNIST numeric 

digit prediction. (Github, 2021)  

 

2.2.3 2D Convolutional Neural Network 

Two-dimensional (2D) CNN is a class of neural networks that is consisted of 

more components compared to the feedforward neural network introduced in 

sub-chapter 2.2.2. The components of a typical 2D CNN shown in Figure 2.10 

are separated into two sections: the Feature Learning section with alternating 

convolutional (CONV) and pooling (PL) layers and the Classification Section 

with multiple fully-connected (FC) layers.  (Matlab, 2021) 
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Figure 2.10:Basic structure of CNN for multi-class classification with feature 

learning layers and classification layers. (Matlab, 2021) 

  

The CONV layer is a set of filters that convolve every region of the 

image. Each filter is connected to a small local region of the input image, and 

multiple filters are used to ensure every region of the input image is connected 

to a filter. If the image has a depth of three, then three different filters will be 

connected to the same region. The output of each filter in the CONV layer is 

individually connected to an artificial neuron, which is analogous to other kernel 

filters such as the average filter. The weights of neurons input can be changed 

based on the deep learning process, whereas the weights of the kernel filter are 

fixed. Figure 2.11 depicts the operation of the CONV layer with regards to an 

input image, wherein the values inside the filter are equivalent to the weights of 

the artificial neuron. (Wood, 2021; IBM Cloud Education, 2020) 

 

 

Figure 2.11:Graphical depiction of convolution function. (IBM Cloud 

Education, 2020) 
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The PL layer is applied to reduce the spatial size of the input without 

losing information or context from the input. For example, the PL layer in Figure 

2.12 sub-divides the input into the smaller region and retains only the maximum 

value within the sub-region. Implementing the Pooling layer is essential to 

reduce the number of inputs, which, in turn,  significantly reduces computer 

resource requirements. (Rosebrock, 2019) 

Finally, the FC layer is used as the prediction and output layer. The 

principle of the FC layer works the same as the feedforward neural network 

introduced in sub-chapter 2.2.2, whereby the only difference is that the input 

layer is connected to the output of the pooling layer instead of pixels on the 

image. (Rosebrock, 2019) 

 

 

Figure 2.12: Graphic depiction of max pooling operation with 2x2 kernel  and 

stride of two (Rosebrock, 2019) 

 

One famous example is the AlexNet CNN Architecture designed and 

initially proposed by Krizhevsky, Sutskever and Hinton (2012) that won the 

2012 ImageNet competition. As shown in Figure 2.13, the model architecture is 

separated into two sections: the ConvNet Feature Extractor and the 

Classification Head. The ConvNet Feature Extractor consists of alternating 

CONV and PL layers that extract local features from the input image. The 

Classification Head consists of only FC layers to perform the prediction and 

output. As a result, the AlexNet CNN can predict 1000 different classes of 

images ranging from different types of animals, fruits, cars, and ships with an 

error rate of only 15.3%. 
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Figure 2.13: Schematics of the AlexNet CNN architecture. (Wayne, 2020) 

 

2.3 Transfer Learning 

Transfer learning is a deep learning method of transferring the model that had 

learnt to solve a certain problem, to become the starting point for a new deep 

learning process to solve a new and different problem. For example, the features 

of a model that had learnt to perform face detection can be used to create a new 

model in performing facial recognition. In addition, transfer learning is used to 

train models in insufficient data available or limited computational resources. 

(Chollet, 2020; Chilamkurthy, 2017) 

There are two common approaches to perform transfer learning, the 

first approach is to fine-tune the pre-trained model to adapt to solve a new 

problem in the same target environment. The pre-trained model architecture 

remains unchanged, and the model is fine-tuned with additional data, such that 

the model becomes updated. 

In the second approach, a part of the pre-trained model as a feature 

extractor to solve a problem in a different environment. As shown in Figure 2.14, 

the pre-trained model architecture is altered whereby the last few FC layers of 

the network are removed, and new adaptation FC layers of a different design 

with randomly initialised weights are then attached, and the modified 

architecture is trained on the new target tasks. (Oquab et al., 2014; Chilamkurthy, 

2017) 
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Figure 2.14: Transfer learning of a pre-trained model utilised as a fixed feature 

extractor. (Oquab et al., 2014) 

 

2.4 Time-series Network 

Time-series problems such as weather forecasting, action recognition, stock 

market prediction are common but are highly complex and challenging. The AIs 

are expected to make predictions based on aggregated information extracted 

from every given time frame. 

The current AI architectures, such as the AlexNet 2D CNN introduced 

in sub-chapter 2.2.3, are limited to making predictions on a temporal-

independent image within the scope of computer vision. For example, the AI 

can predict what is in the image, the position of the person relative to the image 

and draw segmentation masks across different objects within the image. 

However, it was difficult for AI to draw inferences on the patterns in a sequence 

of images. In recent years, researchers have proposed several novel neural 

network architectures that can encode temporal features to solve time-series 

problems, and this chapter will briefly introduce some of these neural networks 

and their state of development. 

 

2.4.1 3D Convolutional Neural Network 

To date, there are numerous variants of 3D CNN implementations, one of the 

variants for human action recognition was proposed by Ji, Xu, Yang, and Yu 

(2013). The variant can encode temporal features alongside spatial features. 



17 

This work extended the 2D CNN by one additional dimension to accommodate 

the temporal features. 

The image processing kernels of the convolution are used to extract 

separate feature maps in 5 channels from each frame containing gradient in the 

X-Y direction, optical flow in the X-Y direction, and grayscale; subsequently, 

as shown in Figure 2.15, the extracted feature maps are repeated across time to 

become a sequence which represents time-series data. The convolution is 

continued deeper into the network until a linear feature vector is produced, 

which is connected to the FC layers to make predictions. (Ji et al., 2013) 

 

 

Figure 2.15: Graphical depiction of 3D CNN convolution repeated across time. 

(Ji et al., 2013) 

 

2.4.2 Long short-term memory 

The Long Short-Term Memory (LSTM), a variant of Recurrent Neural Network 

(RNN), has been used extensively to solve time-series problems such as speech 

recognition and translation. Proposed by Hochreiter and Schmidhuber (1997), a 

memory cell contains forget gate, update gate, and output gate as the three major 
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components. The memory cell is trainable using feedforward and 

backpropagation like a CNN. 

Each gate is represented by mathematical equations, whereby the 

forget gate is represented by Equation 2.1. The forget gate determines what 

information stored inside the cell state is no longer relevant and should be 

forgotten. Equation 2.2, Equation 2.3, and Equation 2.4 collectively form the 

input gate. The gate component and memory cell component at the input gate 

determine what information should be stored in the cell state. The output gate 

represented in Equation 2.5 and Equation 2.6 determines the output and hidden 

state by inferring the input and cell state. In Figure 2.16, the connections 

between the gates and their respective equations are illustrated. (Hochreiter and 

Schmidhuber, 1997; Yu et al., 2019) 

 

 𝑓𝑡 = 𝜎(𝑤𝑥
𝑓
𝑥𝑡 + 𝑤ℎ

𝑓
ℎ𝑡−1 + 𝑏𝑓) (2.1) 

 𝑖𝑡 = 𝜎(𝑤𝑥
𝑖𝑥𝑡 + 𝑤ℎ

𝑖ℎ𝑡−1 + 𝑏𝑖) (2.2) 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑥
𝑐̃𝑥𝑡 + 𝑤ℎ

𝑐̃ℎ𝑡−1 + 𝑏𝑐̃) (2.3) 

 𝑐𝑡 = �̃�𝑡𝑖𝑡 + 𝑐𝑡−1𝑓𝑡 (2.4) 

 𝑜𝑡 = 𝜎(𝑤𝑥
𝑜𝑥𝑡 +𝑤ℎ

𝑜ℎ𝑡−1 + 𝑏𝑜) (2.5) 

 ℎ𝑡 = 𝑜𝑡tanh⁡(𝑐𝑡) (2.6) 

 

where  

f = forget gate 

i = gate component 

�̃� = memory cell component 

o = output gate 

c = cell state 

h = hidden state 

t = time steps 

x = input vector 

w = weight vector 

b = bias vector 

𝜎 = sigmoid function 

tanh = hyperbolic tangent function 
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Figure 2.16: Schematics of a single LSTM memory cell. (Yu et al., 2019) 

 

Furthermore, multiple LSTM memory cells are commonly stacked 

together across a sequence of input. For example, if the input window is 20-time 

steps, 20 LSTM memory cells would be connected. The output of one memory 

cell will propagate to the input of the next cell; the propagation of cell states 

from one cell to another act as a memory to preserve important information that 

is critical to perform prediction on the time-series problem. During training, the 

connection between LSTM cells at cell state and hidden state allows 

backpropagation through time, training the entire sequence together. 

 

2.4.3 Convolutional LSTM 

LSTM is limited to using a one-dimensional (1D) input vector, for example, 

predicting sequence from an input of text, voice segment and numbers. However, 

images are 2D, and LSTM cannot be used to make a prediction from a sequence 

of images. In order to overcome this limitation, an article by Shi, Chen, Wang, 

and Yeung (2015) proposed the ConvLSTM, whereby it convolves its input, x(t), 
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output, h(t), and cell state, c(t), from 2D vector into 1D vector. The memory cell 

structure of ConvLSTM remains identical to LSTM, as shown in Figure 2.17. 

(Shi et al., 2015) 

 

 

Figure 2.17: The convolution of input across sequence of time-steps occurring 

at the input of ConvLSTM. (Shi et al., 2015) 

 

2.5 Extreme Action Recognition 

Extreme action recognition is an AI framework that aims to recognise actions 

of violent events, including actions such as punching, wrestling and crowd 

violence. Extreme action recognition can be considered a niche sub-field of 

action recognition, where the framework is dedicated specifically to detecting 

one type of action instead of detecting a broad spectrum of different actions. 

Much like the development process of action recognition, extreme 

action recognition requires an AI that can interpret patterns in the temporal and 

spatial domains. Hence, the complexity of the problem increases, and the use of 

a time-series network becomes a necessity. 

The current standard approach to a recognition framework typically 

uses one or a combination of feature extractors such as 2D CNN, optical flow, 

background subtraction, pose estimation, and ConvLSTM, to extract the salient 

spatio-temporal features from an image. A classifier would then be used on the 

extracted feature to make a prediction. Examples of the classifier are SVM, 3D 

CNN, or FC layer. This sub-chapter explores the existing extreme action 

recognition framework developed by researchers. 

 

2.5.1 Recognition with SVM as classifier 

As of now, the SOTA AI classifiers are CNN and the RNN. However, the SVM 

remains a popular choice as a classifier due to their low computational cost and 



21 

high speed. The work by Bilinski et al. (2018) explored the possibility of 

building a violent behaviour detection AI without using any neural network for 

each video, the histogram of oriented gradients, histogram of optical flow, 

trajectory shape, and motion boundary histogram in both X-Y directions were 

used to capture spatial features. The extracted spatial features were then 

processed with Improved Fisher Vector to obtain a temporal representation of 

the sequence of the frames. 

By conducting the classification using SVM, the authors achieved 93.7% 

accuracy on the Hockey dataset, 99.5% accuracy on the Movies dataset, and 

96.4% accuracy on the Violent-Flows dataset. In Bilinski’s work, a detection 

framework using sliding windows was also implemented to locate the 

boundaries of the fight. However, in the dataset, no bounding box ground truth 

was provided. Hence, the Intersection of the Union of detection cannot be 

evaluated. (Bilinski et al., 2018) 

As shown by Bilinski et al. (2018) approach, extreme action 

recognition can be performed without reliance on neural networks. Therefore, a 

baseline for the usage of neural networks is set. However, the use of SVM meant 

that parameters of SVM is limited to a particular dataset and must be tuned to 

each specific dataset. 

In a different work by Carneiro et al. (2019), multi-feature extraction 

and multi-stream 2D CNN were combined as the feature extractors and SVM 

were used as the classifier. The multiple features extracted from a video were 

optical flow, depth, visual rhythm and red, green, blue (RGB) images. The four 

features were each connected to an independent stream of VGG-16 2D CNN, 

and as a result, four distinctly different features could be learnt by CNN without 

conflict. 

The VGG-16 was modified that the last two dense layers are trainable 

individual stream learners, and the network weights were initialized by transfer 

learning with weights trained from ImageNet. The output of the final dense layer 

from each stream was concatenated into an ensemble. The ensemble served as 

the input of SVM, which performed the classification. The described 

architecture is illustrated in Figure 2.18, showing the type of extracted features 

of optical flow, depth, visual rhythm, and RGB from counting top to bottom, 

respectively. (Carneiro et al., 2019) 
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Figure 2.18:  Model Architecture of Multi-Stream Learning. (Carneiro et al., 

2019) 

 

According to the author, 88.62% on the Hockey dataset and 100% 

accuracy on the Movies dataset were reported. If the visual rhythm stream were 

removed, the accuracy of the Hockey dataset would improve to 89.10%. 

Nevertheless, the work by Carneiro et al. (2019) had limitations, such as the 

model was slow and computationally intensive. As a result of using four 

independent VGG-16 streams and one non-trainable depth estimation CNN in 

the framework, it is the most computationally intensive framework presented in 

this sub-chapter. In addition, although VGG-16, which has a relatively lower 

number of layers, was selected by the author for his work, upon inspection, the 

overall computation cost is actually much higher than other CNN models 

available to the author. 

For example, to perform one forward pass, VGG-16 need to perform 

7,800 Million Multiply-Accumulations (MMACCs) operations, whereas 

MobileNet V2 published in 2018 only has to perform 569 MMACC, both of the 

networks have a similar top-5 error of 10%. The training process also did not 

utilise regularisation; thus, the trained model may tend towards overfitting. 

A different work by Nova, Ferreira and Cortez (2019) attempted to use 

human pose information as an input feature for the recognition framework. The 

OpenPose CNN was used to estimate human poses in an image. However, 

OpenPose is incapable of establishing multi-person pose estimation. Therefore, 

the pose tracking technique was performed using kernelised correlation filters 

to draw each person's region of interest (ROI) before performing the pose 

estimation. Once the pose estimation was performed, human pose information 
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such as body joints velocities and body shape boundary were derived. Examples 

of this human pose information are demonstrated in Figure 2.19. The human 

pose information was used as an input for the SVM for learning and recognition 

output. The author reported a true positive accuracy of 85% and true negative 

accuracy of 92% when tested on the ISR-UOL 3D Social Activity dataset. This 

work demonstrated that identifying human poses may function well as an 

extreme action recognition input feature as the movements of joints is a potential 

indication of a fight. However, because the ISR-UOL 3D dataset is not a notable 

benchmark for extreme action recognition, a comparison cannot be drawn 

between this work and other works. (Nova, Ferreira and Cortez, 2019) 

 

 

Figure 2.19: Example of human pose information extracted in the study with 

OpenPose. (Nova, Ferreira and Cortez, 2019) 

 

2.5.2 Recognition with 3D CNN as classifier 

As an extension of the established 2D CNN, 3D CNN is currently the most 

popular option in training an AI for extreme action recognition framework, as it 

is implemented in most deep learning python libraries such as Tensorflow, Caffe, 

and Pytorch with complete documentation of use. 
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Ullah et al. (2019) proposed a framework using a combination of 

Single Shot Detector (SSD) and 3D CNN. First, the SSD was used to draw 

bounding boxes on an area of the image where there were people, and the 

bounding boxes served as a region of interest to perform classification. Then, 

the bounding box area was extracted and sent as an input to 3D CNN for 

recognition. The architecture described can be seen in Figure 2.20. Using a 

bounding box for recognition helps reduce noise by removing part of the 

background and allowing the 3D CNN to learn only on the area where there is 

a person. The best performance reported by the author achieved an accuracy of 

96% on the hockey dataset, 99.9% on the movies dataset, and 98% on the violent 

crowd dataset. 

 

 

Figure 2.20: Model Architecture of method SSD + 3D CNN. (Ullah et al., 

2019) 

 

One notable observation can be made from the data provided by the 

author; although the author has trained the model for up to 5000 epochs, test 

results from training were recorded once every 500 epochs. As shown in the 

trained model inFigure 2.21, there has been no performance improvement since 

the first test result as it plateaued between 1000 to 5000 epochs. In order to 

prevent overfitting, an early stopping mechanism can be implemented together 

with an increase in test frequency. 
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Figure 2.21:Graph of epochs plotted against loss, showing long period of no 

improvements after 1000 epochs. (Ullah et al., 2019) 

 

A different work by Xu, See, and Lin (2019) proposed using SSD in 

combination with an optical flow motion activation map to more accurately 

localise the region of interest for extreme action recognition. The methodology 

implemented by the author in Figure 2.22 was to separate the framework into 

two branches: the localisation branch and the recognition branch.  

In the localisation branch, SSD was used to detect and draw bounding 

boxes of each person, together with the optical motion activation map to draw 

bounding boxes on the image area where motion was intense. The multiple 

bounding boxes output from SSD and optical motion activation map were 

merged into several ROI using non-max suppression (NMS) with custom 

alignment criterion; as a result, each ROI included a cluster of few persons. (Xu, 

See and Lin, 2019) 

In the recognition branch, a two-stream 3D CNN takes the input of the 

unprocessed RGB frame, motion acceleration map, and the ROI from the 

localisation branch to compute the recognition output. This method obtained 

98.6% accuracy on Hockey and 99.8% on Movies. (Xu, See and Lin, 2019) 
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Figure 2.22:Model Architecture of method SSD combined with Optical Flow  

and 3D CNN, the recognition framework is separated into localisation branch 

and recognition branch. (Xu, See and Lin, 2019) 

  

Both methodology by Xu, See, and Lin (2019) and Ullah et al. (2019) 

included extracting a local region of interest as input for 3D CNN. In contrast, 

Li et al. (2019) showed that it is possible to train an end-to-end EAR framework 

using only 3D CNN, without the need for other explicit regions of interest, and 

the input was RGB image frames from the video. The model architecture shown 

in Figure 2.23 demonstrated that no pre-processing was required. The author 

tested their work on three datasets and obtained 98.3% accuracy on the Hockey 

dataset, 100% accuracy on the Movies dataset, and 97.17% on the Violent-

Flows dataset. 

 

 

Figure 2.23:The model architecture of end-to-end 3D CNN capable of 

recognition without pre-processing steps. (Li et al., 2019) 
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Calzavara (2020) extended on the work of Li et al. (2019) by adding a 

DensePose-RCNN pose estimation pre-processing step to the 3D CNN 

developed by Li et al. (2019). Illustrated in Figure 2.24, the model architecture 

of DensePose-RCNN developed by the author would draw a mask of human 

keypoints over every person detected within the frame. Subsequently, the 3D 

CNN would learn and make a prediction on the output from DensePose-RCNN 

instead of using RGB input frames directly. Calzavara (2020) reported that the 

addition of the pose estimation pre-processing step yielded an accuracy of 96.7% 

on hockey, 100% on movies, 97.2% on Violent-Flows. 

 

 

Figure 2.24:  Model architecture of densePose RCNN combined with 3D 

CNN. (Calzavara, 2020) 

 

The pose estimation pre-processing step is implemented on the premise 

that the movements of human limbs and torso are critical factors in deciding 

whether a person is fighting. However, based on the work done by Calzavara 

(2020), the addition of the pre-processing step does not significantly impact the 

accuracy, most likely due to the errors introduced by the use of DensePose-

RCNN. Nevertheless, a more accurate pose estimation AI may improve results. 
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2.5.3 Recognition with ConvLSTM as classifier 

LSTM, like other RNNs, has only been used in applications where input is a 1D 

vector such as translation and speech recognition. However, using LSTM in 

computer vision has been made possible with the introduction of ConvLSTM 

by Shi, Chen, Wang, and Yeung (2015). Although the effectiveness of 

ConvLSTM in extreme action recognition remains a topic to be researched, 

compared to many well-established methods such as SVM and 3D CNN, there 

are fewer research articles that use ConvLSTM as the classifier. 

An article published by Sudhakaran and Lanz (2017) utilised 

ConvLSTM to build an extreme action recognition framework. The model 

architecture illustrated in Figure 2.25 shows that the image was first pre-

processed to extract motion information by performing background subtraction 

between image frames. AlexNet 2D CNN without the classification layer was 

then used to extract spatial features. Next, the extracted features were sent to 

ConvLSTM to encode spatial features into spatial-temporal features. Lastly, the 

FC layer was connected to the last memory cell of ConvLSTM to make a 

prediction. 

 

 

Figure 2.25: The model architecture of 2D CNN  combined with ConvLSTM. 

(Sudhakaran and Lanz, 2017) 

 

Sudhakaran and Lanz (2017) reported an accuracy of 97.1% on the 

Hockey dataset, 100% on the Movies dataset, and 94.57% on the Violent-Flows 

dataset. However, there was a limitation on the author’s work; even though 

AlexNet was relatively advanced at the time of publication, it is considered 

obsolete as a feature extractor by current standards. There are more effective 

and efficient 2D CNN being published in more recent works. Changing the 
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AlexNet to a newer 2D CNN such as MobileNet V3 may improve the result 

substantially. 

A SOTA was achieved by Islam et al. (2021) using two-stream 

separable ConvLSTM. In the first stream, the model architecture illustrated in 

Figure 2.26 shows that RGB image frame with background suppression was 

taken as input, MobileNetV2 was used to extract spatial features, and lastly, 

ConvLSTM was used to encode spatio-temporal information. The second 

stream was similar, except that the input was pre-processed with frame 

difference. The outputs of the separable ConvLSTM from both streams were 

then concatenated into an ensemble, and the prediction was made using the FC 

regression layer on the ensemble.  

Moreover, Islam et al. (2021) demonstrated the effectiveness of 

ConvLSTM with Hockey Dataset at 99.50% accuracy and the Movies dataset at 

100% accuracy. Notably, 89.75% was obtained for the RWF-2000 dataset, the 

primary benchmark with one of the highest number of videos dedicated for 

extreme action recognition. 

 

 

Figure 2.26: Model architecture of dual-stream 2D CNN + Separable 

ConvLSTM. (Islam et al., 2021) 

 

2.5.4 Motivation 

The results of the literature reviewed in sub-chapter 2.5.1 to sub-chapter 2.5.3 

can be summarized in Table 2.2. The (-) symbol indicates that the method did 

not perform any test with that specific dataset. 
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Table 2.2: Comparison of Accuracy for Reviewed Methodologies. 

Method 

Dataset Benchmark (% accuracy) 

Hockey Movies VF RWF 

IFV + SVM 

Bilinski et al. (2018) 
93.70 99.50 96.40 - 

Multistream 2D CNN + SVM 

Carneiro et. al. (2019) 
88.62 100.00 89.10 - 

OpenPose + SVM 

Nova, Ferreira and Cortez (2019) 
- - - - 

SSD + 3D CNN 

Ullah et al. (2019) 
96.00 99.90 98.00 - 

SSD + Optical Flow + Two-stream 

3D CNN 

Xu, See and Lin (2019) 

98.60 99.80 - - 

3D CNN 

Li et al. (2019) 
98.30 100.00 97.17 - 

DensePose + 3D CNN 

Calzavara (2020) 
96.70 100.00 97.20 - 

2D CNN + ConvLSTM 

Sudhakaran and Lanz (2017) 
97.10 100.00 94.57 - 

Two-stream 2D CNN + ConvLSTM 

Islam et al. (2021) 
99.50 100.00 - 89.75 

 

As of date, there is no existing research that specifically used pose 

information as the input for 2D CNN spatial feature extraction + ConvLSTM 

spatio-temporal encoder. In both articles featuring ConvLSTM, the techniques 

used for pre-processing were background suppression or frame differences. This 

study believes that developing a framework that uses pose information as an 

input feature will be worthwhile. The hypothesis is that background suppression, 

and background subtraction would impart background movements from non-

human moving objects; objects such as cars on roads and highways will show 

up as giant blobs of motion, leading to false-positive detection. In comparison, 
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by utilising the pose information of the human body, the trained model will be 

relatively unperturbed by noises, leading to an increase in recognition 

performance.  

Although this hypothesis is not founded on a theoretical basis, there is 

evidence suggesting that using pose information as the input can improve 

performance. In work by Calzavara (2020), a pose information pre-processing 

step was added to the model developed by Li et al. (2019), and despite the 

addition of an inaccurate pose estimation AI to generate pose information to use 

as input, Calzavara (2020) has managed to achieve near-identical performance. 

This study believes that should a more accurate SOTA pose estimation model 

be used, the accuracy may well surpass the model that did not implement pose 

information. 

This study is motivated to use pose information as the input for 2D 

CNN feature extraction based on the hypothesis. The choice of using 2D CNN 

as the feature extraction is supported by the results obtained in the work by 

Sudhakaran and Lanz (2017). In his work, high accuracy can be achieved even 

with the obsolete AlexNet, and this study believes that 2D CNN has a strong 

ability to extract spatial information.  Subsequently, in work by Islam et al. 

(2021), ConvLSTM outperforms other spatio-temporal encoding methods. 

Hence, in this study, the ConvLSTM network is chosen. 

Lastly, Islam et al. (2021) and Ullah et al. (2019) have shown that the 

complexity of Hockey, Movies and VF datasets are not sufficient as the error 

approaches Bayes error. Therefore, the emerging dataset of RWF-2000 should 

be used in addition to the three datasets, as the RWF-2000 dataset allows model 

evaluation at a larger scale. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In Figure 3.1, the initial plan to develop the EAR framework is shown. The 

framework consists of an N-1 number of time-series networks, serially 

connected at the spatio-temporal encoder. Each time-series network takes input 

from two images that are adjacent to each other as a sequence. Thus, for example, 

the first network input is the sequence of images one and two, and the following 

network input is the sequence of images two and three. The network will then 

propagate through the entire length of the videos. 

 

 

Figure 3.1: Initial plan to develop the extreme action recognition framework, 

each box illustrates the process involved. 

 

Each time-series network is split into two streams, and the first stream 

pre-processes its input of two images by pose estimation to extract pose 

keypoints images. Background subtraction is then performed on the pose 

keypoints images to emphasise motion between pose keypoints images. 
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Subsequently, a trainable 2D CNN will be used to extract features from the 

subtracted pose keypoint image. The first stream is planned based on this study’s 

hypothesis, which believes that including pose information as part of the input 

will improve recognition accuracy. Furthermore, pose estimation is necessary 

as existing benchmarks only provided RGB images for both training and testing 

datasets. 

The second stream is identical to the first, except pose estimation and 

background subtraction is directly performed on the RGB input images. The 

purpose of the second stream is to complement the model in situations where 

pose estimation did not perform as desired. The two-stream setup has been 

shown to work extraordinarily well in work by Islam et al. (2021), and in this 

study, a two-stream setup is used to examine the effectiveness of pose 

information in the extreme action recognition. 

The outputs of the 2D CNNs from both streams will be concatenated 

to form an ensemble for spatio-temporal encoding. Then, the spatio-temporal 

encoders are serially connected to form a linked memory network, and the 

spatio-temporal encoder of the final network will be connected to the 

classification layer that outputs a true/false label. 

 

3.2 Dataset to be used for framework training 

Based on the findings from sub-chapter 2.1.6, this study has selected the Hockey, 

Movies, VF, and RWF-2000 datasets for training and testing. The training and 

testing will be conducted on each dataset separately, which allow the model’s 

performance to be compared to existing literature. In addition, the train-test split 

will be randomised to 80/20 split for Hockey, Movies, and VF datasets, whereas 

RWF-2000 dataset has a fixed 80/20 split pre-determined by the author of the 

dataset. 

 

3.3 Proposed framework 

 

3.3.1 Input of the framework 

Each video in the datasets is typically a few seconds long, and depending on the 

dataset, each video may contain between 90 to 270 frames. In order to reduce 

computational costs, not all the frames are utilised in this study. An even sample 
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of 20 images from each video is extracted as a sequence to represent the overall 

motion in the video. The equation for even sampling is shown in Equation (3.1 

 

 
𝑖 = 𝑟𝑜𝑢𝑛𝑑 ((𝑛 − 1) ×

𝐿

𝑁 − 1
⁡) (3.1) 

 

where 

𝑛 = sequence of {1,…,N} 

L = Total number of frames in video 

N = sequence length 

i = index of frame to be sampled 

 

3.3.2 Pose estimation 

Pose information is extracted from an RGB image using a pose estimation 2D 

CNN model in the pre-processing step. As discussed in the literature review, it 

is crucial to select a pose estimation model as accurately as possible to minimise 

the amount of error introduced into the input. 

Furthermore, it is essential to select an efficient model. For example, if 

a sequence length is 20 images, then for each sequence, the pose estimation 

model needs to perform 20 inferences on each image. Hence, it is essential to 

choose an efficient model that will reduce computational costs. This study has 

identified EfficientPose as the most suitable pose estimation to be used. This 

selection is justified in Table 3.1. By comparing EfficientPose to other pose 

estimation models available to date, EfficientPose can achieve excellent mean 

Average Precision (mAP) and mean Average Recall (mAR) with low 

computational cost. Moreover, EfficientPose outperforms DensePose, chosen 

by Calzavara (2020) and OpenPose, chosen by Nova, Ferreira and Cortez (2019). 
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Table 3.1: Table of available options for pose estimation model tested on the 

COCO test-dev dataset. (Güler, Neverova and Kokkinos, 2018; Cao et al., 

2021; Zhang et al., 2021) 

Method Backbone GFLOPs mAP mAR 

Mask-RCNN ResNet-50-FPN - 63.1 - 

G-RMI ResNet-101 57.0 64.9 69.7 

CFN - - 72.6 - 

RMPE PyraNet 26.7 72.3 - 

CPN ResNet-Inception - 72.1 78.5 

SimpleBaseLine ResNet-50 8.9 70.0 75.6 

SimpleBaseLine ResNet-152 15.7 71.6 77.3 

HRNet-W32 HRNet-W32 16.0 74.9 80.1 

HRNet-W48 HRNet-W48 32.9 75.5 80.5 

LPN ResNet-50 1.0 68.7 74.5 

LPN ResNet-101 1.4 70.0 75.7 

LPN ResNet-152 1.8 70.4 76.2 

PNFS MobileNet-V2 4.0 67.4 73.1 

PNFS ResNet-50 11.4 70.9 76.6 

DensePose + Mask - - 52.8 62.0 

OpenPose - - 61.8 - 

EfficientPose A NAS searched 0.5 66.5 - 

EfficientPose B NAS searched 1.1 70.5 76.1 

Efficient Pose C NAS searched 1.6 70.9 76.5 

 

Multi-person pose estimation is essential in this study as extreme 

actions typically involve more than one person. However, EfficientPose cannot 

be directly deployed to be used for multi-person pose estimation in an image. In 

order to overcome this limitation, this study refers to the open-source HRNet 

single-person pose estimation.  

HRNet was successful at implementing multi-person pose estimation 

using a single-person model. In their work, Faster R-CNN was first used to draw 

bounding boxes on every person within an image, followed by performing 

single-person pose estimation in every bounding box. The methodology 
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implemented by HRNet is replicated in this study, except for choice for person 

detection; the SOTA object detection framework YOLOv5 is used instead of 

Faster R-CNN. As of date, the journal publication on YOLOv5 has not been 

completed; however, it is the improved version of YOLOv4 with higher frames 

per second (FPS) and mAP, and YOLOv4 has been shown to outperform Faster-

RCNN and other available options shown in Table 3.2. (Wang et al., 2020) 

 

Table 3.2: Tables of object detection framework showing available options for 

open-source object detection frameworks (Bochkovskiy, Wang and Liao, 2020) 

Method Backbone Size FPS mAP 

EfficientDet-D0 Efficient-B0 512 62.5 33.8 

EfficientDet-D1 Efficient-B1 640 50.0 39.6 

EfficientDet-D2 Efficient-B2 768 41.7 43.0 

YOLOv3 + ASFF* Darknet-53 320 60 38.1 

YOLOv3 + ASFF* Darknet-53 416 54 40.6 

YOLOv3 + ASFF* Darknet-53 608 45.5 42.4 

RFBNet HarDNet68 512 41.5 33.9 

RFBNet HarDNet85 512 37.1 36.8 

Faster-RCNN ResNet-50 - 9.4 39.8 

YOLOv4 (P) CSPDarknet-53 416 54 41.2 

YOLOv4 (P) CSPDarknet-53 512 43 43.0 

YOLOv4 (P) CSPDarknet-53 608 33 43.5 

YOLOv4  CSPDarknet-53 416 96 41.2 

YOLOv4  CSPDarknet-53 512 83 43.0 

YOLOv4  CSPDarknet-53 608 62 43.5 

 

The output of the pose estimation is in the form of a keypoints 

coordinate list. This study uses the keypoints coordinate list to draw the joints 

over a black canvas without background or contextual information, as shown in 

Figure 3.2. The removal of background aims to minimise the effect of 

background noise. As a result, this study theorises that the pose information 

stream will thoroughly learn from the pose, and any contextual information will 

be learned in the RGB stream. 
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Figure 3.2: The image shown on the left is the original video frame before 

pose estimation; the image on the right shows pose keypoints of the 

pedestrians drawn on the black canvas after pose estimation. 

 

3.3.3 Background subtraction 

The frame differencing approach is chosen for background subtraction in this 

study to capture motion information in the form of change in pixels. In addition, 

frame differencing does not require a specific background to be defined and only 

requires two images to function. In contrast, other approaches such as mean and 

median filters require more than two images to establish a running average, 

which puts additional demand on computational resources. The Frame 

difference technique assumes that the background of the current frame is the 

same as the previous frame and computes the difference by taking the absolute 

value of subtraction between the current frame and the previous frame. Frame 

differences are mathematically computed between adjacent frames at the pixel 

level with Equation (3.2. (Tamersoy, 2009) 

 

 𝐵𝑥,𝑦,𝑧,𝑛 = |𝑃𝑥,𝑦,𝑧,𝑛 − 𝑃𝑥,𝑦,𝑧,𝑛−1| (3.2) 

 

where 

𝐵 = background subtracted pixel 

𝑃 = pixel value of frame 

𝑥 = index of image width 

𝑦 = index of image height 

𝑧 = index of colour channel 

𝑛 = index of image sequence 
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3.3.4 2D CNN feature extractor 

In a framework, a feature extractor is an essential part that extracts salient 

features from the image. In this study, the selected feature extractor has to 

perform up to 20 inferences for each prediction. For this reason, the use of an 

efficient network will reduce overall inference time and training time to an 

acceptable length of time. 

As shown in Table 3.3, MobileNet V2 and V3 can achieve performance 

comparable to the previous SOTA of VGG 16 or GoogleNet with less 

computational cost. This study selects Mobilenet V3, as it has lower latency 

compared to MobileNet V2. Specifically, MobiletNet V3 large is selected for 

the pose information stream, and MobileNet V3 small for the RGB stream to 

emphasise pose information while reducing the training and inference time. 

(PyTorch, 2021; Howard et al., 2019; Véstias, 2019) 

 

Table 3.3: Table of open-source options of 2D CNN that can be used for feature 

extraction. (Véstias, 2019; Howard et al., 2019; PyTorch, 2021) 

Method MMACCs Latency 

(ms) 

Top-5 

Accuracy (%) 

Top-1 

Accuracy (%) 

AlexNet 650 - 79.07 56.52 

VGG 16 7800 - 90.38 71.59 

ResNet 101 3800 - 93.55 77.37 

ResNet 152 5650 - 94.05 78.31 

Inception V3 5700 - 93.45 77.29 

GoogleNet 750 - 89.53 69.78 

DenseNet 201 1500 - 93.37 76.90 

MobileNet V2 300 162 90.29 71.88 

MobileNet V3 

Small 
- 43 87.40 67.67 

MobileNet V3 

Large 
- 119 91.34 74.04 
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3.3.5 ConvLSTM spatio-temporal encoder 

The equations of the ConvLSTM used in this study are identical to those 

described in sub-chapter 2.4.2, incorporated with convolution principles 

described in sub-chapter 2.4.3. The convolution aspect is evident in the forget 

gate equation in Equation 3.3, the gate component at Equation 3.4, the memory 

cell component at Equation 3.5, and the output gate at Equation 3.6, wherein the 

weight (w), input (I), and hidden state (h) convolve, instead of direct 

multiplication as used in standard LSTM. (Shi et al., 2015) 

 

 𝑓𝑡 = 𝜎(𝑤𝑥
𝑓
∗ 𝐼𝑡 + 𝑤ℎ

𝑓
∗ ℎ𝑡−1 + 𝑏𝑓) (3.3) 

 𝑖𝑡 = 𝜎(𝑤𝑥
𝑖 ∗ 𝐼𝑡 + 𝑤ℎ

𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖) (3.4) 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑥
𝑐̃ ∗ 𝐼𝑡 + 𝑤ℎ

𝑐̃ ∗ ℎ𝑡−1 + 𝑏𝑐̃) (3.5) 

 𝑜𝑡 = 𝜎(𝑤𝑥
𝑜 ∗ 𝐼𝑡 + 𝑤ℎ

𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜) (3.6) 

 𝑐𝑡 = �̃�𝑡⨀𝑖𝑡 + 𝑐𝑡−1⨀𝑓𝑡 (3.7) 

 ℎ𝑡 = 𝑜𝑡⨀tanh⁡(𝑐𝑡) (3.8) 

 

where  

f = forget gate 

i = gate component 

�̃� = memory cell component 

o = output gate 

c = cell state 

h = hidden state 

t = time steps 

I = image input vector 

w = weight vector 

b = bias vector 

𝜎 = sigmoid function 

tanh = hyperbolic tangent function 

∗ = convolution function 

 

The direct multiplication of Equation (3.7 and Equation (3.8 likewise 

is replaced with the Hadamard product to accommodate the multiplication of 
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2D arrays. The ConvLSTM equations are better illustrated as a whole in Figure 

3.3; similar to standard LSTM shown in Figure 2.16, each memory cell can be 

connected serially at the cell and hidden state. 

 

 

Figure 3.3: Graphical model of a ConvLSTM memory cell. 

 

3.3.6 Classification 

The architecture of the linear layer is shown in Table 3.4, where the hidden state 

of the final ConvLSTM cell is connected to the first layer of the classification 

layers. The first layer max pool the hidden state from a 3D array of size 

(1536,7,7) to (1536,3,3) with a kernel size of (2,2) and stride of two, and 

automatically flatten the 3D array to 1D vector from (1536,3,3) to (13824). 

Layers 2 to 8 learn predict the occurrence of extreme action from the flattened 

hidden state.   

 

Table 3.4: Architecture of Classification layers for the proposed framework. 

Layer Number Layer type Input Output 

1 Maxpool (1536,7,7) 13824 

2 Linear 13824 1536 

3 Batch normalisation 1536 1536 

4 ReLU 1536 1536 

5 Linear 1536 512 

6 ReLU 512 512 
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Table 3.4 (Continued) 

7 Linear 512 10 

8 ReLU 10 2 

9 Linear 10 2 

 

3.3.7 Overall framework 

Figure 3.4 summarises all components described from sub-chapter 3.3.1 to 3.3.6 

and is consistent with the initial plan shown in Figure 3.1. The multi-person 

pose estimation stream will be processed using a combination of YOLOv5 with 

EfficientPose to produce keypoints frames, and the weights of both pose 

estimations will be frozen and set to untrainable. Frame difference background 

subtraction is computed for keypoints frames and RGB frames; subsequently, 

feature extraction is performed on the frame difference using MobileNet V3 

large for keypoints frame, and MobileNet V3 small for RGB frames. The 

extracted features are concatenated and spatio-temporally encoded with 

ConvLSTM through time. The networks are serially stacked at the point of 

ConvLSTM hidden state and cell states. Hidden state output from the final 

ConvLSTM is sent to the classification layers for prediction. The trainable 

components in the network include the MobileNet V3 feature extractors, 

ConvLSTM, and linear layers in the classification layers. 

 

 

Figure 3.4:  The proposed framework of this project showing all significant 

components. 
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3.4 Experiment and ablation study 

The experiment will be set up to train the model with 100 epochs, and test results 

will be collected at every epoch. The low number of epochs for training in this 

study is decided based on the occurrence of overfitting in work by Ullah et al. 

(2019), evidenced by a long period of no improvement in Figure 2.21; a higher 

number of epochs can only be justified if loss continues to be minimised at 100 

epochs. 

Quantitative results of train/test accuracy, false-positive rate, and false-

negative rate will be collected at every epoch for analysis to evaluate the 

performance of the proposed framework. Epoch numbers at the point of no 

improvement will be collected to evaluate the model complexity and identify 

the occurrence of overfitting. Pose keypoints frames and RGB frame differences 

for failure cases will be recorded for qualitative analysis on potential causes of 

failure. 

An ablation study will be conducted to identify the overall 

effectiveness of the framework by training and testing the framework with either 

one of the streams being disabled. Each stream is expected to have the predictive 

capability on its own, but the predictive capability of using each stream alone 

should be lower than using both streams combined. 

 

3.5 Development environment 

The specifications of the deep learning hardware used in this study are listed in 

Table 3.5. The cloud computing solution was considered but not chosen; the 

comparison between two popular options for cloud computing is shown in Table 

3.6. Colab is free of charge; however, the graphics processing unit (GPU) 

availability is limited, and the runtime limit is capped at 12 hours, whereas 

Colab Pro guarantee GPU availability with a runtime limit increased to 24 hours. 

Having a runtime limit of 24 hours is risky to the project because deep learning 

training can easily exceed 24 hours. Other better cloud computing options such 

as Microsoft Azure and Amazon Web Service has a minimum rental period 

which is not suitable for this study. (Google Colab, 2021) 
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Table 3.5: Specification of hardware for deep learning. 

Component Model 

CPU AMD Ryzen 3700X 

GPU Nvidia RTX3080 10GB VRAM 

RAM 64GB DDR4 3200MHz 

Memory 2TB read/write speed: 3.5/3.0GHz 

OS Ubuntu 20.04 

 

Table 3.6:  Two popular options of cloud computing solutions showing the 

estimated monthly cost, the GPU availability, and the runtime limit. (Google 

Colab, 2021)  

Specification 
Type of Cloud Computing Solution 

Colab Free Colab Pro 

Cost/month Free RM 41.26 

GPU availability Limited use Nvidia K80 Nvidia P100 

Runtime limit 12 hours 24 hours 

 

The framework is written entirely in Python 3.8 on the PyCharm 

community version. Among other popular options such as Matlab or C++, 

Python was chosen for its extensiveness of diversity in modules. Pythons allow 

industry-leading deep learning modules such as TensorFlow, Caffe, or Pytorch 

to be imported and used as a library to accelerate framework development. In 

addition, multi-threaded backpropagation can be computed using functions 

provided by the deep learning modules, which reduces training time. 

The deep learning library chosen in this study is PyTorch 1.8.0 for its 

computational graph checkpoint function. This function overcomes the 

limitation of having low video random-access memory (VRAM) in the 

RTX3080. RTX3080 is a GPU designed for the gaming market with a limited 

10GB VRAM, and training CNN + ConvLSTM with only 10GB VRAM is not 

practical without reducing batch size. By default, all intermediate activations 

computed during forward-pass are stored in the VRAM for backpropagation. 

The checkpoint function computes intermediate activations on-demand in 

backpropagation by tracking weights and inputs during forward-pass. The on-

demand computation lowers the training speed, which, in turn, allows large 

models to be trained with limited VRAM. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Quantitative Results  

 

4.1.1 Accuracy 

Table 4.1 shows the accuracy obtained with the framework proposed in this 

study with different variations in methods. Unfortunately, the proposed method 

of RGB + EfficientPose C did not outperform the models developed in the 

existing literature. However, it did obtain results comparable to the model 

developed by Sudhakaran and Lanz (2017) regarding the Hockey, Movies, and 

VF datasets. In addition, the proposed model was able to perform with 2.75% 

lower accuracy than the current SOTA developed by Islam et al. (2021) in the 

most complex dataset of RWF-2000. 

 

Table 4.1: Accuracy obtained with proposed framework and ablation study 

compared to major benchmarks from previous studies. 

Method 

Dataset Benchmark (% accuracy) 

Hockey Movies VF RWF 

IFV + SVM 

Bilinski et al. (2018) 
93.70 99.50 96.40 - 

Multistream 2D CNN + SVM 

Carneiro et. al. (2019) 
88.62 100.00 89.10 - 

SSD + 3D CNN 

Ullah et al. (2019) 
96.00 99.90 98.00 - 

SSD + Optical Flow + Two-stream 

3D CNN 

Xu, See and Lin (2019) 

98.60 99.80 - - 

3D CNN; Li et al. (2019) 98.30 100.00 97.17 - 

DensePose + 3D CNN 

Calzavara (2020) 
96.70 100.00 97.20 - 
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Table 4.2 (Continued) 

 

2D CNN + ConvLSTM 

Sudhakaran and Lanz (2017) 

 

97.10 

 

100.00 

 

94.57 

 

- 

Two-stream 2D CNN + ConvLSTM 

Islam et al. (2021) 
99.50 100.00 - 89.75 

Method conducted in this study Hockey Movies VF RWF 

RGB + EfficientPose A  96.00 100.00 94.00 86.25 

RGB + EfficientPose B  96.50 100.00 94.00 86.25 

RGB + EfficientPose C (Proposed) 97.00 100.00 92.00 87.00 

 

A trend is observed with different variations of EfficientPose. The 

increase of pose estimation accuracy tends to improve framework performance 

on Hockey and RWF datasets, and diminishing return is observed on the 

Violent-Flow dataset. This observation suggests that the pose estimation model 

was overwhelmed in crowded scenarios. 

 

Table 4.3: Result obtained from ablation study. 

Method 

Dataset Benchmark (% accuracy) 

Hockey Movies VF RWF 

RGB only  96.00 100.00 94.00 85.00 

EfficientPose C only 93.50 100.00 88.00 83.50 

 

4.1.2 Training analysis 

Figure 4.1 aggregates the training characteristics of the proposed method, 

RGB+EfficientPose C, for all datasets. One distinct observation made on the 

graphs of train and test loss, except for the Movies dataset, is that the model 

overfitted within the first two epochs when trained with Hockey, Violent-Flows, 

and RWF-2000 datasets. However, despite overfitting, the model still exhibited 

excellent accuracy performance. The most probable cause was exploding 

gradients; the gradients computed from the backpropagation were too big. The 

large gradients caused a rapid increase in accuracy and decrease in loss, and the 

large gradients eventually caused the loss to overshoot and oscillate around a 
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local minimum point. The effects of exploding gradients can be minimised using 

gradient clipping techniques and decreasing the value of weights initialisation. 

 

 

Figure 4.1: Graph of loss and accuracy for method of RGB + EfficientPose C 

on all datasets during training, plotted against epoch. 

 

4.1.3 Training time 

Figure 4.2 shows the training time for different methods, and a disadvantage is 

seen for the proposed method. The stream without pose estimation required 40 

seconds to train per epoch, whereas the stream using pose estimation required 

529 seconds. Likewise, the proposed method of RGB+EfficientPose C utilised 

pose estimation and required 591 seconds to train, resulting in approximately 
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1377% more time to train. Training time scales linearly with the size of the 

dataset. Hence, datasets larger than RWF-2000 will require an even longer 

training time per epoch.  

 

 

Figure 4.2:  Training time taken per epoch for different method training on 

RWF-2000 dataset. 

 

4.2 Qualitative Results  

The qualitative analysis conducted in this sub-chapter will focus on failure 

analysis on the proposed method of RGB+EfficientPose C. Videos that the 

framework failed to predict will be analysed to identify root causes of failure in 

the framework. 

Figure 4.3 next page depicts eight frames extracted from the Hockey 

dataset that were incorrectly predicted as a fighting scene. In the unprocessed 

image, the hockey player maintained an upright posture; however, the pose 

estimation process failed to estimate correctly and represented the hockey player 

with exaggerated motions shown at the bottom eight frames. Thus, the false 

positive was most likely caused by incorrect poses estimation by analysing the 

poses keypoints. 
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Figure 4.3: False positive case with method RGB+EfficientPose C with 

sample from hockey dataset showing incorrect pose estimation 

 

The video clips in Figure 4.4 next page depict an argument in a café 

with multiple people entering and exiting the scene; although there were 

movements in the video, no fights were occurring. Thus, both the pose 

estimation and RGB frame difference appear to function as intended. However, 

by analysing part of the RGB frame difference in detail, as shown in Figure 4.5, 

dispersed red colour static noises can be observed. Thus, the movement of the 

people in the scene combined with the erratic appearances of the noises most 

likely caused the framework to make a false-positive prediction. 
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Figure 4.4: False positive case with method RGB+EfficientPose C with 

sample from RWF-2000. The pose estimation correctly predicted the pose 

keypoints in most cases.  

 

 

Figure 4.5: Dispersed red colour static noises observed from the RGB frame 

difference in the false positive case with method RGB+EfficientPose C with 

sample from RWF-2000.  
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Figure 4.6 shows the scene of some pedestrians walking in a car park 

before cutting to a different scene inside a building. The pose keypoints and 

RGB frame difference both appear to function well. However, the scene change 

caused an apparent shift in poses, and the final frame in frame difference became 

overwhelmed. Thus, the scene change during time-series inference may have 

been falsely predicted to be extreme action. 

 

 

Figure 4.6: False positive case with method RGB+EfficientPose C with test 

sample from RWF-2000, drastic scene change observed at the final frame. 
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Figure 4.7: False negative case with method RGB+EfficientPose C with 

sample from RWF-2000 dataset depicting correct pose estimation, but subjects 

of interest were too small. 

 

Figure 4.7 depicts a false negative case in a video from RWF-2000. A 

fight occurred at the bottom right corner of the video, and pose estimations were 

computed with remarkable accuracy despite the size of the persons in the image. 

However, the framework fails to recognise the fight, most likely due to camera 

placement being too far away and the subjects of interest were too small for the 

framework to extract useful motion information. Similarly, the frame difference 

stream cannot discern any indication of motions that could suggest extreme 
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action. A region of interest pre-processing algorithm may help to improve 

accuracy by isolating the subjects of interest. 

Figure 4.8 shows a false negative case from Violent-Flows. Crowd 

fights were occurring in the scene; however, the pose estimation failed to 

capture keypoints of people in the frame due to the poor sharpness of the image. 

The RGB frame difference stream similarly failed to capture any meaningful 

motions due to the motion of the camera and noise of the image. 

 

 

Figure 4.8: False negative case with method RGB+EfficientPose C with sample 

from Violent-Flows crowd dataset depicting incorrect pose estimation and 

excessive noise in RGB frame difference. 
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4.3 Summary of critical findings 

The results obtained in this project revealed several critical findings. Firstly, 

complementing the RGB frame difference with pose keypoints will improve the 

framework's accuracy in most cases, as shown in the ablation study. However, 

the pose estimation model increased computation cost drastically despite the 

improvement, evidenced by the 1377% training and testing time increase.  

Training analysis displayed indications of exploding gradient in 

framework during training with the datasets of Hockey, Violent-Flows, and 

RWF-2000. Therefore, gradient clipping should be added to prevent exploding 

gradients, and the learning rate should also be tuned with a smaller initialisation 

weight.  

Furthermore, qualitative analysis shows the framework appears to be 

resistant against background noises such as the motion of cars, as no instances 

of such failure cases can be observed. However, the framework remains 

susceptible to static noise, sudden scene changes, small subjects, and blurry 

images. Lastly, the framework has been shown to consistently fail when pose 

estimation cannot accurately predict the person's pose keypoints in the image. 
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusions 

In conclusion, this project proposed an extreme action recognition framework 

with dual-stream MobileNet V3 CNN integrated with ConvLSTM. The 

development of the proposed framework was motivated by the need to 

overcome the existing limitation identified in literature reviews. The proposed 

framework was trained on standard datasets of Hockey, Movies, Violent-Flows, 

and RWF-2000.  

The proposed framework obtained comparable performance to existing 

SOTA on the RWF-2000 dataset at 87.00% accuracy, 100% accuracy on the 

Movie dataset, 97.00% accuracy on the Hockey dataset; however, the proposed 

method performed poorly on the Violent-Flows dataset at 92% accuracy. 

Ablation study shows that dual-stream RGB frame difference with pose 

keypoints will improve the framework's accuracy at the cost of 1377% increase 

in training and testing time, and training analysis revealed indications of 

exploding gradient for framework trained and tested with Hockey, Violent-

Flows, and RWF-2000 datasets.  

Lastly, qualitative analysis shows that the proposed framework 

displays exceptional noise resistance against background motion consistent with 

the hypothesis of this study; however, the framework remains susceptible to 

static noises, scene change, small subjects, blurry image, and failure of pose 

estimation. 

 

5.2 Recommended Solutions 

In future work, semantic segmentation can be considered an alternative to pose 

estimation to filter background noises. Currently, the computational resources 

required to use pose estimation may prove challenging for most practical 

applications, such as home surveillance using edge devices. In addition, pose 

estimation have been observed in qualitative analysis to make frequent mistakes. 

Although semantic segmentation cannot discriminate between pose keypoints 
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of each person, it can provide a comparatively more accurate human body 

contour at a reduced computational cost than pose estimation.  

Furthermore, the learning rate and weight initialisation should be tuned 

for each dataset and the implementation of gradient clipping to reduce the 

exploding gradient. Moreover, adding a region proposal algorithm will allow 

the framework to focus on the region of interest that will reduce framework 

susceptibility to small subjects. Finally, the effects due to blurry images and 

static noises may be reduced by adding denoising algorithm pre-processing.  
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