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ABSTRACT 

 

This report discusses a vision-based indoor navigation robot training system. 

The need for manufacturing workers has been increasing throughout the years. 

Many labours are required in businesses to transfer items and components all 

around. Many companies still use manual labour for part delivery within the 

factory, where the completion progress and time depend highly on the workers. 

With that said, any possible threat may stop the business's operation, making a 

loss to the company. Indoor navigation robots can close the gap in manual 

labour. This project aims to develop a vision-based navigation robot using 

OpenCV and C++ programming language in an indoor environment. The 

objective of this project is to design, develop and simulate programming code 

to perform image processing and path planning, integrate programming code 

with a microcontroller wirelessly, and test and evaluate the performance of the 

navigation robot. The computer and ESP32 board are the central processing unit 

for this project to execute path planning and motor command analysis. Node-

Red links both processing units together. An algorithm is developed in the 

computer to achieve image processing, user input, path planning, simulation, 

and writing of output files. A different algorithm is created in the 

microcontroller to derive and perform the data delivered from the computer. A 

navigation robot is built to test the workability and efficiency of the algorithms. 

In general, the algorithm can provide the nearest path to navigate around the 

environment without manual assistance. The user will only have to give the 

program relevant coordinate information and running mode. To conclude, a 

vision-based indoor navigation robot training system is effectively established. 

Implementing this system could effectively help increase product delivery 

within the environment. This system supports one end coordinate or multiple 

saved coordinates, where a supply chain operation structure can be implemented 

above it to administer all the operations fully.  
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Introduction to Vision-Based Robot Indoor Navigation   

AGVs are widely implemented in industries to increase productivity and 

manufacturing flexibility (Lydon, 2018). Improvements in navigation 

techniques boosted the usage of AGV in sectors. AGVs are getting more 

common in the market and come in different sizes. They can accomplish more 

tasks in various sectors, but there are a few main applications of the vehicles. In 

factories, AGVs can be used for parts delivery, product, and pallet handling. 

Manual labour can be reduced as AGV can easily accomplish these repetitive 

tasks. Product handling is crucial for specific industries as the materials might 

be fragile or easily damaged. AGV will be a better transportation choice than 

manual labour in this case. The automated vehicle's precision, movement, 

vibration, and acceleration can be computerised to ensure maximum safety 

during product handling.  

 

 
Figure 1.1: Implementation of robots in factories (Wise, 2022) 

 

This study is to design a vision-based navigation robot in an 

environment. The autonomous robot can make full use of the environment. 

AMR is a more robust selection than AGV. AGV navigates through an 
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environment in predetermined paths where AMR can achieve free movement 

and real-time path planning (Oitzman, 2021). AMR is the successor of AGV. 

AMRs can perform tasks that are possible by AGVs and outperform AGVs in 

navigation. They can navigate through their environment freely and navigate a 

path between points. Compared to AGVs that will stop if an obstacle is detected, 

AMRs can navigate around obstacles to reach the end position. AGVs operate 

in highly controlled environments where all the procedures are nicely defined 

in different places. AMRs are more flexible and are meant to use in unstructured 

environments. AMRs are easier to implement in ready production and 

manufacturing lines without environmental changes.  

Different types of navigation robots are developed by researchers 

where the principles of the techniques are nearly identical. Vision sensors are 

used to capture images. The computer runs the algorithm for image processing 

and path planning. Microprocessors execute the paths found by the 

programming codes. This project aims to build a vision-based navigation robot 

in an indoor environment with the assistance of a camera. The robot can 

navigate around the environment freely.  

  

1.2 Importance of the study  

Navigation robots are used extensively in manufacturing, logistics, and 

healthcare lines. The navigation robot must be able to make decisions based on 

their situations. The robots’ decision-making is from the algorithms executed to 

search a path for the given environment. Many companies face the issue of 

having to relocate and redesign the environment for automated guided vehicle 

implementation, increasing cost and space usage. It is still important to 

introduce a mobile robot that can achieve the given task in an uncontrolled 

environment with this condition.  

 

1.3 Problem Statement  

Many labours are needed in industries to transport items and parts around. 

Implementing a mobile robot can close the gap in manual labour (Wise, 2022). 

Transportation done by mobile robots is much more efficient than manual 

labour, giving a supply chain operation structure.  Although introducing mobile 
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robots might be costly initially, it could reduce possible losses to the company. 

Based on Wise (2022), 2.1 million manufacturing jobs in the United States of 

America could go unfilled by 2030, costing the manufacturers a total of one 

trillion dollars in 2030 itself. With a vision-based navigation robot, 

manufacturers and companies can keep their businesses running by closing the 

manual labour gaps without having to rebuild the layout of the entire factory.  

 

1.4 Aims and Objectives  

This project aims to develop a vision-based navigation robot using OpenCV and 

C++ programming language in an indoor environment. With the assistance of 

the camera, the robot can navigate around the environment with the target given 

by the user. This project has the following objectives:  

1. Design, develop and simulate programming code to perform image 

processing and path planning.  

2. Integration of programming code with microcontroller wirelessly.  

3. Testing and evaluating the performance of the autonomous robot.  

 

1.5 Scope and Limitations of the Study  

This research intends to design a vision-based navigation robot for usage in an 

indoor environment. In the first part of the project, the programming code of 

image processing and search algorithms are developed and tested. In the second 

part, the outcome of the programming is integrated into a microcontroller 

wirelessly for calibration and testing purposes.   

The limitations of this project are mainly from the hardware. While the 

connection between the computer and microcontroller is established using a Wi-

Fi network, the signal around the ESP32 must be strong enough for stable data 

transmission. The following limitation is the flatness of the test field. As the test 

field is made of Mahjong paper, some spots might have small folds that might 

affect the movement of the mobile robot.  

 

1.6 Overview of Project  

Software and hardware are both implemented in this project. Software functions 

to code, simulate and integrate. Hardware tests the workability and efficiency 
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of the software in the environment. The project can be divided into four stages: 

research, development of software, integration with hardware, and analysis of 

results.  

This report is divided into five chapters. In the first chapter, the 

introduction of a vision-based navigation robot is discussed along with the 

importance, problem statement, aim and objectives, and the project’s overview. 

The following chapter is the literature review, where other researchers' ideas on 

similar topics are reviewed, which provides a better idea of the approach. 

Chapter 3 is the methodology, where the project approach is discussed alongside 

the software and hardware selected. The distribution of work is included in this 

chapter.  The next chapter discusses the autonomous robot's coding, architecture, 

and data analysis. The last chapter concludes the findings of the entire project. 

Limitations and future improvements are included at the same time.  
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CHAPTER 2 

 

LITERATURE REVIEW 
 

2.1 Introduction  

A vision-based indoor navigation robot has been a rising trend throughout the 

years, and different research tested various methods to prove and improve the 

efficiency of autonomous robots. Other approaches are proposed, but navigation 

robots always follow a hierarchy, as shown in figure 2.1.  

 

 
Figure 2.1: Mobile robot control hierarchy (Karastoyanov and Zahariev, 2004) 

 

Taking the mobile robot control hierarchy as a benchmark for vision-based 

indoor navigation, the robot must first have a set task goal and plan (Singhata, 

2021). A webcam captures the image of the environment and transmits it to the 

computer. The computer translates image information into machine code, and 

path planning algorithms are executed to find paths for the autonomous robot. 

The algorithm’s outcome will be transferred to the microcontroller for wheel 

control, from the starting position to the ending position. The methodology of 

the vision-based navigation robot is comparable; hence the difference is the 

image acquisition and processing method, type of search algorithm used, and 

types of microcontrollers selected.  
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2.2 Image Acquisition and Processing  

In the research by Singhata (2021), a web camera is mounted on a stand and 

installed above the map. The camera is connected to the computer, where image 

processing will be done. The web camera selected matches the specification and 

provides a clear image at a certain height. The image captured is sent to the 

computer for image processing. In this application, the information of the field 

is not recorded as the test environment is fixed. The image processing is done 

to obtain the autonomous robot's current position. Three steps are done to 

identify the robot’s position, object extraction, thresholding, and template 

matching.  

According to Zidane & Ibrahim (2018), the web camera is set above 

the test field, covering the entire test environment, as illustrated in figure 2.2. 

All the details in the test environment are acquired. The robot’s initial position, 

target position, and obstacles are considered. The captured image is sent into 

MATLAB software, where the image processing toolbox is used. The sectoring 

of the images must be chosen correctly to reduce processing time and increase 

the optimality of results. The image is converted into binary, where 0 represents 

the obstacles, and 1 signifies the open paths. Morphological operation for 

removing noises is done to prevent false positives from the image, which might 

affect the result of the autonomous robot. Another clear image is produced after 

implementing the morphological operation. The basic algorithm, which is the 

pathfinding algorithm, can be implemented.  

 

 
Figure 2.2: Camera setup and Test environment (Zidane and Ibrahim, 2018) 
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Figure 2.3: Sectoring of Images (Zidane and Ibrahim, 2018) 

 

Figure 2.4: Zidane & Ibrahim (2018) image processing steps  

 

Table 2.1: Advantages and Disadvantages between Image Acquisition and 

Processing Methods 

 Advantage  Disadvantage 

Singhata 

(2021) 

- Faster processing time  

- Less memory 

requirement  

- Recognized maps only  

- Background and robot must 

not have the same colour  

Zidane & 

Ibrahim (2018) 

- Robust to fit different 

types of maps  

- More applicable in the 

industry  

- Long processing time if 

sectoring is not optimised  

- Requires more memory 

- All elements must not have 

the same colour as the 

background 

 

 

2.3 Search algorithm  

A search algorithm is used for pathfinding, which is the route’s navigation 

between two points, the start position and the end position. This algorithm aims 

to meet the criteria of achieving the shortest path by evaluating optimality, 
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completeness, space complexity, and time complexity. According to 

Niederberger et al. (2004), four conditions must be met for path planning 

algorithms. The path generated by the algorithm should achieve the lowest cost. 

The algorithm should be correct instead of just achievements on the evaluation 

criteria of path planning. No human interaction is needed to assist in the path 

planning of the algorithm. The algorithm should be robust to fit different maps 

instead of limited map types.  

Based on Sidhu (2019), there are two types of pathfinding algorithms: 

uninformed pathfinding and informed pathfinding. Uninformed pathfinding can 

be explained as a blind search. It does not have any information about the end 

node and only searches the adjacent cells until the end node is found. The 

standard algorithms under this group are BFS and the Dijkstra algorithms. 

Informed pathfinding is a more advanced method developed from an 

uninformed pathfinding algorithm. The algorithm considers the end node, where 

the estimated cost of the end location will be calculated. Informed pathfinding 

algorithms are mainly uninformed pathfinding algorithms with a heuristic 

function, which calculates the distance from the current node to the end node. 

The heuristic functions are developed from Manhattan distance, Euclidian 

distance, or Octile distance. The more commonly used functions are the 

Manhattan distance and the Euclidian distance, where the Manhattan distance 

outperforms the Euclidian distance in terms of execution time (Sharma and 

Kumar, 2016). The standard algorithms under this group are A*, HPA*, and 

LPA*.  

Referring to Russell and Norvig (2019), BFS explores in all directions 

equally and is one of the easiest graph search methods. The nodes are explored 

in levels, one before another, as shown in figure 2.5. FIFO strategy is being 

applied, where the shallowest node is processed first. The stopping criteria of 

BFS are either the accomplishment in the detection of the end node or there are 

no more nodes to be expanded. The BFS algorithm ensures the shortest path 

from the start node to the end node. The flowchart of BFS can be seen in figure 

2.6.  
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Figure 2.5: BFS illustration (Vargas et al., 2020) 

 

 
Figure 2.6: Flowchart of BFS (Sadik et al., 2010) 

 

Dijkstra algorithm, also known as uniform cost search, gives priority 

when exploring paths to the end node (Russell and Norvig, 2019). Compared to 
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BFS, it does not explore all the adjacent nodes equally but chooses the paths 

with a lower cost. Dijkstra’s algorithm is considered a ‘greedy’ algorithm as it 

uses a priority queue, where the node with the highest priority will be processed 

first. Nodes with lower distances would have higher priorities in the queue. 

Dijkstra’s algorithm stops once the shortest path is found (Mehlhorn and 

Sanders, 2008). When the cost of the map is the same, the Dijkstra algorithm 

has the same working principle BFS as shown in figure 2.5.  

A* algorithm is slightly different compared to BFS and Dijkstra. 

Instead of using the start node to calculate the actual distance, it uses the start 

and end nodes for computation. The actual and estimated distance is calculated. 

A* is the implementation of Dijkstra’s algorithm with heuristic (Martell and 

Sandberg, 2016). The stopping criteria of A* and Dijkstra’s algorithm are the 

same. It will stop whenever the path is found. The function of the A* algorithm 

is shown in equation 2.1. 

 

𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛)                                            (2.1) 

 

where  

𝑔𝑔(𝑛𝑛) = costs from the start node  

ℎ(𝑛𝑛) = heuristic  

 



11 
 

 
Figure 2.7: Flowchart of A* algorithm (Zidane and Ibrahim, 2018) 

 

In the work of Zarembo and Kodors (2013), the authors reviewed 

different pathfinding algorithms and made comparisons based on the time and 

space complexity. According to their findings, the A* algorithm outperforms 

Dijkstra’s execution time when implementing algorithms in different grid sizes. 

By comparing three different pathfinding algorithms, BFS has a long execution 

time, making it less applicable in a real-time application for significant grid 

problems due to its simplicity. But when the algorithm runs through a smaller 

grid problem, the A* algorithm gives the best outcome in execution time 

compared to the others. At the same time, BFS comes in second, slightly faster 

than Dijkstra’s algorithm, when applied in a 20x20 grid size in different obstacle 

arrangements (Fahleraz, 2018).  

In terms of navigated nodes, Dijkstra’s algorithm navigates through 

fewer nodes than BFS in more significant grid problems but performs slightly 

worse than BFS in small grid problems. A* algorithm navigates through much 



12 
 
fewer nodes than BFS and Dijkstra’s. Dijkstra’s algorithm and BFS achieve 

better optimality outcomes than the A* algorithm (Arshad et al., 2016). From 

the studies made by Rachmawati and Gustin (2020), the shortest path generated 

by the A* algorithm and Dijkstra’s algorithm is around the same for small maps 

in terms of execution time. Still, the A* algorithm is more favourable for larger 

maps as it only searches in the direction of the end node instead of all the 

adjacent nodes.  

Zidane and Ibrahim (2018) implemented both the A* and wavefront 

expansion algorithms to test the execution time and efficiencies of the algorithm. 

The wavefront algorithm is the same as BFS. It spreads a wave from the start 

node propagating forward until it reaches the end node, figure 2.5. The shortest 

path will be computed. In his studies, A* has a much longer execution time than 

the wavefront algorithm. The researchers concluded that too many files are 

needed to calculate the A* algorithm, which takes up a tremendous amount of 

computer memory in a discrete environment. Hence, A* will be more suitable 

for higher computational power machines.  

 

Table 2.2: Advantages and Disadvantages of the reviewed search algorithm 

 Advantages Disadvantages 

BFS - Supports multiple locations  

- Will locate the existent 

solution   

- Optimal path  

- The cost must be the same  

- Very long execution time  

- High memory usage  

Dijkstra - Supports multiple locations 

- Supports different cost  

- Optimal path 

- Long execution time  

- Cannot compute negative 

weights 

A*  - Faster execution time  

- Much lesser traversed nodes 

- Optimal path  

- Huge amount of memory 

usage 

- More complex implementation 

- Highly dependent on 

heuristics  
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2.4 Embedded Devices  

Based on Vargas et al. (2020), the authors designed their autonomous vehicle 

using Raspberry Pi. The model selected is Raspberry Pi Model B, which has 

512 MB RAM, USB Ports and Ethernet controller. A Wi-Fi dongle is used to 

establish the connection wirelessly in their application. Raspberry Pi Model B 

draws low power while having high computational power, making it suitable 

for various applications. Raspberry Pi is a small computer that is driven by 

Linux operating system. Raspberry Pi is more extensive in dimension and costs 

more than other embedded devices, such as microcontrollers. Analog input 

cannot be used on Raspberry Pi. An external ADC is needed. There are several 

successors for Raspberry Pi Model B. The newest model is Raspberry Pi 3 

Model B+, which supports Wi-Fi and Bluetooth. The obstacle avoidance robot 

built by Pavithra & Subramanya Goutham (2018) uses Arduino UNO as the 

microcontroller. Arduino UNO does not have embedded Wi-Fi; hence a Wi-Fi 

module is needed if we implement it in our system. Arduino with an external 

Wi-Fi module can be difficult during the configuration stage. Nonetheless, 

Arduino UNO is a suitable microcontroller for data acquisition. In the research 

of Mistri (2018), ESP8266 NodeMCU is used. The new design of using 

NodeMCU instead of the traditional Arduino design is proven to be workable. 

ESP8266 has an embedded Wi-Fi adapter, which suits the use of IoT platforms. 

In terms of ADC pins, which are required to convert analogue signal to digital 

signal, ESP8266 only have one. The number of ADC pins limits the usage and 

robustness of the ESP8266. ESP32 is the successor of ESP8266, which has more 

features and can be implemented in our system.  

 

  



14 
 
Table 2.3: Specifications of different embedded devices  

 
Raspberry Pi 3 B+ Arduino UNO ESP32 

Clock Speed 1.4 GHz 16 MHz 80 to 240 MHz 

RAM 1 GB SDRAM 2 kB SRAM 520 kB SRAM 

Board Power 

Supply 5 V 5 V 5 V 

Flash Memory MicroSD storage 32 kB 4 MB 

Analog Input 

Pins 0 6 15 

Wi-Fi Yes No Yes 

Bluetooth Yes No Yes 

 

 

Table 2.4: Advantages and Disadvantage(s) of different embedded devices  

 Advantages Disadvantage(s) 

Raspberry Pi 3 

B+ 

- Open-source  

- Embedded Wi-Fi adapter, 

ethernet and Bluetooth 

- Large range of GPIO pins  

- Bigger Size 

- Expensive  

- No ADC pins  

- High power 

consumption 

Arduino UNO 
- Open-source  

- Inexpensive  

- No Wi-Fi adapter  

- Bigger size  

ESP32 

- Open-source  

- Embedded Wi-Fi adapter 

and Bluetooth 

- Small size  

- Cheap  

None 
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CHAPTER 3  

 

METHODOLOGY AND WORK PLAN 
 

3.1  System architecture of block diagram 

 
Figure 3.1: Block diagram showing hardware implementation of Navigation 

Robot  

 

According to the block diagram in Figure 3.1, the input will be captured by a 

webcam connected to the laptop via USB. The laptop’s output file required for 

the microcontroller to operate the navigation robot is transmitted via MQTT. 

The connection is established by using Node-RED. ESP-32 is powered by a 

USB power supply and links to the motor driver and the gyro sensor. A 9 volts 

DC power supply is needed to power the motor driver. The outputs for the 

autonomous navigation robot are the motors, which are linked to output one and 

output two ports in the motor driver.  The power of the gyro sensor can be drawn 

from ESP-32 as the operating voltage of the sensor ranges from 3 volts to 5 volts. 

The output voltage from the ESP-32 is rated at 3.3 volts.   
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3.2  Vision-based Indoor Navigation Robot Flowcharts 

 

 
Figure 3.2: Block diagram of Vision-based Navigation Robot 

 

Figure 3.2 visualises the flowchart of the navigation robot. Image processing 

and path planning are done after image capturing from the web camera. The 

start position, end position and obstacles are appropriately defined for path 

planning. The outcome of path planning is sent to the microcontroller to control 

the motors for the robot’s movement toward the goal set.  
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Figure 3.3: Sketch of Visual Studio flowchart  
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Figure 3.4:  Sketch of Microcontroller flowchart  
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Figure 3.3 visualises the logic flow of the vision-based indoor 

navigation robot program. The image is captured after the initialisation of the 

program. The captured image undergoes image processing to convert the image 

into a programmable logic, which is an array. The boundaries and obstructions 

in the image can be acquired. The start location of the navigation robot is saved 

into a variable. After image processing, the user gives the end location input, 

and a comparison is made to check if the parameters reach the requirement. An 

input outside the boundaries will not be recorded until a suitable parameter is 

recorded. The search algorithm can be implemented with all the information, 

the boundaries and obstacles, the start location, and the end location. The search 

algorithm will find the optimal path if a solution to the map is provided. When 

the search algorithm finds the path, the movement towards the end location will 

be recorded and sent to a text file for routing purposes of the navigation robot. 

The output text file will be empty if there is no solution where no paths are 

found. The navigation robot will execute no operation.  

Figure 3.4 shows the logic flow of the microcontroller for the system. 

The microcontroller receives a text file from the computer created by the 

previous program, and processing is needed to turn the commands given into 

motor instructions. No numbers in the text file indicate that no path is found in 

the previous program. The autonomous robot does not need to execute any 

operations. If numbers are detected in the text file, the microcontroller will turn 

the number commands into instructions to the motors, where different numbers 

point to different directions of movement. While all the numbers are executed, 

no numbers will be next in the string. The autonomous robot should be at the 

goal location. The process is terminated.  
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3.3  Hardware  

 

3.3.1  Webcam  

 
Figure 3.5: Rapoo C260 Full HD webcam  

 

Figure 3.5 shows the USB camera used in the system to capture the top view of 

the field. The USB camera chosen has a high resolution of 1920 x 1080 which 

meets the requirement of picture quality at a certain distance. It has a 95° wide 

angle which can capture massive space in the environment. This device is 

simple to operate and meets the compatibility of different operating systems. No 

additional drivers are required.  

 

3.3.2  Test field  

 
Figure 3.6: Example of the test field 

 

The test field is used to evaluate the performance of the navigation robot. The 

maze has a 2.4 m x 2.4 m size, which means more maps and variations can be 
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done to assess the robot’s movement. Black tiles represent the obstacles, and 

white tiles represent the path available for the robot’s movement.  

 

3.3.3  Robot Chassis and motors  

 
Figure 3.7: 2WD robot chassis  

 

2WD robot chassis will be used in this system. The dimension of the chassis is 

140 mm x 146 mm. The 2WD robot chassis, HC02-48, comes with two DC 

motors (shown in figure 3.8). This DC motor has a rated voltage of 3.3 to 6 volts 

DC and draws 150 mA of current. The gear reduction for this motor is 1:48, and 

it can perform forward and backward movements. 125 RPM at 3.3 volts and 250 

RPM at 6 volts under no-load conditions. The torque of the motor ranges from 

0.15 kg.cm to 0.6 kg.cm. This motor is ideal for this system as it outperforms 

other small DC motors that encounter high shaft speed and low torque issues. 

The entire chassis is chosen as it can perform circular movement more 

accurately than other robot chassis on the market.  

 

 
Figure 3.8: DC motor, HC02-48 



22 
 
3.3.4  ESP32  

 
Figure 3.9: ESP32 Microcontroller Unit  

 

ESP32 will be used as the microcontroller of the navigation robot. A comparison 

was made with other microcontrollers, and ESP32 fits perfectly with this 

application.  This small microcontroller comes with Bluetooth and Wi-Fi 

adapter, allowing us to connect with the computer wirelessly. ESP32 is open 

source, and some of the codes posted online could be used as the benchmark for 

this project.  

 

3.3.5  Motor driver  

 
Figure 3.10: L298N motor driver  

 

The L298N motor driver will be implemented in this system. It is common in a 

microcontroller robot car as it is a high-power motor driver module. The motor 

driver can operate voltages from 5 volts to 35 volts. There are two channels 

where both the channels can draw up to 2 Amperes, and which heat sink plays 
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a vital role in providing cooling. This is a dual H-Bridge motor driver, where 

handling over the rotation direction and speed can be done simultaneously. By 

varying the PWM output, the rotation speed of the motor changes. The opposite 

direction can be achieved by inverting the current flowing through the motor 

using the H-bridge. L298N driver is selected mainly due to its capability to 

output a higher current, which provides high torque and RPM. The motor driver 

is lightweight and has a small dimension, which is suitable for the usage of the 

navigation robot.  

 

3.3.6  Gyroscope and Accelerometer    

 
Figure 3.11: MPU6050 sensor  

 

The MPU-6050 module is a combination of a three-axis gyroscope and 

accelerometer. One chip contains both the MEMS gyro and MEMS 

accelerometer. It has a 16-bit converter chip, converting analogue to digital for 

each channel. 16-bit data capture provides high accuracy to the sensor. 

Acceleration and rotation can be measured with four programmable full-scale 

ranges, each from the accelerometer and gyroscope. The operating voltage is 

3.3 volts, but 5 volts input can be used as the module is equipped with a 3.3 

volts regulator, LD3985. This module consumes less power as it only takes 3.6 

mA at work and 5𝜇𝜇𝜇𝜇 during the idle state. IIC communication protocol standard 

is implemented in the module where two individual addresses are supported. 

The module’s size is small, making it suitable to mount onto the robot chassis. 

MPU6050 sensor is an assistant in the calibration of the autonomous robot to 

ensure the accuracy of the motor rotation and motor speed in the test 

environment.  
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3.4 Software  

 

3.4.1 Visual Studio  

 
Figure 3.12: Snapshot of Visual Studio 2022  

 

A powerful IDE from Microsoft that can develop computer programs. 

Handy software for editing, debugging, and building codes. It supports different 

programming languages, including the language for this project usage, C++ 

language. This project will use Visual Studio with OpenCV and OpenGL to 

capture, process images and simulate the results of programs. The IDE is 

commonly used as a compiler, where compatibility issues will not arise on other 

devices.  
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3.4.2  Node-RED 

 
Figure 3.13: Snapshot of Node-RED 

 

Node-Red is widely used for IoT applications. It registers and supports 

the connection between different devices. Node-Red provides MQTT subscribe 

and publish, which is the input and output. This approach is selected to establish 

a connection between the computer and microprocessor wirelessly.  

 

3.4.3  Arduino IDE  

 
Figure 3.14: Snapshot of Arduino IDE 

 

Arduino IDE is software designed for Arduino usage to edit, debug, 

compile, upload and communicate. This software aims to convert the C 

language into machine code. ESP32 is used in this project, where this 
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microcontroller is compatible with Arduino IDE. Arduino is open source, where 

many references for different projects are available. The codes could be used as 

a benchmark for the project. In some cases, the codes in open source are more 

stable as a vast community develops them.  

 

3.5 Workplan  
Figure 3.15 shows the Gantt Chart of the final year project part 1. After 

confirming the final year project title, background research is done based on the 

selected title. Project planning is completed to verify the scope of the project. 

Literature reviews of other research are carried out to identify approaches and 

methods to achieve the outcomes. Discussions were made from the sixth week 

to the eighth week to consider possible strategies and the expectations of results.  

Preliminary testing of software development is tested out. Report writing and 

presentation are focused on the last three weeks of the semester.  

 Workplan for final year project part 2 can be seen in Figure 3.16. 

Hardware development, such as the navigation robot, is developed in the first 

two weeks of the semester. Software development, testing and calibration took 

the most time as image processing, pathfinding, connection with the 

microprocessor, microprocessor coding etc., take time to achieve an optimal 

result. Data analysis and possible improvement are carried out in the next stage. 

The last three weeks are reserved for report writing and presentation. 
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Figure 3.15: Gantt chart snapshot from the e-FYP portal (Part-1) 

 

 

Figure 3.16: Gantt chart snapshot from the e-FYP portal (Part-2) 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 
 

4.1  Circuit Diagram  
 

 
Figure 4.1: Circuit Diagram of Navigation Robot  

 

The navigation robot is built to test the workability of the C++ code written in 

Visual Studio. Figure 4.1 shows the circuit diagram of the navigation robot.  The 

circuit diagram is illustrated using Fritzing. The system is mainly powered by a 

USB cable attached to a power bank and a 9 volts battery supply. The USB cable 

is connected to the ESP32. Based on figure 4.1, orange wires mainly represent 

the connection of the MPU6050, white wires are the connection between the 

L298N motor driver and the DC motors, and yellow wires signify the system’s 

grounding.  

 The connection of the MPU6050 is established by connecting the VCC 

on the board to the VIN of the ESP32, which also represents a 5 volts power 

supply. SCL and SDA are wired to D22 and D21, respectively, to establish the 

I2C protocol between the devices.  

 The 9 volts battery supply is wired to the 12 volts input port on the 

L298N motor driver. Outputs 1 and 2 are connected to DC motor 1, and Outputs 
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2 and 3 are connected to DC motor 2. The direction control pins, IN1, IN2, IN3 

and IN4, are connected to the ESP32 individually. IN1 and IN2 control the 

moving direction for Motor 1, and IN3 and IN4 control Motor 2. ENA and ENB 

are wired onto D25 and D5, which control the motors’ rotational speed. ENA is 

for DC Motor 1, and ENB is for DC Motor 2. In one of the testing phases, ENA 

and ENB are jumped directly to the 5 volts adjacent port as the motor's rotational 

speed is not considered.   

 The pin connections explained above, connected to the ESP32, can be 

summarised in Table 4.1.  

 

Table 4.1: Pins connection between ESP32 and Other Modules   

Module  Module Pins  ESP32 Pins  

MPU6050  VCC  

SCL  

SDA  

VIN 

D22 

D21 

L298N  ENA 

ENB 

IN1 

IN2 

IN3 

IN4 

D25 

D5  

D27  

D26 

D19  

D18  
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4.2  Software Development  

 

4.2.1  Visual Studio  

 

 
Figure 4.2: Flowchart of program and main() function 

 

Libraries and headers are included at the beginning of the program. Essential 

global variables are labelled with ‘1’ in the flowchart, variables labelled ‘2’ are 

primarily for the implementation of pre-set coordinates, and variables marked 

‘3’ are for image processing of raw images taken by the web camera except for 

‘list’. The variable list is for tuples and will be used in path planning. Referring 

to figure 4.2,  the main() function executes imageTotal() initially to capture and 

process the image for path planning. The end position of the robot in the 

environment is recorded in the data() function. The data can either be a preset 

coordinate by the system or a single custom coordinate. Once the data is logged, 

path planning can be done next. The results of the path planning will be 

simulated using OpenGL. Based on figure 4.2, from “Initialize OpenGL” to 

“Enters event processing loop for OpenGL” are the steps for simulation. 

glutDisplayFunc configures the display callback for the existing window. 

glutReshapeFunc serves to set up the reshape callback for the current window. 

The main program returns and stops after the end of the processing loop for 

OpenGL.  
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Figure 4.3: Flowchart of imageTotal() function 

 

The camera port is defined at the start of the imageTotal() function. 

Variable camSet is declared for the while loop to create two seconds of delay 

for the auto-calibration of the camera.  The web camera used is the Rapoo C260 

Full HD webcam. The image taken on the initialisation of the camera will be 

too dark for image processing. After two seconds of delay, the camSet value is 

reset to zero, and a clear image should be taken. The clear image is being 

displayed on the screen for review purposes. The result of the camera image 

before and after buffer time is compared in figure 4.4. User input is needed to 

continue the image processing process. The acquired clear image is processed 

using OpenCV, and all necessary variables are declared. A clear image is 

converted to a grayscale image to apply gaussian blur and canny edge detection. 

Dilation of the canny edge detection image is done after creating a kernel for it. 

getContour() function is used to get the contours from the dilated image, and 

reorder() is used to rearrange the initial points found from getContour(). 

docPoints is referred by the getWarp() function to obtain a perfect warped image 

of the test environment. The warped image is converted to a grayscale image, 

and both the warped image and warped grayscale image are displayed to review 

the step-by-step process of the program. A warped grayscale image is converted 

to the correct pixel size based on the environment for other operations.   



32 
 

 
Figure 4.4: Comparison of No Auto Calibration vs Auto Calibration  

 

 
Figure 4.5: Result of Image Clear and Image Dilate from imageTotal()  

 

 
Figure 4.6: Rectangle found and drawn by getContours() 
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Figure 4.7: Warped image by getWarp() and the grayscale of the image 

 

 
Figure 4.8: Flowchart of getContours() function 

 

Figure 4.8 shows the flowchart of getContours(), and the function’s 

outcome can be referred to in figure 4.6. The operation started by declaring the 

local variables required for the process. Contours are found from the binary 

image using the findContours function. The for loop in the flowchart is used to 

check through all the found contours and get the area values of the rectangles.  

If the area of the found contour is less than or equals 10000, the contour will be 

removed from the results. The for loop process will be repeated to continue 

checking the next contour. The leftover contour's bounding box and corner 

points are found for further operations. If the area of the found contour is more 

than the maxArea and is a rectangle, the vector of the biggest point discovered 
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is stored and let maxArea equals the area. A contour outline and a rectangle are 

drawn onto the image. As the area found constantly replaces the maxArea, if the 

value is more significant, the maxArea will eventually equal the most extensive 

area found in the image. While all the found contours are checked through by 

the for loop, the vector of the biggest point located is returned.  

 

 
Figure 4.9: Flowchart of reorder() function 

 

Local variables are declared to initialise the reorder() function. ‘For 

loop’ in the flowchart shown in figure 4.9 checks through the four corner points 

found in getContours(). When the condition is true, the summation of X and Y 

coordinates is recorded and stored in the sumPoints vector, and the difference 

of X and Y coordinates is saved in the subPoints vector. The process repeats 

until values for all four points are documented. The vector of sumPoints and 

subPoints are pushed into newPoints to determine corners with the correct 

numbering for further processing at the following function. The steps can be 

visualised in figure 4.10. Assuming the coordinate of the most significant 

contour found is as follows, the box on the left shows the result of sumPoints, 

the lowest value in the sumPoints will be labelled as ‘0’, and the highest value 

will be labelled as ‘3’. ‘0’ represents the zero point of the square, and ‘3’ is the 

point with the maximum width and height of the square. Another two points in 

the square are labelled with the number ‘1’ and ‘2’, the highest value for 
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subPoints will be ‘1’, and the lowest value is marked with the number ‘2’. 

newPoints, points ‘1’, ‘2’, ‘3’, and ‘4’, are returned as a vector.  

 

 
Figure 4.10: Visualisation of technique to get newPoints 

 

 
Figure 4.11: Flowchart of getWarp() function 

 

Two variables are declared in the getWarp() function. The variable src 

will equal points acquired from reorder() as newPoints, and dst will be 

equivalent to custom set points for warping. The points in src are mapped with 

points in dst, and perspective transform is applied to the image. The image is 

warped and returned as imageWarp. The concept of mapping between src and 

dst is shown in figure 4.12.  The warped result can be found in figure 4.7.  

 

 
Figure 4.12: Visualisation of technique to map src and dst 
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Figure 4.13: Flowchart of data() function 

 

At the beginning of the data() function, a message will be displayed to 

read the user input for presetCoordinate. The variable presetCoordinate is to ask 

the user if preset coordinates are to be used or if the user will provide a custom 

coordinate.  While the preset coordinate is invalid, the user must retype the 

option again. When the presetCoordinate input is validated, a condition is used 

to check the user input. If the “presetCoordinate is false” statement is false, the 

function ends. If presetCoordinate is true, a message is displayed, and EndX is 

read. If EndX does not reach the requirement, the user will have to retype the 

value until it matches the condition. The exact process is repeated for EndY. 

When both EndX and EndY are recorded appropriately, the data() function will 

end.  

A comparison of using preset coordinates and a custom coordinate is 

shown in figure 4.14 generated by OpenGL, where more information will be 

explained in lineInitiate() and unit() functions. The picture on the left shows the 

end node with a custom coordinate, and the image on the right shows the end 

nodes with preset coordinates. There will be multiple end nodes when using the 

preset coordinates and only one end node when using the custom coordinate. 
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The red blocks represent the obstacles, and the blue blocks represent the end 

coordinate. The purpose of having numerous end nodes is to relate the project 

to factory usage. Most factories have preset coordinates for their mobile robot 

to deliver or retrieve items. Custom coordinates are used for specific coordinate 

deliveries.  

 

 
Figure 4.14: Comparison of a custom coordinate with preset coordinates 
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Figure 4.15: Flowchart of pathplanning() function Part A 

 

EndX and EndY will be printed at the start of the pathplanning() 

function if the ‘presetCoordinate is false’ statement is true. The printing of 

EndX and EndY is for the custom coordinate only. Variables are declared after 

the decision. Both the for loops are to repeat the process until all the coordinates 

from the environment are visited. While visiting the coordinates, the intensity 

of the grayscale image is recorded to identify the free-moving paths, the robot’s 

initial position, and obstacles. The free-moving paths and robot’s initial position 

are mapped with ‘0’ in the two-dimensional array, and obstacles are mapped to 

‘-1’. After mapping the robot’s initial position in the two-dimensional array, 

StartX equals row and StartY equals column. This step records the robot’s initial 
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position for path planning purposes. line++ functions to arrange the two-

dimensional array into a manageable and readable style, making it easier to 

analyse.  If the line modulus of the MapWidth is equal to zero, data will be 

printed on the following line instead. The result can be seen in figure 4.16. This 

figure shows the printed data of the grayscale intensity of the coordinate in the 

environment. The value highlighted is the robot’s initial position, which has a 

grayscale intensity between 60 and 145. Values which fall between 150 to 255 

are the accessible moving paths. Other small values are the obstacles. The 

grayscale intensity is essential to find the best value for further programming 

purposes. Finding a suitable grayscale intensity enables the camera to work in 

different lighting conditions. A test is conducted to determine the program’s 

workability in various lighting settings. The conditions can be seen in Figures 

4.17 to 4.20.  

 

 
Figure 4.16: Grayscale intensity at different coordinates  

 

 
Figure 4.17: Lighting conditions 1 and 2 
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Figure 4.18: Lighting conditions 3 and 4 

 

 
Figure 4.19: Lighting conditions 5 and 6 

 

 
Figure 4.20: Lighting conditions 7 and 8 

 

Lighting conditions 1, 2, and 4 can achieve results with the grayscale 

intensity configuration in the program. Minor tweaking is needed for lighting 

conditions 3 and 5, as lighting is not spread evenly onto the test environment. 

The issue can be solved easily by slight tweaking the program’s values. Lighting 

conditions 6 and 7 require heavy adjustment as both images are in a low light 

condition. The light source is far from the environment and only comes from a 
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single direction. A few lines of code to offset the values for further coordinates 

from the light source can be done to fix the issue of low lighting. Lighting 

condition 8 is under poor light condition. The only light source is from the 

outdoor environment. 30% of the results are false positives. Much work is 

needed to be done to use lighting condition 8 with the program. This test checks 

the robustness of the code in different lighting, and the result is excellent. Most 

factories have fixed lighting that is bright enough to light the environment, 

where the program does not require high robustness. Minor tweaking is only 

needed when the camera is set up in a space where an obstacle blocks a part of 

the light source.  

 

 
Figure 4.21: Flowchart of pathplanning() function Part B 

 
Obstacles are set to false after all the coordinates are mapped to the 

two-dimensional array in the previous step. Obstacles set to false means that 

there are no obstacles. The default distance is also set to the value of zero. The 

two-dimensional array is changed to a one-dimensional array. Two for loops are 

used to ensure all the coordinates in the environment are being visited. While 

visiting a coordinate, if the coordinate has the value of ‘-1’ or it is the boundary 

of the environment, the distance value (nFlowFieldZ) of the coordinate in the 

environment is set to ‘-1’. The coordinates that do not fulfil the above 

requirements will have nFlowFieldZ set to a value of ‘0’. This part ensures that 
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all coordinate status is saved correctly in the integer pointer, nFlowFieldZ, for 

the implementation of the search algorithm.  

Tuples are initialized by ‘std::list<std::tuple<int, int, int>> nodes, the 

three integer values represent x, y, and distance. The next process checks the 

status of presetCoordinates to determine the number of endpoints needed for the 

environment. If preset coordinates are selected, all the coordinates with the 

preset value will get the value of ‘1’ in the distance value. If a custom coordinate 

is chosen, the user input end coordinate will have the value of ‘1’ in the distance 

value. At this moment, we know that the obstacles are labelled with ‘-1’, free-

moving paths are labelled with ‘0’ and end coordinates are labelled with ‘1’.  

 

 
Figure 4.22: Flowchart of pathplanning() function Part C  

 

Nodes are developed until they are no nodes left undiscovered. Hence 

a while loop is used to repeat the process. Iterating through nodes will create 

newly discovered nodes. A second tuple list is implemented to prevent 

contamination of nodes onto the created tuple list. This prevents the data in the 
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first tuple from being affected throughout the iteration. The second tuple is 

initialized by std::list<std::tuple<int, int, int>> new_nodes, which differentiates 

from the first tuple list. While iterating through discovered nodes, neighbouring 

nodes that are undiscovered or empty will be added to the ‘new_nodes’ list.  

 Auto function and a for loop automatically refer to the initialised tuples. 

X coordinate, Y coordinate, and the distance from the end node are mapped. 

When a node is added to the new nodes list, the distance value from the end note 

increases by one. The distance, d, is then rewritten to its initial function, 

nFlowFieldZ. For the next step, any unmarked neighbour nodes are added by 

checking the directions of movement for the nodes. Hence, the four main 

directions are reviewed, north, south, east and west. In verifying the four 

directions, it is vital to prevent the checking node from going out of bounds. 

Hence a boundary check is applied. The whole process repeats until the end of 

the list.  

 The previous steps create multiple nodes for one location. The list’s 

repeated must be eliminated, or the process will never be complete. The nodes 

are first sorted, which will rearrange the node that is identical together. As an 

example, if the nodes are A, B, C, B, C, D, E, F, E, F, the nodes will be sorted 

accordingly to their order, and the result will be A, B, B, C, C, D, E, E, F, F.  

This could be done by passing in two arguments if the argument is ‘true’, 

swapping takes place. Else, the process is ignored. After sorting, the duplicated 

nodes have to be removed. To accomplish this step, two arguments are 

compared if they are the same. This will bring the result from A, B, B, C, C, D, 

E, E, F, F to A, B, C, D, E, F. The discovered nodes are processed, and the list 

is cleared for further processing of the next iteration. The node list is substituted 

with a new sorted list. The end of this procedure brings the process back to the 

while loop to check if the nodes are not empty. While all nodes are discovered, 

the following method will continue.  
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Figure 4.23: Flowchart of pathplanning() function Part D 

 
Paths have been found from Part C based on the height map, but it is 

not usable yet as no physical path is drawn to connect the start and end 

coordinates. A path is needed to be created from the extraction of the height 

map. Overall, the way of accomplishing this is by taking off from the start 

location and constructing a path of nodes up to the target location. While 

processing on the specific node, the neighbour’s distance score is compared, and 

the one with the lowest value is selected.  

The start coordinate is pushed into the path list at the beginning of part 

D, coming from B3. Variables are declared as shown in figure 4.23. A boolean 

function is implemented to determine if no path is found towards the end 

location. The boolean to check the presence of the path is set to false on default. 

A new text file is created for the motor commands, which will be used later for 

the ESP32.  

While loop is executed here to ensure that the parameter ‘nLocX’ and 

‘nLocY’ are equal to ‘EndX’ and ‘EndY’, this is for the case of custom 

coordinates. For preset coordinates, the working principle is the same, but all 
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the preset coordinates have to be specified in this while loop for validation 

purposes. At the same time, the boolean function has to be true. 

A new tuple list is created to sort the minimum distance in the list. A 

connectivity test is used, where we can choose from 4-way or 8-way 

connectivity. In this program, 4-way connectivity will be used as 8-way 

connectivity might cause a robot to crash with obstacles at turning corners. 8-

way connectivity will shorten the travel time of the navigation robot, and 

improvements in the algorithm can be made to solve the crashing issue. For the 

testing of the pathfinding algorithm, 8-way connectivity is not as necessary as 

it can be introduced to the program without difficulty and will not affect the 

program. Taking the south direction as an example, a new tuple will only be 

added to the list when the current location of the Y coordinate, nLocY, is lesser 

than the map height. This is used to prevent the connectivity test from exceeding 

the borders. Besides border checking, the presence of distance value is also 

essential. While the condition is reached, a new tuple is added to the list. The 

tuple format remains the same as before, where the three integers are coordinate 

X, coordinate Y, and the distance, respectively.  

 

 
Figure 4.24: 4-way connectivity and 8-way connectivity 

 

After all the tuples are stored in the list, ‘listNeighbours’, the 

neighbours are sorted based on distance. The neighbour with the lowest distance 

will be placed at the beginning of the list. If the list is empty, it indicates that 

the algorithm finds no path, ‘bNoPath’is being set to true, and the while loop 

stops immediately. A message will be sent to the command window, and 

nothing will be written into the motor command text file. Else, the X and Y 
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location is isolated from the tuple. The location is pushed into the path list. The 

new ‘nLocX’ and ‘nLocY’ will continue looping through the while loop until 

the loop condition is false.  

 

 

Figure 4.25: Flowchart of display_callback() function 

 

This function enables the buffer for colour writing and works with 

glutDisplayFunc, as shown in figure 4.25. The drawGrid() function draws grids 

of the entire enclosed environment to OpenGL. The process, lineinitiate(), joins 

a line from the starting coordinate to the ending coordinate, which signifies the 

path found. The function glutSwapBuffers()is used to swap the back buffer to 

the front buffer.  

 

 
Figure 4.26: Flowchart of drawGrid() function 
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Figure 4.27: Flowchart of unit() function 

 

The drawGrid() functions to iterate through all the rows and columns 

of the enclosed environment. The square is drawn by the following function, 

unit(), shown in figure 4.27. While iterating through the locations on the map, 

if the specific coordinate is an obstacle, red colour is selected. Else, all the others 

are accessible moving paths. White colour is defined. After choosing a colour, 

a rectangle is defined, and all the vertex in the rectangle is connected. The 

process can be visualised in figure 4.28.  

 

 
Figure 4.28: Four vertexes to form a rectangle 

 

 
Figure 4.29: Simulation of accessible moving paths and obstacles 



48 
 

 

 
Figure 4.30: Flowchart of lineInitiate() function Part A 

 

The function lineInitiate() is applied to join the path from the start 

coordinate to the end coordinate with a line. The bFirstPoint boolean is set to 

true initially as the progress started from the first point. After the first point, the 

boolean will be converted to false, and the remaining points can be processed. 

Variables ox and oy are stored with the initial X and Y coordinates of the 

environment. The value of ox and oy will change with ‘a.first’ and ‘a.second’ 

for the remaining points until the end coordinate.  

 A text file is created for the motor command, and the value ‘1’ is 

written to the first value in the file. Value ‘1’ is needed as the navigation robot 

will always face the north direction on start-up. Iteration is done through the 

path list, and a condition is used to check if the coordinate is the first point. If 

the condition is true, variables ox and oy equal the current point. The first point 

status, bFirstPoint, is set to false. The output text file, the motor command file, 

is open for editing. 

Four conditions are checked when the file is available. It functions to 

verify the direction of movement. The visualisation of the process can be seen 

in figure 4.31. The numbers ‘1’, ‘3’, ‘4’, and ‘9’ signifies the movement towards 

North, West, East, and South direction. The numbers are calculated for easy 

processing in ESP32. For example, the motor command will always start with 

the value ‘1’, as discussed above. If the current Y value is more significant than 

the original Y, ‘9’ is written into the motor command text file. The text file starts 
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with two numbers, ‘19’. Visualisation of the numbers can be seen in figure 4.32. 

After all the conditions are validated, the text file will close.  

 

 
Figure 4.31: Four execution conditions and motor command numbers direction 

 

 
Figure 4.32: Example of a motor command text file 
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Figure 4.33: Flowchart of lineInitiate() function Part B 

 

After the process from D4 in figure 4.30, the algorithm is still in the 

first point, which is the starting location. Based on figure 4.33, the start 

coordinate and end coordinate are not implemented yet. Since the process is still 

in the start coordinate, the starting frame can be drawn onto the simulation. The 

approach here will be similar to figure 4.27’s unit() function. The line width and 

colour are defined, and the start frame is set to green. The visualisation in figure 

4.28 is recreated here. The identical method is used for the end location. As the 

end location is not in the current iteration, the coordinate is called directly from 

the ‘EndX’ and ‘EndY’ global variables. A similar mechanism is used to 

generate blue boxes for the end coordinate. There will only be one end frame 

developed when there is no pre-set coordinate, only the user input coordinate. 

If the pre-set coordinate is true, multiple end frames will be drawn. The 

simulation can be seen in figure 4.14. While finished executing the codes in 

lineInitiate() function Part B, everything required for the first point and 

simulation is completed. This part will not be revisited until the restart of the 

program.  
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Figure 4.34: Flowchart of lineInitiate() function Part C 

 

Part C of the lineInitiate() function executes from the second point until 

the last. It works similarly to Part A, as shown in figure 4.30. All the steps from 

D5 to the end of E2 are the same. After E2, the line width and colour are defined 

as black. The line is defined in OpenGL and drawn from the coordinate before 

to the coordinate after. OpenGL is ended, and the coordinates x and y before are 

replaced with the ones after. The process will continue iterating until the end 

coordinate. When the line is drawn up to the end coordinate, the lineInitiate() 

function ends.  
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Figure 4.35: Flowchart of reshape_callback() 

 

The function in figure 4.35 is mandatory for OpenGL. The 

reshape_callback() function has a few stages, where the first step is to shift the 

device coordinate to the window coordinate. Matrix mode is then transformed 

into projection mode mainly to change the 3-dimensional view to a 2-

dimensional view. The current matrix is replaced with an identity matrix before 

switching to an orthogonal projection.  

 

 
Figure 4.36: Flowchart of init() 

 

 
Figure 4.37: Flowchart of initGrid() 

 

Based on figure 4.36, the init() function is performed. This function 

works with the initGrid(), which mainly defines a function for the initialisation 
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process. From figure 4.36, the initialisation colour is grey, which signifies that 

the backdrop colour of the simulation is set to grey.  

 

4.2.2  Node-Red 

 

 
Figure 4.38: Node-Red flow  

 

Node-red functions to integrate between the computer and the microcontroller. 

The motor command text file output from the folder in the computer can be 

connected directly to the ESP32 via MQTT. The node in orange is the file 

location in the computer. Node ‘msg.payload’ is used to read the transmission 

text or numbers. In the first line, the series of numbers is for the testing phase 

only. Different series of numbers that fulfil the motor command can be inserted 

to check the workability and accuracy of the navigation robot without having to 

start the path-finding program. The series of numbers replace the value in the 

motor command text file.  

 The second line is the integration of the program. While the timestamp 

button is activated, the motor command in the text file will be delivered to the 

ESP32 via MQTT. ‘MotorCommand’ is the topic. The microcontroller will have 

to subscribe to this topic to retrieve relevant data.  

 The third line is subscribed to the topic ‘FileOperations’. This is a vital 

feedback as it replaces the series of numbers in the motor command text file 

with a single digit, ‘0’. This prevents the robot from executing the same code 

again. When the program in the computer does not edit the file, the text file 

remains unchanged. Hence, it is essential to have this safety feature to prevent 

unnecessary collisions from happening.  

 The final line is subscribed to the topic ‘PowerFeedback’. This topic is 

vital as it transmits important messages to the user. Based on figure 4.39, most 
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of the messages are from the topic. ‘ESP 32 Setup complete’ is to notify the user 

that the navigation robot is prepared for navigation. When the timestamp is 

triggered, a ‘Start Navigation’ message is sent to Node-Red, and the navigation 

robot starts to move in the environment based on the motor command. When 

the navigation is completed, ‘the Navigation Complete’ message will appear in 

Node-Red. If the user trigger to execute the program again without running the 

vision-based program, the ‘Rescan the Environment’ message will appear in 

Node-Red. This can be accomplished by rewriting ‘0’ into the text file. When 

‘0’ is scanned, no process will be carried out and rescan message will be 

displayed in Node-Red. The message which shows a series of numbers is the 

motor command. The message is displayed for reclarification purposes for the 

user.  

 

 
Figure 4.39: Node-Red debug  

  



55 
 
4.2.3  ESP32  

 

 
Figure 4.40: Flowchart of ESP32  

 

 
Figure 4.41: Flowchart of ESP32 setup() function  

 

Figure 4.40 is the main flow of the ESP32. Header files are included, and 

variables are defined for other processes. The setup() function is called, which 

starts by defining variables. Wi-Fi is disconnected on every startup to make sure 

that the ESP32 is not under a connected network. While the Wi-Fi is not 

connected, a short interval waiting time is given. When the Wi-Fi is connected, 

the connected message and Wi-Fi details will be generated on the output screen 
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in the IDE. The callback() function will occur after establishing the MQTT 

connection. Pins 27, 26, 19, 18 and 14 are output pins.  

 

 
Figure 4.42: Flowchart of ESP32 setup() function Part A  

 

 MQTT_DATA is defined as a string. The motor command is imported 

into ESP32 in MQTT_DATA. The motor command is displayed in the serial 

monitor. The integer Length_MC equals the length of MQTT_DATA. Counter 

for motor command and one digit before, Count_MC and Count_MC_Before, 

are defined. The variable Motor_Difference is also set to zero. Let Int_Data 

equal to MQTT_DATA to check the status of the motor command text file. If 

the value in the text file is not equal to zero, the ‘Start Navigation’ message is 

published to Node-Red via PowerFeedback. The navigation process will start. 

When the Count_MC variable is lesser than or equal to Length_MC, it signifies 

that not all the values are processed yet. The process will repeat until all the 

digits in the text file are fully processed. When Int_data equals zero, the text file 

had been processed beforehand, and the environment had to be inspected again 

before handling the motor command. The ‘Rescan the Environment’ message is 

published to Node-Red via the PowerFeedback topic. The navigation robot will 

carry out no process if this statement is shown.  
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Figure 4.43: Flowchart of ESP32 setup() function Part B 

 

After X3, integer Value_CMC is set to MQTT_DATA character at 

Count_MC. Value_CMCB is set to the value of the MQTT_DATA character at 

Count_MC_Before. MotorDifference takes the result of subtraction for 

Value_CMC and Value_CMCB. If the value for difference in motor command 

at each character is equal to 0, the navigation robot moves forward and stops. If 

the motor difference equals -3, -5, 6 and 2, the navigation turns to the right, 

moves forward and stops. Similarly, if the values are -2, -6, 5, and 3, the 

navigation robot will turn left, move forward, and stop. The methodology 

behind the difference in value for different directions is shown in figure 4.44. 

This is why the inspection program outputs a value of only 1, 3, 4, and 9 in the 

text file. The functions for forward(), stop(), left() and right(), can be seen in 

figure 4.45.  



58 
 
 

 
Figure 4.44: Direction of movement for Navigation Robot 

 

 1,3,4, and 9 are the movement direction of the navigation robot. 

Outputs signify the four directions: North, West, East, and South. When the 

robot moves North at the coordinate before, the number will be ‘1’. If the next 

digit in the command is ‘3’, the navigation robot must turn to the left-hand side. 

Subtraction of 3 from 1 results in -2. We can set -2 to be the command to turn 

the navigation robot towards the left-hand side direction and move forward. The 

same calculation is used for other points. Numbers 1, 3, 4, and 9 are used as they 

are unique when the difference between values is calculated.  

 

 
Figure 4.45: Flowchart of ESP32 setup() function Part C 
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 Based on figure 4.45, if the motor difference has a value of 8, the 

navigation robot has to make a 180 degrees turn. This event will only happen 

from the first to the second digit. When the ‘if statement’ is completed, both the 

Count_MC and Count_MC_Before increase by 1. The while loop repeats until 

all the numbers in the motor command are processed. Once the process 

mentioned is completed, ‘0’ is published to the FileOperations topic. This is to 

prevent a repetition of the same motor command without rescanning the 

environment. ‘Navigation Complete’ message is published to PowerFeedback 

topic.  

 

 

Figure 4.46: Flowchart of ESP32 stop(), forward(), right(), and left() functions 

 

 These four functions mainly control the navigation robot’s movement. 

Pin 27 and 26 are for DC motor 1, and  Pin 18 and 19 are for DC motor 2. The 

navigation robot will move forward when Pin 27 and 19 are set to high. When 

all the Pins are set to low, both motors stop. A combination of pins can achieve 

turning left and turning right. A delay is needed to ensure the movement of the 

navigation robot in the environment reaches the next tile. A gyrator is used and 

tested in this phase. The accuracy of the gyrator is not as accurate as setting a 

delay to the process. Hence, only the delay is implemented in the final phase of 

the ESP32 program.  
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Figure 4.47: Flowchart of ESP32 loop() function 

 

 
Figure 4.48: Flowchart of ESP32 reconnectmqttserver() function 

 

 The ESP32 loops around the connection of the MQTT server. If the 

client is connected, the loop ends. If the client is not connected, 

reconnectmqttserver() function is addressed. While the client is not connected, 

attempting connection and client identification are printed. If the client is 

connected, a message will be displayed, ‘MotorCommand’ topic will be 

subscribed. A message to notify the user that the ESP32 setup is complete will 

be sent to Node-Red via the topic, PowerFeedback. The unsuccessful 

connection message will be displayed if the client fails to connect. The client’s 

state is displayed. The function will end when the client is connected.  
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4.3  Project Prototype  

 

 
Figure 4.49: Complete system in navigation robot  

 

The best way to mount ESP32 onto the 150 mm length by 105 mm width 

navigation robot chassis is by placing the microcontroller connecting two 82 

mm by 35 mm breadboards together. Two breadboards fit perfectly in the slot 

between the four pillars of the robot. The front of the robot faces the left, and 

the gyrator, which has a dimension of 20 mm by 16 mm, is placed at the front. 

Other sensors are given space to be added at the front of the navigation robot. 

The ESP32, with a dimension of 57 mm by 28 mm, is in the middle of two 

breadboards. The width of ESP32 is almost identical to the breadboard, which 

makes it impossible to connect both sides of the pins on the same board. Figure 

4.49 shows that the battery is held between the microcontroller and the motor 

controller. To prevent the battery from moving around, it is fixed in place using 

jumper wires on the side. From the top view, the battery has a length of 485 mm 

and a width of 175 mm. The battery height, along with the breadboard, is 275 

mm, exceeding the height of the four pillars on the navigation robot. Another 



62 
 
mounting method for the top layer of the navigation robot must be considered. 

The motor controller is mounted with cable ties at the far end of the chassis. It 

is positioned where the height is 55 mm, exceeding the four pillars, width and 

length to be 27 mm and 44 mm. The width and length of the motor controller 

are sufficient to fit into the back end of the chassis. Cable ties are used to tightly 

hold the breadboard onto the chassis with the support of the four pillars. The 

jumper wires used have the same colour as figure 4.1. All wires can be 

pinpointed easily during improvement and maintenance. All the jumper wires 

are adequately organised with cable ties to keep the robot aesthetically clean.  

 

 
Figure 4.50: Complete assembly of navigation robot  

 

 Figure 4.50 shows the fully assembled navigation robot from the back 

right direction. As discussed, the height of both the battery and the motor 

controller exceeds the height of the pillars. Four additional screws are needed 

to extend the height of the pillars. A power bank, which is connected to the 

ESP32, is mounted above the second layer of the chassis. It is held in place by 

the screws and nuts surrounding it. Multiple test runs prove that the power bank 

will stay in position while navigating the environment.  
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Some of the standard parts of the navigation robot are replaced and 

mounted by a longer screw for stability. While assembling following the 

standard parts procedure, the two guiding wheels of the navigation robot did not 

have the same height as the DC motors. During the navigation process, the robot 

will either lean in one direction, making the impact of two DC motors unequal. 

This affects the accuracy of the robot and causes it to drift off the standard 

control. Full forward might turn out to be slightly tilting towards the side. The 

issue is solved by mounting the guiding wheels with longer screws with the aid 

of a spirit level.  

Figure 4.50 shows that the chassis holes are utilised to properly 

organise the wires and cable ties. Passing wires across the holes avoids 

unintentional disconnection when transporting the robot.  

 

4.4 Performance of Vision-Based Program  

The vision-based program undergoes different stages of improvement 

throughout the project. The program is used to test pictures initially to 

experiment with the workability of the algorithm. A real-time image is added 

subsequently to achieve the project objective.   

 

4.4.1  Maze Solving  

Different mazes were tested using the programming code. The program can 

solve the maze by navigating a path from start to end and looking for the correct 

path. OpenGL generates the figure with obstacles in red.  

 

 
Figure 4.51: Path to solve the maze  
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4.4.2 Enclosed Environment Preliminary Results 

An enclosed environment makes the robot navigation closer to the real world. 

The first and second enclosed environments are created to simulate a scenario 

closer to a real-world environment from the top view. More spaces are provided 

in the environment instead of a one-lane road.  

 

 
Figure 4.52: Path of solving the first enclosed environment  

 

 
Figure 4.53: Starting and ending position for the first enclosed environment  

 

The start position can be edited in the programming code, and the end 

position will be input by the user after the program’s execution. The message in 

figure 4.53 shows the environment's starting and ending positions.  

 

 
Figure 4.54: Motor command for the first enclosed environment  
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The program stops after the path is found and generates the motor 

command in a text file. The numbers signify the movement of the robot. ‘1’ 

commands the robot to move the robot in the north direction, ‘3’ commands the 

robot to move to the west, ‘4’ commands the robot to move to the east, and ‘9’ 

controls the robot to move to the south. The series of numbers is shown in figure 

4.54. The numbers represent the robot movement generated from figure 4.52. 

Figure 4.55 shows the second enclosed environment, and figures 4.56 and 4.57 

show the message and motor command.  

 

 
Figure 4.55: Path of solving the second enclosed environment  

 

 
Figure 4.56: Starting and ending position for the second enclosed environment  

 

 
Figure 4.57: Motor command for the second enclosed environment  
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The robot should not execute any command when obstacles enclose the 

starting point. While running a test for this enclosed environment with no path, 

another test is carried out. Testing of the thresholding to turn the grayscale 

image into a binary image. The greyed blocks are still detected in the OpenGL 

simulation. Figure 4.58 shows that no path is generated when obstacles surround 

the starting point. If no path is generated, the output message will notify the user 

that no path is generated and does not output anything in the motor command 

text file.  

 

 
Figure 4.58: Solving no path enclosed environment  

 

 
Figure 4.59: Positions and message for no path enclosed environment  

 

 
Figure 4.60: Motor command for no path enclosed environment  
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4.4.3 Enclosed Environment complete program  

Vision is added to this stage of the program. It is integrated with the algorithm 

from the previous test to check workability and efficiency. Practical images 

require post-processing before executing path planning to capture the 

environment perfectly. The complete outcome from a practical image is shown 

under level four subsections.  

 

4.4.3.1 Enclosed environment without pre-set coordinates 

A custom coordinate is used in this section of the program. The user provides 

the custom coordinate within the boundary of the enclosed environment. There 

will only be one end coordinate in the program when there are no pre-set 

coordinates.  

 

 
Figure 4.61: Path to solve the first practical enclosed environment  

 

 
Figure 4.62: Path to solve the second practical enclosed environment  
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Figure 4.63: Path to solve the third practical enclosed environment  

 

 

Figure 4.64: Path to solve the fourth practical enclosed environment  

 

Figures 4.61 and 4.62 show a path between the start and end 

coordinates. Figures 4.63 and 4.64 show that no possible path is found in the 

environment, and no path will be drawn. The success rate for scanning the 

environment is 95% out of 40 tries. The main reason for failure in the scan is 

the interruption on the outermost of the boundary. If an object is placed on the 

border, the rectangle algorithm cannot find the square, which causes the scan to 

fail. If the scan is successful, an enclosed environment without pre-set 

coordinates has a success rate of 100% from 20 tries. No path scans also have a 

success rate of 100% out of 10 attempts.  
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4.4.3.2 Enclosed environment with pre-set coordinates 

Pre-set coordinates are used in this section of the program. The pre-set 

coordinates are saved in the program. There will be multiple end coordinates in 

the program when there are pre-set coordinates. The program will search for the 

closest end coordinate and connects it with a path. This is very useful for the 

navigation robot to find the nearest station in the physical world.  

 

 
Figure 4.65: Path to solve the fifth practical enclosed environment  

 

 
Figure 4.66: Path to solve the sixth practical enclosed environment  

 

 Figures 4.65 and 4.66 shows that the simulation can find the nearest 

path from multiple coordinates. The success rate of the algorithm is 100% out 

of 15 tries. An uninformed search algorithm can only accomplish this. An 

informed search algorithm needs to have a precise end coordinate.  
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4.4.3.3 Enclosed environment program  

The program is fully automated and does not require tuning to switch from 

custom coordinates to pre-set coordinates. Based on simulations, the accuracy 

of the algorithm is very high and will be able to achieve the objective if the 

environment is scanned without false positives. False positives will only occur 

when the environment is in poor light condition, as shown in figure 4.6. 

Increment in the size of the enclosed environment will require changing 

numbers in rows and columns in the program but will not affect the accuracy 

and path planning of the algorithm. Accuracy remains the same when the 

enclosed environment is expanded. The processing time for the enclosed 

environment program will increase. The motor command simulated will still be 

accurate as the paths found will be in the midpoint of the cell, preventing it from 

offsetting from the actual path.  

 

Table 4.2: Summary table of simulation results for enclosed environment  

Evaluation Criteria Success Failure Success Rate (%) 

Scanning Environment 38 2 95 

Single Point End coordinate 20 0 100 

Multiple Points End 

coordinate 

15 0 100 

No path on Single Point 6 0 100 

No path on Multiple Points 4 0 100 

 
 

4.5 Usability test  

A usability test is carried out at the final stage of the project. This is to test the 

efficiency of the developed training system. The prototype in figure 4.50 is 

utilised in the enclosed environment. In the usability test, two sets of results will 

be presented as one set is the improvement for the other. The first set of results 

is the initial solution, where the gyrator is considered. The second set of results 

has the gyrator replaced with delay time. The navigation robot performs better 

in this setting.  
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4.5.1 Processing of motor command  

 

 
Figure 4.67: Serial monitor output for ESP32  

 

 Figure 4.67 shows the connection process and navigation process of 

the robot. When the ESP32 is started, Wi-Fi and MQTT are connected. The IP 

address shown in the serial monitor is for the ESP32. The motor command is 

successfully sent from the computer to ESP32, as shown in the line “Motor 

Command: -”. On rare occasions, the MQTT connection might be disconnected 

due to service interference from the broker. Interruption of MQTT will not 

disrupt the ongoing navigation process and will return online after a short 

amount of time.  

Lines starting with ‘Go’ are the navigation commands. R direction, L 

direction, and F direction indicates the right (), left(), and forward() function in 

the ESP32 code. As discussed in subsection 4.2.1, the robot will always face the 

North direction at start-up. First ‘1’ indicates the facing direction of the robot. 

The navigation can be visualised and validated manually by drawing the 

movement flow of the robot.  
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Figure 4.68: Navigation path of motor command  

 

 The motor command shown in figures 4.67 and 4.68 is both ‘1499941’. 

The number series also means moving to the east for one time, to the south three 

times, to the east again, and to the north. The navigation command does not 

know the orientation of the robot. It will process the motor command by 

controlling the motors to turn left and right. Initially, the robot is facing the north. 

The robot must turn right to face the east direction and move forward to arrive 

at the next block.  The following motor command is ‘9’, where the navigation 

command will direct the motors to turn right again, facing the south direction. 

The navigation command will continue forward three times, moving the 

position three blocks towards the south. At ‘4’, the robot will have to move 

towards the east direction again. The turning direction is different from before 

now. Instead of turning right, the robot will have to turn left to move in the east 

direction. After left and forward, the motor turns left and moves forward again 

to reach the end position. Overall, the robot will move Right, Forward, Right, 

Forward, Forward, Forward, Left, Forward, Left, Forward. The navigation 

command matches the command in figure 4.68.  

 The same test shown in figure 4.68 is done 13 times to check the 

movement directions generated by ESP32 in the serial monitor. All 13 tests 

output the appropriate results, making processing motor commands in the 

ESP32 100% accurate.  
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4.5.2 Navigation robot with gyrator   

 

Table 4.3: Results of Navigation Robot with Gyrator   

Evaluation Criteria Success Failure Success Rate (%) 

Static Single Turn 4 7 40 

Static Multiple Turns 2 7 22 

Short distance  6 7 46 

Long distance 1 8 11 

 

 Table 4.3 shows the results of the navigation robot while using the 

gyrator to achieve 90 degrees turn. A low success rate was achieved as the 

accuracy of the gyrator was terrible. The gyrator is perfectly tuned and can make 

90 degrees turn at the first corner. It will quickly lose accuracy on the second 

turn. It could achieve 90 ± 3 degrees on a right turn but will shoot up to 90 ± 

15 degrees on a left turn. This causes unusual success on a single turn, and the 

prototype will most likely fail in multiple turns.  

 The success in single turns on the same spot is all contributed by 

turning to the right. There are also times when turning to the right side fails. For 

static multiple turns, all the successful attempts are achieved by turning to the 

right side only. Those with a combination of left and right, or turning left only, 

fail badly. Short distances have a higher success rate as half of the testing is 

done by turning towards the right-hand side. Those that turn to the left-hand side 

has a very bad success rate. Long distance usually combines multiple turns to 

achieve the target. Inaccuracy in long distances is very high as the left-hand turn 

has bad accuracy, and the right-hand turn still has a relatively high tolerance, 

where the sum of offset can go up to 10 degrees.  

 The success rate is calculated by summing up the successful attempts 

for short and long distances and dividing by the total attempts. From the results 

in table 4.3, we can conclude that the success rate of the navigation robot using 

a gyrator is relatively low at only 32%. Other methods must be tested to increase 

the accuracy of the navigation robot.  
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4.5.3 Navigation robot with time delay  

 

Table 4.4: Results of Navigation Robot with time delay  

Evaluation Criteria Success Failure Success Rate (%) 

Static Single Turn 9 1 90 

Static Multiple Turns 8 2 80 

Short distance  9 1 90 

Long distance 7 3 70 

 

Table 4.4 shows the outcomes of the navigation robot while utilising the time 

delay to accomplish 90 degrees turn. A higher success rate is achieved as the 

motor delay can be set and executed without external disturbance. The delay 

time is initially tested with the help of the gyrator to check if the angle is 

precisely 90 degrees. The idea is withdrawn as the gyrator display false positives, 

and manual testing of delay time is carried out. After completion of calibration, 

the time delay is applied to the microcontroller code in Arduino IDE. Static 

single turns and multiple turns are tested and observed. Successful turns are 

determined by two rulers placed perpendicularly. The test is successful if the 

navigation robot can go straight parallelly with the ruler after the turn.  

 Static single turn has a success rate of 90%, where the accuracy is 

considerably high. Short-distance navigation will mostly succeed when the 

static single-turn result is good, as both assessments are highly related. Short 

distance usually makes only one or two turns throughout the navigation. 

Inaccuracy in short distances will not affect as much as a sum up of inaccuracy 

for long distances. External factors influence failure in the static single turn, 

where the test environment is on a surface with a slightly different height. 

Failure in short-distance navigation is affected by the initial orientation of the 

robot at the beginning of the navigation. If the robot is not faced to the north 

accurately, the whole movement of the robot might offset slightly to either 

direction. The navigation robot must be placed at the stipulated position with 

the correct orientation to keep the result accurate.  

The success rate of static multiple turns is 80%, and long-distance 

navigation is 70%. Static multiple turns results will directly affect the outcome 

for long-distance navigation. Failure in static multiple turns has the same reason 
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as a static single turn, where the surface has a slightly different height. 

Travelling long distances has a lower success rate as the summation of 

inaccuracy in time delay increases. The environmental factors might also be a 

cause for inaccuracy. The further it travels, the other consideration must be 

taken into account. An ideal case is not possible.  

 From the results in table 4.4, we can conclude that the success rate of 

the navigation robot using a time delay for 90 degrees turn is relatively high, at 

80%. A better chassis with a more rigid structure can be introduced to increase 

accuracy further. Bending of Perspex might happen during assembly, which 

might also be a reason for inaccuracy.  
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CHAPTER 5 

 

CONCLUSION 
 

5.1  Conclusion  

The vision-based indoor navigation robot training system is successfully 

developed using OpenCV and C++ programming language. The robot can 

navigate around the environment with the support of the camera and the user-

specified target. The algorithm can provide the nearest path to navigate around 

the environment without manual assistance. The user will only have to give the 

program relevant coordinate information and running mode. The computer and 

ESP32 board are the central processing unit for this project to perform path 

planning and motor command analysis. Node-Red connects both processing 

units via MQTT.  

 An algorithm is developed in Visual Studio on the computer as 

functionalities can be written and customised in the IDE. The IDE provides 

excellent flexibility in image processing, user input, path planning, simulation, 

and writing of output files. Next, Node-Red is a great platform to transfer data 

from the computer into the microcontroller. Data and user reminder messages 

can be easily shared across platforms, which creates a great connection between 

control units. Another algorithm is developed in the ESP32 to derive and 

execute the data delivered from the computer. Arduino IDE is used to code the 

ESP32 to fulfil the task.  

 A few software and hardware problems arise throughout the training 

system's testing phase. The issues are resolved and reviewed in Chapter 4, under 

results and discussion. As the vision-based indoor navigation robot is developed 

in a training system, many improvements are accomplished by adding extra 

codes or substituting the existing algorithm with a new one. Not just the 

advancements in software, enhancements in hardware are also documented in 

Chapter 4.  

 The objective of this project is to design, develop and simulate 

programming code to perform image processing and path planning, integrate 

programming code with a microcontroller wirelessly, and test and evaluate the 
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performance of the navigation robot. All three objectives of the project are 

achieved.  

 

5.2  Limitations of the project  

The project does have a few limitations. Firstly, the navigation robot does not 

have a feedback mechanism when moving near an obstacle. A collision between 

the navigation robot and the obstacle will likely happen if other moving objects 

are in the environment. Without the feedback mechanism, the navigation robot 

will continue running the DC motors even though a crash occurred.  

 Next, the camera mounted above the environment could only scan the 

limited space. The implementation might only be effective indoors in small 

areas or on high roofs. It will be ideal if the scannable area can be expanded.  

 Lastly, the algorithm can process multiple end coordinates, but only 

one start coordinate exists. In big factories, a single robot is not enough, and 

more robots will be added to the environment sooner or later. Increasing the 

number of robots could improve the efficiency of the factory.   

 

5.3  Recommendations for improvements 

As this is a training system for a vision-based indoor navigation robot, several 

improvements can be made. Most of the recommendations revolve around the 

limitations of this project.  

 To bring the environment closer to the usual indoor environment for 

factories, the number of pixels in the environment should be increased. More 

information can be extracted from an image with high pixel counts. The 

established algorithm currently is the benchmark for the training system. 

Increasing the pixel values can be built above the model.  

 Subsequently, an ultrasonic sensor can be introduced into the 

navigation robot to measure the distance between the navigation robot and the 

obstacles. If there are new objects in the environment that are not scanned by 

the camera previously, the ultrasonic sensor can detect the object’s presence and 

send a stop signal to the DC motors. A signal can be sent to the vision-based 

program in the computer to capture a new image of the environment. The new 

obstacle will be added to the environment.    
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Other than that, it is discussed in the limitations that the camera’s field 

of view will restrict the environment. To resolve this issue, integration of maps 

between cameras can be established. Cameras are placed above different 

environments. The borders of the environment are connected to the following 

environment. The environment can be joined virtually in the software, creating 

the primary environment from sub-environments. This increases the size of the 

scannable area.  

 Finally, additional start coordinates can be introduced into the 

algorithm. As reviewed in the limitations, more than one robot will be employed 

in big factories. Increasing start coordinates and prevention of collision between 

navigation robots can be applied.  
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APPENDICES 

 

Appendix A: C++ code for Header.h 

 

 

Figure A-1: Header.h file    
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Appendix B: C++ code for Grid.cpp 

 

 

Figure B-1: Grid.cpp Program   
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Appendix C: C++ code for Pathplanning.cpp 

 

 
Figure C-1: Pathplanning.cpp Program (1) 
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Figure C-2: Pathplanning.cpp Program (2) 
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Figure C-3: Pathplanning.cpp Program (3) 
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Figure C-4: Pathplanning.cpp Program (4) 
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Figure C-5: Pathplanning.cpp Program (5) 
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Figure C-6: Pathplanning.cpp Program (6) 
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Figure C-7: Pathplanning.cpp Program (7) 
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Figure C-8: Pathplanning.cpp Program (8) 
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Figure C-9: Pathplanning.cpp Program (9) 
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Figure C-10: Pathplanning.cpp Program (10) 
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Figure C-11: Pathplanning.cpp Program (11) 
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Figure C-12: Pathplanning.cpp Program (12) 
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Figure C-13: Pathplanning.cpp Program (13) 
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Figure C-14: Pathplanning.cpp Program (14) 
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Figure C-15: Pathplanning.cpp Program (15) 
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Appendix D: Arduino code for ESP32 

 

 
Figure D-1: ESP32 Program (1)  

 



99 
 

 
Figure D-2: ESP32 Program (2)  
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Figure D-3: ESP32 Program (3)  
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Figure D-4: ESP32 Program (4)  
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Figure D-5: ESP32 Program (5)  
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