

TRAJECTORY PLANNING AND

SIMULATION FOR 3D PRINTING PROCESS

NG CHIN YONG

UNIVERSITI TUNKU ABDUL RAHMAN

TRAJECTORY PLANNING AND SIMULATION FOR 3D PRINTING

PROCESS

Ng Chin Yong

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2022

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Ng Chin Yong

ID No. : 1800216

Date : 30/9/2022

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “TRAJECTORY PLANNING AND

SIMULATION FOR 3D PRINTING PROCESS” was prepared by NG

CHIN YONG has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Signature :

Co-Supervisor :

Date :

Ts Dr Lee Jer Vui

2/10/2022

Dr. Chan Siow Cheng

03/10/2022

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be

made of the use of any material contained in, or derived from, this report.

© 2022, Ng Chin Yong. All right reserved.

iv

ABSTRACT

The demand for Fused Deposition Modelling (FDM) 3D printing technology

is skyrocketing among hobbyist makers in recent years especially during the

outbreak of pandemic Covid 19. 3D printing community has increased

drastically with engagement of hobbyists and users from non-engineering

background. The main concern from non-engineering users are affordability,

operability, and efficiency. Affordability refers to the financial burden upon

purchasing large amount of printing material for reprint the printouts that are

not satisfactory. Operability refers to the knowledge needed to adjust the

printer's settings. Efficiency refers to the amount of time spent printing on

printouts that are not satisfactory. With these feedbacks from the users, a

stimulator called CY simulator is proposed in this project to resolve the non-

engineering users' concerns.

The aim of this project is to develop a FDM 3D printer simulator that

can generate the surface and infill of a 3D print from a STL file. 3D printing

process will be simulated according to the generated vertices and printing time

will be estimated. Development of the simulator was started with the

development of STL file reader to extract the triangular facets’ vertices from a

STL file in ASCII format. The extracted vertices will be used as the input of

slicer to slice the model into layers with user-defined layer height. The slicing

method used is basic slicing. The slicing algorithm consists of two sections:

intersection point tracking algorithm and contour creation algorithm. The

output of slicing algorithm will be used as input of infill generator to generate

infill vertices based on the infill density and infill pattern that decided by users.

Next, the output of slicer and infill generator will be rendered

accordingly to simulate a lifelike 3D printing process. Vertices are connected

by using a hollow cylinder to represent the 3D printing material. Moreover,

printing time is estimated by dividing the distance between each vertex by the

default printing speed. After that, several experiments were conducted to

examine the feasibility of the simulator in terms of layer height, infill density,

top and bottom thickness, and estimated printing time.

v

According to the result, the layer height, infill and top/bottom

thickness generated by the simulator can achieve 100 % similarity with the

actual print. Apart from that, the simulator has 100 % accuracy of estimating

printing time for objects that have lesser layers. However, less accurate of

estimating printing time for models that have many layers. This is because the

travelling time for the nozzle to travel from the last position of the layer to the

first position of the next layer is not taken into consideration of the printing

time. The effect of travelling time on the estimated printing time increases

with the number of layers and the distance of the travelling time from last

point of a layer to the next layer.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ABSTRACT iv

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF APPENDICES xv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the 3D Printer Simulator 2

1.3 Problem Statement 3

1.4 Aim and Objectives 4

1.5 Scope and Limitation of the Study 4

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 The Concept of a 3D Printing Simulator 7

2.3 STL File Reader 10

2.4 Structure of a 3D print model 11

2.5 Slicing Method 12

2.6 Intersection points’ tracking method 15

2.7 Infill of 3D Printing 17

2.8 3D Graphics Engine 18

2.8.1 Rendering Line and Triangle 19

2.8.2 Rendering Pipe 20

2.9 Summary 23

3 METHODOLOGY AND WORK PLAN 25

3.1 Introduction 25

vii

3.2 Project Planning and Milestone 25

3.3 Program Flow of 3D Printer Simulator 26

3.4 User Input 28

3.5 Workspace 29

3.6 Vertex Extractor of STL file in ACSII format 30

3.7 Slicer 34

3.7.1 Case I 36

3.7.2 Case II 37

3.7.3 Case III 38

3.7.4 Case IV 41

3.8 Contour Creation 42

3.9 Infill 44

3.9.1 Infill Density 44

3.9.2 Infill Pattern 45

3.10 Top and Bottom layer 51

3.11 Rendering Process 51

3.11.1 Solid Body 52

3.11.2 Filament Rendering 54

3.12 Gantries movement 62

3.13 Experiments 64

3.14 Summary 65

4 RESULTS AND DISCUSSION 66

4.1 Introduction 66

4.2 User Documentation 66

4.2.1 Preparation of STL File in ASCII Format 66

4.2.2 Input Print Parameter 67

4.3 Simulation Results 71

4.3.1 Disk 71

4.3.2 Cylinder 77

4.4 Cube 85

4.4.1 Bracket 88

4.4.2 Spoon 90

4.5 Summary 93

5 CONCLUSION AND RECOMMENDATIONS 94

viii

5.1 Conclusions 94

5.2 Contributions 94

5.3 Recommendations for future work 96

REFERENCES 98

APPENDICES 102

ix

LIST OF TABLES

Table 3.1: Gantt Chart of FYP Part 1. 26

Table 3.2: Gantt Chart of FYP Part 2. 26

Table 3.3: The infill gap, d with respective infill percentage. 44

Table 3.4: The combinations of 3 vertices to form 12 facets for the

cube. 53

Table 3.5: The functions defined and usage of the functions for

object rendering in pipe form. 58

Table 3.6: Debavit-Hartenberg Table. 63

Table 4.1: Default print setting. 67

Table 4.2: Print parameters for four disk. 72

Table 4.3: Test result of the disks. 72

Table 4.4: Print parameters for four cylinders. 77

Table 4.5: Test result of the cylinders. 78

Table 4.6: Print parameters for four cubes. 86

Table 4.7: Test result of the cubes. 86

Table 4.8: Print parameters for the bracket. 88

Table 4.9: Test result of the bracket. 88

Table 4.10: Print parameters for the spoon. 90

Table 4.11: Test result of the spoon. 90

x

LIST OF FIGURES

Figure 2.1: Interface of ULTIMAKER CURA software. 9

Figure 2.2: The 3D printing workflow (Materialise Software, 2020). 9

Figure 2.3: Workflow of 3D Printing Process. 9

Figure 2.4: STL Binary format 10

Figure 2.5: STL ASCII format 10

Figure 2.6: Components made a 3D print item. 11

Figure 2.7: Xu, Gu et al. 2018 - A review of slicing methods.jpg 12

Figure 2.8: Possible intersection cases (Topçu, Taşcıoğlu and Ünver,

2011). 13

Figure 2.9: Algorithm for detecting intersections (Topçu, Taşcıoğlu

and Ünver, 2011). 14

Figure 2.10: Intersection points’ tracking (Pan, X., Chen, K. and Chen,

D, 2014). 15

Figure 2.11: Two contour loops tracked by marking method (Pan, X.,

Chen, K. and Chen, D, 2014). 16

Figure 2.12: Infill Density. 17

Figure 2.13: Infill pattern from Makerware (Gopsill, Shindler and

Hicks, 2018). 18

Figure 2.14 : Primitves for rendering lines 19

Figure 2.15: Primitives for drawing triangles 20

Figure 2.16: Triangular Prism 20

Figure 2.17: Rectangular Prism 20

Figure 2.18: Octagonal Prism 21

Figure 2.19: Hex decagonal Prism 21

Figure 2.20: A vertex coordinate on a cylinder (Ahn, 2019). 21

Figure 2.21: Extruding a pipe along a path Q1-Q2-Q3 (Ahn, 2019) 23

xi

Figure 2.22: Cross-section view of extruding a pipe (Ahn, 2019) 23

Figure 2.23: Pipe 23

Figure 3.1: Flowchart of 3D printing simulation program. 28

Figure 3.2: A window prompt that gets user input and shows the

printing info. 29

Figure 3.3: A 3D space created for the simulation of 3D printing. 30

Figure 3.4: Graphical visualization of a STL file. 31

Figure 3.5: Flowchart of STL file reader. 32

Figure 3.6: Presentation of imported vertices. 32

Figure 3.7: Flowchart of centring a 3D model in 3D space. 33

Figure 3.8: Position of 3D model before centring. 34

Figure 3.9: Position of 3D model after centring. 34

Figure 3.10: Possible intersection cases (Topçu, Taşcıoğlu and Ünver,

2011). 35

Figure 3.11: An illustration of slicing triangular facets. 35

Figure 3.12: Flowchart of slicing algorithm. 36

Figure 3.13: Flowchart of Case I. 37

Figure 3.14: Redundant points in a circle 37

Figure 3.15: Case II. 38

Figure 3.16: An illustration of slicing a triangle under Case III. 39

Figure 3.17: Unwanted type of triangles. 40

Figure 3.18: Flowchart of Case III. 40

Figure 3.19: An illustration of triangle under Case IV. 41

Figure 3.20: Flowchart of Case IV. 41

Figure 3.21: Flowchart of assigning start and end point. 42

Figure 3.22: Flowchart of Contour Creation program. 43

xii

Figure 3.23: Vertical infill. 46

Figure 3.24: Horizontal infill 47

Figure 3.25: Flowchart of infill vertex generator 48

Figure 3.26: Line infill pattern’s illustration. 49

Figure 3.27: Linear interior geometric generation. 50

Figure 3.28: Flowchart of interchanging vertices for linear infill

pattern. 50

Figure 3.29: A cube that formed by GL_TRIANGLES. 53

Figure 3.30: A tetracontaoctagon 54

Figure 3.31: Correct formation of pipe 55

Figure 3.32: Failure of pipe formation 55

Figure 3.33: Possible cases for the angle between a line and the X-

axis. 56

Figure 3.34: A triangle. 58

Figure 3.35: renderPrinted (matcha green), CurrPrinted

(purple),renderPrinting (white) and PrintedInfill (cyan). 60

Figure 3.36: renderInfill (pink), CurrInfill (pickle green) and

CurrLayer (red). 60

Figure 3.37: Preview of a sliced model in pipe form. 61

Figure 3.38: Sliced data rendered with GL_LINES. 62

Figure 3.39: Cartesian Robot Schematic Diagram 63

Figure 4.1: SOLIDWORKS interface to save CAD model. 66

Figure 4.2: Save CAD model as STL file in ASCII format. 67

Figure 4.3: Import STL file and show the default print setting. 68

Figure 4.4: Description of print parameters. 69

Figure 4.5: User Interface after the customization of print setting. 70

Figure 4.6: Disk was modelled in SOLIDWORKS. 71

xiii

Figure 4.7: Disk is presented in simulator with layer height of 0.12

mm. 73

Figure 4.8: Disk is presented in simulator with layer height of 0.16

mm. 73

Figure 4.9: Disk is presented in simulator with layer height of 0.20

mm. 74

Figure 4.10: Disk is presented in simulator with layer height of 0.28

mm. 74

Figure 4.11: Infill of disk with layer height of 0.12 mm. 75

Figure 4.12: Infill of disk with layer height of 0.16 mm. 75

Figure 4.13: Infill of disk with layer height of 0.20 mm. 76

Figure 4.14: Infill of disk with layer height of 0.28 mm. 76

Figure 4.15: Section view of the disk. 77

Figure 4.16: Cylinder with infill density of 10 %. 78

Figure 4.17: Measurement of 4 mm infill gap for 10 % infill density

in actual printing. 79

Figure 4.18: Cylinder with infill density of 20 %. 79

Figure 4.19: Measurement of 2 mm infill gap for 20 % infill density

in actual printing. 80

Figure 4.20: Cylinder with infill density of 30 %. 80

Figure 4.21: Measurement of 1.3 mm infill gap for 30 % infill density

in actual printing. 81

Figure 4.22: Cylinder with infill density of 40 %. 81

Figure 4.23: Measurement of 1 mm infill gap for 40 % infill density

in actual printing. 82

Figure 4.24: Cylinder with infill density of 50 %. 82

Figure 4.25: G-code viewer to verify actual infill gap for 50 % infill

density. 83

Figure 4.26: Cylinder with infill density of 70 %. 83

xiv

Figure 4.27: G-code viewer to verify actual infill gap for 70 % infill

density. 83

Figure 4.28: Cylinder with infill density of 90 %. 84

Figure 4.29: G-code viewer to verify actual infill gap for 90 % infill

density. 84

Figure 4.30: Infill changes direction on alternate layer. 85

Figure 4.31: Cube is rendered in simulator with layer height of 0.20

mm. 86

Figure 4.32: Top and bottom layers of the cube in simulator. 87

Figure 4.33: Actual top and bottom layers of the cube from 3D print. 87

Figure 4.34: G-code viewer to verify the real line gap of top and

bottom layer. 87

Figure 4.35: View of the bracket in simulator. 88

Figure 4.36: Isometric view of the bracket’s shell. 89

Figure 4.37: Isometric view of the bracket’s infill. 89

Figure 4.38: Actual 3D printed bracket. 90

Figure 4.39: Spoon is rendered in solid body mode. 91

Figure 4.40: Appearance of the 3D printed spoon in the simulator. 91

Figure 4.41: Shell of the spoon in the simulator. 92

Figure 4.42: Infill of the spoon in the simulator. 92

Figure 4.43: Actual 3D printed spoon. 93

xv

LIST OF APPENDICES

Appendix A: ULTIMAKER CURA 102

Appendix B: Coding 104

Appendix C: Motion of Ender 3 3D Printer 168

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Back to the time of World War II, the concept of computer simulation is

proposed by two mathematicians – Jon Von Neumann and Stanislaw Ulam

and others who were faced with the problem of analysing the diffusion of

neutrons. A simulator of the process was developed to solve the problem

safely with minimal cost. This alludes that the capability of a simulator to

solve engineering problems safely and efficiently. However, the simulator

industry was not arisen due to the shortage of skilled men and experts in

particular field. Todays, the obstacle has been reduced due to the evolution of

technology. Reduction of manufacturing costs, training costs, and preventing

defective items are the main concerns of a business in recent days. Therefore,

the demand of simulation software has increased drastically and getting

important in the todays and future.

Additive manufacturing (AM) or additive layer manufacturing (ALM)

which is the industrial production name for 3D printing. Additive layer

manufacturing which facilitates the manufacturing industry a new method of

fabrication. This method of converting raw material to an object reduce

material waste, unlike the traditional manufacturing methods which are

subtractive, forming, and casting. Over the last decade, the popularity of

additive manufacturing has been inclined exponentially. The hardware for 3D

printing is called 3D printer. The 3D printer is widely used in industrial

production, and it is available for personal use and for SMEs to use for small-

scale projects. The increasing demand of additive manufacturing increases the

necessary for having simulator to increase quality of product. Moreover, to

control and estimate the material cost and manufacturing time.

In this study, our major focus will be on the simulation of 3D printing.

The 3D printer simulator is to create a visualization platform of the layered

object. The simulator reads a 3D object and render it in a 3D space layer-by-

layer with specified layer height.

2

 This study is to design and develop a simulator with capability to

render the trajectory of 3D printing process progressively and to visualize the

movement of the 3D printer. The layered 3D object will be rendered in a

window after the user inputs a STL file of a 3D object with the nozzle of 3D

printer to visualize the printing process.

1.2 Importance of the 3D Printer Simulator

The rise of 3D printing in this decade has facilitated several industries such as

aerospace, automotive, manufacturing, robotics, construction, healthcare.

According to the statistic, the market of 3D printing bringing to an industry

has grown from 4.4 billion USD in 2013 to 21 billion USD in 2021 (Evans,

2021). The number of manufactures that adopt the 3D printing technology for

industrial-scale production has doubled in between 2018 and 2019. It is stated

that there are 40% of the manufacturers implant this technology into their

manufacturing in 2019 (Aaryaman Aashind, 2021). This clearly illustrates that

the massive adoption of 3D printing and it can also be implemented to

manufacture variety of products and goods due to its flexibility. In 2020 and

2021 – the occurrence of global crisis of COVID-19 pandemic, 3D printing

technology was grown drastically. The community of 3D printing increases,

they shared their knowledge of 3D printing to help in terminating this crisis.

With the knowledge, this technology contributed to solve the shortage of

much-needed medical supplies and the disruption of logistics. 3D printing is

used to fabricate medical devices such as face shield, ventilator valve, non-

invasive PEEP mask. Personal protective equipment (PPE) like respirators and

metal respirator filters, and testing devices – nasopharyngeal (NP) swab are

fabricated through 3D printing technology as well (Choong et al., 2020). A

survey was conducted and found that the highest application of this technology

is prototyping which consists of 72%, followed by research and development

(44%), repair (43%) and the production of parts (39%) (Aaryaman Aashind,

2021). Other than that, 66% of companies stated that the reason of using 3D

printing is provides a higher productivity of manufacturing, while 61%

declared that the ability of customizing parts is the main reason of using the

technology (Aaryaman Aashind, 2021).

3

 The evidence above has proven the rise of 3D printing and the

demand of it in the near future which will be widely applied in various of

industries. The rising of demand of 3D printing making the growing

importance of simulation of 3D printing. The simulation is vital for engineers

to visualize the upcoming printing process and validate the orientation of the

object on the printing platform. Different orientation of the object will affect

the amount of material consumed and printing time. Moreover, it can avoid

some printing issue like warping and overhanging in Fused Deposition

Modelling (FDM) type of printing. Thus, it is important to analyse and study

with a simulator before executing a print. On top of that, visual tool like 3D

printing simulator will be an educational tool for public to learn and

understand the 3D printing technology. To get the public prepare for the

coming Industry 4.0.

1.3 Problem Statement

In this research, the simulation of 3D printing will be mainly focusing on the

Fused Deposition Modelling technology. FDM allows rapid prototyping and

part manufacturing in industries. The demand for FDM 3D printing

technology is skyrocketing among hobbyist makers in recent years especially

during the outbreak of pandemic Covid 19. 3D printing community has

increased drastically with engagement of hobbyists and users from non-

engineering background. The main concern from non-engineering users are

affordability, operability, and efficiency. Affordability refers to the financial

burden upon purchasing large amount of printing material for reprint the

printouts that are not satisfactory. Operability refers to the knowledge needed

to adjust the printer's settings. Efficiency refers to the amount of time spent

printing on printouts that are not satisfactory.

Simulation provides a solution to reduce and minimize the problems

encountered for FDM. With simulation software of a FDM 3D printing, the

object can be viewed layer by layer which ease the engineers to identify the

potential regions for warping and overhanging to occur. The engineers can

whether redesign the regions by adding support structures or adding chamfer/

fillets features to eliminate the overhanging problem. Besides that, change the

orientation of an object to reduce or eliminate the problems. With 3D printing

4

simulator, the problems will be overseen and eliminated. Simulation helps the

industry to reduce the error of printing and increase the efficiency of rapid

prototyping and part manufacturing.

1.4 Aim and Objectives

In this project, the aim is to develop a FDM 3D printing simulator that can be

used to slice a STL file (ASCII format) for 3D print and simulate a 3D printing

process. The objectives of this project are:

1. Develop a STL file reader to extract the triangular facets’ vertices from

an ASCII format STL file. Slicing algorithm is developed to slice the

triangular facets into layers with user-defined layer gap. Contour

creation is developed to organize the slice vertices orderly.

2. Design and develop an infill generator for interior of a 3D print object

with user-defined infill density and infill patterns. Develop a skin

generator for exterior of a 3D print object with user-defined thickness.

3. Develop a render program to simulate the realistic 3D printing process

and present a lifelike 3D print object with user-defined rendering mode.

Develop a simulator to estimate the printing time.

4. Conduct experiments with different layer height, infill line gap,

top/bottom thickness, to tune the simulator’s print parameters to match

with real print parameters.

1.5 Scope and Limitation of the Study

The scope of this project is to design a FDM 3D printer simulator that can

render the surface and infill of a 3D print object layer by layer. The first part

of this project is to develop a STL reader that extract vertices data from STL

file in ASCII format and the vertices data will then be analysed and sliced into

layers. Then, develop an infill generator to fill in the interior of the object. The

second part of the project is to simulate the printing process and estimate the

printing time.

Limitations of this project:

5

1) Generating multiple layers for the wall of a 3D print object can be

complex and computational expensive. The algorithm requires to

compute the offset of the contour that formed in Contour Creation

algorithm. Complexity of the algorithm subject to the complexity of

the outer layer’s shape.

2) Multiple choices of infill pattern can be difficult, complex and

computational expensive. Thus, infill patterns of the project are limited

to linear and line infill pattern.

3) Polygon infill algorithm can be complex and difficult to develop.

Hence, the simulator is limited to non-hollow object.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

3D printing simulations aid in the understanding and visualisation of the

complex thermo-mechanical phenomena that occur during manufacturing,

resulting in high-quality, high-accuracy components (Vaissier, n.d.). In the

research literature, simulation of Flexible Manufacturing System (FMS) has

gotten a lot of interest. The flexibility aspect of FMS according to Chang et al.

(1986), makes the design of such systems exceedingly complicated, and their

possible simulation an appealing design and analysis tool. The fundamental

problem with traditional analytical approaches is that they require the use of

simplification assumptions that are best suited to the analysis of systems in a

steady state, but this is not possible in the case of flexible production platforms

(Avventuroso et al., 2017). Today, simulation is regarded as a critical

technique for gaining a better understanding of system behaviour. It is

incredibly significant since it provides for an analytical understanding of the

system (Hajihosseini et al.,2009). Simulation models have been used to test

system performance outcomes achieved in mathematical models since the

1970s (ElMaraghy, 1982). By nature, 3D printing is time and material

consuming. For example, in Fused Deposition Modelling (FDM), the filament

goes through two cycles of fusion (semi-liquification of the filament) and

deposition (cooling and solidification of the material), each of which takes a

long time (Luo et al., 2014). It is expected that 3D printing will take hours, if

not days, to complete. There is no method to make a partial adjustment. If a

fully printed model is not satisfactory, it must be reprinted with same amount

of time and expense as starting from scratch (Luo et al., 2014). It shows the

needs of 3D printer simulator to help the 3D printing process to address the

affordability, operability, and efficiency challenges.

In the following section, the aim is to introduce the concept and

theoretical foundation of 3D printing simulator based on the prior published

literature.

7

2.2 The Concept of a 3D Printing Simulator

Simulators have a long history in industrial manufacturing, particularly for

Computer Numerical Control (CNC) systems. Prior to the rise of 3D printing,

CNC systems mostly used for cutting, milling, and routing operations to create

real items from digital models (Luo, 2014). The simulator for CNC systems

helps users to prepare tool path, allow operator to test the NC codes. These

simulations are based on real NC codes. It simulates the movements of a CNC

machine. All forms of collisions, model gouges, quick cuts, and NC code

problems may be easily identified in a simulation environment (Manus, 2015).

Simulator like CNC simulators provide a safe and educational platform for

students to possess the knowledge. Moreover, users can reduce production

time and costs by using virtual simulations of both complex and simple

processes. Different solutions and machine settings can be compared in a short

amount of time in order to choose the best one. Interferences and conflicts

between mobile and fixed parts can be detected and removed (Lo Valvo et al.,

2012). As a result, simulator of CNC systems emphasizes the importance of

process simulation for 3D printing with the statement made by Lo Valvo et al.

(2012) that simulation is a tool capable of analysing various machining

strategies not only quickly but also without causing any damage, risk, waste,

or breakdowns.

Manufacturing parameters must be integrated to adequately define the

geometry of the virtual model in order to construct a visual simulation tool

according to the rapid prototyping process regulations (Jee & Sachs, 2000). In

fact, the simulation paradigm of 3D printing proposed in this project cannot

cover all the issues in the rapid prototyping. For instance, issues encountered

in additive manufacturing but yet to be provided in present simulator are

material, surface property, and dimensional tolerance (Jee & Sachs, 2000),

layer misalignment, layer shift, and lower part shrinkage (Tractus3D, n.d.). 3D

printer simulators that developed by companies such as Amphyon, Siemens,

MSC and Materialise possess more features for analysis of the printing process.

The additive manufacturing simulator from the Siemens have been

developed to estimate the material consumption, the build time, region that

required support structure. The Siemens simulator can generate support

structure for those regions that are overhanging. The simulator estimates the

8

build time and material consumption for the support structure as well (Anand

et al., 2018). On top of that, the simulator provides visualization of the object

for different build orientation, layer height, density of the support structure,

infill density, support pattern and pattern of adhesion structure. All these are

significant manufacturing parameters for the rapid prototyping. These

parameters can affect the material consumption, productivity, quality of the

items. Not only that, but they can also affect the subsequent tasks such as the

removal of the support structure after the item is printed (Anand et al., 2018).

Other than Siemes, ULTIMAKER CURA also provides a simulation tool for

students and hobbyists who desired to engage in additive manufacturing field.

Figure 2.1 shows the interface of ULTIMAKER CURA and the sliced object.

In Figure 2.1, the light blue circular line shows the adhesion structure, the

yellow structure is the infill of the object, the shell of the object is shown in

red and inner wall is shown in green. The right bottom side shows the

estimated time spent to print an item and material required which measured in

grams.

Furthermore, the workflow of the simulator that have developed from

Materialise is illustrated in Figure 2.2. First of all, STL file of the object is

imported into the simulator. Next, the simulator will analyse the vertices data

of the item and store them in another array for 3D printing preparation. After

that, execute the design analysis by tuning the parameters that mentioned

above to optimize the printing process. Then, ensure all the region are well-

prepared for printing. For instance, the regions that are overhang are added

with support structure. After analysing and the model is well-prepared then

slice the model into layers and print. This is the proper workflow for a 3D

printing engineer to carry out in a simulator before 3D print an object.

Therefore, a 3D printer simulator has to possess similar workflow. In Figure

2.3 shows the general workflow of 3D simulation. The method of import STL

file, read the data from STL file, slicing the object and rendering are the main

concern in this literature review. The research studied and conducted on STL

file is stated in Chapter 2.3. While the data slicing and rendering are

mentioned in Chapter 2.5 and Chapter 2.8, respectively.

9

Figure 2.1: Interface of ULTIMAKER CURA software.

Figure 2.2: The 3D printing workflow (Materialise Software, 2020).

Figure 2.3: Workflow of 3D Printing Process.

10

2.3 STL File Reader

In 3D printing, the STL (STereoLithography) file format is widely regarded as

the de-facto additive manufacturing (AM) data interchange standard. The

conversion entails running a surface triangulation procedure, which is

commonly used in finite element analysis (Topçu, Taşcıoğlu and Ünver, 2011).

However, before the contour projection operation can begin, the STL file must

be sliced into layers of 2D contours (Adnan et al 2018). The STL file

production method mostly turns the CAD file's continuous geometry into a

header, small triangles, or a coordinates triplet list of x, y, and z coordinates,

as well as the normal vector to the triangles (Wong and Hernandez, 2012).

There are two types of STL format which is binary and ASCII. The binary

STL file’s syntax is shown in Figure 2.4 while Figure 2.5 shows how data of a

3D object is stored in an ASCII format of STL file.

Figure 2.4: STL Binary format

Figure 2.5: STL ASCII format

11

2.4 Structure of a 3D print model

Traditional manufacturing does not distinguish between the model's internal

and exterior portions. Instead, each part is a single full or hollow body. In

contrast, because the machine produces the two sections in completely

different ways, the inner and outer 3D printed parts are theoretically

independent.

A 3D print's interior is referred to as the infill, while its exterior is

referred to as the shell. The infill can be printed in a range of distinct

architectures and densities ranging from 0% (hollow) to 100% (solid). But the

shell is printed entirely solid.

The shell not only stands out the most in a 3D print, but it also

significantly affects the mechanical characteristics of the model (e.g. strength).

It consists of a print's walls, top layer, and bottom layer. The top and bottom

layers cover the horizontal regions, while the former makes up the vertical

outside sections that span the height of a print.

The walls encircle the print's horizontal boundary and continue

upward along the Z-axis, making these two sections unique from one another.

The top and bottom layers completely enclose the horizontal space inside the

boundaries set by the walls.

Figure 2.6: Components made a 3D print item.

 The shell of a 3D print model can be generated by slicing the

triangular facets into layers. This can be done through several type of slicing

method which will be discussed in Chapter 2.5.

12

2.5 Slicing Method

The steps for slicing the part's triangulated surfaces, tool path generation for

each layer, and tool path data conversion to G-codes are all part of the process

planning (Topçu, Taşcıoğlu and Ünver, 2011). More attention should be made

to refining the slicing procedure in order to improve contour accuracy, surface

quality, and reduce the requirement of support structures (Xu et al., 2018).

Traditional, multidirectional, and non-layer wise slicing methods are the three

types of slicing methods. Traditional slicing method is expanded into basic

slicing and adaptive slicing. Figure 2.7 shows a summary of the slicing

methods.

Figure 2.7: A review of slicing methods (Xu, Gu et al., 2018)

Basic slicing – a sequence of parallel planes with a constant layer

height slices the input CAD model, which is commonly in STL format, into

subsequent layers (Wong and Hernandez, 2012). The basic slicing method

results a uniform layer thickness for input STL file (Mohan Pandey, Venkata

Reddy and Dhande, 2003). The staircase effect is caused by the basic slicing

procedure, which increases surface roughness and reduces the precision of the

produced parts (Singh and Dutta, 2003). Adaptive slicing adjusts layer

thickness along the build direction based on the geometry of the CAD model

to increase surface finishing quality and reduce construction time (Xu et al.,

2018). For complicated designs, the multi-direction slicing method is proposed

with the goal of achieving a better approximation of the complex geometric

surface, improving surface quality, increasing contour accuracy, and

eliminating support structures (Xu et al., 2018).

13

The slicing method that is focused in this project is the basic slicing

method. The slicing method identifies intersection locations between the

imported STL data of the solid body and equally spaced slicing planes. In the

basic slicing algorithm proposed by Topçu, Taşcıoğlu and Ünver (2011), the

gap between each slicing plane is zstep which is a constant value. Figure 2.8

reveals potential connections between the slicing plane and a model facet.

Figure 2.8: Possible intersection cases (Topçu, Taşcıoğlu and Ünver, 2011).

 This facet will now be referred to as F, its vertices as V1, 2, 3, (x1, 2, 3, y1,

2, 3, z1, 2, 3), and its normal vector as N, (xn, yn, zn). Vertices are used in the

slicing algorithm to compute the intersection points of each triangular facet.

On the other hand, normal vectors are not used in slicing algorithm as they are

useful for the graphical representation of the solid mode rendering. As

illustrated in Figure 2.8 and described below, there are five distinct positional

relationships between the slicing plane and the associated facet depending on

the z-axis value of the slicing plane (Topçu, Taşcıoğlu and Ünver, 2011):

1. z1=z & z2=z & z3=z.

2. z1=z & z2=z & (z3<z || z3>z).

3. z1=z & ((z2<z & z3>z) || (z2>z & z3<z)).

4. ((z1<z) & ((z2>z & z3>z)) || ((z1>z) & ((z2<z & z3<z)).

5. z1=z & ((z2>z & z3>z) || (z2<z & z3<z)).

According to Topçu, Taşcıoğlu and Ünver (2011), since all three of

the F's vertices serve as the intersection points in CASE I, where F is parallel

to the base, there is no need to compute the intersection points. In CASE II, F's

two vertices make contact with the slicing plane, and these two spots are

where the intersection occurs. These vertices' values and the remaining

14

vertex's z value, which will be used to decide whether to keep or discard the

data, comprise the stored information.

One of the F's vertices touches the slicing plane in CASE III. The

common version of the well-known line equation (2.1), where the slope is m

and the two variables are x and y, must be used to compute the other

intersection. The associated points' z values are both kept as "-1" in CASE III.

The program can identify the obtained line data in subsequent sections of the

code.

𝑦 = 𝑚𝑥 + 𝑐 (2.1)

In CASE IV, none of the vertices of the F intersect the slicing plane,

yet whether viewed from the x- or y-axis, one of the vertices is on the opposite

side of the plane. This situation results in two intersecting points, as expected.

The label "-1" is likewise present on the obtained line data. F hits the slicing

plane in CASE V only once, which is unnecessary information for the

remaining code. All of the points on the slicing plane with the designated

categorization reference values are the outputs of the intersection point

detection technique.

Figure 2.9: Algorithm for detecting intersections (Topçu, Taşcıoğlu and Ünver,

2011).

15

2.6 Intersection points’ tracking method

The original intersection points linked list contains the intersection points

between the slicing plane and all facets in a disordered state. According to Pan,

X., Chen, K. and Chen, D (2014), it is suggested to order the intersecting

points using the tracking method, which may then be used to create linked lists

of ordered intersection points (also known as contour loops). The method

determines which vertices are closest to one another, and then joins their

intersection points to form a line. This line is then connected to the other

points of intersection to form a polygon (Brown and Beer, 2013).

The slicing plane intersects facet 1 and facet 2 as seen in Figure 2.10.

The locations of intersection are, correspondingly, X1, X2, and X3, X4. They

are all kept in the original linked list of intersecting places, where X2 and X3

meet. The "next" pointer of X1 can be used to track X2 while building an

ordered linked list with X1 as the beginning point. Once it is determined that

X2 and X3 coincide, X3 can be tracked. The ordered linked list now includes

X3. Track X4 next using X3 as "next" pointer. The ordered linked list can be

obtained by repeating the aforementioned procedures (Pan, X., Chen, K. and

Chen, D, 2014).

Figure 2.10: Intersection points’ tracking (Pan, X., Chen, K. and Chen, D,

2014).

 However, the subsequent ordered linked lists would not be produced

if there were not a single contour loop on a layer because there would not be

enough data to continue tracking after the first ordered linked list was created.

In order to avoid repeating tracks when creating subsequent ordered linked

16

lists, intersection points that have previously been saved in the ordered linked

list must be marked.

There are two contour loops on the layer, as seen in Figure 2.11. If

you start with X1 and follow each intersection point in turn to create the

ordered linked list (X1~X8), that is contour loop 1. The intersection locations

X1~X8 and those indicated by the associated "next" pointers should then be

marked. In doing so, the value of "flag" will change to 1, signifying that the

intersection point has been reached (Pan, X., Chen, K. and Chen, D, 2014).

The indicated junction points will not be included when creating the

subsequent ordered linked list.

In order to monitor and build the subsequent ordered linked list (such

as X9 ~ X14), which is contour loop 2, it will start at the first unmarked

intersection point (such as X9) whose value of "flag" is 0. The intersection

locations X9 ~ X14 will then be marked, together with the intersection points

indicated by equivalent "next" pointers (flag = 1) (Pan, X., Chen, K. and Chen,

D, 2014). The indicated junction points, including the intersection points

marked previously, will not be tracked while creating the future ordered linked

lists. Therefore, by precisely tracking with the intersection points' marking

approach, all the ordered linked lists may be produced regardless of how many

contour loops there are on a layer.

Figure 2.11: Two contour loops tracked by marking method (Pan, X., Chen, K.

and Chen, D, 2014).

17

2.7 Infill of 3D Printing

The infill is significantly more dynamic and affects a part's strength, weight,

structure, buoyancy, and other properties greatly. The type of infill applied for

a product can be controlled by a number of parameters in 3D printing. The

most significant of these factors are infill density and infill pattern.

The infill density specifies how much material is used on the interior

of the print. A tougher object will result from a higher infill density due to the

additional material inside the print. For prototypes with a visual purpose, an

infill density of about 20% is adopted. For end-use components, higher infill

densities may be used. For a prototype object where form or shape takes

precedence over strength, an infill percentage of 18% to 20% may be adequate.

For a weight-bearing device, like a bracket, that same infill % will, however,

be wholly insufficient. In general, the infill percentage utilised during printing

directly correlates with the strength of an FDM object. As an illustration, a

part with 50% infill is roughly 25% stronger than a portion with 25% infill.

Figure 2.12 shows an illustration of infill density from 0% to 100%.

Figure 2.12: Infill Density.

For interior geometric (infill) generation, there are vast of distinct

infill pattern available and proposed in the market as shown in Figure 2.13.

Distinct infill patterns cause different performance for the printed objects.

Manufacturers frequently aim to improve the strength-to-weight ratio of their

parts in order to improve their performance (Gopsill, Shindler and Hicks,

2018). Hence, the infill pattern will be one of their favourite tuning parameters.

18

Different infill pattern will affect the material consumption and printing time

as well.

Figure 2.13: Infill pattern from Makerware (Gopsill, Shindler and Hicks,

2018).

2.8 3D Graphics Engine

In research of Chen (2010, p. 319), OpenGL is used as the 3D graphics engine

for simulating the process of Computer Numerical Control (CNC) system.

OpenGL engine provides visualization of tool-cutting for CNC simulation.

Thus, OpenGL engine will be utilized for 3D visualization of 3D printer’s

gantry and nozzle movement and rendering of the layered 3D object. For

producing computer-generated pictures, OpenGL is the most extensively used

cross-platform API. Its ease of use as a programming framework enables even

the most inexperienced OpenGL app developer to easily create programmes

capable of generating sophisticated graphics with lighting effects, texture

mapping, atmospheric effects, and anti-aliasing, among other features

(Shreiner, 2001). The OpenGL rendering pipeline is the mechanism that takes

the application's geometric and image primitives and rasterizes them to the

framebuffer. The transformation phase and the rasterization phase are the two

main components of the pipeline (Shreiner, 2001). Vertex transformations,

lighting, and the creation of OpenGL fragments for the rasterization step are

all performed by the transformation phase. Rasterization is in charge of

colouring the framebuffer's suitable pixels. This phase comprises of depth

testing, texture mapping, and alpha blending.

19

Every major operating system supports OpenGL, and it works with

every major windowing system. It may also be called from most programming

languages. It is completely unaffected by network protocols or topologies.

Regardless of operating system or windowing system, all OpenGL

programmes offer uniform visual display results on any OpenGL API-

compliant hardware (Chen, 2010).

2.8.1 Rendering Line and Triangle

Only a few fundamental shapes, such as points, lines, and triangles, are

supported by OpenGL. Curves and curved surfaces have no built-in support;

they must be approximated by simpler shapes. Primitive forms are the most

fundamental shapes. The vertices of an OpenGL primitive define it. A vertex

is a point in three dimensions defined by its x, y, and z coordinates. OpenGL

supports three type of line segments drawing which are GL_LINES,

GL_LINE_STRIP, and GL_LINE_LOOP. The primitive line drawing –

GL_LINES draws a line between two vertices. GL_LINE_STRIP connects all

the vertices that stored sequentially in an array. Likewise, GL_LINE_LOOP

connects all the vertices but the first and last vertex is connected unlike the

GL_LINE_STRIP. Figure 2.14 shows the visualization of the primitives for

line segment rendering.

Figure 2.14 : Primitves for rendering lines.

Apart from that, there are three primitives for drawing triangle in

OpenGL which are GL_TRIANGLES, GL_TRIANGLE_STRIP, and

GL_TRIANGLE_FAN. GL_TRIANGLES draws a triangle with three vertices.

GL_TRIANGLE_STRIP uses the first stated vertices to draw the first triangle.

After that, using the next vertex and another two vertices from previous

triangle to form an additional triangle that connect with the previous triangle.

20

While GL_TRIANGLE_FAN draws the first triangle using the first three

vertices. After that, the next triangle will be drawn by connecting a new vertex

with a vertex from pervious triangle and the first vertex. These primitives do

not draw the points and lines shown in Figure 2.15, instead they fill in the

interior of the triangle (green interiors shown in Figure 2.15).

Figure 2.15: Primitives for drawing triangles.

2.8.2 Rendering Pipe

A cylinder is a 3D closed surface with two parallel circular bases at the ends

and a curved surface connecting them (side). Similar to this, a prism is a 3D

closed surface that is joined by flat surfaces from two parallel polygonal bases.

Figure 2.16, Figure 2.17, Figure 2.18, Figure 2.19 illustrate cylinder-like

geometry can be formed by splitting the base into more sectors. It is

impossible to design a perfect circular base and curved side of the cylinder

(slices). Therefore, by joining these sampled points together, it is conceptually

building a prism. The geometry becomes more cylinder-like as the sample

count rises (Ahn, 2019).

Figure 2.16: Triangular Prism

Figure 2.17: Rectangular Prism

21

Assume that a cylinder has an origin-centred shape, a radius of r, and

a height of h. The equation of a circle with the matching sector angle, θ can be

used to get the coordinates of any point (x, y, or z) on the cylinder.

𝑥 = 𝑟 × 𝑐𝑜𝑠𝜃

𝑦 = 𝑟 × 𝑠𝑖𝑛𝜃

𝑧 =
ℎ

2
 𝑜𝑟 −

ℎ

2

Sector angles can range from 0 to 360 degrees. The following

formulas can be used to get the sector angle for each step:

𝜃 = 2𝜋 ×
𝑠𝑒𝑐𝑡𝑜𝑟𝑆𝑡𝑒𝑝

𝑠𝑒𝑐𝑡𝑜𝑟𝐶𝑜𝑢𝑛𝑡

Figure 2.20: A vertex coordinate on a cylinder (Ahn, 2019).

Figure 2.18: Octagonal Prism

Figure 2.19: Hex decagonal

Prism

22

Based on the study from Ahn (2019), in order to render cylinder in

OpenGL, there are eight points required to be generated at each of the vertex

that obtained from the slicer and infill generator to form a contour of a circle

as shown in Figure 2.21. Multiple contours are required to compute in order to

generate a cylinder-shaped path to illustrate filament. According to Ahn

(2019), to obtain the next contour point, P1’, the P1 is projected to the normal

plane, �⃗� , of Q2 where Q1 to Q2 and Q2 to Q3 intercepted as shown in Figure

2.22. The line equation is 𝑃1 + 𝑡𝑣1, that passes through P1 while using the

direction vector, 𝑣1 = 𝑄2 − 𝑄1. Additionally, the point on the plane Q2 (x2, y2,

z2) and the normal vector, �⃗� , can be used to get the plane equation.

�⃗� . (𝑥 − 𝑥2, 𝑦 − 𝑦2, 𝑧 − 𝑧2) = 0

Further, the normal vector is calculated by adding 𝑣1and 𝑣2:

𝑣1 = 𝑄2 − 𝑄1

𝑣2 = 𝑄3 − 𝑄2

�⃗� = 𝑣1⃗⃗⃗⃗ + 𝑣2⃗⃗⃗⃗

Solving the linear system of the plane and line involves finding the

intersection point P'1.

This step is repeated until all the contour point are generated. Once all

the contour points are generated, the pipe can be rendered with the primitive

drawing of GL_TRIANGLE_STRIP. Every contour will be connected with the

drawing mode of GL_TRIANGLE_STRIP and allow the contour to present in

solid body for graphical visualization. The expected result of the virtual

cylinder-shaped filament is rendered to illustrate a 3D printing object as shown

in Figure 2.23.

23

Figure 2.21: Extruding a pipe along a path Q1-Q2-Q3 (Ahn, 2019)

Figure 2.22: Cross-section view of extruding a pipe (Ahn, 2019)

Figure 2.23: Pipe

2.9 Summary

Rapid prototyping (RP) process is divided into three phases. 3D CAD

modelling and STL conversion are included in the first stage. The second

stage is the aforementioned process planning, and the final stage is the

physical part creation, which is fully dependent on the RP machine (Topçu,

Taşcıoğlu and Ünver, 2011). Second phase of the 3D printing process is the

main concern in this study. This study focuses on extracting the 3D model’s

24

data from STL file and layering the data with slicing algorithm. The sliced

data will be rendered using OpenGL for visualization on the pre-processing

phase. The movement of the 3D printer will also be analysed and simulate in

this simulator.

25

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

Based on the literature studies in previous chapter, the approach and work

strategy for this project will be detailed in this chapter. Additionally, those

details and discussions will be used to guide the design standards and creation

of the 3D printing simulator.

3.2 Project Planning and Milestone

In FYP Part 1, the project schedules are mainly focusing on the study of the

related research, journals, books and online resources. All the studies are

carried out after the FYP title has been chosen and confirmed. Study on the

background of the title is to determine and identify the scope, aims and

objectives of the project. After scope of the project is confirmed, the articles

of other researchers that related to the project scope are studied and analysed

in order to obtain a better understanding of the methods on doing the similar

project. To obtain literature reviews that are related to the project, keywords or

index terms such as additive manufacturing, simulator, simulation, rapid

prototyping, slicing method, 3D printing, visual simulation, STL format, and

OpenGL are used in the progress of searching. Moreover, other than

researching on the ideas, the code that are related to the project have been

tested and studied as well. The Gantt chart of FYP Part 1 is shown in Table 3.1.

In FYP Part 2, the project schedules are focusing on the design and

development of the 3D printing simulator program based on the literature

review that have studied in FYP Part 1. First of all, the schedule is to design

and develop the STL file reader to extract the vertex and normal from a STL

file in ASCII format. Next, a slicer which includes the intersection point

detection and contour creation is planned to start once vertices are extracted

successfully. After that, the design and development of infill generator that

will perform either linear or line pattern will be started. The rendering function

is planned to develop throughout the program design and development phase.

26

This is due to the reason that rendering function can be used to verify the

feasibility of the STL file reader, slicer and infill generator. Afterwards, nozzle

movement will be developed once infill generator is completed. Lastly,

program testing will be carried out with different shapes of 3D model to

evaluate the reliability of the 3D printing simulator program. The project

schedule of FYP Part 2 is presented in a Gantt chart as shown in Table 3.2.

Table 3.1: Gantt Chart of FYP Part 1.

Table 3.2: Gantt Chart of FYP Part 2.

3.3 Program Flow of 3D Printer Simulator

The simulated type of 3D printer will be an FDM 3D printer with a static

platform and nozzle movement along the X, Y, and Z axes, according to the

literature review. This selection was made in order to streamline the software

and lighten the burden on the GPU and programming. Moving the platform

will require additional functions, which means the code will have more lines,

27

which will take longer to debug. FDM printers are also the most popular 3D

printers used for 3D model prototyping.

 According to the literature review, there are several features that a 3D

printer simulator must possess. First of all, the starting feature is STL file

reader. In this project, the STL file reader will get a STL file in ASCII format

from user and extract all the facet’s vertices and normal vector. They are

stored into their respective array. The vertices will be centred in the origin (0,

0, 0) before passing to slicer program. Next, the extracted triangular facet’s

vertices will be further processed in a slicer program. The slicer program

functions to cut the triangular facet into layer by layer. The increment of a

layer to the next slicing layer, so called layer gap, is decided by the user. After

that, a function of contour creation will be triggered with the completion of

slicing all the triangular facets. Contour creation is to arrange all the sliced

vertices accordingly to form a continuous chain of the sliced vertex. This

arrangement of sliced vertex is essential as the vertices that are generated from

the slicer are irregularly dispensed. This chaotic vertex structure may lead to

an inefficient printing path. Afterward, the ordered vertices will then be

utilized in the infill creation. The patterns of the infill that available in this

project are linear and line pattern. The infill vertex will be stored in a separate

array than the sliced vertex array to reduce the size required for the array.

Heretofore, sliced vertex and the infill of the 3D printing object are generated.

 After all the interested vertices from contour creation algorithm and

infill generator algorithm are stored in their respective array, the next steps

will be the presentation of the vertices that obtained. First of all, a window will

be created with the GLUT library for the OpenGL graphical rendering. The

window will be created with the size of 1200 pixels x 800 pixels and the

window is named “3D Printing Simulator”. After a window is created, an

initialized 3D space will be generated with the default setting such as the type

of projection, the position of the camera, the position and colour of the lighting.

Initially, the appearance of the imported object will be rendered after the space

is formed. After this, the keyboard feedback will be read to execute their

respective tasks. The simulation of printing process can be started by pressing

‘p’ while to switch back to solid mode by pressing ‘o’. When the printing

28

process is started, the nozzle will move from the home position to the printing

position. The object will be printed layer by layer once the nozzle has reached

the printing position. A whole view of 3D-layer object will be displayed once

the printing is accomplished. The program flow diagram is illustrated in Figure

3.1,

Figure 3.1: Flowchart of 3D printing simulation program.

3.4 User Input

In this 3D printing simulator program, a command window will prompt user to

input a STL file in ASCII format. Once users enter a STL file name that has

been saved in the solution folder and is opened successfully, it will prompt

from user the layer height for the slicing algorithm to slice the model. The

input must be an integer, otherwise, the simulator will display an error

message and ask for another input if users enter a non-integer input. Next, user

29

is requested to enter the desire infill percentage which range from 0 to 100 and

follow up with infill pattern. An error validation for input will be applied.

Afterwards, users will be informed to input the desire top and bottom

thickness of the object. An integer answer is required for the top and bottom

thickness. Once all the input is valid, the entered value will be displayed on the

window for user to check. A sample of the window prompt is shown in Figure

3.2.

Figure 3.2: A window prompt that gets user input and shows the printing info.

3.5 Workspace

A printing volume of a width of 220 mm, length of 220 mm, and height of 250

mm is designed to simulate the printing volume of a CREALITY FDM 3D

printer – Ender 3. The designed printing area are built with grid for better

visualization of the model and the printing process. The grid is made of 23

lines on each of the X and Y axis with a gap of 10 mm between each line.

Apart from that, origin of the nozzle is set at the left front corner of the

workspace which is located at the coordinate of (110, 110, 0) in the 3D space.

A red colour dot will be rendered to imply the home position of the nozzle.

Besides that, X, Y and Z direction from the origin will be rendered in yellow,

green, and blue line, respectively. Moreover, a frame will be rendered to

illustrate the printing volume of the selected FDM 3D printer. A rectangular

frame will be created with 8 vertices which are located at (110, 110, 0), (-110,

30

110, 0), (110, -110, 0), (-110, -110, 0), (110, 110, 250), (-110, 110, 250), (110,

-110, 250), (-110, -110, 250).

Figure 3.3: A 3D space created for the simulation of 3D printing.

 Furthermore, the position of the camera can be set through the

function of gluLookat(), the default camera position will be at position of (0,

500, 600). There are several options available for different types of projection

which are isometric view and orthographic view. The camera position of the

isometric view will be located at (500, 400, 600). While the camera position

for the orthographic projection of top, right side, left side and front view are

(10, 0, 700), (700, 0, 300), (-700, 0, 300) and (0, 750, 400) respectively. The

keyboard button to select the respective view of isometric, top, right side, left

side and front are ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’. Last but not least, the lighting of the

space is located at (50, 50, 50) and the colour of the lighting is purple.

3.6 Vertex Extractor of STL file in ACSII format

The industry standard file type for 3D printing is STL (Standard Triangle

Language). The surfaces of a solid model are represented by a succession of

triangles. All modern CAD (Computer Aided Design) software supports

31

exporting native file formats into STL. A list of facet data makes up a STL file.

A unit normal (a line perpendicular to the triangle with a length of 1.0) and

three vertices uniquely identify each facet (corners). Each facet has a total of

12 numbers because the normal and each vertex are each given by three

coordinates. Figure 3.4 shows an example of STL file which is converted from

CAD software. The surface of the model has been triangulated which consists

of multiple triangular facets and each of them made of three vertices and one

facet normal.

Figure 3.4: Graphical visualization of a STL file.

For STL ASCII format, the syntax is as shown in Figure 2.5. In this

project, STL format of ASCII will be read, and the vertices data of a 3D object

will be extracted into an array to store the triangular facets’ vertices. To read

the STL file in C++, ‘ifstream’ is used and using a WHILE loop to do the STL

file error validation. After the file is imported, string compare – ‘strcmp’ will

be used to determine the line that contain the information of interest. The

information that we are interested will be the “vertex” and “normal” of the

triangulated facets in a STL file. Hence, facets’ vertex and normal will be

stored if the import phrase from the file matches with the words – “vertex” and

“normal” by using ‘strcmp’. A FOR loop function is constructed to read the

STL file line by line and compare with ‘vertex’ and ‘normal’. If the ‘strcmp’

returns 0 then the data of that line will be stored into their respective array. If

the ‘strcmp’ returns a non-zero index, then next line will be read and checked

until all the data are extracted. By comparing the import phrase from STL file

with a word – “endsolid”, we can examine if a STL file has been gone through.

32

The flow diagram of the STL reader is shown in Figure 3.5. With the STL file

reader, all the vertices of the triangular facets can be extracted as shown in

Figure 3.6. The example illustrated in Figure 3.6 is a cylinder and the yellow

points are the vertices of the triangular facets that extracted from the STL file.

Figure 3.5: Flowchart of STL file reader.

Figure 3.6: Presentation of imported vertices.

33

 Before passing the vertices obtained to the slicer, all the vertices are

processed to centre the vertices to the origin. This is to move the imported 3D

object to the origin of the 3D space. To centre the vertices, first is to obtain the

largest and smallest X and Y in the model vertices. After that, the summation

of largest X and smallest X will be divided by 2 to compute the X coordinate of

the middle point of model. This is applied to compute Y coordinate of the

middle point as well.

𝑚𝑖𝑑𝑑𝑙𝑒𝑝𝑜𝑖𝑛𝑡(𝑋) = (𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑋 − 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑋)/2

𝑚𝑖𝑑𝑑𝑙𝑒𝑝𝑜𝑖𝑛𝑡(𝑌) = (𝑙𝑎𝑟𝑔𝑒𝑠𝑡𝑌 − 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑌)/2
 }

(3.1)

Next, the offset of the middle point of the model to the origin will be

calculated through equation (3.2) and add to every vertex to translate them to

the origin as shown in equation (3.3).

𝑜𝑓𝑓𝑠𝑒𝑡 (𝑋) = 𝑜𝑟𝑖𝑔𝑖𝑛 𝑋 − 𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑋)

𝑜𝑓𝑓𝑠𝑒𝑡 (𝑌) = 𝑜𝑟𝑖𝑔𝑖𝑛 𝑌 − 𝑚𝑖𝑑𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 (𝑌)
 }

(3.2)

𝑣𝑒𝑟𝑡𝑒𝑥 =< 𝑋 + 𝑜𝑓𝑓𝑠𝑒𝑡(𝑋), 𝑌 + 𝑜𝑓𝑓𝑠𝑒𝑡(𝑌) > (3.3)

The flowchart of the centring 3D model algorithm is shown in Figure 3.7. The

position of the 3D model before and after centring is shown in Figure 3.8 and

Figure 3.9.

Figure 3.7: Flowchart of centring a 3D model in 3D space.

34

Figure 3.8: Position of 3D model before centring.

Figure 3.9: Position of 3D model after centring.

3.7 Slicer

Based on the literature review, the slicing method used in this project is basic

slicing method. A variable, z represents a slicing plane which will be used for

intersection detection. The z value will compare with each of the three vertices

35

in each triangle to determine the coordinate of intersecting points. There are

five ways for slicing plane to intersect with a triangle as shown in Figure 3.10.

These five cases will be applied to slice an 3D object into layer as shown in

Figure 3.11.

Figure 3.10: Possible intersection cases (Topçu, Taşcıoğlu and Ünver, 2011).

Figure 3.11: An illustration of slicing triangular facets.

After all the facet vertices are extracted from the STL file. The

triangular facets will be categorized into their respective case type which as

shown in Figure 3.10. The process will be repeated for each slicing plane.

According to Figure 3.10, a triangular will be considered as Case I if all its

vertices intercept with the slicing plane. Triangular facet that intercepts any

two vertices with the slicing plane is categorized under Case II. Next, if there

is only one vertex intercepts with the slicing plane, it will be considered as

Case III. While the triangle will be deemed as Case IV if any vertex is

opposite side with the other two vertices. For instance, if first vertex is above

and the other two vertices is below the slicing plane then this triangle will be

categorized under Case IV. Lastly, triangle that is not categorized under any

Case from I to IV will be considered as Case V. The flowchart for this sorting

process is shown in Figure 3.12.

36

Figure 3.12: Flowchart of slicing algorithm.

3.7.1 Case I

Case I is the case when a triangle parallel to the slicing plane and all the

facet’s vertices of that particular triangle intercept with the slicing plane.

According to the literature review, the three vertices with their x, y and z

coordinates will be stored in an array as sliced vertex. The flowchart of the

implementation is shown in Figure 3.13. However, the vertices that are

categorized under Case I will not be stored as shell data in this project. This is

because vertices under Case I are considered as redundant point when

encounter circle facet. The redundant point will be the middle vertex for a

circle. An example of middle points of a circle that are considered as

redundant are circled in Figure 3.14. Henceforth, Case I is excluded from

storing any vertices to avoid the redundant vertices.

37

Figure 3.13: Flowchart of Case I.

Figure 3.14: Redundant points in a circle

3.7.2 Case II

For Case II, two vertices that are intersecting with the slicing plane will be

stored as sliced vertices. Any vertex fulfils a condition of its z-coordinate has

the similar value with layer height will be stored. Each vertex of a triangular

facet is checked by using a FOR loop. X, Y and Z coordinates of a qualified

vertex will be stored into an array.

38

Figure 3.15: Case II.

3.7.3 Case III

For Case III, a vertex of the triangle is touching with the plane and other

intersection point will be computed using another two vertices. The

intersection point can be computed using a vector equation (3.4) where r0 is an

initial vertex, r is a terminal vertex, v is a direction vector and t is a scalar.

𝑟 = 𝑟0 + 𝑣𝑡 (3.4)

Let r0 = <x0, y0, z0>, r = <x, y, z> and v = <x- x0, y- y0, z- z0>. With these

values, parametric equation of the line can be formed to find the interception

points, <xi, yi, zi>. Next, the scaler, 𝑡 =
𝑧𝑖−𝑧0

𝑧−𝑧0
 with the given zi value as the zi

value will be the layer height that obtained from the user. After the scaler, t

has been computed, the intersection point can be determined by using the

parametric equation which shown in equation (3.5).

39

𝑥𝑖 = 𝑥0 + (𝑥 − 𝑥0)𝑡 ; 𝑦𝑖 = 𝑦0 + (𝑦 − 𝑦0)𝑡; 𝑧𝑖 = 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 (3.5)

An example of case III is shown in Figure 3.16. In the example, point B is the

vertex that intercept with the slicing plane (z = 1) while point A and point C

are the vertices that will be used to determine the intersection point D. Then,

both point B and point D will be stored in the array as sliced vertices and the

variable used to count the number of sliced points in the array will plus 2 as

two vertices are added. Besides the case III shown in Figure 3.10, there are

some other possible cases III which are illustrated in Figure 3.17. These types

of case III are not desirable by the slicer in this project because they consist of

an intersection point with the slicing plane only. To exclude unwanted case III,

the two vertices (denoted as v1 and v2) that are not intercept with the slicing

plane will be used to compare with the slicing plane. If v1 is above the slicing

plane and v2 is below the slicing plane or vice versa, indicates that the slicing

plane is within the line formed by v1 and v2. Thus, both of the unwanted case

III shown can be excluded from the algorithm by an IF statement. The

flowchart of the Case III is shown in Figure 3.18.

Figure 3.16: An illustration of slicing a triangle under Case III.

40

Figure 3.17: Unwanted type of triangles.

Figure 3.18: Flowchart of Case III.

41

3.7.4 Case IV

Case IV is similar with case III which required to use the equation (3.4) and

(3.5) to compute intersection point. Instead, in case IV, both intersection

points need to be calculated. Let Figure 3.19 as an example, the vertex located

below the slicing plane is denoted as unique vertex, A. Then take A as a centre

point to form two straight lines which are line AC and line AB. The

intersection points will be calculated with the known value of z of the slicing

plane and the coordinates of the two vertices (A&C and A&B) by using the

equation (3.4) and (3.5). The flowchart of case IV is shown in Figure 3.20.

Figure 3.19: An illustration of triangle under Case IV.

Figure 3.20: Flowchart of Case IV.

42

3.8 Contour Creation

The output of the slicer algorithm in previous section will be the input of the

contour creation that is used to make slices of data in lines with the supplied z

values (layer height). The output of the slicer algorithm is a bunch of

disordered sliced data which is undesired for the printing process as it may

lead to inefficient printing path. Thus, the sliced data is required to be

processed to generate a list of linked intersection points to form contour.

 First and foremost, the contour creation has to be able to sort the list

of sliced data obtained into a set of starting point and end point. Since the

slicer will get two intersection points from each case, there will be even

number of sliced data output from the slicer to the contour creation function.

With this information, the sliced data that stored as even number (eg. 0, 2,

4, …) in the sliced data array will be deemed as the starting point of a line

while odd number (eg. 1, 3, 5, …) will be considered as the end point of a line.

Each starting point and end point will be stored in their respective array for the

usage of contour detection. The number of starting point and end point will be

distributed evenly because the total number of sliced data is even number.

Figure 3.21: Flowchart of assigning start and end point.

 After all the sliced data has been obtained from the slicing algorithm,

they are arranged to form contour loop. The contour creation is referred to the

intersecting points’ tracking method which has been discussed in the literature

review.

First of all, the first point of the sliced data on each layer is assigned

as the starting point to construct an ordered sliced data list. The end point that

43

lies on the similar line with this starting point will be used to search for the

next starting point which coincident with it. The starting point and end point of

the line will be stored and the “next” starting point that has been found will be

treated as the new starting point and its end point will be used to search for the

next starting point.

In case that there are no starting point matches with the end point, the

end point will search through the end point list to find any end point coincident

with it. If there is an end point matches with the end point, then the end point

that has been found will switch with its starting point. For instance, E1 is the

end point of the searcher, if E2 matches with E1, the position of E2’s starting

point – S2 will interchange with E2. Hence, E2 will be S2 and S2 will be E2. The

starting point and end point will then be stored in the ordered list. The flag of

the visited starting and end point will be marked as “1” to indicate that the

point has been visited.

The process is repeated until no point is matched to the end point or

all the sliced data on the particular layer has been visited (all flag is “1”). In

the case of no point is matched to the end point, the first point that has yet to

be visited in the sliced data will be assigned as the new starting point for the

new contour forming process. The process will repeat in every layer until all

layers are examined.

Figure 3.22: Flowchart of Contour Creation program.

44

3.9 Infill

A 3D print's interior is referred to as the infill, while its exterior is referred to

as the shell. The infill can be printed in a range of distinct geometries and

densities ranging from 0% (hollow) to 100% (solid). The interior geometry

and density of a 3D print affects a part's strength, weight, structure, buoyancy,

and other properties greatly. Henceforth, these parameters are implemented in

this 3D printing simulator.

3.9.1 Infill Density

Infill density is a parameter to adjust the percentage of distance between each

infill lines. The maximum distance between each infill lines is set to be 40.0

mm. The gap between each infill lines is calculated by the default setting of

maximum distance between each infill lines and the infill density. The distance

between the printed infill lines is computed by the equation (3.6). The

maximum distance between lines will be a constant value – 40 mm whereas

infill density is a user input parameter which range from 0% to 100%. The

illustration of the equation is shown in Table 3.3.

𝐼𝑛𝑓𝑖𝑙𝑙 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑒𝑠, 𝑑 =
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑒𝑠

𝐼𝑛𝑓𝑖𝑙𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (%)

(3.6)

Table 3.3: The infill gap, d with respective infill percentage.

Infill Percentage (%) Infill gap between lines, d

10 (40 𝑚𝑚)/10 = 4 𝑚𝑚

20 (40 𝑚𝑚)/20 = 2 𝑚𝑚

30 (40 𝑚𝑚)/30 = 1.33 𝑚𝑚

40 (40 𝑚𝑚)/40 = 1 𝑚𝑚

50 (40 𝑚𝑚)/50 = 0.8 𝑚𝑚

60 (40 𝑚𝑚)/60 = 0.67 𝑚𝑚

70 (40 𝑚𝑚)/70 = 0.57 𝑚𝑚

80 (40 𝑚𝑚)/80 = 0.50 𝑚𝑚

90 (40 𝑚𝑚)/90 = 0.44 𝑚𝑚

100 (40 𝑚𝑚)/100 = 0.40 𝑚𝑚

45

3.9.2 Infill Pattern

In Chapter 2.7, the Figure 2.13 has shown vast pattern of interior geometric for

additive manufacturing. However, this project cannot cover the simulation of

all the interior geometric. Henceforth, the project will narrow the variations of

the interior geometric becomes two types of patterns which are (a) linear

pattern and (f) line pattern that shown in Figure 2.13. These infill patterns can

be implemented by controlling the sequence of storing the infill points into the

infill array. The behaviour of infill vertices assignation into the array will be

discussed in Chapter 3.9.2.2 and Chapter 3.9.2.3. The line and linear patterns

are designed to swap direction on alternate layers. The purpose of swapping

direction on alternate layers is to evenly fill the interior of a 3D print body.

This will provide a more equal distributions of strength over X-axis and Y-axis

direction. Prior to sequencing the infill points to respective pattern,

intersection points detection for infill vertex are constructed to generate infill

vertex.

3.9.2.1 Infill Vertex Detection

The infill vertex is the intersection point between the infill line and the ordered

shell data that stated in Infill Density and Contour Creation respectively.

Figure 3.23 illustrates an example with a circle that is formed by 12 sides

polygon and the wall vertices are ordered in anti-clockwise direction. In the

ordered list, the polygon’s vertices are listed from the index of 0 to 11 of the

arrays. For illustration, the polygon’s vertices – {1, 2, 3, …, 12} that shown in

Figure 3.23 will be array[i] = <x0, y0, z0>, array[i+1] = <x2, y2, z2>,

array[i+2] = <x3, y3, z3>, …, array[i] = <xn-1, yn-1, zn-1> in the ordered list

where i = {0, 1, 2, …, n – 1} and n is the number of vertices. These vertices

will be used to form a continuous line such that array[0] and array[1] will

form a line, array[1] will form a line with array[2] and so on. The intersection

between these lines and the infill line will be the infill vertex. The infill line

will be incremented from the smallest x value to the largest x value in the

ordered shell list for every iteration in a FOR loop. The increment of the infill

line will be the infill gap calculated in equation (3.6).

46

Figure 3.23: Vertical infill.

The intersection line can be computed by using equation (3.4) and

(3.7). Let r0 = <xk, yk, zk>, r = <xk+1, yk+1, zk+1> and v = <xk- xk+1, yk- yk+1, zk-

zk+1>. With these values, parametric equation of the line can be formed to find

the intersection points, <xinfill, yinfill, zinfill>. Next, the scaler, 𝑡 =
𝑥𝑖𝑛𝑓𝑖𝑙𝑙−𝑥𝑘

𝑥𝑘+1−𝑥𝑘
 with

the given xinfill value as the xinfill value will be the infill line that obtained from

equation (3.6). After the scaler, t has been computed, the intersection point can

be determined by using the parametric equation which shown in equation (3.7).

The variable, k is an expression of the point increment from 0 to n where n is

the number of vertices.

𝑥𝑖𝑛𝑓𝑖𝑙𝑙 = 𝑥𝑘 + (𝑥𝑘+1 − 𝑥𝑘)𝑡 ; 𝑦𝑖𝑛𝑓𝑖𝑙𝑙 = 𝑦𝑘 + (𝑦𝑘+1 − 𝑦𝑘)𝑡;

𝑧𝑖𝑛𝑓𝑖𝑙𝑙 = 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡

(3.7)

All the ordered vertices on the same layer will be examined to

compute the intersection points. Each ordered vertex will form a line with the

later vertex in the array to determine the intersection point and store it if there

is any. For instance, if k = 0 then vertex 1 and vertex 2 in Figure 3.23 will

connect with each other. If infill line is x = 1, the infill line intercepts with the

line 12. Thus, there is an infill vertex being stored to an infill array. Next, k is

47

incremented by 1 (k = 1) and vertex 2 and vertex 3 will form a line (line 23).

The infill line remains as x = 1 but there is no intersection between infill line

and line 23. Thus, no infill vertex is found and stored. In this case, the k will

be incremented until k = 11 to form a last line between vertex 12 and vertex 1.

There will be an intersection point between the line and the infill line (x = 1).

Thus, there will be two infill vertices for x = 1.

After all ordered wall vertices have been examined for infill line, x =

1, all the ordered vertices will be examined for infill, x = 2 with same

procedure that k = 0 until k = n. Once all vertices have been checked for a

particular infill line, the infill line will be incremented by the infill line gap, d.

The example assumes the infill line gap, d to be 1 mm which makes infill line,

x = {1, 2, 3, 4 and 5}. The infill line, x will be range from smallest x value to

largest x value with increment of infill line gap. Arrival of the largest x

indicates that all the infill vertices on particular layer has been determined.

Henceforth, the algorithm will repeat in the next layer until the last layer.

For every alternate layer, the infill pattern will swap the direction

from vertical infill to horizontal infill as shown in Figure 3.24. The theory for

horizontal infill generation will be similar with the vertical infill detection.

Instead of the X-axis variable in vertical infill algorithm, they will be

substituted with Y-axis variable for horizontal infill detection. In this program,

horizontal infill will be applied to odd layer while vertical infill will be

adopted by even layer. The implementation of the algorithm in C++

programming is shown in Figure 3.25.

Figure 3.24: Horizontal infill

48

Figure 3.25: Flowchart of infill vertex generator

3.9.2.2 Line Infill Pattern

The infill vertex that obtained in the mentioned chapter - Infill Vertex

Detection, are detected from the smallest x to largest x. The infill vertex will

be stored from negative X-axis to positive X-axis. The lines that formed by the

ordered wall vertices examined the intersection point in anticlockwise

direction. Therefore, the first infill vertex for each infill line will always locate

at the negative Y-axis while the later vertex will be located at the positive Y-

axis. This will lead to a creation of crossing line when connecting the last

vertex to the next infill line first vertex. For instance, in Figure 3.26, the last

infill vertex, (2), of the infill line, x = 1 will travel across the X-axis to reach

the first infill vertex, (3) of the infill line, x = 2. The infill pattern that is

formed due to the storing manner is shown in purple arrows of the Figure 3.26.

The manner of storing the infill vertex will be adopted to the horizontal infill

as well. Hence, line infill pattern can be formed by the behaviour of detecting

and storing the infill vertex that have mentioned in Infill Vertex Detection in

section 3.9.2.1.

49

Figure 3.26: Line infill pattern’s illustration.

3.9.2.3 Linear Infill Pattern

Line infill pattern are created due to the default storing manner of the infill

vertex detection. Linear infill pattern is the extension of the line infill pattern.

It can be implemented by interchanging the elements of the infill vertex array.

Each infill line will only detect two vertices. Thereinafter, two vertices for an

infill line will be expressed as a set of vertices. If there are ten infill vertices,

there will be five set of vertices. In Figure 3.27, there are five set of infill

vertices as declares:

1) set 1: [infill vertex (1), infill vertex (2)]

2) set 2: [infill vertex (3), infill vertex (4)]

3) set 3: [infill vertex (5), infill vertex (6)]

4) set 4: [infill vertex (7), infill vertex (8)]

5) set 5: [infill vertex (9), infill vertex (10)]

The infill vertices in the even set of infill vertices (set 2 and set 4) will

encounter interchange of the infill vertex. As an illustration, the vertex (3) and

vertex (4) of the line infill pattern in Figure 3.26 will be vertex (4) and vertex

(3) of the linear infill pattern in Figure 3.27 respectively. The infill line

formation will be altered by interchanging the vertices in the even set. After

50

the last vertex (2) of the infill line, x =1, the vertex will form a line with the

vertex (3) instead of forming line with vertex (4). The implementation of this

interchanging infill vertices in even vertex set in C++ programming is

illustrated in Figure 3.28.

Figure 3.27: Linear interior geometric generation.

Figure 3.28: Flowchart of interchanging vertices for linear infill pattern.

51

3.10 Top and Bottom layer

Based on the literature review, the walls extend upward along the Z-axis and

surround a print's horizontal perimeter. The top and bottom layers completely

enclose the horizontal space inside the boundaries set by the walls. The shell

and top and bottom layer are alike but distinct in the direction of printing. The

layer height affects the line gap of the shell in Z-axis. However, the top and

bottom layer will be printed like infill line, but the infill gap will be assigned

to the value of layer height.

 The number of top and bottom layers are controlled by the top and

bottom thickness. The number of top and bottom layers is determined by

dividing the top and bottom thickness by the layer height. The number of top

and bottom layers is rounded to a whole number. Users may control the

thickness of the print's top and bottom layers by adjusting the top/bottom

thickness. A higher value guarantees that all openings on the top and bottom

layers are entirely sealed. However, this can potentially lengthen print times

and use more filament. The implementation of top and bottom layers is

illustrated in Figure 3.25. The line gap for top and bottom will be set to 0.4

mm.

3.11 Rendering Process

Based on the literature review under Chapter 2.8, there are several types of

primitive drawing which draw lines and triangles in the 3D space of OpenGL.

The structure of the imported object, sliced data, infill data and the preview

form of the sliced object will be presented through the primitive drawings

provided by OpenGL engine. The rendering process for the simulation of

printing process will be a sequential process in this 3D printing simulator

program.

First of all, the process includes the rendering of solid body of the

imported object before the simulation of printing process. This render mode is

programmed for the user to verify the correctness of the imported object and

visualize the object before the printing starts. The user may check if the

imported body matches with its modelled body. The technique of rendering a

solid body will be discussed in Chapter 3.11.1. To exit the preview of the

52

imported file, a small letter ‘p’ can be pressed on the keyboard and the

program will proceed to the next printing process.

The next render part will be the slice-form of the imported object.

The slice-form of the 3D print object will be rendered progressively along the

printing path. Filament will be simulated along the printing path through the

line drawing, GL_LINES in the OpenGL as discussed in Chapter 3.11.2.2.

Besides than presenting in line form, the filament can be simulated more

realistically in the pipe form. Multiple cylinder-shaped bodies are joined with

one another to display a printing filament in pipe form as mentioned in

Chapter 3.11.2.1. The sequence of the printing will be prior to the shell of the

sliced model on every layer. The printing of the infill part of the sliced model

will be started with the completion of the shell printing. The printed shell and

the infill part will retain in the 3D space. This rendering procedure will be

discussed in Chapter 3.11.2.1. The slice-form model will be rendered layer by

layer until all the layers are printed. Once the printing is completed, a full form

of the slice-form model will be displayed.

Apart from that, the preview of the slice-form model can be presented

before the completion of the printing process by pressing ‘f’. The user may

skip the printing process to view the full form of the sliced model. This

preview of the sliced model is limited to the version of the pipe form render

mode.

3.11.1 Solid Body

The graphical visualization of the solid body will be rendered with the

primitive drawing of GL_TRIANGLES. This primitive drawing will render

triangles using the triangular facets’ vertices and normal that have been

extracted with the method as discussed in Chapter 2.3. Figure 3.29 shows an

example of a cube that is formed by 8 vertices from STL file and 12 triangular

facets. Each of the triangular facet are formed by three vertices. Henceforth,

there are twelve combinations of the vertices to form twelve facets. The twelve

combinations of the faces made out of three vertices are shown in Table 3.4.

In the simulator program, each of the vertex comprises of three axes

coordinates which are X, Y and Z axes. Thus, there are nine numbers for each

53

vertex and 3 number for the facet’s normal to be included for graphical

visualization of a solid body. With this concept, any model that is imported

can be rendered and visualized in solid body form.

Figure 3.29: A cube that formed by GL_TRIANGLES.

Table 3.4: The combinations of 3 vertices to form 12 facets for the cube.

Facet Combination of 3 vertices

1st Facet 0, 1, 4

2nd Facet 1, 4, 5

3rd Facet 1, 2, 5

4th Facet 2, 5, 6

5th Facet 2, 3, 6

6th Facet 3, 6, 7

7th Facet 0, 3, 7

8th Facet 0, 4, 7

9th Facet 0, 1, 2

10th Facet 0, 2, 3

11th Facet 4, 5, 7

12th Facet 5, 6, 7

54

3.11.2 Filament Rendering

OpenGL engine provides primitive types drawing, comprising points, lines,

quadrilaterals, and triangles. These primitive drawing required the geography

information of a sequence of points in 3D space for rendering. In this project, a

sequence of vertices that stored layer by layer after the basic slicing method

that implemented above will be the input points for rendering a layered body.

There will be two render mode to demonstrate the printing filament in this

project. One of the draw modes will render the filament in simple line form

while the other will render the filament in form of cylinder-shaped. The sliced

data and infill data will be connected using multiple lines and continuous

cylinders in each draw mode to demonstrate the object’s filament in layers.

3.11.2.1 Filament in Pipe form

The filament rendering in pipe form will be applied to present the shell and the

infill of a slice-form model. For 3D printing process, the heated 3D printing

filament will be extruded from a nozzle to form the 3D print object. The

nozzle will move slowly along the printing path and extrude the melted

filament when the nozzle moves from a vertex to the next vertex. The melted

filament will form and solidify on the hot end according to the movement of

the nozzle. Therefore, to simulate the printing process, a pipe will be extruding

from a vertex to the next vertex along a straight path. Extensive numbers of

circles will be formed along the moving path to create a cylinder/ pipe to

represent the extruding filament. Each circle is formed by 48 vertices as

explained in Chapter 2.8.2. An example of a circle that is formed by a polygon

with 48 vertices is shown in Figure 3.30.

Figure 3.30: A tetracontaoctagon

55

Apart from that, the normal vector of a circle that formed for pipe

formation is subject to the vector of the line that is desired to render. Figure

3.31 shows a sample of a pipe that is formed by eight circles. The normal

vector of the circles is aligned with the vector of A and B. Let A and B to be

the start vertex and an end vertex. On the other hand, Figure 3.32 shows an

error formation of pipe due to the misalignment of line vector and normal

vector of the circles. The red arrow in Figure 3.32 shows the normal vector of

a circle while green arrow shows the vector of line AB. Cylinder in yellow

colour indicates the pipe that is desired to generate. The normal vector of the

circle is perpendicular to the vector of line AB which leads to failure of pipe

formation.

Figure 3.31: Correct formation of pipe

Figure 3.32: Failure of pipe formation

56

 In this 3D printing simulator program, the normal vector of a circle

will parallel with either X-axis or Y-axis depends on the angle between a line

and the X-axis. There are four quadrants needed to be considered as shown in

Figure 3.33. The angle between a line and the X-axis is determined by the

equation (3.8). If the magnitude of the angle between a line and the X-axis is

smaller than 45°, the normal vector of the circle will parallel to X-axis.

Otherwise, the normal vector of the circle will parallel to Y-axis.

Figure 3.33: Possible cases for the angle between a line and the X-axis.

𝜃′ = |tan−1
𝑦2 − 𝑦1

𝑥2 − 𝑥1
| (3.8)

Once the direction of the circles’ normal vector has been determined,

the pipe will be generated. The generated pipe will retain in the 3D space to

represent the solidified filament.

There are seven functions defined and implemented to render the

printing process for a 3D print object. The usage of the seven functions is

described in Table 3.5. In each function, a set of vertices that consists of one

starting point and an end point are used to form a pipe. They will be used to

57

build and compute points in between for building a pipe shaped filament in a

defined C++ function - buildPath. This function generates a set of points in a

straight path with the input parameters of a start vertex and an end vertex. The

path generation required the distance on X and Y axes and Euclidean distance

between the start point and end point to compute the points’ coordinates (x, y

and z) along a straight line. The distance between X coordinate of start point

and end point, 𝑥2 − 𝑥1 and Y coordinate’s absolute distance, 𝑦2 − 𝑦1 are

calculated for point increment from start point to end point. While Euclidean

distance, d, is computed to the number of steps required for both X and Y

coordinate of starting point to reach the end point.

In Figure 3.34, let (x1, y1) equals to (1, 2) and (x2, y2) is (3, 5). The

absolute distance for X coordinates will be 2 mm and Y coordinates will be 3

mm while the Euclidean distance is √5 mm. The gap computed between each

point are set to be 0.0125 mm which equivalent to a moving step of a NEMA

17 stepper motor of the Ender 3 3D printer. Hence, the Euclidean distance of

the points, √5 will divide by a step of stepper motor which is 0.0125 mm to

get the number of steps, ith steps – 178 steps. Thus, the X coordinate of starting

point takes 2/178 mm per step to move from coordinate 1 to 3 whereas Y

coordinate take 3/178 mm per step to move from coordinate 2 to 5. The

equation (3.9) is to generate the points in between the start and end point.

𝑥𝑖 = 𝑥1 + (𝑥2 − 𝑥1) ×
𝑖

𝑑/0.0125𝑚𝑚

(3.9)

where, xi is X coordinate of a point lied on the straight line between start and

end point, x1 as the X coordinate of start point and x2 as the X coordinate of

end point, d is the Euclidean distance and i is an integer from {0, 1, 2 … ith

steps}. This equation is applied for generating Y coordinate of point lied on

the straight line as well. A FOR loop is used to do the ith increment to generate

all the points lies on the path.

58

Figure 3.34: A triangle.

 Equation (3.9) is applicable if the distance between x2 and x1 (or y2

and y1) is greater than the stepper motor’s smallest step which is 0.0125 mm.

The number of steps, ith, will be zero which leads to an error for this rendering

method as no points are generated. The solution for this issue is to assign

0.0001 to the distance between the points to generate a point that is 0.0001 mm

away from the starting point and the number of steps takes will be 1 step. After

the reassignment of the distance, the sign of the distance is required to change

as well as the sign is subject to the position of the start and end point. If the

starting X coordinate is greater than end X coordinate, the start point will

minus the distance to reach the end point (same goes to Y axis). Therefore, the

equation is generalized by replace distance to absolute distance and the sign is

subject to the points’ position. The general equation is shown in (3.10).

𝑥𝑖 = 𝑥1 ∓ |𝑥2 − 𝑥1| ×
𝑖

𝑑/0.0125𝑚𝑚

(3.10)

Table 3.5: The functions defined and usage of the functions for object

rendering in pipe form.

No. Functions name Description

1. renderPrinting() To render the extruding filament that printing the

wall of an object.

2. renderInfill() To render the extruding filament that printing the

infill of an object.

59

3. renderPrinted() To render the solidified filament of the wall of an

object on previous layers.

4. CurrPrinted() To render the solidified filament of the wall of an

object on current layer. It renders the vertex set

that have rendered in the renderPrinting().

5. CurrInfill() To render the solidified filament of the infill of an

object on current layer. It renders the vertex set

that have rendered in the renderInfill().

6. PrintedInfill() To render the solidified filament of the wall of an

object on the layer before the printing layer.

7. CurrLayer() To render the solidified filament of the wall of an

object on current layer. It is significant to retain

the printed wall on current layer during the

printing process of infill on the same layer.

The functions that are illustrated in Table 3.5 is presented in Figure

3.35 and Figure 3.36 with different colours to different functions. The filament

that is coloured with matcha green in Figure 3.35 illustrates the solidified

filament of the wall on previous layers and the respective function is

renderPrinted(). Apart from that, the purple colour pipe illustrates the result of

the function – CurrPrinted() whereas the white pipe body that is rendered

below the nozzle is the outcome of the function – renderPrinting(). The cyan

colour filament represents the printed infill of an object on the previous layer

which is the function of PrintedInfill(). In Figure 3.36, the pink filament

shows the pipe rendered by the renderInfill() while the pickle green shows the

pipe rendered by the CurrInfill(). Last but not least, the red pipe is the result of

the function – CurrLayer(). Furthermore, the preview of the slice-form model

will be shown with a keyboard press of ‘f’. Nested FOR loop is implemented

to render all the ordered list of slice data contour by contour and layer by layer.

An example for preview of a sliced model is displayed in Figure 3.37.

60

Figure 3.35: renderPrinted (matcha green), CurrPrinted (purple),renderPrinting

(white) and PrintedInfill (cyan).

Figure 3.36: renderInfill (pink), CurrInfill (pickle green) and CurrLayer (red).

61

Figure 3.37: Preview of a sliced model in pipe form.

3.11.2.2 Filament in Line form

The vertices that obtained from slicer and infill generator can be rendered

through one of the primitive drawings in OpenGL which is GL_LINES.

GL_LINES is used to render a line between a vertex to the next vertex to form

a connection between each vertex. Therefore, the vertices of the sliced data

and infill data can be displayed in line form for visualization in the OpenGL

3D space via GL_LINES.

Implementation of GL_LINES to every vertex will be executed inside

a FOR loop. This will render all the sliced data and infill data accordingly for

the visualization of the layered object. There are five parts for line form

rendering which are similar with the functions in the pipe form rendering. The

functions are not included in line form rendering are CurrPrinted() and

CurrInfill(). This is because line form rendering mode excludes the

consideration of rendering points between each set of vertices, instead this

rendering mode just draw line between each set of vertices. It is developed to

generate quick view for user as it is comparatively computational inexpensive

than pipe form rendering. This is due to the reason that pipe form rendering

required to draw extensive number of circles between the vertices to create a

62

cylinder. Each contour of a circle is created by 48 vertices. Let assume that a

pipe between a set of vertices is formed by ten circles. There will be 480

vertices required to compute for a formation of a pipe. Otherwise, line form

rendering uses a set of vertices to render a line to join the vertices. There will

be two vertices needed for a formation of line. Therefore, line form rendering

is much computational inexpensive than pipe form rendering. The

visualization of line form rendering is shown in Figure 3.38.

Figure 3.38: Sliced data rendered with GL_LINES.

3.12 Gantries movement

Simulation of the gantries for a 3D printer can be done by rending three

cuboids. The cuboids can be rendered in OpenGL by forming two triangles

form a face and total will be 12 faces to form a cuboid. The movement of the

cuboids which represent the movement of gantries depends on the location of

current rendering line. The robot geometry of the 3D printer is a cartesian

coordinates which consists of three prismatic or sliding joints. The distance, di

of each prismatic joint can be computed by inverse kinematic. The location of

the tool tip will be the coordinate of the vertex that is rendering at that moment.

Figure 3.39 shows a schematic diagram of a cartesian robot which can

represent a 3D printer

63

Figure 3.39: Cartesian Robot Schematic Diagram

The Denavit-Hartenberg Matrix is a transformation matrix from one

coordinate frame to the next. After computing the transformation matrices, the

distance, di can be determined using inverse kinematics with known

coordinates of rendering vertices, x, y and z.

Table 3.6: Debavit-Hartenberg Table.

i αi-1 ai-1 di θi

1 0 0 d1 0

2 90 0 d2 90

3 90 0 d3 0

E 0 0 L1 0

where

• ai is the distance from Zi to Zi+1 measured along Xi.

• 𝛼𝑖 is the angle from Zi to Zi+1 measured about Xi.

• di is the distance from Xi-1 to Xi measured along Zi.

• 𝜃𝑖 is the angle from Xi-1 to Xi measured about Zi..

Transformation matrices:

𝑇1
0 = [

1 0 0 0
0 1 0 0
0 0 1 𝑑1

0 0 0 1

] 𝑇2
1 = [

0 −1 0 0
0 0 −1 𝑑2

1 0 0 0
0 0 0 1

]

𝑇3
2 = [

1 0 0 0
0 0 −1 𝑑3

0 1 0 0
0 0 0 1

] 𝑇𝐸
3 = [

1 0 0 0
0 1 0 0
0 0 1 𝐿1

0 0 0 1

]

𝑇2
0 = [

0 −1 0 0
0 0 −1 𝑑2

1 0 0 𝑑1

0 0 0 1

] 𝑇3
0 = [

0 0 1 −𝑑3

0 −1 0 𝑑2

1 0 0 𝑑1

0 0 0 1

]

64

𝑇𝐸
0 = [

0 0 1 𝐿1 − 𝑑3

0 −1 −1 𝑑2

1 0 0 𝑑1

0 0 0 1

] ≡ [

𝑟 𝑟 𝑟 𝑥
𝑟 𝑟 𝑟 𝑦
𝑟 𝑟 𝑟 𝑧
0 0 0 1

]

where

• x is the x-axis coordinate of the rendering vertex.

• y is the y-axis coordinate of the rendering vertex.

• z is the z-axis coordinate of the rendering vertex.

Inverse Kinematics:

𝐿1 − 𝑑3 = 𝑥

𝐿1 − 𝑥 = 𝑑3 − (1)

𝑑2 = 𝑦 − (2)

𝑑1 = 𝑧 − (3)

3.13 Experiments

The program is tested with five 3D models which are a disk, a cylinder, a cube,

a bracket and a spoon. Shell and infill of each sample are presented to analyse

the capability of the simulator. The infill is presented in line form while the

shell is shown in pipe form. Apart from that, the estimation time to print the

3D models are counted and compared with the actual printing time used. The

model of the 3D printer used is Ender 3 and the selected G-code generator is

ULTIMAKER CURA. The error percentage of estimated time and actual

printing time is calculated with equation (3.11). Besides that, the line gap for

infill, top and bottom layer is studied to measure the feasibility of the

simulator to generate actual interior geometric.

𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =
|𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒|

𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒
× 100%

(3.11)

 Disk model is tested with different sets of layer height which are 0.12

mm, 0.16 mm, 0.20 mm and 0.24 mm to examine the feasibility of this

simulator upon the layer height. Next, cylinder model is used to test the

feasibility of infill generation. The line gap of each infill line is measured to

determine the feasibleness of the simulator to generate infill that can match

with real-world print. After that, a cube model is tested with different values of

top and bottom thickness – 0.20 mm, 0.40 mm, 0.60 mm and 0.80 mm. Lastly,

65

two 3D models that obtained randomly are tested to examine the feasibility of

simulator. The test specimens chosen are a bracket and a spoon.

3.14 Summary

An ASCII format STL (stereolithography) file is imported into the program.

Triangular facets' vertices are extracted from the imported STL file. Extraction

of triangular facets' vertices is used to form the shell of a 3D print model.

Slicer generates layers' vertices from the triangular facets' vertices based on

the user-defined layer height. Layers' vertices are then well-organized through

contour creation module to form shell contour of a 3D print model. Creation of

exterior part of a 3D print object are completed once shell contours are formed.

Formation of infill based on the ordered shell's vertices on each layer with

user-defined density. Infill changes from horizontal to vertical infill on

alternate layer to fill interior part of a 3D print model more evenly. Top and

bottom layers of a model is skin of a 3D print model. Top and bottom layers

have a similar interior geometric. The line gap of top and bottom layers is

fixed at 0.4 mm unlike infill density defines the infill line gap. Movement of

nozzle depends on the vertices of shell, skin and infill. Smallest step of the

nozzle is based on the smallest step of NEMA 17 stepper motor which is

0.0125 mm. Print material of FDM 3D printing is simulated by forming

continuous cylinder between each vertex. Line form rendering is a low

computational cost method to simulate the printing trajectory. Several

experiments are conducted to fine tune the print parameter in this simulator to

match with reality.

66

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

This chapter discuss the C++ program that are designed and developed in

accordance with the methodology to create a 3D printing simulator. A step-by-

step user documentation is included in this section. The user guide comprises

of the procedure of running the 3D printing simulator to generate a 3D print

object. There are four 3D models being tested to examine the competence of

the program to function as FDM 3D printing simulator. The selected 3D

models are a disk, a cylinder, a bracket and a spoon.

4.2 User Documentation

This section shows the procedure of using this 3D printing simulator and the

keyboard press to control the process.

4.2.1 Preparation of STL File in ASCII Format

The 3D printing simulation is started with the preparation of STL file from

CAD software. The CAD software used to design the 3D models is

SOLIDWORKS. After the design are completed, the 3D models are exported

to STL file in ASCII format. The steps of exporting a CAD model to STL file

in ASCII format is illustrated in Figure 4.1 and Figure 4.2.

Figure 4.1: SOLIDWORKS interface to save CAD model.

67

Figure 4.2: Save CAD model as STL file in ASCII format.

4.2.2 Input Print Parameter

The program is started with a series of inputting print parameters. The window

prompts users to import a STL file in ASCII format by entering the STL file’s

name. Once the STL file is successfully imported, the default print setting is

displayed in the window. The default print setting of this simulator is shown in

Table 4.1. The simulator allow users to customize their own print setting so

users may customize the print setting according to their needs by typing ‘c’

after importing the file.

Table 4.1: Default print setting.

No. Print Parameters Value

1. Layer Height 0.28 mm

2. Infill Density 50 %

3. Top Thickness 0.84 mm

4. Bottom Thickness 0.84 mm

5. Wall Print Speed 25 mm/s

6. Infill Print Speed 50 mm/s

7. Skin Print Speed 25 mm/s

8. Initial Layer Print Speed 20 mm/s

9. Infill Pattern Line Pattern

10. Rendering Mode Pipe Mode

68

Users who would like to customize their own print setting will be prompted to

enter their preferred parameters accordingly. The explanation and description

of the parameters are provided before the prompt. Thus, users may refer to the

description before the selection of value. After users have decided the new

print setting, it is presented in the window for users to check. Users may obtain

the estimation time for the 3D models to be printed in the window. The

estimation printing time is further explained in terms of infill, wall and shell.

Users may tune the print parameters to reduce the printing time by referring to

the highest time-consuming section. Users may type ‘s’ to confirm the print

setting and proceed to the printing simulation. Figure 4.3 shows the user

interface after importing the STL file. Figure 4.4 shows the description of print

setting to users. Figure 4.5 shows the user interface after users customize the

print setting.

Figure 4.3: Import STL file and show the default print setting.

69

Figure 4.4: Description of print parameters.

 3D printing simulator is launched once users enter ‘s’ to proceed. In

the case of pipe mode rendering, solid body of the imported 3D model is

presented. The printing process is started with the keyboard press of ‘p’. Users

may pause the printing process by pressing ‘o’. While pausing the process, the

solid body of the imported 3D body is presented. Users may press ‘f’ to switch

to view the complete 3D printed object and press ‘g’ to return to the printing

process. During the printing process, users may control the camera view to

find a better view of the printing process through zoom, pan and rotate. Zoom

in and zoom out to view the 3D print object close by pressing ‘z’ and ‘x’

respectively. Move the camera up and down via the keys – ‘q’ and ‘e’

70

respectively. Camera view can be panned through the keys – ‘w’, ‘s’, ‘a’, ‘d’

while rotate the view through the keys – ‘i’, ‘j’, ‘k’, ‘l’.

Figure 4.5: User Interface after the customization of print setting.

71

4.3 Simulation Results

The program is tested with five 3D models which are a disk, a cylinder, a cube,

a bracket and a spoon.

4.3.1 Disk

The diameter of the disk is 50 mm with thickness of 3 mm as shown in Figure

4.6.

Figure 4.6: Disk was modelled in SOLIDWORKS.

The print parameters for the models are shown in the Table 4.2. The

parameters are varied with the layer height – 0.12 mm, 0.16 mm, 0.20 mm and

0.28 mm. Estimation time for the layer height – 0.12 mm, 0.16 mm, 0.20 mm

and 0.28 mm is 56 minutes, 42 minutes, 34 minutes and 24 minutes

respectively. These disks are printed in a FDM 3D printer. The model of the

3D printer is Ender 3. The method of generating G-code in ULTIMAKER

CURA software is shown in Appendix. The actual printing time for the disks

is 1 hour and 15 minutes, 1 hour 4 minutes, 51 minutes and 36 minutes

72

respectively. The error percentage for sample 1, 2, 3 and 4 in terms of printing

time is 33.33%, 33.33%, 34.38% and 34.12% respectively.

Table 4.2: Print parameters for four disk.

STL

file

Sample

Print Parameters

Layer

Height

Infill

Density

Infill

Pattern

Top

Thickness

Bottom

Thickness

disk

1 0.28 mm 50 % Linear 0.84 mm 0.84 mm

2 0.20 mm 50 % Linear 0.84 mm 0.84 mm

3 0.16 mm 50 % Linear 0.84 mm 0.84 mm

4 0.12 mm 50 % Linear 0.84 mm 0.84 mm

Table 4.3: Test result of the disks.

Sample Number

of

Layers

Estimation

Time

Actual

Time

Difference Error

percentage

1 179 24 minutes 36

minutes

12 minutes 33.33 %

2 250 34 minutes 51

minutes

17 minutes 33.33 %

3 313 42 minutes 1 hour 4

minutes

22 minutes 34.38 %

4 417 56 minutes 1 hour 25

minutes

29 minutes 34.12 %

 The disk in the simulator with layer height of 0.12 mm, 0.16 mm,

0.20 mm and 0.28 mm is illustrated in Figure 4.7, Figure 4.8, Figure 4.9,

Figure 4.10 respectively. The difference of different layer height of the disk

can be viewed from the figures below. Figure 4.7 shows a finer surface of the

models which has the layer height of 0.12 mm while surface of the disk is

courser for layer height of 0.28 mm which shown in Figure 4.10. Figure 4.11

to Figure 4.14 show the infill part of the disk. The figures show that the infill

of the disk increases with the number of layers. Figure 4.15 shows the exterior

and interior of the disk in a section view.

73

Figure 4.7: Disk is presented in simulator with layer height of 0.12 mm.

Figure 4.8 Disk is presented in simulator with layer height of 0.16 mm.

74

Figure 4.9: Disk is presented in simulator with layer height of 0.20 mm.

Figure 4.10: Disk is presented in simulator with layer height of 0.28 mm.

75

Figure 4.11: Infill of disk with layer height of 0.12 mm.

Figure 4.12: Infill of disk with layer height of 0.16 mm.

76

Figure 4.13: Infill of disk with layer height of 0.20 mm.

Figure 4.14: Infill of disk with layer height of 0.28 mm.

77

Figure 4.15: Section view of the disk.

4.3.2 Cylinder

The cylinder has diameter of 50 mm and thickness of 3 mm. It is similar with

the disk as mentioned in previous section, but cylinder is lied on the printing

platform instead of standing. The print parameters for cylinder are shown in.

There are four cylinders to be printed with 7 different infill densities which are

10 %, 20 %, 30 %, 40 %, 50 %, 70 % and 90 %. Each infill density indicates

the infill gap of 4 mm, 2 mm, 1.33 mm, 1 mm, 0.8 mm, 0.57 mm and 0.44 mm

respectively.

Table 4.4: Print parameters for four cylinders.

STL file

Sample

Print Parameters

Layer

Height

Infill

Density

Infill

Pattern

Top

Thickness

Bottom

Thickness

cylinder

5 0.28 mm 10 % Linear 0.84 mm 0.84 mm

6 0.28 mm 20 % Linear 0.84 mm 0.84 mm

7 0.28 mm 30 % Linear 0.84 mm 0.84 mm

8 0.28 mm 40 % Linear 0.84 mm 0.84 mm

9 0.28 mm 50 % Linear 0.84 mm 0.84 mm

10 0.28 mm 70 % Linear 0.84 mm 0.84 mm

11 0.28 mm 90 % Linear 0.84 mm 0.84 mm

78

Table 4.5: Test result of the cylinders.

Sample Infill Gap in

Simulation

Actual

Infill

Gap

Number

of Layers

Estimation

Time

Actual

Time

Error

percentage

5 4 mm 4 mm 11 23 minutes 23

minutes

0 %

6 2 mm 2 mm 11 24 minutes 24

minutes

0 %

7 1.33 mm 1.33

mm

11 25 minutes 25

minutes

0 %

8 1 mm 1 mm 11 26 minutes 26

minutes

0 %

9 0.8 mm 0.8

mm

11 26 minutes 26

minutes

0 %

10 0.571 mm 0.571

mm

11 28 minutes 28

minutes

0 %

11 0.444 mm 0.444

mm

11 30 minutes 30

minutes

0 %

 Figure 4.16 shows the cylinder that is printed with 10 % of infill

density in the 3D printing simulation. The distance between each infill lines

for 10 % infill density is 4 mm. Figure 4.17 shows the infill gap of 10 % infill

density in actual printing. The infill gap of the actual printed cylinder with 10%

infill density is 10.4 cm – 10.0 cm = 0.4 cm which is 4 mm. As a result, the

actual printing matches with the simulated cylinder with 10 % infill density.

Figure 4.16: Cylinder with infill density of 10 %.

79

Figure 4.17: Measurement of 4 mm infill gap for 10 % infill density in actual

printing.

Figure 4.18 shows the cylinder that is printed with 20 % of infill

density in the 3D printing simulation. The distance between each infill lines

for 20 % infill density is 2 mm. Figure 4.19 shows the infill gap of 20 % infill

density in actual printing. The infill gap of the actual printed cylinder with 20%

infill density is 10.2 cm – 10.0 cm = 0.2 cm which is 2 mm. As a result, the

actual printing matches with the simulated cylinder with 20 % infill density.

Figure 4.18: Cylinder with infill density of 20 %.

80

Figure 4.19: Measurement of 2 mm infill gap for 20 % infill density in actual

printing.

Figure 4.20 shows the cylinder that is printed with 30 % of infill

density in the 3D printing simulation. The distance between each infill lines

for 30 % infill density is 1.33 mm. Figure 4.21 shows the infill gap of 30 %

infill density in actual printing. The infill gap of the actual printed cylinder

with 30% infill density is around 1.3 mm. As a result, the actual printing

matches with the simulated cylinder with 30 % infill density.

Figure 4.20: Cylinder with infill density of 30 %.

81

Figure 4.21: Measurement of 1.3 mm infill gap for 30 % infill density in actual

printing.

Figure 4.22 shows the cylinder that is printed with 40 % of infill

density in the 3D printing simulation. The distance between each infill lines

for 40 % infill density is 1.0 mm. Figure 4.23 shows the infill gap of 40 %

infill density in actual printing. The infill gap of the actual printed cylinder

with 40% infill density is 10.1 cm – 10.0 cm = 0.1 cm which is 1.0 mm. As a

result, the actual printing matches with the simulated cylinder with 40 % infill

density.

Figure 4.22: Cylinder with infill density of 40 %.

82

Figure 4.23: Measurement of 1 mm infill gap for 40 % infill density in actual

printing.

 Cylinder with infill density of 50 % is illustrated in Figure 4.24. The

infill gap is 0.8 mm which is smaller than the smallest scale division of a ruler

– 1 mm. Thus, due to lacking measuring equipment, G-code that obtained

from ULTIMAKER CURA is used to examine the infill gap for subsequent

cylinders. A third-party G-code viewer is used to visualize the generated G-

code and extract the movement of the printer for infill. The horizontal infill

gap of the actual printing is Y129.5 – Y128.7 = 0.8 mm as shown in Figure

4.25. Hence, the infill gap obtained from the simulator with 50 % matches

with the actual printing.

Figure 4.24: Cylinder with infill density of 50 %.

83

Figure 4.25: G-code viewer to verify actual infill gap for 50 % infill density.

Figure 4.26: Cylinder with infill density of 70 %.

Figure 4.27: G-code viewer to verify actual infill gap for 70 % infill density.

84

Figure 4.28: Cylinder with infill density of 90 %.

Figure 4.29: G-code viewer to verify actual infill gap for 90 % infill density.

 Cylinder with infill density of 70 % is shown in Figure 4.26. The

infill gap is 0.57 mm. According to the readings of the Y-axis movement in G-

code, the horizontal infill gap of the actual printing is Y109.506 – Y108.935 =

0.571 mm as shown in Figure 4.27. Hence, the infill gap obtained from the

simulator with 70 % matches with the actual printing. Next, for infill density

of 90% cylinder which infill gap is 0.444 mm. The G-code in Figure 4.29

shows horizontal infill with gap of Y136.592 – Y136.148 = 0.444 mm. As a

result, the simulator has capability of generating infill gap that matches with

85

real printing. Figure 4.30 shows the interior of the cylinder with infill density

of 50 % and the infill changes direction on alternate layer.

Figure 4.30: Infill changes direction on alternate layer.

4.4 Cube

The dimension of the cubes is 30 mm x 30 mm x 30 mm. Four cubes are being

printed to examine feasibility of different top and bottom thickness upon the

3D print object. The feasibility is examined by the difference of actual printing

time and estimated printing time. Greater value of top and bottom thickness

can lead to longer printing time with constant infill density of 50 % and layer

height of 0.20 mm. The print parameters for four cubes are shown in Table 4.6.

The result of printing time of Ender 3 and 3D printing simulation is shown in

Table 4.7. Number of layers for each cube are 150 layers. The printing time

error percentage for top and bottom thickness of 0.2 mm, 0.4 mm, 0.6 mm and

0.8 mm is 13.25 %, 15.12 %, 11,76 % and 11.49 %. The line gap for top and

bottom layers is set to be 0.4 mm. G-code in Figure 4.34 shows that the line

gap is X106.8 – X106.4 = 0.4 mm. Figure 4.32 and Figure 4.33 shows the top

and bottom layers of the cube from the simulator and real print respectively.

Figure 4.31 shows the 3D printed cube that is rendered in the simulator.

86

Table 4.6: Print parameters for four cubes.

STL

file

Sample

Print Parameters

Layer

Height

Infill

Density

Infill

Pattern

Top

Thickness

Bottom

Thickness

cube

12 0.20 mm 50 % Linear 0.20 mm 0.20 mm

13 0.20 mm 50 % Linear 0.40 mm 0.40 mm

14 0.20 mm 50 % Linear 0.60 mm 0.60 mm

15 0.20 mm 50 % Linear 0.80 mm 0.80 mm

Table 4.7: Test result of the cubes.

Sample Number of

Layers

Estimation

Time

Actual Time Error percentage

12 150 1 hour 12

minutes

1 hour 23

minutes

13.25 %

13 150 1 hour 13

minutes

1 hour 26

minutes

15.12 %

14 150 1 hour 15

minutes

1 hour 25

minutes

11.76 %

15 150 1 hour 17

minutes

1 hour 27

minutes

11.49 %

Figure 4.31: Cube is rendered in simulator with layer height of 0.20 mm.

87

Figure 4.32:Top and bottom layers of the cube in simulator.

Figure 4.33: Actual top and bottom layers of the cube from 3D print.

Figure 4.34: G-code viewer to verify the real line gap of top and bottom layer.

88

4.4.1 Bracket

The simulator sliced the bracket into 39 layers with the layer height of 0.28

mm. The estimated printing time for this print is 10 minutes and the actual

printing time is 10 minutes as well. This makes the error percentage of printing

time between estimated time and actual time to be 0%. The print parameters

are set in accordance with Table 4.8. Figure 4.35 shows front view of the

bracket in the simulator. Isometric view of the 3D print bracket’s shell in

simulator is illustrated in Figure 4.36. Interior geometric of the bracket is

displayed in Figure 4.37. The capability of CY simulator to render a lifelike

3D print object can be examined through the comparison between Figure 4.35

and Figure 4.38. The strength of the simulator upon rendering lifelike object is

verified as the bracket generated in simulator is similar with the actual printed

bracket.

Table 4.8: Print parameters for the bracket.

STL file Sample Layer

height

Infill

density

Infill

pattern

Top

thickness

Bottom

thickness

bracket 16 0.28 mm 50 % Linear 0.84 mm 0.84 mm

Table 4.9: Test result of the bracket.

Sample Number of

Layers

Estimated

Time

Actual time Error percentage

16 39 10 minutes 10 minutes 0 %

Figure 4.35: View of the bracket in simulator.

89

Figure 4.36: Isometric view of the bracket’s shell.

Figure 4.37: Isometric view of the bracket’s infill.

90

Figure 4.38: Actual 3D printed bracket.

4.4.2 Spoon

A spoon is sliced into 289 layers with the layer height of 0.12 mm. According

to the estimated printing time in the simulator for this spoon is 1 hour and 14

minutes which has 7 minutes different with the actual printing time – 1 hour

and 21 minutes. Error percentage of printing time between estimated time and

actual time to be 8.64 % which equivalent to difference of 7 minutes. The print

parameters for the spoon are set based on the Table 4.10. Figure 4.39 shows

solid body presentation of the imported STL file in the simulator. Presentation

of the simulation for 3D printed spoon is stated in Figure 4.40. Shell and infill

of the spoon in the simulator is presented in Figure 4.41 and Figure 4.42

respectively. The spoon is printed by using Ender 3 printer with the generated

G-code from the software - ULTIMAKER CURA. The spoon is printed

according to the print parameters on Table 4.10. Figure 4.43 shows the 3D

printed spoon.

Table 4.10: Print parameters for the spoon.

STL file Sample Layer

height

Infill

density

Infill

pattern

Top

thickness

Bottom

thickness

spoon 17 0.12 mm 20 % Linear 1.12 mm 1.12 mm

Table 4.11: Test result of the spoon.

Sample Number of

Layers

Estimated

Time

Actual time Error percentage

17 289 1 hour 14

minutes

1 hour 21

minutes

8.64 %

91

Figure 4.39: Spoon is rendered in solid body mode.

Figure 4.40: Appearance of the 3D printed spoon in the simulator.

92

Figure 4.41: Shell of the spoon in the simulator.

Figure 4.42: Infill of the spoon in the simulator.

93

Figure 4.43: Actual 3D printed spoon.

4.5 Summary

The framework of the simulator is tested with five different 3-D models which

are disk, cylinder, cube, bracket and spoon. The implementation of print

parameters in the simulator are compared with the actual printing models. All

infill line gap generated by the simulator have 100 % accuracy with the actual

printing results. Apart from that, number of layers of a 3D print affects the

accuracy of estimating printing time. Accuracy of printing time estimation can

be high if number of layers is low. Otherwise, lower accuracy upon the time

estimation for 3D printing if number of layers for the 3D print is high. The

reason of the inaccuracy is due to the negligence of travelling time for an

actual printing from the algorithm. The travelling path that excluded from the

algorithm is the trajectory that move from the last vertex of a layer to the first

vertex of the next layer. Henceforth, more travelling time is not taken into

consideration by the printing time estimation algorithm when encounter 3D

print that is sliced into high number of layers.

94

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

Development of 3D printing simulator in this project has succeeded with the

capability of simulating the process of Fused Deposition Modelling (FDM) 3D

printing technology. The framework of this simulation program is capable to

read a stereolithography (STL) file in ASCII format. The raw data extracted

from the STL file can be processed into layers’ vertices for the usage of 3D

printing. This generates the shell of a 3D print object with user-defined layer

height that range from 0.12 to 0.28 mm. Users are free to tune the value of

layer height for either studying the 3D print mechanism or prototyping.

 Apart from that, interior of a 3D print can be generated in this 3D

printing simulator program. The simulator has succeeded to generate infill line

gap that is similar with the actual 3D printed model. Moreover, skin of a 3D

model can be generated successfully to enclose the interior of a 3D print

model. In this program, users may input percentage of infill density to analyse

the 3D print model. They may alter the top and bottom thickness that suitable

for their application.

 Furthermore, the program has succeeded to simulate the 3D printing

process layer by layer in progressive manner. Shell, skin and infill of a 3D

print can be simulated in pipe form manner to represent FDM printing filament.

On top of that, this simulator provides an option of switching pipe form

rendering to line form presentation for the shell, skin and infill. This is

implemented to increase the speed of 3D printing simulation due to lesser

computational cost. Last but not least, a nozzle is constructed in the simulator

to actualize 3D printing process. The simulator has the ability of estimating

printing time for users’ reference.

5.2 Contributions

One of the contributions for this simulator is implementation of slicing

algorithm in C++ programming language. The slicing algorithm is able to slice

95

any 3D models into layers with the user-defined layer gap. Besides that, a

contour creation function is written after the developed slicing algorithm to

organize the vertices obtained. Contour creation is essential to ascertain the

feasibility of the slice vertices. Without contour creation, vertices obtained

from slicing algorithm are mere scattered points that cannot be used to form a

3D print’s shell.

Moreover, the method of generating two infill patterns: line infill

pattern and linear infill pattern. The idea to generate these two patterns is to

control the arrangement in the infill array. Infill generation and slicing

algorithm is alike. Slicing algorithm is to slice a 3D print object vertically

while infill detection algorithm is to compute infill vertex horizontally. Slicing

plane for infill is changed on alternate layers to form vertical and horizontal

infill. Apart from that, the idea of generating the skin of a 3D print object is

similar with infill generation. The skin is different from infill as the line gap of

skin is fixed at 0.4 mm. The skin generation algorithm is built with the infill

algorithm but with a condition that if the layers is below the user-defined

bottom thickness then the line gap is fixed at 0.4 mm. Otherwise, the line gap

is based on the user-defined infill density to generate infill. This is applied to

forming of top layers as well.

Furthermore, each vertex obtained from contour creation and infill

generator is linked by cylinder. The cylinder is extruded from a vertex to the

next vertex by 0.0125 mm to simulate the process of printing. On top of that,

dedication in developing another rendering mode – line rendering is to reduce

the computational cost. Users may use line mode rendering to have a quick

view on the printing process. This line rendering mode also helps me to

validate the correctness of the generated vertices from slicing algorithm,

contour creation, infill detection and skin formation.

The printing time is estimated by computing the distance between

each vertex and defined printing speed. The idea of implementing this feature

is for users to have a sense on the printing time of the 3D print object so that

users cannot control the printing time instead of mere architecture of a 3D

print model. Last but not least, several printings are carried out to ascertain the

print parameters in the simulator is matched with the real-world print.

96

5.3 Recommendations for future work

There are several recommendations can be implemented to the simulator to

enrich this 3D printing simulator. First and foremost, development of multiple

shell walls generator should be executed in future work. This is because wall

thickness is considered as one of the crucial print parameters to affect the

strength of a 3D print. Hobbyist and users of 3D printing would prefer to adapt

3D printing simulator with the function of varying wall thickness. Hence, it

would be valuable to be implemented for future work.

 Apart from that, one of the limitations for this 3D printing simulator

is that it is limited to non-hollow object. Most of the objects would be a

hollow object with at least one hole for the design. Hence, a 3D printing

simulator with the feature of generating infill in a hollow object would be

favourable. Moreover, a simulator could provide variation of infill pattern such

as cubic, triangles, grid and concentric pattern. This is due to the reason that

different application will be built with different infill pattern. Line and linear

infill pattern that equipped in the simulator of this project is not ample to fulfil

the market needs. Hence, multifarious infill patterns would escalate the

competitiveness of this simulator.

 On top of that, a critical feature of a 3D printing simulator is

generating support structure to avoid overhangs. This is because a 3D object is

produced with an FDM 3D printer by depositing thermoplastics layer by layer.

As a result, every new layer needs to be supported by the layer below it. There

is also a considerable risk that the model will drop or even topple if it has an

overhang that is not supported by anything below, thus additional 3D printed

support structures is needed to guarantee a successful print. A very slight

horizontal offset (barely perceptible) is used by 3D printers between

successive layers. A layer therefore stacks with a slight offset rather than

exactly over the layer underneath it. As a result, overhangs that don't tilt too

much from the vertical can be printed by the printer. The preceding layers can

tolerate an angle less than 45 degrees. The line of failure is generally accepted

to lie at 45 degrees. The previous layer cannot support an angle greater than 45

degrees. Consequently, a support structure will be crucial to reduce overhangs.

97

Hence, support structures must be included in a 3D printing simulator to

consummate a 3D printing process simulation.

98

REFERENCES

Aaryaman Aashind, 2021. 3D Printing Statistics for 2022. [online] Available

at: https://cybercrew.uk/blog/3d-printing-statistics/ [Accessed 12 April 2022].

Adnan, F. A., Romlay, F. R. M. and Shafiq, M., 2018. Real-time slicing

algorithm for Stereolithography (STL) CAD model applied in additive

manufacturing industry. IOP Conference Series: Materials Science and

Engineering, [e-journal] 342, p. 12016–12016. http://dx.doi.org/10.1088/1757-

899X/342/1/012016.

Ahn, S. H., 2019. OpenGL Cylinder, Prism & Pipe. [online] Available at:

http://www.songho.ca/opengl/gl_cylinder.html#pipe [Accessed 24 April

2022].

Benjamin Vaissier, 2022. Simulations in 3D printing | Hubs. [online]

Available at: https://www.hubs.com/knowledge-base/simulations-3d-

printing/#intro [Accessed 14 April 2022].

Brown, A. C. and Beer, D. de, 092013. Development of a stereolithography

(STL) slicing and G-code generation algorithm for an entry level 3-D printer.

In: 2013 Africon. AFRICON 2013. Pointe-Aux-Piments, Mauritius, 9/9/2013 -

12/9/2013: IEEE, pp. 1–5.

Chang Y., S. R., 1986. Using SLAM to design the material handling system of

a flexible manufacturing system. International journal of Production Research,

Vol.24, 15-26.A

Chen, Z., 102010. Development of Opengl Based 3D Simulator for Computer

Numerical Control. In: 2010 International Conference on Artificial

Intelligence and Computational Intelligence. 2010 International Conference

on Artificial Intelligence and Computational Intelligence (AICI). Sanya, China,

23/10/2010 - 24/10/2010: IEEE, pp. 319–321.

Choong, Y. Y. C., Tan, H. W., Patel, D. C., Choong, W. T. N., Chen, C.-H.,

Low, H. Y., Tan, M. J., Patel, C. D. and Chua, C. K., 2020. The global rise of

3D printing during the COVID-19 pandemic. Nature reviews. Materials, [e-

journal] 5(9), pp. 637–639. http://dx.doi.org/10.1038/s41578-020-00234-3.

Christine Evans, 2021. 6 Industries Being Transformed by 3D Printing | Fictiv.

[online] Available at: https://www.fictiv.com/articles/6-industries-being-

transformed-by-3d-printing [Accessed 12 April 2022].

Dave Shreiner, 2001. Performance OpenGL: Platform Independent

Techniques.

Douglas, K., 2021. 3D Printer Heated Bed – The Advantages. All3DP. [online]

28 Jul. Available at: https://all3dp.com/2/3d-printer-heated-bed-advantages/

[Accessed 15 April 2022].

https://cybercrew.uk/blog/3d-printing-statistics/
http://dx.doi.org/10.1088/1757-899X/342/1/012016
http://dx.doi.org/10.1088/1757-899X/342/1/012016
http://www.songho.ca/opengl/gl_cylinder.html#pipe
https://www.hubs.com/knowledge-base/simulations-3d-printing/#intro
https://www.hubs.com/knowledge-base/simulations-3d-printing/#intro
http://dx.doi.org/10.1038/s41578-020-00234-3
https://www.fictiv.com/articles/6-industries-being-transformed-by-3d-printing
https://www.fictiv.com/articles/6-industries-being-transformed-by-3d-printing
https://all3dp.com/2/3d-printer-heated-bed-advantages/

99

ElMaraghy, H. A., 1982. Simulation and graphical animation of advanced

manufacturing systems. Journal of Manufacturing Systems, 53- 63.

G. Avventuroso, R. Foresti, M. Silvestri, E. Morosini Frazzon, ed., 2017.

"Engineering, technology & innovation management beyond 2020: new

challenges, new approaches": 2017 International Conference on Engineering,

Technology and Innovation (ICE/ITMC) : conference proceedings. Piscataway,

NJ: IEEE. Available at: Jardim-Gonçalves, Ricardo (HerausgeberIn).

http://ieeexplore.ieee.org/servlet/opac?punumber=8269762 .

Gopsill, J. A., Shindler, J. and Hicks, B. J., 2018. Using finite element analysis

to influence the infill design of fused deposition modelled parts. Progress in

Additive Manufacturing, [e-journal] 3(3), pp. 145–163.

http://dx.doi.org/10.1007/s40964-017-0034-y.

Hajihosseini, F. H., 2009. Importance of Simulation in Manufacturing. World

Academy of Science, Engineering and Technology, 285-288.

Jardim-Gonçalves, R., ed., 2017. "Engineering, technology & innovation

management beyond 2020: new challenges, new approaches": 2017

International Conference on Engineering, Technology and Innovation

(ICE/ITMC) : conference proceedings. Piscataway, NJ: IEEE. Available at:

Jardim-Gonçalves, Ricardo (HerausgeberIn).

http://ieeexplore.ieee.org/servlet/opac?punumber=8269762.

Jee, H. and Sachs, E., 2000. A visual simulation technique for 3D printing.

Advances in Engineering Software, [e-journal] 31(2), pp. 97–106.

http://dx.doi.org/10.1016/S0965-9978(99)00045-9.

Low Cost 3D Printing for Rapid Prototyping and its Application - Scientific

Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Workflow-of-3D-Printing-

Process_fig1_338600152 [accessed 14 Apr, 2022]

Lo Valvo, E., Licari, R. and Adornetto, A., 2012. CNC Milling Machine

Simulation in Engineering Education. International Journal of Online and

Biomedical Engineering (iJOE), [e-journal] 8(2), p. 33–33.

http://dx.doi.org/10.3991/ijoe.v8i2.2047.

Luo, X., Wang, J., Liu, N., Zhao, Z. and Zhou, Y., 82014. YaRep: A Personal

3D Printing Simulator. In: 2014 International Conference on Virtual Reality

and Visualization. 2014 International Conference on Virtual Reality and

Visualization (ICVRV). Shenyang, China, 30/8/2014 - 31/8/2014: IEEE,

pp. 408–411.

Materialise Software, 2020. Tutorial: The 3D printing workflow. 11 November.

Available at: https://youtu.be/6ZO4YPgoAGM (Accessed: 14 April 2022).

Manus, 2015. BENEFITS OF USING CNC SIMULATION SOFTWARE.

[online] Available at: https://www.manusnc.com/en/blog/benefit-of-using-cnc-

simulation-software [Accessed 14 April 2022].

http://ieeexplore.ieee.org/servlet/opac?punumber=8269762
http://dx.doi.org/10.1007/s40964-017-0034-y
http://ieeexplore.ieee.org/servlet/opac?punumber=8269762
http://dx.doi.org/10.1016/S0965-9978(99)00045-9
https://www.researchgate.net/figure/Workflow-of-3D-Printing-Process_fig1_338600152
https://www.researchgate.net/figure/Workflow-of-3D-Printing-Process_fig1_338600152
http://dx.doi.org/10.3991/ijoe.v8i2.2047
https://youtu.be/6ZO4YPgoAGM
https://www.manusnc.com/en/blog/benefit-of-using-cnc-simulation-software
https://www.manusnc.com/en/blog/benefit-of-using-cnc-simulation-software

100

Marshall Burns, 1989. The StL Format | fabbers.com. [online] Available at:

<https://www.fabbers.com/tech/STL_Format> [Accessed 15 April 2022].

Minetto, R., Volpato, N., Stolfi, J., Gregori, R. M. and da Silva, M. V., 2017.

An optimal algorithm for 3D triangle mesh slicing. Computer-Aided Design,

[e-journal] 92, pp. 1–10. http://dx.doi.org/10.1016/j.cad.2017.07.001.

Mohan Pandey, P., Venkata Reddy, N. and Dhande, S. G., 2003. Slicing

procedures in layered manufacturing: a review. Rapid Prototyping Journal, [e-

journal] 9(5), pp. 274–288. http://dx.doi.org/10.1108/13552540310502185.

Pal, B., 2021. FDM Printing Advantages & Disadvantages | Detailed.

TheMechNinja. [online] 2 Jul. Available at: https://themechninja.com/07/fdm-

printing-advantages-disadvantages-detailed/[Accessed 15 April 2022].

Pan, X., Chen, K. and Chen, D., 52014. Development of rapid prototyping

slicing software based on STL model. In: Proceedings of the 2014 IEEE 18th

International Conference on Computer Supported Cooperative Work in

Design (CSCWD). 2014 IEEE 18th International Conference on Computer

Supported Cooperative Work in Design (CSCWD). Hsinchu, Taiwan,

21/5/2014 - 23/5/2014: IEEE, pp. 191–195.

Rohrer, M. W., 2000. Seeing is believing: the importance of visualization in

manufacturing simulation. In: 2000 Winter Simulation Conference

Proceedings (Cat. No.00CH37165). WSC 2000, Winter Simulation Conference.

Orlando, FL, USA, 10-13 Dec. 2000: IEEE, pp. 1211–1216.

Sam Anand, Omkar Ghalsasi, Botao Zhang, Archak Goel, Srikanth Reddy,

Shriyanka Joshi and Gil Morris, 2018. Peace engineering: Transforming

engineers for a sustainable global future : imagine - design - create : building

a better world through peace engineering : November 12-16, 2018,

Albuquerque, NM, USA. [e-book]. Piscataway, NJ: IEEE.

http://ieeexplore.ieee.org/servlet/opac?punumber=8622654

Sagar Shinde, 2000. Introduction to Simulation and Modeling: Historical

Perspective. [online] Available at:

https://uh.edu/~lcr3600/simulation/historical.html[Accessed 10 April 2022].

Singh, P. and Dutta, D., 2003. Multi-Direction layered deposition – An

overview of process planning methodologies, Proceedings of the Solid

Freeform Fabrication Symposium.

Topçu O, Taşcıoğlu Y and Ünver H Ö., 2011. A Method for Slicing CAD

Models in Binary STL Format. 6th Int. Adv. Technol. Symp. 141–8

Tractus3D, 2021. FDM vs SLA 3D printing - What are the advantages and

disadvantages. [online] Available at: https://tractus3d.com/knowledge/learn-

3d-printing/fdm-vs-sla-3d-printing/[Accessed 13 April 2022].

Wang, D., Wang, H. and Wang, Y., 12102021. Continuity Path Planning for

3D Printed Lightweight Infill Structures. In: 2021 IEEE Conference on

http://dx.doi.org/10.1016/j.cad.2017.07.001
http://dx.doi.org/10.1108/13552540310502185
https://themechninja.com/07/fdm-printing-advantages-disadvantages-detailed/
https://themechninja.com/07/fdm-printing-advantages-disadvantages-detailed/
http://ieeexplore.ieee.org/servlet/opac?punumber=8622654
https://uh.edu/~lcr3600/simulation/historical.html
https://tractus3d.com/knowledge/learn-3d-printing/fdm-vs-sla-3d-printing/
https://tractus3d.com/knowledge/learn-3d-printing/fdm-vs-sla-3d-printing/

101

Telecommunications, Optics and Computer Science (TOCS). 2021 IEEE

Conference on Telecommunications, Optics and Computer Science (TOCS).

Shenyang, China, 10/12/2021 - 11/12/2021: IEEE, pp. 959–962.

Wikifactory, 2021. FDM 3D Printing: Common problems and how to solve

them by +bitfab. [online] Available at:

<https://wikifactory.com/+bitfab/stories/fdm-3d-printing-common-problems-

and-how-to-solve-them> [Accessed 15 April 2022]

Xu, H., Jing, W., Li, M. and Li, W., 102016. A slicing model algorithm based

on STL model for additive manufacturing processes. In: 2016 IEEE Advanced

Information Management, Communicates, Electronic and Automation Control

Conference (IMCEC). 2016 IEEE Advanced Information Management,

Communicates, Electronic and Automation Control Conference (IMCEC).

Xi'an, China, 3/10/2016 - 5/10/2016: IEEE, pp. 1607–1610.

Xu, J., Gu, X., Ding, D., Pan, Z. and Chen, K., 2018. A review of slicing

methods for directed energy deposition based additive manufacturing. Rapid

Prototyping Journal, [e-journal] 24(6), pp. 1012–1025.

http://dx.doi.org/10.1108/RPJ-10-2017-0196.

Zhang, Z. and Joshi, S., 2015. An improved slicing algorithm with efficient

contour construction using STL files. The International Journal of Advanced

Manufacturing Technology, [e-journal] 80(5-8), pp. 1347–1362.

http://dx.doi.org/10.1007/s00170-015-7071-9.

3D Spectra Technologies LLP, 2021. FDM 3D Printing Market Growth,

Opportunities & Industry Sectors: Everything You Need to Know. [online]

Available at: https://www.3dspectratech.com/fdm-3d-printing-market-growth-

opportunities-industry-sectors-everything-you-need-to-know/ [Accessed 13

April 2022].

https://wikifactory.com/+bitfab/stories/fdm-3d-printing-common-problems-and-how-to-solve-them
https://wikifactory.com/+bitfab/stories/fdm-3d-printing-common-problems-and-how-to-solve-them
http://dx.doi.org/10.1108/RPJ-10-2017-0196
https://www.3dspectratech.com/fdm-3d-printing-market-growth-opportunities-industry-sectors-everything-you-need-to-know/
https://www.3dspectratech.com/fdm-3d-printing-market-growth-opportunities-industry-sectors-everything-you-need-to-know/

102

5 APPENDICES

Appendix A: ULTIMAKER CURA

Figure A-1: Generating G-code in ULTIMAKER CURA software.

103

Figure A-2: Print Parameters set in CURA for sample 4.

104

Appendix B: Coding

#include<iostream>
#include<fstream>
#include<sstream>
#include<string>
#include<vector>
#include<GL/freeglut.h>
#include <algorithm>
#include <chrono>
using namespace std::chrono;
using namespace std;

// Headers for generating pipe (filament)
#include "Vectors.h"
#include "Matrices.h"
#include "Plane.h"
#include "Line.h"
#include "Pipe.h"

// Function Prototype//
void grid();
void origin();
void Rendering();
void Solid_Render();
void display();
void reshape(int w, int h);
void speed(int);
void STLreader();
void Slicer();
void ContourCrea();
void Infill();
void initSharedMem(); //
void GetInfo();
void ParDesrp(); // Parameters desrciption
void DisInfo();
void drawPipe();
void drawPath();
void renderView();
void renderPrinting();
void renderPrinted();
void CurrPrinted();
void renderPreview();
void renderInfill();
void CurrInfill();
void CurrLayer();
void PrintedInfill();
void nozzle();
void loadingBar();
void printTime();

Pipe pipe;
std::vector<Vector3> path;
std::vector<Vector3> path2;
std::vector<Vector3> path3;
std::vector<Vector3> path4;
std::vector<Vector3> path5;
std::vector<Vector3> path6;

105

std::vector<Vector3> path7;
std::vector<Vector3> path8;
std::vector<Vector3> path9;
std::vector<Vector3> circle;
std::vector<Vector3> buildPath(float startpoint[3], float endpoi
nt[3]);
std::vector<Vector3> buildCircle(float radius, int steps, bool X
);

// Pi
const double pi = 3.14159265358979323846;

// keyboard
float cx = 0, cy = 0, cz = 0;
float ax = 0, ay = 0, az = 0;
float rotx = 0, roty = 0, rotz = 0;
float zoom = 0;
int nxt_lyr = 0;
int nxt_pnt[10000];
int pnt_Infill[10000];
bool preview;
bool renderMode;
float fr = 1;
int viewAngle;
int tempView;

// STL reader variables
string stl;
float m_vertex[100000][3];
float m_normal[100000][3];
float m_original_vertex[100000][3];
float m_original_normal[100000][3];
int z;
float novertex[30], nonormal[30];
int i, j, k, ll, l;
char coor[30];
char h[] = "endsolid";

// Get info
char customize;

// Slicer variables
float sliced_vertex[1000][1000][3]; // #1st [] = layer and #2nd
[] = the point number of that layer and #3rd [] = the point size
 (x,y,z)
int slicedVetx_num[1000][2];
float layer_gap;
float tempCase1[1000][2]; // store the possible circle center
int pnt_C1 = 0;
bool check_C1 = false;
float temp_vertex[1000][3];
float cirCen[2] = { 0,0 };
const int N = 1000;
int seen[N];

// Contour creation variables
int startlyr = 0;
float startList[1000][1000][3]; // #1st [] = layer ; #2nd [] = s
tart/end (odd is start/ even is end) ; #3rd [] = x,y,z;

106

float endList[1000][1000][3]; // #1st [] = layer ; #2nd [] = sta
rt/end (odd is start/ even is end) ; #3rd [] = x,y,z;
float order_list[1000][1000][50][3]; // #1st [] = layer ; #2nd [
] = start/end (odd is start/ even is end) ; #3rd [] = no. contou
r ; #4th [] = x,y,z;
float flag[1000][1000]; // flag (1 = visited / 0 = hasnt visited
) ## 1st [] = layer ; 2nd [] = nth start point;
int contour_[1000]; // number of contour for each layer; [] = la
yer
int pntNum_order[1000][1000]; // number of point in order list;
1st [] = layer; 2nd [] = contour

// Infill
char infillPattern;
float bottomThickness;
float topThickness;
float bottom_layer;
float top_layer;
float InfillGap_Max = 40; // Maximum infill gap
float infill[1000][2000][30][3]; // #1st [] = layer ; #2nd [] =
no. point ; #3rd [] = no. contour ; #4th [] = x,y,z;
int pntNum_infill[10000][10000]; // point
float contNum_infill[1000]; // contour
float InfillPerc; // Infill Density (Percentage)
int PercBotTop = 100; // 100% for top and bottom layers

// Rendering
int time_;
char RenMode;
float eyeX = 0.0f, eyeY = 500.0f, eyeZ = 600.0f;
int renderLyr = 0;
int renderContr[1000];
int infillContr[1000];
int printedLyr = 0;
int infillLyr = 0;
int printedInfillLyr = 0;
int printedCurrLyr;
bool infill_preview = false;

// Filament rendering
const int CIRCLE_SECTORS = 48;
double X_step = 0.0125; // 0.0125 mm per step
int currIndex = 0;
bool DonePrint;
bool iDonePrint;

// Nozzle
float nx, ny, nz; // nozzle movement x y z
bool Reach = false; // to check the status of initial nozzle mov
ement
int count_n = 0;
float nozzle_path[10000][3];
float pntNum_n;
int index_n;

//lighting
GLfloat yellow[] = { 1,1,0,1 };
GLfloat white[] = { 1,1,1,1 };
GLfloat black[] = { 0,0,0,1 };

107

GLfloat lowam[] = { 0.2f,0.2f,0.2f,1.0f };
GLfloat hiam[] = { 1,1,1,1 };
GLfloat red[] = { 1,0,0,0 };
GLfloat blue[] = { 0, 0, 1, 0};
GLfloat green[] = { 0, 1, 0, 0 };
GLfloat purple[] = { 1,0,1,0,0 };

void keyboard(unsigned char key, int x, int y)
{
 //Movements
 if (key == 'w') { if (cy < 500.0) cy += 1; }
 if (key == 's') { if (cy > -500.0) cy -= 1;}
 if (key == 'a') { if (cx > -500.0) cx -= 1;}
 if (key == 'd') { if (cx < 500.0) cx += 1;}
 if (key == 'q') { if (cz > -500.0) cz -= 1; }
 if (key == 'e') { if (cz < 500.0) cz += 1; }

 //Rotations
 if (key == 'i') { rotx += 1; }
 if (key == 'k') { rotx -= 1; }
 if (key == 'j') { rotz += 1; }
 if (key == 'l') { rotz -= 1; }

 // Preview the layered object
 if (key == 'f') { preview = true; }
 if (key == 'g') { preview = false; }

 // Zoom in/out
 if (key == 'z') { zoom = zoom + 10; }
 if (key == 'x') { zoom = zoom - 10; }

 //Speed control
 if (key == 'b') { fr = 500; }
 if (key == 'n') { fr = 1; }

 // View Angle
 if (key == '1') { viewAngle = 1; } // Isometric
 if (key == '2') { viewAngle = 2; } // Top
 if (key == '3') { viewAngle = 3; } // Right side
 if (key == '4') { viewAngle = 4; } // Left side
 if (key == '5') { viewAngle = 5; } // Front

 // Render Mode (solid/ printing)
 if (key == 'p') { renderMode = true; }
 if (key == 'o') { renderMode = false; }
 if (key == 't') { infill_preview = true; }
 if (key == 'y') { infill_preview = false; }

 glutPostRedisplay();
}

// Different eyes view
void renderView()
{
 if (viewAngle == 1) // Isometric view
 {
 cx = 0; cy = 0; cz = 0;
 rotx = 0; roty = 0; rotz = 0;
 zoom = 0;

108

 eyeX = 500.0f; eyeY = 400.0f; eyeZ = 600.0f;
 tempView = 1;
 viewAngle = 0;
 }
 else if (viewAngle == 2) // Top View
 {
 cx = 0; cy = 0; cz = 0;
 rotx = 0; roty = 0; rotz = 0;
 zoom = 0;
 eyeX = 10.0f; eyeY = 0.0f; eyeZ = 700.0f;
 tempView = 2;
 viewAngle = 0;
 }
 else if (viewAngle == 3) // Right Side View
 {
 cx = 0; cy = 0; cz = 0;
 rotx = 0; roty = 0; rotz = 0;
 zoom = 0;
 eyeX = 700.0f; eyeY = 0.0f; eyeZ = 300.0f;
 tempView = 3;
 viewAngle = 0;
 }
 else if (viewAngle == 4) // Left Side View
 {
 cx = 0; cy = 0; cz = 0;
 rotx = 0; roty = 0; rotz = 0;
 zoom = 0;
 eyeX = -700.0f; eyeY = 0.0f; eyeZ = 300.0f;
 tempView = 4;
 viewAngle = 0;
 }
 else if (viewAngle == 5) // Front View
 {
 cx = 0; cy = 0; cz = 0;
 rotx = 0; roty = 0; rotz = 0;
 zoom = 0;
 eyeX = 0.0f; eyeY = 750.0f; eyeZ = 400.0f;
 tempView = 5;
 viewAngle = 0;
 }
}

void init()
{
 // Set background color to black and opaque
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 // Set background depth to farthest
 glClearDepth(1.0f);
 // Enable depth testing for z-culling
 glEnable(GL_DEPTH_TEST);
 // Set the type of depth-test
 glDepthFunc(GL_LEQUAL);
 // Enable smooth shading
 glShadeModel(GL_SMOOTH);
 // Nice perspective corrections
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
 // to enable the lighting in the viewing volume/ renderin
g space
 glEnable(GL_LIGHTING);

109

 // the type of light
 glEnable(GL_LIGHT0);
 // the parameter of that particular lighting
 GLfloat lmodel_ambient[] = { 1, 0, 1, 0.0 }; // set to pu
rple color
 // The glLightfv function returns light source parameter
values.
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);
}

// Explanation of the parameters
void ParDesrp()
{
 cout << "\n==
================================\n";
 cout << "Print Setting" << endl;
 cout << "==
==============================\n";
 cout << "Layer Height\n" << endl;
 cout << ">> The height of each layer in mm. Higher values
 produce faster prints in lower\n resolution, lower values pro
duce slower prints in higher resolution." << endl;
 cout << " (Range: 0.12 mm ~ 0.28 mm)" << endl;
 cout << "--
------------------------------" << endl;
 cout << "Infill Density\n" << endl;
 cout << ">> Adjusts the density of infill of the print."
<< endl;
 cout << "--
------------------------------" << endl;
 cout << "Infill Pattern\n" << endl;
 cout << ">> The pattern of the infill material of the pri
nt. The linear and line infill\n swap direction on alternate l
ayers." << endl;
 cout << " [Line pattern(L) / Linear pattern(Z).]" << en
dl;
 cout << "--
------------------------------" << endl;
 cout << "Bottom Thickness\n" << endl;
 cout << ">> The thickness of bottom layers in the print,
this value is divided by the\n layer height defines the number
 of bottom layers." << endl;
 cout << "--
------------------------------" << endl;
 cout << "Top Thickness\n" << endl;
 cout << ">> The thickness of top layers in the print, thi
s value is divided by the\n layer height defines the number of
 top layers." << endl;
 cout << "--
------------------------------" << endl;
 cout << "Bottom Layers\n" << endl;
 cout << ">> The number of bottom layers, this value is ro
unded to a whole number." << endl;
 cout << "--
------------------------------" << endl;
 cout << "Top Layers\n" << endl;
 cout << ">> The number of top layers, this value is round
ed to a whole number.\n" << endl;

110

 cout << "--
------------------------------" << endl;
 cout << "Rendering Mode\n" << endl;
 cout << ">> 3D print object render in Line mode (L) / Pip
e mode (P).\n" << endl;
 cout << "==
==============================" << endl;
}

// Get the layer height and infill density from user
void GetInfo()
{
 ///
/////////////////////////////////////
 // Default print setting
 layer_gap = 0.28; // 0.28 mm
 InfillPerc = 50; // 50%
 infillPattern = 'l'; // Line pattern
 bottomThickness = 0.84; // Bottom thickness (mm)
 topThickness = 0.84; // Top thickness (mm)
 bottom_layer = ceil(bottomThickness / layer_gap); // bott
om layer
 top_layer = ceil(topThickness / layer_gap); // bottom lay
er
 RenMode = 'p'; // Pipe mode
 ///
/////////////////////////////////////

 cout << "==
==============================" << endl;
 cout << "Default Print Setting" << endl;
 cout << "==
==============================" << endl;

 cout << "STL File Name\t\t\t\t\t\t: " << stl << ".stl" <<
 endl;
 cout << "Layer Height\t\t\t\t\t\t: " << layer_gap << " mm
" << endl;
 cout << "Quality\t\t\t\t\t\t\t: ";

 if (layer_gap > 0.11) {
 if (layer_gap > 0.15) {
 if (layer_gap > 0.19) {

 if (layer_gap > 0.27) { cout << "Low Quality"; }

 else { cout << "Standard Quality"; }
 }
 else { cout << "Dynamic Quality"; }
 }
 else { cout << "Super Quality"; }
 }

 cout << "\nInfill Density\t\t\t\t\t\t: " << InfillPerc <<
 " %" << endl;
 cout << "Infill Line Distance\t\t\t\t\t: " << InfillGap_M
ax / InfillPerc << " mm" << endl;
 cout << "Infill Pattern\t\t\t\t\t\t: ";

111

 if (infillPattern == 'l' || infillPattern == 'L') { cout
<< "Line Pattern" << endl; }
 else { cout << "Linear Pattern" << endl; }
 cout << "Bottom Thickness\t\t\t\t\t: " << bottomThickness
 << " mm" << endl;
 cout << "Bottom Layer(s)\t\t\t\t\t\t: " << bottom_layer <
< " layer(s)" << endl;
 cout << "Top Thickness\t\t\t\t\t\t: " << topThickness <<
" mm" << endl;
 cout << "Top Layer(s)\t\t\t\t\t\t: " << top_layer << " la
yer(s)" << endl;
 cout << "Wall Print Speed\t\t\t\t\t: " << "25.0 mm/s" <<
endl;
 cout << "Infill Print Speed\t\t\t\t\t: " << "50.0 mm/s" <
< endl;
 cout << "Skin Print Speed\t\t\t\t\t: " << "25.0 mm/s" <<
endl;
 cout << "Initial Layer Print Speed\t\t\t\t: " << "20.0 mm
/s" << endl;
 cout << "Rendering Mode\t\t\t\t\t\t: ";
 if (RenMode == 'l' || RenMode == 'L') { cout << "Line Mod
e" << endl; }
 else { cout << "Pipe Mode" << endl; }
 cout << "==
=============================\n" << endl;

 cout << "Press C to customize the print setting ... \nPre
ss ANY KEY to confirm the default print setting ... \n>> ";

 while (!(cin >> customize))
 {
 // Explain error

 cerr << "\nPress C to customize the print setting ... ";

 // Clear input stream
 cin.clear();

 // Discard previous input
 cin.ignore(123, '\n');
 }

 if(customize == 'C' || customize == 'c')
 {

 ParDesrp(); // describe the parameters that will get from
 user

 cout << "Customize Print Setting" << endl;

 cout << "==
==============================" << endl;
 cout << "Layer height (mm): ";

 while (!(cin >> layer_gap) || (layer_gap < 0.11 || layer_
gap > 0.29))
 {
 // Explain error

112

 cerr << "\n## ERROR! Please enter a valid number. ";
 cout << "\n\nLayer height (mm): ";
 // Clear input stream
 cin.clear();

 // Discard previous input
 cin.ignore(123, '\n');
 }

 cout << "Infill density (%): ";

 while (!(cin >> InfillPerc) || (InfillPerc < 0 || InfillP
erc > 100))
 {
 // Explain error

 cerr << "\n## ERROR! Please enter a valid number. ";
 cout << "\n\nInfill density (%): ";
 // Clear input stream
 cin.clear();

 // Discard previous input
 cin.ignore(123, '\n');
 }

 cout << "Infill pattern: ";

 while (!(cin >> infillPattern) || (infillPattern != 'z' &
& infillPattern != 'Z' && infillPattern != 'L' && infillPattern
!= 'l'))
 {
 // Explain error

 cerr << "\nLine pattern (L) / Linear pattern (Z). ";

 // Clear input stream
 cin.clear();

 // Discard previous input
 cin.ignore(123, '\n');
 }

 cout << "Bottom thickness (mm): ";

 while (!(cin >> bottomThickness))
 {
 // Explain error

 cerr << "\n## ERROR! Please enter a valid number. ";
 cout << "\n\nBottom thickness (mm): ";
 // Clear input stream
 cin.clear();

 // Discard previous input
 cin.ignore(123, '\n');
 }

113

 cout << "Top thickness (mm): ";

 while (!(cin >> topThickness))
 {
 // Explain error

 cerr << "\n## ERROR! Please enter a valid number. ";
 cout << "\n\nTop thickness (mm): ";
 // Clear input stream
 cin.clear();

 // Discard previous input
 cin.ignore(123, '\n');
 }

 bottom_layer = ceil(bottomThickness / layer_gap); // bott
om layer

 top_layer = ceil(topThickness / layer_gap); // bottom lay
er

 cout << "Rendering Mode: ";

 while (!(cin >> RenMode) || (RenMode != 'l' && RenMode !=
 'L' && RenMode != 'p' && RenMode != 'P'))
 {
 // Explain error

 cerr << "\nLine mode (L) / Pipe mode (P). ";
 cout << "\n\nRendering Mode: ";
 // Clear input stream
 cin.clear();

 // Discard previous input
 cin.ignore(123, '\n');
 }
 }
}

void DisInfo()
{
 if (customize == 'C' || customize == 'c')
 {
 // Display the info the user has entered

 cout << "\n==
================================" << endl;
 cout << "\t\t\t Print Info" << endl;

 cout << "==
==============================" << endl;

 cout << "STL File Name\t\t\t\t\t\t: " << stl << ".stl" <<
 endl;

114

 cout << "Layer Height\t\t\t\t\t\t: " << layer_gap << " mm
" << endl;
 cout << "Quality\t\t\t\t\t\t\t: ";

 if (layer_gap > 0.11) {
 if (layer_gap > 0.15) {
 if (layer_gap > 0.19) {

 if (layer_gap > 0.27) { cout << "Low Quality"; }

 else { cout << "Standard Quality"; }
 }

 else { cout << "Dynamic Quality"; }
 }
 else { cout << "Super Quality"; }
 }

 cout << "\nInfill Density\t\t\t\t\t\t: " << InfillPerc <<
 " %" << endl;

 cout << "Infill Line Distance\t\t\t\t\t: " << InfillGap_M
ax / InfillPerc << " mm" << endl;
 cout << "Infill Pattern\t\t\t\t\t\t: ";

 if (infillPattern == 'l' || infillPattern == 'L') { cout
<< "Line Pattern" << endl; }
 else { cout << "Linear Pattern" << endl; }

 cout << "Bottom Thickness\t\t\t\t\t: " << bottomThickness
 << " mm" << endl;

 cout << "Bottom Layer(s)\t\t\t\t\t\t: " << bottom_layer <
< " layer(s)" << endl;

 cout << "Top Thickness\t\t\t\t\t\t: " << topThickness <<
" mm" << endl;

 cout << "Top Layer(s)\t\t\t\t\t\t: " << top_layer << " la
yer(s)" << endl;

 cout << "Wall Print Speed\t\t\t\t\t: " << "25.0 mm/s" <<
endl;

 cout << "Infill Print Speed\t\t\t\t\t: " << "50.0 mm/s" <
< endl;

 cout << "Skin Print Speed\t\t\t\t\t: " << "25.0 mm/s" <<
endl;

 cout << "Initial Layer Print Speed\t\t\t\t: " << "20.0 mm
/s" << endl;
 cout << "Rendering Mode\t\t\t\t\t\t: ";

 if (RenMode == 'l' || RenMode == 'L') { cout << "Line Mod
e" << endl; }
 else { cout << "Pipe Mode" << endl; }

115

 }

 std::cout << "\n===
===================================";
 std::cout << "\n\t\t\t Keyboard controls\n";
 std::cout << "===
=================================\n";
 std::cout << "Camera controls\n";
 std::cout << "Key\tFunction\t\t Key\tFunction\n";
 std::cout << "w\tMove camera forward\t i\tRotate X axis c
ounter clockwise\n";
 std::cout << "s\tMove camera backward\t k\tRotate X axis
clockwise\n";
 std::cout << "a\tMove camera left\t j\tRotate Y axis coun
ter clockwise\n";
 std::cout << "d\tMove camera right\t l\tRotate Y axis clo
ckwise\n";
 std::cout << "q\tMove camera up\t\t e\tMove camera down\n
";
 std::cout << "z\tZoom in\t\t\t x\tZoom out\n";
 std::cout << "1\tIsometric View\t\t 2\tTop View\n";
 std::cout << "3\tRight View\t\t 4\tLeft View\n";
 std::cout << "5\tFront View\n";
 std::cout << "p\tExit solid body mode and starts printing
 process\n";
 std::cout << "---
---------------------------------\n";
 std::cout << "3D printing process control\n";
 std::cout << "b\tFast forward\t\t\t n\tNormal speed\t\t\n
";
 std::cout << "f\tShow entire 3D print body\t g\tBack to p
rinting simulation\n";
 std::cout << "---
---------------------------------\n";
 cout << "Height of the object : " << layer_gap * slicedVetx_num[999][1] << " mm" << endl;;
 cout << "Total number of printing layer(s) : " << slicedVetx_num[999][1] << " layer(s)" << endl;
 printTime();
 std::cout << "---
---------------------------------\n";
 cout << "\nPress S to proceed to the simulation......";

 char proceed;

 while (!(cin >> proceed) || (proceed != 'S' && proceed !=
 's'))
 {
 // Error

 cerr << "\nPress S to proceed to the simulation......";

 // Clear input stream
 cin.clear();

 // Discard previous input
 cin.ignore(123, '\n');
 }
}

// Display a progress bar

116

void loadingBar()
{
 glDisable(GL_LIGHTING);
 glDisable(GL_DEPTH_TEST);

 // Set to red color
 if (renderLyr != slicedVetx_num[999][1])
 {
 glColor4f(1.0f, 0.0f, 0.0f, 0.5f);
 }
 else
 {
 glColor4f(0.0f, 1.0f, 0.0f, 0.5f);
 }

 GLint step = 220 * renderLyr/ slicedVetx_num[999][1];

 glLineWidth(5);
 glBegin(GL_LINES);
 glVertex3f(110, 120 , -5);
 glVertex3f(110 - GLfloat(step), 120, -5);
 glEnd();

 glColor4f(0.0f, 0.0f, 1.0f, 0.5f);
 glPointSize(10);
 glBegin(GL_POINTS);
 glVertex3f(110, 120, -5);
 glVertex3f(-110, 120, -5);
 glEnd();

 glEnable(GL_LIGHTING);
 glEnable(GL_DEPTH_TEST);

 glLineWidth(1);
}

// Initialize the render variables
void initSharedMem()
{
 // Filament rendering variables
 DonePrint = true;
 renderLyr = startlyr;
 //renderLyr = 1;

 // Nozzle initial position
 nx = 110;
 ny = 110;
 nz = - 0.05f;
}

//
///////////////
// draw a pipe
//
///////////////
void drawPipe()
{

117

 glLineWidth(1);
 int count = pipe.getContourCount();
 for (int i = 0; i < count; ++i)
 {
 std::vector<Vector3> contour = pipe.getContour(i);
 std::vector<Vector3> normal = pipe.getNormal(i);
 glBegin(GL_LINES);
 for (int j = 0; j < (int)contour.size() - 1; ++j)
 {
 glNormal3fv(&normal[j].x);
 glVertex3fv(&contour[j].x);
 glNormal3fv(&normal[j + 1].x);
 glVertex3fv(&contour[j + 1].x);
 }
 glEnd();
 }

 // surface
 for (int i = 0; i < count - 1; ++i)
 {
 std::vector<Vector3> c1 = pipe.getContour(i);
 std::vector<Vector3> c2 = pipe.getContour(i + 1);
 std::vector<Vector3> n1 = pipe.getNormal(i);
 std::vector<Vector3> n2 = pipe.getNormal(i + 1);
 glBegin(GL_TRIANGLE_STRIP);
 for (int j = 0; j < (int)c2.size(); ++j)
 {
 glNormal3fv(&n2[j].x);
 glVertex3fv(&c2[j].x);
 glNormal3fv(&n1[j].x);
 glVertex3fv(&c1[j].x);
 }
 glEnd();
 }
}

//
///////////////
// draw lines along the path
//
///////////////
void drawPath()
{
 glDisable(GL_LIGHTING);
 glDisable(GL_DEPTH_TEST);

 // lines
 glColor3f(1.0f, 0.5f, 0.0f);
 glLineWidth(2.0f);
 glBegin(GL_LINES);

 int count = pipe.getPathCount();
 for (int i = 0; i < count - 1; ++i)
 {
 glVertex3fv(&pipe.getPathPoint(i).x);
 glVertex3fv(&pipe.getPathPoint(i + 1).x);
 }
 glEnd();

118

 // points
 glColor3f(0.0f, 1.0f, 1.0f);
 glPointSize(5.0f);
 glBegin(GL_POINTS);
 for (int i = 0; i < count; ++i)
 {
 glVertex3fv(&pipe.getPathPoint(i).x);
 }
 glEnd();
 glPointSize(1); // reset

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
}

// Build circle for pipe
std::vector<Vector3> buildCircle(float radius, int steps, bool X)
{
 std::vector<Vector3> points;
 if (steps < 2) return points;

 const double PI2 = acos(-1) * 2.0f;
 float x, y, a;
 for (int i = 0; i <= steps; ++i)
 {
 a = PI2 / steps * i;
 x = radius * cosf(a);
 y = radius * sinf(a);

 if (X)
 {

 points.push_back(Vector3(0, x, y)); // parallel to x-axis
 }
 else
 {

 points.push_back(Vector3(x, 0, y)); // parallel to y-axis
 }
 }
 return points;
}

// Generate path in straight line
std::vector<Vector3> buildPath(float startpoint[3], float endpoi
nt[3])
{
 double dist_x, dist_y, euclidean_d;
 int steps;
 std::vector<Vector3> vertices;
 Vector3 vertex;

 dist_x = abs(startpoint[0] - endpoint[0]);
 dist_y = abs(startpoint[1] - endpoint[1]);
 euclidean_d = sqrt(pow(startpoint[0] -
 endpoint[0], 2) + pow(startpoint[1] - endpoint[1], 2));

 steps = euclidean_d / X_step; // number of steps

119

 pntNum_n = steps; // store for nozzle movement

 // For distance is smaller than 0.0125 mm
 if (dist_x < X_step && dist_y < X_step)
 {
 dist_x = 0.0001;
 dist_y = 0.0001;
 steps = 1;
 }

 // Change the sign based on the position of x
 if (startpoint[0] > endpoint[0])
 {
 // distance becomes -ve
 dist_x = -dist_x;
 }

 if (startpoint[1] > endpoint[1])
 {
 // distance become -ve
 dist_y = -dist_y;
 }

 for (int i = 0;i < steps; ++i)
 {
 vertex.x = startpoint[0] + dist_x * i / steps;
 vertex.y = startpoint[1] + dist_y * i / steps;
 vertex.z = startpoint[2];
 vertices.push_back(vertex);

 // Store for nozzle movement
 nozzle_path[i][0] = vertex.x;
 nozzle_path[i][1] = vertex.y;
 nozzle_path[i][2] = vertex.z;
 }

 return vertices;
}

void printTime()
{
 float sec, ttl_time, i_ttl_t,tbTime;
 float dis;
 sec = 0;
 ttl_time = 0;
 i_ttl_t = 0;
 tbTime = 0; // top and bottom
 float printSpeed_i = 50.0f; // 50 mm/s infill
 float printSpeed_o = 25.0f; // 25 mm/s wall
 int seconds, hours, minutes;

 for (int lyr = 0; lyr < slicedVetx_num[999][1]; lyr++)
 {
 for (int cont = 0; cont < contour_[lyr]; cont++)
 {

 for (int pnt = 0; pnt < slicedVetx_num[lyr][0]; pnt++)
 {

120

 dis = sqrt(pow(order_list[lyr][pnt][cont][0] -
 order_list[lyr][pnt + 1][cont][0], 2) + pow(order_list[lyr][pnt
][cont][1] - order_list[lyr][pnt + 1][cont][1], 2));
 sec = dis / printSpeed_o;
 ttl_time += sec;

 if (pnt == slicedVetx_num[lyr][0] - 1)
 {

 if (cont == contour_[lyr] - 1)
 {

 dis = sqrt(pow(order_list[lyr][pnt][cont][0] -
 order_list[lyr + 1][pnt][cont][0], 2) + pow(order_list[lyr][pnt
][cont][1] - order_list[lyr + 1][pnt][cont][1], 2));

 sec = dis / printSpeed_o;
 ttl_time += sec;
 }
 }
 }
 }
 }
 seconds = ttl_time;
 minutes = seconds / 60;
 hours = minutes / 60;
 cout << "==
===========================" << endl;
 cout << "\t\t\t Time Estimation " << endl;
 cout << "==
===========================" << endl;
 cout << "Outer wall\t\t\t\t\t\t: " << int(hours) << " hou
rs " << int(minutes % 60)
 << " minutes " << endl;

 for (int lyr = 0; lyr < slicedVetx_num[999][1]; lyr++)
 {
 for (int cont = 0; cont < contour_[lyr]; cont++)
 {

 for (int pnt = 0; pnt < pntNum_infill[lyr][cont]; pnt++)
 {

 if (lyr < bottom_layer || lyr > (slicedVetx_num[999][1] -
 top_layer - 1))
 {
 if (lyr < 2)
 {
 printSpeed_i = 20;
 }
 else
 {
 printSpeed_i = 25;
 }
 }
 else
 {

121

 printSpeed_i = 50;
 }

 dis = sqrt(pow(infill[lyr][pnt][cont][0] -
 infill[lyr][pnt + 1][cont][0], 2) + pow(infill[lyr][pnt][cont][
1] - infill[lyr][pnt + 1][cont][1], 2));
 sec = dis / printSpeed_i;

 if (lyr < bottom_layer || lyr >(slicedVetx_num[999][1] -
 top_layer - 1))
 {
 tbTime += sec;
 }
 else
 {
 i_ttl_t += sec;
 }

 }
 }
 }

 seconds = i_ttl_t;
 minutes = seconds / 60;
 hours = minutes / 60;
 cout << "Infill\t\t\t\t\t\t\t: " << int(hours) << " hours
 " << int(minutes % 60)
 << " minutes " << endl;

 seconds = tbTime;
 minutes = seconds / 60;
 hours = minutes / 60;
 cout << "Skin\t\t\t\t\t\t\t: " << int(hours) << " hours "
 << int(minutes % 60)
 << " minutes " << endl;

 seconds = ttl_time + i_ttl_t + tbTime;
 minutes = seconds / 60;
 hours = minutes / 60;
 std::cout << "---
---------------------------------\n";
 cout << "Total\t\t\t\t\t\t\t: " << int(hours) << " hours
" << int(minutes % 60)
 << " minutes " << endl;
}

int main(int argc, char** argv)
{
 STLreader();
 GetInfo();
 Slicer();
 ContourCrea();
 Infill();
 DisInfo();

 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

122

 glutInitWindowSize(1200, 800);
 glutCreateWindow("3D Printing Simulator");
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutTimerFunc(0,speed, 0);
 glutIgnoreKeyRepeat(0);
 glutKeyboardFunc(keyboard);
 //
 initSharedMem(); // initiate pipe rendering
 init(); // initiate window setting

 glutMainLoop();

 return 0;
}

void display()
{
 float zoomX, zoomY, zoomZ;
 float moveX, moveY, moveZ;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 // position of the light source (x,y,z, w)
 // If w is 1.0, we are defining a light at a point in spa
ce. If w is 0.0, the light is at infinity.
 GLfloat lightPos0[] = { 0.0f,0.0f, 30.0f, 1.0f };
 glLightfv(GL_LIGHT0, GL_POSITION, lightPos0);

 // Change view angle
 renderView();

 // Camera view
 //gluLookAt (eyeX , eyeY , eyeZ , centerX , centerY , ce
nterZ , upX , upY , upZ)
 gluLookAt(
 eyeX, eyeY, eyeZ,
 0.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f
);

 // Default setting
 zoomY = zoom; zoomZ = zoom; zoomX = 0;
 moveX = cx; moveY = cy; moveZ = cz;

 // Reconfigure with respective viewing angle
 if (tempView == 1) // Isometric
 {
 zoomX = zoom; zoomY = zoom; zoomZ = zoom;
 moveX = cx; moveY = cy; moveZ = cz;
 }
 else if (tempView == 2) // Top
 {
 zoomX = 0; zoomY = 0; zoomZ = zoom;
 moveX = cy; moveY = -cx; moveZ = cz;
 }
 else if (tempView == 3) // Side 1
 {

123

 zoomX = zoom; zoomY = 0; zoomZ = 0.5 * zoom;
 moveX = cy; moveY = -cx; moveZ = cz;
 }
 else if (tempView == 4) // Side 2
 {
 zoomX = -zoom; zoomY = 0; zoomZ = 0.5 * zoom;
 moveX = cy; moveY = cx; moveZ = cz;
 }
 else if (tempView == 5) // Front
 {
 zoomX = 0; zoomY = zoom; zoomZ = 0.5 * zoom;
 moveX = cx; moveY = cy; moveZ = cz;
 }

 // Constraint the range of rotation
 if (rotx > 360 || rotx < -360) { rotx = 0; }
 if (rotz > 360 || rotz < -360) { rotz = 0; }

 glTranslatef(zoomX, zoomY, zoomZ);
 glRotatef(rotx, 1, 0, 0);
 glRotatef(roty, 0, 1, 0);
 glRotatef(rotz, 0, 0, 1);
 glTranslatef(moveX, moveY, moveZ);

 // Rendering
 grid();
 origin();
 if (renderLyr > 0) { loadingBar(); }

 if (RenMode == 'P' || RenMode == 'p')
 {
 if (renderMode)
 {

 GLfloat lmodel_ambient[] = { 1, 0, 1, 0.0 }; // set to pu
rple color

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);
 if (Reach)
 {
 if (preview)
 {
 renderPreview();
 }
 else
 {
 int printspeed = fr * 1;
 if (DonePrint)
 {

 GLfloat red[] = { 1, 0, 0, 0.0 }; // set to red color

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, red);
 CurrLayer();
 }

 GLfloat green[] = { 0, 1, 0, 0.0 }; // set to green color

124

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, green);
 renderPrinted();

 GLfloat blue[] = { 0, 0, 1, 0.0 }; // set to blue color

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, blue);
 CurrPrinted();

 GLfloat yellow[] = { 1, 1, 0, 0.0 }; // set to yellow col
or

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, yellow);
 CurrInfill();

 GLfloat cyan[] = { 0, 255, 255, 0.0 }; // set to cyan col
or

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, cyan);
 PrintedInfill();

 for (int loop = 0; loop <= printspeed; loop++)
 {

 GLfloat white[] = { 1, 1, 1, 0.0 }; // set to white color

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, white);
 renderPrinting();

 if (DonePrint)
 {

 GLfloat pink[] = { 255, 0, 127, 0.0 }; // set to pink col
or

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, pink);

 renderInfill();
 }
 }
 }
 }
 nozzle();
 }
 else
 {

 GLfloat lmodel_ambient[] = { 1, 0, 1, 0.0 }; // set to pu
rple color

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);
 Solid_Render();
 }
 }
 else { Rendering(); }

 glutSwapBuffers();

125

}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei)w, (GLsizei)h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_SMOOTH);
 gluPerspective(20.0, w/h, 1, 1000.0);
 glMatrixMode(GL_MODELVIEW);
}

// Draw grid
void grid()
{
 glDisable(GL_LIGHTING);

 // Set to grey color
 glColor4f(0.5f, 0.5f, 0.5f, 0.5f);

 // Variables
 GLfloat axis_point, startpoint, endpoint, gapBTWgrid;
 startpoint = -110.0; // starting point of the grid line
 endpoint = 110.0; // ending point of the grid line
 gapBTWgrid = 10.0; // gap between each grid line

 // Grid lines rendering //
 for (axis_point = startpoint; axis_point <= endpoint; axi
s_point += gapBTWgrid)
 {
 // Variable for x_axis //
 GLfloat gridLineVertex_X[] =
 {

 axis_point, endpoint, 0, // axis point is an increment va
riable for line formation
 axis_point, startpoint, 0
 };

 // Variable for y_axis //
 GLfloat gridLineVertex_Y[] =
 {
 startpoint, axis_point, 0,
 endpoint, axis_point, 0
 };

 // X_axis //
 glLineWidth(1);
 glBegin(GL_LINES);
 glVertex3f(axis_point, endpoint, 0);
 glVertex3f(axis_point, startpoint, 0);
 glEnd();

 // Y_axis //
 glLineWidth(1);
 glBegin(GL_LINES);
 glVertex3f(startpoint, axis_point, 0);
 glVertex3f(endpoint, axis_point, 0);

126

 glEnd();
 }

 glEnable(GL_LIGHTING);
}

// Draw origin of the 3D space
void origin()
{
 glDisable(GL_LIGHTING);
 glDisable(GL_DEPTH_TEST);

 // draw origin point at left corner //
 // Set to red color
 glPointSize(20);
 glBegin(GL_POINTS);
 glColor4f(1.0f, 0, 0, 0.5f);
 glVertex3f(110, 110, 0);
 glEnd();

 // draw Z-axis at origin //
 // Set to blue color
 glLineWidth(5);
 glBegin(GL_LINES);
 glColor4f(0.0f, 0, 1.0f, 0.5f);
 glVertex3f(110, 110, 0);
 glVertex3f(110, 110, 20);
 glEnd();

 // draw Y-axis at origin //
 // Set to green color
 glBegin(GL_LINES);
 glColor4f(0, 1.0f, 0, 0.5f);
 glVertex3f(110, 110, 0);
 glVertex3f(110, 90, 0);
 glEnd();

 // draw X-axis at origin //
 // Set to yellow color
 glBegin(GL_LINES);
 glColor4f(1.0f, 1.0f, 0, 0.5f);
 glVertex3f(110, 110, 0);
 glVertex3f(90, 110, 0);
 glEnd();

 // Draw the frames
 glLineWidth(0.5);
 glBegin(GL_LINES);
 glColor4f(1.0f, 1.0f, 1.0f, 0.5f); // set to white color
 //
 glVertex3f(110, 110, 0);
 glVertex3f(110, 110, 250);
 //
 glVertex3f(-110, 110, 0);
 glVertex3f(-110, 110, 250);
 //
 glVertex3f(110, -110, 0);
 glVertex3f(110, -110, 250);
 //

127

 glVertex3f(-110, -110, 0);
 glVertex3f(-110, -110, 250);
 //
 glVertex3f(110, 110, 250);
 glVertex3f(-110, 110, 250);
 //
 glVertex3f(-110, 110, 250);
 glVertex3f(-110, -110, 250);
 //
 glVertex3f(110, -110, 250);
 glVertex3f(-110, -110, 250);
 //
 glVertex3f(110, 110, 250);
 glVertex3f(110, -110, 250);
 glEnd();

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
}

void speed(int)
{
 if (RenMode == 'p' || RenMode == 'P') { time_ = 0; }
 else { time_ = 0; }

 glutPostRedisplay();
 glutTimerFunc(time_ / 3, speed, 0);
}

// STL READER - extract the vertex and normal points
void STLreader()
{
 // Read the STL file
 cout << "\t\t\t3D Printer Simulation" << endl;
 cout << "==
==============================\n";
 cout << "Place STL file into the same folder as this solu
tion file.\n";
 cout << "Enter name of STL file : ";
 getline(cin, stl);
 string filename = stl + ".stl";
 ifstream stlfile;
 stlfile.open(filename);

 // STL file error validating
 while (stlfile.fail())
 {
 cerr << "\n## Error -
 Failed to open " << stl << endl;

 cout << "\n==
================================\n";
 cout << "\t\t\t3D Printer Simulation" << endl;

 cout << "==
==============================\n";

 cout << "Place STL file into the same folder as this solu
tion file.\n";

128

 cout << "Enter name of STL file : ";
 getline(cin, stl);
 string filename = stl + ".stl";
 stlfile.open(filename);
 }

 // j - coordinate size ; k - triangle count ; ll -
 normal point count
 k = 0; ll = 0;
 for (i = 0; i < 500000; i++)
 {
 stlfile >> coor; // Read 30 chars from the file

 if (strcmp(coor, h) != 0) // strcmp = string compare the
 coor with "endsolid". == 0 means equal, != 0 means not equal
 {

 if (strcmp(coor, "vertex") == 0) // reach "vertex" lines
 {
 for (j = 0; j < 3; j++) // 3 -
 coordinate size
 {

 stlfile >> m_original_vertex[k][j]; // read the vertice
s

 m_vertex[k][j] = m_original_vertex[k][j]; // store them
 }
 k++;

 novertex[z]++; // number of triangulated facet
 }

 if (strcmp(coor, "normal") == 0) // strcmp = string compa
re the coor with "normal"
 {
 for (j = 0; j < 3; j++)
 {

 stlfile >> m_original_normal[ll][j];

 m_normal[ll][j] = m_original_normal[ll][j];
 }
 ll++;

 nonormal[z]++; // number of normal
 }
 }
 else
 break;
 }

 ///* Center the vertices to the origin
 float maxX, maxY, minX, minY, minZ;
 float offsetX, offsetY, offsetZ;

 maxX = 0; minX = 10000;
 maxY = 0; minY = 10000;

129

 minZ = 10000;

 for (int i = 0; i < novertex[z]; i++)
 {

 if (maxX < m_vertex[i][0]) { maxX = m_vertex[i][0]; }

 if (minX > m_vertex[i][0]) { minX = m_vertex[i][0]; }

 if (maxY < m_vertex[i][1]) { maxY = m_vertex[i][1]; }

 if (minY > m_vertex[i][1]) { minY = m_vertex[i][1]; }

 if (minZ > m_vertex[i][2]) { minZ = m_vertex[i][2]; }
 }

 float averX = (maxX + minX) / 2;
 float averY = (maxY + minY) / 2;

 offsetX = 0 - averX;
 offsetY = 0 - averY;
 offsetZ = 0 - minZ;

 for (int i = 0; i < novertex[z]; i ++)
 {
 m_vertex[i][0] = m_vertex[i][0] + offsetX;
 m_vertex[i][1] = m_vertex[i][1] + offsetY;
 m_vertex[i][2] = m_vertex[i][2] + offsetZ;
 }
}

// Taking the vertex then compare with a z plane
void Slicer()
{
 // Get the highest Z point //
 float highest;
 highest = m_vertex[0][2];
 // Loop to store largest number to m_vertex[0]
 for (i = 0; i < novertex[z]; i++){if (highest < m_vertex[
i][2]){ highest = m_vertex[i][2]; }}
 int no_lyr;
 no_lyr = highest / layer_gap;

 if (no_lyr * layer_gap < highest) { no_lyr++; }

 int case_, layer_count, point_count;
 int line_point[3]; // useful point for line equation (arr
ange the point to ease the code)
 float vertor[3]; // the vector of 2 points for case 3 & c
ase 4
 float t; // t of line parametric equation

 // Initialize the count
 layer_count = 0;
 point_count = 0;

 // compare and save the points into another variable (lay
er by layer)

130

 for (float layer_height = 0 ; layer_height <= highest; la
yer_height += layer_gap)
 {

 // Determine case type for each triangulated facet
 for (i = 0; i < novertex[z]; i += 3)
 {
 // Case 1

 if (m_vertex[i][2] == layer_height && m_vertex[i + 1][2]
== layer_height

 && m_vertex[i + 2][2] == layer_height)
 case_ = 1;

 // Case 2
 else if

 ((m_vertex[i][2] == layer_height && m_vertex[i + 1][2] ==
 layer_height) ||

 (m_vertex[i][2] == layer_height && m_vertex[i + 2][2] ==
layer_height) ||

 (m_vertex[i + 1][2] == layer_height && m_vertex[i + 2][2]
 == layer_height))
 case_ = 2;

 // Case 3

 else if (m_vertex[i][2] == layer_height || m_vertex[i + 2
][2] == layer_height || m_vertex[i + 1][2] == layer_height)
 case_ = 3;

 // Case 4

 else if ((m_vertex[i][2] > layer_height && (m_vertex[i +
1][2] < layer_height || m_vertex[i + 2][2] < layer_height)) ||

 (m_vertex[i][2] < layer_height && (m_vertex[i + 1][2] > l
ayer_height || m_vertex[i + 2][2] > layer_height)))
 case_ = 4;

 // Case 5
 else
 case_ = 5;

 // Store the sliced vertex with their respective case typ
e//
 switch (case_) {
 case 1:

 break;

 case 2:
 // Store two intersection points

 for (int count = 0; count < 3; count++)

131

 {

 if (m_vertex[i + count][2] == layer_height)
 {

 sliced_vertex[layer_count][point_count][0] = m_vertex[i +
 count][0]; // x

 sliced_vertex[layer_count][point_count][1] = m_vertex[i +
 count][1]; // y

 sliced_vertex[layer_count][point_count][2] = m_vertex[i +
 count][2]; // z

 point_count++;
 }
 }
 break;

 case 3:

 for (int count = 0; count < 3; count++)
 {

 if (m_vertex[i + count][2] == layer_height)
 {

 // Determine the other two vertices for finding the other
 intersection point

 if (count == 0) { line_point[0] = 1;line_point[1] = 2; }

 else if (count == 1) { line_point[0] = 0;line_point[1] =
2; }

 else if (count == 2) { line_point[0] = 0; line_point[1] =
 1; }

 if ((m_vertex[i + line_point[0]][2] > layer_height && m_v
ertex[i + line_point[1]][2] < layer_height) ||

 (m_vertex[i + line_point[1]][2] > layer_height && m_verte
x[i + line_point[0]][2] < layer_height))
 {

 // store the only intersection vertex

 sliced_vertex[layer_count][point_count][0] = m_vertex[i +
 count][0]; // x

 sliced_vertex[layer_count][point_count][1] = m_vertex[i +
 count][1]; // y

 sliced_vertex[layer_count][point_count][2] = m_vertex[i +
 count][2]; // z

 point_count++; // found 1st intersection vertex

132

 // Line equation //

 // Compute vector of the line between the points

 vertor[0] = m_vertex[i + line_point[0]][0] -
 m_vertex[i + line_point[1]][0];// x0 - x1

 vertor[1] = m_vertex[i + line_point[0]][1] -
 m_vertex[i + line_point[1]][1];// y0 - y1

 vertor[2] = m_vertex[i + line_point[0]][2] -
 m_vertex[i + line_point[1]][2];// z0 - z1

 t = (layer_height -
 m_vertex[i + line_point[0]][2]) / vertor[2]; // find t of param
etric eq

 // 2nd intersection point

 sliced_vertex[layer_count][point_count][0] = m_vertex[i +
 line_point[0]][0] + vertor[0] * t; // x

 sliced_vertex[layer_count][point_count][1] = m_vertex[i +
 line_point[0]][1] + vertor[1] * t; // y

 sliced_vertex[layer_count][point_count][2] = m_vertex[i +
 line_point[0]][2] + vertor[2] * t; // z

 point_count++; // found 2nd intersection vertex
 }
 }
 }
 break;

 case 4:
 // Find two intersection points

 if ((m_vertex[i][2] > layer_height && (m_vertex[i + 1][2]
 < layer_height && m_vertex[i + 2][2] < layer_height)) ||

 (m_vertex[i][2] < layer_height && (m_vertex[i + 1][2] > l
ayer_height && m_vertex[i + 2][2] > layer_height)))
 {

 // Assign the center point
 line_point[0] = 0;
 line_point[1] = 1;
 line_point[2] = 2;
 }

 else if ((m_vertex[i + 1][2] > layer_height && (m_vertex[
i][2] < layer_height && m_vertex[i + 2][2] < layer_height)) ||

133

 (m_vertex[i + 1][2] < layer_height && (m_vertex[i][2] > l
ayer_height && m_vertex[i + 2][2] > layer_height)))
 {

 // Assign the center point
 line_point[0] = 1;
 line_point[1] = 0;
 line_point[2] = 2;
 }

 else if ((m_vertex[i + 2][2] > layer_height && (m_vertex[
i][2] < layer_height && m_vertex[i + 1][2] < layer_height)) ||

 (m_vertex[i + 2][2] < layer_height && (m_vertex[i][2] > l
ayer_height && m_vertex[i + 1][2] > layer_height)))
 {

 // Assign the center point
 line_point[0] = 2;
 line_point[1] = 0;
 line_point[2] = 1;
 }

 // Line equation //
 // Compute vector of the 1st line

 vertor[0] = m_vertex[i + line_point[0]][0] -
 m_vertex[i + line_point[1]][0];// x0 - x1

 vertor[1] = m_vertex[i + line_point[0]][1] -
 m_vertex[i + line_point[1]][1];// y0 - y1

 vertor[2] = m_vertex[i + line_point[0]][2] -
 m_vertex[i + line_point[1]][2];// z0 - z1

 t = (layer_height -
 m_vertex[i + line_point[0]][2]) / vertor[2]; // find t of param
etric eq

 // 1st intersection point

 sliced_vertex[layer_count][point_count][0] = m_vertex[i +
 line_point[0]][0] + vertor[0] * t; // x

 sliced_vertex[layer_count][point_count][1] = m_vertex[i +
 line_point[0]][1] + vertor[1] * t; // y

 sliced_vertex[layer_count][point_count][2] = m_vertex[i +
 line_point[0]][2] + vertor[2] * t; // z

 point_count++; // found 1st intersection vertex

 // Compute vector of the 2nd line

 vertor[0] = m_vertex[i + line_point[0]][0] -
 m_vertex[i + line_point[2]][0];// x0 - x2

134

 vertor[1] = m_vertex[i + line_point[0]][1] -
 m_vertex[i + line_point[2]][1];// y0 - y2

 vertor[2] = m_vertex[i + line_point[0]][2] -
 m_vertex[i + line_point[2]][2];// z0 - z2

 t = (layer_height -
 m_vertex[i + line_point[0]][2]) / vertor[2]; // find t of param
etric eq

 // 2nd intersection point

 sliced_vertex[layer_count][point_count][0] = m_vertex[i +
 line_point[0]][0] + vertor[0] * t; // x

 sliced_vertex[layer_count][point_count][1] = m_vertex[i +
 line_point[0]][1] + vertor[1] * t; // y

 sliced_vertex[layer_count][point_count][2] = m_vertex[i +
 line_point[0]][2] + vertor[2] * t; // z

 point_count++; // found 2nd intersection vertex
 break;

 case 5:
 break;

 }
 }

 // Process to find out the center of circle if exists
 int temp_count = 0;
 if (check_C1)
 {
 for (int i = 0; i < N; i++)
 seen[i] = 0;

 for (int i = 0; i < pnt_C1; i++)
 {
 if (seen[i] == 0)
 {
 int count = 0;

 for (int j = i; j < pnt_C1; j++)
 {

 if (tempCase1[j][0] == tempCase1[i][0] && tempCase1[j][1]
 == tempCase1[i][1])
 {
 count ++;

 seen[j] = 1;
 }
 }

135

 if (count > 5) // similar points intersection
 {

 //cout << layer_count << endl;

 cirCen[0] = tempCase1[i][0];

 cirCen[1] = tempCase1[i][1];

 // Store original vertices to temporary storage

 for (int t = 0; t < point_count; t++)
 {

 temp_vertex[t][0] = sliced_vertex[layer_count][t][0];

 temp_vertex[t][1] = sliced_vertex[layer_count][t][1];

 temp_vertex[t][2] = sliced_vertex[layer_count][t][2];
 }

 // Remove the unwanted circle center

 for (int l = 0; l < point_count; l++)
 {

 if (temp_vertex[l][0] != cirCen[0] || temp_vertex[l][1] !
= cirCen[1])
 {

 sliced_vertex[layer_count][temp_count][0] = temp_vertex[l
][0];

 sliced_vertex[layer_count][temp_count][1] = temp_vertex[l
][1];

 sliced_vertex[layer_count][temp_count][2] = temp_vertex[l
][2];

 temp_count++;
 }
 }

 point_count = temp_count;
 }
 }
 }
 }

 slicedVetx_num[layer_count][0] = point_count; // store th
e number of points of each layer
 layer_count++; // to next layer
 point_count = 0; // reset the point count
 check_C1 = false; // reset the check case 1;
 }

136

 // Get highest sliced layer
 if (layer_count == no_lyr && layer_count != 0)
 {

 slicedVetx_num[layer_count][0] = slicedVetx_num[layer_cou
nt - 1][0];

 for (int copy_pnt = 0; copy_pnt < slicedVetx_num[layer_co
unt][0]; copy_pnt++)
 {

 sliced_vertex[layer_count][copy_pnt][0] = sliced_vertex[l
ayer_count - 1][copy_pnt][0]; // x

 sliced_vertex[layer_count][copy_pnt][1] = sliced_vertex[l
ayer_count - 1][copy_pnt][1]; // y

 sliced_vertex[layer_count][copy_pnt][2] = highest; // z
 }
 }
 slicedVetx_num[999][1] = layer_count; // save the total n
umber of layer
}

// Arrange the sliced data in order
void ContourCrea()
{
 // Variables
 int ttl_lyr; // total sliced layer
 int endPnt_count, startPnt_count; // number of start/end
points
 ttl_lyr = slicedVetx_num[999][1];
 float decimal_xy = 100.0; // 2 decimal points

 // Transfer sliced vertices into matrixA for polygon crea
tion
 for (int lyr_count = startlyr; lyr_count < ttl_lyr; lyr_c
ount++)
 {
 // Reset the point count
 endPnt_count = 0;
 startPnt_count = 0;

 for (int pnt_count = 0; pnt_count < slicedVetx_num[lyr_co
unt][0]; pnt_count++)
 {

 if (pnt_count % 2 != 0)
 // odd point number of the layer = end point
 {

 // end point of all combination of sliced points

 endList[lyr_count][endPnt_count][0] = floor(sliced_vertex
[lyr_count][pnt_count][0] * decimal_xy) / decimal_xy;
 // x (round to 2 dp)

137

 endList[lyr_count][endPnt_count][1] = floor(sliced_vertex
[lyr_count][pnt_count][1] * decimal_xy) / decimal_xy;
 // y (round to 2 dp)

 endList[lyr_count][endPnt_count][2] = layer_gap * lyr_cou
nt; // z

 endPnt_count++; // end point + 1
 }
 else if (pnt_count % 2 == 0)
 // even point number of the layer = start point
 {

 // start point of all combination of sliced points

 startList[lyr_count][startPnt_count][0] = floor(sliced_ve
rtex[lyr_count][pnt_count][0] * decimal_xy) / decimal_xy;
 // x (round to 2 dp)

 startList[lyr_count][startPnt_count][1] = floor(sliced_ve
rtex[lyr_count][pnt_count][1] * decimal_xy) / decimal_xy;
 // y (round to 2 dp)

 startList[lyr_count][startPnt_count][2] = layer_gap * lyr
_count; // z

 startPnt_count++; // start Point + 1
 }
 }
 }

 // Polygon creation algorithm
 int checkFlag = 0;
 int pnt_; // point count
 float searcher[3] = {0,0,0};
 float switchPoint[3] = { 0,0,0 }; // temporary point for
interchange end and start point
 bool NoPoint = false; //
 bool searchStatus = false; // whether can find the next p
oint or not
 int pntRecorder = 0; // record the set of start/end point
 that is found coincident

 for (int lyr_count = startlyr; lyr_count < ttl_lyr; lyr_c
ount++)
 {

 contour_[lyr_count] = 0; // Reset the contour

 pntRecorder = 0; // Reset pntRecorder for next layer

 do // Check flag if all went through then go next layer
 {
 checkFlag = 0; // reset the checkFlag

138

 pntNum_order[lyr_count][contour_[lyr_count]] = 0; // rese
t the number of point for next contour in order list

 do // Check if contour has ended, if yes then find next c
ontour
 {

 // Assign searcher to end point (initial pntRecorder is
0 to start with 0th point set of each layer)

 searcher[0] = endList[lyr_count][pntRecorder][0];

 searcher[1] = endList[lyr_count][pntRecorder][1];

 searcher[2] = endList[lyr_count][pntRecorder][2];

 NoPoint = false;
 searchStatus = false;

 // check got end = start or not

 for (pnt_ = 0; pnt_ < slicedVetx_num[lyr_count][0]/2; pnt
_++)
 {
 if (!searchStatus)
 {

 // if end = start AND has yet in order list

 if ((searcher[0] == startList[lyr_count][pnt_][0] && sear
cher[1] == startList[lyr_count][pnt_][1]) &&

 flag[lyr_count][pnt_] != 1)
 {

 //order_list[500][200][500][3]; // #1st [] = layer ; #2nd
 [] = no contour ; #3rd [] = point number; #4th [] = x,y,z;

 flag[lyr_count][pnt_] = 1; // the flag change to 1 as thi
s point has been gone through

 // store start point

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][0] = startList[lyr_count][pnt_][
0]; // x

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][1] = startList[lyr_count][pnt_][
1]; // y

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][2] = startList[lyr_count][pnt_][
2]; // z

 pntNum_order[lyr_count][contour_[lyr_count]]++;

139

 // store end point

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][0] = endList[lyr_count][pnt_][0]
; // x

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][1] = endList[lyr_count][pnt_][1]
; // y

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][2] = endList[lyr_count][pnt_][2]
; // z

 pntNum_order[lyr_count][contour_[lyr_count]]++; // order
list + 1

 pntRecorder = pnt_; // set pointer to the new point

 searchStatus = true; // able to search the next point
 }
 }
 }
 ///*

 // check got end = end or not, if there is no end = start
 if (!searchStatus)
 {

 for (pnt_ = 0; pnt_ < slicedVetx_num[lyr_count][0]/2; pnt
_++)
 {

 // if end1 = end2 AND not the same point (eg. end1 = end1
) AND has yet in order list

 if ((searcher[0] == endList[lyr_count][pnt_][0] && search
er[1] == endList[lyr_count][pnt_][1]) &&

 pnt_ != pntRecorder && flag[lyr_count][pnt_] != 1)
 {

 //Interchange start and end

 switchPoint[0] = endList[lyr_count][pnt_][0];

 switchPoint[1] = endList[lyr_count][pnt_][1];

 switchPoint[2] = endList[lyr_count][pnt_][2];

 endList[lyr_count][pnt_][0] = startList[lyr_count][pnt_][
0];

 endList[lyr_count][pnt_][1] = startList[lyr_count][pnt_][
1];

140

 endList[lyr_count][pnt_][2] = startList[lyr_count][pnt_][
2];

 startList[lyr_count][pnt_][0] = switchPoint[0];

 startList[lyr_count][pnt_][1] = switchPoint[1];

 startList[lyr_count][pnt_][2] = switchPoint[2];

 flag[lyr_count][pnt_] = 1; // the flag change to 1 as thi
s point has been gone through

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][0] = startList[lyr_count][pnt_][
0]; // x

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][1] = startList[lyr_count][pnt_][
1]; // y

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][2] = startList[lyr_count][pnt_][
2]; // z

 pntNum_order[lyr_count][contour_[lyr_count]]++; // order
list + 1

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][0] = endList[lyr_count][pnt_][0]
; // x

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][1] = endList[lyr_count][pnt_][1]
; // y

 order_list[lyr_count][pntNum_order[lyr_count][contour_[ly
r_count]]][contour_[lyr_count]][2] = endList[lyr_count][pnt_][2]
; // z

 pntNum_order[lyr_count][contour_[lyr_count]]++; // order
list + 1

 pntRecorder = pnt_; // set pointer to the new point

 searchStatus = true; // able to search the next point
 }
 }
 }

 // both conditions did not meet then use new search point
 to get a new contour

141

 if (!searchStatus)
 {
 NoPoint = true;
 searchStatus = false;

 contour_[lyr_count]++; // next contour
 }

 } while (!NoPoint); // assign new point set to find next
point (new contour is formed)

 // check the flag of all startpoint of each layer/contour
 bool firstSet;
 firstSet = true;

 for (int count = 0; count < slicedVetx_num[lyr_count][0]
/ 2; count++)
 {
 if (flag[lyr_count][count] == 0)
 {
 if (firstSet)
 {

 pntRecorder = count;

 if (count > contour_[lyr_count]) { firstSet = false; }

 }

 checkFlag++; // checkFlag + 1 if any flag of point is 0

 }
 }
 flag[lyr_count][pntRecorder] = 1; //

 } while (checkFlag != 0 && contour_[lyr_count] < 50); //
loop if any flag is 0;
 }
}

// Returns true if x is in range [low..high], else false
bool inRange(unsigned low, unsigned high, unsigned x)
{
 return (low <= x && x <= high);
}

void Infill()
{
 float x_max, x_min, y_max, y_min;
 float infillDensity; //
 int ttl_lyr = slicedVetx_num[999][1];
 float t; // t for parametric eq
 float vector[3] = { 0,0,0 };
 float tol = 0.8; // boundary

142

 for (int layer_c = 0; layer_c < ttl_lyr; layer_c++)
 {
 // Vertical Infill
 if (layer_c % 2 == 0) // even number layer
 {

 // Get the highest and lowest coor on x axis
 x_max = sliced_vertex[layer_c][0][0];

 for (i = 0; i < slicedVetx_num[layer_c][0]; i++)
 {

 if (x_max < sliced_vertex[layer_c][i][0])
 {

 x_max = sliced_vertex[layer_c][i][0];
 }
 }

 x_min = sliced_vertex[layer_c][0][0];

 for (i = 0; i < slicedVetx_num[layer_c][0]; i++)
 {

 if (x_min > sliced_vertex[layer_c][i][0])
 {

 x_min = sliced_vertex[layer_c][i][0];
 }
 }

 // Infill Density -
 the gap(constant) / the percentage obtained from user
 if (InfillPerc > 0)
 {

 infillDensity = InfillGap_Max / InfillPerc;
 }
 // If zero percentage then no infill
 else
 {
 infillDensity = x_max - x_min;
 }

 // Top and bottom layer has full infill

 if (layer_c < bottom_layer || layer_c > (ttl_lyr -
 top_layer - 1))
 {
 //infillDensity = Line width;
 infillDensity = 0.4;
 }

 float tempX1[3], tempX2[3];

 // Get the infill vertices

143

 for (int contour_c = 0; contour_c < contour_[layer_c]; co
ntour_c++)
 {

 pntNum_infill[layer_c][contour_c] = 0;

 for (float x = x_min + infillDensity / 2; x < x_max; x +=
 infillDensity) // x plane
 {

 for (int pnt_c = 0; pnt_c < pntNum_order[layer_c][contour
_c] - 1; pnt_c++)
 {

 vector[0] = order_list[layer_c][pnt_c][contour_c][0] -
 order_list[layer_c][pnt_c + 1][contour_c][0];

 vector[1] = order_list[layer_c][pnt_c][contour_c][1] -
 order_list[layer_c][pnt_c + 1][contour_c][1];

 vector[2] = order_list[layer_c][pnt_c][contour_c][2] -
 order_list[layer_c][pnt_c + 1][contour_c][2];

 t = (x -
 order_list[layer_c][pnt_c][contour_c][0]) / vector[0];

 if (!isinf(t) && (abs(t) > 0 && abs(t) < 1)) // if not sa
me vectex && (point is between line segment)
 {

 tempX1[0] = order_list[layer_c][pnt_c][contour_c][0] + t
* vector[0];

 tempX1[1] = order_list[layer_c][pnt_c][contour_c][1] + t
* vector[1];

 tempX1[2] = order_list[layer_c][pnt_c][contour_c][2] + t
* vector[2];

 if (tempX1[0] != tempX2[0] || tempX1[1] != tempX2[1] || t
empX1[2] != tempX2[2]) // check for not similar point
 {

 if (!inRange(tempX1[1] -
 tol,tempX1[1] + tol, tempX2[1])) // check for not near to the c
urrent point
 {

 infill[layer_c][pntNum_infill[layer_c][contour_c]][contou
r_c][0] = order_list[layer_c][pnt_c][contour_c][0] + t * vector[
0];

 infill[layer_c][pntNum_infill[layer_c][contour_c]][contou
r_c][1] = order_list[layer_c][pnt_c][contour_c][1] + t * vector[
1];

144

 infill[layer_c][pntNum_infill[layer_c][contour_c]][contou
r_c][2] = order_list[layer_c][pnt_c][contour_c][2] + t * vector[
2];

 tempX2[0] = infill[layer_c][pntNum_infill[layer_c][contou
r_c]][contour_c][0];

 tempX2[1] = infill[layer_c][pntNum_infill[layer_c][contou
r_c]][contour_c][1];

 tempX2[2] = infill[layer_c][pntNum_infill[layer_c][contou
r_c]][contour_c][2];

 pntNum_infill[layer_c][contour_c]++;
 }
 }
 }
 }
 }
 }
 }
 // Horizontal Infill
 else if(layer_c % 2 != 0)
 {

 // Get the highest and lowest coor on y axis
 y_max = sliced_vertex[layer_c][0][1];

 for (i = 0; i < slicedVetx_num[layer_c][0]; i++)
 {

 if (y_max < sliced_vertex[layer_c][i][1])
 {

 y_max = sliced_vertex[layer_c][i][1];
 }
 }

 y_min = sliced_vertex[layer_c][0][1];

 for (i = 0; i < slicedVetx_num[layer_c][0]; i++)
 {

 if (y_min > sliced_vertex[layer_c][i][1])
 {

 y_min = sliced_vertex[layer_c][i][1];
 }
 }

 // Infill Density -
 the gap(constant) / the percentage obtained from user
 if (InfillPerc > 0)
 {

145

 infillDensity = InfillGap_Max / InfillPerc;
 }
 // If zero percentage then no infill
 else
 {
 infillDensity = y_max - y_min;
 }

 // Top and bottom layer has full infill

 if (layer_c < bottom_layer || layer_c > (ttl_lyr -
 top_layer - 1))
 {
 //infillDensity = Line width
 infillDensity = 0.4;
 }

 // Get the infill vertices
 float tempY1[3], tempY2[3];

 for (int contour_c = 0; contour_c < contour_[layer_c]; co
ntour_c++)
 {

 pntNum_infill[layer_c][contour_c] = 0;

 for (float y = y_min + infillDensity / 2; y < y_max; y +=
 infillDensity) // y plane
 {

 for (int pnt_c = 0; pnt_c < pntNum_order[layer_c][contour
_c] - 1; pnt_c++)
 {
 {
 //*/

 vector[0] = order_list[layer_c][pnt_c][contour_c][0] -
 order_list[layer_c][pnt_c + 1][contour_c][0];

 vector[1] = order_list[layer_c][pnt_c][contour_c][1] -
 order_list[layer_c][pnt_c + 1][contour_c][1];

 vector[2] = order_list[layer_c][pnt_c][contour_c][2] -
 order_list[layer_c][pnt_c + 1][contour_c][2];

 t = (y -
 order_list[layer_c][pnt_c][contour_c][1]) / vector[1];

 if (!isinf(t) && (abs(t) > 0 && abs(t) < 1)) // if not sa
me value && (point is between line segment)
 {

 tempY1[0] = order_list[layer_c][pnt_c][contour_c][0] + t
* vector[0];

146

 tempY1[1] = order_list[layer_c][pnt_c][contour_c][1] + t
* vector[1];

 tempY1[2] = order_list[layer_c][pnt_c][contour_c][2] + t
* vector[2];

 if (tempY1[0] != tempY2[0] || tempY1[1] != tempY2[1] || t
empY1[2] != tempY2[2])
 {

 if (!inRange(tempY1[0] - tol, tempY1[0] + tol, tempY2[0]))
 {

 infill[layer_c][pntNum_infill[layer_c][contour_c]][contou
r_c][0] = order_list[layer_c][pnt_c][contour_c][0] + t * vector[
0];

 infill[layer_c][pntNum_infill[layer_c][contour_c]][contou
r_c][1] = order_list[layer_c][pnt_c][contour_c][1] + t * vector[
1];

 infill[layer_c][pntNum_infill[layer_c][contour_c]][contou
r_c][2] = order_list[layer_c][pnt_c][contour_c][2] + t * vector[
2];

 tempY2[0] = infill[layer_c][pntNum_infill[layer_c][contou
r_c]][contour_c][0];

 tempY2[1] = infill[layer_c][pntNum_infill[layer_c][contou
r_c]][contour_c][1];

 tempY2[2] = infill[layer_c][pntNum_infill[layer_c][contou
r_c]][contour_c][2];

 pntNum_infill[layer_c][contour_c]++;
 }
 }
 }
 }
 }
 }
 }
 }
 }

 // ZigZag pattern
 if (infillPattern == 'z' || infillPattern == 'Z')
 {
 float tempLine[3];
 for (int ly = 0;ly < ttl_lyr; ly++)
 {

 for (int cont = 0; cont < contour_[ly];cont++)
 {

147

 for (int set = 0;set < pntNum_infill[ly][cont] / 2;set++)
 {
 if (set % 2 != 0)
 {

 tempLine[0] = infill[ly][set * 2][cont][0];

 tempLine[1] = infill[ly][set * 2][cont][1];

 tempLine[2] = infill[ly][set * 2][cont][2];

 infill[ly][set * 2][cont][0] = infill[ly][set * 2 + 1][co
nt][0];

 infill[ly][set * 2][cont][1] = infill[ly][set * 2 + 1][co
nt][1];

 infill[ly][set * 2][cont][2] = infill[ly][set * 2 + 1][co
nt][2];

 infill[ly][set * 2 + 1][cont][0] = tempLine[0];

 infill[ly][set * 2 + 1][cont][1] = tempLine[1];

 infill[ly][set * 2 + 1][cont][2] = tempLine[2];
 }
 }
 }
 }
 }
}

// Render object in solid mode
void Solid_Render()
{
 i = 0;
 j = 0;
 k = 1;
 l = 2;

 for (i = 0; i < nonormal[z]; i++)
 {
 glBegin(GL_TRIANGLES);

 glColor3ub(1.0f, 0.0f, 0.0f);

 {

 glNormal3f(m_normal[i][0], m_normal[i][1], m_normal[i][2]
);

 glVertex3f(m_vertex[j][0], m_vertex[j][1], m_vertex[j][2]
);

 glVertex3f(m_vertex[k][0], m_vertex[k][1], m_vertex[k][2]
);

148

 glVertex3f(m_vertex[l][0], m_vertex[l][1], m_vertex[l][2]
);
 }

 j = j + 3;
 k = k + 3;
 l = l + 3;

 glEnd();
 }
}

///*
///////////////////////////////////////
void Rendering()
{
 int printspeed = fr * 10;

 for (int loop = 0; loop <= printspeed; loop++)
 {
 bool finishPrint_R = false;
 bool finishPrint_P = false;
 bool finishPrint_P1 = false;
 bool finishPrint_I = false;
 bool finishPrint_R1 = false;

 ///
/////////////////
 // Display current printing layer
 glMaterialfv(GL_FRONT, GL_AMBIENT, green);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, blue);
 glMaterialfv(GL_FRONT, GL_SPECULAR, green);
 glMaterialf(GL_FRONT, GL_SHININESS, 128);
 glLightfv(GL_LIGHT0, GL_AMBIENT, hiam);

 if (renderLyr < slicedVetx_num[999][1] && renderLyr >= 0
&& !preview)
 {

 if (renderContr[renderLyr] < contour_[renderLyr])
 {
 nxt_pnt[renderLyr]++;

 if (nxt_pnt[renderLyr] < pntNum_order[renderLyr][renderCo
ntr[renderLyr]])
 {

 for (int k = 0; k < nxt_pnt[renderLyr]; k++)
 {
 glPointSize(7.0f);
 glBegin(GL_LINES);

 glColor3ub(1.0f, 1.0f, 1.0f);
 {

149

 glVertex3f
 (

 order_list[renderLyr][k][renderContr[renderLyr]][0],

 order_list[renderLyr][k][renderContr[renderLyr]][1],

 order_list[renderLyr][k][renderContr[renderLyr]][2]
);

 glVertex3f
 (

 order_list[renderLyr][k + 1][renderContr[renderLyr]][0],

 order_list[renderLyr][k + 1][renderContr[renderLyr]][1],

 order_list[renderLyr][k + 1][renderContr[renderLyr]][2]
);
 }
 glEnd();
 }
 }
 else
 {
 renderContr[renderLyr]++;
 }
 }
 else
 {
 finishPrint_R1 = true;
 }
 }
 else { finishPrint_R = true; }

 ///
/////////////////
 // Render the printed layer (current)
 glMaterialfv(GL_FRONT, GL_AMBIENT, red);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, blue);
 glMaterialfv(GL_FRONT, GL_SPECULAR, green);
 glMaterialf(GL_FRONT, GL_SHININESS, 128);
 glLightfv(GL_LIGHT0, GL_AMBIENT, hiam);

 printedCurrLyr = renderLyr;

 if (printedCurrLyr >= 0 && !preview && finishPrint_R1)
 {

 for (j = 0; j < contour_[printedCurrLyr]; j++)
 {

 for (int k = 0; k < pntNum_order[printedCurrLyr][j] -
 1; k++)
 {
 glPointSize(5.0f);
 glBegin(GL_LINES);

150

 glColor3ub(1.0f, 1.0f, 1.0f);
 {
 glVertex3f
 (

 order_list[printedCurrLyr][k][j][0],

 order_list[printedCurrLyr][k][j][1],

 order_list[printedCurrLyr][k][j][2]
);

 glVertex3f
 (

 order_list[printedCurrLyr][k + 1][j][0],

 order_list[printedCurrLyr][k + 1][j][1],

 order_list[printedCurrLyr][k + 1][j][2]
);
 }
 glEnd();
 }
 }
 }

 ///
/////////////////
 glMaterialfv(GL_FRONT, GL_AMBIENT, blue);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, blue);
 glMaterialfv(GL_FRONT, GL_SPECULAR, green);
 glMaterialf(GL_FRONT, GL_SHININESS, 128);
 glLightfv(GL_LIGHT0, GL_AMBIENT, hiam);

 infillLyr = renderLyr;

 if (infillLyr < slicedVetx_num[999][1] && infillLyr >= 0
&& !preview && finishPrint_R1)
 {

 if (infillContr[infillLyr] < contour_[infillLyr]) //conto
ur_[infillLyr]
 {
 pnt_Infill[infillLyr]++;

 if (pnt_Infill[infillLyr] < pntNum_infill[infillLyr][infi
llContr[infillLyr]])
 {

 for (int k = 0; k < pnt_Infill[infillLyr]; k++)
 {
 glPointSize(7.0f);
 glBegin(GL_LINES);

151

 glColor3ub(1.0f, 1.0f, 1.0f);
 {
 glVertex3f
 (

 infill[infillLyr][k][infillContr[infillLyr]][0],

 infill[infillLyr][k][infillContr[infillLyr]][1],

 infill[infillLyr][k][infillContr[infillLyr]][2]
);

 glVertex3f
 (

 infill[infillLyr][k + 1][infillContr[infillLyr]][0],

 infill[infillLyr][k + 1][infillContr[infillLyr]][1],

 infill[infillLyr][k + 1][infillContr[infillLyr]][2]
);
 }
 glEnd();
 }
 }
 else { infillContr[infillLyr]++; }
 }

 else { finishPrint_I = true; renderLyr++; }
 }

 ///
/////////////////
 // Render the printed layer
 glMaterialfv(GL_FRONT, GL_AMBIENT, red);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, blue);
 glMaterialfv(GL_FRONT, GL_SPECULAR, green);
 glMaterialf(GL_FRONT, GL_SHININESS, 128);
 glLightfv(GL_LIGHT0, GL_AMBIENT, hiam);

 ///*
 printedLyr = renderLyr;

 if (printedLyr < slicedVetx_num[999][1] && printedLyr >=
0 && !preview)
 {
 // Display layer by layer
 for (i = 0; i < printedLyr; i++)
 {
 for (j = 0; j < contour_[i]; j++)
 {

 for (int k = 0; k < pntNum_order[i][j] - 1; k++)
 {
 glPointSize(5.0f);
 glBegin(GL_LINES);

152

 glColor3ub(1.0f, 1.0f, 1.0f);
 {
 glVertex3f
 (

 order_list[i][k][j][0],

 order_list[i][k][j][1],

 order_list[i][k][j][2]
);
 glVertex3f
 (

 order_list[i][k + 1][j][0],

 order_list[i][k + 1][j][1],

 order_list[i][k + 1][j][2]
);
 }
 glEnd();
 }
 }
 finishPrint_P1 = true;
 }
 }
 else { finishPrint_P = true; }

 ///
/////////////////
 // Printed infill
 glMaterialfv(GL_FRONT, GL_AMBIENT, white);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, blue);
 glMaterialfv(GL_FRONT, GL_SPECULAR, white);
 glMaterialf(GL_FRONT, GL_SHININESS, 128);
 glLightfv(GL_LIGHT0, GL_AMBIENT, hiam);

 printedInfillLyr = infillLyr - 1;
 if (printedInfillLyr >= 0 && !preview)
 {

 for (j = 0; j < contour_[printedInfillLyr]; j++) //conto
ur_[printedInfillLyr]
 {

 for (int k = 0; k < pntNum_infill[printedInfillLyr][j] -
 1; k++)
 {
 glPointSize(5.0f);
 glBegin(GL_LINES);

 glColor3ub(1.0f, 1.0f, 1.0f);
 {
 glVertex3f

153

 (

 infill[printedInfillLyr][k][j][0],

 infill[printedInfillLyr][k][j][1],

 infill[printedInfillLyr][k][j][2]
);

 glVertex3f
 (

 infill[printedInfillLyr][k + 1][j][0],

 infill[printedInfillLyr][k + 1][j][1],

 infill[printedInfillLyr][k + 1][j][2]
);
 }
 glEnd();
 }
 }
 }

 // ## When finish print, render the printed object
 glMaterialfv(GL_FRONT, GL_AMBIENT, yellow);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, blue);
 glMaterialfv(GL_FRONT, GL_SPECULAR, red);
 glMaterialf(GL_FRONT, GL_SHININESS, 128);
 glLightfv(GL_LIGHT0, GL_AMBIENT, hiam);

 if ((finishPrint_R && finishPrint_P) || preview)
 {
 if (!infill_preview)
 {

 for (int f_lyr = 0; f_lyr < slicedVetx_num[999][1]; f_lyr
++)
 {

 for (int f_contour = 0; f_contour < contour_[f_lyr]; f_co
ntour++)
 {

 for (int f_pnt = 0; f_pnt < pntNum_order[f_lyr][f_contour
] - 1; f_pnt++)
 {

 glBegin(GL_LINES);

 glColor3ub(1.0f, 1.0f, 1.0f);
 {

 glVertex3f
 (

154

 order_list[f_lyr][f_pnt][f_contour][0],

 order_list[f_lyr][f_pnt][f_contour][1],

 order_list[f_lyr][f_pnt][f_contour][2]
);

 glVertex3f
 (

 order_list[f_lyr][f_pnt + 1][f_contour][0],

 order_list[f_lyr][f_pnt + 1][f_contour][1],

 order_list[f_lyr][f_pnt + 1][f_contour][2]
);
 }
 glEnd();
 }
 }
 }

 // Infill

 glMaterialfv(GL_FRONT, GL_AMBIENT, blue);

 glMaterialfv(GL_FRONT, GL_DIFFUSE, white);

 glMaterialfv(GL_FRONT, GL_SPECULAR, white);

 glMaterialf(GL_FRONT, GL_SHININESS, 128);

 glLightfv(GL_LIGHT0, GL_AMBIENT, hiam);

 int lyr = slicedVetx_num[999][1] - 1;

 if (lyr > 0)
 {

 for (int j = 0; j < contour_[lyr]; j++)
 {

 for (int k = 0; k < pntNum_infill[lyr][j] - 1; k++)
 {

 glBegin(GL_LINES);

 glColor3ub(1.0f, 1.0f, 1.0f);
 {

 glVertex3f
 (

 infill[lyr][k][j][0],

155

 infill[lyr][k][j][1],

 infill[lyr][k][j][2]
);

 glVertex3f
 (

 infill[lyr][k + 1][j][0],

 infill[lyr][k + 1][j][1],

 infill[lyr][k + 1][j][2]
);
 }
 glEnd();
 }
 }
 }
 }
 else
 {

 glMaterialfv(GL_FRONT, GL_AMBIENT, blue);

 glMaterialfv(GL_FRONT, GL_DIFFUSE, white);

 glMaterialfv(GL_FRONT, GL_SPECULAR, white);

 glMaterialf(GL_FRONT, GL_SHININESS, 128);

 glLightfv(GL_LIGHT0, GL_AMBIENT, hiam);

 for (int lyr = 0; lyr < slicedVetx_num[999][1]; lyr++)
 {

 for (int j = 0; j < contour_[lyr]; j++)
 {

 for (int k = 0; k < pntNum_infill[lyr][j] - 1; k++)
 {

 glBegin(GL_LINES);

 glColor3ub(1.0f, 1.0f, 1.0f);
 {

 glVertex3f
 (

 infill[lyr][k][j][0],

 infill[lyr][k][j][1],

 infill[lyr][k][j][2]

156

);

 glVertex3f
 (

 infill[lyr][k + 1][j][0],

 infill[lyr][k + 1][j][1],

 infill[lyr][k + 1][j][2]
);
 }
 glEnd();
 }
 }
 }
 }
 }
 }
}
//*/

// Render the printing part
void renderPrinting()
{
 bool y = false;
 DonePrint = false;
 //
 if (renderLyr < slicedVetx_num[999][1] && renderLyr >= 0)
 {
 if (renderContr[renderLyr] < contour_[renderLyr])
 {

 if (nxt_pnt[renderLyr] < pntNum_order[renderLyr][renderCo
ntr[renderLyr]] - 1)
 {
 float startpoint[3] = {

 order_list[renderLyr][nxt_pnt[renderLyr]][renderContr[ren
derLyr]][0],

 order_list[renderLyr][nxt_pnt[renderLyr]][renderContr[ren
derLyr]][1],

 order_list[renderLyr][nxt_pnt[renderLyr]][renderContr[ren
derLyr]][2]
 };
 float endpoint[3] = {

 order_list[renderLyr][nxt_pnt[renderLyr] + 1][renderContr
[renderLyr]][0],

 order_list[renderLyr][nxt_pnt[renderLyr] + 1][renderContr
[renderLyr]][1],

 order_list[renderLyr][nxt_pnt[renderLyr] + 1][renderContr
[renderLyr]][2]
 };

157

 path = buildPath(startpoint, endpoint);

 // To turn the cylinder direction
 float theta, OA;
 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)

 theta = float(abs(atan(OA)) * 180 / pi);

 if (theta < 45) // theta < 25 change the circle direction
 face to x axis
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

 std::vector<Vector3> p(1, path[0]);
 pipe.set(p, circle);

 ++currIndex;
 if (currIndex < path.size())
 {

 pipe.addPathPoint(path[currIndex]);
 }
 else
 {

 currIndex = 0; // Reset the current index

 nxt_pnt[renderLyr] ++; // to next point
 }
 }
 else
 {

 // If no more points try next contour
 renderContr[renderLyr]++;
 }
 }
 else
 {

 DonePrint = true; // Done printing go for infill
 }
 }
 drawPipe();
}

158

// Render printed layers
void renderPrinted()
{
 for (int lyr = 0; lyr < renderLyr; lyr++)
 {
 for (int cont = 0; cont < contour_[lyr]; cont++)
 {

 for (int pnt = 0; pnt < pntNum_order[lyr][cont] -
 1; pnt++)
 {
 bool y = false;

 float startpoint[3] = {

 order_list[lyr][pnt][cont][0],

 order_list[lyr][pnt][cont][1],

 order_list[lyr][pnt][cont][2]
 };
 float endpoint[3] = {

 order_list[lyr][pnt + 1][cont][0],

 order_list[lyr][pnt + 1][cont][1],

 order_list[lyr][pnt + 1][cont][2]
 };

 path2 = buildPath(startpoint, endpoint);

 // To turn the cylinder direction
 float theta, OA;
 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)

 theta = float(abs(atan(OA)) * 180 / pi);

 if (theta < 45)
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

 std::vector<Vector3> p2(1, path2[0]);
 pipe.set(p2, circle);

 pipe.addPathPoint(path2[path2.size() - 1]);

 drawPipe();

159

 }
 }
 }
}

// Render printed current layer
void CurrPrinted()
{
 for (int pnt = 0; pnt < nxt_pnt[renderLyr] - 1; pnt++)
 {
 bool y = false;

 float startpoint[3] = {

 order_list[renderLyr][pnt][renderContr[renderLyr]][0],

 order_list[renderLyr][pnt][renderContr[renderLyr]][1],

 order_list[renderLyr][pnt][renderContr[renderLyr]][2]
 };
 float endpoint[3] = {

 order_list[renderLyr][pnt + 1][renderContr[renderLyr]][0],

 order_list[renderLyr][pnt + 1][renderContr[renderLyr]][1],

 order_list[renderLyr][pnt + 1][renderContr[renderLyr]][2]
 };

 path3 = buildPath(startpoint, endpoint);

 // To turn the cylinder direction
 float theta, OA;
 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)
 theta = float(abs(atan(OA)) * 180 / pi);

 if (theta < 45)
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

 std::vector<Vector3> p3(1, path3[0]);
 pipe.set(p3, circle);
 pipe.addPathPoint(path3[path3.size() - 1]);

 drawPipe();
 }
}

// Render the finished printing layer
void CurrLayer()
{

160

 for (j = 0; j < contour_[renderLyr]; j++)
 {

 for (int pnt = 0; pnt < pntNum_order[renderLyr][j] -
 1; pnt++)
 {
 bool y = false;

 float startpoint[3] = {

 order_list[renderLyr][pnt][j][0],

 order_list[renderLyr][pnt][j][1],

 order_list[renderLyr][pnt][j][2]
 };
 float endpoint[3] = {

 order_list[renderLyr][pnt + 1][j][0],

 order_list[renderLyr][pnt + 1][j][1],

 order_list[renderLyr][pnt + 1][j][2]
 };

 path7 = buildPath(startpoint, endpoint);

 // To turn the cylinder direction
 float theta, OA;
 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)
 theta = float(abs(atan(OA)) * 180 / pi);

 if (theta < 45)
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

 std::vector<Vector3> p7(1, path7[0]);
 pipe.set(p7, circle);
 pipe.addPathPoint(path7[path7.size() -
 1]);

 drawPipe();
 }
 }
}

// Preview of the printed object
void renderPreview()
{
 for (int lyr = 0; lyr < slicedVetx_num[999][1]; lyr++)
 {

161

 for (int cont = 0; cont < contour_[lyr]; cont++)
 {

 for (int pnt = 0; pnt < pntNum_order[lyr][cont] -
 1; pnt++)
 {
 bool y = false;

 float startpoint[3] = {

 order_list[lyr][pnt][cont][0],

 order_list[lyr][pnt][cont][1],

 order_list[lyr][pnt][cont][2]
 };
 float endpoint[3] = {

 order_list[lyr][pnt + 1][cont][0],

 order_list[lyr][pnt + 1][cont][1],

 order_list[lyr][pnt + 1][cont][2]
 };

 path4 = buildPath(startpoint, endpoint);

 // To turn the cylinder direction
 float theta, OA;
 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)

 theta = float(abs(atan(OA)) * 180 / pi);

 if (theta < 45)
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

 std::vector<Vector3> p4(1, path4[0]);
 pipe.set(p4, circle);

 pipe.addPathPoint(path4[path4.size() - 1]);

 drawPipe();
 }
 }
 }

 int lyri = slicedVetx_num[999][1] - 1;

162

 if (lyri > 0)
 {
 for (int j = 0; j < contour_[lyri]; j++)
 {

 for (int k = 0; k < pntNum_infill[lyri][j] - 1; k++)
 {
 bool y = false;

 float startpoint[3] = {

 infill[lyri][k][j][0],

 infill[lyri][k][j][1],

 infill[lyri][k][j][2]
 };
 float endpoint[3] = {

 infill[lyri][k + 1][j][0],

 infill[lyri][k + 1][j][1],

 infill[lyri][k + 1][j][2]
 };

 path9 = buildPath(startpoint, endpoint);

 // To turn the cylinder direction
 float theta, OA;
 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)

 theta = float(abs(atan(OA)) * 180 / pi);

 if (theta < 45)
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

 std::vector<Vector3> p9(1, path9[0]);
 pipe.set(p9, circle);

 pipe.addPathPoint(path9[path9.size() - 1]);

 drawPipe();
 }
 }
 }
}

163

// Render infill
void renderInfill()
{
 infillLyr = renderLyr;
 bool y = false;
 iDonePrint = false;

 if (infillLyr < slicedVetx_num[999][1] && infillLyr >= 0)
 {
 if (infillContr[infillLyr] < contour_[infillLyr])
 {

 if (pnt_Infill[infillLyr] < pntNum_infill[infillLyr][infi
llContr[infillLyr]] - 1)
 {
 float startpoint[3] = {

 infill[infillLyr][pnt_Infill[infillLyr]][infillContr[infi
llLyr]][0],

 infill[infillLyr][pnt_Infill[infillLyr]][infillContr[infi
llLyr]][1],

 infill[infillLyr][pnt_Infill[infillLyr]][infillContr[infi
llLyr]][2]
 };
 float endpoint[3] = {

 infill[infillLyr][pnt_Infill[infillLyr] + 1][infillContr[
infillLyr]][0],

 infill[infillLyr][pnt_Infill[infillLyr] + 1][infillContr[
infillLyr]][1],

 infill[infillLyr][pnt_Infill[infillLyr] + 1][infillContr[
infillLyr]][2]
 };

 path5 = buildPath(startpoint, endpoint);

 // To turn the cylinder direction
 float theta, OA;
 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)

 theta = float(abs(atan(OA)) * 180/ pi);

 if (theta < 45)
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

164

 std::vector<Vector3> p5(1, path5[0]);
 pipe.set(p5, circle);

 ++currIndex;
 if (currIndex < path5.size())
 {

 pipe.addPathPoint(path5[currIndex]);
 }
 else
 {

 currIndex = 0; // Reset the current index

 pnt_Infill[infillLyr] ++; // to next point
 }
 }
 else
 {
 infillContr[infillLyr]++;
 }
 }
 else
 {
 renderLyr++;
 iDonePrint = true;
 }
 }
 drawPipe();
}

// Render the printed infill on current layer
void CurrInfill()
{
 for (int pnt = 0; pnt < pnt_Infill[infillLyr]; pnt++)
 {
 bool y = false;

 float startpoint[3] = {

 infill[infillLyr][pnt][infillContr[infillLyr]][0],

 infill[infillLyr][pnt][infillContr[infillLyr]][1],

 infill[infillLyr][pnt][infillContr[infillLyr]][2]
 };
 float endpoint[3] = {

 infill[infillLyr][pnt + 1][infillContr[infillLyr]][0],

 infill[infillLyr][pnt + 1][infillContr[infillLyr]][1],

 infill[infillLyr][pnt + 1][infillContr[infillLyr]][2]
 };

 path6 = buildPath(startpoint, endpoint);

 // To turn the cylinder direction

165

 float theta, OA;
 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)
 theta = float(abs(atan(OA)) * 180 / pi);

 if (theta < 45)
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

 std::vector<Vector3> p6(1, path6[0]);
 pipe.set(p6, circle);
 pipe.addPathPoint(path6[path6.size() - 1]);

 drawPipe();
 }
}

// Render the printed infill (1 layer before the current layer o
nly)
void PrintedInfill()
{
 printedInfillLyr = renderLyr - 1;

 for (int j = 0; j < contour_[printedInfillLyr]; j++)
 {

 for (int pnt = 0; pnt < pntNum_infill[printedInfillLyr][j
] - 1; pnt++)
 {
 bool y = false;

 float startpoint[3] = {

 infill[printedInfillLyr][pnt][j][0],

 infill[printedInfillLyr][pnt][j][1],

 infill[printedInfillLyr][pnt][j][2]
 };
 float endpoint[3] = {

 infill[printedInfillLyr][pnt + 1][j][0],

 infill[printedInfillLyr][pnt + 1][j][1],

 infill[printedInfillLyr][pnt + 1][j][2]
 };

 path8 = buildPath(startpoint, endpoint);

 // To turn the cylinder direction
 float theta, OA;

166

 OA = (endpoint[1] -
 startpoint[1]) / (endpoint[0] - startpoint[0]); // oa = (y2-
y1)/(x2-x1)
 theta = float(abs(atan(OA)) * 180 / pi);

 if (theta < 45)
 {
 y = true;
 }

 // Configure the circle for path

 circle = buildCircle(0.2f, CIRCLE_SECTORS, y); // radius,
 segments

 std::vector<Vector3> p8(1, path8[0]);
 pipe.set(p8, circle);
 pipe.addPathPoint(path8[path8.size() -
 1]);

 drawPipe();
 }
 }
}

// Nozzle movement
void nozzle()
{
 float dist_n, dist_x, dist_y;
 int step;
 const float nozzle_position = 110; // initial position

 // Compute the distance between the first vertex and the
position of the nozzle
 dist_x = order_list[0][0][0][0] - nozzle_position;
 dist_y = order_list[0][0][0][1] - nozzle_position;
 dist_n = float(sqrt(pow(order_list[0][0][0][0] -
 nozzle_position, 2) + pow(order_list[0][0][0][1] -
 nozzle_position, 2)));
 step = int(0.1 * dist_n / X_step); // 0.1 is to reduce th
e numbers of step to the position (speed up)

 // Initial movement to the printing position
 if (renderMode)
 {
 if (count_n < step)
 {

 nx = nozzle_position + (dist_x * count_n / step);

 ny = nozzle_position + (dist_y * count_n / step);
 nz = 0;
 count_n++;
 }
 else // Moving along the printing path
 {
 Reach = true;

167

 ++index_n;
 if (index_n < pntNum_n)
 {
 nx = nozzle_path[index_n][0];
 ny = nozzle_path[index_n][1];
 nz = nozzle_path[index_n][2];

 //cout << nx << "," << ny << "," << nz << endl;
 }
 else
 {

 index_n = 0; // Reset the current index
 }
 }
 }
 //nozzle tip

 glPushMatrix();

 GLfloat lmodel_ambient[] = { 5, 2, 0, 0.0 }; // set to ye
llow color
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);

 glColor3f(1.f, 0.5f, 0.f);
 glTranslatef(nx, ny, nz + 0.2f);
 GLUquadricObj* tip = gluNewQuadric();
 //nozzle tip
 gluCylinder(tip, 0, 0.5, 0, 20, 20);
 glColor3f(1.f, 0.5f, 10.f);
 gluCylinder(tip, 0.5, 1.6, 2, 20, 20);
 glPopMatrix();

 //nozzle neck
 glPushMatrix();
 glColor3f(1.f, 0.5f, 0.f);
 glTranslatef(nx, ny, nz + 2.2f);
 GLUquadricObj* neck = gluNewQuadric();
 gluCylinder(neck, 0, 4, 0, 6, 1);
 gluCylinder(neck, 4, 4, 3, 6, 1);
 glPopMatrix();

 //nozzle screw
 glPushMatrix();
 glColor3f(1.f, 1.f, 0.f);
 glTranslatef(nx, ny, nz + 5.2f);
 GLUquadricObj* screw = gluNewQuadric();
 gluCylinder(screw, 4, 0, 0, 6, 1);
 glColor3f(1.f, 1.f, 0.f);
 gluCylinder(screw, 2.5, 2.5, 7.5, 20, 1);
 glPopMatrix();
 glPushMatrix();
 glColor3f(1.f, 1.f, 0.f);
 glTranslatef(nx, ny, nz + 12.7f);
 gluCylinder(screw, 2.5, 0, 0, 20, 1);
 glPopMatrix();
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
}

168

Appendix C: Motion of Ender 3 3D Printer

Figure C-1: X, Y, Z and extruder motion for an Ender 3 printer.

