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ABSTRACT

Machine vision system for inspection is an automated technology that is
normally utilized to analyse items on the production line for quality control
purposes, it also can be known as automated visual inspection (A VI) system. By
applying automated visual inspection, the existence of items, defects,
contaminants, flaws and other irregularities in manufactured products can be
easily detected in a short time and accurately. However, AVI systems are still
inflexible and expensive due to their uniqueness for a specific task and
consuming a lot of set-up time and space. With the rapid development of mobile
devices, smartphones can be an alternative device for the visual system to solve
the existing problems of AVI. Since the smartphone-based AVI system is still
at a nascent stage, this led to the motivation to investigate the smartphone-based
AVI system. This study is aimed to provide a low-cost AVI system with high
efficiency and flexibility. In this project, the object detection models which are
You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD)
model are trained, evaluated and integrated with the smartphone and webcam
devices. The performance of the smartphone-based AVI is compared with the
webcam-based AVI according to the precision and inference time in this study.
Additionally, a mobile application is developed which allows users to

implement real-time object detection and object detection from image storage.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

The machine vision system is a set of integrated components that can
automatically process the image and recognize the image contents (Edwards,
2020). With the development of information technologies, deep learning is
promoted as a revolution in machine vision systems by improving the
performance of machine vision systems. Deep learning facilitates the machine
vision system to analyse and classify objects by using neural networking for data
processing (Wilson, 2019). Nowadays, the combination of deep learning and
machine vision techniques is widely utilized in various industrial sectors such
as manufacturing, electronics, automotive and food industries for inspection,
measurement and quality control. Machine vision system for inspection is an
automation technology that is used to improve the quality control of
manufactured products, it also can be known as automated visual inspection
(AVI). By applying AVI, the existence of items, defects, contaminants, flaws
and other irregularities in manufactured products can be easily detected in a
short time and accurately. Normally, it is operated by acquiring the object
images that are being inspected through the camera and then utilizing the
appropriate machine vision techniques to search and classify areas of interest in
the image (Batchelor and Whelan, 2002).

With the development of the mobile internet, the number of mobile
phone users is explosively growing every day. According to Statista Research
Department (2021), there are 4.28 billion unique mobile internet users, which
indicates that more than 90% of the global internet population is using mobile
devices to go online in 2020. Besides, all the smartphones nowadays are
equipped with cameras and almost everyone has at least a smartphone. As a
result, more and more businesses consider implementing machine vision and
deep learning tasks in smartphones. There is a huge interest in detecting medical
conditions by using smartphones and wireless technology such as the
Qualcomm Tricorder X Prize launched in 2013 to incentivize the development

of a wireless device that can detect a range of diseases (Razdan and Bateman,



2015). Nevertheless, the use of smartphones in the manufacturing industry for
inspection is still at an emerging stage. Thus, this led to a proposed idea of

investigating smartphone-based machine vision system for inspection.

1.2 Importance of the Study

In recent years, smartphone-based machine vision system for industrial
inspection is still at a nascent stage. This study may significantly impact on
providing an alternative device which is using the smartphone in a machine
vision system for industrial inspection. Instead of an industrial camera device,
the smartphone provides flexibility, minimizes space usage and reduces the
expenses such as maintenance fees in the machine vision system. This research
project may shed light on the concepts behind the smartphone-based machine
vision system and the concepts behind deep learning in machine vision. The
machine vision algorithms proposed may contribute to automated visual
inspection where the existence of some items and locations on some

manufactured products can be easily detected.

1.3 Problem Statement

To implement an AVI system, some general requirements are required to be
examined such as its performance, flexibility, reliability, maintainability and
cost-effectiveness (Batchelor and Whelan, 2002). However, AVI systems are
still inflexible and expensive due to their uniqueness for a specific task and
consuming a lot of set-up time and space. The vision system costs, which
included the installation, operating and maintenance fees, are directly
proportional to the dimensional accuracy of the system. The higher the cost
required, the higher the dimension accuracy is available for the system. Hence,
the AVI systems are still unaffordable for most small and medium-sized
manufacturing businesses (Razdan and Bateman, 2015).

In most industries, the AVI system is typically conducted through the
industrial cameras connected to the computer (Hashim, Abdullah and
Prabuwono, 2010). By using the industrial camera, the flexibility of the AVI
system is limited due to its various camera specs and types that are chosen for a
specific task such as area scan camera, line scan camera, CMOS camera, CCD

camera, monochrome camera, colour camera and so on (Fell, 2017). Each



automated visual inspection system is unique, and it is difficult to be transferred
from one product or production line to another.

Furthermore, the industrial camera-based machine vision system can
be considered as a complicated system that mainly consists of the camera system,
lighting system and industrial PC. Jia (2009) indicated that the camera lens
aperture, camera focus and light intensity of the lighting system in the machine
vision system are required to be set and adjusted to a specified value for
capturing the sharpest image. Besides, the camera is required to connect with
the industrial PC for transmitting captured images and implementing image
analysis. Thus, the industrial camera-based machine vision system setup
required high technical skills and consumes lots of time for setup.

With the rapid development of mobile devices, smartphones can be an
alternative device for the visual system to solve the existing problems of the
AVI system mentioned above. Smartphone devices can improve the flexibility
of the machine vision system, simplify the system and reduce expenses due to
its smaller size, portable feature and advanced camera feature such as autofocus,
flash type, multiple cameras and so on. Since smartphone-based machine vision
in industries is also still at a nascent stage, this led to the motivation to

investigate the smartphone-based machine vision system for inspection.

14 Aim and Objectives
The overall aim of this study is to propose a smartphone-based machine vision
system for inspection. The system is aimed to provide a low-cost machine vision
device with high efficiency and flexibility for small and medium scale
enterprises. The specific objectives of this project are shown below:
i.  To develop a mobile application for users to access the smartphone
camera for inspection.
ii. To devise a learning-based algorithm to automatically detect the
existence of items in manufactured products.
iii.  To investigate the performance of a smartphone in machine vision
inspection can be benchmarked against a webcam used in a production

line.



1.5 Scope of the Study
In this project, an Android mobile application that integrates with deep learning-
based machine vision is developed. The main functionality of this Android
application is accessing the Android smartphone’s camera to detect the
existence of items in manufactured products. Since screws are the most common
items used in manufactured products, the developed Android application
focuses on screws detection in manufactured products.

Once the Android application development is finalized, the
performance of the smartphone (Huawei Mate 20) is evaluated and compared

with the webcam (C920 Pro HD Webcam) in screws detection.

1.6 Contribution of the Study
As mentioned in the problem statement, AVI systems are still inflexible and
expensive because of their uniqueness for a specific task and consuming a lot of
set-up time and space. Hence, this final year project presents proof of a
smartphone device can be an alternative device in machine vision system for
industrial inspection and provides a low-cost machine vision device with high
efficiency and flexibility. This is because smartphone provides flexibility,
minimizes space usage and reduces the expenses such as maintenance fees in
the machine vision system, instead of the industrial camera device.
Furthermore, this study illustrates the concepts behind the smartphone-
based machine vision system and the concepts behind deep learning in machine
vision and the proposed machine vision algorithms contribute to the AVI system
where the existence of some items and locations on manufactured products can
be easily detected. Additionally, the mobile application developed allows users
to implement real-time object detection and implement object detection by

selecting images from a photo gallery through the smartphone.

1.7 Outline of the Report
In this report, the contents are breakdown into five main chapters which are
introduction, literature review, methodology and workplan, results and
discussion, and conclusions and recommendations.

In Chapter 1, the project had introduced which includes general

introduction, the importance of the study, problem statement, aim and objectives,



the scope of the study, contributions of the study and outline of the report. In
Chapter 2, the previous related research and theories that contributed to this
project had been reviewed and summarised.

The Chapter 3 of this report illustrated the development process of the
investigation on smartphone-based machine vision system for inspection. The
results and discussion section had been discussed in Chapter 4 of this report
which includes the model evaluation, object detection results in reality and the
object detection app. Lastly, Chapter 5 concluded the project and the

recommendations for the future work had been discussed.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, a detailed literature review was conducted for an in-depth study
of the machine vision system, deep learning in machine vision and mobile apps
development to get the fundamental knowledge related to this research topic.
Furthermore, related works were studied and analysed in order to gather useful
information that can be implemented in the smartphone-based machine vision

system for inspection.

2.2 Machine Vision System

Machine vision is the science and technology that utilizes the computer to
simulate biological vision. The primary objective of the machine vision system
is used to generate or restore the real-world model from the image model and
then get to know the real world (Bao et al., 2018). Nowadays, machine vision
systems are widely employed in industrial areas, especially the manufacturing
system for the inspection, measurement and providing useful visual information
and quality during the quality control processes.

Machine vision systems are composed of several components and each
component performs its function within the machine vision system. Typically,
these components of a machine vision system include lighting, cameras, optics,
imaging boards and third-party software that work together to process the image
and recognize the image contents automatically (Jia, 2009). In a machine vision
system, its processes can be categorized into various stages which are image
acquisition, image representation, image processing, image analysis and results.
Image capturing and image processing in a machine vision system are normally
done by the smart camera whereas an external computer is utilized to implement
image analysis and result presentations. In contrast, smartphone device offers
an all-in-one solution for all stages of the machine vision process (Razdan and
Bateman, 2015).

With the rapid development of advanced smartphones, smartphones

can be known as the integration of smart camera and computer that consist of



smart camera’s features and can perform a lot of functions of a computer.
Furthermore, smartphones nowadays are normally equipped with flash LED
lighting to illuminate the object for capturing a better image. Therefore,
smartphone vision has the potential in revolutionizing the machine vision

system.

2.2.1 Smartphone Vs Webcam

In this project, the cameras provided for comparison are (1) smartphone camera
from Huawei Mate 20, and (2) smart camera from Logitech C920 HD Pro
Webcam. Table 2.1 provides details for this comparison. Logitech C920 HD Pro
Webcam is chosen for comparison due to the limited budget in this study and it

is compatible with the camera device that is used in industries.

Table 2.1: Comparison Between a Smartphone Camera and a Webcam.

Feature Huawei Mate 20 Camera | C920 HD Pro Webcam
Image Colour Colour
Numbers of Lenses Triple (e.g., wide, Single
telephoto and ultrawide)
Max Resolution 1080 p / 60 fps 1080 p / 30 fps
12 MP (wide)
Image Size 8 MP (telephoto) 3 MP
16 MP (ultrawide)

f/1.8
Aperture f/2.4 Not Available

£/2.2
Privacy Shutter Yes No
Focus Autofocus Autofocus
Zoom Capability Up to 2x Not Available
Lighting LED (internal) LED (external)
Auto Ll.ght Yes Yes
Correction
Software Launch Internal (on-screen) External (via computer)

Based on the comparison table, it can be seen that the overall features
of the Huawei Mate 20 camera are quite better than C920 HD Pro Webcam,
especially in image resolution. This is because the Huawei Mate 20 camera is
equipped with triple lenses and each lens has its image size value and aperture

value that can be captured. In contrast, C920 HD Pro Webcam is only equipped




with a single lens, the image size that can be captured is 3 MP and the aperture
1s not available. Furthermore, Huawei Mate 20 camera is available with 2x
optical zoom and is equipped with an internal LED flashlight whereas the
webcam is not available in these two features. Additionally, the machine vision
software can be launched internally in the smartphone whereas the software
must be launched externally with a computer for the webcam. However, Huawei
Mate 20 camera and C920 HD Pro Webcam support autofocus and auto light

correction.

23 Deep Learning in Machine Vision

Deep learning is a method of learning to construct a deep architecture and
generate a model by iterating multi-layered functions, which can also be known
as a deep neural network. With the development of information technologies,
deep learning is promoted as a revolution in machine vision systems by
improving the performance of machine vision systems (Zhu et al., 2021).
Increasingly, deep learning technology is being implemented in most industries
to resolve manufacturing inspections that are too complex, time-consuming and
costly to program with traditional machine vision algorithms. In this way, deep
learning makes the industrial inspection system more automated, accelerates
inspection times and reduces the error rates, rather than the traditional machine
vision (Cognex Corporation, 2020).

Basically, deep learning enables multiple-layer computational models
to learn and represent data with multiple stages of abstraction, thereby implicitly
capturing large-scale complex data structures. This means that its algorithms
rely on learning the representation of data and these multiple stages of
abstraction can be expressed in various ways such as an intensity value vector
for each pixel, a series of edges, areas of a specific shape and so on (Voulodimos
et al., 2018). Nowadays, there are several advanced deep learning frameworks
such as Recurrent Neural Networks, Convolutional Neural Networks (CNN)
and Fully Convolutional Networks that can be applied to image classification,
object detection, object tracking, semantic segmentation and instance
segmentation.

Since the objective of this study is to devise a learning-based algorithm

to automatically detect the existence of items in manufactured products, object



detection approaches by using deep learning technology are studied and
discussed. Object detection is the process of detecting objects in an image by
applying a recognition algorithm on all viewports of the original image. In other
words, the task of object detection is to define the targeted objects within images
by applying classification and localization (James Le, 2018). CNN with sliding
window detector is a historical approach for object detection within an image,
where the boxes slide over the entire image in steps and each crop of the image
will be classified by CNN. However, this approach is computationally
expensive by applying CNN to a wide range of locations and scales. In order to
cope with this, several advanced object detection networks are proposed by
neural network researchers, such as Faster Region-based Convolutional Neural
Network (R-CNN), YOLO, SSD and so on (Alsing, 2018). Thus, these
advanced object detection networks that implemented in this research are

studied and discussed.

23.1 CNN

CNN is the most popular architecture in image classification and it is commonly
used as the backbone of object detection networks such as Faster R-CNN,
YOLO and SSD to automatically extract various features from the input images
(Narvekar, 2020). The contents of CNN can be classified into three main types
of neural layers which are convolutional layers, pooling layers and fully
connected layers. Each kind of neural layer performs a different role within
CNN. Convolutional layer is the primary layer in the convolutional base, and it
is usually followed by the pooling layer in order to extract various important
features from the input images and perform feature learning. Subsequently,
these extracted features from the input images will be flattened and fed into the
fully connected layers to implement the classification process (Voulodimos et

al., 2018). Figure 2.1 shows the architecture of CNN.
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Figure 2.1: Architecture of CNN (James Le, 2018).

The objective of using convolutional layers in CNN is to extract
various features such as edges, gradient orientation and colour from the input
images. Various kernels are utilized by CNN in the convolutional layers in order
to convolve the whole image and the intermediate feature maps and generate
various feature maps (Alsing, 2018).

In the pooling layers, the aim in CNN is used to reduce the spatial
dimensions of the input volume before feeding them into the subsequent
convolutional layer. However, the depth dimension of the input volume is not
influenced by the pooling layer (Alsing, 2018). The most commonly used
strategies in these pooling layers are average pooling and max pooling. The
operating principle of average pooling is to take the average number of each
sub-area as the output when the filter convolves around the input volume
whereas the maximum number of each sub-area is taken in max-pooling
(Voulodimos et al., 2018).

Fully connected layer performs the high-level reasoning in the neural
network from the output of convolutional and pooling layers. All the neurons of
the fully connected layer are fully connected to all activation of the previous
layer and these activations will be computed with the matrix multiplication and
the bias offset. Eventually, the 2D feature maps are converted into a 1D feature
vector through the fully connected layers and it is utilized to classify images

based on the labels (Saha, 2018).

232 YOLO
YOLO is a regression-based deep learning object detection network, and it is

categorized into the one-stage target detection model which directly generates
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the prediction results without involving the intermediate region detection
process. YOLO implements object detection by only requiring a single forward
propagation via the neural network and CNN is employed in the YOLO in order
to predict different class probabilities and bounding boxes simultaneously

(Zhongyao et al., 2020). The architecture of YOLO is shown in Figure 2.2.

E Predicted Tensor
]}& \ i
{':-.‘I‘:-'1-h|.--1"m,r|:| I (23, ¥ W5 Ry Sogupe)

Figure 2.2: Architecture of YOLO (Kim and Cho, 2020).

b

Initially, the YOLO network divides the input image into a grid with S
x S cells based on the resolution and then CNN is utilized to extract the features
of the input image. Fully connected layer is inserted after the CNN architecture
in order to generate the predicted tensor with the size of (S x S) and the length
of (B x 5+ C). S x S represents the number of grid zones, B indicates the number
of candidate boundary boxes while C symbolizes the number of objects that can
be categorized. For the B bounding boxes, they contain several pieces of
information in the form of (x, y, w, h, Sconf) that will be predicted by the grid
region. (X, y) represents the bounding box’s centre coordinate while (w, h) is the
width and height of the bounding box. Sconf is the product of Pr (Object) and

Intersection-over-Union (IoU), as shown in Equation 2.1.
Scons = Pr(Object) x [oU5LL (2.1)
where

Pr(Object) = probability of an object being included in the bounding box

lo U;;’e‘éh = area relative to the ground truth and intersection of union
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Pr(Object) will be calculated as 1 while the actual coordinates and the
centre coordinates of the predicted bounding box are located in the similar grid

area, else it will be treated as 0. The formula of IoU is shown in Equation 2.2.

loUtruth — area(b.bpreanb.berycn)
pred area(b.bpreqUb.brutn)

(2.2)

where
(b.bpred) = predicted bounding box
(b.btruth) = ground truth

Additionally, Pclass represents the probability that the classified object
and the ground truth are matched with each other, which can be calculated as

shown in Equation 2.3.
P.iass = Pr (Class|Object) (2.3)

Furthermore, the confidence score, CSconf can be obtained after all the
grid regions (S x S) are predicted by the tensor of length (B x 5 + C), as shown
in Equation 2.4.

CS = Sconfx Peiass
= Pr(Object) xIOUS 4 xPr(Class|Object) (2.4)
= Pr (Class)xIOUZ 4"

red

Eventually, the highest CS value of the bounding box among the
predicted B bounding boxes will be selected as the bounding box of the object.
In short, object detection in YOLO is performed as a regression problem and

provides the class probabilities of the detected images (Kim and Cho, 2020).

233 SSD
SSD is categorized as the regression-based deep learning object detection
network, and it is also known as a one-stage target detection model which is

similar to YOLO. The difference between the SSD and YOLO is that two fully
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connected layers are utilized in YOLO architecture whereas the varying size of
convolutional layers is used in SSD architecture. The combination of anchor
boxes and multiscale features maps support rapid detection speed in SSD while
still maintaining high detection quality (Alsing, 2018). The architecture of the
SSD is illustrated in Figure 2.3.
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Figure 2.3: Architecture of SSD (Wang et al., 2021).

In SSD architecture, it is comprised of a backbone convolutional base
located at the front, followed by a feature pyramid and non-maximum
suppression (NMS). Backbone convolutional base normally is a pre-trained
image classification such as Mobilenet and Visual Geometry Group (VGG) that
is used to extract features. For the feature pyramid, it consists of multiple scales
of layers that play a specific role to detect the objects independently while NMS
is used to generate the final detection. The detection results of the SSD are
directly generated from the various levels of feature maps which do not involve
the intermediate region detection process. Hence, SSD can also be known as a

region-free method (Wang et al., 2021).

2.3.4 Evaluation Metrics

For object detection networks evaluation like Faster RCNN, YOLO, SSD and
so on, the mean average precision (mAP) is commonly used where it is
comparing the ground-truth bounding box with the detected box and returning

a score (Khandelwal, 2020).
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Before discussing mAP, there are several metrics are discussed in this
section. loU is defined as the intersection area over the union area of the detected
box and ground-truth bounding box, as shown in Equation 2.2. IoU is normally
applied to determine the true positives (TP), false positives (FP) and false
negatives (FN). TP is the number of detections that IoU is greater than 0.5, FP
is the number of detections that IoU is less than or equal to 0.5 or detected more
than once and FN is the number of objects that IoU is less than or equal to 0.5
or not detected. Precision is utilized to determine the accuracy of the predictions
where the formula as shown in Equation 2.5. Besides, the formula of recall is

shown in Equation 2.6.

.. TP

Precision = TPiFE) (2.5)
TP

Recall = TPIFN) (2.6)

Average precision (AP) is the area under the precision-recall curve,
whereas mAP is the average of the calculated AP in all the classes of object
detection. Thus, these various metrics are normally applied to evaluate the

object detection networks (Wadawadagi, 2020).

24 Mobile Apps Development

Due to one of the objectives in this study is to develop a mobile application for
users to access the smartphone camera for inspection, the mobile apps
development processes are studied and discussed. Mobile apps development is
the process of setting up a set of coded instructions in the mobile device and it
is utilized in order to resolve issues, wireless computing and communication
(Patidar, 2021).

In the mobile app development process, it can be divided into several
stages which are strategy, analysis and planning, app designing, app
development, testing and deployment. At the strategy stage, its steps involve
app users identification, identifying the goals and objectives of the mobile
application and selection of a mobile platform for the mobile application. In the

second stage of the mobile apps development, the detailed functional
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requirements are required to identify and a product roadmap is also required to
prepare (Invonto, 2021).

The subsequent stage of the mobile apps development is designing the
mobile application which involves User Interface (UIl) and User Experience
(UX) design. In the app development stage, the technical architecture should be
defined before starting the actual development and programming. Typically,
mobile application projects consist of three integral parts which are the frontend
framework, backend framework and application programming interface (API).
During the mobile app development process, the testing stage is very important
to maintain the stability, security and usability of the mobile application. In the
final stage of the mobile apps development, it involves app deployment where

the apps can be launched on the Apple and Google app stores (Invonto, 2021).

2.5 Related Works

In this chapter section, several research papers that are related to this study are
studied and discussed. The related research papers can be categorized into
machine vision inspection and smartphone-based machine vision. The aim of
studying related research papers is to gather useful information that can be
implemented in the smartphone-based machine vision for inspections.

Razdan and Bateman (2015) in their paper have researched
smartphone-based machine vision for hole diameter measurements and flaw
detection of twist drill bits. In this paper, the HTC One X Smartphone was used
as a vision system to measure the hole diameter and detect the drill bits' flaws.
Eclipse IDE was used for android app development in Java language and
OpenCV operators were used for machine vision algorithms. For machine
vision algorithms, traditional methods such as Gaussian blur, Sobel and Canny
operators were used. The overall accuracy results in hole diameter
measurements and flaw detection of drill bits were not performed well due to
lacking advanced mathematical algorithms for image processing. Additionally,
this paper also mentioned that smartphone-based machine vision has the
potential as a revolution in machine vision inspections due to its lower cost and
it is affordable for small scale manufacturers.

There is another research paper studying train component detection by

using cascade CNN based on structure knowledge. To detect train components,
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deep learning-based machine vision was implemented on Pytorch which are
YOLOvV3 model, RetinaNet model, Faster R-CNN model, Structure Inference
Net (SIN), Faster R-CNN with feature pyramid networks (FRCNNF), SIN based
on FRCNNF (SINF). In addition, the backbone of all the proposed models was
using the Resnet-101 model. Each proposed model was evaluated and compared
with each other based on mAP which is commonly used to assess object
detection networks. For small object detection, FRCNNF and SINF showed
better results with mAP above 70% while all the proposed models performed
well in large object detection with mAP above 80% (Zhongyao et al., 2020).

Burresi et al. (2021) proposed missing screws detection approaches and
compared different deep learning models for this missing screw detection. The
deep learning models that are used in this research paper are YOLOV3, Tiny
YOLOv4 and Xception network. Based on the experimental results in this
research paper, the accuracy of these deep learning models was exceeding 95%.
In this research paper, it mentioned that the Xception network is considered as
a binary classification which relies on the position of the panel. In contrast,
YOLOV3 is not limited to this scenario. However, evident changes of
illumination will affect the performance of YOLOv3. Tiny YOLOv4 is the
lighter version of YOLO where its performance was reduced compared with
YOLOV3 (Burresi et al., 2021).

The deep learning-based machine vision approaches for defects
detection of metal screw surfaces are proposed by Song et al. (2018). To detect
micro-defects on screw surfaces, several deep learning models were
implemented and compared with each other which are LeNet-5, YOLO, R-CNN,
Faster R-CNN, SSD and a proposed DCNN. The proposed DCNN was
developed based on LeNet-5. According to the experimental results, the
accuracy of SSD and the proposed DCNN were higher compared to others while
the prediction time of YOLO and the proposed DCNN were faster (Song et al.,
2018).

Although there are several research papers are related to machine
vision inspections, most of them do not extend to the mobile apps or others are
still using traditional machine vision approaches. Hence, several research papers
that related to smartphone-based machine vision were studied to collect more

useful information. Parico and Ahamed (2021) proposed pear fruit detection by
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using YOLOv4 models and the performance of these different types of
YOLOv4 models were compared with each other. In addition, the Deep SORT
algorithm was utilized for object counting. Another research paper was
conducted by Zhang et al. (2020) that studied the icons detection in mobile apps
by using different types of deep learning networks which are Fast RCNN, Faster
RCNN, SSD300, SSD512, YOLOV3 and IconYOLO.

Jakhete et al. (2019) developed an object recognition app that can be
used by visually impaired persons. In this object recognition app, SSD, RCNN
and YOLO were implemented as object detection and compared with each other.
Eventually, SSD was chosen for this app due to its better performance. A
mobile-based grasshopper detection was proposed by Chudzik et al. (2020). For
grasshopper detection, RetinaNet with ResNet-50 model and SSD with
MobileNetV2 were implemented. Based on some research papers that related to
smartphone-based machine vision above, the deep learning models were trained
by using training data with TensorFlow and these trained models were added to
the mobile application. Hence, the object detection process is directly running
on the smartphone application background and generates the prediction results.

To summarize the related research papers, a summary table is
constructed which contains some relative information on the machine vision

approaches as shown in Table 2.2.

Table 2.2: Summary of Related Research Papers

Tidl Targeted Machine Vision Experimental Mobile
itle

Images Methods Results App
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Investigation
into the use of
Smartphone as a

Machine Vision

Traditional Methods

Large Hole: <10%

crror

Device for Twist Drill (e.g., Gaussian Blur,
o ] Small Hole: <30% Yes
Engineering bits and holes | Sobel and Canny
error
Metrology and operators)
Flaw Detection,
Flank Detections: -
with Focus on
Drilling
Deep Learning
Robust Train mAP:
methods:
Component 1) 60.58%
Train 1) YOLOV3
Detection with 2) 82.42%
Component 2) RetinaNet
Cascade CNN 3) 70.50% No
(e.g., screws | 3) FRCNN
based on 4y T71.27%
and nuts) 4) SIN
Structure 5) 86.54%
5) FRCNNF
Knowledge 6) 86.10%
6) SINF
Deep Learning
methods:
1) Faster RCNN
) with VGG-16
Detection
2) Improved
Approach Based mAP:
Faster RCNN
on an Improved ) 1) 8531%
Brace Sleeve with VGG-16
Faster RCNN for 2) 85.34% No
Screws 3) Faster RCNN
Brace Sleeve 3) 84.80%
with ResNet-
Screws in High- 101 4) 85.47%
Speed Railways
4) Improved
Faster RCNN
with ResNet-
101
Table 2.2 (Continued)
Tid Targeted Machine Vision Experimental Mobile
itle
Images Methods Results App
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Micro acc.
1) 98.9%
2) 98.1%
3) 98.8%
Image-Based )
Deep Learning
Defect Detection Macro acc.:
methods:
in Assembly 1) 97.2%
Screws 1) YOLOV3 No
Line with 2) 97.0%
2) Tiny-YOLOv4
Machine 3) 98.6%
) 3) Xception
Learning
Precision:
1) 99.3%
2) 97.1%
3) 98.6%
Time:
1) Faster
2) Low
Deep Learning 3) Fast
methods: 4) Low
Detection of 1) YOLO 5) -
Micro-Defects 2) RCNN 6) Faster
on Metal Screw | Screws 3) Faster RCNN No
Surfaces Based 4) SSD Accuracy:
on Deep CNN 5) LeNet-5 1) Low
6) Proposed 2) Low
DCNN 3) High
4) Higher
5) Higher
6) Higher
Deep Learning
Real Time Pear methods:
Fruit Detection 1) Tiny-YOLOv4 | AP:
and Counting 2) YOLOv4 1) 80.12%
) Pear Fruits Yes
Using YOLOv4 3) YOLOv4-CSP 2) 87.98%
Models and 4) Deep SORT 3) 86.63%
Deep SORT (Object
Counting)
Table 2.2 (Continued)
Tidl Targeted Machine Vision Experimental Mobile
itle
Images Methods Results App
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Deep Learning
A Benchmark mAP:
methods:
Dataset for Real- 1) 70.0%
) ) 1) Fast RCNN
Time Detection 2) 73.2%
) 2) Faster RCNN
of Icons in Icons 3) 74.3% Yes
] 3) SSD300
Mobile Apps and 4) 76.8%
4) SSD512
a Small-Scale 5) 75.3%
5) YOLOV3
Feature Module 6) 79.1%
6) IconYOLO
Deep Learning SSD achieved better
Object
- ) methods: accuracy and
Recognition App | Domestic
] ) 1) SSD performance Yes
for Visually Objects )
] 2) RCNN compared with
Impaired
3) YOLO others.
Mobile Real- )
Deep Learning
Time
methods:
Grasshopper mAP:
1) RetinaNet with
Detection and Grasshopper 1) 78.3% Yes
ResNet-50
Data ) 2) 49.4%
A ) 2) SSD with
regation
seree MobileNetV2
Framework

Based on the summary table, YOLO and SSD are the deep learning
models that are commonly used in object detection and have good performance
in screws detection. Besides, these deep learning models are able to be
converted into TensorFlow Lite format and integrated into mobile apps for
running object detection on the mobile phone’s background. Thus, these deep
learning frameworks are chosen and implemented in this project.

2.6 Summary

In summary, the fundamental knowledge that is related to smartphone-based
machine vision inspections is studied which can be categorized into several
sections such as machine vision system, deep learning in machine vision and
mobile apps development.

In the machine vision system section, the general structure and
concepts of machine vision systems are studied. The advantages of smartphone-

based machine vision are indicated and compared with industrial cameras in this
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section. Additionally, the specs of the Huawei Mate 20 are compared with C920
Pro HD Webcam which is implemented in this research paper.

Subsequently, deep learning-based machine vision is also studied
where the deep learning applications in machine vision can be divided into
image classification, object detection, object tracking, semantic segmentation
and instance segmentation. The detailed object detection which relates to the
objectives of this research paper is discussed. The popular object detection
models include YOLO and SSD while CNN is implemented as the backbone of
these object detection models. Hence, these deep learning models are discussed
in this chapter. Besides, the evaluation metrics for object detection networks are
also discussed which are IoU, TP, FP, FN, precision, recall, AP and mAP. Due
to the mobile app development required in this study, the basic steps of mobile
app development are studied.

Several research papers are also studied that are related to this study to
collect more useful information. These research papers are discussed and
summarized in Table 2.2. Since smartphone-based machine vision in industrial
inspection is still at a nascent stage and it has potential as a revolution in
industrial inspection, a smartphone-based machine vision inspection is
developed in this paper. Furthermore, SSD and YOLO are considered as popular
object detection models and their performances are quite well in several research
papers that were studied. Hence, SSD and YOLO are implemented as object
detection frameworks in this study. These models are trained by training data
through TensorFlow and added to the mobile app. The mobile app is aimed to

detect the existence of screws in manufactured products.
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CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, the detailed methodology and work plan of this project were

discussed. The project scope, project flow and project Gantt Chart were

constructed to keep track of the progress of the project and ensure the overall

project flow is smoothly conducted.

3.1.1 Project Scope

In this section, the project scope table was constructed which covers the project

title, project time frame, project description, project objectives, required

equipment and software, as shown in Table 3.1.

Table 3.1: FYP Project Scope.

Investigation on Smartphone-based Machine Vision for

Title ]
Inspection
Date 7 June 2021 to 25 April 2022
The mobile application is able to access the Android
smartphone’s camera for machine vision inspection in screws
Project i o
detection. Investigation on the performance of smartphone-
Description o _ _
based machine vision inspection can be benchmarked against a
webcam used in a production line.
e Simple and user-friendly mobile application for users to
access the Android smartphone’s camera for inspection.
e A learning-based algorithm that automatically detects the
Project
o existence of screws in manufactured products.
Objectives
e The performance of smartphones in machine vision
inspection is benchmarked against a webcam used in a
production line.
E: LED desk lamp, Tripod Stand, Huawei Mate 20, C920 Pro
Equipment (E)

& Software (S)

HD Webcam
S: Android Studio, Google Colaboratory, Roboflow
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3.1.2  Project Flow and Project Planning

The overall project flowchart and project Gantt Chart were constructed and
discussed. The overall project was divided into two parts which are FYP1 and
FYP2. Each part breaks down into several milestones (M1 to M9). Figure 3.1
illustrates FYP1 project flowchart while Figure 3.2 illustrates FYP2 project
flowchart. Furthermore, the detailed Gantt Chart of FYP1 and FYP2 are shown

in Figure 3.3 and Figure 3.4.

| FYP1 Project Flowchart
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Figure 3.1: FYP 1 Project Flowchart.
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Figure 3.2: FYP 2 Project Flowchart.

PROGRESS

MI1. Problem Identification & Project Planning

Problem & Objectives Formulation 100% 1

Project Planning 100% 1-2
M2 Literature Review

Critical Review 100% 2-3

Literature Finding 100% 3-8
M3 Proposed Solution Design

Propose Project Solutions 100% 68

Experiment Planning for Solutions Evaluation 100% 7-8
M3 Preliminary Testing

Simple Object Detection-based Mobile App Development 100% 8-10

Implement Preliminary Testing on Created Mobile App 100% 10-11
M4 Progress Report & Presentation

FYP Progress Report 100% 11-13

FYP 1 Presentation 100% 13-14

Figure 3.3: FYP 1 Project Gantt Chart.



PROGRESS  WEEK 15 16 | 17|18 |19 |20 |21 22|23 |2

MS6. Proposed Solutions Development

Deep Leaming Models Construction 0% 15-17

Integration of Deep Leaming Models with Mobile App 0% 16-17

M7. Proposed Solutions Evaluation

Proposed Deep Leamning Models Evaluation 0% 17-2

Performan Comparison of ) and Webcam 0% 20-22
MS. Project Enhancement

Overall System Improvement 0% n-M

Adding Extra Features of Mobile App 0% 224

MO9. Final Report Writing & Presentation

FYP Final Report e 25-27

FYP Final Presentation e 27-28

Figure 3.4: FYP 2 Project Gantt Chart.

From the project flowchart and Gantt Chart, there are 9 milestones
included in this project and the total project duration is taking about 28 weeks.
Hence, it is separated into two parts, FYP 1 and FYP 2 and each of them takes
about 14 weeks. First, problem identification and project planning are taken
about 2 weeks after project title confirmation. In literature review milestones,
critical review and literature findings are conducted within 7 weeks. After
gathering useful information from the literature review, the proposed solution
design is implemented within 3 weeks, including experiment planning to
evaluate the performance of the proposed solutions in this project. Subsequently,
preliminary testing is conducted within 4 weeks to ensure that the mobile app
for object detection in Android smartphones is functioning properly. From week
11 to 14, the progress report of this project is written and presented.

In FYP part 2, the sixth milestone is proposed solutions development
where the time frame is within 3 weeks, including deep learning models
construction and integration of the developed deep learning models into the
mobile app. The evaluation of proposed deep learning models and the
comparison between the performance of smartphone and webcam in machine
vision inspection are implemented within 6 weeks. The project enhancement
that covers the overall system improvement and extra features of mobile app
addition are started from week 22 to 24. The last milestone of the project starts
from week 25 that includes writing FYP final report and final presentation. The

whole project is ended by the end of week 28.
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The detailed project development flowchart which includes proposed
solutions development, proposed solution evaluation and project enhancement
is constructed to ensure the development flow is smoothly conducted and

achieves the desired outcomes, as shown in Figure 3.5.

Data Collection

1

Data Annotations and
Preprocessing

1

Object Detection
Models Construction

%l—/
v R

Webcam-based
Object Detection
System Development

Object Detection
Apps Development

oy

| ‘L |

Compare Performance Between
Smartphone-based and Webcam-based
In Object Detecion

v

Mobile App Improvement

Figure 3.5: Project Development Flowchart.

For the project development, it can be separated into two parts after
object detection models construction which is object detection apps
development and webcam-based object detection system development.
Subsequently, the performance between smartphone-based and webcam-based
in object detection is compared. The detailed approaches are further discussed

in the following sections.
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3.2 Data Collection

Two different datasets were collected for this study which are captured by
webcam and smartphone respectively in order to construct object detection
models and compare their performances based on smartphone-based and
webcam-based in object detection. A total 800 pieces of images that related to

screws were captured by each device.

3.3 Data Annotation and Pre-processing

Data annotation is a required step for all Al application constructions by
categorizing and labelling the data. In this project, Roboflow software is utilized
to implement data annotations by labelling all the screws that found in the

dataset, as shown in Figure 3.6.

i}
=i
=
2
@
9
¢

Figure 3.6: Data Annotation in Roboflow Software.

To construct high accuracy deep learning models, data pre-processing
is a necessary step where the amount of data is normally directly proportional
to the performance of the model. Hence, image augmentation techniques are
required to generate massive amounts of data from an existing dataset.

In this project, Roboflow software is also utilized for data pre-
processing. After the collected dataset is uploaded to the Roboflow software for
labelling, the image augmentation techniques such as image cropping, image
rotation, image blurring and image flipping are implemented, as shown in
Figure 3.7. The total amounts of the collected dataset were 1920 pieces for each
device after data augmentation. These datasets were split into 3 categories which

are 88% training set, 8% validation set and 4% testing set. Training data is used
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to train the deep learning models while validation data and testing data are used

to qualify the performance of the models.

Figure 3.7: Example of Image Augmentation Techniques.

34 Object Detection Models Construction

In this project, YOLOv4, YOLOv4-Tiny, SSD MobilenetV2 FPNlite 320x320
and SSD MobilenetV2 FPNlite 640x640 were utilized as object detection
models in this project to detect the screws on the manufactured products. Google
Colaboratory is utilized in this project to construct the object detection models,
including the training and testing process. Google Colaboratory is an
environment that is used for deep learning models training on CPUs, GPUs and

TPUs.

3.4.1 YOLO Models Construction

To construct the YOLOv4 and YOLOv4-Tiny on Google Colaboratory, some
important steps are required to take which are dataset setup, model training with
Darknet and TensorFlow Lite’s.tflite representation conversion.

Since data annotation and pre-processing were implemented through
Roboflow, Roboflow allows converting the dataset to YOLO Darknet format
and exporting to the Google Colaboratory. Subsequently, the GPU environment
was configured and the Darknet YOLOvV4 training environment was installed.
Besides, the newly released YOLOv4 and YOLOvV4-Tiny training config files
were downloaded and configured before training the YOLOv4 and YOLOv4-

Tiny models.
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There are several parameters for training models that are required to be
set which are the number of classes (1), maximum batches (2000) and the
number of filters (18). The number of classes is the number of the object class
that is required to be detected. The value of maximum batches and number of
filters are normally set according to the number of classes, as shown in Equation

3.1 and Equation 3.2.

maximum batches = number of classes x 2000 (3.1)

number of filters = (number of classes +5) x 3 (3.2)

Their detailed training configurations are shown in Appendix A and
Appendix B. Once the models were done training, the TensorFlow Lite library
was utilized to convert the trained models to TensorFlow Lite format (.tlite) and
these models were evaluated based on mAP and the prediction time.
Additionally, the architecture of the YOLOv4 and YOLOv4-Tiny models are
illustrated in Appendix C and Appendix D where the YOLOv4-Tiny is the
lighter version of the YOLOv4 model where its network size is dramatically
reduced. However, the input size of the YOLOv4 and YOLOv4-Tiny is 416 x
416.

3.4.2 SSD Models Construction
To construct the SSD MobilenetV2 FPNlite 320x320 and SSD MobilenetV2
FPNlite 640x640, the steps for models training are similar to YOLO models
which include dataset setup, model training with TensorFlow-GPU and
TensorFlow Lite’s.tflite representation conversion.
For dataset setup, the dataset in Roboflow was converted to Pascal
VOC format and exported to the Google Colabratory. Subsequently, the
TensorFlow models' repository and object detection API were setup. Besides,
the newly released SSD MobilenetV2 FPNIlite 320x320 and SSD MobilenetV2
FPNIlite 640x640 were downloaded and configured before training these models.
There are several parameters for training models that are required to be
set which are the number of classes (1), the number of steps, fine-tune

checkpoint type (detection) and metrics set (coco detection metrics). Their
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detailed training configurations are shown in Appendix E and Appendix F. Once
the models were done training, the TensorFlow Lite library was utilized to
convert the trained models to TensorFlow Lite format (.tlite) and these models
were evaluated based on mAP and the prediction time. In addition, the
architectures of the SSD MobilenetV2 FPNIlite 320x320 and SSD MobilenetV2
FPNIlite 640x640 are illustrated in Appendix G and Appendix H where the input
size of the SSD MobilenetV2 FPNIlite 320x320 is 320 x 320. In contrast, the
input size of the SSD MobilenetV2 FPNlite 640x640 is 640 x 640.

3.5 Object Detection Apps Development

Before Android mobile app development, the primary functionalities of the
mobile app are listed out, which is allowing users to implement real-time object
detection and object detection from smartphone gallery. Subsequently, the Ul
of the object detection page in the mobile app is designed which includes “Real-
time” labelled button and “Storage” labelled button that is used to trigger real-
time object detection or upload image from the smartphone gallery for object

detection, as shown in Figure 3.8.
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Figure 3.8: UI Design of Object Detection Page.

For the Android mobile app development, Android Studio software is
utilized in this project. Since the main functionality of this mobile app is
allowing users to real-time object detection or upload an image from the
smartphone gallery for object detection, the required dependencies for accessing
the smartphone’s camera are imported.

To integrate the trained object detection model into the mobile app, the
object detection model is required to be converted into the TensorFlow Lite
format and integrated into the mobile app. To utilize the trained object detection
model in the mobile app, the class method was created to load the TensorFlow
lite model and the object class label file. A class method for getting the input
image from the camera frame was created and the input image was pre-
processed by resizing the image so that it can feed the input size of the
TensorFlow Lite model.

The TensorFlow lite interpreter was utilized to interpret the model and

implement prediction on the input image based on the model architecture where
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the output prediction results consist of the detected object class, locations of the
detected object in the input image and the scores of the detected object. To
display the prediction results, the rectangle boxes were drawn out and its label
and scores were labelled out on the input image based on the location of the
detected objects. After that, the edited image was replaced with the original
image on the camera view. Once the mobile application development was
getting done, the mobile application was debugged into the Android smartphone
and implementing its functionalities testing. The important coding part with

detailed comments was illustrated in Appendix .

3.6 Webcam-Based Object Detection System Development
For webcam-based object detection, Google Colaboratory was utilized to access
the webcam’s camera for real-time object detection. The trained object detection
models were uploaded to the Google Colaboratory and the video stream was
defined by using the OpenCV library.

Subsequently, the frame was read from the webcam and was further
processed to fit into the model for detection. The output was displayed and
replaced the original input image, as shown in Figure 3.9. The important coding

part with detailed comments was illustrated in Appendix J.

I object detection

Figure 3.9: Webcam-Based Object Detection.
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3.7 Smartphone Vs Webcam in Object Detection
An object detection experiment in reality is conducted to compare the
performance of smartphone (Huawei Mate 20) and webcam (C920 Pro HD
Webcam) in machine vision inspection.

The basic equipment that is required in this experiment are tripod stand,
LED desk lamp and bounding box of 325mm x 225mm x 4mm. The
experimental setups of smartphone and webcam for object detection are shown
in Figure 3.10 and Figure 3.11. To be fair, the position of tripod stand, LED
desk lamp and bounding box are fixed in smartphone and webcam experiments,
since the performance of object detection will be affected by the various
distance between the camera and targeted objects and different viewpoints.
Furthermore, the height and the angle of the tripod stand that holds the
smartphone and camera are also fixed and the targeted object is required to be

placed within the bounding box.

Smartphone

/lED Desk Lamp

Tripod Stand
Bounding Box

Targeted Object

Figure 3.10: Smartphone-based Object Detection Setup.

Webcam

LED Desk Lamp

Tripod Stand

Bounding Box
Targeted Obje

Figure 3.11: Webcam-based Object Detection Setup.

The performances of smartphone and webcam in the machine vision

inspection are evaluated based on precision and inference time with actual
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targeted objects. The results of each part are recorded in Table 3.2 and will be

analysed.

Table 3.2: Performance Evaluation Table of Object Detection Systems.

Types of
Vision
Systems

Object Detection
Models

Precision
(%)

Inference Time
(ms)

Smartphone

SSD MobilenetV?2
FPNlite 320x320

SSD MobilenetV?2
FPNIlite 640x640

YOLO v4-Tiny

YOLO v4

Webcam

SSD MobilenetV?2
FPNIite 320x320

SSD MobilenetV?2
FPNilite 640x640

YOLO v4-Tiny

YOLO v4

3.8 Summary

In summary, the detailed methodology, work plan and project scope of this

project are discussed in this chapter. Furthermore, the detailed project

development flow is discussed which includes data collection, data annotation

and pre-processing, object detection models construction, object detection apps

development, webcam-based object detection system development and

experiment for the performance comparison between smartphone-based and

webcam-based in object detection.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this section, object detection models were evaluated which are YOLOv4,
YOLOv4-Tiny, SSD MobilenetV2 FPNIlite 320x320 and SSD MobilenetV2
FPNlite 640x640 for smartphone and webcam devices to ensure the object
detection models are well trained.

Furthermore, the performances of smartphone and webcam in machine
vision inspection were compared and discussed to investigate whether the
performance of a smartphone in machine vision inspection can be benchmarked
against a webcam used in a production line. Subsequently, the finalised object

detection app was also discussed in this section.

4.2 Models Evaluation

Since the training methods of YOLO and SSD are different, their evaluation
results are also slightly different. The YOLO models’ evaluation results include
mAP on validation data and training loss while SSD models’ evaluation results
include training loss, validation loss, learning rate and mAP on validation data.
Their detailed models’ evaluation results for each device were discussed in the

next subchapters.

4.2.1 Results on Smartphone-Based
In this subchapter, YOLO models and SSD models that using captured image
from smartphone as input datasets were evaluated.

To evaluate the YOLOv4 and YOLOv4-Tiny models, the training loss
and mAP by using the validation dataset were recorded and illustrated in Figure
4.1 and Figure 4.2. For the mAP evaluations by using the validation dataset,
they were started evaluating after 1000 training iterations and evaluating every

100 training iterations.
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mAPZ |

98.2% 98 z’\/gez 99%

Loss 95%/

4.5

897

4.0

3.5

3.0

537%
2.5

2.0

1.5

1.0

0.5

Bigiasancs e et g i

0.0
0 200 400 600 800 1000 1200 1400 1600 1800 20
current avg loss = 0.1422 iteration = 2000 approx. time left = 0.04 hours

Press 's' to save : chart.png — Saved Iteration number in efg max_batches=2000

Figure 4.2: Evaluation Result of the Smartphone-Based YOLOv4-Tiny Model.
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Based on Figure 4.1 and Figure 4.2, the final mAP of YOLOV4 is 99.4%
and its final average training loss is 0.5740. Besides, the final mAP of YOLOv4-
Tiny is 98.2% and its final average training loss is 0.1422. Hence, the
smartphone-based YOLOv4 and YOLOv4-Tiny models are considered as well
trained because the models do not overfit or underfit during training based on
the training loss and mAP graph. Since YOLOv4-Tiny is the lighter version of
YOLOv4 where its network size is dramatically reduced, its average mAP is
slightly lower than the YOLOV4.

To evaluate the SSD MobilenetV2 FPNlite 320x320 and SSD
MobilenetV2 FPNlite 640x640 models, the training loss, validation loss,
learning rate and mAP on validation data were recorded down and illustrated in

Figure 4.3 and Figure 4.4.
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Figure 4.3: Evaluation Results of the Smartphone-Based SSD 320 Model.
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Figure 4.4: Evaluation Results of the Smartphone-Based SSD 640 Model.

Based on Figure 4.3, the final training loss of SSD MobilenetV2
FPNlite 320x320 is 0.35 and its final validation loss is 0.6. The learning rate of
this model is also decreased to around 0 and its final mAP is up to around 95%.
Based on Figure 4.4, the final training loss of SSD MobilenetV2 FPNlite
640x640 is 0.23 and its final validation loss is 0.4. The learning rate of this
model is also reduced to around 0 and its final mAP is up to around 98%.

Therefore, the smartphone-based SSD MobilenetV2 FPNlite 320x320
and SSD MobilenetV2 FPNlite 640x640 models are considered as well trained
because the models do not overfit or underfit during training based on the
training loss, validation loss, learning rate and mAP graph. Since the input
image size to feed the SSD MobilenetV2 FPNlite 320x320 is smaller than SSD
MobilenetV2 FPNlite 640x640, its mAP is lower than the SSD MobilenetV?2
FPNlite 640x640.
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Furthermore, the training time for each model was recorded down and
the test dataset was also utilized to evaluate the performance of trained models

based on mAP, as shown in Table 4.1.

Table 4.1: Smartphone-Based Object Detection Models Evaluation.

Object Detection Models mAP (%) Training Time
YOLOv4 97.6 Shrs 35mins
YOLOV4-Tiny 96.3 50mins
SSD MobilenetV2 FPNIlite 320x320 91.2 lhrs 34mins
SSD MobilenetV2 FPNIlite 640x640 95.1 11hrs 18mins

Based on Table 4.1, overall trained object detection models perform
well detection on test datasets which are above the 90% mAP. Moreover, the
training time of YOLOv4-Tiny is the shortest among these models while SSD
MobilenetV2 FPNIlite 640x640 took the longest time for training.

4.2.2  Results on Webcam-Based
In this subchapter, YOLO models and SSD models that using captured image
from webcam as input datasets were evaluated. The evaluation methods for
webcam-based object detection models are similar with smartphone-based
object detection models.

For the webcam-based YOLOv4 and YOLOv4-Tiny models, the
training loss and mAP by using the validation dataset were recorded and

illustrated in Figure 4.5 and Figure 4.6.
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According to Figure 4.5 and Figure 4.6, the final mAP of YOLOV4 is
99.7% and its final average training loss is 0.6522. Furthermore, the final mAP
of YOLOvV4-Tiny is 97.8% and its final average training loss is 0.1383.
Therefore, the webcam-based YOLOv4 and YOLOv4-Tiny models are
considered as well trained because the models do not overfit or underfit during
training based on the training loss and mAP graph. Since YOLOv4-Tiny is the
lighter version of YOLOv4 where its network size is dramatically reduced, its
average mAP is slightly lower than the YOLOv4 which is similar with
smartphone-based.

For the webcam-based SSD MobilenetV2 FPNIlite 320x320 and SSD
MobilenetV2 FPNIlite 640x640 models’ evaluation, the training loss, validation
loss, learning rate and mAP on validation data were recorded and illustrated in

Figure 4.7 and Figure 4.8.
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Figure 4.7: Evaluation Results of the Webcam-Based SSD 320 Model.
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Figure 4.8: Evaluation Results of the Webcam-Based SSD 640 Model.

According to Figure 4.7, the final training loss of webcam-based SSD
MobilenetV2 FPNlite 320x320 is around 0.40 and its final validation loss is
close to 0. The learning rate of this model is also decreased to around 0 and its
final mAP is up to around 95%. According to Figure 4.8, the final training loss
of webcam-based SSD MobilenetV2 FPNlite 640x640 is 0.24 and its final
validation loss is 0.25. The learning rate of this model is also reduced to around
0 and its final mAP is up to around 99%.

Hence, the webcam-based SSD MobilenetV2 FPNIlite 320x320 and
SSD MobilenetV2 FPNlite 640x640 models are considered as well trained
because the models do not overfit or underfit during training based on the
training loss, validation loss, learning rate and mAP graph.

Moreover, the training time for each webcam-based object detection
model was noted down and the test dataset was also used to evaluate the

performance of trained models based on mAP, as shown in Table 4.2.
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Table 4.2: Webcam-Based Object Detection Models Evaluation.

Object Detection Models mAP (%) Training Time
YOLOv4 99.5 Shrs 22mins
YOLOV4-Tiny 97.6 47mins
SSD MobilenetV2 FPNIlite 320x320 92.2 lhrs 31mins
SSD MobilenetV2 FPNlite 640x640 98.3 10hrs 11mins

According to Table 4.2, the overall webcam-based trained object
detection models perform well detection on test datasets which are above the
90% mAP. Besides, the training time of YOLOvV4-Tiny is the shortest among
these models while SSD MobilenetV2 FPNIlite 640x640 took the longest time

for training which is similar with the smartphone-based object detection models.

4.3 Object Detection Results in Reality
To investigate whether the performance of a smartphone in machine vision
inspection can be benchmarked against a webcam used in a production line, the
object detection experiment in reality is conducted. Therefore, the performances
of smartphone and webcam in this object detection experiment were compared
and discussed in this subchapter.

For the object detection in reality through the smartphone and webcam,
the sample output prediction results are illustrated in Figure 4.9 and Figure 4.10.
Furthermore, the table of performance comparison between smartphone-based
and webcam-based in real-time screw detection was constructed and illustrated

in Table 4.3.



Figure 4.10:

Sample Output Prediction Result Through Webcam.

44



45

Table 4.3: Performance Comparison Table.

T‘};?;;sn(:f Object Detection Precision Inference Time
Model Y
Systems oaets (Vo) (ms)
SSD MobilenetV?2
FPNIlite 320x320 7361 83
SSD MobilenetV2
Smartphone FPNIite 640x640 92.31 138
YOLO v4-Tiny 97.43 159
YOLO v4 97.33 1366
SSD MobilenetV?2
FPNIlite 320x320 78.10 69
SSD MobilenetV2
4.01 1
Webcam FPNIite 640x640 94.0 7
YOLO v4-Tiny 97.80 73
YOLO v4 97.62 88

Based on Table 4.3, the precision results on smartphone-based are
almost similar to webcam-based. The slight differences of the precision between
smartphone and webcam are because the object detection models are converted
into TensorFlow Lite format before integrating into the mobile app. TensorFlow
Lite format is the lightweight version of the TensorFlow model where it is
smaller in size, faster and less computationally expensive. Hence, its prediction
performance was affected by comparing it with TensorFlow model.

For the inference time, the smartphone-based object detection models
took a longer inference time by comparing with webcam-based object detection
models. This is because the computing power of the computer that is connected
to the webcam is stronger than the smartphone’s computing power. However,
the inference time of SSD MobilenetV2 FPNIlite 320x320, SSD MobilenetV?2
FPNIlite 640x640 and YOLOvV4-Tiny in smartphone-based are considered short
and acceptable for the real applications of AVI system.

Other than that, this experiment results illustrated that YOLOv4-Tiny
models show the optimal performances in screw detection with both smartphone
and webcam devices based on precision and inference time. Based on this
performance comparison table, it also proves that the performance of the
smartphone in a machine vision inspection system can be benchmarked against

the webcam used in the production line, since the precision of each object
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detection model for both vision devices is close. Therefore, the objectives of
this study were achieved, which include devising a learning-based algorithm to
automatically detect the existence of items in manufactured products and
investigating the performance of a smartphone in a machine vision inspection

system that can be benchmarked against a webcam used in the production line.

4.4 Object Detection App Evaluation

In this section, the overall object detection app and its main functionalities are
discussed. Since the YOLOv4-Tiny model illustrated the optimal performances
in screw detection among other object detection models, it was selected for
utilizing and integration into the finalised object detection app.

In this object detection app, its main functionalities are allowing users
to implement real-time machine vision inspection on smartphone and
implement machine vision inspection by selecting the image from the
smartphone gallery.

Once the object detection app is launched, the homepage of the app for
the selection of real-time detection and detection from image storage is
displayed on the smartphone device’s screen, as shown in Figure 4.11. For the
homepage of the object detection app, it consists of two buttons which are
“Real-time” and “Storage” labelled buttons. The real-time object detection page
will be launched once the ‘Real-time” labelled button is pressed while the
function of selecting the image from the smartphone gallery for object detection

will be triggered if the “Storage” labelled button is pressed.
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Figure 4.11: Homepage of the Object Detection App.

Figure 4.12 illustrates the real-time object detection page on the
smartphone’s screen after the “Real-time” labelled button on the homepage was
pressed. At this point, the user is directed to the camera view and is allowed to
implement real-time screw detection. In this real-time object detection page, the
input image from the camera view is pre-processed before being fed into the
object detection model for prediction. For the output prediction, it will return
the class labels, locations and score values of the detected objects. Subsequently,
these output results will be drawn in the original frame and displayed in the
updated frame to the camera view where the prediction result is also illustrated

in Figure 4.12.
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Figure 4.12: Real-time Object Detection Page.

Figure 4.13 shows the section where the user can select the image from
the smartphone gallery for detection after the “Storage” labelled button on the
homepage was pressed. At this point, the user is directed to the smartphone
gallery and is allowed to select the input image from the smartphone gallery.
The selected image from the photo gallery is pre-processed before being fed into
the object detection model for prediction. For the output prediction, it will return
the class labels, locations and score values of the detected objects which is
similar to the real-time object detection. Subsequently, these output results will
be drawn in the original frame and displayed the updated frame to the camera
view where the prediction result is illustrated in Figure 4.14. To reselect the
image from the smartphone gallery for detection, the button with “Select Image”
label on the top centre of the page can be pressed, as shown in Figure 4.14.
Hence, one of the objectives in this study was achieved which is developing a

mobile app for users to access the smartphone camera for inspection.
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4.5 Summary

In summary, all the objectives of this study were achieved which are developing
a mobile app for users to access the smartphone camera for inspection, devising
a learning-based algorithm to automatically detect the existence of items in
manufactured products and investigating the performance of a smartphone in
machine vision inspection system can be benchmarked against a webcam used
in the production line.

For the smartphone-based and webcam-based object detection models
construction, they were considered as well trained and had good prediction
results on the test dataset. Additionally, the precision results of object detection
in reality through the smartphone-based are almost similar to the webcam-based
and the YOLOv4-Tiny models show the optimal performances in screw
detection with both smartphone and webcam devices based on precision and
inference time. Hence, the YOLOv4-Tiny model is selected for utilizing and
integrating into the finalised object detection app. In this screw detection app,
its main functionalities are allowing the user to implement real-time screw
inspection on a smartphone and implement screw inspection by selecting the

image from the smartphone gallery.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, the main objectives of this study had been achieved which include
developing a mobile app for users to access the smartphone camera for
inspection, devising a learning-based algorithm to automatically detect the
existence of items in manufactured products and investigating the performance
of a smartphone in machine vision inspection can be benchmarked against a
webcam used in the production line.

The proposed object detection models in this study which are YOLOV4,
YOLOv4-Tiny, SSD MobilenetV2 FPNlite 320x320 and SSD MobilenetV2
FPNIlite 640x640 were considered as well trained and had good prediction
results on the test dataset. For the screw detection experiment in reality, the
precision results of the smartphone-based are almost similar with the webcam-
based. This experiment results obviously proved that smartphone in machine
vision inspection can be benchmarked against a webcam used in a production
line. Hence, smartphones can be an alternative device for the visual system and
provide a low-cost machine vision inspection system with high efficiency and
flexibility for small and medium scale enterprises.

The YOLOV4-Tiny models illustrate the optimal performances in
screw detection with both smartphone and webcam devices based on precision
and prediction time. Therefore, the YOLOv4-Tiny model was chosen for
utilizing and integrating into the finalised object detection app. The finalised
object detection app was developed to allow users to access the smartphone
camera for inspection where the mobile application can automatically detect the
existence of screws in manufactured products. The main functionalities of this
mobile application are allowing the user to implement real-time screw
inspection on a smartphone and implement screw inspection by selecting the

image from the smartphone gallery.
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5.2 Recommendations for future work

In this study, all the main objectives had been achieved. However, there are
some recommendations for the future work of the development of this study.
Since the object detection models in this study are only used to detect the screw,
the recommendation for future work is to extend the object detection class that
can normally be found in manufactured products such as bolts and nuts. Other
than object detection, other types of deep learning methods in machine vision
inspection can be studied such as image classification, semantic segmentation
and instance segmentation in order to detect or classify the defects,
contaminants, flaws and other irregularities in manufactured products.

For the object detection app, the UI design can be improved through
the popular frontend framework such as Flutter which is a cross-platform mobile
application development framework which can be implemented in Android
Studio. This is because the Flutter framework supports I0S and Android
platforms, rich motion APIs, strong widget support and built-in material design
(Borah, 2021). Furthermore, Firebase can be utilized as the backend framework
of this mobile application which promotes real-time database, file storage,
analytics, authentication, push messaging and configuration features
(Demangeon and Janvier, 2019). Hence, the relevant data and prediction results
can be stored in the cloud or accessed from the cloud through the Firebase
framework. Additionally, there are some mobile application features that can be
add-on such as allowing users to trace back the prediction result, history data
and data analytics, and customize their own dataset including data annotation

on the smartphone, instead of using external platform such as Roboflow.
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APPENDIX A:

[net]

batch=64
subdivisions=24
width=416
height=416
channels=3
momentum=0.949
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue = .1

learning_rate=0.001
burn_in=1000
max_batches=2000
policy=steps
steps=1600.0,1800.0
scales=.1,.1

#cutmix=1
mosaic=1

APPENDICES

Training Configuration for YOLOV4.

#:104x104 54:52x52 85:26x26 104:13x13 for 416

[convolutional]
batch_normalize=1
filters=32

size=3

stride=1

pad=1
activation=mish

# Downsample

[convolutional]
batch_normalize=1
filters=64

size=3

stride=2

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=64

size=1

stride=1
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APPENDIX A: (Continued)

pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=64

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=32

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=64

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=64

size=1

stride=1

pad=1
activation=mish

[route]
layers = -1,-7

[convolutional]
batch normalize=1
filters=64

size=1

stride=1

pad=1
activation=mish
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APPENDIX A: (Continued)

# Downsample

[convolutional]
batch_normalize=1
filters=128

size=3

stride=2

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=64

size=1

stride=1

pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=64

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=64

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=64

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=64



APPENDIX A: (Continued)

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch _normalize=1
filters=64

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=64

size=1

stride=1

pad=1
activation=mish
[route]

layers = -1,-10
[convolutional]

batch normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

# Downsample

[convolutional]
batch_normalize=1
filters=256

size=3

stride=2

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=128

size=1

stride=1

pad=1
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APPENDIX A: (Continued)

activation=mish

[route]
layers = -2
[convolutional]

batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=128

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=128

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear
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[convolutional]
batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch _normalize=1
filters=128

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=128

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=128

62



APPENDIX A: (Continued)

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=128

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=128
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size=1

stride=1

pad=1
activation=mish

[convolutional]
batch _normalize=1
filters=128

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=mish

[route]
layers = -1,-28

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

# Downsample

[convolutional]
batch_normalize=1
filters=512

size=3

stride=2

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1

64



APPENDIX A: (Continued)

activation=mish

[route]
layers = -2
[convolutional]

batch _normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=256

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3



APPENDIX A: (Continued)

activation=linear

[convolutional]
batch_normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=256

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=256

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish
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[convolutional]
batch_normalize=1
filters=256

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=256

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
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activation=linear

[convolutional]
batch_normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=256

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=mish

[route]
layers = -1,-28

[convolutional]
batch_normalize=1
filters=512

size=1

stride=1

pad=1
activation=mish

# Downsample

[convolutional]
batch normalize=1
filters=1024

size=3

stride=2

pad=1
activation=mish
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[convolutional]
batch_normalize=1
filters=512

size=1

stride=1

pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=512

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=512

size=3

stride=1
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pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch _normalize=1
filters=512

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=mish

[convolutional]
batch normalize=1
filters=512

size=3

stride=1

pad=1
activation=mish

[shortcut]
from=-3
activation=linear

[convolutional]
batch_normalize=1
filters=512

size=1

stride=1
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pad=1
activation=mish

[route]
layers =-1,-16

[convolutional]
batch_normalize=1
filters=1024

size=1

stride=1

pad=1
activation=mish

HEH AR

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch_normalize=1
size=3

stride=1

pad=1

filters=1024
activation=leaky

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=leaky

##H# SPP #it#
[maxpool]
stride=1
size=5

[route]
layers=-2

[maxpool]
stride=1
size=9
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[route]
layers=-4

[maxpool]
stride=1
size=13

[route]
layers=-1,-3,-5,-6
### End SPP ###

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch normalize=1
size=3

stride=1

pad=1

filters=1024
activation=leaky

[convolutional]
batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[upsample]
stride=2

[route]
layers = 85

[convolutional]
batch normalize=1
filters=256
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size=1

stride=1

pad=1
activation=leaky

[route]
layers = -1, -3

[convolutional]
batch _normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch normalize=1
size=3

stride=1

pad=1

filters=512
activation=leaky

[convolutional]
batch_normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch normalize=1
size=3

stride=1

pad=1

filters=512
activation=leaky

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=128

size=1
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stride=1
pad=1
activation=leaky

[upsample]
stride=2

[route]
layers = 54

[convolutional]
batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=leaky

[route]
layers =-1, -3

[convolutional]
batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch normalize=1
size=3

stride=1

pad=1

filters=256
activation=leaky

[convolutional]
batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch normalize=1
size=3

stride=1

pad=1

filters=256
activation=leaky
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[convolutional]
batch_normalize=1
filters=128

size=1

stride=1

pad=1
activation=leaky

IR

[convolutional]
batch_normalize=1
size=3

stride=1

pad=1

filters=256
activation=leaky

[convolutional]
size=1

stride=1

pad=1

filters=18
activation=linear

[yolo]

mask =0,1,2

anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
classes=1

num=9

jitter=.3
ignore_thresh =.7
truth_thresh =1
scale x y=1.2
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta nms=0.6
max_delta=5

[route]
layers = -4

[convolutional]

batch normalize=1

size=3

stride=2

pad=1

APPENDIX A: (Continued)




filters=256
activation=leaky

[route]
layers = -1, -16
[convolutional]

batch _normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch normalize=1
size=3

stride=1

pad=1

filters=512
activation=leaky

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch normalize=1
size=3

stride=1

pad=1

filters=512
activation=leaky

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch_normalize=1

size=3

stride=1

pad=1

filters=512

APPENDIX A: (Continued)
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activation=leaky

[convolutional]
size=1

stride=1

pad=1

filters=18
activation=linear

[yolo]
mask = 3,4,5

anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
classes=1

num=9

jitter=.3

ignore_thresh =.7
truth_thresh = 1

scale x y=1.1
iou_thresh=0.213

cls normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms

beta nms=0.6
max_delta=5

[route]
layers = -4

[convolutional]
batch normalize=1
size=3

stride=2

pad=1

filters=512
activation=leaky

[route]
layers = -1, -37
[convolutional]

batch normalize=1
filters=512

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch_normalize=1
APPENDIX A: (Continued)




size=3

stride=1

pad=1
filters=1024
activation=leaky

[convolutional]

batch_normalize=1

filters=512
size=1

stride=1

pad=1
activation=leaky

[convolutional]

batch _normalize=1

size=3

stride=1

pad=1
filters=1024
activation=leaky

[convolutional]

batch normalize=1

filters=512
size=1

stride=1

pad=1
activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1
filters=1024
activation=leaky

[convolutional]
size=1

stride=1

pad=1

filters=18
activation=linear

[yolo]
mask = 6,7,8
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anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401

classes=1
num=9
jitter=.3

APPENDIX A: (Continued)

ignore_thresh =.7



truth_thresh = 1
random=1

scale x y=1.05
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta nms=0.6
max_delta=5
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[net]

# Testing
#batch=1
#subdivisions=1
# Training
batch=64
subdivisions=16
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.00261
burn_in=1000
max_batches = 2000
policy=steps
steps=1600.0,1800.0
scales=.1,.1

[convolutional]
batch normalize=1
filters=32

size=3

stride=2

pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=64

size=3

stride=2

pad=1
activation=leaky

[convolutional]
batch normalize=1
filters=64

size=3

stride=1

pad=1
activation=leaky

[route]
layers=-1
groups=2

Training Configuration for YOLOv4-Tiny.
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group_id=1

[convolutional]
batch_normalize=1
filters=32

size=3

stride=1

pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=32

size=3

stride=1

pad=1
activation=leaky

[route]
layers = -1,-2

[convolutional]
batch_normalize=1
filters=64

size=1

stride=1

pad=1
activation=leaky

[route]
layers = -6,-1

[maxpool]
size=2
stride=2

[convolutional]
batch normalize=1
filters=128

size=3

stride=1

pad=1
activation=leaky

[route]
layers=-1
groups=2
group_id=1

[convolutional]
batch normalize=1
filters=64

81



APPENDIX B: (Continued)

size=3

stride=1

pad=1
activation=leaky

[convolutional]
batch _normalize=1
filters=64

size=3

stride=1

pad=1
activation=leaky

[route]
layers = -1,-2

[convolutional]
batch normalize=1
filters=128

size=1

stride=1

pad=1
activation=leaky

[route]
layers = -6,-1

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=256

size=3

stride=1

pad=1
activation=leaky

[route]
layers=-1
groups=2
group_id=1

[convolutional]
batch_normalize=1
filters=128

size=3

stride=1

pad=1
activation=leaky
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[convolutional]
batch_normalize=1
filters=128

size=3

stride=1

pad=1
activation=leaky

[route]
layers = -1,-2

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[route]
layers = -6,-1

[maxpool]
size=2
stride=2

[convolutional]
batch normalize=1
filters=512

size=3

stride=1

pad=1
activation=leaky

HHHHHHHHHHEHHH AR

[convolutional]
batch normalize=1
filters=256

size=1

stride=1

pad=1
activation=leaky

[convolutional]
batch_normalize=1
filters=512

size=3

stride=1

pad=1
activation=leaky
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[convolutional]
size=1

stride=1

pad=1

filters=18
activation=linear

[yolo]

mask = 3,4,5
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1

num=6

jitter=.3

scale x y=1.05

cls normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
ignore_thresh =.7
truth_thresh =1
random=0
nms_kind=greedynms
beta nms=0.6

[route]
layers = -4
[convolutional]

batch normalize=1
filters=128

size=1

stride=1

pad=1
activation=leaky

[upsample]
stride=2

[route]
layers = -1, 23

[convolutional]
batch_normalize=1
filters=256

size=3

stride=1

pad=1
activation=leaky

[convolutional]
size=1

stride=1

pad=1
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filters=18
activation=linear

[yolo]

mask =1,2,3

anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
classes=1

num=6

jitter=.3

scale x y=1.05
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
ignore_thresh =.7
truth_thresh = 1
random=0
nms_kind=greedynms
beta nms=0.6
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Architecture of YOLOvV4.

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [ (None, 416, 416, 3) 0
conv2d (Conv2D) (None, 416, 416, 32) 864 input_1[0][0]
batch_normalization (BatchNorma (None, 416, 416, 32) 128 conv2d[0] [0]
tf op layer Softplus (TensorFlo [ (None, 416, 416, 32 0 batch_normalization([0][0]
tf op_layer Tanh (TensorFlowOpL [ (None, 416, 416, 32 0 tf op_layer Softplus[0][0]
tf op_layer Mul (TensorFlowOpLa [ (None, 416, 416, 32 0 batch_normalization[0][0]
tf op_layer Tanh[0][0]
zero_padding2d (ZeroPadding2D) (None, 417, 417, 32) 0 tf op_layer Mul[0][0]
conv2d_1 (Conv2D) (None, 208, 208, 64) 18432 zero_padding2d[0][0]
batch_normalization_1 (BatchNor (None, 208, 208, 64) 256 conv2d 1[0][0]
tf op layer Softplus_1 (TensorF [ (None, 208, 208, 64 0 batch_normalization_1[0][0]
tf op_layer Tanh 1 (TensorFlowO [ (None, 208, 208, 64 0 tf op_layer Softplus_ 1[0][0]
tf op_layer Mul 1 (TensorFlowOp [ (None, 208, 208, 64 0 batch_normalization_ 1[0][0]
tf op layer Tanh 1[0][0]
conv2d 3 (Conv2D) (None, 208, 208, 64) 4096 tf op layer Mul 1[0][0]
batch_normalization_3 (BatchNor (None, 208, 208, 64) 256 conv2d _3[0][0]
tf op_layer Softplus_3 (TensorF [ (None, 208, 208, 64 0 batch_normalization_3[0][0]
tf op_layer Tanh 3 (TensorFlowO [ (None, 208, 208, 64 0 tf op_ layer Softplus 3[0][0]
tf op layer Mul 3 (TensorFlowOp [ (None, 208, 208, 64 0 batch_normalization_3[0][0]
tf op_layer Tanh 3[0][0]
conv2d_4 (Conv2D) (None, 208, 208, 32) 2048 tf op layer Mul 3[0][0]
batch_normalization_4 (BatchNor (None, 208, 208, 32) 128 conv2d 4[0][0]
tf op layer Softplus_4 (TensorF [ (None, 208, 208, 32 0 batch_normalization_4[0][0]
tf op_layer Tanh 4 (TensorFlowO [ (None, 208, 208, 32 0 tf op_layer Softplus 4[0][0]
tf op_layer Mul 4 (TensorFlowOp [ (None, 208, 208, 32 0 batch_normalization_4[0][0]
tf op_layer Tanh 4[0][0]
conv2d 5 (Conv2D) (None, 208, 208, 64) 18432 tf op layer Mul 4[0][0]
batch_normalization_ 5 (BatchNor (None, 208, 208, 64) 256 conv2d _5([0][0]
tf_op_layer Softplus_5 (TensorF [(None, 208, 208, 64 0 batch_normalization_5([0][0]
tf op_layer Tanh 5 (TensorFlowO [ (None, 208, 208, 64 0 tf op_ layer Softplus 5[0][0]
tf op layer Mul 5 (TensorFlowOp [ (None, 208, 208, 64 0 batch_normalization_ 5[0][0]
tf op_layer Tanh 5[0][0]
tf op layer AddV2 (TensorFlowOp [ (None, 208, 208, 64 0 tf op layer Mul 3[0][0]
tf op layer Mul 5([0][0]
conv2d_6 (Conv2D) (None, 208, 208, 64) 4096 tf op layer Addv2[0][0]
conv2d 2 (Conv2D) (None, 208, 208, 64) 4096 tf op layer Mul 1[0][0]
batch_normalization_6 (BatchNor (None, 208, 208, 64) 256 conv2d _6[0][0]
batch_normalization_2 (BatchNor (None, 208, 208, 64) 256 conv2d 2[0]1[0]
tf op_layer Softplus_6 (TensorF [ (None, 208, 208, 64 0 batch_normalization_6[0][0]
tf op layer Softplus_2 (TensorF [ (None, 208, 208, 64 0 batch_normalization_2[0][0]
tf op_layer Tanh 6 (TensorFlowO [ (None, 208, 208, 64 0 tf op_layer Softplus 6[0][0]
tf op_layer Tanh 2 (TensorFlowO [ (None, 208, 208, 64 0 tf op layer Softplus 2[0][0]
tf op layer Mul 6 (TensorFlowOp [ (None, 208, 208, 64 0 batch_normalization_6[0][0]
tf op_layer Tanh 6[0][0]
tf op layer Mul 2 (TensorFlowOp [ (None, 208, 208, 64 0 batch_normalization_ 2[0][0]
tf op_layer Tanh 2[0][0]
tf op layer concat (TensorFlowO [ (None, 208, 208, 12 0 tf op layer Mul 6[0][0]
tf op layer Mul 2[0][0]
conv2d_7 (Conv2D) (None, 208, 208, 64) 8192 tf op_layer concat[0][0]
batch_normalization_7 (BatchNor (None, 208, 208, 64) 256 conv2d 7[0][0]
tf op layer Softplus_7 (TensorF [ (None, 208, 208, 64 0 batch_normalization_7[0][0]
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tf op_layer Tanh 7 (TensorFlowO [ (None, 208, 208, 64 0 tf op_layer Softplus_7[0][0]
tf op_layer Mul 7 (TensorFlowOp [ (None, 208, 208, 64 0 batch_normalization_ 7[0][0]
tf op layer Tanh 7[0][0]
zero_padding2d_1 (ZeroPadding2D (None, 209, 209, 64) 0 tf op_layer Mul 7([0][0]
conv2d_8 (Conv2D) (None, 104, 104, 128 73728 zero_padding2d 1[0][0]
batch_normalization_8 (BatchNor (None, 104, 104, 128 512 conv2d 8[0][0]
tf op_layer Softplus_8 (TensorF [ (None, 104, 104, 12 0 batch_normalization 8[0][0]
tf op_layer Tanh 8 (TensorFlowO [ (None, 104, 104, 12 0 tf op_layer Softplus 8[0][0]
tf op_layer Mul 8 (TensorFlowOp [ (None, 104, 104, 12 0 batch _normalization_8[0][0]
tf op_layer Tanh 8[0][0]
conv2d 10 (Conv2D) (None, 104, 104, 64) 8192 tf op layer Mul 8[0][0]
batch_normalization_ 10 (BatchNo (None, 104, 104, 64) 256 conv2d _10[0][0]
tf_op_layer Softplus_10 (Tensor [(None, 104, 104, 64 0 batch_normalization_10[0][0]
tf op_layer Tanh 10 (TensorFlow [ (None, 104, 104, 64 0 tf _op_layer Softplus_10[0][0]
tf op layer Mul 10 (TensorFlowO [ (None, 104, 104, 64 0 batch_normalization 10[0][0]
tf op layer Tanh 10[0][0]
conv2d_11 (Conv2D) (None, 104, 104, 64) 4096 tf op layer Mul 10[0][0]
batch_normalization_11 (BatchNo (None, 104, 104, 64) 256 conv2d 11[0][0]
tf op_layer Softplus_11 (Tensor [(None, 104, 104, 64 0 batch_normalization 11[0][0]
tf op layer Tanh 11 (TensorFlow [ (None, 104, 104, 64 0 tf op layer Softplus_11[0][0]
tf op_layer Mul 11 (TensorFlowO [ (None, 104, 104, 64 0 batch_normalization 11[0][0]
tf op layer Tanh 11[0][0]
conv2d 12 (Conv2D) (None, 104, 104, 64) 36864 tf op_layer Mul 11[0][0]
batch_normalization_ 12 (BatchNo (None, 104, 104, 64) 256 conv2d _12[0][0]
tf op layer Softplus_12 (Tensor [(None, 104, 104, 64 0 batch_normalization_ 12[0][0]
tf op_layer Tanh 12 (TensorFlow [ (None, 104, 104, 64 0 tf op_layer Softplus_12[0][0]
tf op layer Mul 12 (TensorFlowO [ (None, 104, 104, 64 0 batch_normalization 12[0][0]
tf op_layer Tanh 12[0][0]
tf op layer Addv2_1 (TensorFlow [ (None, 104, 104, 64 0 tf op layer Mul 10[0][0]
tf _op_layer Mul 12[0][0]
conv2d_13 (Conv2D) (None, 104, 104, 64) 4096 tf op layer Addv2_1[0][0]
batch_normalization_13 (BatchNo (None, 104, 104, 64) 256 conv2d 13[0][0]
tf op_layer Softplus_13 (Tensor [(None, 104, 104, 64 0 batch_normalization_ 13[0][0]
tf op layer Tanh 13 (TensorFlow [ (None, 104, 104, 64 0 tf op layer Softplus_13[0][0]
tf op_layer Mul 13 (TensorFlowO [ (None, 104, 104, 64 0 batch_normalization 13[0] [0]
tf op layer Tanh 13[0][0]
conv2d_14 (Conv2D) (None, 104, 104, 64) 36864 tf op_layer Mul 13[0][0]
batch_normalization_14 (BatchNo (None, 104, 104, 64) 256 conv2d _14[0][0]
tf op layer Softplus_14 (Tensor [(None, 104, 104, 64 0 batch_normalization_ 14[0][0]
tf op_layer Tanh 14 (TensorFlow [ (None, 104, 104, 64 0 tf op_layer Softplus_14[0][0]
tf op layer Mul 14 (TensorFlowO [ (None, 104, 104, 64 0 batch_normalization 14[0][0]
tf op layer Tanh 14[0][0]
tf op layer Addv2_2 (TensorFlow [ (None, 104, 104, 64 0 tf op layer Addv2_1[0][0]
tf _op_layer Mul 14[0][0]
conv2d_15 (Conv2D) (None, 104, 104, 64) 4096 tf op layer Addv2_2[0][0]
conv2d 9 (Conv2D) (None, 104, 104, 64) 8192 tf op layer Mul 8[0][0]
batch_normalization_ 15 (BatchNo (None, 104, 104, 64) 256 conv2d 15([0][0]
batch_normalization_ 9 (BatchNor (None, 104, 104, 64) 256 conv2d _9[0][0]
tf op_layer Softplus_15 (Tensor [ (None, 104, 104, 64 0 batch_normalization 15[0] [0]
tf op_layer Softplus_9 (TensorF [ (None, 104, 104, 64 0 batch_normalization_ 9[0][0]
tf op layer Tanh 15 (TensorFlow [ (None, 104, 104, 64 0 tf op layer Softplus_15([0][0]
tf op_layer Tanh 9 (TensorFlowO [ (None, 104, 104, 64 0 tf op_layer Softplus_9[0][0]
tf op layer Mul 15 (TensorFlowO [ (None, 104, 104, 64 0 batch_normalization_ 15[0][0]

tf op_layer Tanh 15[0][0]
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tf op_layer Mul 9 (TensorFlowOp [ (None, 104, 104, 64 0 batch_normalization_ 9([0][0]

tf op layer Tanh 9[0][0]

tf op_layer concat_l (TensorFlo [(None, 104, 104, 12 0 tf _op_layer Mul 15[0][0]
tf op layer Mul 9[0][0]

conv2d_16 (Conv2D) (None, 104, 104, 128 16384 tf op_layer concat_1[0][0]
batch_normalization_ 16 (BatchNo (None, 104, 104, 128 512 conv2d _16[0][0]

tf op_layer Softplus_16 (Tensor [ (None, 104, 104, 12 0 batch_normalization 16[0] [0]
tf op_layer Tanh 16 (TensorFlow [ (None, 104, 104, 12 0 tf op_layer Softplus_16[0][0]
tf op layer Mul 16 (TensorFlowO [ (None, 104, 104, 12 0 batch_normalization_16[0] [0]

tf op layer Tanh 16[0][0]

zero_padding2d 2 (ZeroPadding2D (None, 105, 105, 128 0 tf op layer Mul 16[0][0]
conv2d 17 (Conv2D) (None, 52, 52, 256) 294912 zero_padding2d 2[0][0]
batch_normalization_17 (BatchNo (None, 52, 52, 256) 1024 conv2d _17[0][0]

tf op layer Softplus_17 (Tensor [ (None, 52, 52, 256) 0 batch_normalization_ 17[0][0]
tf op_layer Tanh 17 (TensorFlow [ (None, 52, 52, 256) 0 tf_op_layer Softplus_17[0][0]
tf op layer Mul 17 (TensorFlowO [ (None, 52, 52, 256) 0 batch_normalization 17[0][0]

tf op layer Tanh 17[0][0]

conv2d_19 (Conv2D) (None, 52, 52, 128) 32768 tf op layer Mul 17[0][0]
batch_normalization_19 (BatchNo (None, 52, 52, 128) 512 conv2d 19[0][0]

tf op_layer Softplus_19 (Tensor [ (None, 52, 52, 128) 0 batch_normalization_ 19[0][0]
tf op layer Tanh 19 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Softplus_19[0][0]
tf op_layer Mul 19 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 19[0] [0]

tf op layer Tanh 19[0][0]

conv2d 20 (Conv2D) (None, 52, 52, 128) 16384 tf op_layer Mul 19[0][0]
batch_normalization_20 (BatchNo (None, 52, 52, 128) 512 conv2d _20[0][0]

tf op layer Softplus_20 (Tensor [ (None, 52, 52, 128) 0 batch_normalization_20[0] [0]
tf op_layer Tanh 20 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus_20[0][0]
tf op layer Mul 20 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 20[0][0]

tf op layer Tanh 20[0][0]

conv2d_21 (Conv2D) (None, 52, 52, 128) 147456 tf op layer Mul 20[0][0]
batch_normalization_21 (BatchNo (None, 52, 52, 128) 512 conv2d 21[0][0]

tf op_layer Softplus_21 (Tensor [ (None, 52, 52, 128) 0 batch_normalization 21[0][0]
tf op layer Tanh 21 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Softplus_21[0][0]
tf op_layer Mul 21 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 21[0][0]

tf op layer Tanh 21[0][0]

tf op_layer Addv2_3 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Mul 19[0][0]

tf op layer Mul 21[0][0]
conv2d 22 (Conv2D) (None, 52, 52, 128) 16384 tf op_layer Addv2_3[0][0]
batch_normalization_ 22 (BatchNo (None, 52, 52, 128) 512 conv2d 22[0][0]
tf op layer Softplus_22 (Tensor [(None, 52, 52, 128) 0 batch_normalization_22[0][0]
tf op_layer Tanh 22 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus_22[0][0]
tf op layer Mul 22 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 22[0][0]

tf op layer Tanh 22[0][0]

conv2d_23 (Conv2D) (None, 52, 52, 128) 147456 tf op layer Mul 22[0][0]
batch_normalization_23 (BatchNo (None, 52, 52, 128) 512 conv2d _23[0][0]

tf op_layer Softplus_23 (Tensor [ (None, 52, 52, 128) 0 batch_normalization 23[0][0]
tf op layer Tanh 23 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Softplus_23[0][0]
tf op_layer Mul 23 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 23[0][0]

tf op layer Tanh 23[0][0]

tf op_layer Addv2_4 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Addv2_3[0][0]

tf op layer Mul 23[0][0]
conv2d_24 (Conv2D) (None, 52, 52, 128) 16384 tf op_layer Addv2_4[0][0]
batch_normalization_24 (BatchNo (None, 52, 52, 128) 512 conv2d 24[0][0]
tf op layer Softplus_24 (Tensor [ (None, 52, 52, 128) 0 batch_normalization_24[0][0]

tf op_layer Tanh 24 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus_24[0][0]
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tf op_layer Mul 24 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization_ 24[0][0]
tf op layer Tanh 24[0][0]
conv2d 25 (Conv2D) (None, 52, 52, 128) 147456 tf _op_layer Mul 24[0][0]
batch_normalization_ 25 (BatchNo (None, 52, 52, 128) 512 conv2d_25[0][0]
tf op_layer Softplus_25 (Tensor [ (None, 52, 52, 128) 0 batch_normalization 25[0] [0]
tf op_layer Tanh 25 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus 25[0][0]
tf op layer Mul 25 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization_25[0] [0]
tf op layer Tanh 25[0][0]
tf op layer Addv2_5 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Addv2_4[0][0]
tf _op_layer Mul 25[0][0]
conv2d_26 (Conv2D) (None, 52, 52, 128) 16384 tf op layer Addv2_5[0][0]
batch_normalization_26 (BatchNo (None, 52, 52, 128) 512 conv2d 26[0][0]
tf op layer Softplus_26 (Tensor [(None, 52, 52, 128) 0 batch_normalization 26[0][0]
tf op layer Tanh 26 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Softplus_26[0][0]
tf op_layer Mul 26 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 26[0][0]
tf op layer Tanh 26[0][0]
conv2d 27 (Conv2D) (None, 52, 52, 128) 147456 tf _op_layer Mul 26[0][0]
batch_normalization_ 27 (BatchNo (None, 52, 52, 128) 512 conv2d _27[0][0]
tf op_layer Softplus_27 (Tensor [ (None, 52, 52, 128) 0 batch_normalization 27[0][0]
tf op_layer Tanh 27 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus 27[0][0]
tf op layer Mul 27 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 27[0][0]
tf op_layer Tanh 27[0][0]
tf op layer AddV2_6 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Addv2_5[0][0]
tf _op_layer Mul 27[0][0]
conv2d_28 (Conv2D) (None, 52, 52, 128) 16384 tf op layer Addv2_6[0][0]
batch_normalization_ 28 (BatchNo (None, 52, 52, 128) 512 conv2d 28[0][0]
tf op layer Softplus_28 (Tensor [(None, 52, 52, 128) 0 batch_normalization 28[0][0]
tf op layer Tanh 28 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Softplus_28[0][0]
tf op_layer Mul 28 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 28[0][0]
tf op layer Tanh 28[0][0]
conv2d 29 (Conv2D) (None, 52, 52, 128) 147456 tf _op_layer Mul 28[0][0]
batch_normalization_29 (BatchNo (None, 52, 52, 128) 512 conv2d _29[0][0]
tf op_layer Softplus_29 (Tensor [ (None, 52, 52, 128) 0 batch_normalization 29[0][0]
tf op_layer Tanh 29 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus 29[0][0]
tf op layer Mul 29 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 29[0][0]
tf op_layer Tanh 29[0][0]
tf op layer Addv2_7 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Addv2_6[0][0]
tf _op_layer Mul 29[0][0]
conv2d_30 (Conv2D) (None, 52, 52, 128) 16384 tf op layer Addv2_7[0][0]
batch_normalization_ 30 (BatchNo (None, 52, 52, 128) 512 conv2d 30[0][0]
tf op layer Softplus_30 (Tensor [(None, 52, 52, 128) 0 batch_normalization 30[0][0]
tf op_layer Tanh 30 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus_30[0][0]
tf op_layer Mul 30 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization_ 30[0][0]
tf_op_layer Tanh 30[0][0]
conv2d 31 (Conv2D) (None, 52, 52, 128) 147456 tf_op_layer Mul 30[0][0]
batch_normalization_ 31 (BatchNo (None, 52, 52, 128) 512 conv2d _31[0][0]
tf op_layer Softplus_31 (Tensor [ (None, 52, 52, 128) 0 batch_normalization 31[0][0]
tf op_layer Tanh 31 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus 31[0][0]
tf op layer Mul 31 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 31[0][0]
tf op layer Tanh 31[0][0]
tf op layer Addv2_8 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Addv2_7[0][0]
tf _op_layer Mul 31[0][0]
conv2d_32 (Conv2D) (None, 52, 52, 128) 16384 tf op layer Addv2_8[0][0]
batch_normalization_32 (BatchNo (None, 52, 52, 128) 512 conv2d 32[0][0]
tf op layer Softplus_32 (Tensor [(None, 52, 52, 128) 0 batch_normalization 32[0][0]
tf op_layer Tanh 32 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus_32[0][0]
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tf op layer Mul 32 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization 32[0][0]
tf op layer Tanh 32[0][0]
conv2d_33 (Conv2D) (None, 52, 52, 128) 147456 tf op layer Mul 32[0][0]
batch_normalization_ 33 (BatchNo (None, 52, 52, 128) 512 conv2d 33[0][0]
tf op layer Softplus_33 (Tensor [(None, 52, 52, 128) 0 batch_normalization 33[0][0]
tf op_layer Tanh 33 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus_33([0][0]
tf op_layer Mul 33 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization_ 33[0][0]
tf op_ layer Tanh 33[0][0]
tf op_layer Addv2_9 (TensorFlow [ (None, 52, 52, 128) 0 tf _op_layer Addv2_8[0][0]
tf op_layer Mul 33[0][0]
conv2d_34 (Conv2D) (None, 52, 52, 128) 16384 tf op layer Addv2_9[0][0]
batch_normalization_34 (BatchNo (None, 52, 52, 128) 512 conv2d _34[0][0]
tf op_layer Softplus_34 (Tensor [ (None, 52, 52, 128) 0 batch_normalization 34[0][0]
tf op layer Tanh 34 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Softplus_34[0][0]
tf op layer Mul 34 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization_ 34[0][0]
tf op layer Tanh 34[0][0]
conv2d_35 (Conv2D) (None, 52, 52, 128) 147456 tf op layer Mul 34[0][0]
batch_normalization 35 (BatchNo (None, 52, 52, 128) 512 conv2d 35([0][0]
tf op layer Softplus_35 (Tensor [(None, 52, 52, 128) 0 batch_normalization 35[0][0]
tf op_layer Tanh 35 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus_35([0][0]
tf op_layer Mul 35 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization_ 35[0][0]
tf op_layer Tanh 35[0][0]
tf op_layer Addv2_10 (TensorFlo [ (None, 52, 52, 128) 0 tf_op_layer Addv2_91[0][0]
tf op_layer Mul 35[0][0]
conv2d_36 (Conv2D) (None, 52, 52, 128) 16384 tf op layer Addv2_10[0][0]
conv2d_18 (Conv2D) (None, 52, 52, 128) 32768 tf op layer Mul 17([0][0]
batch_normalization_36 (BatchNo (None, 52, 52, 128) 512 conv2d 36[0][0]
batch_normalization_ 18 (BatchNo (None, 52, 52, 128) 512 conv2d _18[0][0]
tf op layer Softplus_36 (Tensor [ (None, 52, 52, 128) 0 batch_normalization_ 36[0] [0]
tf op_layer Softplus_18 (Tensor [ (None, 52, 52, 128) 0 batch_normalization_ 18[0][0]
tf op layer Tanh 36 (TensorFlow [ (None, 52, 52, 128) 0 tf op layer Softplus_36[0][0]
tf op_layer Tanh 18 (TensorFlow [ (None, 52, 52, 128) 0 tf op_layer Softplus_18[0][0]
tf op_layer Mul 36 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization_ 36[0][0]
tf op_layer Tanh 36[0][0]
tf op_layer Mul 18 (TensorFlowO [ (None, 52, 52, 128) 0 batch_normalization_ 18[0][0]
tf op layer Tanh 18[0][0]
tf op_layer concat_2 (TensorFlo [(None, 52, 52, 256) 0 tf_op_layer Mul 36[0][0]
tf op_layer Mul 18[0][0]
conv2d_37 (Conv2D) (None, 52, 52, 256) 65536 tf op_layer concat_2[0][0]
batch_normalization_37 (BatchNo (None, 52, 52, 256) 1024 conv2d _37[0][0]
tf op_layer Softplus_37 (Tensor [ (None, 52, 52, 256) 0 batch_normalization 37[0][0]
tf op layer Tanh 37 (TensorFlow [ (None, 52, 52, 256) 0 tf op layer Softplus_37([0][0]
tf op layer Mul 37 (TensorFlowO [ (None, 52, 52, 256) 0 batch_normalization_ 37[0][0]
tf op layer Tanh 37[0][0]
zero_padding2d 3 (ZeroPadding2D (None, 53, 53, 256) O tf op layer Mul 37[0][0]
conv2d 38 (Conv2D) (None, 26, 26, 512) 1179648 zero_paddingZd_3[O] [0]
batch_normalization_ 38 (BatchNo (None, 26, 26, 512) 2048 conv2d _38[0][0]
tf op_layer Softplus_38 (Tensor [ (None, 26, 26, 512) 0 batch_normalization 38[0] [0]
tf op_layer Tanh 38 (TensorFlow [ (None, 26, 26, 512) 0 tf op_layer Softplus_38[0][0]
tf op layer Mul 38 (TensorFlowO [ (None, 26, 26, 512) 0 batch_normalization_ 38[0][0]
tf op layer Tanh 38[0][0]
conv2d_40 (Conv2D) (None, 26, 26, 256) 131072 tf op layer Mul 38[0][0]
batch_normalization_40 (BatchNo (None, 26, 26, 256) 1024 conv2d _40[0][0]
tf op layer Softplus_40 (Tensor [ (None, 26, 26, 256) 0 batch_normalization_ 40[0][0]
tf op layer Tanh 40 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_40[0][0]
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tf op layer Mul 40 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_40[0][0]
tf op layer Tanh 40[0][0]
conv2d 41 (Conv2D) (None, 26, 26, 256) 65536 tf op_layer Mul 40[0][0]
batch_normalization_41 (BatchNo (None, 26, 26, 256) 1024 conv2d 41([0][0]
tf op layer Softplus_41 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 41[0][0]
tf op_layer Tanh 41 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_41[0][0]
tf op_layer Mul 41 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_ 41[0][0]
tf op_layer Tanh 41[0][0]
conv2d 42 (Conv2D) (None, 26, 26, 256) 589824 tf _op_layer Mul 41[0][0]
batch_normalization_42 (BatchNo (None, 26, 26, 256) 1024 conv2d_42[0][0]
tf op_layer Softplus_42 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 42[0][0]
tf op layer Tanh 42 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_42[0][0]
tf _op_layer Mul 42 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_42[0][0]
tf op layer Tanh 42[0][0]
tf op layer Addv2_11 (TensorFlo [ (None, 26, 26, 256) 0 tf op layer Mul 40[0][0]
tf op layer Mul 42[0][0]
conv2d_43 (Conv2D) (None, 26, 26, 256) 65536 tf op layer Addv2_11[0][0]
batch_normalization_43 (BatchNo (None, 26, 26, 256) 1024 conv2d _43[0][0]
tf op layer Softplus_43 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 43[0][0]
tf op_layer Tanh 43 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_43[0][0]
tf op_layer Mul 43 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_ 43[0][0]
tf op_layer Tanh 43[0][0]
conv2d 44 (Conv2D) (None, 26, 26, 256) 589824 tf_op_layer Mul 43[0][0]
batch_normalization_44 (BatchNo (None, 26, 26, 256) 1024 conv2d_44[0][0]
tf op_layer Softplus_44 (Tensor [ (None, 26, 26, 256) 0 batch_normalization_ 44[0][0]
tf op layer Tanh 44 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_44[0][0]
tf _op_layer Mul 44 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_44[0][0]
tf op layer Tanh 44[0][0]
tf op layer Addv2_12 (TensorFlo [ (None, 26, 26, 256) 0 tf op layer Addv2_11[0][0]
tf op layer Mul 44[0][0]
conv2d_45 (Conv2D) (None, 26, 26, 256) 65536 tf op layer Addv2_12[0][0]
batch_normalization_45 (BatchNo (None, 26, 26, 256) 1024 conv2d 45([0][0]
tf op layer Softplus_45 (Tensor [ (None, 26, 26, 256) 0 batch_normalization_ 45[0][0]
tf op_layer Tanh 45 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_45([0][0]
tf op_layer Mul 45 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_ 45[0][0]
tf op_layer Tanh 45[0][0]
conv2d 46 (Conv2D) (None, 26, 26, 256) 589824 tf_op_layer Mul 45[0][0]
batch_normalization_46 (BatchNo (None, 26, 26, 256) 1024 conv2d _46[0][0]
tf op_layer Softplus_46 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 46[0] [0]
tf op layer Tanh 46 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_46[0][0]
tf _op_layer Mul 46 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_46[0][0]
tf op layer Tanh 46[0][0]
tf op layer Addv2_13 (TensorFlo [ (None, 26, 26, 256) 0 tf op layer Addv2_12[0][0]
tf op_layer Mul 46[0][0]
conv2d_47 (Conv2D) (None, 26, 26, 256) 65536 tf op_layer Addv2_13[0][0]
batch_normalization_47 (BatchNo (None, 26, 26, 256) 1024 conv2d _47([0][0]
tf op layer Softplus_47 (Tensor [(None, 26, 26, 256) 0 batch_normalization 47[0][0]
tf op_layer Tanh 47 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_47([0][0]
tf op_layer Mul 47 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_ 47[0][0]
tf op_layer Tanh 47[0][0]
conv2d 48 (Conv2D) (None, 26, 26, 256) 589824 tf_op_layer Mul 47[0][0]
batch_normalization_48 (BatchNo (None, 26, 26, 256) 1024 conv2d _48[0][0]
tf op_layer Softplus_48 (Tensor [ (None, 26, 26, 256) 0 batch_normalization_ 48[0] [0]
tf op layer Tanh 48 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_48[0][0]
tf_op_layer Mul 48 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_48[0][0]



APPENDIX C: (Continued)

tf op_layer Tanh 48[0][0]

tf op_layer Addv2_14 (TensorFlo [ (None, 26, 26, 256) 0 tf op_layer Addv2_ 13[0][0]
tf op_layer Mul 48[0][0]
conv2d_49 (Conv2D) (None, 26, 26, 256) 65536 tf op layer Addv2_14[0][0]
batch_normalization_49 (BatchNo (None, 26, 26, 256) 1024 conv2d_49[0][0]
tf op_layer Softplus_49 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 49[0][0]
tf op layer Tanh 49 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_49[0][0]
tf_op_layer Mul 49 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_49[0][0]
tf op layer Tanh 49[0][0]
conv2d_50 (Conv2D) (None, 26, 26, 256) 589824 tf op layer Mul 49[0][0]
batch_normalization 50 (BatchNo (None, 26, 26, 256) 1024 conv2d _50([0][0]
tf op layer Softplus_50 (Tensor [(None, 26, 26, 256) 0 batch_normalization 50[0][0]
tf op_layer Tanh 50 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_50[0][0]
tf op_layer Mul 50 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization 50[0][0]
tf op_layer Tanh 50[0][0]
tf op_layer Addv2_15 (TensorFlo [ (None, 26, 26, 256) 0 tf op_layer Addv2_ 14[0][0]
tf op_layer Mul 50[0][0]
conv2d 51 (Conv2D) (None, 26, 26, 256) 65536 tf op_layer Addv2_ 15[0][0]
batch_normalization_ 51 (BatchNo (None, 26, 26, 256) 1024 conv2d 51[0][0]
tf op_layer Softplus_51 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 51[0][0]
tf op layer Tanh 51 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_51[0][0]
tf_op_layer Mul 51 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_51[0][0]
tf op layer Tanh 51[0][0]
conv2d_52 (Conv2D) (None, 26, 26, 256) 589824 tf op layer Mul 51[0][0]
batch_normalization 52 (BatchNo (None, 26, 26, 256) 1024 conv2d 52[0][0]
tf op layer Softplus_52 (Tensor [(None, 26, 26, 256) 0 batch_normalization 52[0][0]
tf op_layer Tanh 52 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_52[0][0]
tf op_layer Mul 52 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization 52[0][0]
tf op_layer Tanh 52[0][0]
tf op_layer Addv2_16 (TensorFlo [ (None, 26, 26, 256) 0 tf op_layer Addv2_ 15([0][0]
tf op_layer Mul 52[0][0]
conv2d 53 (Conv2D) (None, 26, 26, 256) 65536 tf _op_layer Addv2_ 16[0][0]
batch_normalization_ 53 (BatchNo (None, 26, 26, 256) 1024 conv2d _53[0][0]
tf op_layer Softplus_53 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 53[0][0]
tf op layer Tanh 53 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_53[0][0]
tf_op_layer Mul 53 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_53[0][0]
tf op layer Tanh 53[0][0]
conv2d 54 (Conv2D) (None, 26, 26, 256) 589824 tf op_layer Mul 53[0][0]
batch_normalization_54 (BatchNo (None, 26, 26, 256) 1024 conv2d _54[0][0]
tf op layer Softplus_54 (Tensor [(None, 26, 26, 256) 0 batch_normalization 54[0][0]
tf op_layer Tanh 54 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_54[0][0]
tf op_layer Mul 54 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_ 54[0][0]
tf op_layer Tanh 54[0][0]
tf op_layer Addv2_17 (TensorFlo [ (None, 26, 26, 256) 0 tf _op_layer Addv2_ 16[0][0]
tf op_layer Mul 54[0][0]
conv2d 55 (Conv2D) (None, 26, 26, 256) 65536 tf op_layer Addv2_ 17([0][0]
batch_normalization_ 55 (BatchNo (None, 26, 26, 256) 1024 conv2d 55[0][0]
tf op_layer Softplus_55 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 55[0] [0]
tf op_layer Tanh 55 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_55[0][0]
tf_op_layer Mul 55 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_55[0][0]
tf op layer Tanh 55[0][0]
conv2d_56 (Conv2D) (None, 26, 26, 256) 589824 tf op layer Mul 55([0][0]
batch_normalization 56 (BatchNo (None, 26, 26, 256) 1024 conv2d _56[0][0]
tf op layer Softplus_56 (Tensor [(None, 26, 26, 256) 0 batch_normalization 56[0][0]
tf op_layer Tanh 56 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_56[0][0]
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tf_op_layer Mul 56 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_56[0][0]
tf op layer Tanh 56[0][0]

tf op layer Addv2_18 (TensorFlo [ (None, 26, 26, 256) 0 tf op layer Addv2_17[0][0]
tf op layer Mul 56[0][0]
conv2d 57 (Conv2D) (None, 26, 26, 256) 65536 tf op_layer Addv2_18[0] [0]
conv2d_39 (Conv2D) (None, 26, 26, 256) 131072 tf op_layer Mul 38[0][0]
batch_normalization_ 57 (BatchNo (None, 26, 26, 256) 1024 conv2d _57[0][0]
batch_normalization_39 (BatchNo (None, 26, 26, 256) 1024 conv2d 39[0][0]
tf op_layer Softplus_57 (Tensor [ (None, 26, 26, 256) 0 batch_normalization 57[0][0]
tf op layer Softplus_39 (Tensor [ (None, 26, 26, 256) 0 batch_normalization_ 39[0][0]
tf op_layer Tanh 57 (TensorFlow [ (None, 26, 26, 256) 0 tf op_layer Softplus_57([0][0]
tf op_layer Tanh 39 (TensorFlow [ (None, 26, 26, 256) 0 tf op layer Softplus_39[0][0]
tf op layer Mul 57 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_ 57[0] [0]
tf op layer Tanh 57[0][0]
tf op layer Mul 39 (TensorFlowO [ (None, 26, 26, 256) 0 batch_normalization_ 39[0][0]
tf op layer Tanh 39[0][0]
tf op layer concat_3 (TensorFlo [ (None, 26, 26, 512) 0 tf op layer Mul 57[0][0]
tf op layer Mul 39[0][0]
conv2d 58 (Conv2D) (None, 26, 26, 512) 262144 tf op_layer concat_3[0][0]
batch_normalization 58 (BatchNo (None, 26, 26, 512) 2048 conv2d _58([0][0]
tf op layer Softplus_58 (Tensor [(None, 26, 26, 512) 0 batch_normalization 58[0][0]
tf op_layer Tanh 58 (TensorFlow [ (None, 26, 26, 512) 0 tf op_layer Softplus_58[0][0]
tf op_layer Mul 58 (TensorFlowO [ (None, 26, 26, 512) 0 batch_normalization_ 58[0][0]
tf op layer Tanh 58[0][0]
zero_padding2d 4 (ZeroPadding2D (None, 27, 27, 512) 0 tf op layer Mul 58[0][0]
conv2d_59 (Conv2D) (None, 13, 13, 1024) 4718592 zero_padding2d 4[0][0]
batch_normalization_ 59 (BatchNo (None, 13, 13, 1024) 4096 conv2d 59[0][0]
tf op layer Softplus_59 (Tensor [(None, 13, 13, 1024 0 batch_normalization 59[0][0]
tf op_layer Tanh 59 (TensorFlow [ (None, 13, 13, 1024 0 tf op_layer Softplus_59[0][0]
tf op_layer Mul 59 (TensorFlowO [ (None, 13, 13, 1024 0 batch_normalization_ 59[0][0]
tf_op_layer Tanh 59[0][0]
conv2d_61 (Conv2D) (None, 13, 13, 512) 524288 tf op_layer Mul 59[0][0]
batch_normalization_61 (BatchNo (None, 13, 13, 512) 2048 conv2d _61[0][0]
tf op_layer Softplus_61 (Tensor [ (None, 13, 13, 512) 0 batch_normalization 61[0][0]
tf op_layer Tanh 61 (TensorFlow [ (None, 13, 13, 512) 0 tf op_layer Softplus 61[0][0]
tf op layer Mul 61 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization 61[0] [0]
tf op layer Tanh 61[0][0]
conv2d_62 (Conv2D) (None, 13, 13, 512) 262144 tf op layer Mul 61[0][0]
batch_normalization_62 (BatchNo (None, 13, 13, 512) 2048 conv2d 62[0][0]
tf op layer Softplus_62 (Tensor [(None, 13, 13, 512) 0 batch_normalization 62[0][0]
tf op_layer Tanh 62 (TensorFlow [ (None, 13, 13, 512) 0 tf op_layer Softplus_62[0][0]
tf op_layer Mul 62 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization_ 62[0][0]
tf op layer Tanh 62[0][0]
conv2d_63 (Conv2D) (None, 13, 13, 512) 2359296 tf op_layer Mul 62[0][0]
batch_normalization_63 (BatchNo (None, 13, 13, 512) 2048 conv2d_63[0][0]
tf op_layer Softplus_63 (Tensor [ (None, 13, 13, 512) 0 batch_normalization 63[0][0]
tf op_layer Tanh 63 (TensorFlow [ (None, 13, 13, 512) 0 tf op_layer Softplus 63[0][0]
tf op layer Mul 63 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization 63[0][0]
tf op layer Tanh 63[0][0]
tf op layer Addv2_19 (TensorFlo [ (None, 13, 13, 512) 0 tf op layer Mul 61[0][0]
tf op_layer Mul 63[0][0]
conv2d_64 (Conv2D) (None, 13, 13, 512) 262144 tf op layer Addv2_19[0][0]
batch_normalization_64 (BatchNo (None, 13, 13, 512) 2048 conv2d 64[0][0]
tf op layer Softplus_64 (Tensor [(None, 13, 13, 512) 0 batch_normalization_ 64[0][0]

tf op_layer Tanh 64 (TensorFlow [ (None, 13, 13, 512) 0 tf op_layer Softplus_64[0][0]
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tf op layer Mul 64 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization_64[0][0]
tf op layer Tanh 64[0][0]
conv2d_65 (Conv2D) (None, 13, 13, 512) 2359296 tf op layer Mul 64[0][0]
batch_normalization_65 (BatchNo (None, 13, 13, 512) 2048 conv2d 65[0][0]
tf op layer Softplus_65 (Tensor [(None, 13, 13, 512) 0 batch_normalization 65[0][0]
tf op_layer Tanh 65 (TensorFlow [ (None, 13, 13, 512) 0 tf op_layer Softplus_65[0][0]
tf op_layer Mul 65 (TensorFlowO [(None, 13, 13, 512) 0 batch_normalization_ 65[0][0]
tf op layer Tanh 65[0][0]
tf op_layer Addv2_20 (TensorFlo [(None, 13, 13, 512) 0 tf op_layer Addv2_ 19([0][0]
tf op_layer Mul 65[0][0]
conv2d_66 (Conv2D) (None, 13, 13, 512) 262144 tf op layer Addv2_20[0][0]
batch_normalization_66 (BatchNo (None, 13, 13, 512) 2048 conv2d_66[0][0]
tf op_layer Softplus_66 (Tensor [(None, 13, 13, 512) 0 batch_normalization 66[0] [0]
tf op layer Tanh 66 (TensorFlow [ (None, 13, 13, 512) 0 tf op layer Softplus_66[0][0]
tf op layer Mul 66 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization 66[0] [0]
tf op layer Tanh 66[0][0]
conv2d_67 (Conv2D) (None, 13, 13, 512) 2359296 tf op layer Mul 66[0][0]
batch_normalization_67 (BatchNo (None, 13, 13, 512) 2048 conv2d 67[0][0]
tf op layer Softplus_67 (Tensor [(None, 13, 13, 512) 0 batch_normalization 67[0][0]
tf op_layer Tanh 67 (TensorFlow [ (None, 13, 13, 512) 0 tf op_layer Softplus_67[0][0]
tf op_layer Mul 67 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization_ 67[0][0]
tf op_layer Tanh 67[0][0]
tf op_layer Addv2_21 (TensorFlo [ (None, 13, 13, 512) 0 tf _op_layer Addv2 20([0][0]
tf op_layer Mul 67[0][0]
conv2d_68 (Conv2D) (None, 13, 13, 512) 262144 tf op_layer Addv2_21[0][0]
batch_normalization_68 (BatchNo (None, 13, 13, 512) 2048 conv2d _68[0][0]
tf op_layer Softplus_68 (Tensor [ (None, 13, 13, 512) 0 batch_normalization 68[0] [0]
tf op layer Tanh 68 (TensorFlow [ (None, 13, 13, 512) 0 tf op layer Softplus_68[0][0]
tf op layer Mul 68 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization_ 68[0] [0]
tf op layer Tanh 68[0][0]
conv2d_69 (Conv2D) (None, 13, 13, 512) 2359296 tf op layer Mul 68[0][0]
batch_normalization_ 69 (BatchNo (None, 13, 13, 512) 2048 conv2d 69([0][0]
tf op layer Softplus_69 (Tensor [(None, 13, 13, 512) 0 batch_normalization 69[0][0]
tf op_layer Tanh 69 (TensorFlow [ (None, 13, 13, 512) 0 tf op_layer Softplus_69([0][0]
tf op_layer Mul 69 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization_ 69[0][0]
tf op_layer Tanh 69[0][0]
tf op_layer Addv2_22 (TensorFlo [(None, 13, 13, 512) 0 tf op_layer Addv2 21[0][0]
tf op_layer Mul 69[0][0]
conv2d 70 (Conv2D) (None, 13, 13, 512) 262144 tf op_layer Addv2 22[0][0]
conv2d_60 (Conv2D) (None, 13, 13, 512) 524288 tf op layer Mul 59[0][0]
batch_normalization_70 (BatchNo (None, 13, 13, 512) 2048 conv2d _70[0][0]
batch_normalization_60 (BatchNo (None, 13, 13, 512) 2048 conv2d_60[0][0]
tf op layer Softplus_70 (Tensor [(None, 13, 13, 512) 0 batch_normalization_70[0] [0]
tf op_layer Softplus_60 (Tensor [(None, 13, 13, 512) 0 batch_normalization_ 60[0][0]
tf op layer Tanh 70 (TensorFlow [(None, 13, 13, 512) 0 tf op layer Softplus_70([0][0]
tf op_layer Tanh 60 (TensorFlow [ (None, 13, 13, 512) 0 tf op_layer Softplus_60[0][0]
tf op_layer Mul 70 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization_70[0][0]
tf op_layer Tanh 70[0][0]
tf op_layer Mul 60 (TensorFlowO [ (None, 13, 13, 512) 0 batch_normalization_ 60[0][0]
tf op_layer Tanh 60[0][0]
tf op_layer concat_4 (TensorFlo [(None, 13, 13, 1024 0 tf_op_layer Mul 70[0][0]
tf op_layer Mul 60[0][0]
conv2d_71 (Conv2D) (None, 13, 13, 1024) 1048576 tf op_layer concat_4[0][0]
batch_normalization_71 (BatchNo (None, 13, 13, 1024) 4096 conv2d _71[0][0]
tf op_layer Softplus_71 (Tensor [ (None, 13, 13, 1024 0 batch_normalization 71[0][0]




APPENDIX C: (Continued)

tf op_layer Tanh 71 (TensorFlow [ (None, 13, 13, 1024 0 tf op_layer Softplus_71[0][0]
tf op layer Mul 71 (TensorFlowO [ (None, 13, 13, 1024 0 batch_normalization_ 71[0][0]
tf op layer Tanh 71[0][0]
conv2d_72 (Conv2D) (None, 13, 13, 512) 524288 tf op layer Mul 71[0][0]
batch_normalization_72 (BatchNo (None, 13, 13, 512) 2048 conv2d _72[0][0]
tf op layer LeakyRelu (TensorFl [(None, 13, 13, 512) 0 batch_normalization_72[0][0]
conv2d_73 (Conv2D) (None, 13, 13, 1024) 4718592 tf op layer LeakyRelul[0][0]
batch_normalization_ 73 (BatchNo (None, 13, 13, 1024) 4096 conv2d_73[0][0]
tf op_layer LeakyRelu 1 (Tensor [(None, 13, 13, 1024 0 batch_normalization_ 73[0][0]
conv2d_74 (Conv2D) (None, 13, 13, 512) 524288 tf op layer LeakyRelu 1[0][0]
batch_normalization_74 (BatchNo (None, 13, 13, 512) 2048 conv2d _74[0][0]
tf op layer LeakyRelu 2 (Tensor [(None, 13, 13, 512) 0 batch_normalization_ 74[0][0]
tf op layer MaxPool (TensorFlow [ (None, 13, 13, 512) 0 tf op layer LeakyRelu 2[0][0]
tf op layer MaxPool 1 (TensorFl [(None, 13, 13, 512) 0 tf op_layer LeakyRelu 2[0][0]
tf op layer MaxPool 2 (TensorFl [(None, 13, 13, 512) 0 tf op layer LeakyRelu 2[0][0]
tf op layer concat_5 (TensorFlo [(None, 13, 13, 2048 0 tf op layer MaxPool[0][0]
tf op layer MaxPool 1[0][0]
tf op_layer MaxPool 2[0][0]
tf op_layer LeakyRelu 2[0][0]
conv2d_75 (Conv2D) (None, 13, 13, 512) 1048576 tf op_layer concat_5[0][0]
batch_normalization_75 (BatchNo (None, 13, 13, 512) 2048 conv2d_75[0] [0]
tf op_layer LeakyRelu 3 (Tensor [ (None, 13, 13, 512) 0 batch_normalization 75[0] [0]
conv2d_76 (Conv2D) (None, 13, 13, 1024) 4718592 tf op_layer LeakyRelu 3[0][0]
batch_normalization_76 (BatchNo (None, 13, 13, 1024) 4096 conv2d_76[0][0]
tf op_layer LeakyRelu 4 (Tensor [(None, 13, 13, 1024 0 batch_normalization 76[0] [0]
conv2d_77 (Conv2D) (None, 13, 13, 512) 524288 tf op_layer LeakyRelu 4[0][0]
batch_normalization_77 (BatchNo (None, 13, 13, 512) 2048 conv2d_77[0][0]
tf op_layer LeakyRelu 5 (Tensor [(None, 13, 13, 512) 0 batch_normalization_77[0][0]
conv2d_78 (Conv2D) (None, 13, 13, 256) 131072 tf op layer LeakyRelu 5([0][0]
conv2d_79 (Conv2D) (None, 26, 26, 256) 131072 tf op layer Mul 58[0][0]
batch_normalization_78 (BatchNo (None, 13, 13, 256) 1024 conv2d_78([0][0]
batch_normalization_79 (BatchNo (None, 26, 26, 256) 1024 conv2d_79[0][0]
tf op_layer LeakyRelu 6 (Tensor [ (None, 13, 13, 256) 0 batch_normalization_ 78[0] [0]
tf op_layer LeakyRelu 7 (Tensor [ (None, 26, 26, 256) 0 batch_normalization_79[0][0]
tf op layer ResizeBilinear (Ten [ (None, 26, 26, 256) 0 tf op layer LeakyRelu 6[0][0]
tf op_layer concat_6 (TensorFlo [ (None, 26, 26, 512) 0 tf op_layer LeakyRelu 7[0][0]
tf op layer ResizeBilinear[0][0]
conv2d 80 (Conv2D) (None, 26, 26, 256) 131072 tf op_layer concat_6[0][0]
batch_normalization_80 (BatchNo (None, 26, 26, 256) 1024 conv2d _80[0][0]
tf op layer LeakyRelu 8 (Tensor [ (None, 26, 26, 256) 0 batch_normalization_80[0] [0]
conv2d 81 (Conv2D) (None, 26, 26, 512) 1179648 tf op_layer LeakyRelu 8[0][0]
batch_normalization_81 (BatchNo (None, 26, 26, 512) 2048 conv2d _81[0][0]
tf op_layer LeakyRelu 9 (Tensor [ (None, 26, 26, 512) 0 batch_normalization_81[0][0]
conv2d 82 (Conv2D) (None, 26, 26, 256) 131072 tf op_layer LeakyRelu 9[0][0]
batch_normalization_ 82 (BatchNo (None, 26, 26, 256) 1024 conv2d 82[0][0]
tf op_layer LeakyRelu 10 (Tenso [ (None, 26, 26, 256) 0 batch_normalization 82[0] [0]
conv2d 83 (Conv2D) (None, 26, 26, 512) 1179648 tf op layer LeakyRelu 10[0][0]
batch_normalization_83 (BatchNo (None, 26, 26, 512) 2048 conv2d 83[0][0]
tf op_layer LeakyRelu 11 (Tenso [ (None, 26, 26, 512) 0 batch_normalization 83[0] [0]
conv2d_84 (Conv2D) (None, 26, 26, 256) 131072 tf op layer LeakyRelu 11[0][0]
batch_normalization_84 (BatchNo (None, 26, 26, 256) 1024 conv2d 84[0][0]
tf op_layer LeakyRelu 12 (Tenso [ (None, 26, 26, 256) 0 batch_normalization 84[0] [0]
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conv2d 85 (Conv2D) (None, 26, 26, 128) 32768 tf op layer LeakyRelu 12[0][0]
conv2d_86 (Conv2D) (None, 52, 52, 128) 32768 tf op layer Mul 37[0][0]
batch_normalization_85 (BatchNo (None, 26, 26, 128) 512 conv2d _85[0][0]
batch_normalization_ 86 (BatchNo (None, 52, 52, 128) 512 conv2d 86[0][0]
tf op layer LeakyRelu 13 (Tenso [ (None, 26, 26, 128) 0 batch_normalization 85[0][0]
tf op_layer LeakyRelu 14 (Tenso [ (None, 52, 52, 128) 0 batch_normalization 86[0] [0]
tf op_layer ResizeBilinear 1 (T [(None, 52, 52, 128) 0 tf op_layer LeakyRelu 13[0][0]
tf op layer concat_7 (TensorFlo [ (None, 52, 52, 256) 0 tf op layer LeakyRelu 14[0][0]
tf_op_layer ResizeBilinear 1[0][0
conv2d_87 (Conv2D) (None, 52, 52, 128) 32768 tf op_layer concat_7[0][0]
batch_normalization_87 (BatchNo (None, 52, 52, 128) 512 conv2d 87[0][0]
tf op layer LeakyRelu 15 (Tenso [(None, 52, 52, 128) 0 batch_normalization 87[0][0]
conv2d_88 (Conv2D) (None, 52, 52, 256) 294912 tf op layer LeakyRelu 15[0][0]
batch_normalization 88 (BatchNo (None, 52, 52, 256) 1024 conv2d 88([0][0]
tf op layer LeakyRelu 16 (Tenso [(None, 52, 52, 256) 0 batch_normalization 88[0][0]
conv2d_89 (Conv2D) (None, 52, 52, 128) 32768 tf op layer LeakyRelu 16[0][0]
batch_normalization_ 89 (BatchNo (None, 52, 52, 128) 512 conv2d 89([0][0]
tf op layer LeakyRelu 17 (Tenso [(None, 52, 52, 128) 0 batch_normalization 89[0][0]
conv2d 90 (Conv2D) (None, 52, 52, 256) 294912 tf op_ layer LeakyRelu 17[0][0]
batch_normalization_ 90 (BatchNo (None, 52, 52, 256) 1024 conv2d _90([0][0]
tf op layer LeakyRelu 18 (Tenso [ (None, 52, 52, 256) 0 batch_normalization_90[0] [0]
conv2d 91 (Conv2D) (None, 52, 52, 128) 32768 tf op_layer LeakyRelu 18[0][0]
batch_normalization_ 91 (BatchNo (None, 52, 52, 128) 512 conv2d 91[0][0]
tf op layer LeakyRelu 19 (Tenso [ (None, 52, 52, 128) 0 batch_normalization_91[0][0]
zero_padding2d 5 (ZeroPadding2D (None, 53, 53, 128) 0 tf op_layer LeakyRelu 19[0][0]
conv2d_94 (Conv2D) (None, 26, 26, 256) 294912 zero_padding2d 5[0][0]
batch_normalization_93 (BatchNo (None, 26, 26, 256) 1024 conv2d _94[0][0]
tf op_layer LeakyRelu 21 (Tenso [ (None, 26, 26, 256) 0 batch_normalization_ 93[0][0]
tf op layer concat_8 (TensorFlo [(None, 26, 26, 512) 0 tf op layer LeakyRelu 21[0][0]
tf op layer LeakyRelu 12[0][0]
conv2d_95 (Conv2D) (None, 26, 26, 256) 131072 tf op layer concat_8[0][0]
batch_normalization_94 (BatchNo (None, 26, 26, 256) 1024 conv2d 95[0][0]
tf op_layer LeakyRelu 22 (Tenso [ (None, 26, 26, 256) 0 batch_normalization_94[0][0]
conv2d_96 (Conv2D) (None, 26, 26, 512) 1179648 tf op layer LeakyRelu 22[0][0]
batch_normalization_95 (BatchNo (None, 26, 26, 512) 2048 conv2d 96[0][0]
tf op_layer LeakyRelu 23 (Tenso [ (None, 26, 26, 512) 0 batch_normalization_ 95[0][0]
conv2d_97 (Conv2D) (None, 26, 26, 256) 131072 tf op layer LeakyRelu 23[0][0]
batch_normalization_96 (BatchNo (None, 26, 26, 256) 1024 conv2d 97[0][0]
tf op layer LeakyRelu 24 (Tenso [(None, 26, 26, 256) 0 batch_normalization 96[0][0]
conv2d_98 (Conv2D) (None, 26, 26, 512) 1179648 tf op layer LeakyRelu 24[0][0]
batch_normalization_ 97 (BatchNo (None, 26, 26, 512) 2048 conv2d 98([0][0]
tf op layer LeakyRelu 25 (Tenso [(None, 26, 26, 512) 0 batch_normalization 97[0][0]
conv2d 99 (Conv2D) (None, 26, 26, 256) 131072 tf op_layer LeakyRelu 25[0][0]
batch_normalization_ 98 (BatchNo (None, 26, 26, 256) 1024 conv2d 99([0][0]
tf op layer LeakyRelu 26 (Tenso [ (None, 26, 26, 256) 0 batch_normalization 98[0][0]
zero_padding2d 6 (ZeroPadding2D (None, 27, 27, 256) 0 tf op_layer LeakyRelu 26[0][0]
conv2d 102 (Conv2D) (None, 13, 13, 512) 1179648 zero_paddingZd_6[O] [0]
batch_normalization_ 100 (BatchN (None, 13, 13, 512) 2048 conv2d _102[0] [0]
tf op_layer LeakyRelu 28 (Tenso [ (None, 13, 13, 512) 0 batch_normalization_ 100[0][0]
tf op layer concat_9 (TensorFlo [(None, 13, 13, 1024 0 tf op layer LeakyRelu 28[0][0]

tf op_layer LeakyRelu 5([0][0]
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conv2d 103 (Conv2D) (None, 13, 13, 512) 524288 tf op_layer concat_9[0][0]
batch_normalization_ 101 (BatchN (None, 13, 13, 512) 2048 conv2d _103[0][0]
tf op layer LeakyRelu 29 (Tenso [ (None, 13, 13, 512) 0 batch_normalization_101[0][0]
conv2d_ 104 (Conv2D) (None, 13, 13, 1024) 4718592 tf op layer LeakyRelu 29[0][0]
batch_normalization 102 (BatchN (None, 13, 13, 1024) 4096 conv2d _104[0][0]
tf op_layer LeakyRelu 30 (Tenso [ (None, 13, 13, 1024 0 batch _normalization_ 102[0][0]
conv2d 105 (Conv2D) (None, 13, 13, 512) 524288 tf op layer LeakyRelu 30[0][0]
batch_normalization_103 (BatchN (None, 13, 13, 512) 2048 conv2d _105[0] [0]
tf op_layer LeakyRelu 31 (Tenso [ (None, 13, 13, 512) 0 batch _normalization_ 103[0][0]
conv2d_106 (Conv2D) (None, 13, 13, 1024) 4718592 tf op layer LeakyRelu 31[0][0]
batch_normalization_ 104 (BatchN (None, 13, 13, 1024) 4096 conv2d _106[0] [0]
tf op_layer LeakyRelu 32 (Tenso [ (None, 13, 13, 1024 0 batch _normalization_ 104[0][0]
conv2d_107 (Conv2D) (None, 13, 13, 512) 524288 tf op layer LeakyRelu 32[0][0]
batch_normalization_105 (BatchN (None, 13, 13, 512) 2048 conv2d _107[0] [0]
tf op_layer LeakyRelu 33 (Tenso [(None, 13, 13, 512) 0 batch_normalization 105[0][0]
conv2d_92 (Conv2D) (None, 52, 52, 256) 294912 tf op layer LeakyRelu 19[0][0]
conv2d 100 (Conv2D) (None, 26, 26, 512) 1179648 tf op_layer LeakyRelu 26[0][0]
conv2d_ 108 (Conv2D) (None, 13, 13, 1024) 4718592 tf op layer LeakyRelu 33[0][0]
batch_normalization_ 92 (BatchNo (None, 52, 52, 256) 1024 conv2d 92[0][0]
batch_normalization_99 (BatchNo (None, 26, 26, 512) 2048 conv2d _100[0] [0]
batch_normalization_ 106 (BatchN (None, 13, 13, 1024) 4096 conv2d 108[0][0]
tf op layer LeakyRelu 20 (Tenso [ (None, 52, 52, 256) 0 batch_normalization_92[0][0]
tf op_layer LeakyRelu 27 (Tenso [ (None, 26, 26, 512) 0 batch_normalization 99[0][0]
tf op layer LeakyRelu 34 (Tenso [(None, 13, 13, 1024 0 batch_normalization 106[0][0]
conv2d_93 (Conv2D) (None, 52, 52, 18) 4626 tf op layer LeakyRelu 20[0][0]
conv2d 101 (Conv2D) (None, 26, 26, 18) 9234 tf op layer LeakyRelu 27[0][0]
conv2d_109 (Conv2D) (None, 13, 13, 18) 18450 tf op layer LeakyRelu 34[0][0]
tf op_layer Shape (TensorFlowOp [ (4,)] 0 conv2d 93[0][0]
tf op_layer Shape 1 (TensorFlow [(4,)] 0 conv2d 101[0][0]
tf op_layer Shape 2 (TensorFlow [(4,)] 0 conv2d _109[0] [0]
tf op_layer strided_slice (Tens [()] 0 tf op layer Shape([0][0]
tf op_layer strided slice_ 1 (Te [()] 0 tf op_layer Shape 1[0]([0]
tf op layer strided_slice 2 (Te [()] 0 tf op layer Shape 2[0][0]
tf_op_layer_Reshape/Shape (Tens [(5,)] 0 tf op_layer strided _slice[0][0]
tf _op_layer Reshape_3/shape (Te [(5,)] 0 tf op_layer strided _slice_1[0][0]
tf op_layer Reshape 6/shape (Te [(5,)] 0 tf op layer strided slice 21[0][0]
tf op_layer Reshape (TensorFlow [ (None, 52, 52, 3, 6 0 conv2d 93[0][0]

tf op_layer Reshape/shape[0][0]
tf op_layer Reshape 3 (TensorFl [ (None, 26, 26, 3, 6 0 conv2d 101[0][0]

tf op_layer Reshape 3/shape[0][0]
tf op_layer Reshape 6 (TensorFl [(None, 13, 13, 3, 6 0 conv2d 109[0][0]

tf _op_layer Reshape_6/shape[0][0]
tf op_layer split (TensorFlowOp [ (None, 52, 52, 3, 2 0 tf_op_layer Reshape[0][0]
tf op layer split_ 1 (TensorFlow [ (None, 26, 26, 3, 2 0 tf op layer Reshape 3[0][0]
tf op_layer split_2 (TensorFlow [ (None, 13, 13, 3, 2 0 tf op_layer Reshape_ 6[0][0]
tf op_layer Sigmoid (TensorFlow [ (None, 52, 52, 3, 2 0 tf op_layer split[0][0]
tf op_layer Tile/multiples (Ten [(5,)] 0 tf op layer strided_slice[0][0]
tf op_layer Sigmoid_3 (TensorFl [ (None, 26, 26, 3, 2 0 tf op layer split_1[0][0]
tf_op_layer Tile 1/multiples (T [(5,)] 0 tf op_layer strided _slice_1[0][0]
tf op layer Sigmoid_6 (TensorFl [ (None, 13, 13, 3, 2 0 tf op layer split_2[0][0]
tf_op_layer_Tile_Z/multiples (T [(5,)] 0 tf op_layer strided _slice_2[0][0]
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tf op_layer Mul 72 (TensorFlowO [ (None, 52, 52, 3, tf op_layer Sigmoid[0][0]
tf op layer Tile (TensorFlowOpL [ (None, 52, 52, 3, tf op_layer Tile/multiples[0][0]
tf op layer Mul 76 (TensorFlowO [ (None, 26, 26, 3, tf op layer Sigmoid 31[0][0]
tf op_layer Tile 1 (TensorFlowO [ (None, 26, 26, 3, tf op_layer Tile 1/multiples[0][0
tf op layer Mul 80 (TensorFlowO [ (None, 13, 13, 3, tf op layer Sigmoid 6[0][0]
tf op_layer Tile 2 (TensorFlowO [ (None, 13, 13, 3, tf_op_layer_Tile_Z/multiples [0][0
tf _op_layer Sub (TensorFlowOpLa [ (None, 52, 52, 3, tf _op_layer Mul 72[0][0]
tf op layer Cast (TensorFlowOpL [ (None, 52, 52, 3, tf op layer Tile[0][0]
tf op_layer Sub_1 (TensorFlowOp [ (None, 26, 26, 3, tf op_layer Mul 76[0][0]
tf op_layer Cast_1 (TensorFlowO [ (None, 26, 26, 3, tf op layer Tile 1[0][0]
tf op layer Sub_2 (TensorFlowOp [ (None, 13, 13, 3, tf op layer Mul 80[0][0]
tf op_layer Cast_ 2 (TensorFlowO [ (None, 13, 13, 3, tf op_layer Tile 2[0][0]
tf op layer Addv2_23 (TensorFlo [ (None, 52, 52, 3, tf op layer Sub[0][0]
tf op_layer Cast[0][0]
tf op layer Exp (TensorFlowOpLa [ (None, 52, 52, 3, tf op layer split[0][1]
tf op_layer AddV2_ 24 (TensorFlo [ (None, 26, 26, 3, tf op_layer Sub 1[0][0]
tf op layer Cast_1[0][0]
tf op_layer Exp_1 (TensorFlowOp [ (None, 26, 26, 3, tf op layer split_ 1[0][1]
tf op_layer Addv2_25 (TensorFlo [ (None, 13, 13, 3, tf op_layer Sub 2[0][0]
tf op_layer Cast_2[0][0]
tf op layer Exp 2 (TensorFlowOp [ (None, 13, 13, 3, tf _op_layer split 2[0][1]
tf op layer Mul 73 (TensorFlowO [ (None, 52, 52, 3, tf op_layer Addv2_23[0][0]
tf op_layer Mul_ 74 (TensorFlowO [ (None, 52, 52, 3, tf op_layer Exp[0][0]
tf op layer Mul_77 (TensorFlowO [ (None, 26, 26, 3, tf op_ layer Addv2_24[0][0]
tf op layer Mul 78 (TensorFlowO [ (None, 26, 26, 3, tf op layer Exp 1[0][0]
tf op_layer Mul 81 (TensorFlowO [ (None, 13, 13, 3, tf op_layer Addv2_25[0][0]
tf op layer Mul 82 (TensorFlowO [ (None, 13, 13, 3, tf op layer Exp 2[0][0]
tf op layer concat_10 (TensorFl [ (None, 52, 52, 3, tf op layer Mul 73[0][0]
tf op layer Mul 74[0][0]
tf _op_layer Reshape 2/shape (Te [(3,)] tf op layer strided_slice[0][0]
tf op layer concat_ll1 (TensorFl [ (None, 26, 26, 3, tf _op_layer Mul 77[0][0]
tf op_layer Mul 78[0][0]
tf _op_layer Reshape_5/shape (Te [(3,)] tf op_layer strided _slice_1[0][0]
tf op_layer concat_12 (TensorFl [ (None, 13, 13, 3, tf op layer Mul 81[0][0]
tf op_layer Mul 82[0][0]
tf op_layer Reshape 8/shape (Te [(3,)] tf op layer strided slice 21[0][0]
tf op_layer Sigmoid_1 (TensorFl [ (None, 52, 52, 3, tf op layer split[0]([2]
tf_op_layer Sigmoid 2 (TensorFl [(None, 52, 52, 3, tf op_layer split[0][3]
tf op layer Sigmoid_4 (TensorFl [ (None, 26, 26, 3, tf op layer split_1[0][2]
tf op_layer Sigmoid_5 (TensorFl [ (None, 26, 26, 3, tf op layer split_ 1[0][3]
tf op layer Sigmoid_7 (TensorFl [ (None, 13, 13, 3, tf op layer split 2[0][2]
tf op layer Sigmoid_8 (TensorFl [ (None, 13, 13, 3, tf op layer split_2[0][3]
tf op_layer Reshape 2 (TensorFl [ (None, None, 4)] tf op_layer concat 10[0][0]
tf op_layer Reshape 2/shapel[0][0]
tf op_layer Reshape 5 (TensorFl [ (None, None, 4)] tf op_layer concat 11[0][0]
tf_op_layer_Reshape_S/Shape [0][0]
tf op_layer Reshape 8 (TensorFl [ (None, None, 4)] tf op_layer concat 12[0][0]
tf_op_layer_Reshape_S/Shape [0][0]
tf op_layer Mul 75 (TensorFlowO [ (None, 52, 52, 3, tf op_layer Sigmoid 1[0][0]
tf op_layer Sigmoid 2[0][0]
tf_op_layer Reshape 1/shape (Te [(3,)] tf op_layer strided slice[0][0]
tf op layer Mul 79 (TensorFlowO [ (None, 26, 26, 3, tf op layer Sigmoid 41[0][0]
tf op_layer Sigmoid 5[0][0]
tf _op_layer Reshape 4/shape (Te [(3,)] tf op layer strided slice_11[0][0]
tf op_layer Mul 83 (TensorFlowO [ (None, 13, 13, 3, tf op_layer Sigmoid_7[0][0]

tf op layer Sigmoid 8[0][0]
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tf op_layer Reshape 7/shape (Te [(3,)] 0 tf op layer strided slice 21[0][0]
tf op_layer concat_13 (TensorFl [ (None, None, 4)] 0 tf op_layer Reshape 2[0][0]
tf op layer Reshape 5[0][0]
tf op layer Reshape 8[0][0]
tf op_layer Reshape_1 (TensorFl [ (None, None, 1)] 0 tf op_layer Mul 75([0][0]
tf op_layer Reshape 1/shape[0][0]
tf op_layer Reshape_4 (TensorFl [ (None, None, 1)] 0 tf op_layer Mul 79[0][0]
tf op_layer Reshape 4/shape[0][0]
tf op_layer Reshape_7 (TensorFl [ (None, None, 1)] 0 tf op_layer Mul 83[0][0]
tf op_layer Reshape 7/shape[0][0]
tf op_layer Shape 3 (TensorFlow [(3,)] 0 tf op_layer concat_13[0][0]
tf op layer concat_14 (TensorFl [ (None, None, 1)] 0 tf op layer Reshape 1[0][0]
tf op_layer Reshape_ 4[0][0]
tf op_layer Reshape 71[0][0]
tf op_layer strided_slice_3 (Te [(2,)] 0 tf op_ layer Shape 3[0][0]
tf op layer Max (TensorFlowOpLa [ (None, None)] 0 tf op layer concat_ 14[0][0]
tf op_layer Shape 4 (TensorFlow [(3,)] 0 tf op_layer concat_13[0][0]
tf_op_layer_ Prod (TensorFlowOpL [()] 0 tf op_layer strided _slice_3[0][0]
tf op_layer Shape 5 (TensorFlow [(3,)] 0 tf op layer concat 13[0][0]
tf op_layer GreaterEqual (Tenso [ (None, None)] 0 tf op_layer Max[0][0]
tf_op_layer strided slice_4 (Te [(0,)] 0 tf _op_layer Shape 41[0][0]
tf _op_layer concat_15/values_1 [(1,)] 0 tf op layer Prod[0][0]
tf op_layer strided_slice 5 (Te [(1,)] 0 tf op_ layer Shape 5[0][0]
tf op_layer Reshape 10 (TensorF [ (None,)] 0 tf op layer GreaterEqual[0][0]
tf op_layer concat_15 (TensorFl [(2,)] 0 tf op layer strided slice_41[0][0]
tf op_layer concat_15/values_1[0]
tf op_layer strided _slice_5[0][0]
tf op_layer Where (TensorFlowOp [ (None, 1)] 0 tf op layer Reshape 10[0][0]
tf op_layer Reshape 9 (TensorFl [ (None, 4)] 0 tf op_layer concat_13[0][0]
tf op layer concat 15[0][0]
tf op layer Squeeze (TensorFlow [ (None,)] 0 tf op layer Where[0][0]
tf op_layer GatherV2 (TensorFlo [ (None, 4)] 0 tf op_layer Reshape 9[0][0]
tf_op_layer Squeeze[0][0]
tf op_layer Shape 9 (TensorFlow [(3,)] 0 tf op_layer concat 14[0][0]
tf op_layer Shape 10 (TensorFlo [(2,)] 0 tf op_layer Gatherv2[0][0]
tf op_layer Shape 6 (TensorFlow [(3,)] 0 tf op_layer concat_14[0][0]
tf op_layer strided slice 9 (Te [()] 0 tf _op_layer Shape 9[0][0]
tf op layer strided_slice 10 (T [()] 0 tf op_layer Shape 10[0][0]
tf op_layer strided_slice_ 6 (Te [(2,)] 0 tf op_ layer Shape 6[0][0]
tf op_layer Reshape_13/shape (T [(3,)] 0 tf _op_layer strided_slice_9[0][0]
tf op_layer strided_slice 10[0] [0
tf op_layer Shape 7 (TensorFlow [(3,)] 0 tf op layer concat_ 14[0][0]
tf op layer Prod 1 (TensorFlowO [()] 0 tf op layer strided slice_61[0][0]
tf op_layer Shape 8 (TensorFlow [(3,)] 0 tf op_layer concat 14[0][0]
tf op layer Reshape 13 (TensorF [ (None, None, None)] 0 tf op_layer Gatherv2[0][0]
tf_op_layer Reshape 13/shape[0] [0
tf op layer strided_slice 7 (Te [(0,)] 0 tf op layer Shape 7[0][0]
tf op_layer concat_16/values_1 [(1,)] 0 tf _op_layer Prod 1[0][0]
tf_op_layer strided slice 8 (Te [(1,)] 0 tf_op_layer Shape 8[0][0]
tf op layer Reshape 12 (TensorF [ (None,)] 0 tf op layer GreaterEqual[0][0]
tf op_layer split_3 (TensorFlow [ (None, None, 2), (N 0 tf op_layer Reshape 13[0][0]
tf_op_layer concat_16 (TensorFl [(2,)] 0 tf _op_layer strided_slice_7[0][0]
tf op_layer concat_16/values_1[0]
tf op layer strided slice_8[0][0]
tf op_layer Where_ 1 (TensorFlow [ (None, 1)] 0 tf op_layer Reshape 12[0][0]
tf op layer strided_slice 14 (T [(None, None, 2)] 0 tf op layer split 3[0][1]
tf op layer Reshape 11 (TensorF [ (None, 1)] 0 tf op layer concat_14[0][0]
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tf op_layer concat_16[0][0]

tf op layer Squeeze_ 1 (TensorFl [ (None,)] 0 tf op layer Where 1[0][0]

tf op layer strided_slice 13 (T [(None, None, 2)] 0 tf op layer split 3[0]I[0

tf op_layer RealDiv (TensorFlow [ (None, None, 2)] 0 tf _op_layer strided slice_14[0][0

tf op layer RealDiv_2 (TensorFl [ (None, None, 2)] 0 tf op layer strided _slice 14[0] [0

tf op_layer GatherV2_1 (TensorF [ (None, 1)] 0 tf op_layer Reshape 11[0][0]
tf op_layer Squeeze 1[0][0]

tf op_layer Sub_3 (TensorFlowOp [ (None, None, 2)] 0 tf op_layer strided_slice 13[0] [0
tf op layer RealDiv[0][0]

tf op_layer Addv2_26 (TensorFlo [ (None, None, 2)] 0 tf op_layer strided_slice 13[0] [0
tf op layer RealDiv_2[0][0]

tf op_layer Shape 11 (TensorFlo [(3,)] 0 tf op_layer concat_14[0][0]

tf op_layer Shape 12 (TensorFlo [(2,)] 0 tf op_ layer Gatherv2 1[0][0]

tf op_layer RealDiv_1 (TensorFl [ (None, None, 2)] 0 tf op_layer Sub 3[0][0

tf op_layer RealDiv_3 (TensorFl [(None, None, 2)] 0 tf op_layer Addv2_26[0] [0

tf op layer strided_slice 11 (T [()] 0 tf op layer Shape 11[0][0]

tf op layer strided_slice 12 (T [()] 0 tf op_layer Shape 12[0][0]

tf op_layer strided slice_ 15 (T [(None, None, 1)] 0 tf op_layer RealDiv_1[0][0

tf op layer strided_slice 16 (T [(None, None, 1)] 0 tf op layer RealDiv_1[0][0

tf op_layer strided_slice 17 (T [(None, None, 1)] 0 tf op_layer RealDiv_3[0][0]

tf op_layer strided slice_18 (T [(None, None, 1)] 0 tf op_layer RealDiv_3[0] [0

tf _op_layer Reshape 14/shape (T [(3,)] 0 tf op layer strided_slice 11[0]I0
tf op_layer strided slice_12[0][0

tf op layer concat_17 (TensorFl [ (None, None, 4)] 0 tf op layer strided_slice 15[0] [0
tf op layer strided_slice 16[0] [0
tf op_layer strided_slice 17[0] [0
tf op layer strided_slice 18[0] [0

tf op_layer Reshape_ 14 (TensorF [ (None, None, None)] 0 tf op_layer Gatherv2 1[0][0]
tf op_layer Reshape 14/shape[0] [0

tf op_layer concat_18 (TensorFl [ (None, None, None)] 0 tf _op_layer concat 17[0][0]
tf op_layer Reshape 141[0][0]

Total params: 64,003,990
Trainable params: 63,937,686
Non-trainable params: 66,304
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Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) [ (None, 416, 416, 3) 0

zero_padding2d (ZeroPadding2D) (None, 417, 417, 3) 0 input_1[0][0]

conv2d (Conv2D) (None, 208, 208, 32) 864 zero_paddingZd[O] [0]

batch_normalization (BatchNorma (None, 208, 208, 32) 128 conv2d[0][0]

tf op_layer LeakyRelu (TensorFl [ (None, 208, 208, 32 0 batch_normalization([0][0]

zero_padding2d_1 (ZeroPadding2D (None, 209, 209, 32) 0 tf op_layer LeakyRelu[0][0]

conv2d_1 (Conv2D) (None, 104, 104, 64) 18432 zero_padding2d 1[0][0]

batch_normalization_1 (BatchNor (None, 104, 104, 64) 256 conv2d 1[0][0]

tf op layer LeakyRelu 1 (Tensor [(None, 104, 104, 64 0 batch_normalization_1[0][0]

conv2d_2 (Conv2D) (None, 104, 104, 64) 36864 tf op layer LeakyRelu 1[0][0]

batch_normalization_2 (BatchNor (None, 104, 104, 64) 256 conv2d 2[0][0]

tf op layer LeakyRelu 2 (Tensor [(None, 104, 104, 64 0 batch_normalization_2[0][0]

tf op layer split (TensorFlowOp [ (None, 104, 104, 32 0 tf op layer LeakyRelu 2[0][0]

conv2d 3 (Conv2D) (None, 104, 104, 32) 9216 tf_op_layer_split[o] [1]

batch_normalization_3 (BatchNor (None, 104, 104, 32) 128 conv2d _3[0][0]

tf op_layer LeakyRelu 3 (Tensor [ (None, 104, 104, 32 0 batch_normalization_3[0][0]

conv2d 4 (Conv2D) (None, 104, 104, 32) 9216 tf op_layer LeakyRelu 3[0][0]

batch_normalization_4 (BatchNor (None, 104, 104, 32) 128 conv2d _4[0]1[0]

tf op_layer LeakyRelu 4 (Tensor [ (None, 104, 104, 32 0 batch_normalization_4[0][0]

tf op_layer concat (TensorFlowO [ (None, 104, 104, 64 0 tf_op_layer LeakyRelu 4[0][0]
tf op_layer LeakyRelu 3[0][0]

conv2d_5 (Conv2D) (None, 104, 104, 64) 4096 tf op layer concat[0][0]

batch_normalization_5 (BatchNor (None, 104, 104, 64) 256 conv2d 5[0]1[0]

tf op_layer LeakyRelu 5 (Tensor [ (None, 104, 104, 64 0 batch_normalization_5[0][0]

tf op layer concat_1 (TensorFlo [(None, 104, 104, 12 0 tf op layer LeakyRelu 2[0][0]
tf op_layer LeakyRelu 5([0][0]

max_pooling2d (MaxPooling2D) (None, 52, 52, 128) O tf op layer concat_1[0][0]

conv2d_6 (Conv2D) (None, 52, 52, 128) 147456 max_pooling2d[0] [0]

batch_normalization_6 (BatchNor (None, 52, 52, 128) 512 conv2d _6[0][0]

tf op layer LeakyRelu 6 (Tensor [ (None, 52, 52, 128) 0 batch _normalization_6[0][0]

tf op_layer split_1 (TensorFlow [ (None, 52, 52, 64), 0 tf op_layer LeakyRelu 6[0][0]

conv2d 7 (Conv2D) (None, 52, 52, 64) 36864 tf_op_layer_split_l[o] [1]

batch_normalization_7 (BatchNor (None, 52, 52, 64) 256 conv2d_7[0][0]

tf op_layer LeakyRelu 7 (Tensor [ (None, 52, 52, 64)] 0 batch _normalization_7[0][0]

conv2d_8 (Conv2D) (None, 52, 52, 64) 36864 tf op layer LeakyRelu 7([0][0]

batch_normalization_8 (BatchNor (None, 52, 52, 64) 256 conv2d 8[0][0]

tf op_layer LeakyRelu 8 (Tensor [ (None, 52, 52, 64)] 0 batch _normalization_8[0][0]

tf op layer concat_2 (TensorFlo [(None, 52, 52, 128) 0 tf op_layer LeakyRelu 8[0][0]
tf op_layer LeakyRelu 7[0][0]

conv2d 9 (Conv2D) (None, 52, 52, 128) 16384 tf op layer concat_2[0][0]

batch_normalization_9 (BatchNor (None, 52, 52, 128) 512 conv2d 9[0]1[0]

tf op_layer LeakyRelu 9 (Tensor [ (None, 52, 52, 128) 0 batch_normalization_ 9([0][0]

tf op layer concat_3 (TensorFlo [(None, 52, 52, 256) 0 tf op layer LeakyRelu 6[0][0]
tf op_layer LeakyRelu 9[0][0]

max_pooling2d_1 (MaxPooling2D) (None, 26, 26, 256) O tf op layer concat_3[0][0]

conv2d 10 (Conv2D) (None, 26, 26, 256) 589824 max_pooling2d_1[0][0]

batch_normalization_ 10 (BatchNo (None, 26, 26, 256) 1024 conv2d _10[0][0]

tf op layer LeakyRelu 10 (Tenso [ (None, 26, 26, 256) 0 batch_normalization_10[0] [0]
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tf op_layer split 2 (TensorFlow [ (None, 26, 26, 128) 0 tf op_layer LeakyRelu 10[0][0]
conv2d_11 (Conv2D) (None, 26, 26, 128) 147456 tf op layer split 2[0][1]
batch_normalization_11 (BatchNo (None, 26, 26, 128) 512 conv2d 11[0][0]
tf op_layer LeakyRelu 11 (Tenso [ (None, 26, 26, 128) 0 batch_normalization 11[0][0]
conv2d_12 (Conv2D) (None, 26, 26, 128) 147456 tf op layer LeakyRelu 11[0][0]
batch_normalization_12 (BatchNo (None, 26, 26, 128) 512 conv2d 12[0][0]
tf op_layer LeakyRelu 12 (Tenso [ (None, 26, 26, 128) 0 batch_normalization_ 12[0][0]
tf op layer concat_4 (TensorFlo [ (None, 26, 26, 256) 0 tf op layer LeakyRelu 12[0][0]
tf op layer LeakyRelu 11[0][0]
conv2d_13 (Conv2D) (None, 26, 26, 256) 65536 tf op_layer concat 4[0][0]
batch_normalization_13 (BatchNo (None, 26, 26, 256) 1024 conv2d 13[0][0]
tf op layer LeakyRelu 13 (Tenso [ (None, 26, 26, 256) 0 batch_normalization 13[0][0]
tf op layer concat_5 (TensorFlo [ (None, 26, 26, 512) 0 tf op layer LeakyRelu 10[0][0]
tf op layer LeakyRelu 13[0][0]
max_pooling2d 2 (MaxPooling2D) (None, 13, 13, 512) O tf op_layer concat 5[0][0]
conv2d_14 (Conv2D) (None, 13, 13, 512) 2359296 max_poolingZd_Z [0][0]
batch_normalization_14 (BatchNo (None, 13, 13, 512) 2048 conv2d 14[0][0]
tf op_layer LeakyRelu 14 (Tenso [ (None, 13, 13, 512) 0 batch_normalization 14[0][0]
conv2d_15 (Conv2D) (None, 13, 13, 256) 131072 tf op_layer LeakyRelu 14[0][0]
batch_normalization_ 15 (BatchNo (None, 13, 13, 256) 1024 conv2d _15[0][0]
tf op_layer LeakyRelu 15 (Tenso [ (None, 13, 13, 256) 0 batch_normalization 15[0] [0]
conv2d 18 (Conv2D) (None, 13, 13, 128) 32768 tf op layer LeakyRelu 15[0][0]
batch_normalization_17 (BatchNo (None, 13, 13, 128) 512 conv2d _18[0][0]
tf op_layer LeakyRelu 17 (Tenso [ (None, 13, 13, 128) 0 batch_normalization 17[0][0]
tf op layer ResizeBilinear (Ten [ (None, 26, 26, 128) 0 tf op layer LeakyRelu 17[0][0]
tf op layer concat_6 (TensorFlo [(None, 26, 26, 384) 0 tf op layer ResizeBilinear[0][0]
tf op layer LeakyRelu 13[0][0]
conv2d_19 (Conv2D) (None, 26, 26, 256) 884736 tf op_layer concat_6[0][0]
conv2d_16 (Conv2D) (None, 13, 13, 512) 1179648 tf op layer LeakyRelu 15[0][0]
batch_normalization_ 18 (BatchNo (None, 26, 26, 256) 1024 conv2d _19[0][0]
batch_normalization_16 (BatchNo (None, 13, 13, 512) 2048 conv2d 16[0][0]
tf op_layer LeakyRelu 18 (Tenso [ (None, 26, 26, 256) 0 batch_normalization_ 18[0][0]
tf op layer LeakyRelu 16 (Tenso [(None, 13, 13, 512) 0 batch_normalization 16[0][0]
conv2d 20 (Conv2D) (None, 26, 26, 18) 4626 tf op_layer LeakyRelu 18[0][0]
conv2d_17 (Conv2D) (None, 13, 13, 18) 9234 tf op layer LeakyRelu 16[0][0]
tf op_layer Shape (TensorFlowOp [ (4,)] 0 conv2d _20[0][0]
tf op_layer Shape 1 (TensorFlow [(4,)] 0 conv2d 17[0][0]
tf op layer strided_slice (Tens [()] 0 tf op layer Shape([0][0]
tf op layer strided_slice 1 (Te [()] 0 tf op layer Shape 1[0][0]
tf_op_layer Reshape/shape (Tens [(5,)] 0 tf op_layer strided slice[0][0]
tf_op_layer Reshape_ 3/shape (Te [(5,)] 0 tf op layer strided slice 11[0][0]
tf op layer Reshape (TensorFlow [ (None, 26, 26, 3, 6 0 conv2d _20[0][0]
tf _op_layer Reshape/shape[0][0]
tf op_layer Reshape 3 (TensorFl [(None, 13, 13, 3, 6 0 conv2d 17[0][0]
tf op_layer Reshape 3/shape[0][0]
tf op_layer split_ 3 (TensorFlow [ (None, 26, 26, 3, 2 0 tf op_ layer Reshape[0][0]
tf op_layer split 4 (TensorFlow [ (None, 13, 13, 3, 2 0 tf op_layer Reshape 3[0][0]
tf op layer Sigmoid (TensorFlow [ (None, 26, 26, 3, 2 0 tf op layer split_3[0][0]
tf_op_layer_Tile/multiples (Ten [(5,)] 0 tf op_layer strided _slice[0][0]
tf op_layer Sigmoid 3 (TensorFl [(None, 13, 13, 3, 2 0 tf _op_layer split 41[0]([0]
tf op_layer Tile 1/multiples (T [(5,)] 0 tf op layer strided slice_11[0][0]
tf op_layer Mul (TensorFlowOpLa [ (None, 26, 26, 3, 2 0 tf op_layer Sigmoid[0][0]
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tf _op_layer Tile (TensorFlowOpL [ (None, 26, 26, 3, tf op_layer Tile/multiples[0][0]
tf op layer Mul_ 4 (TensorFlowOp [ (None, 13, 13, 3, tf op layer Sigmoid 3[0][0]
tf op layer Tile 1 (TensorFlowO [ (None, 13, 13, 3, tf op layer Tile 1/multiples[0][0
tf _op_layer Sub (TensorFlowOpLa [ (None, 26, 26, 3, tf op_layer Mul[0][0]
tf op layer Cast (TensorFlowOpL [ (None, 26, 26, 3, tf op layer Tile[0][0]
tf op_layer Sub_1 (TensorFlowOp [ (None, 13, 13, 3, tf op_ layer Mul 4[0][0]
tf op_layer Cast_ 1 (TensorFlowO [ (None, 13, 13, 3, tf _op_layer Tile 1[0][0]
tf op_layer AddV2 (TensorFlowOp [ (None, 26, 26, 3, tf op_layer Sub[0][0]

tf op_layer Cast[0][0]
tf op layer Exp (TensorFlowOpLa [ (None, 26, 26, 3, tf op layer split_3[0][1]
tf op_layer Addv2_1 (TensorFlow [ (None, 13, 13, 3, tf op_layer Sub 1[0][0]

tf op_layer Cast_1[0][0]
tf op_layer Exp_ 1 (TensorFlowOp [ (None, 13, 13, 3, tf op layer split 4[0][1]
tf op layer Mul 1 (TensorFlowOp [ (None, 26, 26, 3, tf op layer Addv2[0][0]
tf op layer Mul 2 (TensorFlowOp [ (None, 26, 26, 3, tf op_ layer Exp[0][0]
tf op_layer Mul 5 (TensorFlowOp [ (None, 13, 13, 3, tf _op_layer Addv2_11[0][0]
tf op layer Mul 6 (TensorFlowOp [ (None, 13, 13, 3, tf op layer Exp 1[0][0]
tf op_layer concat_7 (TensorFlo [ (None, 26, 26, 3, tf op layer Mul 1[0][0]

tf op layer Mul 2[0][0]
tf_op_layer_Reshape_Z/Shape (Te [(3,)] tf op_layer strided _slice[0][0]
tf op_layer concat_8 (TensorFlo [(None, 13, 13, 3, tf op_layer Mul 5([0][0]

tf op layer Mul 6[0][0]
tf _op_layer Reshape_5/shape (Te [(3,)] tf op_layer strided _slice_1[0][0]
tf op layer Sigmoid_1 (TensorFl [ (None, 26, 26, 3, tf op layer split_3[0][2]
tf op_layer Sigmoid_2 (TensorFl [ (None, 26, 26, 3, tf op layer split_ 3[0][3]
tf op layer Sigmoid_4 (TensorFl [ (None, 13, 13, 3, tf op layer split 4[0][2]
tf op layer Sigmoid_ 5 (TensorFl [ (None, 13, 13, 3, tf op layer split_4[0][3]
tf op_layer Reshape 2 (TensorFl [ (None, None, 4)] tf op_layer concat_7[0][0]

tf op_layer Reshape 2/shapel[0][0]
tf op_layer Reshape 5 (TensorFl [ (None, None, 4)] tf op_layer concat 8[0][0]

tf op_layer Reshape_5/shape[0][0]
tf op_layer Mul 3 (TensorFlowOp [ (None, 26, 26, 3, tf op_layer Sigmoid 1[0][0]

tf op_layer Sigmoid 2[0][0]
tf_op_layer Reshape 1/shape (Te [(3,)] tf op_layer strided slice[0][0]
tf op_layer Mul_7 (TensorFlowOp [ (None, 13, 13, 3, tf op layer Sigmoid 41[0][0]

tf op_layer Sigmoid 5[0][0]
tf _op_layer Reshape 4/shape (Te [(3,)] tf op layer strided slice_11[0][0]
tf op_layer concat_9 (TensorFlo [ (None, None, 4)] tf op_layer Reshape 2[0][0]

tf op layer Reshape 5[0][0]
tf op_layer Reshape_1 (TensorFl [ (None, None, 1)] tf op layer Mul 3[0][0]

tf op_layer Reshape 1/shape[0][0]
tf op_layer Reshape_4 (TensorFl [ (None, None, 1)] tf op layer Mul 7([0][0]

tf op_layer Reshape 4/shape[0][0]
tf op_layer Shape 2 (TensorFlow [(3,)] tf op_layer concat_9[0][0]
tf op layer concat_10 (TensorFl [ (None, None, 1)] tf op layer Reshape 1[0][0]

tf op_layer Reshape 4[0][0]

tf op layer strided _slice 2 (Te

tf op layer Shape 2[0][0]

tf op_layer Max (TensorFlowOpLa

[ (None, None)]

tf op_layer concat_10[0][0]

tf_op_layer Shape 3 (TensorFlow

[(3,)]

tf op_layer concat_9[0][0]

tf op layer Prod (TensorFlowOpL

[0l

tf op layer strided slice 2[0][0]

tf op_layer Shape 4 (TensorFlow

[(3,)]

tf op_layer concat_9[0][0]

tf op_layer GreaterEqual (Tenso

[ (None, None)]

tf op_layer Max[0][0]

tf op_layer strided slice 3 (Te [(0,)] tf_op_layer Shape 3[0][0]

tf op_layer concat_11/values_1 [(1,)] tf _op_layer Prod[0][0]

tf op_layer strided_slice 4 (Te [(1,)] tf op layer Shape 4[0][0]

tf op layer Reshape_ 7 (TensorFl [ (None,)] tf op layer GreaterEqual[0][0]
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tf op layer concat_11 (TensorFl [(2,)] 0 tf op layer strided _slice_31[0][0]
tf _op_layer concat_11/values_1[0
tf op_layer strided slice_ 41[0][0]

tf op layer Where (TensorFlowOp [ (None, 1)] 0 tf op layer Reshape 7[0][0]

tf op_layer Reshape_ 6 (TensorFl [ (None, 4)] 0 tf op_layer concat_9[0][0]
tf op layer concat_ 11[0][0]

tf op_layer Squeeze (TensorFlow [ (None,)] 0 tf op_ layer Where[0][0]

tf op_layer GatherV2 (TensorFlo [ (None, 4)] 0 tf op_layer Reshape 6[0][0]
tf op_layer Squeeze[0][0]

tf op_layer Shape 8 (TensorFlow [(3,)] 0 tf op_layer concat 10[0][0]

tf op_layer Shape 9 (TensorFlow [(2,)] 0 tf op_layer Gatherv2[0][0]

tf op_layer Shape 5 (TensorFlow [(3,)] 0 tf op_layer concat_10[0][0]

tf op layer strided _slice 8 (Te [()] 0 tf op layer Shape 8[0][0]

tf op_layer strided slice 9 (Te [()] 0 tf op_layer Shape 9[0][0]

tf_op_layer strided slice 5 (Te [(2,)] 0 tf_op_layer Shape 5[0][0]

tf_op_layer Reshape 10/shape (T [(3,)] 0 tf op layer strided slice 8[0][0]
tf op_layer strided slice_ 91[0][0]

tf op_layer Shape 6 (TensorFlow [(3,)] 0 tf op layer concat_10[0][0]

tf op_layer Prod 1 (TensorFlowO [()] 0 tf op_layer strided _slice_5[0][0]

tf op_layer Shape 7 (TensorFlow [(3,)] 0 tf op_layer concat 10[0][0]

tf op layer Reshape 10 (TensorF [ (None, None, None)] 0 tf op layer Gatherv2[0][0]
tf_op_layer Reshape 10/shape[0] [0

tf op_layer strided slice 6 (Te [(0,)] 0 tf op_layer Shape 6[0][0]

tf op_layer concat_12/values_1 [(1,)] 0 tf _op_layer Prod 1[0][0]

tf op_layer strided_slice 7 (Te [(1,)] 0 tf op layer Shape 7[0][0]

tf op layer Reshape 9 (TensorFl [ (None,)] 0 tf op layer GreaterEqual[0][0]

tf op_layer split_ 5 (TensorFlow [ (None, None, 2), (N 0 tf op_layer Reshape 10[0][0]

tf op layer concat_12 (TensorFl [(2,)] 0 tf op layer strided slice 6[0][0]
tf op_layer concat_12/values_1[0]
tf op layer strided slice_71[0][0]

tf op_layer Where 1 (TensorFlow [ (None, 1)] 0 tf op_layer Reshape 9[0][0]

tf op layer strided_slice 13 (T [(None, None, 2)] 0 tf op layer split 5[0][1

tf op_layer Reshape_ 8 (TensorFl [ (None, 1)] 0 tf op_layer concat_10[0][0]
tf op layer concat_12[0][0]

tf op_layer Squeeze_ 1 (TensorFl [ (None,)] 0 tf op_layer Where_ 1[0][0]

tf op_layer strided slice_12 (T [(None, None, 2)] 0 tf _op_layer split 5([0][0

tf op layer RealDiv (TensorFlow [ (None, None, 2)] 0 tf op layer strided_slice 13[0]I[0

tf op_layer RealDiv_2 (TensorFl [ (None, None, 2)] 0 tf op_layer strided_slice 13[0] [0

tf op_layer GatherV2_1 (TensorF [ (None, 1)] 0 tf op_layer Reshape 8[0][0]
tf op_layer Squeeze_1[0][0]

tf op layer Sub_2 (TensorFlowOp [ (None, None, 2)] 0 tf op layer strided_slice 12[0] [0
tf op_layer RealDiv[0][0]

tf op layer Addv2_2 (TensorFlow [ (None, None, 2)] 0 tf op layer strided_slice 12[0] [0
tf op_layer RealDiv_2[0][0]

tf op_layer Shape 10 (TensorFlo [(3,)] 0 tf op layer concat_10[0][0]

tf op_layer Shape 11 (TensorFlo [(2,)] 0 tf op_layer Gatherv2 1[0][0]

tf op_layer RealDiv_1 (TensorFl [(None, None, 2)] 0 tf _op_layer Sub 2[0][0

tf op layer RealDiv_3 (TensorFl [ (None, None, 2)] 0 tf op layer Addv2_2[0][0]

tf op layer strided _slice 10 (T [()] 0 tf op_layer Shape 10[0][0]

tf op_layer strided slice_ 11 (T [()] 0 tf_op_layer Shape 11[0][0]

tf op layer strided_slice 14 (T [(None, None, 1)] 0 tf op layer RealDiv_1[0][0]

tf op_layer strided_slice 15 (T [(None, None, 1)] 0 tf op_layer RealDiv_1[0][0]

tf op_layer strided slice_16 (T [(None, None, 1)] 0 tf op_layer RealDiv_3[0] [0

tf op layer strided_slice 17 (T [(None, None, 1)] 0 tf op layer RealDiv_31[0][0

tf_op_layer_Reshape_ll/shape (T [(3,)] 0 tf op_layer strided_slice 10[0] [0

tf op layer strided_slice 11[0]I[0
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tf op layer concat_13 (TensorFl [ (None, None, 4)] 0 tf op layer strided_slice 14[0]I[0
tf op layer strided_slice 15[0] [0
tf op layer strided slice 16[0][0
tf op layer strided_slice 17[0]I[0
tf op layer Reshape 11 (TensorF [ (None, None, None)] 0 tf op_layer Gatherv2 1[0][0]
tf_op_layer Reshape 11/shape[0] [0
tf op layer concat_ 14 (TensorFl [ (None, None, None)] 0 tf op layer concat 13[0][0]
tf op_layer Reshape 11[0][0]
Total params: 5,880,324
Trainable params: 5,874,116
Non-trainable params: 6,208
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APPENDIX E: Training Configuration for SSD MobilenetV2 320.

model {
ssd {
num_classes: 1
image_resizer {
fixed shape resizer {
height: 320
width: 320

}
}

feature extractor {
type: "ssd_mobilenet v2 fpn keras"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
12_regularizer {
weight: 3.9999998989515007¢-05

H
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582

}

}
activation: RELU 6

batch_norm {
decay: 0.996999979019165

scale: true
epsilon: 0.0010000000474974513

}
}

use depthwise: true
override base feature extractor hyperparams: true
fpn {

min_level: 3

max_level: 7

additional layer depth: 128

}
)

box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height scale: 5.0
width_scale: 5.0

}
}

matcher {
argmax_matcher {
matched_threshold: 0.5
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unmatched threshold: 0.5
ignore_thresholds: false
negatives_lower than_unmatched: true
force_match_for each row: true
use_matmul gather: true

}
}

similarity calculator {
iou_similarity {
}

}
box_predictor {

weight shared convolutional box_predictor {
conv_hyperparams {
regularizer {
12_regularizer {
weight: 3.9999998989515007¢-05
b
H
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582

}

}
activation: RELU 6

batch _norm {
decay: 0.996999979019165

scale: true
epsilon: 0.0010000000474974513

}

}
depth: 128

num_layers_before predictor: 4

kernel size: 3

class_prediction_bias_init: -4.599999904632568
share prediction_tower: true

use depthwise: true

}
}

anchor_generator {
multiscale_anchor generator {

min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2

}
}

post_processing {
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batch_non_max_suppression {
score_threshold: 9.99999993922529¢-09
iou_threshold: 0.6000000238418579
max_detections_per class: 100
max_total detections: 100
use_static_shapes: false

b
score_converter: SIGMOID

H
normalize loss by num_matches: true
loss {
localization_loss {
weighted smooth 11 {

b
b

classification_loss {
weighted sigmoid focal {
gamma: 2.0
alpha: 0.25

}
}

classification weight: 1.0
localization_weight: 1.0
}
encode_background as zeros: true
normalize loc loss by codesize: true
inplace_batchnorm_update: true
freeze batchnorm: false

}
}

train_config {
batch_size: 2
data_augmentation _options {
random_horizontal flip {

}
}

data_augmentation_options {
random_crop image {

min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap thresh: 0.0

}
}
sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine decay learning rate {

learning_rate base: 0.07999999821186066
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total_steps: 50000
warmup_learning_rate: 0.026666000485420227
warmup_steps: 1000

}
}
momentum_optimizer value: 0.8999999761581421

}

use_moving_average: false
}
fine tune checkpoint: "pre-trained-
models/ssd mobilenet v2 fpnlite 320x320 cocol7_tpu-8/checkpoint/ckpt-0"
num_steps: 50000
startup_delay_steps: 0.0
replicas_to aggregate: 8
max_number_of boxes: 100
unpad_groundtruth_tensors: false
fine tune checkpoint type: "detection"
fine tune checkpoint version: V2
use_bfloatl6: false
}
train_input_reader {
label map path: "annotations/label map.pbtxt"
tf record input reader {
input_path: "annotations/version2/mobile_screw_dataset/train.record"

}
}

eval config {
metrics_set: "coco_detection_metrics"
use_moving_averages: false
}
eval _input_reader {
label map_path: "annotations/label map.pbtxt"
shuffle: false
num_epochs: 1
tf record input reader {
input_path: "annotations/version2/mobile_screw_dataset/test.record"

}
}



APPENDIX F: Training Configuration for SSD MobilenetV2 640.

model {
ssd {
num_classes: 1
image_resizer {
fixed shape resizer {
height: 640
width: 640

}
}

feature extractor {
type: "ssd_mobilenet v2 fpn keras"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
12_regularizer {
weight: 3.9999998989515007¢-05

H
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582

}

}
activation: RELU 6

batch_norm {
decay: 0.996999979019165

scale: true
epsilon: 0.0010000000474974513

}
}

use depthwise: true
override base feature extractor hyperparams: true
fpn {

min_level: 3

max_level: 7

additional layer depth: 128

}
)

box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height scale: 5.0
width_scale: 5.0

}
}

matcher {
argmax_matcher {
matched_threshold: 0.5
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unmatched threshold: 0.5
ignore_thresholds: false
negatives_lower than_unmatched: true
force_match_for each row: true
use_matmul gather: true

}
}

similarity calculator {
iou_similarity {
}

}
box_predictor {

weight shared convolutional box_predictor {
conv_hyperparams {
regularizer {
12_regularizer {
weight: 3.9999998989515007¢-05
b
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.009999999776482582

}

}
activation: RELU 6

batch _norm {
decay: 0.996999979019165

scale: true
epsilon: 0.0010000000474974513

}

}
depth: 128

num_layers_before predictor: 4

kernel size: 3

class_prediction_bias_init: -4.599999904632568
share prediction_tower: true

use depthwise: true

}
}

anchor_generator {
multiscale_anchor generator {

min_level: 3
max_level: 7
anchor scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2

}
}

post_processing {
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batch_non_max_suppression {
score_threshold: 9.99999993922529¢-09
iou_threshold: 0.6000000238418579
max_detections_per class: 100
max_total detections: 100
use_static_shapes: false

b
score_converter: SIGMOID

H
normalize loss by num_matches: true
loss {
localization_loss {
weighted smooth 11 {

b
b

classification_loss {
weighted sigmoid focal {
gamma: 2.0
alpha: 0.25

}
}

classification weight: 1.0
localization_weight: 1.0
}
encode_background as zeros: true
normalize loc loss by codesize: true
inplace_batchnorm_update: true
freeze batchnorm: false

}
}

train_config {
batch_size: 4
data_augmentation _options {
random_horizontal flip {

}
}

data_augmentation_options {
random_crop image {

min_object covered: 0.0
min_aspect_ratio: 0.75
max_aspect ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap thresh: 0.0

}
}
sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine decay learning rate {

learning_rate base: 0.07999999821186066
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total_steps: 50000
warmup_learning_rate: 0.026666000485420227
warmup_steps: 1000

}
}
momentum_optimizer value: 0.8999999761581421

}

use_moving_average: false
}
fine tune checkpoint: "pre-trained-
models/ssd mobilenet v2 fpnlite 640x640 cocol7_tpu-8/checkpoint/ckpt-0"
num_steps: 50000
startup_delay_steps: 0.0
replicas_to aggregate: 8
max_number_of boxes: 100
unpad_groundtruth_tensors: false
fine tune checkpoint type: "detection"
fine tune checkpoint version: V2
}
train_input_reader {
label map_path: "annotations/label_map.pbtxt"
tf record input reader {
input_path: "annotations/version2/mobile _screw_dataset/train.record"

}

eval config {
metrics_set: "coco detection metrics"
use _moving averages: false
}
eval input reader {
label map_path: "annotations/label_map.pbtxt"
shuffle: false
num_epochs: 1
tf record input reader {
input_path: "annotations/version2/mobile screw_dataset/test.record"

}
}
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APPENDIX G: Architecture of SSD MobilenetV?2 320.
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ComaD

DepthuisaComv2D

Coni2D

StatefulPan




125

APPENDIX H: Architecture of SSD MobilenetV2 FPNlite 640.
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APPENDIX I:  Object Detection Methods on Mobile App.
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APPENDIX J:  Object Detection Methods on Webcam.

#!/usr/bin/env python
# coding: utf-8

nnn

Detect Objects Using Webcam

nmnn

import os
import time

DATA_DIR = os.path.join(os.getcwd(), 'data’)
MODELS_DIR = os.path.join(DATA_DIR, 'models")
for dir in [DATA_DIR, MODELS DIR]:
if not os.path.exists(dir):
os.mkdir(dir)

MODEL NAME ='v2 webcam ssd640'

PATH TO _CKPT = os.path.join(MODELS DIR, os.path.join(MODEL NAME,
'checkpoint/'))

PATH TO CFG = os.path.join(MODELS DIR, os.path.join(MODEL NAME,
'pipeline.config'))

LABEL FILENAME ='mscoco_label map.pbtxt'

PATH TO LABELS = os.path.join(MODELS DIR, os.path.join(MODEL NAME,
LABEL FILENAME))

# %%
# Load the model

os.environ['TF_CPP_MIN LOG LEVEL'| ='2" # Suppress TensorFlow logging
import tensorflow as tf

from object detection.utils import label map util

from object_detection.utils import config_util

from object_detection.utils import visualization_utils as viz_utils

from object_detection.builders import model builder

tf.get logger().setLevel('ERROR") # Suppress TensorFlow logging (2)

# Enable GPU dynamic memory allocation

gpus = tf.config.experimental.list physical devices('GPU")

for gpu in gpus:
tf.config.experimental.set memory growth(gpu, True)

# Load pipeline config and build a detection model

configs = config_util.get configs from pipeline file(PATH_TO CFG)

model config = configs['model']

detection_model = model_builder.build(model config=model config,
is_training=False)

# Restore checkpoint
ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)
ckpt.restore(os.path.join(PATH _TO_CKPT, 'ckpt-0")).expect_partial()
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APPENDIX J: (Continued)

@tf.function
def detect_fn(image):
"""Detect objects in image.

nmn

image, shapes = detection_model.preprocess(image)
prediction dict = detection_model.predict(image, shapes)
detections = detection_model.postprocess(prediction_dict, shapes)

return detections, prediction_dict, tf.reshape(shapes, [-1])
# %%
# Load label map data (for plotting)
category_index =
label map util.create category index from labelmap(PATH TO LABELS,

use_display name=True)

# %%
# Define the video stream

import cv2
cap = cv2.VideoCapture(0)
import numpy as np
while True:
# Read frame from camera
ret, image np = cap.read()
# Expand dimensions since the model expects images to have shape: [1, None, None,
* image np expanded = np.expand_dims(image np, axis=0)
input_tensor = tf.convert_to_tensor(np.expand_dims(image np, 0), dtype=tf.float32)
start = time.time()

detections, predictions_dict, shapes = detect fn(input_tensor)

label id offset=1
image np_ with detections = image np.copy()

end = time.time()
print("Time: ",end - start)

viz_utils.visualize boxes and labels on image array(
image np with_detections,
detections['detection_boxes'][0].numpy(),
(detections['detection_classes'][0].numpy() + label id offset).astype(int),
APPENDIX J: (Continued)
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detections|['detection_scores'][0].numpy(),
category index,

use normalized coordinates=True,
max_boxes_to draw=200,
min_score_thresh=.20,
agnostic_mode=False)

# Display output
cv2.imshow('object detection', cv2.resize(image np with detections, (800, 600)))

if cv2.waitKey(25) & 0xFF == ord('q'):
break

cap.release()
cv2.destroyAllWindows()
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