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ABSTRACT 

 

As Corona Virus 2019 (COVID-19) pandemic strikes the world, retail industry 

has been severely impacted especially in its daily operation due to the restriction 

of workforce and most of the face-to-face services, including checkout, are 

associated with high risk of developing spread chain of COVID-19 virus. 

Despite there are multiple computer vision-based solutions available in the field 

such as on-shelf checkout and sensor fusion, but they can be expensive and may 

require overhaul of stores, which is unfeasible for small retail stores. Therefore, 

a software prototype of intelligent cashierless checkout system is proposed to 

help small-scale retail stores in minimizing the risk of developing COVID-19 

virus spread chain as well as the workforce requirement during checkout using 

state-of-the-art object detection models. This project was performed in 2 parts 

where the first stage involved an image synthesis algorithm to automatically 

produce visually realistic product images using Generative Adversarial 

Network (GAN). Several GAN architectures such as CycleGAN and 

AttentionGAN were studied and compared in terms of their effectiveness in 

generating realistic shadow in actual checkout scenario. CycleGAN results in 

more realistic shadow with Fréchet inception distance (FID) of 40.99. In the 

following stage, a publicly available dataset, MVTec D2S dataset were used to 

benchmark multiple object detection models used for product recognition. By 

using You Only Look Once (YOLO) v5L as the baseline model, several 

improved models were developed by replacing the backbone structure with 

other light-weight architectures to improve computation efficiency when 

deployed on edge devices. After training the model with dataset generated in 

previous stage, the proposed model with MobileNet V3 surpassed baseline 

model in terms of inference time, with only 0.142s while maintaining high Mean 

Average Precision (mAP) of 98.2% and Checkout Accuracy (cAcc) of 89.17% 

on Jetson Nano.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In general, retail can be defined as commercial activities that involve direct 

selling of merchandise to consumers at a specific point of purchase (Farfan, 

2020). Among all the range of merchandise available in the market today, most 

of them are generally categorized under Fast-Moving Consumer Goods (FMCG) 

which possess several characteristics such as high consumer demand, common 

availability and associated with wide variations. With that, the industry requires 

high capacity of manpower in supply and distribution chain which encompass 

checkout system and stock management for the purpose to accommodate high 

requirement of FMCG products. 

 

 
Figure 1.1: Malaysian MCO Activity 2020 (Hirschmann, 2021) 

 

 Ever since the first confirmed COVID-19 case reported on 25th January 

2020, infection chain of the virus has begun and led to government’s imposition 

of Movement Control Order (MCO) on 18th March 2020. As a result, Malaysian 

were forcefully grounded from non-essential activities. Nevertheless, they are 
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permissible to pursue for own living necessities generally classified under 

FMCG. This can be validated through the statistics provided by Hirschmann 

(2021) in Figure 1.1 which indicates that main purpose of going out was to make 

purchase of essential needs. Thus, with the increased flow of FMCG in the retail 

industry, chances of human involvement at point of purchase will be elevated 

in return. This could possibly lead to high risk of COVID-19 infection due to 

close interaction between consumers and employees.  

 Fortunately, according to O’Mahony et al. (2020), in present days 

where rapid advancement computing power and other device capabilities, 

computer vision based applications have been enhanced significantly in terms 

of performance along with cost-effectiveness. This has open up possibility of 

implementing computer vision-based checkout system in retail industry 

especially when the FMCG are involved. Specifically, by implementing 

computer vision-based solution to replace the traditional checkout operation, 

existing vulnerability such as high manpower requirement can be overcome as 

the system is capable to handle large volume of goods flow and will contribute 

to reduce human labour in the conventional checkout process such as barcode 

scanning or manual data entry. Additionally, the computer vision-based 

checkout system will also play a vital role in minimizing human to human 

interaction during COVID-19 pandemic. Therefore, a computer vision-based 

solution will serve as an ideal alternative to the revolutionize the existing form 

retail checkout operation. 

 

1.2 Importance of the Study 

The result in this study might impose significant impact in the field of retail 

checkout by introducing a software prototype of computer vision-based 

checkout system that is capable to perform product recognition and computation 

of product price in a real-world checkout counter scenario that can potentially 

reduce the requirement of human employee in checkout process along with the 

risk of developing COVID-19 virus infection chain during the pandemic.  

 Additionally, this project explores the possibility in simplifying data 

preparation process for deep learning-based product recognition model by 

designing a framework that can generate vast amount of training data without 
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requiring human involvement in preparing and capturing different images for 

model training session. 

 Furthermore, this project delved into the deployment of product 

recognition model that can run efficiently on edge devices, reducing the 

requirement of large computing resources in performing product recognition.  

 

1.3 Problem Statement 

As COVID-19 pandemic strikes the world, retail industry has been severely 

impacted especially in their daily operation. During the pandemic, multiple 

policies were introduced by government which resulted in staff shortage in store 

since close contact within 1 meter will inflict higher risk of being infected by 

COVID-19 virus as stated by Ministry of Health Malaysia (2020). The situation 

causes the remaining employees to be burdened with higher workload especially 

in some essential tasks such as checkout process that generally involves product 

scanning, packaging and payment handling. When store personnel are 

insufficient to handle the operation, situation may go worse by resulting in 

clustering of customers or long queue in the store and eventually contribute to 

chain infection. Therefore, a smart cashierless checkout system is required to 

reduce the requirement of human involvement in checkout process.  

Despite there are smart retail solutions such as Radio Frequency 

Identification and on-shelf computer vision checkout, but they require overhaul 

of store layout and are normally associated with high cost, which is unfeasible 

for small-scale retail stores with less business capital. Thus, a computer vision-

based checkout system that can be easily implemented in existing retail stores 

is highly required. 

 Meanwhile, in technical perspective, computer vision application that 

utilizes deep learning model will have high demand of annotated training 

images that closely resembles the actual scenario since its performance is highly 

dependent on the amount and quality of training data. However, manual 

acquisition of training data can be challenging as it consumes time and easily 

affected by human error, especially when involving retail products that will 

change rapidly in terms of appearance and sub-categories (Wei et al., 2020). 

Therefore, a framework that can generate reliable training data will be 

advantageous for computer vision-based checkout system. 
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1.4 Aim and Objectives 

The ultimate goal of this project is to construct a software prototype for 

computer vision-based cashierless checkout system on edge devices using state-

of-the-art deep learning models at its core so that small retail can easily 

implement it at their checkout counters to minimize the concern of staff shortage 

and avoid the spread chain of COVID-19 virus during traditional face-to-face 

checkout process. The system is expected to accomplish several sub-objectives 

as below: 

(i) To construct an image pre-processing framework that is able to 

simulate actual checkout counter scenarios with minimal 

human involvement. 

(ii) To construct a deep learning-based product recognition 

algorithm using state-of-the-art object detection models. 

(iii) To optimize product recognition models for inference on edge 

devices 

(iv) To construct a software prototype that can compute total price 

based on recognized products. 

 

1.5 Scope and Limitation of the Study 

As this project involves the construction of software prototype for computer-

vison based checkout system on edge devices, it will cover the collection and 

review of retail product dataset, followed by preliminary benchmarking of 

several deep learning models used in literatures, improvement of best 

performing model through light-weight backbones, TensorRT optimization and 

deployment on edge device.  

 However, this project is associated with several limitations. One of the 

limitations represents the hardware constraint. As this project is based on deep 

learning that involves intensive multiplication of matrices in parallel, powerful 

Graphics Processing Unit (GPU) will be required. Despite an online Integrated 

Development Environment (IDE) known as Google Colaboratory provides a 

NVIDIA Tesla T4 GPU with 16GB Video Random Access Memory (VRAM), but 

model training time is constrained by the platform’s maximum GPU acceleration 

of 12 hours. Thus, to prevent force termination of training session, hyperparameters 
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of each model need to be reduced accordingly. This problem can be prevented 

through monthly subscription of Google Colaboratory Pro+ at $49.99. 

 Besides, this project is also restricted by time constraint, some 

components of the cashierless checkout system framework can be further optimized 

to ensure its practicality and robustness in actual implementation. Each process can 

be automated to further reduce the requirement of human involvement in training 

the product recognition model. 

 

1.6 Contribution of the Study 

The software prototype proposed in this study may serve as a conceptual 

solution to small-scale retail stores in transforming their daily operation into a 

semi-smart retail where less human employee will be required during the in-

store checkout session, thus reducing the risk of COVID-19 virus infection 

during the process.  

Besides, the software prototype is convenient and cost-effective since 

it can be deployed on edge devices with low power consumption, along with 

user-friendly features such as automatic update of product recognition model 

and product prices through database, which can reduce the overall cost for 

implementation in existing small-scale retail.  

 Additionally, the proposed deep learning model training framework 

may help to simplify training data preparation and annotation process since it is 

able to generate large number of high-quality training data from limited raw 

images of retail products, thus reducing the requirement of domain experts in 

the store. 

   

1.7 Outline of the Report 

This report will be mainly comprised of 5 chapters. The first chapter covers the 

general introduction of retail stores and computer vision-based checkout system, 

followed by the aims and objectives of this project. At the same time, scope and 

contribution of this project will be described.  

 In Chapter 2, literature review of existing works in the retail product 

recognition will be included along with the analysis of their suitability to be 

implemented in this project.  
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As for Chapter 3, overall framework of the cashierless checkout system will be 

described. After that, methodology used in developing the software protoype 

will be explicitly explained in chronological order. 

 Chapter 4 summarizes all the results that were collected and tabulated 

throughout this project along with justification based on the theoretical 

knowledge from literatures. 

 Finally, in Chapter 5, this project will be concluded based on the 

objectives that were achieved, followed by recommendations of work that can 

be implemented in the future. 

 

 



7 

CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Existing Cashierless Checkout Approaches 

According to Zhong (2021), advancement of computation technologies has 

facilitated rapid growth of retail industry, allowing the retail business to shift 

their traditional operations that requires significant work forces towards an 

advanced form by adopting state-of-the-art tools and techniques. Cashierless 

stores represent a concept that elevates the in-store shopping experience while 

reducing employment cost for the store by automating checkout process. In the 

field, there are two main approaches being adopted in cashierless retail which 

are Radio Frequency Identification (RFID) and computer vision respectively. 

 

2.1.1 Radio Frequency Identification (RFID) 

By referring to Amsler and Shea (2021), RFID can be generally defined as a 

wireless communication based object identification method that utilizes 

electromagnetic or electrostatic coupling at specific radio frequencies within the 

electromagnetic spectrum.  

In a fundamental RFID system, four main components are required to 

initiate data communication which are transponders, transceivers, antennas and 

reader interface layers. As stated by Sweeney (2010), transponder is simply 

known as a tag that will incorporate unique information in integrated circuit or 

chip to allow identification of product. It also comes with various form factors 

such as card, tag or labels to accommodate different applications. Furthermore, 

the tag can be categorized as active tag that requires power source and passive 

tags that can power itself by drawing energy from electromagnetic field emitted 

by RFID reader and provide response with its information. On the other hand, a 

transceiver is generally known as RFID reader which is aimed to handle radio 

communication with the tag through antennas and relay the tag information for 

processing. Lastly, a reader interface layer or middleware is required to identify 

the item through tag signals and interact with software systems such as 

inventory, logistics or point of sales (POS).  
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This technology was applied by Bocanegra et al. (2020) in their RFGo 

system, a RFID-based self-checkout system for apparel stores. The hardware 

setup included a divider placed apart from each other to form a checkout area 

(CA) and wait area (WA) where customer will queue up and walk between the 

divider with their items during checkout session. To ensure wide coverage of 

tag-reading area, Multiple antennas were deployed at inner surface of divider 

and beneath the floor. All of them were connected to a custom-built RFID reader 

that is capable in processing signal from antennas simultaneously. The collected 

tag information will be passed to a neural network-based classifier to determine 

whether the products are within the checkout area before proceeding to price 

computation.  

 Besides, similar approach was experimented by Panasonic (2018) in 

Fukuoka, Japan where the solution also comprised of a walk-through checkout 

lane with RFID readers and barcode scanners. The simplified shopping 

experience allows customers to enter shop after scanning their prepaid card and 

leave the store by walking through the checkout lane with products labelled with 

passive RFID tags. Products in the shopping bag will be identified through 

RFID reader in the divider of checkout lane and payment will be done directly. 

As a result, checkout efficiency is increased while reducing human involvement 

in the shop especially during the pandemic where social distancing can be 

important. 

 

2.1.2 Artificial Intelligence (AI) and Computer Vision 

Another major approach of cashierless retail checkout is based on Artificial 

Intelligence (AI) and computer vision. As claimed by Gollapudi (2019), AI can 

be defined as a field of computer science in enhancing capability of computer 

to perform tasks that require human intelligence. Moreover, as a subfield of AI, 

computer vision simulates human vision on computing devices by enabling 

retrieval and interpretation of useful information from visual inputs like images 

or video feeds. This allows computer to perform different tasks that require 

visual perception such as image classification, object detection and object 

tracking. (International Business Machine Corporation (IBM), n.d.).  

 As claimed by Wei et al. (2020), a computer vision-based product 

recognition system generally involves 5 steps where the system is commenced 
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by obtaining an image through cameras. Afterwards, the raw image will be pre-

processed through techniques like image segmentation and enhancement to 

remove unnecessary information in the image so that the feature extraction can 

be performed effectively in the following step. After the process, unique 

characteristics of image that are known as features will be mapped as feature 

vector with a lower dimension before they are being classified accurately based 

on pre-trained decision rule. Finally, predicted product category will be 

provided as an output for further manipulation according to different 

applications like price computation or stock management. 

 There are multiple cashierless checkout systems developed based on 

AI and computer vision throughout the years and Amazon Go represents one of 

the approaches that has been launched commercially in year 2018. Amazon 

(2016) stated that its unmanned store involved combination of AI, computer 

vision and sensor fusion technologies to facilitate smart retail experience. In the 

store, multiple closed-circuit television (CCTV) cameras were installed to 

provide visual inputs to neural networks for recognition of customers’ action 

and product detection. At the same time, sensors fusion that comprised of 

weight sensors were implemented to detect the products added or picked from 

shelves while infrared sensors were positioned to detect the presence of hands. 

As a result, recognition performance and reliability can be improved while 

simplifying shopping experience. User can enter the store by scanning Quick 

Response (QR) code at entrance, grab in-store products and leave the store to 

complete their purchase. 

 

2.2 Datasets of Retail Products 

Before proceeding to selection of deep learning model for retail product 

detection, dataset is mandatory and serves as a common ground for 

benchmarking the performance of algorithms while encouraging the 

development of high-quality deep learning solutions in the field. However, 

training of deep learning-based object detection models will generally require 

large amount of annotated data which can be labour-intensive and time 

consuming. Furthermore, uniqueness of retail checkout scenario such as 

intraclass variation and product occlusion need to be taken into consideration to 

train a robust product detection algorithm (Wei et al., 2020). Fortunately, 
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several datasets are made available publicly for benchmarking of deep learning-

based retail checkout algorithm and they are widely discussed in the field. These 

datasets are generally prepared for two checkout situations which are on-the-

shelf and checkout counter. Therefore, the following subchapters will involve 

description of datasets based on both scenarios and their techniques in tackling 

peculiarity of retail checkout scenario. 

 

2.2.1 Retail Product Checkout Dataset (RPC) 

Retail Product Checkout (RPC) dataset was published by Wei et al. (2019) as a 

large-scale dataset with 83739 images in total. 53739 of them are training 

images that only contain single-product images and 30000 validation images 

where each of them contains multiple products placed on checkout counter. All 

training images are captured at a high resolution of 2592 × 1944 while validation 

images are captured with resolution of 1800 × 1800 under controlled image 

acquisition environment. The dataset comprises 200 object classes of products 

from grocery stores in China as in Figure 2.1 and they are further divided into 

17 super-categories such as instant noodles, drink, milk, canned food and candy. 

Each of the images is annotated with chinese product names, meta-categories 

and location of bounding boxes that is stored in Javascript Object Notation 

(JSON) files and the data structure complies with Common Objects in Context 

(COCO) standard by Microsoft. 

 

 
Figure 2.1: RPC Dataset: Training (a) and Validation Images (b) 
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 The dataset is associated with several characteristics that will improve 

the evaluation of product recognition models. Firstly, images are captured in 

plain background, hence no image processing is required before instance 

segmentation or directly fed to object detection model for training. Moreover, 

the dataset is prepared to simulate actual checkout situation at a checkout 

counter where products are placed in random orientation and involve multiple 

number of product instances. This helps to evaluate the proposed model for its 

robustness for actual implementation. Besides, validation images have been 

split into three clutter levels based on number of product instances which helps 

to further evaluate capability of model in handling large number of detections 

at once. 

 However, the dataset has some shortcomings where all the training 

images are prepared in such a way that each product are rotated 360 degrees and 

an image is captured every 9 degrees at different perspectives. It leads to a 

scenario where some products are having common features such as top view of 

canned drinks and canned food. This will cause the model to make false 

detection and affect its performance evaluation. Furthermore, each product 

name in dataset provided in Chinese characters in Unicode format which may 

be cause difficulty in research of product detection model due to different 

encoding format. 

 

2.2.2 Densely Segmented Supermarket (D2S) Dataset 

There is another retail product dataset released by Follmann et al. (2018) known 

as MVTec D2S. It contains 21000 images of local groceries and everyday 

products that belong to 60 categories from Germany. Each image is acquired at 

a resolution of 1920 × 1440 under controlled setup and environment. 4380 of 

the images are for training purposes which only involve single category of 

products, placed at different orientation in three types of backgrounds and 

lighting conditions. On the other hand, there are 3600 validation images and 

13020 test images that consist of single or multiple objects from different 

categories placed in close proximity and occlusion is applied. Samples of 

training and validation images are shown in Figure 2.2. At the same time, the 

dataset comes with complete annotation that contains product name, instance 

mask for instance segmentation and bounding boxes for object detection. All 
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annotations are stored in multiple JSON files and complied to COCO format 

which ease the extraction of labels.  

 

 
Figure 2.2: D2S Dataset: Training (a) and Validation Images (b) 

 

 The dataset comes with several characteristics which will help in 

assessing and comparing the performance of object detection models. First of 

all, most of the products are captured in plain background which helps mask 

extraction for instance segmentation and detection in certain models such as 

Mask Regional Convolutional Neural Network (R-CNN). Besides, variation of 

lighting and occlusion is considered in the dataset which helps to train and 

evaluate the model in terms of their robustness to changes of lighting. Moreover, 

the dataset introduces augmented data forming 10000 additional synthetic 

images that contain multiple categories of overlapped products in random 

orientation. With the presence of synthetic data that resembles the actual 

checkout situation, all models can be directly trained and assessed in depth 

without utilizing the data augmentation algorithm which can be time consuming. 

On the other hand, all the annotations are in English and comply with Unicode 

Time Format-8 (UTF-8) encoding format.  

 However, the dataset is associated with a disadvantage where the 

ground truth annotations for test images are not publicly released for evaluation. 

This will in turn causes difficulty in performing fair comparison with the 

baseline results in the paper. Despite the prediction results can be submitted in 

JSON files to author for evaluation, but it is not favourable due to time 

constraint of the research.  
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2.2.3 CAPG Grocery Product Dataset (CAPG-GP) 

This checkout related dataset has been published by Geng et al. (2018) aimed 

to tackle intraclass variation of products. The dataset includes 102 classes of 

shampoo products in China, and they are further segregated into 177 sub-classes 

according to intraclass variants such as product volume and package design. 

This forms 351 images in total where 177 of them represents training images 

from and 234 images are used as test set. As shown in Figure 2.3, training 

images with plain white background are taken from e-commerce sites and 

having different image resolution, ranging from 200 to 600 pixels. On the other 

hand, test images are collected directly from product shelves of two different 

stores using smart-phone cameras at a resolution of 4032 × 3024. The approach 

helps to create lighting and background variation which is suitable for 

benchmarking. As for the annotations, information such as classes and bounding 

boxes for each image are provided in text files, hence no manual labelling is 

required. However, product names are not included in the dataset which will 

cause difficulty in benchmarking as the dataset involves many product classes. 

 

 
Figure 2.3: CAPG-GP Dataset: Training (a) and Test Images (b) 

 

2.2.4 Freiburg Groceries 

In the paper by Jund et al. (2016), another retail product based dataset is 

introduced, which is known as Freiburg Groceries. The dataset comprises of 

5021 images, involving 25 classes of local groceries from Germany. The 

datasets are divided into 4947 train images and 74 test images. Each training 

image contains single or multiple instances of one category captured through 
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smartphone cameras at multiple environments at varying aspect ratio. Thus, 

zero-padding is performed by adding pixels with value zero around the border 

of images as an approach to resize them to 1:1 aspect ratio before they further 

resized to 256 × 256 pixels. According to Hashemi (2019), zero-padding may 

help in improving computational efficiency of a neural network as the 

calculations are speeded up through deactivated convolutional unit by zero 

pixels. On the other hand, each test image is captured at resolution of 1920 × 

1080 and involves multiple instances from different categories on their 

corresponding shelves. Some samples of train and test images are illustrated in 

Figure 2.4. 

 

 
Figure 2.4: Freiburg Dataset: Training (a) and Test Images (b) 

 

 However, the dataset comprises of several shortcomings. First, all 

training images are pre-downscaled to low resolution (256 x 256 pixels) which 

may be inappropriate to be applied to some state-of-art object detection models 

that require higher input image resolution. This is because training of deep 

learning models is depending on combination of object features such as color 

and edges. Therefore, decrement of input image resolution will imply negative 

impact to the model performance due to pixelation of object outline and blurring 

of edges despite color features are still intact (Seals, 2019). On the other hand, 

bounding box information is not included in the annotation files which may 

cause inconsistency during comparison between different product detection 

approaches. Besides, all images are annotated based on generic product type 

such as cereal, chocolate and milk, which is incompatible with actual checkout 

scenario that requires detection of exact variation of products. 
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2.2.5 Dataset Comparison 

Based on dataset summary in Table 2.1, RPC and MVTec D2S Dataset are more 

relevant in this project compared to CAPG and Freiburg Groceries because they 

are prepared for checkout counter scenario, which suits the purpose of this 

project. However, MVTec D2S Dataset is considered incomplete since the test 

set is not published in their repository, imposing difficulty for evaluation of 

product recognition models. In contrast, RPC dataset is complete with COCO 

format annotation, but lighting variation is not considered, and its size is 

relatively large with 83739 images in total, which will demand for hardware 

with higher computing power and can possibly increase the training time 

required for product recognition.  

   

Table 2.1: Characteristic Table of Publicly Available Dataset 

Characteristics 
MVTec 

D2S 
RPC 

Freiburg 

Groceries 

CAPG - 

GP 

Categories  60 200 25 177 

No. of 

instances 

Train Vary Single Multiple Multiple 

Val / Test Multiple Multiple Multiple Multiple 

Resolution 

Train 

1920 

× 

1440 

1592 

× 

1440 

256 

× 

256 

Vary 

Val / Test 

1920 

× 

1440 

1800 

× 

1800 

256 

× 

256 

4032 

× 

3024 

Quantity 
Train 14380 53739 7425 177 

Val / Test 13020 30000 995 234 

Scenario Counter Counter Shelf Shelf 

Background Distinct Same Distinct Distinct 

Lighting variation ✓ ✗ ✗ ✓ 

Occlusion of products ✓ ✓ ✓ ✓ 

Completeness ✗ ✓ ✗ ✗ 

Intraclass variation ✓ ✓ ✗ ✓ 

 



16 

Therefore, MVTec D2S dataset will be pre-processed before using it 

for preliminary benchmarking and comparison with other existing models 

which adopted the dataset. Additionally, another dataset will be prepared for 

this project based on the characteristics of both D2S and RPC datasets by taking 

lighting difference, product occlusion and intraclass variation into consideration. 

 

2.3 Image Synthesis 

In general, size of training data can be a constraining factor in achieving a well-

performed object detection algorithm. As reviewed by Wei et al. (2020), deep 

learning based retail product recognition approach suffers from data scarcity by 

having fewer images per class compared to common object datasets such as 

COCO and PASCAL Visual Object Classes (VOC). Hence, data augmentation 

needs to be adopted to generate vast number of artificial images to boost the 

performance of model across wide range of object classes. According to Saxena 

(2020), data augmentation represents a strategy in increasing data diversity by 

introducing variation to existing data without manual collection of new data. 

Several data augmentation techniques have been implemented in the domain of 

retail product detection, which includes basic image manipulation, mask-based 

synthesis and Generative Adversarial Network (GAN)-based data augmentation. 

 

2.3.1 Conventional Data Augmentation 

Conventional data augmentation approach encompasses fundamental 

manipulation of images such as geometric transformation, flipping and color 

space transformation, cropping, rotation, translation and noise injection. This 

approach has been utilized by Rigner (2019) in his retail product detection 

solutions. 

 In the paper, multiple traditional data augmentations like scaling, noise 

injection, brightness adjustment, and mirroring were applied to his custom 

dataset before it was fed to Mask R-CNN for training. In the research, scaling 

of 50 to 150% was utilized on images and annotations. Besides, Gaussian noise 

was used as a form of noise. Furthermore, brightness was manipulated by 

multiplying each image pixel by a factor of 0.5 to 1.5. Despite shearing was 

considered in the initial research but it was removed due to its negative impact 

on detection performance. With the extended dataset, Mean Average Precision 
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(mAP) performance of the proposed Mask R-CNN model was improved to 

60.1%, yielding a performance leap of 20.8% compared to the model trained 

only by raw images with a mAP of 39.3 %.  

 

2.3.2 Mask based Synthesis 

In the actual practices of retail product recognition on shelves or checkout 

counters, occlusion and overlapping of products can be a common yet 

challenging phenomenon for deep learning-based models. Hence, in order to 

simulate the scenario, mask-based approach has been widely adopted by several 

researchers as a form of data augmentation. As the name suggests, mask-based 

image synthesis involves the extraction of products with corresponding masks 

before they are used to generate synthetic images with multiple instances per 

image.  

 The first mask-based augmentation approach was proposed by Yi et al., 

(2019) in developing their occlusion simulation algorithm for retail product 

detection framework. Prior to the augmentation, their dataset which consisted 

of single and multiple product images was collected under a controlled 

environment with a plain, dark background. Subsequently, the images were fed 

to a bounding box extraction algorithm where multiple bounding box proposals 

will be generated through selective search before small, distorted proposals 

below a threshold value were filtered to obtain accurate bounding boxes. All 

objects were then cropped according to boxes and stored as patches in the 

database. By feeding a random patch and a raw image as inputs, augmentation 

can be performed through an occlusion simulation algorithm. Thresholding was 

applied on the patch to obtain a binary mask for background removal. The patch 

was then cropped and placed on the original image which resulted in a 

synthesized image with a realistic product occlusion. In brief, the framework 

can be represented in Figure 2.5. The approach was proven to be effective on 

Faster R-CNN-based retail product recognition algorithm by achieving a high 

mAP of 84 % on actual products placed in closed proximity on a conveyor.  
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Figure 2.5: Mask-Based Image Synthesis 

 

 On the other hand, Koturwar, Shiraishi and Iwamoto (2019) also 

introduced a similar approach in expanding the dataset for their automated 

checkout system. Before the mask extraction process, images of individual 

products were captured above a Liquid Crystal Display (LCD) platform that will 

display red, green, and blue (RGB) plain backgrounds. It was claimed that the 

method will aid the robust extraction of product masks especially when it was 

having similar color with background compared to the traditional method which 

utilized fix-colored background. Sequentially, a product mask was generated by 

calculating pixel-wise standard deviation across all background colors, which is 

represented through formula 2.1 where N represents the number of images of 

different backgrounds, ci,p is the image intensity at each pixel p in image i. On 

the other hand, µp and σp are the average and standard deviation of each pixel p 

for all images of the individual product. 

 

 𝜎𝜎𝑝𝑝 =  �
∑ (𝑐𝑐𝑖𝑖,𝑝𝑝 − 𝜇𝜇𝑝𝑝)2𝑖𝑖

𝑁𝑁
�

1
2

 (2.1) 

 

With the computed standard deviation for all pixels, an accurate mask 

was then generated by thresholding the standard deviation based on the concept 

where products will have lower standard deviation because their pixel values 

will not be affected by changes of background color. With the product mask, 

synthetic training images with product occlusion can be generated by first 

randomly selecting a base image. Subsequently, multiple products were placed 

randomly according to overlap index that was a threshold calculated through 
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Intersection over Union (IoU) between product masks. The overall framework 

will be as shown in Figure 2.6. 

 

 
Figure 2.6: Mask extraction and Merging for synthetic data generation  

(Koturwar, Shiraishi and Iwamoto, 2019) 

 

 The approach was proved to be effective to imitate the actual 

placement of products by a human during the checkout process. By feeding the 

synthetic dataset into Faster R-CNN with Residual Network (ResNet) backbone 

with 101 layers known as ResNet-101, their proposed method achieved a high 

precision-recall of (0.84, 0.98). Compared to the unaugmented dataset with the 

precision-recall of (0.60, 0.67), the performance was extensively improved by 

0.2. At the same time, the result was compared with a synthesized dataset 

through the cut and paste approach and there was a slight improvement in 

precision-recall of 0.04 and 0.06 respectively.  

 

2.3.3 Generative Adversarial Network (GAN) 

Despite conventional and mask-based data augmentation methods can 

significantly boost detection performance of occluded retail products with 

limited training data, but they are incapable of simulating a natural checkout 

condition such as shadows patterns and lighting conditions. Therefore, 

according to Wei et al. (2019), GAN-based models such as CycleGAN allow a 

realistic rendering of synthetic images known as image-to-image translation, 

which increase correlation between synthesized images and training images to 

enhance detection accuracy.  

Such approach has been demonstrated in the papers by Li et al. (2019) 

and Wei et al. (2019) in creating realistic images similar to the actual checkout 

counter condition. RPC Dataset as mentioned in Section 2.2.1 which only 

contains training images of single products was adopted. Synthesis of images 

was initiated with the creation of checkout images with overlapping products 
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through a mask-based approach on a plain background image. At the same time, 

the area of each product mask was ensured to exceed a pre-defined threshold 

value to simulate the realistic placement of bag-like products on a checkout 

platform. Subsequently, the synthesized images were fed into a pre-trained 

CycleGAN so they can be rendered to look like an actual checkout scenario with 

the presence of shadows and realistic lighting conditions. The method was 

proved to be practical as the detector trained with original and translated images 

was able to attain a high mAP of 96.57%.  

 

2.4 Detection Algorithm 

When images of retail products have been acquired and pre-processed through 

conventional data augmentation or GAN-based algorithms, they will be applied 

to a detection algorithm for product recognition so that prices can be computed 

according to the detected products.  

In the past decades, computer vision has already been widely adopted 

in the research field of retail product recognition and checkout system. 

According to Wei et al. (2020), computer vision-based applications in the field 

was started with conventional methods in the early days before the applications 

were expanded to deep learning-based approach. However, conventional 

computer vision approaches are still being actively engaged in the research field 

for deployment on devices with constrained computing capabilities such as 

embedded systems.  

 

2.4.1 Classic Computer Vision Techniques 

As stated by IBM Cloud Education (2020), machine learning represents a 

subfield of AI which mainly studies the methods in replicating human thinking 

capability on computing devices with the use of data and algorithms. In earlier 

days when deep learning was largely constrained by computing technologies, 

most of the computer vision applications including retail product recognition 

were achieved through traditional machine learning techniques. As stated by 

O’Mahony et al. (2020), a traditional approach to object detection mainly 

involves the combination of a conventional computer vision technique known 

as feature extraction and a traditional machine learning classifier to form a 

complete framework. Feature extraction can be defined as a process of encoding 
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meaningful information of an image into a vector known as features by utilizing 

a feature descriptor algorithm. Once the features are extracted, object detection 

can be generally done through feature matching or machine learning-based 

classifier. Feature matching involves searching for similar features in another 

image. If a high number of features exist in another image, the image is said to 

contain specific objects. In contrast, a machine learning-based classifier can 

accurately predict object classes after being trained with the corresponding 

dataset.  

In the field of retail product recognition, it was found that Scale 

Invariant Feature Transform (SIFT) and Speed Up Robust Features (SURF) 

algorithm were commonly used for feature extraction and machine learning 

algorithms such as Adaptive Boosting (AdaBoost) and Support Vector Machine 

(SVM) were used for product classification and recognition. The following 

subchapters will summarize traditional approaches by other researchers. 

 

2.4.1.1 SURF + Feature Matching 

In the retail product recognition research conducted by Moorthy et al. (2015),  

SURF algorithm was utilized to realize product detection and positioning in 

retail store shelves.  

The system can be decomposed into 5 steps, starting with the input of 

two images from a user where one of them acted as a reference image of a 

specific product while another image served as a target image which was 

captured through a camera device. Then, both images were converted to 

grayscale images to improve computational efficiency. At the same time, the 

reference image was further cropped to remove irrelevant background to allow 

the detection of multiple products within the target image. The following step 

was the feature extraction through SURF algorithm due to its invariance to 

lighting, product scale and contrast. As a result, each image will produce a set 

of features that were comprised of two elements known as characteristics points 

and descriptors. Then, the comparison was done between the extracted features 

and all matched points were recorded so that the transformation relationship 

between the points can be computed to obtain the products’ exact location in the 

target image. The whole process was iterated multiple times until all products 
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were found based on SURF features. For visualization, all found products were 

marked in bounding boxes and the overall product count was displayed. 

Performance of SURF features was demonstrated by author through 

different images of actual shelf situation. Despite there were no quantitative 

results being tabulated in the paper, the author has demonstrated that the 

conventional algorithm was able to tackle intraclass variation in terms of 

packaging color and achieved accurate localization of empty space on shelf 

despite with an average execution time of 190 seconds. However, such approach 

was proven to be highly dependent on completeness of image as it will decrease 

number of generated SURF features which will result in rejection during 

matching process. 

 

2.4.1.2 Haar Features + Adaboost & SIFT + SVM 

An approach that utilized conventional feature descriptors can be seen in the 

research by Varol and Salih (2015) regarding the recognition of tobacco 

products placed on shelf. They have constructed a two-stage framework that 

involved product segmentation and brand recognition. 

The algorithm began by first taking an input image with tobacco 

products on shelf-to-shelf boundaries detection. In this process, a histogram was 

generated to project the products in y-axis direction which allows the 

identification of product distribution on the shelf. After applying Gaussian filter 

for noise removal, position of products can be differentiated as products will 

have peak value while shelf as non-product will generally have a low value. 

Besides, number of shelf space can be determined through the histogram to 

further determine the range of product height for segmentation of tobacco 

products. 

In the segmentation process, a cascaded object detection module based 

on Viola-Jones object detection framework was adopted. The conventional 

module involved a unique image representation known as Integral Image and 

rectangle-like features known as Haar Features. At the beginning of the module, 

each pixel in the Integral image was computed by obtaining the sum of pixel 

values in x and y direction. Subsequently, sliding window was applied on the 

integral image and each region was used for Haar Feature extraction by 

computing the difference between sum of pixels in white rectangle and the sum 
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of pixels in black rectangle within the specific region. Each feature was then fed 

to a cascaded AdaBoost Classifier trained with Grozi-120 dataset. Through 

multiple layers of classifier with several types of additional thresholds such as 

minimum and maximum product height, irrelevant features were rejected by 

having values lower than pre-set threshold while best features that represent the 

products can be obtained and labelled with bounding boxes.  

The following step was the brand recognition algorithm that involved 

logos of the detected regions. SIFT feature descriptor and Hue Saturation Value 

(HSV) color space were involved in this stage to represent shape and color 

information respectively.  Each feature descriptors were then used to form a 

frequency histogram for computation of joint feature vector. Finally, 

classification can be performed through multi-class SVM.  

The product detection module had achieved a relatively high recall of 

0.94 and 0.75 by including the product height thresholds. Concurrently, the 

brand classifier has achieved classification accuracy of 92.3% by involving both 

SIFT and HSV feature descriptors.  

 

2.4.2 Deep Learning based Computer Vision Techniques 

According to Chauhan and Singh (2018), deep learning serves as a subfield of 

machine learning which is generally a study that explores and construct 

algorithms in allowing computing devices to learn from a given training data 

and perform prediction on unseen data. However, deep learning is more 

advanced as it tends to focus on deployment of Artificial Neural Networks 

(ANNs) which involve cascading of multiple layers of interconnected nodes 

known as neurons that are aimed to imitate human brain in processing the 

information and perform prediction as a solution to complex problems.  

Specifically, for computer vision applications like object detection, 

introduction of deep learning along with the aid of computing power and 

memory capacity advancement has caused a remarkable change of research 

direction. As stated by Zou et al., (2019), starting from year 2014, object 

detection has been shifted from conventional machine learning approaches like 

Viola Jones detectors towards deep learning based detection methods as the 

techniques will help to overcome the performance bottleneck of traditional 

computer vision approach  while requiring less domain specific knowledge as 
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they are trained instead of being programmed. Moreover, the approach offers 

more flexibility as they are able to be re-trained to adapt to different dataset. 

Hence, in the field of retail product recognition, deep learning-based methods 

are widely adopted by researchers and plenty of work were published. 

 

2.4.2.1  Convolutional Neural Network (CNN) 

As stated by Khan et al. (2018), Convolutional Neural Network (CNN) 

represents the most popular deep learning architecture in the field of computer 

vision and its development plays an important role by contributing performance 

leap in visual recognition tasks like image classification, detection and 

localization. Hence, it is served as a backbone architecture for most of the deep 

learning-based object detectors in present days.  

In general, CNN can be expressed as a deep learning algorithm that can 

study the spatial information in high-dimensional input data such as images or 

videos and dynamically assign weights and bias through backpropagation to 

effectively differentiate instances in the image. As stated by Yamashita et al. 

(2018), CNN is composed of 3 types of layers which are convolutional layers, 

pooling layers, as well as fully connected layers. A basic structure will typically 

involve multiple convolutional layers and pooling layers prior to fully 

connected layers. Convolutional layers are responsible to take in an input image 

and perform feature extraction through linear convolution operator and non-

linear activation function whereas pooling layers are used for dimension 

reduction of feature maps generated by convolutional layers via max pooling or 

global average pooling to reduce trainable weights in the network. By taking in 

the feature vector, which is the flattened feature maps, fully connected layers 

will perform classification task based on the trainable weights.  

Due to simplicity of the architecture, CNN can be easily deployed and 

customized to accommodate different applications including retail product 

detection. In the research conducted by Bukhari et al. (2021) which concerned 

a retail checkout system named as Automated Retail Checkout System (ARC), 

a self-modified CNN was applied to identify the product placed under a webcam. 

Prior to the training, data acquisition was performed to create a dataset with 100 

classes of local items from Carrefour Pakistan. Each image was captured in a 

hood by involving single product placed at different orientation. All 31000 
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images were then spitted in a proportion of 65:25:10 to form train, validation 

and test sets respectively.  

The custom CNN used in their research was a light-weight variant by 

only comprised of 7 layers in total where the first 4 layers were convolutional 

layers and max pooling layers stacked alternatively to each other. Each 

convolutional layer is associated with Batch Normalization and Parametric 

Rectified Linear Unit (PReLU) activation function. Then, the architecture was 

followed by 3 fully connected layers where PReLU were used for former two 

layers and Normalized Exponential Function (softmax) activation function was 

deployed at the output layer. PReLU was adopted for the CNN as it will help to 

overcome zero gradient issue for negative inputs in the conventional ReLu 

function. Hence, the network will be able to deal with high-complexity 

problems. 

Prior to the training process, several hyperparameters were adjusted 

and they are referred to epochs of 100, batch size of 32 and learning rate of 

0.001 that was set to be reduced by a decay rate of 0.96 and 0.75. This is because 

a decaying learning rate will encourage the network to learn complex patterns 

which can be useful in computer vision applications that typically involve real 

world datasets (You et al., 2019). Besides, a dropout of 0.1 was applied to 

prevent network from overfitting.  

Through the training on Google Colaboratory, training and validation 

accuracy were 94.76% and 95.24%. The algorithm was further benchmarked 

with test dataset and achieved accuracy of 91.7%. However, classification 

performance was not ideal due to multiple misclassifications occurred for the 

products with glossy surfaces and packing of similar color.  

 

2.4.2.2 State-of-the-Art Models 

According to Davis (2021), state-of-the-art deep learning models can be referred 

as leading-edge neural network algorithms that obtain highest level of 

achievement at a specific point in time. In the field of object detection, as 

mentioned by Boesch (2021), multiple generic state-of-the-art architectures 

have been developed and improved throughout the years, especially from year 

2014 to 2020, which gave rise to some popular CNN based object detection 

networks, such as R-CNN, You Look Only Once (YOLO) and Single Shot 
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Multibox Detector (SSD). Chronologically, these networks are continuously 

being improved which leads to numerous variants in the later years, as shown 

in Figure 2.7. 

 

 
Figure 2.7: Development of State-of-the-Art model architectures (Boesch, 

2021) 

 

In general, according to statements by Zaidi et al. (2021), existing 

state-of-the-art object detection networks can be further divided into 2 types 

which are two-stage and single-stage architectures. Two-stage architectures 

such as R-CNN based algorithms perform object localization and classification 

separately by first generating Region of Interest (ROI) for each object before 

performing classification and regression of bounding boxes on each ROI. In 

contrast, single-stage architectures such as SSD, YOLO and RetinaNet can 

perform both tasks in parallel where it can directly generate bounding boxes and 

probabilities for each class in the input image with single forward-pass. Despite 

the architectures were having some drawbacks when first introduced, but active 

improvement has been conducted and multiple variants with performance 

improvement have been published. Hence, following subchapters will focus on 

recent architectures that are widely adopted in the field of deep learning which 

mainly cover Faster R-CNN and Mask R-CNN, YOLO family and RetinaNet.  

2.4.2.2.1 Faster R-CNN 

As the third architecture of R-CNN models, Faster R-CNN developed by Ren 

et al. (2016) is referred as a region-based object detection model that performs 

object localization by generating bounding boxes around object of interest as 

well as classification of each object within the bounding box. As stated by 

Ananth (2020), compared to other models in R-CNN family, Faster R-CNN 

represents the most widely adopted State-of-the-Art model in deep learning 
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based object detection research. This is because Faster R-CNN proposed a 

solution known as Region Proposal Network (RPN) to overcome the 

computational constraint caused by Selective Search algorithm in its 

predecessor which is Fast R-CNN. By replacing the time-consuming Selective 

Search with RPN, region proposals can be generated faster which will in turn 

reduce the time required for model training and inference. 

 There are several research in the field that employed Faster R-CNN for 

their retail product recognition. In the research conducted by Liu et al. (2019), 

Faster R-CNN was applied to the their computer vision-based checkout 

application in bakery store. By using their own dataset with 510 bread images 

that were split at a ratio of 452:55:3 through random selection, transfer learning 

of Faster R-CNN was done using a pre-trained Visual Geometry Group-16 

(VGG-16) model. The training was iterated for 70000 steps and took 8.76 hours 

to complete. Based on the performance of 100 unseen images, their Faster R-

CNN model achieved mAP of 100% compared to SSD that only achieved 9%. 

However, their SSD surpassed Faster R-CNN by 1.8s in terms of inference time.  

 Besides that, Faster R-CNN was also adopted in the paper by Koturwar, 

Shiraishi and Iwamoto (2019) which involved development of an automated 

POS System. By using image synthesis method mentioned in Chapter 2.3.2, 

20000 artificial images were generated for training. Meanwhile, 3 different test 

sets were prepared to imitate 3 different stages of product occlusion in actual 

checkout, namely Easy, Regular and Hard with ratio of 300:600:10. The dataset 

was then used to train a Faster R-CNN with ResNet-101 backbone at a learning 

rate of 0.003, 200 × 103 steps, confidence threshold of 0.8. After training, the 

model achieved precision-recall of (0.93, 0.99) and average of 0.86 when tested 

with real images under Easy scenario. As for Normal scenario, the model 

achieved precision-recall of (0.84, 0.98) and average IoU of 0.85. Concurrently, 

the model also performed well in Hard scenario with precision-recall of (0.61, 

0.84) and average IoU of 0.78. 

2.4.2.2.2 Mask R-CNN 

Mask R-CNN is known as another variant of the R-CNN family that is widely 

used in object detection-related applications. The algorithm was developed by 

He et al. (2018) with the aim to perform object detection and generate their 
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corresponding segmentation mask simultaneously. It was achieved by 

introducing a custom Fully Convolutional Network (FCN) to further extend 

Faster R-CNN architecture with segmentation mask prediction in a pixel-to-

pixel manner for the objects within the ROI. According to the author, FCN used 

in the algorithm is distinct to common FCN used for object detection in terms 

of activation and loss function. Softmax activation function and multinomial 

cross entropy loss function was replaced with sigmoid and binary loss function 

to improve segmentation accuracy and it was proved with increment of Average 

Precision (AP). Besides, another improvement was applied in Mask R-CNN to 

overcome the issue of misalignment of objects in the input image compared to 

quantized feature map generated by the original Region of Interest Pooling 

(ROIPool). An additional layer known as Region of Interest Align (ROIAlign) 

was proposed to replace ROIPool to conserve the spatial information. 

 In the research field of retail product recognition, Rigner (2019) had 

utilized Mask R-CNN in their on-shelf self-checkout system. The project was 

initiated by preparing their retail product dataset. By utilizing the dataset with 

486 images that were captured at a resolution of 1920 × 1080, the dataset was 

further increased to 2430 images through conventional data augmentation 

mentioned in Chapter 2.3.1. Each of them was labelled with class-wise 

segmentation mask and bounding boxes. The Mask R-CNN used in the research 

was based on ResNet-50 backbone for feature extraction purpose and it was 

benchmarked along with 2 single-stage object detector which were RetinaNet 

and YOLOv3 with same backbone. Transfer learning was applied by adopting 

the weights pre-trained with COCO dataset that was claimed to perform well in 

detecting low-level features. Thus, only network head which involved the 

convolutional layers for classification and segmentation needed to be trained. 

Nevertheless, hyperparameters used for training was not explicitly specified in 

the paper. Based on the evaluation of model at 1920 × 1080, Faster R-CNN 

achieved mAP of 72.3%, which was highest in contrast to RetinaNet and 

YOLOv3 with mAP scores of 71.8% and 51.9% respectively. As a trade-off, 

inference time of Mask R-CNN was the longest among all models due to high 

computational complexity. 

 On the other hand, Ning, Li and Ramesh (2019) also proposed their 

self-checkout system using Mask R-CNN. The dataset used for their 
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performance evaluation was MVTec D2S Dataset mentioned in Chapter 2.2.2. 

However, instead of applying the whole dataset, only validation set with 3600 

images was endorsed and further split into training, validation and test set at a 

ratio of 80:10:10. As a result, a small dataset was formed with 2880 training 

images, 360 validation and test images. In the research, two Mask R-CNN 

algorithms used were based on two different backbone structures, namely 

ResNet-101 and ResNet-50. Similar to approaches in other papers, both models 

were pre-trained with COCO dataset for transfer learning purpose. Besides, 

several hyperparameters had been tuned for performance enhancement. 

Through random search, learning rate was set an optimal value of 0.002. 

Meanwhile, Adaptive Moment Estimation (Adam) optimizer was replaced with 

Stochastic Gradient Descent (SGD) because the former requires lower learning 

rate and result in longer training time. After the training for 10 epochs at an 

input resolution of 512 × 512 due to GPU limitation, Mask R-CNN with 

ResNet-101 achieved mAP of 78.8% which was higher that ResNet-50 variant 

that achieved mAP of 75.3%.  However, the author claimed that ResNet-50 was 

preferred for the application by providing a good training performance with 

slight degradation of accuracy. The model further achieved mAP of 84% by 

tuning 3 convolutional layers of network head. 

 

2.4.2.2.3 YOLO 

According to Ohri (2021), YOLO is categorized under single-stage object 

detector that are generally used in object detection applications that emphasize 

speed, time and accuracy. As stated by Redmon et al. (2016) as its developers, 

the deep learning model represents a new approach to object detection by 

treating object detection as a regression problem, hence forming a unified model 

that allows bounding box prediction and computation of class probabilities in a 

single forward propagation of input image. The model will first divide the input 

image to S × S grid. Subsequently, the grid cell which contains the center of 

object will need to predict its bounding boxes and class probabilities. Hence, 

the prediction will comprise of 5 components. 4 of them are normalized 

coordinates for center of bounding box as well as width and height of bounding 

box. The fifth element represents the confidence score that is calculated using 
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Intersection over Interference (IoU) to indicate accuracy of the predicted 

bounding box. These variables are being used with class probabilities 

throughout the model to perform prediction of object classes and bounding 

boxes localization simultaneously. 

 Several research had adopted the algorithm in YOLO family. In Wu et 

al. (2016) which introduced Intelligent Self-Checkout System (ISCOS),  

product recognition was done through a custom framework by cascading 

YOLOv1 and CaffeNet as shape detector and product classifier respectively. 

The system was designed in such a way that real time video feed will be supplied 

to YOLOv1, allowing localization of products and prediction of shape category. 

Then, product images were cropped according to bounding box and applied to 

CaffeNet in sequence for recognition of products. By using 317593 product data 

that was webcrawled from supermarket database and search engines at 

resolution of 456 × 417, the CaffeNet was trained with 317593 product data at 

for 100 × 103 iterations, learning rate of 0.001, batch size of 128 and momentum 

of 0.9. Meanwhile, YOLOv1 as a shape detector was trained separately with 

63271 images at resolution of 448 × 448 or 750 repetitions. However, the dataset 

was annotated based on product shape instead of product category. Learning 

rate of the training was tuned to 0.0005, batch size of 64 and subdivisions of 8. 

In evaluation, the proposed method has achieved accuracy of 66.4% in single 

item scenario, 65.7% in two items scenario and 64.1% in multi-product scenario 

and their execution time was 69.6375ms for each inference of image. 

 On the other hand, in Oh and Chun (2020) which proposed a smart 

shopping cart, YOLOv3 was used to detect products present in the real-time 

video stream provided by Raspberry Pi mounted on cart. The dataset involved 

for the training was consisted of 5 types of bottled soft drink and 2800 images 

were captured and annotated through YOLO-mark software. YOLOv3 was then 

trained for 16200 epochs and several hyperparameters were configured for 

optimal performance. Learning rate was fixed at 0.001 while momentum and 

weight decay were set to 0.9 and 0.0005 respectively. In addition, confidence 

threshold was tuned to 0.6 to decrease false positive rate during training process. 

By testing the algorithm through real-time video stream for 10 times, mAP of 

82.28% and AP per class was ranged from 66.7% and 88.9%. 
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2.4.2.2.4 RetinaNet 

Other than YOLO series, RetinaNet is found to be popular among researchers 

in the field of product recognition and checkout. As claimed by Lin et al. (2018) 

as its developers, RetinaNet was designed to resolve the performance bottleneck 

caused by extreme class imbalance between foreground and background during 

training of single-stage detectors such as SSD. It was achieved by introducing a 

new loss function known as Focal Loss which is an improved version of Cross 

Entropy Loss so that the network will assign more weights on hard examples 

such as targets that are partially visible while reducing the weight of background 

since it represents as easy example (Anwla, 2020). Thus, RetinaNet is able to 

achieve the optimal speed of one-stage detector while preserving the accuracy 

of two-stage detectors.  

The implementation of RetinaNet in retail product recognition can be 

seen in the research conducted by Xie, Wang and Zhao (2021). RPC Dataset 

mentioned in Chapter 2.2.1 was chosen for training of all three models. As the 

training subset was incomplete with images to fully imitate the actual checkout 

scenario, GAN was implemented through the method stated in Chapter 2.3.3 to 

generate 30000 synthetic images with product occlusion and realistic lighting 

effect for training purpose. To allow comparison on the same ground, backbone 

structure of RetinaNet and Faster R-CNN was changed to ResNet-101 while 

DarkNet-53 was remained unchanged for YOLOv3 in the research. Despite 

training parameters was not mentioned in detailed, results were explicitly 

analyzed in the paper. At IoU of 0.75, RetinaNet had achieved the highest 

accuracy among three models with the mAP of 99.56% followed by Faster R-

CNN with slightly lower mAP of 96.98%. In contrast, YOLOv3 achieved the 

lowest mAP with value of 82.32% in the benchmark. Besides that, RetinaNet 

was further tested with three different stages of product occlusion as prepared 

in the dataset. Based on a custom evaluation metric known as Checkout 

Accuracy (cAcc) that indicates the success rate of model in actual checkout 

process, RetinaNet achieved high cAcc of 91.65% at easy level but the value 

dropped to 82.3% and 71.65% for medium and hard level respectively. 
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2.4.2.3 Summary 

According to Table K-1 which summarizes all related works in deep learning-

based retail checkout system, it can be justified that most of the researchers were 

adopting three types of deep learning models, including R-CNN family, YOLO 

family and RetinaNet. Thus, RetinaNet will be used for further analysis along 

with two representative models under YOLO family which are YOLOv3 and 

YOLOv5. 

 The reason of R-CNN models like Faster R-CNN and Mask R-CNN 

are not chosen for further research is due to numerous research have been 

conducted and explicitly reviewed in the field of computer vision-based retail 

checkout system. Furthermore, due to the architecture as a two-stage object 

detector, R-CNN based models are complex, making it impractical for 

deployment on edge devices in this project. It can be justified in the bread 

recognition and checkout system conducted by Liu et al. (2019), their Faster R-

CNN achieved a high mAP compared to single-stage detector like SSD but at a 

cost of long inference time of above 100ms. As for Mask R-CNN, Rigner (2019) 

stated that Mask R-CNN has similar drawbacks where its complex architecture 

leads to slow inference speed compared to other single stage detectors like 

YOLOv3 and RetinaNet. Moreover, according to the statement by Ning, Li and 

Ramesh (2019), performance of Mask R-CNN will be limited during the 

presence of distinct product size and occlusion. Thus, all two-stage object 

detectors will not be further evaluated in this project since the models cannot 

fulfill the requirements of a robust retail product recognition where overlapping 

of products, distinct product size commonly occur. 

 Thus, to ensure the product recognition model can be deployed on edge 

devices with limited computing resource, YOLO families and RetinaNet will be 

used for further analysis due to their high inference speed as single-stage 

detectors. This is justified by the research by Rigner (2019) and  Xie, Wang and 

Zhao (2021) which showed that YOLOv3 and RetinaNet are advantageous in 

terms of inference time compared to R-CNN series with slight sacrifice of 

accuracy. Hence, for further testing of YOLO model series, YOLOv3 and 

YOLOv5 will be chosen as they are the representative models in current deep 

learning field.  RetinaNet will also be added for comparison to justify its 

performance against YOLO models under actual checkout scenario with several 
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challenges such as overlapping products, intraclass variation and distinct 

product size. 

 

2.5 Supportive Elements for Retail Checkout System 

In the current field of retail product recognition, most of the approaches 

emphasize on-shelf checkout rather than checkout conveyor. At the same time, 

as mentioned in Chapter 1.2, there are only a few research that involved 

hardware and software setup at the same time. One of them represents the ARC 

proposed by Bukhari et al. (2021), the checkout system setup used in their 

research was comprised of a checkout conveyor with a hood on top of it to 

prepare a controlled environment for image acquisition for training and 

inference of product images through a Logitech C310 webcam and Light 

Emitting Diode (LED) strips. The conveyor was actuated by a single-phase 

induction motor and controlled by an Arduino Mega 2560 through a 5V relay 

circuit. Additionally, a Light Dependent Resistor (LDR) was used to sense the 

presence of product in the hood and provide signal to computer for product 

recognition through pySerial library. Besides, a printer was connected to the 

computer for printing of payment bill.  

 On the other hand, Graphical User Interface (GUI) was developed by 

involving Tkinter to display the detected products along with their price. 

Concurrently, the GUI consisted of several buttons such as start, checkout, 

delete, print and exit to ease the interaction between user with the checkout 

system. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter will include a detailed methodology in developing a software 

prototype of cashierless checkout system with product recognition as well as 

price computation functionality. First of all, overall system architecture of the 

proposed computer vision-based checkout system will be introduced followed 

by the workplan in accomplishing the goal. After that, each process will be 

described in depth, starting with preliminary model benchmarking, data 

acquisition and pre-processing, image synthesis and rendering as well as model 

optimization along with deployment on Jetson Nano which is a single-board 

edge device that supports model inferencing. 

 

3.1.1 Overall System Flow 

The overall framework of our proposed computer vision-powered checkout 

system is made up of two main stages which are backend and frontend that play 

different roles as illustrated in Figure 3.1.  

 

 
Figure 3.1: Proposed Cashierless Checkout System Architecture 
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In general, the backend framework acts as a platform that allows training and 

deployment of deep learning model to database. Firstly, the backend will 

involve acquisition process of training data where single product images and 

their corresponding binary masks will be prepared and serve as training input. 

Subsequently, the images will be fed to a custom image synthesis framework 

similar to the approach in the paper by Li et al. (2019) and Wei et al. (2019) 

where each of the images is pre-processed and rendered using a Generative 

Adversarial Network (GAN) to simulate actual scenario of a checkout counter, 

forming a reliable data for training. During the process, every instance in the 

image will be labelled automatically by the algorithm to minimize human 

workload in training a product recognition model. After that, training of an 

improved YOLOv5 will be carried out using the dataset before the updated 

weight to be uploaded to database after optimization by TensorRT runtime.  

On the other hand, frontend of the proposed checkout system involves 

inference and calculation of overall product prices based on the items placed on 

retail store checkout counter by customer. The checkout process begins with the 

placement of desired products under the camera. The inference will then be 

executed using an edge device after all items are placed still on the counter. 

With the predicted output by the product recognition model, price of each item 

will be computed and displayed to customer for confirmation before proceeding 

to payment gateway. Concurrently, when there is any updated weight or product 

price available in the database, the edge device will fetch the latest model and 

price to ensure a reliable checkout procedure.  

 

3.1.2 Work Plan  

Throughout this project, Waterfall methodology was adhered to ensure the 

completion of computer vision-based checkout system within this Final Year 

Project (FYP) period. According to Sherman (2014), Waterfall methodology is 

essentially a linear approach used in software development, where the tasks are 

split into phases and handled sequentially. This allows the understanding of 

project scope, schedule and workload at initial stage of the project before 

starting to move into development and technical part of the project. Additionally, 
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tracing of project status is simpler with a complete schedule as well as resource 

plan.  

Figure 3.2 illustrates the waterfall diagram along with detailed tasks associated 

in each phase.  

 

 
Figure 3.2: Waterfall Diagram for Project Prototype Development 

 

3.2 Dataset Preparation  

At the initial stage of the project, two datasets were being prepared before 

conducting any development and experiment of image synthesis algorithm as 

well as deep learning models where each of them was meant for different stage 

of training and evaluation.  

As mentioned in Chapter 2.2.5, the first dataset was based on MVTec 

D2S Dataset as the publicly available dataset can provide a persuasive 

preliminary benchmark among different product recognition models commonly 

used in existing works because it fully represented product occlusion, variation 

of lighting and intraclass products at checkout counter. In addition, with 

consideration of time limit and hardware constraint, another small-scale dataset 

was prepared by adopting the concept of both D2S and RPC Dataset so that it 

can be used for training as well as evaluation of GAN-based image synthesis 

algorithm and product recognition models.  

The steps taken in preparing both datasets will be explicitly described 

in the following subchapters.   
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3.2.1 MVTec D2S Dataset 

Since the test set of MVTec D2S Dataset is incomplete, extraction was done in 

similar method in Ning, Li and Ramesh (2019) which only involved validation 

set because images in the subset can represent the characteristics of the entire 

dataset, including occlusion of products, lighting and intraclass variation. By 

constructing a modified python script, validation images were divided into 2 

splits at a ratio of 8:1:1 under a random state of 12. As a result, an annotated 

dataset with 2880 training images, 360 validation and 360 testing images was 

formed where the image distribution was identical to the research by Ning, Li 

and Ramesh (2019). Samples of each split can be observed in Figure 3.3 (a) 

along with overall distribution of instances in (b). 

 

 

 
(b) 

Figure 3.3: Samples (a) and Instances Per Class (b) in MVTec D2S Subset 
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 After that, by utilizing the same python script and LabelImg by Dutta 

and Zisserman (2019), 3 new annotation files were generated from the provided 

validation JSON file (.json) in COCO format. However, in order to 

accommodate distinct annotation file format and image directory requirements 

between different deep learning models, the dataset was further processed 

according to file structures shown in Figure 3.4.  

 

 
Figure 3.4: File Structure of YOLO, PASCAL VOC and COCO Dataset 

 

In YOLO format, bounding boxes information were stored as 

normalized values of x, y center coordinate along with their normalized width 

and height in text files (.txt) named according to image file name. Additionally, 

all product classes were extracted and stored in classes.txt. With all the files 

being generated, all images and their annotations were added into train, val and 

test folders. 

As for PASCAL VOC, bounding boxes were stored as non-normalized 

coordinates of diagonal corners in Extensible Markup Language (XML) format 

(.xml) along with image name, file path and image size as well as object class 

name. After that, 3 text files that indicate the split of dataset were prepared 

through python script before placing images, annotation XML files and their 

split indication text files to corresponding folders named as ImageSets, 

Annotations, and JPEGImages. 

Concurrently, bounding boxes were stored in as minimum values of x 

and y coordinates but along with their box width and height in a single JSON 

format (.json) along with other information like object classes, image size and 
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name. Subsequently, all images were placed into corresponding child folders in 

images while annotations were placed in annotations folder.  

 

3.2.2 Custom Dataset Preparation 

Additionally, another small-scale dataset was prepared from scratch for the 

training of GAN-based image synthesis framework and subsequent 

development of product recognition algorithm. The dataset consisted of 20 

different classes of groceries that can be commonly found at retail store in 

Malaysia. The products were selected in such a way that they will be distinct in 

sizes, colors, and shapes in order to have a better representation of product range 

available in common retail stores.  

 

3.2.2.1 Image Acquisition Setup 

A controlled image acquisition setup is crucial in preparing a dataset for any 

deep learning models because uncontrolled setup will cause the images to be 

susceptible to distortions like blur and noises which will reduce the performance 

of deep learning models (Dodge and Karam, 2016). Thus, a controlled image 

acquisition environment was set up by involving a portable photo booth with 

plain white background and uniform lighting as shown in Figure 3.5: 

 

 
Figure 3.5: Image Acquisition Setup 

 

 By using a smartphone camera, each product was placed into the booth 

before its front side and back side were captured at a resolution of 2976 × 2976, 

forming a training subset with 37 images in total. As for validation set, 80 
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images were captured where each image was made to consist of 2 to 3 classes 

of products that were randomly placed in the booth to imitate the actual 

checkout counter scenario. Furthermore, test set was separated into scenarios 

with overlapping and without occluded products to assess the effectiveness of 

image synthesis algorithm in handling them, forming 40 images for each 

scenario. Some samples in the raw dataset can be seen in Figure 3.6. 

 

 
Figure 3.6: Samples in Raw Dataset 

 

3.2.2.2 Annotation 

After obtaining the raw dataset, annotation process of images was carried out. 

Based on the definition by Potter (2021), annotation is about addition of 

metadata to a dataset so that computer vision models can identify and 

differentiate the objects during training and provide accurate predictions. 

Concurrently, labelled images also serve as ground truth for evaluating the 

model’s performance. In this project, 2 types of image annotations were 

involved and each of them was used for image synthesis algorithm and product 

recognition algorithm respectively. 

 Firstly, segmentation mask was prepared by marking the boundary of 

every individual product in each image using another online tool known as VGG 

Image Annotator (VIA) released by Dutta and Zisserman (2019) shown in 

Figure 3.7. When all the images were annotated, JSON file (.json) with COCO 

formatting was exported.  
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Figure 3.7: VGG Image Annotator 

 

  On the other hand, second type of image annotation which involved 

labelling of product classes and location was done by utilizing same LabelImg 

by Tzutalin (2015) mentioned in Chapter 3.2.1. Similarly, the dataset adhered 3 

different annotation and file directory format so that they can be used for 

different deep learning model architectures.  

 

3.3 Development of Image Synthesis Framework 

In order to simulate the actual checkout condition with occluded products, 

intraclass variation and lighting differences, a novel image synthesis framework 

was constructed based on the approach in Li et al. (2019), Rigner (2019)  and 

Wei et al. (2019). The framework was comprised of 3 main modules, starting 

with binary mask extraction, crop and place algorithm, GAN model for shadow 

synthesis, and image augmentation to include lighting variation. Each of them 

will be described in detail in following subchapters. 

 

3.3.1 Binary Mask Extraction 

Extraction of binary mask played a crucial role in the GAN-based image 

synthesis algorithm because products will need to be cropped according to their 

packaging before they can be used to generate synthetic image that simulates 

randomly placed products at checkout counter.  

 To achieved this, a python script was constructed. Firstly, it will take 

user input about the image directory and segmentation annotation in JSON 

format (.json) generated from VIA annotator in Chapter 3.2.2.2. From the 
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annotation file, each point used to form segmented mask will be extracted. 

Subsequently, binary mask can be created using cv2.fillPoly() function on a 

blank, black image with the same resolution as raw image (2976 × 2976). 

Generated binary mask will be as illustrated in Figure 3.8. 

 

 
Figure 3.8: Binary Masks of Retail Products 

 

3.3.2 Crop and Place Algorithm 

Crop and Place Algorithm used in this project was developed based on the 

implementation in Li et al. (2019). Firstly, by specifying number of pictures to 

be generated and annotation file in JSON format (.json) to the script in 

Appendix A, the algorithm will randomly pick 3 product classes to be included 

in the synthetic image. For each selected product class, algorithm will read the 

corresponding raw image and its mask before performing random rotation and 

cropping of the product’s ROI. Then, instead of direct pasting of product onto 

an empty checkout counter background, ROI will be used to calculate the 

Intersection over Union (IoU) with existing objects placed in the image through 

Equation 3.1 so that level of product occlusion can be controlled, and smaller 

products will not be fully covered up. 

 

 𝐼𝐼𝐼𝐼𝐼𝐼 =  
  𝐴𝐴 ∩ 𝐵𝐵 
𝐴𝐴 ∪ 𝐵𝐵

 (3.1) 

where: 

A = ROI of current product 

B = ROI of existing products in background image 
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 After the computation of IoU, product will be masked and pasted into 

the empty checkout counter background using the function, Image.paste(). 

Besides, information of bounding boxes and product classes will be written to 

new COCO formatted JSON file (.json). Ultimately, a series of fully annotated, 

synthesized training images that can simulate random placement of products on 

a checkout counter as in Figure 3.9 with minimal human involvement. 

 

 
Figure 3.9: Synthesized Training Images  

 

3.3.3 GAN-based Shadow Synthesis 

In order to construct a realistic training data that can imitate the real checkout 

situation without requiring additional human involvement, shadow synthesis 

was done using GAN similar to the approach Li et al. (2019) and Wei et al. 

(2019). In this project, two state-of-the-art GAN(s) known as CycleGAN and 

AttentionGAN were constructed based on their official repositories as in 

Appendix E. Each of them was trained under the same hyperparameters to allow 

a fair comparison. The model with higher performance will be used to construct 

a reliable training set for product recognition models. The parameters that were 

used are summarized in Table 3.1. 

 

Table 3.1: Hyperparameters for GAN  

Hyperparameters Description Value 

netG Generator type ResNet-9 

n_epochs Epoch number (No decay) 100 

n_epochs_decay Epoch number (decay) 100 

batch_size Batch size 4 

preprocess Training image preprocess  scale_width_and_crop 

load_size image size 800 
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Table 3.1 (Continued) 

crop_size cropped image size  256 

lambda_identity Identity mapping loss scale 0.4 

lambda_A Cycle loss weight (A to B) 8 

lambda_B Cycle loss weight (B to A) 8 

 

3.3.3.1 CycleGAN 

CycleGAN represents an extension of GAN released by Zhu et al. (2020) that 

utilizes the concept of 2 models in GAN known as generator and discriminator. 

A generator plays the role in generating fake images while a discriminator will 

evaluate the samples’ probability to differentiate between generated and real 

images.  

In terms of architecture, CycleGAN employs 2 pairs of generator and 

discriminator models for translation of images from their corresponding domain 

as illustrated in Figure 3.10. Generator A will take input from domain A to 

generate images in domain B before passing to discriminator A for evaluation. 

Oppositely, generator B will take input from domain B to generate images in 

domain A and evaluation is done through discriminator B. Probabilities 

calculated through both discriminators will be used to update generator models 

to reduce dissimilarity between images. 

 

 
Figure 3.10: Architecture of CycleGAN 

 

3.3.3.2 AttentionGAN 

AttentionGAN published by Tang et al. (2021) is a GAN variant that was meant 

for translation task of unpaired images similar to CycleGAN. However, as the 
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name suggests, AttentionGAN included attention mechanism so that the 

generators can effectively differentiate the foreground and background objects, 

allowing a conservative translation between two image domains where the 

change of background can be minimized. This feature is preferrable since image 

synthesis algorithm involved in this project will only require rendering of 

shadow without affecting the products in the image. 

The architecture of AttentionGAN used in this project represents the 

second scheme introduced in the paper that comes with two generators with 

built-in attention layers. As shown in Figure 3.11, input image will be fed to one 

of the generators, G where its Content Mask Generator, Gc will generate a 

content mask, C f that represents the transformed foreground object while 

Attention Mask Generator, GA will create Foreground, A f and Background 

Attention Masks, Ab to differentiate them. Subsequently, both content masks 

and Foreground Attention Masks, A f will be multiplied to mask out domain 

transformation of background. Concurrently, Background Attention Masks, Ab 

is multiplied with input image to obtain another intermediate image preserved 

background. Finally, by fusing both intermediate images, a realistic transformed 

image can be formed with minimal background alteration. After that, the image 

will be fed to another generator with identical structure to revert the 

transformation so that Cycle Consistency Loss can be computed and updated to 

generators.  

 

 
Figure 3.11: Architecture of AttentionGAN 
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3.3.4 Lighting Variation 

After applying shadow synthesis using GAN, lighting variation was added to 

each rendered image using conventional data augmentation approach similar to 

Rigner (2019) to further extend the reliability of training dataset. In this project, 

Albumentations data augmentation library by Buslaev et al. (2020) was used as 

it encompasses vast amount of image augmentation operation while providing 

support to bounding box augmentation.   

 As attached in Appendix B, the python script will first read user input 

about number of images to be generated per input image, as well as directory of 

images and annotations. After that, for each input image in the directory, 

multiple image and bounding box augmentation will be performed using 

Albumentation.Compose() and Albumentation.transform() before each of the 

augmented image and bounding boxes were written to a new directory. All 

augmentation used in this project can be summarized in Table 3.2. 

 

Table 3.2: Configuration of Data Augmentation 

Function Parameters Value 

RandomRotate90() probability 1.0 

Resize() height 800 

width 800 

interpolation cv2.INTER_AREA 

ShiftScaleRotate() rotate_limit (°) 5 

border_mode  cv2.BORDER_REFLECT_101 

probability  1.0 

ISONoise color_shift  (0.01, 0.05) 

intensity 0.1, 0.5 

probability 0.5 

RandomBrightness- 

Contrast() 

brightness_limit 0.2 

contrast_limit 0.2 

probability 0.5 
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Ultimately, the self-prepared dataset was expanded up to 3000 training 

images, 600 of validation images, 600 test images of overlapped products and 

600 images of non-overlapped products shown in Figure 3.12 followed by its 

class distribution as in Figure 3.13. 

 

 
Figure 3.12: Samples in Expanded Dataset 

 

 
Figure 3.13: Instances Per Class in self-prepared dataset 

 

3.4 Selection of Baseline Object Detection Model 

As reviewed in Chapter 2.4.2, several types of models were used in the field, 

including R-CNN series under two-stage detector category, YOLO models as 
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well as RetinaNet under single-stage detector. However, instead of choosing a 

baseline model randomly for improvement, filtering will be required through 

preliminary benchmarking of the models.  

 Therefore, model architectures were analysed but single-stage models 

were prioritized because deep learning-based retail product checkout asserts 

high requirement on the accuracy and inference speed of the object detection 

model as checkout process needs to be performed rapidly with adequate 

accuracy (Xie, Wang and Zhao, 2021). Subsequently, benchmarking was 

carried out to assess their actual performance in retail product recognition. 

 

3.4.1 State-of-the-Art Model Architectures 

3.4.1.1 YOLOv3 

As stated by Redmon and Farhadi (2018), YOLOv3 represents an updated 

algorithm based on YOLOv2 by updating the initial backbone known as 

DarkNet-19 to a deeper structure named as DarkNet-53. This is because 

YOLOv2 with DarkNet-19 is only comprised of 19 convolutional layers and 11 

additional layers to perform object detection and continuous downsampling 

further causes loss of fine-grained features and result in poor performance 

especially in detecting small objects. In contrast, YOLOv3 improvised the 

backbone network to 53 convolutional layers and included shortcut layers that 

resembles the skip connection in ResNet which will add the output from 

previous layer to subsequent layer. As claimed by Mantripragada (2020), this 

configuration will aid the training of deep networks without resulting 

diminishing gradient. 

 After the backbone structure, YOLOv3 architecture is followed by 

multi-scale detection head through another 53 convolutional layers. As 

described by Redmon and Farhadi (2018), their algorithm performs detection at 

three different scales by first downsampling feature maps by 3 different ratios 

which are 8, 16, 32 for detection of small, medium and large object respectively 

before each of them are pass for detection at respective convolutional layer with 

1 x 1 filter. For detection of large object, it was done by taking feature map that 

is downsampled by ratio of 32 in previous layers and passed to 82nd layer for 

prediction.  Subsequently, the previous feature map will be upsampled by 2 

before detection of medium objects at 94th layer. Lastly, the feature map size is 
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further increased by ratio of 2 for small object detection at 106th convolutional 

layer. Ultimately, the structure allows YOLOv3’s performance to surpass 

YOLOv2 especially in detection of small-sized objects. Overall architecture can 

be represented in Figure 3.14. 

 

 
Figure 3.14: YOLOv3 Model Architecture 

3.4.1.2 YOLOv5 

As the name suggests, YOLOv5 represents the fifth architecture under YOLO 

family that is written in Python language rather than C language adopted in 

previous versions of YOLO. However, similar to YOLOv4 that was released by 

Bochkovskiy, Wang and Liao (2020) in the same year due to parallel 

commencement of research, YOLOv5 achieved similar results compared to 

YOLOv4 but greatly shorten the training and inference time.  

 

 
Figure 3.15: YOLOv5 Architecture 

 

As shown in Figure 3.15, YOLOv5 can be decomposed into 3 modules, 

namely backbone, detection neck and head. The backbone of the model is 
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composed of Cross Stage Partial Network (CSPNet) and Spatial Pyramid 

Pooling (SPP) Layer. In CSPNet, the feature map will be directed into two paths 

where one of them involves a dense block and a transition layer. The feature 

map will pass through both paths and merge together for the next layer. This 

configuration is claimed to reduce repeated gradient during training while 

maintaining the model’s complexity (Wang et al., 2019). As for SPP, variable-

sized feature maps can be pooled with multiple kernel sizes (5 × 5, 9 × 9, and 

13 × 13) to generate a fixed-sized output, making the backbone to be scale-

invariant (Jocher et al., 2021). 

In detection neck, Path Aggregation Network (PANet) is used. It is an 

enhanced Feature Pyramid Network (FPN) that introduces lateral connection 

between a bottom-up and top-down pyramid structure that speeds up 

information flow. Besides, it also includes adaptive feature pooling to extract 

information from each feature level before each of the aligned feature map is 

combined for enhanced object localization. As for the detection head, YOLOv5 

will predict at different scales (18 × 18, 36 × 36, 72 × 72) similar to YOLOv3, 

making it robust in handling objects of multiple sizes (Xu et al., 2021).  

Additionally, as stated by Thuan (2021), YOLOv5 also introduces auto 

learning anchors that can effectively compute the most suitable anchor sizes for 

any custom dataset through K-means and genetic learning algorithms. The best-

fit anchor boxes will help to the model to converge faster, thus improving 

training time and accuracy. Other than that, YOLOv5 is flexible by offering 4 

models with different model complexity, namely YOLOv5s, YOLOv5m, 

YOLOv5L and YOLOv5x. Each of them targets different computing platform 

from edge devices to cloud deployment. 

 

3.4.1.3 RetinaNet 

RetinaNet represents a network that was designed to tackle the issue of low 

foreground-background ratio which is commonly found in single-stage object 

detectors. Hence, by proposing a new loss function in the existing single-stage 

architecture, RetinaNet is able to achieve high accuracy as in two-stage object 

detectors while attaining the simple structure and high speed of single-stage 

models. According to Lin et al. (2018), the loss function can be referred as Focal 

Loss which is based on Cross Entropy Loss. As shown in Equation 3.2, when 
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focusing factor 𝛾𝛾  is larger than 1, misclassified object will have a low 𝑝𝑝𝑡𝑡 

probability value, hence increasing the coefficient to 1, leaving the weight 

unaffected. Oppositely, weight will be downscaled to 0 for well-classified 

object due to high 𝑝𝑝𝑡𝑡  value. As a result, the network will emphasize on 

foreground objects that are hard to detect through larger weights while reducing 

the importance of easy examples like background.  

 
𝐹𝐹𝐼𝐼𝑐𝑐𝑎𝑎𝑎𝑎 𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿 (𝑝𝑝𝑡𝑡) = −(1 − 𝑝𝑝𝑡𝑡)𝛾𝛾log (𝑝𝑝𝑡𝑡) (3.2) 

In terms of architecture, RetinaNet can be dismantled into three main 

components which consist of a backbone network and two sub-networks for 

object classification and bounding box regression. At the beginning of the 

network, a custom structure which involves combination of ResNet and FPN 

are adopted. ResNet serves as a bottom-up pathway to efficiently generate 

feature maps at different scales regardless of input image size. Subsequently, 

the backbone is followed by FPN that adds a top-down pathway and form lateral 

connection with ResNet. The FPN is composed of 5 different levels (P3 to P7) 

and 256 channels to provide a rich feature map that is scale-invariant and boost 

the speed and accuracy of the model. After that, two parallel and identical 

subnetworks are connected to each FPN level as subnetworks. Both of them are 

made of 3 × 3 convolutional layers with 256 filters and end with another 3 × 3 

convolutional layer with the filters that varies in number according to object 

classification or bounding box regression task (Deshmukh, 2020). The 

architecture of RetinaNet can be summarized as in Figure 3.16. 

 

 
Figure 3.16: Architecture of RetinaNet 
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3.4.2 Preliminary Benchmarking 

By utilizing MVTec D2S Dataset prepared in Chapter 3.2.1, preliminary 

benchmarking was carried out to justify their actual product recognition 

performance. Similar to the approach by Bukhari et al. (2021), training of model 

was carried out in a web IDE released by Google ( n.d.) known as Google 

Colaboratory due to the reason that it offers additional computing power 

through professional graphics card such as NVIDIA Tesla K80 to NVIDIA 

Tesla T4 with large VRAM to speed up training of deep learning algorithms 

under python environment. To ensure that the results can be compared under 

same fair ground between all models, training was done with the same GPU, 

which is NVIDIA Tesla T4 equipped with 16GB of VRAM as illustrated in 

Figure 3.17. 

 

 
Figure 3.17: GPU Specification in Google Colaboratory 

 

 Prior to training process, python codes for each model were 

constructed as attached in Appendix C, D, F by referring to implementation on 

each official repository as well as other repositories that allowed easier 

implementation based on Pytorch framework due to higher flexibility and 

friendly for developers supported by the statement of Dubovikov (2018). At the 

same time, to ensure each model can be compared on the same grounds, 

hyperparameters were configured as in Table 3.3 and remained constant 

throughout the training of each model. Additionally, several model-specific 

parameters were set due to difference in architectures.  

 

Table 3.3: Hyperparameters for Product Recognition Model 

Hyperparameters Value 

Epoch / *Max Batches 150 / 27000 

Classes / *Filter 60 / 195 
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Table 3.3 (Continued) 

Batch Size / *Subdivision 16 / (4 × 4) 

Input size 512 × 512 

Learning rate 0.001 

Optimizer Adam 

 

*  YOLOv3-specific hyperparameters 

 

3.5 Model Optimization 

Based on the results of preliminary benchmarking, YOLOv5 was selected as a 

baseline model, and it was further optimized and fine-tuned to enhance its 

performance on edge devices with limited computational power which is Jetson 

Nano. In order to achieve this, backbone architecture of YOLOv5 which is 

CSPNet mentioned in Section 3.4.1.2 will be substituted with three different 

light-weight CNN architectures to reduce computational load so that retail 

product recognition can be carried out on edge devices with the best trade-off 

between accuracy and inference speed. 

 Three backbone structures involved in this project were the latest 

representative models from their family, which encompassed MobileNet V3, 

ShuffleNet V2 and GhostNet. Each of the backbone were studied in terms of 

their architectures and summarized in following sections before applying them 

to YOLOv5 models as shown in Appendix G. After that, by using self-prepared 

dataset in Chapter 3.2.2, each model was trained and evaluated. Additionally, 

other components of YOLOv5 model were remained unchanged such as 

hyperparameters were remained unchanged to ensure fair comparison. 

 

3.5.1 ShuffleNet V2 

ShuffleNet V2 represents another light-weight CNN introduced by Ma et al. 

(2018) aimed to optimize speeds and Memory Access Cost (MAC) instead of 

FLOPs. Hence, the model was constructed based on ShuffleNet V1 and adheres 

4 rules of efficient CNN architecture. First rule asserts that the network should 

possess same numbers of input and output channel to minimize the processing 

time per batch. Additionally, group convolution should be avoided as it 

increases MAC despite with the same FLOPs. Moreover, the network should 
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have less multi-path structure because it increases efficiency but greatly alters 

the overall computing efficiency. Concurrently, the network should utilize less 

element-wise operations such as Rectified Linear Unit (ReLU) as it requires 

larger MAC.  

 By complying to the 4 guidelines, ShuffleNet V2 possesses the 

architecture in Figure 3.18. Firstly, the input feature map will be split to two 

paths to avoid group convolutions. Both branches consisted of at least one 1 × 

1 convolutional layer and 3 × 3 depthwise convolutional layer. After that, 

feature maps will be concatenated to form output feature maps with the same 

channel as input. Besides, unlike ShuffleNet V1, subsequent element wise 

operations were removed while preserving channel shuffle to allow information 

sharing between channel groups to reduce computational load while improving 

accuracy.  

 

 
Figure 3.18: ShuffleNet V2 Architecture 

 

 Despite ShuffleNet V2 comes with several scales, the lightest variant 

(x1.0) was chosen to minimize the model complexity for deployment on Jetson 

Nano. Figure 3.19 demonstrates the modified architecture of YOLOv5 with 

ShuffleNet V2. 

 

 
Figure 3.19: Proposed YOLOv5 with ShuffleNet V2 Backbone 
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3.5.2 MobileNet V3 

MobileNet V3 represents the third version of MobileNet series which is a light-

weight CNN designed to uplift the performance of embedded systems in 

carrying out model inferencing. As stated by Howard et al. (2019), MobileNet 

V3 inherits the concept of MobileNet family with Depthwise Convolutional 

Filters and Pointwise Convolution. As shown in Figure 3.20, in contrast to 

traditional convolutional filters that directly applies kernel with same depth as 

input image [W1×H1×N1] to obtain an output, depthwise convolutional filters 

utilizes kernel with depth of 1 [K×K×1] and iterates through single channel of 

image. After stacking up 3 channels of output, an intermediate representation 

with size of [W’×H’×N1] can be formed. Subsequently, pointwise convolution 

is applied by iterating a kernel with the size of [1 x 1 x N1] through the 

intermediate image. As a result, an output of [W2×H2×N2] is obtained. This 

implementation helps to reduce computational complexity since less 

multiplications are involved during the process.  

 

 

 
Figure 3.20: Depthwise and Pointwise Convolution Process 

 

Furthermore, similar to its previous version, MobileNet V3 adopted 

Inverted Residual Block to preserve useful information under low feature 

dimension in such light-weight models. It was achieved by expanding feature 

dimension through pointwise convolution before passing the feature map to 

depthwise convolution layers. Besides, MobileNet V3 also implemented 
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Squeeze-and-Excitation (SE) layers which will compress and restore feature 

maps to emphasize important features before feeding to subsequent layers. This 

helps to increase accuracy while maintaining model size since SE layers are 

small and computationally cheap. As for activation function, MobileNet V3 

adopts hard-Swish illustrated in Figure 3.21 that is faster to compute since no 

exponential function is involved compared to sigmoid loss function. 

 

 
Figure 3.21: Hard-Swish Activation Function (Howard et al., 2019) 

 

Despite there are two models available for MobileNet V3, smaller 

variant with 12 layers was chosen as the backbone of YOLOv5 as it is targeted 

for devices with limited computational resources will be used as backbone of 

YOLOv5 model to maximize the inference speed, as shown in Figure 3.22. 

 

 
Figure 3.22: Proposed YOLOv5L with MobileNet V3 Backbone 

 

3.5.3 GhostNet 

GhostNet was developed by Han et al. (2020) with the aim to allow efficient 

deployment of CNN on devices with limited computation resources as well. In 

contrast to traditional CNN, GhostNet introduces a plug-and-play ghost module 

that is able to extract equivalent amount of feature maps during convolutional 

operations with lower Floating-Point Operations Per Second (FLOPS) because 

some of the feature maps will be similar and can be generated from other 
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essential feature maps using linear operations instead of using convolution that 

is computationally expensive. 

As shown in Figure 3.23, the Ghost Module can be separated into 2 

processes where the first part represents a conventional convolution with less 

channel to produce essential feature maps. After that, linear operation, Ф is 

applied to each feature maps in order while identity mapping will be applied to 

original feature map for preservation. Through concatenation, an output feature 

maps can be formed.  

 

 
Figure 3.23: Ghost Module (Han et al., 2020) 

 

 After combining GhostNet with YOLOv5, the overall architecture will 

look as in Figure 3.24. 

 

 
Figure 3.24: Proposed YOLOv5 with GhostNet Backbone 

 

3.6 Computing Platform  

In this project, the software prototype of cashierless checkout was deployed on 

a single-board computer developed by NVIDIA known as Jetson Nano, which 

is shown in Figure 3.25. It is because the device comes with several advantages 

compared to Raspberry Pi4 that is commonly used in the computer vision task. 

According to Table 3.4 that was constructed based on NVIDIA (2014) and 
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Raspberry Pi (2019), Jetson Nano is equipped with NVIDIA Tegra X1 with 128 

Compute Unified Device Architecture (CUDA) cores that helps to accelerate 

inferencing performance compared to Broadcom Video Core VI that is meant 

for multimedia streaming. Additionally, Jetson Nano is able to provide 0.5 

TFLOPS of computing power, which is 37% higher than Raspberry Pi 4 despite 

it requires an additional 1A of current.  

 

Table 3.4: Raspberry Pi 4 and Jetson Nano Specifications  
 

Raspberry Pi 4 Jetson Nano 

FLOPS 13.5 G 0.5 T 

CPU Quad-core ARM Cortex 
A72 @ 1.5 GHz 

Quad-core ARM A57 
@ 1.43 GHz 

GPU 
Broadcom Video Core VI 

(32-bit) 
@ 500 MHz 

NVIDIA Tegra X1 w/ 128 
CUDA cores 
@ 921 MHz 

Memory 8GB LPDDR4 4GB LPDDR4 

Input Power 5V 3A 5V 4A 

Camera MIPI CSI Port / USB MIPI CSI Port / USB 
 

 
Figure 3.25: Jetson Nano (NVIDIA, 2014) 

 

3.6.1 TensorRT Acceleration 

TensorRT is a runtime that provides optimization of deep learning models so 

that inference process can be accelerated on devices powered by NVIDIA GPU 

especially for those embedded systems with lower computing capability such as 

Jetson Nano. According to documentation by NVIDIA (2016), TensorRT 

involves 5 steps of optimization in maximizing the throughput of deep learning 

models on embedded systems. Firstly, models are quantized from Floating Point 
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32 (FP32) format to Floating Point (FP16) or Integer 8 (INT8) format. Through 

quantization, range of parameters can be reduced and result in smaller model 

weights. Additionally, model accuracy can be preserved by adopting symmetric 

quantization shown in Figure 3.26 where floating-point numbers in range are 

rounded and outliers are clipped to maximum of minimum value. 

 

 
Figure 3.26: TensorRT Quantization (NVIDIA, 2016) 

 

 Furthermore, a deep learning model tends to have similar computation 

blocks that can unnecessarily occupy the GPU memory and reduce the overall 

efficiency. By using TensorRT, repetitive nodes can be fused together in 

horizontal or vertical manner so that lesser amount of tensor data will need to 

be read or write for each layer, making the model to be less memory intensive.  

In addition, TensorRT offer automatic tuning of model parameters based on 

kernel libraries of target platform to maintain the performance across different 

GPU. Lastly, TensorRT will utilize CUDA cores for parallel computation and 

dynamically allocate memory for each tensor for specific duration which will 

ultimately boost the performance on edge devices while minimizing memory 

usage as well as power consumption. 

In this project, TensorRT was deployed to convert the proposed 

YOLOv5 model to Engine file format where the model weights are quantized 

to FP16 precision as it reduces the latency with minimal sacrifice of accuracy 

compared to INT8 that requires calibration dataset to preserve the model 

accuracy after quantization. 
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3.7 Evaluation Metrics 

Several evaluation metrics were involved to analyse and compare between 

different GAN(s) and product recognition models that were experimented in this 

project. Each of the metrics will be described in the following subchapters. 

 

3.7.1 Fréchet inception distance (FID) 

In this project, Fréchet inception distance (FID) was used to evaluate the 

effectiveness of GAN-based image synthesis framework along with qualitative 

analysis. FID introduced by Heusel et al. (2018) represents an evaluation metric 

that is commonly used to measure the performance of GAN(s) by comparing 

the similarity between real and generated images. When the generated image is 

having a low FID score, it is said to be similar to real images since feature 

vectors are closely correlated and less noise is present in the image. 

 Computation of FID Score involved a simplified Inception V3 model 

where its output layer is removed. Then, generated and real images will be fed 

to the model to generate feature vectors that represent them. After that, by 

utilizing both feature vectors, FID Score can be calculated using sum squared 

difference of two mean feature vectors and trace linear algebra, Tr in Equation 

3.3. 

 
𝐹𝐹𝐼𝐼𝐹𝐹 = �𝜇𝜇𝑟𝑟 −  𝜇𝜇𝑔𝑔�

2
+ 𝐺𝐺𝑟𝑟�𝛴𝛴𝑟𝑟 +  𝛴𝛴𝑔𝑔 − 2(𝛴𝛴𝑟𝑟𝛴𝛴𝑔𝑔)1/2� (3.3) 

 

Where: 

𝜇𝜇𝑟𝑟 = mean of real images (feature-wise) 

𝜇𝜇𝑔𝑔 = mean of fake images (feature-wise) 

𝛴𝛴𝑟𝑟 = Covariance matrix of real images 

𝛴𝛴𝑔𝑔 = Covariance matrix of generated images 

 

3.7.2 Mean Average Precision (mAP) 

mAP represents an important metric used to evaluate the performance of an 

object detection model and it was widely adopted in Follmann et al. (2018),  

Rigner (2019) and Liu et al. (2020). However, calculation method of mAP can 

be divided into two approaches depending on type of generic object detection 
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challenge which are PASCAL VOC and COCO. Due to different calculation 

approach among them, PASCAL VOC was adopted for this project to ensure 

the fairness of comparison. 

Before mAP can be calculated, precision, 𝑃𝑃 and recall, 𝑅𝑅 will need to 

be computed through Equation 3.4 and 3.5 by using three elements in confusion 

matrix which are True Positives (TP), False Positive (FP), and False Negative 

(FN). In this project, TP represents number of products that are correctly 

identified while FP indicates the number of misclassified product or background 

detected as product. As for the FN, it means the number of undetected products.  

 

 𝑃𝑃 =
𝐺𝐺𝑃𝑃

𝐺𝐺𝑃𝑃 + 𝐹𝐹𝑃𝑃
=

𝐺𝐺𝑃𝑃
number of detection 

 (3.4) 

 𝑅𝑅 =
𝐺𝐺𝑃𝑃

𝐺𝐺𝑃𝑃 + 𝐹𝐹𝑁𝑁
=

𝐺𝐺𝑃𝑃
number of ground truths 

 (3.5) 

 

As summarized by Everingham and Winn (2012), mAP according to 

PASCAL VOC standard can be calculated by first obtaining all the recall values, 

𝑅𝑅 when there is a change of precision value, 𝑃𝑃 exceeding the current maximum 

value through equation 3.4. Then, mAP can be calculated by obtaining the Area 

Under the Curve (AUC) of the interpolated Precision-Recall (PR) Curve using 

Equation 3.6. 

 

 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑝𝑝(𝑅𝑅𝑖𝑖+1) = max
𝑅𝑅 ≥ 𝑅𝑅𝑛𝑛+1

(𝑅𝑅) (3.6) 

 

3.7.3 Confusion Matrix 

As claimed by Sammut and Webb (2017), Confusion Matrix can be defined as 

a metric used to evaluate the classification performance of a machine learning 

or deep learning model on a test set. As shown in Table 3.5, two axes of the 

matrix are occupied by true and predicted class where the former can be 

obtained from annotations while the latter is obtained from output of classifier. 

The first row demonstrates that all 10 objects in class A are correctly predicted 

while second demonstrates that there are two objects in class B that are 

misclassified as class A objects. 
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Table 3.5: Example of Confusion Matrix 

  Predicted 

  A B 

Actual 
A 10 0 

B 2 28 

 

 Similar to Bukhari et al. (2021), Confusion Matrix was also adopted in 

this project to evaluate the performance of product recognition model in 

predicting handling each product category including those with intraclass 

variation that can be easily misclassified.  

 

3.7.4 Checkout Accuracy (cAcc) 

cAcc represents an evaluation metric introduced by Wei et al. (2019) that was 

designed specifically for checkout process. It indicates the success rate of a 

product recognition algorithm and reflects the system’s practicality in the actual 

checkout process because the metric will only consider the prediction as a 

success if and only if all products in the image are predicted accurately in the 

aspect of quantity and classes.  

 cAcc can be calculated by first obtaining prediction error for all 

product classes, CDi using Equation 3.7, followed by Equation 3.8. When all 

products in an image is successfully predicted, CDi will be zero, and δ will 

provide output of 1 for cAcc computation. 

 

 
𝐶𝐶𝐹𝐹𝑖𝑖 = ��𝑃𝑃𝑖𝑖,𝑘𝑘 − 𝐺𝐺𝐺𝐺𝑖𝑖,𝑘𝑘�

𝐾𝐾

𝑘𝑘=1

 (3.7) 

 

 
𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 =

∑  𝛿𝛿(𝐶𝐶𝐹𝐹𝑖𝑖 , 0)𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

(3.8) 

 

Where: 

𝑃𝑃𝑖𝑖,𝑘𝑘 = predicted count of k-th product class in i-th image 

𝐺𝐺𝐺𝐺𝑖𝑖,𝑘𝑘 = actual count of k-th product class in i-th image 

𝑁𝑁 = number of images in test set 
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3.7.5 Training and Inference Time 

Training and inference time are crucial metrics because it indicates the 

practicality of a product recognition algorithm for the use in actual retail stores’ 

checkout operation. Hence, training time was recorded for every model when 

their training of 150 epochs on Google Colaboratory was done. As for the 

inference time, the value represents the average time required for Jetson Nano 

to perform predictions of all 600 images of overlapped products in test subset.  

 

3.8 Software Development 

This project involved implementation of a python GUI that will make use of the 

developed product recognition algorithm to provide prediction of products and 

computation of its price. To achieve this, several components such as MongoDB 

Database service and Tkinter were used for the development. 

 

3.8.1 MongoDB Database 

MongoDB represents a scalable NoSQL database that is suitable for data with 

high volume. Unlike the conventional database service which make use of tables 

and rows, MongoDB utilizes key-value pairs known as documents as their basic 

data unit and sets of documents and function are contained in a structure known 

as collections, which is shown in Figure 3.27 along with the MongoDB admin 

portal. 

 

 
Figure 3.27: MongoDB Admin Portal 



64 

 By including the python Application Programming Interface (API) 

provided by MongoDB, the proposed product recognition application will be 

able to fetch the latest model weight and product prices from the database to 

minimize human involvement in checkout system maintenance and updates.  

 

3.8.2 Tkinter 

Tkinter represents an open-source built-in module that allows construction of 

GUI application in python. A Tkinter-based GUI application is essentially made 

up of a main window with interactive components known as widgets, which 

include buttons, labels, trees, entry. Their arrangement can be adjusted by 

specifying grid location in the window.  

 Tkinter is used in this project due to its portability and availability. 

According to Lutz (2006), Tkinter library is highly portable since it can run on 

Windows, MacOS and Linux without any modifying source code of the 

program. Additionally, Tkinter is already included in Python installation 

packages and can be utilized out of the box after installation of Python.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Preliminary Benchmarking 

At the initial stage of the project, several single-stage object detection models 

used in product recognition applications were being benchmarked using  

validation subset of MVTec D2S Dataset that is identical to Ning, Li and 

Ramesh (2019). The representative models involved in the evaluation process 

were YOLOv3, YOLOv5 and RetinaNet. Their performance was recorded and 

tabulated in Table 4.1 along with the two-stage Mask R-CNN used by the 

authors to serve as a reference. 

 

4.1.1 Quantitative Results 

 

Table 4.1: Quantitative Performance of Representative Models  

Model 
Backbone 

Type 

mAP 

(%) 

Inference 

Time (ms) 

Training 

Time (hrs) 

Mask R-CNN 

(Ning, Li and 

Ramesh, 2019) 

ResNet-50 (96.20) 75.00 - 

YOLOv3 DarkNet-53 99.79 33.33 10.50 

YOLOv5L CSPNet 99.50 12.20 5.69 

RetinaNet ResNet-50 99.49 35.32 14.26 

 

From the table, it can be observed that YOLOv3 achieved the highest mAP 

score of 99.79% while YOLOv5L and RetinaNet are close to each other in terms 

of their mAP with the value of 99.5% and 99.49% respectively. This result 

indicates that YOLOv3 can provide accurate detections across all 60 classes of 

retail products compared to YOLOv5L and RetinaNet. However, it can be 

inferred that all of the models can adapt to the actual checkout situation where 
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overlapping of products and variable lighting conditions are present during the 

inference process since all of the models achieved high mAP of above 99%.  

Concurrently, in the perspective of average inference time, YOLOv5L 

has the shortest inference time of 12.20ms, which is 2.73 times faster than 

YOLOv3 with an inference time of 33.33ms. Meanwhile, RetinaNet requires 

35.32ms for product detection which is slightly slower than YOLOv3 by 1.05 

times and fall behind YOLOv5L by 2.895 times. This could be due to difference 

in terms of architecture where YOLOv5L has adopted CSPNet as its backbone 

which reuses gradients information from previous layers to update the weights 

during backpropagation, which asserts a lower computational cost compared to 

YOLOv3 and RetinaNet that utilize DarkNet-53 and ResNet-FPN as their 

backbone structure respectively. As for the training time, YOLOv5L has 

significantly low training time of 6 hours in contrast to YOLOv3 and RetinaNet 

which require 10.5 hours and 14 hours to complete a training session of 150 

epochs. 

Concurrently, it can be noticed that all three single-stage models have 

surpassed Mask R-CNN that was tested in Ning, Li and Ramesh, (2019) in terms 

of mAP despite the comparison may not be fair because the reference model 

was trained only for 10 epochs in their work. As for the average inference time, 

all models also clearly outperformed Mask R-CNN that requires 75ms to 

perform inference on 360 images in the test subset. This proves that single-stage 

models are far more efficient compared to two-stage architectures. 

 

4.1.2 Qualitative Results 

On the other hand, each model was tested in terms of their qualitative 

performance. It was done by choosing an unseen image to serve as constant 

variable for inference of all three models. The image chosen for the analysis 

was D2S_068214 which comprised of 13 highly occluded products placed on 

checkout counter and all annotations were extracted from JSON annotation file 

(.json) provided. The ground truth image with labelled product names can be 

observed as in Figure 4.1 along with the images with predicted outputs 

generated through YOLOv3, YOLOv5L, and RetinaNet. 
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Figure 4.1: Ground truth and Predictions of Representative Models 

 

Table 4.2: Confidence Score of Detected Products 

Items 
Confidence Score 

YOLOv3 YOLOv5L RetinaNet 

adelholzener_alpenquelle_ 

naturell_075 

0.93 0.97 0.97 

augustiner_weissbier_05 1.00 0.98 0.99 

suntory_gokuri_limonade 0.99 0.98 1.00 

apple_granny_smith 1.00 0.97 1.00 

apple_roter_boskoop 0.89 0.95 0.95 

avocado 0.99 0.99 1.00 

banana_single 0.98 0.97 0.97 

kiwi 1.00 0.94 1.00 

pasta_reggia_spaghetti 0.98 0.97 0.96 (0.69) 

feldsalat 0.92 0.95 0.71 

roma_rispentomaten 0.78 0.97 0.99 

rucola 0.98 0.98 1.00 

zucchini 0.98 0.98 0.91 
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According to Figure 4.1, it is observed that each model has successfully detected 

all the products within the image and classified the correctly. However, there 

are some variations in terms of product localization and product confidence 

score between the models which can be seen through the bounding box location. 

Out of all detected products by YOLOv3, there are some bounding boxes that 

are misaligned compared to the ground truth images, especially for the long-

shaped products like pasta_reggia_spaghetti and roma_rispentomaten. In 

contrast, bounding boxes generated by YOLOv5 and RetinaNet are able to 

converge to the ground truth boxes closely compared to other representative 

models.  

At the same time, according to confidence score summary in Table 4.1, 

it can be observed that RetinaNet and YOLOv3 achieved relatively maximum 

confidence of 1.0 for several distinct products such as avocado, kiwi and 

apple_granny_smith compared to YOLOv5. However, both models suffer from 

poor performance for products that are partially visible in the image. For 

instance, RetinaNet can only detect rucola with 0.71 confidence score while 

YOLOv3 only achieve a confidence score of 0.78 for roma_rispentomaten. 

Moreover, RetinaNet generates a duplicate prediction of pasta_reggia_ 

spaghetti on feldsalat due to occlusion between two products. This situation is 

similar with the research by Rigner (2019) and it is likely to be resulted by 

insufficient training of bounding box regressor in RetinaNet. In contrast, 

YOLOv5 detects the products with a uniform and high confidence because all 

scores are within 0.94 to 0.99 including those that are partially visible in the 

image.  

In brief, it can be inferred that YOLOv5L can generalize better and 

outperforms YOLOv3 and RetinaNet in actual checkout situation with occluded 

products. Thus, it is more suitable for computer vision-based retail checkout 

applications and was used for subsequent development and analysis. 

 

4.2 Effectiveness of Image Synthesis Framework 

4.2.1 GAN-synthesized Images 

In this section, two state-of-the-art GAN(s) which include AttentionGAN and 

CycleGAN, were being evaluated qualitatively as well as quantitatively to 

justify their effectiveness in simulating environmental features of real-world 
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checkout counter scenario. Qualitative analysis involves the observation and 

comparison of several samples generated by each GAN under same 

hyperparameters while quantitative analysis was done by comparing FID value 

between models. Both measurements are being tabulated in Table 4.3. 

 

Table 4.3: Shadow Synthesis Results of AttentionGAN and CycleGAN  

 Generated Samples 
FID 

(↓) 

Input 

 

- 

Attention 

GAN 
 

46.82 

Cycle 

GAN 

 

40.99 

 

By observing the generated samples, it can be noticed that both models 

are able to simulate shadows of the products to some extent. However, 

CycleGAN provides a smoother and realistic shadow compared to 

AttentionGAN especially when the product’s packaging is irregular like 

Nescafe and Mentos Mint. Additionally, CycleGAN tends to cause less details 

degradation compared to AttentionGAN. It can be observed through the blurry 

product details from the images generated by AttentionGAN, but these details 

remained clear for the images rendered by CycleGAN. As for color degradation, 

CycleGAN tends to cause less color degradation in contrast to AttentionGAN 

for small-sized products. This can be observed through the color change of Halls 

Black from black color to green color as well as Dequadin that changes from 

dark blue to light blue in the leftmost image. Oppositely, when products occupy 

larger portion of the image, such as Mentos Mint and Campbell Soup in the third 

image, color degradation is more obvious for CycleGAN compared to 
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AttentionGAN. On the other hand, by looking at the background, it can be noted 

that AttentionGAN is more advantageous as the background is nearly identical 

to input image compared to CycleGAN that generates dark corners in the image. 

These phenomena are likely due to inclusion of attention mechanism in 

AttentionGAN where products will be focused as the foreground of the image 

and more conservative in dealing with the background. In contrast, CycleGAN 

is slightly more aggressive in general by causing noticeable changes to both 

background and foreground.  

 On the other hand, FID as the quantitative measurement shows that 

CycleGAN has a lower score of 40.99 compared to AttentionGAN with the 

value of 46.82. This indicates that the images generated by CycleGAN is highly 

correlated to the real-world checkout condition than AttentionGAN, making the 

CycleGAN to be more suitable for image synthesis framework in this project. 

 

4.2.2 Effect on Model Performance 

In order to evaluate the effectiveness of rendered images in detecting retail 

products under actual checkout condition, YOLOv5L was trained using 3 

datasets that indicates 3 different levels of image synthesis used in this project. 

Single dataset involves one product placed randomly at the checkout counter 

whereas Syn dataset only simulates the occlusion between products using Crop 

and Place algorithm in Chapter 3.3.2. On the other hand, Render dataset adds 

the presence of shadows and lighting variation through CycleGAN as well as 

conventional image augmentation respectively. Each dataset was used to train 

YOLOv5L and Data Priming Network (FPS), which is a Faster R-CNN-based 

reference model by Li et al. (2019) that adopted similar image synthesis 

approach for their retail product recognition applications. After training the 

model for the same epoch number, both models were tested for scenes with and 

without overlapping products to justify if their performance in handling the real-

world checkout condition. Their quantitative results are as tabulated in Table 

4.4. 
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4.2.2.1 Quantitative Results 

 

Table 4.4: Quantitative Results for Different Levels of Image Synthesis 

Model 

Non-overlapping Scene Overlapping Scene 

mAP 

(%) 

cAcc 

(%) 

Inference 

Time 

(s) 

mAP 

(%) 

cAcc 

(%) 

Inference 

Time 

(s) 

DPNet 

(Baseline) 

Single 98.4 56.17 1.767 65.4 0.50 1.762 

Syn 97.9 81.83 1.770 97.5 76.50 1.765 

Render 98.8 83.83 1.767 97.8 79.67 1.781 

YOLOv5L 

Single 99.5 94.50 0.661 89.8 39.00 0.685 

Syn 99.5 99.33 0.689 98.5 96.33 0.689 

Render 99.5 99.83 0.682 98.5 97.33 0.681 

 

Based on Table 4.4, when the models are trained with single dataset, YOLOv5L 

outperforms DPNet in all aspects. However, it can be noticed that both models 

show a decrement in mAP and cAcc with the presence of overlapped products. 

YOLOv5L suffered a mAP drop from 99.5% to 89.8% and the cAcc decreased 

drastically from 94.50% to only 39.00%. while DPNet has a drop of mAP from 

98.4% to 65.4% as well as reduction of cAcc from 56.17% to only 0.50%. This 

trend indicates that the dataset with only one product is ineffective in tackling 

actual checkout scenario.  

 Furthermore, when Syn dataset is used for training, YOLOv5L still 

surpasses DPNet but both models demonstrate a performance improvement 

especially in the aspect of cAcc where YOLOv5L and DPNet have the 

increment of 57.33% and 76% in overlapping scene respectively. At the same 

time, with Syn dataset, overall performance of YOLOv5L has been boosted to 

a saturation point with (mAP, cAcc) of (99.5%, 99.33%) in non-overlapping 

scene and (98.5%, 96.33) when overlapping products are present. This trend 

proves that Crop and Place algorithm can help to increase the practicality of 

model in detecting and counting products during occluded scene.   

 Moreover, when Render dataset is applied, YOLOv5L still has an 

advantage over DPNet with higher value in all aspects. However, both models 
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show a slight improvement compared to the scenario trained by Syn dataset. 

Concurrently, with Render dataset, YOLOv5L successfully achieved a peak 

performance where the value of mAP and cAcc are pushed to (99.5%, 99.83%) 

and (98.5%, 97.33%) for overlapping and non-overlapping scene respectively. 

The increment demonstrates that GAN-based shadow synthesis and lighting 

variation through conventional image augmentation can boost the capability of 

product recognition model in handling checkout scenario in real life.  

 In brief, YOLOv5L performs better compared to DPNet in recognizing 

and counting retail products. It is most likely because Faster R-CNN adopts 

fixed, multi-scale anchor boxes while YOLOv5 family uses adaptive anchor 

boxes that will compute for the anchors that can best fit the current dataset, 

making it effective in learning and detecting variable-sized products and 

occlusion compared to Faster R-CNN. On the other hand, YOLOv5L also 

surpassed DPNet in terms of inference time by at least 60% for all three levels 

of image synthesis since DPNet is based on Faster R-CNN with a two-stage 

architecture. Thus, it can be inferred that GAN-based shadow synthesis and 

lighting variation are effective in enhancing model’s practicality in real-world 

checkout process while YOLOv5L is more relevant to be used in in this project 

due to high performance with minimal inference time. 

 

4.3 Model Improvement with light-weight backbones 

In order to allow deployment of YOLOv5 model on Jetson Nano with limited 

computational resources while preserving its recognition performance. Several 

experimental models were developed by replacing backbone structure of 

YOLOv5L with state-of-the-art light-weight CNN, including MobileNet V3, 

ShuffleNet V2 and GhostNet. After the training using a similar set of 

hyperparameters shown in Chapter 3.4.2, qualitative and quantitative evaluation 

were carried out and the results were tabulated in the following sections.  
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4.3.1 Quantitative Results 

 

Table 4.5: Quantitative Results for Light-Weight Experimental Models 

Backbone GFLOPs 
mAP 

(%) 

cAcc 

(%) 

Training 

Time 

(hrs) 

Inference Time 

Normal 

(s) 

TensorRT 

(s)  

CSPNet 

(Baseline) 
108.1 98.5 97.33 6.470 0.505 0.282 

GhostNet 42.5 98.2 89.33 3.852 0.244 0.221 

ShuffleNet 

V2 
40.7 98.2 87.83 2.891 0.217 0.154 

MobileNet 

V3 
38.5 98.2 89.17 2.019 0.200 0.142 

 

According to Table 4.5, it can be clearly observed that all light-weight 

backbones have successfully reduced the FLOPs of YOLOv5L baseline model 

to low values. In exchange, slight degradation of mAP and cAcc occurred. 

Among all experimental models, GhostNet with 42.5 FLOPs has the smallest 

degradation from the baseline performance where its mAP only falls by 0.3% 

while still having a high cAcc value of 89.33%. Similarly, ShuffleNet V2 with 

40.7 GFLOPs has a 0.3% drop in mAP but it has the most drastic decrement of 

cAcc among all models, which is from 97.33% to 87.83%. Concurrently, 

MobileNet V3’s performance is similar to GhostNet by achieving 98.2% in 

mAP and 89.17% in cAcc while having a minimal FLOPs of 38.5 GLOPs 

among all models.  

 On the other hand, by looking into the training and inference time, all 

experimental models require shorter training time of below 4 hours, which can 

be advantageous compared to the baseline model that requires 6.470 hours for 

training. Furthermore, among the three light-weight models, MobileNet V3 is 

the most efficient in training since it only requires 2.019 hours while ShuffleNet 

V2 and GhostNet require 2.891 hours and 3.852 hours respectively. As for the 

normal inference time, all models are able to reduce the inference time from 

0.505s to below 0.3s per image on Jetson Nano. The shortest inference time can 

be observed for MobileNet V3 with only 0.2s per image in contrast to 
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ShuffleNet V2 as well as GhostNet with 0.217s and 0.244s respectively. 

Furthermore, after model optimization using TensorRT runtime mentioned in 

Chapter 3.6.1, inference time of each model has been greatly shortened on 

Jetson Nano. The most significant improvement can be seen for baseline model 

with 44.2% improvement. Besides, other experimental models also improved 

by at least 29% and MobileNet V3 has achieved minimum inference time of 

0.142s on Jetson Nano which is equivalent to 7 Frame Per Second (FPS). 

On the other hand, performance of experimental models on every 

product class can be assessed through Confusion Matrix in Figure 4.2. 

 

 
Figure 4.2: Confusion Matrix of Experimental Models 

 

From the figure, it can be noticed that all models have more 

Background False Positive (FP) predictions where they detect background as 
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products compared to baseline model. This situation seems to be more serious 

for model with MobileNet V3 backbone because Background FP is present for 

most of the product classes compared to ShuffleNet V2 and GhostNet variant. 

However, these FP predictions can be avoided by increasing the confidence 

threshold in actual implementation. Meanwhile, ShuffleNet V2 and GhostNet 

are weaker in handling intraclass variation compared to MobileNet V3 because 

both models will have several misclassifications between Dutch Lady Full 

Cream Milk and Dutch Lady Low Fat Milk. Thus, MobileNet V3 is still a more 

relevant product recognition model compared to ShuffleNet V2 and GhostNet. 

 

4.3.2 Qualitative Analysis 

In this section, each light-weight model was assessed qualitatively to justify 

their performance in handling actual checkout condition that includes lighting 

variation and heavily occluded products. The analysis was done by performing 

inference of an image with large quantity of occluded products as well as unseen 

an unseen, low brightness image using each experimental model. 

 

4.3.2.1 Performance in Extreme Condition 

 

 
Figure 4.3: Prediction of Experimental Models in Extreme Condition 
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Table 4.6: Confidence Score of Detected Products in Extreme Condition 

Items 

         Confidence Score 

MobileNet V3 

+ YOLOv5L 

ShuffleNet V2 

+ YOLOv5L 

GhostNet 

+ YOLOv5L 

Dequadin 0.96 0.95 0.98 

Dutch Lady Full 

Cream Milk 
0.92 0.92 0.96 

Dutch Lady Low 

Cream Milk 
0.97 0.96 0.95 

Halls Black 0.95 0.95 0.99 

HFT Black Soya 0.95 0.95 0.96 

KitKat 0.97 0.90 0.98 

Mentos Orange 0.91 0.89 0.95 

NutriOne Nuts 0.95 0.96 0.96 

Ricola Lemon 0.93 0.95 0.97 

 

According to Figure 4.3, each of the experimental model successfully provides 

prediction for every product in extreme condition where products are heavily 

occluded with each other along with intraclass variation. However, it can be 

observed that the predicted bounding box of ShuffleNet V2 is slightly 

misaligned with the product compared to MobileNet V3 as well as GhostNet 

variant.  

On the other hand, based on confidence score of each detected product 

shown in Table 4.5, it can be noticed that YOLOv5 with GhostNet backbone 

can provide predictions with high confidences since all the values are above 

0.95. Besides, confidence scores provided by MobileNet V3 variant are also 

considered acceptable with the lowest score of 0.91. In contrast, ShuffleNet V2 

gives predictions with lower confidences among all models especially for the 

products that are overlapped such as KitKat and Mentos Orange. Thus, it can be 

inferred that YOLO v5 with MobileNet V3 and GhostNet backbone are able to 

adapt to extreme condition of real-world checkout counter scenario. 
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4.3.2.2 Adaptivity to Lighting Variation 

 

 
Figure 4.4: Prediction of Experimental Models in Low Light 

 

Table 4.7: Confidence Score of Detected Products in Low Light 

Items 

   Confidence Score 

MobileNet V3 

+ YOLOv5L 

ShuffleNet V2 

+ YOLOv5L 

GhostNet 

+ YOLOv5L 

Dutch Lady Full 

Cream Milk 

0.78 

0.88 

0.87 

0.84 

(0.43) 

0.96 

0.85 

Mentos Mint 0.40 0.98 0.92 

Nescafe Coffee 0.85 0.98 0.94 

 

From Figure 4.4 which demonstrates the prediction of each 

experimental model in low-light condition, it is found that the bounding boxes 

generated by ShuffleNet V2 and GhostNet are very similar with the ground truth 

bounding boxes even in low-light condition. In contrast, the bounding boxes 



78 

generated by MobileNet V3 are distinct compared to ground truth boxes despite 

all the products are predicted accurately.  

Meanwhile, according to Table 4.5 which shows the confidence score 

of each predicted product in the image, it is discovered that GhostNet is able to 

maintain its performance by providing an accurate prediction at high confidence 

score. In comparison, YOLOv5 model with MobileNet V3 backbone has low 

confidence score in general whereas ShuffleNet V2 variant has higher 

confidence score but the prediction is associated with a false positive of Dutch 

Lady Low Fat Milk. Therefore, it can be inferred that GhostNet variant can adapt 

to lighting variation effectively, followed by the model with MobileNet V3 

backbone.  

 

4.3.3 Training Loss 

Furthermore, each experimental model can be evaluated and compared through 

their training and loss curve. Based on Figure 4.5 to 4.8, it can be observed that 

there is no overfitting occur for all models since their validation loss are able to 

converge and no increment happened at the end of the training process. 

However, in contrast to the loss curve of baseline model, all three models seem 

to be underfit because their training loss did not fully converge but this can be 

overcome by performing training for more epochs. Among all the light-weight 

models, training loss of GhostNet is the fastest to converge. Hence it can be 

inferred that GhostNet variant is more efficient in training compared to other 

light-weight experimental models. 

 

 
Figure 4.5: Loss Curve of YOLOv5 (Baseline) 
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Figure 4.6: Training and Validation Loss of YOLOv5 (MobileNet V3) 

 

 
Figure 4.7: Training and Validation Loss of YOLOv5 (GhostNet) 

 

 
Figure 4.8: Training and Validation Loss of YOLOv5 (ShuffleNet V2) 
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4.4 Software Prototype of Cashierless Checkout System 

By using the weights of baseline YOLOv5 model as well as YOLOv5 with 

MobileNet V3 backbone structure, a software prototype was developed in 

Python language, and it involves MongoDB Application Programming 

Interface (API) for database connection as well as Tkinter for GUI development. 

Each of the feature will be demonstrated in the following sections. 

 

4.4.1 Model Weights Update 

In order to avoid human involvement in maintaining and updating the 

cashierless checkout system, the proposed software prototype included a feature 

that will keep the product recognition model up to date before daily operation.  

When a model is trained with new product category, user will just have 

to select the updated model weight through a python script and the file will be 

uploaded to MongoDB database before the file name and unique id are written 

into a Comma Separated Value (.csv) file. Subsequently, as shown in Figure 4.9, 

Jetson Nano as the edge device will fetch the latest weight to the software 

directory based on the file name and unique id in the Comma Separated Values 

(CSV) file. If there is no updated model weight in the database, the software 

will proceed to launch after providing a ‘No update’ output. 

 

 
Figure 4.9: Model Weight Automatic Update Feature 

 

4.4.2 Price Computation  

As the fundamental feature of a checkout system, price computation function 

was added to the proposed software prototype along with other supportive 

elements to improve the accuracy of detection and price computation. When the 
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products are being placed under the camera, the software prototype compute for 

frame difference and contour using createBackgroundSubtractor 

MOG2() and findContours() shown in Figure 4.10 to detect for any object or 

hand movement in the area. This helps to prevent pre-mature detection and price 

computation that might result in false predictions and product price.   

 

 
Figure 4.10: Frame Difference and Contour 

 

 Moreover, the software prototype will allow users to continue their 

checkout session when there are more products to be purchased. All detected 

products will be listed in the shopping cart section and their price is updated in 

real time based on the latest price fetched from MongoDB database, which is as 

demonstrated in Figure 4.11. 

 

 
Figure 4.11: Continuous Update of Shopping Cart  
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In a nutshell, the ultimate goal of this project is achieved where a software 

prototype of computer vision-based cashierless checkout system is developed 

and deployed on Jetson Nano by using YOLOv5 as the state-of-the-art deep 

learning model by fulfilling all the sub-objectives in this project. 

 Firstly, an image pre-processing framework is constructed successfully 

by involving a crop and paste algorithm to generate synthetic images with 

randomly placed products, followed by CycleGAN and conventional image 

augmentation to simulate shadows and lighting variation in images with 

minimal human effort. With an FID of 40.99, the framework is proved to 

generate training data that is closely correlated to real images. Besides, the 

training data also boosted the performance of YOLOv5L to 98.5% in mAP and 

97.33% in cAcc in scene with overlapping products. 

 Subsequently, a deep learning-based product recognition model is 

successfully built by involving YOLOv5L as its achieved uniformly high mAP 

of 99.5% while maintaining short inference time of 12.20ms and training time 

of 5.69 hours in the preliminary benchmark with other single-stage 

representative models on MVTec D2S Dataset.  

Moreover, YOLOv5L was further improved with several light-weight 

backbone architecture, including MobileNet V3, ShuffleNet V2 and GhostNet. 

The result demonstrates that the inference time was effectively shortened to 

0.142s through TensorRT runtime with only degradation of 0.3% in mAP and 

cAcc is maintained at 89.17% with the lightest MobileNet V3 architecture. 

 Lastly, the product recognition model is successfully implemented in a 

software prototype using Tkinter along with several features like price retrieval 

and computation function as well as model weight update capability through 

MongoDB database API. The results demonstrates that the software prototype 

can run successfully even on edge devices like Jetson Nano and able to provide 

accurate predictions and price computation. 
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5.2 Recommendations for Future Work 

Due to time constraint, the results presented in this project may not be optimal. 

There are multiple works that can be carried out to elevate the quality of this 

project. First of all, the existing image synthesis framework can be further 

enhanced by using adopting other GAN architectures or techniques that can 

simulate more realistic shadow and lighting variation while having less 

background and product color degradation.  

Moreover, the light-weight models used for product recognition can be 

further improved with state-of-the-art modules or functions to obtain a better 

trade-off in terms of accuracy and inference time on edge devices. For instance, 

attention module or model pruning can be applied to improve the accuracy while 

maintaining the model size and FLOPs.  

 Additionally, incremental learning can be applied in the training of 

product recognition model as an effort in tackling the actual retail store 

challenges where new products or package design are introduced continuously. 

 Lastly, the software prototype of cashierless checkout system can be 

enhanced by including more features like e-payment gateway and auto-

packaging system to further reduce the work force requirement at the checkout 

counter. 
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Appendix B: Image Augmentation Script 
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Appendix C: YOLOv3 Training and Evaluation Codes 
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Appendix D: RetinaNet Training and Evaluation Codes 
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Appendix E: GAN Training Script 
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Appendix F: YOLOv5 Training Script 
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Appendix G: Light Weight Models Architectures 

 

1. MobileNet V3 
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2. ShuffleNet V2 
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3. GhostNet 
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Appendix H: Tables 

 

Table K - 1: State-of-Art Models for Retail Product Checkout 

Author 
Dataset 

applied 

State-of-Art 

Model 
Train Test Configuration 

mAP 

(%) 
Precision Recall IoU 

Run 

time 

(ms) 

Liu et al. (2019) 

Self-

captured 

(Bread) 

Faster R-CNN 

(VGG-16) 
452 3 Steps: 70 × 103 99.14    540 

Koturwar, 

Shiraishi and 

Iwamoto (2019) 

Self-

captured 

(Groceries) 

Faster R-CNN 

(ResNet-101) 
20000 

300 

Steps: 200 × 103 

Learning rate: 0.003 
 

0.93 0.84 0.86 

 600 0.84 0.98 0.85 

100 0.61 0.84 0.78 
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Rigner (2019) 

Self-

captured 

(Groceries) 

Mask R-CNN 

(ResNet-50) 

2430   

72.3    590 

YOLOv3 59.9    127 

RetinaNet 

(ResNet-50) 
71.8    257 

Ning, Li and 

Ramesh (2019) 

D2S 

Dataset 

Mask R-CNN 

(ResNet – 101) 

2880 360 

Learning rate: 0.002 

Epochs : 10 

Optimizer: SGD 

0.788 

    

Mask R-CNN 

(ResNet –50) 
0.753 
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Wu et al. (2016) 
Web-

crawled 

YOLO + 

CaffeNet 

YOLO 

63271 

CaffeNet 

317593 

 

YOLOv1 

Iterations: 30 × 103 

CaffeNet 

Iterations: 100 × 103 

Learning rate: 0.0005 

Batch Size: 128 

Momentum: 0.9 

66.4 

(One) 

   
69.63

75 

65.7 

(Two) 

    

64.1 

(Three) 

    

Oh and Chun 

(2020) 

Self-

captured 

(Beverage) 

YOLOv3 2800  

 

Epochs: 16200 

Learning rate: 0.001 

Momentum: 0.9 

Weight decay: 0.0005 

82.28 
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Xie, Wang and 

Zhao (2021) 

RPC 

Dataset 

Faster R-CNN 

(ResNet-101) 

 6000  

96.98 
    

YOLOv3 82.32 
    

RetinaNet 

(ResNet-101) 
99.56 
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