

SMART CASHIERLESS CHECKOUT

SYSTEM FOR RETAIL USING MACHINE

VISION

LEE REN YI

UNIVERSITI TUNKU ABDUL RAHMAN

SMART CASHIERLESS CHECKOUT SYSTEM FOR RETAIL USING

MACHINE VISION

LEE REN YI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2022

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : Lee Ren Yi

ID No. : 17UEB02805

Date : 25 April 2022

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SMART CASHIERLESS

CHECKOUT SYSTEM FOR MACHINE VISION” was prepared by LEE

REN YI has met the required standard for submission in partial fulfilment of

the requirements for the award of Bachelor of Engineering (Honours)

Mechatronics Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Chai Tong Yuen

Date : 24 April 2022

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2022, Lee Ren Yi. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Dr. Chai Tong Yuen for his invaluable advice, guidance and his enormous

patience throughout the development of the research.

In addition, I would also like to express my gratitude to families, friends

and UTAR lecturers for their continuous mental support and encouragement

that served as motivation in completing this project.

v

ABSTRACT

As Corona Virus 2019 (COVID-19) pandemic strikes the world, retail industry

has been severely impacted especially in its daily operation due to the restriction

of workforce and most of the face-to-face services, including checkout, are

associated with high risk of developing spread chain of COVID-19 virus.

Despite there are multiple computer vision-based solutions available in the field

such as on-shelf checkout and sensor fusion, but they can be expensive and may

require overhaul of stores, which is unfeasible for small retail stores. Therefore,

a software prototype of intelligent cashierless checkout system is proposed to

help small-scale retail stores in minimizing the risk of developing COVID-19

virus spread chain as well as the workforce requirement during checkout using

state-of-the-art object detection models. This project was performed in 2 parts

where the first stage involved an image synthesis algorithm to automatically

produce visually realistic product images using Generative Adversarial

Network (GAN). Several GAN architectures such as CycleGAN and

AttentionGAN were studied and compared in terms of their effectiveness in

generating realistic shadow in actual checkout scenario. CycleGAN results in

more realistic shadow with Fréchet inception distance (FID) of 40.99. In the

following stage, a publicly available dataset, MVTec D2S dataset were used to

benchmark multiple object detection models used for product recognition. By

using You Only Look Once (YOLO) v5L as the baseline model, several

improved models were developed by replacing the backbone structure with

other light-weight architectures to improve computation efficiency when

deployed on edge devices. After training the model with dataset generated in

previous stage, the proposed model with MobileNet V3 surpassed baseline

model in terms of inference time, with only 0.142s while maintaining high Mean

Average Precision (mAP) of 98.2% and Checkout Accuracy (cAcc) of 89.17%

on Jetson Nano.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xvii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 4

1.5 Scope and Limitation of the Study 4

1.6 Contribution of the Study 5

1.7 Outline of the Report 5

2 LITERATURE REVIEW 7

2.1 Existing Cashierless Checkout Approaches 7

2.1.1 Radio Frequency Identification (RFID) 7

2.1.2 Artificial Intelligence (AI) and Computer

Vision 8

2.2 Datasets of Retail Products 9

2.2.1 Retail Product Checkout Dataset (RPC) 10

2.2.2 Densely Segmented Supermarket (D2S)

Dataset 11

vii

2.2.3 CAPG Grocery Product Dataset (CAPG-GP)

 13

2.2.4 Freiburg Groceries 13

2.2.5 Dataset Comparison 15

2.3 Image Synthesis 16

2.3.1 Conventional Data Augmentation 16

2.3.2 Mask based Synthesis 17

2.3.3 Generative Adversarial Network (GAN) 19

2.4 Detection Algorithm 20

2.4.1 Classic Computer Vision Techniques 20

 2.4.1.1 SURF + Feature Matching 21

 2.4.1.2 Haar Features + AdaBoost & SIFT

 + SVM 22

2.4.2 Deep Learning based Computer Vision

Techniques 23

 2.4.2.1 CNN 24

 2.4.2.2 State-of-the-Art Models 25

 2.4.2.2.1 Faster R-CNN 26

 2.4.2.2.2 Mask R-CNN 27

 2.4.2.2.3 YOLO 29

 2.4.2.2.4 RetinaNet 31

 2.4.2.3 Summary 32

2.5 Supportive Elements for Retail Checkout System 33

3 METHODOLOGY AND WORK PLAN 34

3.1 Introduction 34

3.1.1 Overall System Flow 34

3.1.2 Work Plan 35

3.2 Dataset Preparation 36

3.2.1 MVTec D2S Dataset 37

3.2.2 Custom Dataset Preparation 39

3.3 Development of Image Synthesis Framework 41

3.3.1 Binary Mask Extraction 41

3.3.2 Crop and Place Algorithm 42

viii

3.3.3 GAN-based Shadow Synthesis 43

3.3.4 Lighting Variation 46

3.4 Selection of Baseline Object Detection Model 47

3.4.1 State-of-the-Art Model Architectures 48

3.4.2 Preliminary Benchmarking 52

3.5 Model Optimization 53

3.5.1 ShuffleNet V2 53

3.5.2 MobileNet V3 55

3.5.3 GhostNet 56

3.6 Computing Platform 57

3.6.1 TensorRT Acceleration 58

3.7 Evaluation Metrics 60

3.7.1 Fréchet inception distance (FID) 60

3.7.2 Mean Average Precision (mAP) 60

3.7.3 Confusion Matrix 61

3.7.4 Checkout Accuracy (cAcc) 62

3.7.5 Training and Inference Time 63

3.8 Software Development 63

3.8.1 MongoDB Database 63

3.8.2 Tkinter 64

4 RESULTS AND DISCUSSION 65

4.1 Preliminary Benchmarking 65

4.1.1 Quantitative Results 65

4.1.2 Qualitative Results 66

4.2 Effectiveness of Image Synthesis Framework 68

4.2.1 GAN-synthesized Images 68

4.2.2 Effect on Model Performance 70

4.2.2.1 Quantitative Results 71

4.3 Model Improvement with light-weight backbones 72

4.3.1 Quantitative Results 73

4.3.2 Qualitative Analysis 75

4.3.2.1 Performance in Extreme Condition 76

4.3.2.2 Adaptivity to Lighting Variation 77

ix

4.3.3 Training Loss 78

4.4 Software Prototype of Cashierless Checkout

System 80

4.4.1 Model Weights Update 80

4.4.2 Price Computation 80

5 CONCLUSIONS AND RECOMMENDATIONS 82

5.1 Conclusions 82

5.2 Recommendations for Future Work 83

REFERENCES 84

APPENDICES 94

x

 LIST OF TABLES

Table 2.1: Characteristic Table of Publicly Available Dataset 15

Table 3.1: Hyperparameters for GAN 43

Table 3.2: Configuration of Data Augmentation 46

Table 3.3: Hyperparameters for Product Recognition Model 52

Table 3.4: Raspberry Pi 4 and Jetson Nano Specifications 58

Table 3.5: Example of Confusion Matrix 62

Table 4.1: Quantitative Performance of Representative Models 65

Table 4.2: Confidence Score of Detected Products 67

Table 4.3: Shadow Synthesis Results of AttentionGAN and
CycleGAN 69

Table 4.4: Quantitative Results for Different Levels of Image
Synthesis 71

Table 4.5: Quantitative Results for Light-Weight Experimental
Models 73

Table 4.7: Confidence Score of Detected Products in Extreme
Condition 76

Table 4.6: Confidence Score of Detected Products in Low Light 77

xi

LIST OF FIGURES

Figure 1.1: Malaysian MCO Activity 2020 (Hirschmann, 2021) 1

Figure 2.1: RPC Dataset: Training (a) and Validation Images (b) 10

Figure 2.2: D2S Dataset: Training (a) and Validation Images (b) 12

Figure 2.3: CAPG-GP Dataset: Training (a) and Test Images (b) 13

Figure 2.4: Freiburg Dataset: Training (a) and Test Images (b) 14

Figure 2.5: Mask-Based Image Synthesis 18

Figure 2.6: Mask extraction and Merging for synthetic data generation
(Koturwar, Shiraishi and Iwamoto, 2019) 19

Figure 2.7: Development of State-of-the-Art model architectures
(Boesch, 2021) 26

Figure 3.1: Proposed Cashierless Checkout System Architecture 34

Figure 3.2: Waterfall Diagram for Project Prototype Development 36

Figure 3.3: Samples (a) and Instances Per Class (b) in MVTec D2S
Subset 37

Figure 3.4: File Structure of YOLO, PASCAL VOC and COCO
Dataset 38

Figure 3.5: Image Acquisition Setup 39

Figure 3.6: Samples in Raw Dataset 40

Figure 3.7: VGG Image Annotator 41

Figure 3.8: Binary Masks of Retail Products 42

Figure 3.9: Synthesized Training Images 43

Figure 3.10: Architecture of CycleGAN 44

Figure 3.11: Architecture of AttentionGAN 45

Figure 3.12: Samples in Expanded Dataset 47

Figure 3.13: Instances Per Class in self-prepared dataset 47

Figure 3.14: YOLOv3 Model Architecture 49

xii

Figure 3.15: YOLOv5 Architecture 49

Figure 3.16: Architecture of RetinaNet 51

Figure 3.17: GPU Specification in Google Colaboratory 52

Figure 3.18: ShuffleNet V2 Architecture 54

Figure 3.19: Proposed YOLOv5 with ShuffleNet V2 Backbone 54

Figure 3.20: Depthwise and Pointwise Convolution Process 55

Figure 3.21: Hard-Swish Activation Function (Howard et al., 2019) 56

Figure 3.22: Proposed YOLOv5L with MobileNet V3 Backbone 56

Figure 3.23: Ghost Module (Han et al., 2020) 57

Figure 3.24: Proposed YOLOv5 with GhostNet Backbone 57

Figure 3.25: Jetson Nano (NVIDIA, 2014) 58

Figure 3.26: TensorRT Quantization (NVIDIA, 2016) 59

Figure 3.27: MongoDB Admin Portal 63

Figure 4.1: Ground truth and Predictions of Representative Models 67

Figure 4.2: Confusion Matrix of Experimental Models 74

Figure 4.3: Prediction of Experimental Models in Extreme Condition 75

Figure 4.4: Prediction of Experimental Models in Low Light 77

Figure 4.5: Loss Curve of YOLOv5 (Baseline) 78

Figure 4.6: Training and Validation Loss of YOLOv5 (MobileNet V3)
 79

Figure 4.7: Training and Validation Loss of YOLOv5 (GhostNet) 79

Figure 4.8: Training and Validation Loss of YOLOv5 (ShuffleNet V2)
 79

Figure 4.9: Model Weight Automatic Update Feature 80

Figure 4.10: Frame Difference and Contour 81

Figure 4.11: Continuous Update of Shopping Cart 81

xiii

LIST OF SYMBOLS / ABBREVIATIONS

$ US dollar

% Percentage

A ROI of current product

A b Background Attention Mask

A f Foreground Attention Mask

B ROI of existing products in background image

C f Foreground Content Mask

𝑐𝑐𝑖𝑖,𝑝𝑝 Image intensity at pixel p in image i

GA Attention Mask Generator

GC Content Mask Generator

G Gigabytes

G Generator

𝐺𝐺𝐺𝐺𝑖𝑖,𝑘𝑘 Actual count of k-th product class in i-th image

hrs hours

s seconds

M Megabytes

N Number of images

P Precision

𝑃𝑃𝑖𝑖,𝑘𝑘 Predicted count of k-th product class in i-th image

pt Probability for Focal Loss

p Image pixel

R Recall

T Terabytes

𝛴𝛴𝑟𝑟 Covariance matrix of real images

𝛴𝛴𝑔𝑔 Covariance matrix of generated images

γ Focusing Factor

𝜎𝜎𝑝𝑝 Standard deviation of image pixel p

𝜇𝜇𝑝𝑝 Average of pixel values at pixel p

𝜇𝜇𝑟𝑟 Mean of real images (feature-wise)

𝜇𝜇𝑔𝑔 Mean of fake images (feature-wise)

xiv

AdaBoost Adaptive Boosting

Adam Adaptive Moment Estimation

AI Artificial Intelligence

AP Average Precision

API Application Programming Interface

ARC Automatic Retail Checkout

AUC Area Under the Curve

CA Checkout Area

cAcc Checkout Accuracy

CCTV Closed Circuit Television

CNN Convolutional Neural Network

COCO Common Object In Context

COVID-19 Corona Virus 2019

CSI Camera Serial Interface

CSPNet Cross Stage Partial Network

CSV Comma Separated Values

CUDA Compute Unified Device Architecture

DPNet Data Priming Network

FCN Fully Convolutional Network

FID Frechet Inception Distance

FLOPs Floating-Point Operations

FLOPS Floating-Point Operations Per Second

FMCG Fast Moving Consumer Goods

FN False Negatives

FP False Positives

FPN Feature Pyramid Network

FPS Frame Per Second

FYP Final Year Project

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GUI Graphical User Interface

HSV Hue Saturation Value

IBM International Business Machine

IDE Integrated Development Environment

xv

IoU Intersection over Union

ISCOS Intelligent Self Checkout System

JSON JavaScript Object Notation

LCD Liquid Crystal Display

LDR Light Dependent Resistor

LED Light Emitting Diode

MAC Memory Access Cost

mAP Mean Average Precision

MCO Movement Control Order

MIPI Mobile Industry Processor Interface

POS Point of Sales

PR Precision-Recall

QR Quick Response

R-CNN Region Convolutional Neural Network

ReLU Rectified Linear Unit

ResNet Residual Network

RFID Radio Frequency Identification

RGB Red Green Blue

ROI Region of Interest

ROIAlign Region of Interest Aligning

ROIPool Region of Interest Pooling

RPC Retail Product Checkout

RPN Region Proposal Network

SE Squeeze and Excitation

SIFT Scale Invariant Feature Transform

Softmax Normalized Exponential Function

SPP Spatial Pyramid Pooling

SSD Single Shot Multibox Detector

SURF Speed Up Robust Features

SVM Support Vector Machine

TP True Positives

USB Universal Serial Bus

UTF Unicode Time Format

VGG-16 Visual Geometry Group-16

xvi

VIA VGG Image Annotator

VOC Visual Object Classes

VRAM Video Random Access Memory

WA Wait Area

XML Extensible Markup Language

YOLO You Look Only Once

xvii

LIST OF APPENDICES

Appendix A: Image Synthesis Script 94

Appendix B: Image Augmentation Script 99

Appendix C: YOLOv3 Training and Evaluation Codes 102

Appendix D: RetinaNet Training and Evaluation Codes 103

Appendix E: GAN Training Script 104

Appendix F: YOLOv5 Training Script 105

Appendix G: Light Weight Models Architectures 106

Appendix H: Tables 109

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

In general, retail can be defined as commercial activities that involve direct

selling of merchandise to consumers at a specific point of purchase (Farfan,

2020). Among all the range of merchandise available in the market today, most

of them are generally categorized under Fast-Moving Consumer Goods (FMCG)

which possess several characteristics such as high consumer demand, common

availability and associated with wide variations. With that, the industry requires

high capacity of manpower in supply and distribution chain which encompass

checkout system and stock management for the purpose to accommodate high

requirement of FMCG products.

Figure 1.1: Malaysian MCO Activity 2020 (Hirschmann, 2021)

 Ever since the first confirmed COVID-19 case reported on 25th January

2020, infection chain of the virus has begun and led to government’s imposition

of Movement Control Order (MCO) on 18th March 2020. As a result, Malaysian

were forcefully grounded from non-essential activities. Nevertheless, they are

0%

10%

20%

30%

40%

50%

60%

70%

80%

MCO Phase 1 MCO Phase 2 MCO Phase 3

Malaysian Activity during MCO

Purchase of essential home / food items Meeting with friends/ family in other homes

Not going out & no visitors Not going but visitors allowed

2

permissible to pursue for own living necessities generally classified under

FMCG. This can be validated through the statistics provided by Hirschmann

(2021) in Figure 1.1 which indicates that main purpose of going out was to make

purchase of essential needs. Thus, with the increased flow of FMCG in the retail

industry, chances of human involvement at point of purchase will be elevated

in return. This could possibly lead to high risk of COVID-19 infection due to

close interaction between consumers and employees.

 Fortunately, according to O’Mahony et al. (2020), in present days

where rapid advancement computing power and other device capabilities,

computer vision based applications have been enhanced significantly in terms

of performance along with cost-effectiveness. This has open up possibility of

implementing computer vision-based checkout system in retail industry

especially when the FMCG are involved. Specifically, by implementing

computer vision-based solution to replace the traditional checkout operation,

existing vulnerability such as high manpower requirement can be overcome as

the system is capable to handle large volume of goods flow and will contribute

to reduce human labour in the conventional checkout process such as barcode

scanning or manual data entry. Additionally, the computer vision-based

checkout system will also play a vital role in minimizing human to human

interaction during COVID-19 pandemic. Therefore, a computer vision-based

solution will serve as an ideal alternative to the revolutionize the existing form

retail checkout operation.

1.2 Importance of the Study

The result in this study might impose significant impact in the field of retail

checkout by introducing a software prototype of computer vision-based

checkout system that is capable to perform product recognition and computation

of product price in a real-world checkout counter scenario that can potentially

reduce the requirement of human employee in checkout process along with the

risk of developing COVID-19 virus infection chain during the pandemic.

 Additionally, this project explores the possibility in simplifying data

preparation process for deep learning-based product recognition model by

designing a framework that can generate vast amount of training data without

3

requiring human involvement in preparing and capturing different images for

model training session.

 Furthermore, this project delved into the deployment of product

recognition model that can run efficiently on edge devices, reducing the

requirement of large computing resources in performing product recognition.

1.3 Problem Statement

As COVID-19 pandemic strikes the world, retail industry has been severely

impacted especially in their daily operation. During the pandemic, multiple

policies were introduced by government which resulted in staff shortage in store

since close contact within 1 meter will inflict higher risk of being infected by

COVID-19 virus as stated by Ministry of Health Malaysia (2020). The situation

causes the remaining employees to be burdened with higher workload especially

in some essential tasks such as checkout process that generally involves product

scanning, packaging and payment handling. When store personnel are

insufficient to handle the operation, situation may go worse by resulting in

clustering of customers or long queue in the store and eventually contribute to

chain infection. Therefore, a smart cashierless checkout system is required to

reduce the requirement of human involvement in checkout process.

Despite there are smart retail solutions such as Radio Frequency

Identification and on-shelf computer vision checkout, but they require overhaul

of store layout and are normally associated with high cost, which is unfeasible

for small-scale retail stores with less business capital. Thus, a computer vision-

based checkout system that can be easily implemented in existing retail stores

is highly required.

 Meanwhile, in technical perspective, computer vision application that

utilizes deep learning model will have high demand of annotated training

images that closely resembles the actual scenario since its performance is highly

dependent on the amount and quality of training data. However, manual

acquisition of training data can be challenging as it consumes time and easily

affected by human error, especially when involving retail products that will

change rapidly in terms of appearance and sub-categories (Wei et al., 2020).

Therefore, a framework that can generate reliable training data will be

advantageous for computer vision-based checkout system.

4

1.4 Aim and Objectives

The ultimate goal of this project is to construct a software prototype for

computer vision-based cashierless checkout system on edge devices using state-

of-the-art deep learning models at its core so that small retail can easily

implement it at their checkout counters to minimize the concern of staff shortage

and avoid the spread chain of COVID-19 virus during traditional face-to-face

checkout process. The system is expected to accomplish several sub-objectives

as below:

(i) To construct an image pre-processing framework that is able to

simulate actual checkout counter scenarios with minimal

human involvement.

(ii) To construct a deep learning-based product recognition

algorithm using state-of-the-art object detection models.

(iii) To optimize product recognition models for inference on edge

devices

(iv) To construct a software prototype that can compute total price

based on recognized products.

1.5 Scope and Limitation of the Study

As this project involves the construction of software prototype for computer-

vison based checkout system on edge devices, it will cover the collection and

review of retail product dataset, followed by preliminary benchmarking of

several deep learning models used in literatures, improvement of best

performing model through light-weight backbones, TensorRT optimization and

deployment on edge device.

 However, this project is associated with several limitations. One of the

limitations represents the hardware constraint. As this project is based on deep

learning that involves intensive multiplication of matrices in parallel, powerful

Graphics Processing Unit (GPU) will be required. Despite an online Integrated

Development Environment (IDE) known as Google Colaboratory provides a

NVIDIA Tesla T4 GPU with 16GB Video Random Access Memory (VRAM), but

model training time is constrained by the platform’s maximum GPU acceleration

of 12 hours. Thus, to prevent force termination of training session, hyperparameters

5

of each model need to be reduced accordingly. This problem can be prevented

through monthly subscription of Google Colaboratory Pro+ at $49.99.

 Besides, this project is also restricted by time constraint, some

components of the cashierless checkout system framework can be further optimized

to ensure its practicality and robustness in actual implementation. Each process can

be automated to further reduce the requirement of human involvement in training

the product recognition model.

1.6 Contribution of the Study

The software prototype proposed in this study may serve as a conceptual

solution to small-scale retail stores in transforming their daily operation into a

semi-smart retail where less human employee will be required during the in-

store checkout session, thus reducing the risk of COVID-19 virus infection

during the process.

Besides, the software prototype is convenient and cost-effective since

it can be deployed on edge devices with low power consumption, along with

user-friendly features such as automatic update of product recognition model

and product prices through database, which can reduce the overall cost for

implementation in existing small-scale retail.

 Additionally, the proposed deep learning model training framework

may help to simplify training data preparation and annotation process since it is

able to generate large number of high-quality training data from limited raw

images of retail products, thus reducing the requirement of domain experts in

the store.

1.7 Outline of the Report

This report will be mainly comprised of 5 chapters. The first chapter covers the

general introduction of retail stores and computer vision-based checkout system,

followed by the aims and objectives of this project. At the same time, scope and

contribution of this project will be described.

 In Chapter 2, literature review of existing works in the retail product

recognition will be included along with the analysis of their suitability to be

implemented in this project.

6

As for Chapter 3, overall framework of the cashierless checkout system will be

described. After that, methodology used in developing the software protoype

will be explicitly explained in chronological order.

 Chapter 4 summarizes all the results that were collected and tabulated

throughout this project along with justification based on the theoretical

knowledge from literatures.

 Finally, in Chapter 5, this project will be concluded based on the

objectives that were achieved, followed by recommendations of work that can

be implemented in the future.

7

CHAPTER 2

2 LITERATURE REVIEW

2.1 Existing Cashierless Checkout Approaches

According to Zhong (2021), advancement of computation technologies has

facilitated rapid growth of retail industry, allowing the retail business to shift

their traditional operations that requires significant work forces towards an

advanced form by adopting state-of-the-art tools and techniques. Cashierless

stores represent a concept that elevates the in-store shopping experience while

reducing employment cost for the store by automating checkout process. In the

field, there are two main approaches being adopted in cashierless retail which

are Radio Frequency Identification (RFID) and computer vision respectively.

2.1.1 Radio Frequency Identification (RFID)

By referring to Amsler and Shea (2021), RFID can be generally defined as a

wireless communication based object identification method that utilizes

electromagnetic or electrostatic coupling at specific radio frequencies within the

electromagnetic spectrum.

In a fundamental RFID system, four main components are required to

initiate data communication which are transponders, transceivers, antennas and

reader interface layers. As stated by Sweeney (2010), transponder is simply

known as a tag that will incorporate unique information in integrated circuit or

chip to allow identification of product. It also comes with various form factors

such as card, tag or labels to accommodate different applications. Furthermore,

the tag can be categorized as active tag that requires power source and passive

tags that can power itself by drawing energy from electromagnetic field emitted

by RFID reader and provide response with its information. On the other hand, a

transceiver is generally known as RFID reader which is aimed to handle radio

communication with the tag through antennas and relay the tag information for

processing. Lastly, a reader interface layer or middleware is required to identify

the item through tag signals and interact with software systems such as

inventory, logistics or point of sales (POS).

8

This technology was applied by Bocanegra et al. (2020) in their RFGo

system, a RFID-based self-checkout system for apparel stores. The hardware

setup included a divider placed apart from each other to form a checkout area

(CA) and wait area (WA) where customer will queue up and walk between the

divider with their items during checkout session. To ensure wide coverage of

tag-reading area, Multiple antennas were deployed at inner surface of divider

and beneath the floor. All of them were connected to a custom-built RFID reader

that is capable in processing signal from antennas simultaneously. The collected

tag information will be passed to a neural network-based classifier to determine

whether the products are within the checkout area before proceeding to price

computation.

 Besides, similar approach was experimented by Panasonic (2018) in

Fukuoka, Japan where the solution also comprised of a walk-through checkout

lane with RFID readers and barcode scanners. The simplified shopping

experience allows customers to enter shop after scanning their prepaid card and

leave the store by walking through the checkout lane with products labelled with

passive RFID tags. Products in the shopping bag will be identified through

RFID reader in the divider of checkout lane and payment will be done directly.

As a result, checkout efficiency is increased while reducing human involvement

in the shop especially during the pandemic where social distancing can be

important.

2.1.2 Artificial Intelligence (AI) and Computer Vision

Another major approach of cashierless retail checkout is based on Artificial

Intelligence (AI) and computer vision. As claimed by Gollapudi (2019), AI can

be defined as a field of computer science in enhancing capability of computer

to perform tasks that require human intelligence. Moreover, as a subfield of AI,

computer vision simulates human vision on computing devices by enabling

retrieval and interpretation of useful information from visual inputs like images

or video feeds. This allows computer to perform different tasks that require

visual perception such as image classification, object detection and object

tracking. (International Business Machine Corporation (IBM), n.d.).

 As claimed by Wei et al. (2020), a computer vision-based product

recognition system generally involves 5 steps where the system is commenced

9

by obtaining an image through cameras. Afterwards, the raw image will be pre-

processed through techniques like image segmentation and enhancement to

remove unnecessary information in the image so that the feature extraction can

be performed effectively in the following step. After the process, unique

characteristics of image that are known as features will be mapped as feature

vector with a lower dimension before they are being classified accurately based

on pre-trained decision rule. Finally, predicted product category will be

provided as an output for further manipulation according to different

applications like price computation or stock management.

 There are multiple cashierless checkout systems developed based on

AI and computer vision throughout the years and Amazon Go represents one of

the approaches that has been launched commercially in year 2018. Amazon

(2016) stated that its unmanned store involved combination of AI, computer

vision and sensor fusion technologies to facilitate smart retail experience. In the

store, multiple closed-circuit television (CCTV) cameras were installed to

provide visual inputs to neural networks for recognition of customers’ action

and product detection. At the same time, sensors fusion that comprised of

weight sensors were implemented to detect the products added or picked from

shelves while infrared sensors were positioned to detect the presence of hands.

As a result, recognition performance and reliability can be improved while

simplifying shopping experience. User can enter the store by scanning Quick

Response (QR) code at entrance, grab in-store products and leave the store to

complete their purchase.

2.2 Datasets of Retail Products

Before proceeding to selection of deep learning model for retail product

detection, dataset is mandatory and serves as a common ground for

benchmarking the performance of algorithms while encouraging the

development of high-quality deep learning solutions in the field. However,

training of deep learning-based object detection models will generally require

large amount of annotated data which can be labour-intensive and time

consuming. Furthermore, uniqueness of retail checkout scenario such as

intraclass variation and product occlusion need to be taken into consideration to

train a robust product detection algorithm (Wei et al., 2020). Fortunately,

10

several datasets are made available publicly for benchmarking of deep learning-

based retail checkout algorithm and they are widely discussed in the field. These

datasets are generally prepared for two checkout situations which are on-the-

shelf and checkout counter. Therefore, the following subchapters will involve

description of datasets based on both scenarios and their techniques in tackling

peculiarity of retail checkout scenario.

2.2.1 Retail Product Checkout Dataset (RPC)

Retail Product Checkout (RPC) dataset was published by Wei et al. (2019) as a

large-scale dataset with 83739 images in total. 53739 of them are training

images that only contain single-product images and 30000 validation images

where each of them contains multiple products placed on checkout counter. All

training images are captured at a high resolution of 2592 × 1944 while validation

images are captured with resolution of 1800 × 1800 under controlled image

acquisition environment. The dataset comprises 200 object classes of products

from grocery stores in China as in Figure 2.1 and they are further divided into

17 super-categories such as instant noodles, drink, milk, canned food and candy.

Each of the images is annotated with chinese product names, meta-categories

and location of bounding boxes that is stored in Javascript Object Notation

(JSON) files and the data structure complies with Common Objects in Context

(COCO) standard by Microsoft.

Figure 2.1: RPC Dataset: Training (a) and Validation Images (b)

11

 The dataset is associated with several characteristics that will improve

the evaluation of product recognition models. Firstly, images are captured in

plain background, hence no image processing is required before instance

segmentation or directly fed to object detection model for training. Moreover,

the dataset is prepared to simulate actual checkout situation at a checkout

counter where products are placed in random orientation and involve multiple

number of product instances. This helps to evaluate the proposed model for its

robustness for actual implementation. Besides, validation images have been

split into three clutter levels based on number of product instances which helps

to further evaluate capability of model in handling large number of detections

at once.

 However, the dataset has some shortcomings where all the training

images are prepared in such a way that each product are rotated 360 degrees and

an image is captured every 9 degrees at different perspectives. It leads to a

scenario where some products are having common features such as top view of

canned drinks and canned food. This will cause the model to make false

detection and affect its performance evaluation. Furthermore, each product

name in dataset provided in Chinese characters in Unicode format which may

be cause difficulty in research of product detection model due to different

encoding format.

2.2.2 Densely Segmented Supermarket (D2S) Dataset

There is another retail product dataset released by Follmann et al. (2018) known

as MVTec D2S. It contains 21000 images of local groceries and everyday

products that belong to 60 categories from Germany. Each image is acquired at

a resolution of 1920 × 1440 under controlled setup and environment. 4380 of

the images are for training purposes which only involve single category of

products, placed at different orientation in three types of backgrounds and

lighting conditions. On the other hand, there are 3600 validation images and

13020 test images that consist of single or multiple objects from different

categories placed in close proximity and occlusion is applied. Samples of

training and validation images are shown in Figure 2.2. At the same time, the

dataset comes with complete annotation that contains product name, instance

mask for instance segmentation and bounding boxes for object detection. All

12

annotations are stored in multiple JSON files and complied to COCO format

which ease the extraction of labels.

Figure 2.2: D2S Dataset: Training (a) and Validation Images (b)

 The dataset comes with several characteristics which will help in

assessing and comparing the performance of object detection models. First of

all, most of the products are captured in plain background which helps mask

extraction for instance segmentation and detection in certain models such as

Mask Regional Convolutional Neural Network (R-CNN). Besides, variation of

lighting and occlusion is considered in the dataset which helps to train and

evaluate the model in terms of their robustness to changes of lighting. Moreover,

the dataset introduces augmented data forming 10000 additional synthetic

images that contain multiple categories of overlapped products in random

orientation. With the presence of synthetic data that resembles the actual

checkout situation, all models can be directly trained and assessed in depth

without utilizing the data augmentation algorithm which can be time consuming.

On the other hand, all the annotations are in English and comply with Unicode

Time Format-8 (UTF-8) encoding format.

 However, the dataset is associated with a disadvantage where the

ground truth annotations for test images are not publicly released for evaluation.

This will in turn causes difficulty in performing fair comparison with the

baseline results in the paper. Despite the prediction results can be submitted in

JSON files to author for evaluation, but it is not favourable due to time

constraint of the research.

13

2.2.3 CAPG Grocery Product Dataset (CAPG-GP)

This checkout related dataset has been published by Geng et al. (2018) aimed

to tackle intraclass variation of products. The dataset includes 102 classes of

shampoo products in China, and they are further segregated into 177 sub-classes

according to intraclass variants such as product volume and package design.

This forms 351 images in total where 177 of them represents training images

from and 234 images are used as test set. As shown in Figure 2.3, training

images with plain white background are taken from e-commerce sites and

having different image resolution, ranging from 200 to 600 pixels. On the other

hand, test images are collected directly from product shelves of two different

stores using smart-phone cameras at a resolution of 4032 × 3024. The approach

helps to create lighting and background variation which is suitable for

benchmarking. As for the annotations, information such as classes and bounding

boxes for each image are provided in text files, hence no manual labelling is

required. However, product names are not included in the dataset which will

cause difficulty in benchmarking as the dataset involves many product classes.

Figure 2.3: CAPG-GP Dataset: Training (a) and Test Images (b)

2.2.4 Freiburg Groceries

In the paper by Jund et al. (2016), another retail product based dataset is

introduced, which is known as Freiburg Groceries. The dataset comprises of

5021 images, involving 25 classes of local groceries from Germany. The

datasets are divided into 4947 train images and 74 test images. Each training

image contains single or multiple instances of one category captured through

14

smartphone cameras at multiple environments at varying aspect ratio. Thus,

zero-padding is performed by adding pixels with value zero around the border

of images as an approach to resize them to 1:1 aspect ratio before they further

resized to 256 × 256 pixels. According to Hashemi (2019), zero-padding may

help in improving computational efficiency of a neural network as the

calculations are speeded up through deactivated convolutional unit by zero

pixels. On the other hand, each test image is captured at resolution of 1920 ×

1080 and involves multiple instances from different categories on their

corresponding shelves. Some samples of train and test images are illustrated in

Figure 2.4.

Figure 2.4: Freiburg Dataset: Training (a) and Test Images (b)

 However, the dataset comprises of several shortcomings. First, all

training images are pre-downscaled to low resolution (256 x 256 pixels) which

may be inappropriate to be applied to some state-of-art object detection models

that require higher input image resolution. This is because training of deep

learning models is depending on combination of object features such as color

and edges. Therefore, decrement of input image resolution will imply negative

impact to the model performance due to pixelation of object outline and blurring

of edges despite color features are still intact (Seals, 2019). On the other hand,

bounding box information is not included in the annotation files which may

cause inconsistency during comparison between different product detection

approaches. Besides, all images are annotated based on generic product type

such as cereal, chocolate and milk, which is incompatible with actual checkout

scenario that requires detection of exact variation of products.

15

2.2.5 Dataset Comparison

Based on dataset summary in Table 2.1, RPC and MVTec D2S Dataset are more

relevant in this project compared to CAPG and Freiburg Groceries because they

are prepared for checkout counter scenario, which suits the purpose of this

project. However, MVTec D2S Dataset is considered incomplete since the test

set is not published in their repository, imposing difficulty for evaluation of

product recognition models. In contrast, RPC dataset is complete with COCO

format annotation, but lighting variation is not considered, and its size is

relatively large with 83739 images in total, which will demand for hardware

with higher computing power and can possibly increase the training time

required for product recognition.

Table 2.1: Characteristic Table of Publicly Available Dataset

Characteristics
MVTec

D2S
RPC

Freiburg

Groceries

CAPG -

GP

Categories 60 200 25 177

No. of

instances

Train Vary Single Multiple Multiple

Val / Test Multiple Multiple Multiple Multiple

Resolution

Train

1920

×

1440

1592

×

1440

256

×

256

Vary

Val / Test

1920

×

1440

1800

×

1800

256

×

256

4032

×

3024

Quantity
Train 14380 53739 7425 177

Val / Test 13020 30000 995 234

Scenario Counter Counter Shelf Shelf

Background Distinct Same Distinct Distinct

Lighting variation ✓ ✗ ✗ ✓

Occlusion of products ✓ ✓ ✓ ✓

Completeness ✗ ✓ ✗ ✗

Intraclass variation ✓ ✓ ✗ ✓

16

Therefore, MVTec D2S dataset will be pre-processed before using it

for preliminary benchmarking and comparison with other existing models

which adopted the dataset. Additionally, another dataset will be prepared for

this project based on the characteristics of both D2S and RPC datasets by taking

lighting difference, product occlusion and intraclass variation into consideration.

2.3 Image Synthesis

In general, size of training data can be a constraining factor in achieving a well-

performed object detection algorithm. As reviewed by Wei et al. (2020), deep

learning based retail product recognition approach suffers from data scarcity by

having fewer images per class compared to common object datasets such as

COCO and PASCAL Visual Object Classes (VOC). Hence, data augmentation

needs to be adopted to generate vast number of artificial images to boost the

performance of model across wide range of object classes. According to Saxena

(2020), data augmentation represents a strategy in increasing data diversity by

introducing variation to existing data without manual collection of new data.

Several data augmentation techniques have been implemented in the domain of

retail product detection, which includes basic image manipulation, mask-based

synthesis and Generative Adversarial Network (GAN)-based data augmentation.

2.3.1 Conventional Data Augmentation

Conventional data augmentation approach encompasses fundamental

manipulation of images such as geometric transformation, flipping and color

space transformation, cropping, rotation, translation and noise injection. This

approach has been utilized by Rigner (2019) in his retail product detection

solutions.

 In the paper, multiple traditional data augmentations like scaling, noise

injection, brightness adjustment, and mirroring were applied to his custom

dataset before it was fed to Mask R-CNN for training. In the research, scaling

of 50 to 150% was utilized on images and annotations. Besides, Gaussian noise

was used as a form of noise. Furthermore, brightness was manipulated by

multiplying each image pixel by a factor of 0.5 to 1.5. Despite shearing was

considered in the initial research but it was removed due to its negative impact

on detection performance. With the extended dataset, Mean Average Precision

17

(mAP) performance of the proposed Mask R-CNN model was improved to

60.1%, yielding a performance leap of 20.8% compared to the model trained

only by raw images with a mAP of 39.3 %.

2.3.2 Mask based Synthesis

In the actual practices of retail product recognition on shelves or checkout

counters, occlusion and overlapping of products can be a common yet

challenging phenomenon for deep learning-based models. Hence, in order to

simulate the scenario, mask-based approach has been widely adopted by several

researchers as a form of data augmentation. As the name suggests, mask-based

image synthesis involves the extraction of products with corresponding masks

before they are used to generate synthetic images with multiple instances per

image.

 The first mask-based augmentation approach was proposed by Yi et al.,

(2019) in developing their occlusion simulation algorithm for retail product

detection framework. Prior to the augmentation, their dataset which consisted

of single and multiple product images was collected under a controlled

environment with a plain, dark background. Subsequently, the images were fed

to a bounding box extraction algorithm where multiple bounding box proposals

will be generated through selective search before small, distorted proposals

below a threshold value were filtered to obtain accurate bounding boxes. All

objects were then cropped according to boxes and stored as patches in the

database. By feeding a random patch and a raw image as inputs, augmentation

can be performed through an occlusion simulation algorithm. Thresholding was

applied on the patch to obtain a binary mask for background removal. The patch

was then cropped and placed on the original image which resulted in a

synthesized image with a realistic product occlusion. In brief, the framework

can be represented in Figure 2.5. The approach was proven to be effective on

Faster R-CNN-based retail product recognition algorithm by achieving a high

mAP of 84 % on actual products placed in closed proximity on a conveyor.

18

Figure 2.5: Mask-Based Image Synthesis

 On the other hand, Koturwar, Shiraishi and Iwamoto (2019) also

introduced a similar approach in expanding the dataset for their automated

checkout system. Before the mask extraction process, images of individual

products were captured above a Liquid Crystal Display (LCD) platform that will

display red, green, and blue (RGB) plain backgrounds. It was claimed that the

method will aid the robust extraction of product masks especially when it was

having similar color with background compared to the traditional method which

utilized fix-colored background. Sequentially, a product mask was generated by

calculating pixel-wise standard deviation across all background colors, which is

represented through formula 2.1 where N represents the number of images of

different backgrounds, ci,p is the image intensity at each pixel p in image i. On

the other hand, µp and σp are the average and standard deviation of each pixel p

for all images of the individual product.

 𝜎𝜎𝑝𝑝 = �
∑ (𝑐𝑐𝑖𝑖,𝑝𝑝 − 𝜇𝜇𝑝𝑝)2𝑖𝑖

𝑁𝑁
�

1
2

 (2.1)

With the computed standard deviation for all pixels, an accurate mask

was then generated by thresholding the standard deviation based on the concept

where products will have lower standard deviation because their pixel values

will not be affected by changes of background color. With the product mask,

synthetic training images with product occlusion can be generated by first

randomly selecting a base image. Subsequently, multiple products were placed

randomly according to overlap index that was a threshold calculated through

19

Intersection over Union (IoU) between product masks. The overall framework

will be as shown in Figure 2.6.

Figure 2.6: Mask extraction and Merging for synthetic data generation

(Koturwar, Shiraishi and Iwamoto, 2019)

 The approach was proved to be effective to imitate the actual

placement of products by a human during the checkout process. By feeding the

synthetic dataset into Faster R-CNN with Residual Network (ResNet) backbone

with 101 layers known as ResNet-101, their proposed method achieved a high

precision-recall of (0.84, 0.98). Compared to the unaugmented dataset with the

precision-recall of (0.60, 0.67), the performance was extensively improved by

0.2. At the same time, the result was compared with a synthesized dataset

through the cut and paste approach and there was a slight improvement in

precision-recall of 0.04 and 0.06 respectively.

2.3.3 Generative Adversarial Network (GAN)

Despite conventional and mask-based data augmentation methods can

significantly boost detection performance of occluded retail products with

limited training data, but they are incapable of simulating a natural checkout

condition such as shadows patterns and lighting conditions. Therefore,

according to Wei et al. (2019), GAN-based models such as CycleGAN allow a

realistic rendering of synthetic images known as image-to-image translation,

which increase correlation between synthesized images and training images to

enhance detection accuracy.

Such approach has been demonstrated in the papers by Li et al. (2019)

and Wei et al. (2019) in creating realistic images similar to the actual checkout

counter condition. RPC Dataset as mentioned in Section 2.2.1 which only

contains training images of single products was adopted. Synthesis of images

was initiated with the creation of checkout images with overlapping products

20

through a mask-based approach on a plain background image. At the same time,

the area of each product mask was ensured to exceed a pre-defined threshold

value to simulate the realistic placement of bag-like products on a checkout

platform. Subsequently, the synthesized images were fed into a pre-trained

CycleGAN so they can be rendered to look like an actual checkout scenario with

the presence of shadows and realistic lighting conditions. The method was

proved to be practical as the detector trained with original and translated images

was able to attain a high mAP of 96.57%.

2.4 Detection Algorithm

When images of retail products have been acquired and pre-processed through

conventional data augmentation or GAN-based algorithms, they will be applied

to a detection algorithm for product recognition so that prices can be computed

according to the detected products.

In the past decades, computer vision has already been widely adopted

in the research field of retail product recognition and checkout system.

According to Wei et al. (2020), computer vision-based applications in the field

was started with conventional methods in the early days before the applications

were expanded to deep learning-based approach. However, conventional

computer vision approaches are still being actively engaged in the research field

for deployment on devices with constrained computing capabilities such as

embedded systems.

2.4.1 Classic Computer Vision Techniques

As stated by IBM Cloud Education (2020), machine learning represents a

subfield of AI which mainly studies the methods in replicating human thinking

capability on computing devices with the use of data and algorithms. In earlier

days when deep learning was largely constrained by computing technologies,

most of the computer vision applications including retail product recognition

were achieved through traditional machine learning techniques. As stated by

O’Mahony et al. (2020), a traditional approach to object detection mainly

involves the combination of a conventional computer vision technique known

as feature extraction and a traditional machine learning classifier to form a

complete framework. Feature extraction can be defined as a process of encoding

21

meaningful information of an image into a vector known as features by utilizing

a feature descriptor algorithm. Once the features are extracted, object detection

can be generally done through feature matching or machine learning-based

classifier. Feature matching involves searching for similar features in another

image. If a high number of features exist in another image, the image is said to

contain specific objects. In contrast, a machine learning-based classifier can

accurately predict object classes after being trained with the corresponding

dataset.

In the field of retail product recognition, it was found that Scale

Invariant Feature Transform (SIFT) and Speed Up Robust Features (SURF)

algorithm were commonly used for feature extraction and machine learning

algorithms such as Adaptive Boosting (AdaBoost) and Support Vector Machine

(SVM) were used for product classification and recognition. The following

subchapters will summarize traditional approaches by other researchers.

2.4.1.1 SURF + Feature Matching

In the retail product recognition research conducted by Moorthy et al. (2015),

SURF algorithm was utilized to realize product detection and positioning in

retail store shelves.

The system can be decomposed into 5 steps, starting with the input of

two images from a user where one of them acted as a reference image of a

specific product while another image served as a target image which was

captured through a camera device. Then, both images were converted to

grayscale images to improve computational efficiency. At the same time, the

reference image was further cropped to remove irrelevant background to allow

the detection of multiple products within the target image. The following step

was the feature extraction through SURF algorithm due to its invariance to

lighting, product scale and contrast. As a result, each image will produce a set

of features that were comprised of two elements known as characteristics points

and descriptors. Then, the comparison was done between the extracted features

and all matched points were recorded so that the transformation relationship

between the points can be computed to obtain the products’ exact location in the

target image. The whole process was iterated multiple times until all products

22

were found based on SURF features. For visualization, all found products were

marked in bounding boxes and the overall product count was displayed.

Performance of SURF features was demonstrated by author through

different images of actual shelf situation. Despite there were no quantitative

results being tabulated in the paper, the author has demonstrated that the

conventional algorithm was able to tackle intraclass variation in terms of

packaging color and achieved accurate localization of empty space on shelf

despite with an average execution time of 190 seconds. However, such approach

was proven to be highly dependent on completeness of image as it will decrease

number of generated SURF features which will result in rejection during

matching process.

2.4.1.2 Haar Features + Adaboost & SIFT + SVM

An approach that utilized conventional feature descriptors can be seen in the

research by Varol and Salih (2015) regarding the recognition of tobacco

products placed on shelf. They have constructed a two-stage framework that

involved product segmentation and brand recognition.

The algorithm began by first taking an input image with tobacco

products on shelf-to-shelf boundaries detection. In this process, a histogram was

generated to project the products in y-axis direction which allows the

identification of product distribution on the shelf. After applying Gaussian filter

for noise removal, position of products can be differentiated as products will

have peak value while shelf as non-product will generally have a low value.

Besides, number of shelf space can be determined through the histogram to

further determine the range of product height for segmentation of tobacco

products.

In the segmentation process, a cascaded object detection module based

on Viola-Jones object detection framework was adopted. The conventional

module involved a unique image representation known as Integral Image and

rectangle-like features known as Haar Features. At the beginning of the module,

each pixel in the Integral image was computed by obtaining the sum of pixel

values in x and y direction. Subsequently, sliding window was applied on the

integral image and each region was used for Haar Feature extraction by

computing the difference between sum of pixels in white rectangle and the sum

23

of pixels in black rectangle within the specific region. Each feature was then fed

to a cascaded AdaBoost Classifier trained with Grozi-120 dataset. Through

multiple layers of classifier with several types of additional thresholds such as

minimum and maximum product height, irrelevant features were rejected by

having values lower than pre-set threshold while best features that represent the

products can be obtained and labelled with bounding boxes.

The following step was the brand recognition algorithm that involved

logos of the detected regions. SIFT feature descriptor and Hue Saturation Value

(HSV) color space were involved in this stage to represent shape and color

information respectively. Each feature descriptors were then used to form a

frequency histogram for computation of joint feature vector. Finally,

classification can be performed through multi-class SVM.

The product detection module had achieved a relatively high recall of

0.94 and 0.75 by including the product height thresholds. Concurrently, the

brand classifier has achieved classification accuracy of 92.3% by involving both

SIFT and HSV feature descriptors.

2.4.2 Deep Learning based Computer Vision Techniques

According to Chauhan and Singh (2018), deep learning serves as a subfield of

machine learning which is generally a study that explores and construct

algorithms in allowing computing devices to learn from a given training data

and perform prediction on unseen data. However, deep learning is more

advanced as it tends to focus on deployment of Artificial Neural Networks

(ANNs) which involve cascading of multiple layers of interconnected nodes

known as neurons that are aimed to imitate human brain in processing the

information and perform prediction as a solution to complex problems.

Specifically, for computer vision applications like object detection,

introduction of deep learning along with the aid of computing power and

memory capacity advancement has caused a remarkable change of research

direction. As stated by Zou et al., (2019), starting from year 2014, object

detection has been shifted from conventional machine learning approaches like

Viola Jones detectors towards deep learning based detection methods as the

techniques will help to overcome the performance bottleneck of traditional

computer vision approach while requiring less domain specific knowledge as

24

they are trained instead of being programmed. Moreover, the approach offers

more flexibility as they are able to be re-trained to adapt to different dataset.

Hence, in the field of retail product recognition, deep learning-based methods

are widely adopted by researchers and plenty of work were published.

2.4.2.1 Convolutional Neural Network (CNN)

As stated by Khan et al. (2018), Convolutional Neural Network (CNN)

represents the most popular deep learning architecture in the field of computer

vision and its development plays an important role by contributing performance

leap in visual recognition tasks like image classification, detection and

localization. Hence, it is served as a backbone architecture for most of the deep

learning-based object detectors in present days.

In general, CNN can be expressed as a deep learning algorithm that can

study the spatial information in high-dimensional input data such as images or

videos and dynamically assign weights and bias through backpropagation to

effectively differentiate instances in the image. As stated by Yamashita et al.

(2018), CNN is composed of 3 types of layers which are convolutional layers,

pooling layers, as well as fully connected layers. A basic structure will typically

involve multiple convolutional layers and pooling layers prior to fully

connected layers. Convolutional layers are responsible to take in an input image

and perform feature extraction through linear convolution operator and non-

linear activation function whereas pooling layers are used for dimension

reduction of feature maps generated by convolutional layers via max pooling or

global average pooling to reduce trainable weights in the network. By taking in

the feature vector, which is the flattened feature maps, fully connected layers

will perform classification task based on the trainable weights.

Due to simplicity of the architecture, CNN can be easily deployed and

customized to accommodate different applications including retail product

detection. In the research conducted by Bukhari et al. (2021) which concerned

a retail checkout system named as Automated Retail Checkout System (ARC),

a self-modified CNN was applied to identify the product placed under a webcam.

Prior to the training, data acquisition was performed to create a dataset with 100

classes of local items from Carrefour Pakistan. Each image was captured in a

hood by involving single product placed at different orientation. All 31000

25

images were then spitted in a proportion of 65:25:10 to form train, validation

and test sets respectively.

The custom CNN used in their research was a light-weight variant by

only comprised of 7 layers in total where the first 4 layers were convolutional

layers and max pooling layers stacked alternatively to each other. Each

convolutional layer is associated with Batch Normalization and Parametric

Rectified Linear Unit (PReLU) activation function. Then, the architecture was

followed by 3 fully connected layers where PReLU were used for former two

layers and Normalized Exponential Function (softmax) activation function was

deployed at the output layer. PReLU was adopted for the CNN as it will help to

overcome zero gradient issue for negative inputs in the conventional ReLu

function. Hence, the network will be able to deal with high-complexity

problems.

Prior to the training process, several hyperparameters were adjusted

and they are referred to epochs of 100, batch size of 32 and learning rate of

0.001 that was set to be reduced by a decay rate of 0.96 and 0.75. This is because

a decaying learning rate will encourage the network to learn complex patterns

which can be useful in computer vision applications that typically involve real

world datasets (You et al., 2019). Besides, a dropout of 0.1 was applied to

prevent network from overfitting.

Through the training on Google Colaboratory, training and validation

accuracy were 94.76% and 95.24%. The algorithm was further benchmarked

with test dataset and achieved accuracy of 91.7%. However, classification

performance was not ideal due to multiple misclassifications occurred for the

products with glossy surfaces and packing of similar color.

2.4.2.2 State-of-the-Art Models

According to Davis (2021), state-of-the-art deep learning models can be referred

as leading-edge neural network algorithms that obtain highest level of

achievement at a specific point in time. In the field of object detection, as

mentioned by Boesch (2021), multiple generic state-of-the-art architectures

have been developed and improved throughout the years, especially from year

2014 to 2020, which gave rise to some popular CNN based object detection

networks, such as R-CNN, You Look Only Once (YOLO) and Single Shot

26

Multibox Detector (SSD). Chronologically, these networks are continuously

being improved which leads to numerous variants in the later years, as shown

in Figure 2.7.

Figure 2.7: Development of State-of-the-Art model architectures (Boesch,

2021)

In general, according to statements by Zaidi et al. (2021), existing

state-of-the-art object detection networks can be further divided into 2 types

which are two-stage and single-stage architectures. Two-stage architectures

such as R-CNN based algorithms perform object localization and classification

separately by first generating Region of Interest (ROI) for each object before

performing classification and regression of bounding boxes on each ROI. In

contrast, single-stage architectures such as SSD, YOLO and RetinaNet can

perform both tasks in parallel where it can directly generate bounding boxes and

probabilities for each class in the input image with single forward-pass. Despite

the architectures were having some drawbacks when first introduced, but active

improvement has been conducted and multiple variants with performance

improvement have been published. Hence, following subchapters will focus on

recent architectures that are widely adopted in the field of deep learning which

mainly cover Faster R-CNN and Mask R-CNN, YOLO family and RetinaNet.

2.4.2.2.1 Faster R-CNN

As the third architecture of R-CNN models, Faster R-CNN developed by Ren

et al. (2016) is referred as a region-based object detection model that performs

object localization by generating bounding boxes around object of interest as

well as classification of each object within the bounding box. As stated by

Ananth (2020), compared to other models in R-CNN family, Faster R-CNN

represents the most widely adopted State-of-the-Art model in deep learning

27

based object detection research. This is because Faster R-CNN proposed a

solution known as Region Proposal Network (RPN) to overcome the

computational constraint caused by Selective Search algorithm in its

predecessor which is Fast R-CNN. By replacing the time-consuming Selective

Search with RPN, region proposals can be generated faster which will in turn

reduce the time required for model training and inference.

 There are several research in the field that employed Faster R-CNN for

their retail product recognition. In the research conducted by Liu et al. (2019),

Faster R-CNN was applied to the their computer vision-based checkout

application in bakery store. By using their own dataset with 510 bread images

that were split at a ratio of 452:55:3 through random selection, transfer learning

of Faster R-CNN was done using a pre-trained Visual Geometry Group-16

(VGG-16) model. The training was iterated for 70000 steps and took 8.76 hours

to complete. Based on the performance of 100 unseen images, their Faster R-

CNN model achieved mAP of 100% compared to SSD that only achieved 9%.

However, their SSD surpassed Faster R-CNN by 1.8s in terms of inference time.

 Besides that, Faster R-CNN was also adopted in the paper by Koturwar,

Shiraishi and Iwamoto (2019) which involved development of an automated

POS System. By using image synthesis method mentioned in Chapter 2.3.2,

20000 artificial images were generated for training. Meanwhile, 3 different test

sets were prepared to imitate 3 different stages of product occlusion in actual

checkout, namely Easy, Regular and Hard with ratio of 300:600:10. The dataset

was then used to train a Faster R-CNN with ResNet-101 backbone at a learning

rate of 0.003, 200 × 103 steps, confidence threshold of 0.8. After training, the

model achieved precision-recall of (0.93, 0.99) and average of 0.86 when tested

with real images under Easy scenario. As for Normal scenario, the model

achieved precision-recall of (0.84, 0.98) and average IoU of 0.85. Concurrently,

the model also performed well in Hard scenario with precision-recall of (0.61,

0.84) and average IoU of 0.78.

2.4.2.2.2 Mask R-CNN

Mask R-CNN is known as another variant of the R-CNN family that is widely

used in object detection-related applications. The algorithm was developed by

He et al. (2018) with the aim to perform object detection and generate their

28

corresponding segmentation mask simultaneously. It was achieved by

introducing a custom Fully Convolutional Network (FCN) to further extend

Faster R-CNN architecture with segmentation mask prediction in a pixel-to-

pixel manner for the objects within the ROI. According to the author, FCN used

in the algorithm is distinct to common FCN used for object detection in terms

of activation and loss function. Softmax activation function and multinomial

cross entropy loss function was replaced with sigmoid and binary loss function

to improve segmentation accuracy and it was proved with increment of Average

Precision (AP). Besides, another improvement was applied in Mask R-CNN to

overcome the issue of misalignment of objects in the input image compared to

quantized feature map generated by the original Region of Interest Pooling

(ROIPool). An additional layer known as Region of Interest Align (ROIAlign)

was proposed to replace ROIPool to conserve the spatial information.

 In the research field of retail product recognition, Rigner (2019) had

utilized Mask R-CNN in their on-shelf self-checkout system. The project was

initiated by preparing their retail product dataset. By utilizing the dataset with

486 images that were captured at a resolution of 1920 × 1080, the dataset was

further increased to 2430 images through conventional data augmentation

mentioned in Chapter 2.3.1. Each of them was labelled with class-wise

segmentation mask and bounding boxes. The Mask R-CNN used in the research

was based on ResNet-50 backbone for feature extraction purpose and it was

benchmarked along with 2 single-stage object detector which were RetinaNet

and YOLOv3 with same backbone. Transfer learning was applied by adopting

the weights pre-trained with COCO dataset that was claimed to perform well in

detecting low-level features. Thus, only network head which involved the

convolutional layers for classification and segmentation needed to be trained.

Nevertheless, hyperparameters used for training was not explicitly specified in

the paper. Based on the evaluation of model at 1920 × 1080, Faster R-CNN

achieved mAP of 72.3%, which was highest in contrast to RetinaNet and

YOLOv3 with mAP scores of 71.8% and 51.9% respectively. As a trade-off,

inference time of Mask R-CNN was the longest among all models due to high

computational complexity.

 On the other hand, Ning, Li and Ramesh (2019) also proposed their

self-checkout system using Mask R-CNN. The dataset used for their

29

performance evaluation was MVTec D2S Dataset mentioned in Chapter 2.2.2.

However, instead of applying the whole dataset, only validation set with 3600

images was endorsed and further split into training, validation and test set at a

ratio of 80:10:10. As a result, a small dataset was formed with 2880 training

images, 360 validation and test images. In the research, two Mask R-CNN

algorithms used were based on two different backbone structures, namely

ResNet-101 and ResNet-50. Similar to approaches in other papers, both models

were pre-trained with COCO dataset for transfer learning purpose. Besides,

several hyperparameters had been tuned for performance enhancement.

Through random search, learning rate was set an optimal value of 0.002.

Meanwhile, Adaptive Moment Estimation (Adam) optimizer was replaced with

Stochastic Gradient Descent (SGD) because the former requires lower learning

rate and result in longer training time. After the training for 10 epochs at an

input resolution of 512 × 512 due to GPU limitation, Mask R-CNN with

ResNet-101 achieved mAP of 78.8% which was higher that ResNet-50 variant

that achieved mAP of 75.3%. However, the author claimed that ResNet-50 was

preferred for the application by providing a good training performance with

slight degradation of accuracy. The model further achieved mAP of 84% by

tuning 3 convolutional layers of network head.

2.4.2.2.3 YOLO

According to Ohri (2021), YOLO is categorized under single-stage object

detector that are generally used in object detection applications that emphasize

speed, time and accuracy. As stated by Redmon et al. (2016) as its developers,

the deep learning model represents a new approach to object detection by

treating object detection as a regression problem, hence forming a unified model

that allows bounding box prediction and computation of class probabilities in a

single forward propagation of input image. The model will first divide the input

image to S × S grid. Subsequently, the grid cell which contains the center of

object will need to predict its bounding boxes and class probabilities. Hence,

the prediction will comprise of 5 components. 4 of them are normalized

coordinates for center of bounding box as well as width and height of bounding

box. The fifth element represents the confidence score that is calculated using

30

Intersection over Interference (IoU) to indicate accuracy of the predicted

bounding box. These variables are being used with class probabilities

throughout the model to perform prediction of object classes and bounding

boxes localization simultaneously.

 Several research had adopted the algorithm in YOLO family. In Wu et

al. (2016) which introduced Intelligent Self-Checkout System (ISCOS),

product recognition was done through a custom framework by cascading

YOLOv1 and CaffeNet as shape detector and product classifier respectively.

The system was designed in such a way that real time video feed will be supplied

to YOLOv1, allowing localization of products and prediction of shape category.

Then, product images were cropped according to bounding box and applied to

CaffeNet in sequence for recognition of products. By using 317593 product data

that was webcrawled from supermarket database and search engines at

resolution of 456 × 417, the CaffeNet was trained with 317593 product data at

for 100 × 103 iterations, learning rate of 0.001, batch size of 128 and momentum

of 0.9. Meanwhile, YOLOv1 as a shape detector was trained separately with

63271 images at resolution of 448 × 448 or 750 repetitions. However, the dataset

was annotated based on product shape instead of product category. Learning

rate of the training was tuned to 0.0005, batch size of 64 and subdivisions of 8.

In evaluation, the proposed method has achieved accuracy of 66.4% in single

item scenario, 65.7% in two items scenario and 64.1% in multi-product scenario

and their execution time was 69.6375ms for each inference of image.

 On the other hand, in Oh and Chun (2020) which proposed a smart

shopping cart, YOLOv3 was used to detect products present in the real-time

video stream provided by Raspberry Pi mounted on cart. The dataset involved

for the training was consisted of 5 types of bottled soft drink and 2800 images

were captured and annotated through YOLO-mark software. YOLOv3 was then

trained for 16200 epochs and several hyperparameters were configured for

optimal performance. Learning rate was fixed at 0.001 while momentum and

weight decay were set to 0.9 and 0.0005 respectively. In addition, confidence

threshold was tuned to 0.6 to decrease false positive rate during training process.

By testing the algorithm through real-time video stream for 10 times, mAP of

82.28% and AP per class was ranged from 66.7% and 88.9%.

31

2.4.2.2.4 RetinaNet

Other than YOLO series, RetinaNet is found to be popular among researchers

in the field of product recognition and checkout. As claimed by Lin et al. (2018)

as its developers, RetinaNet was designed to resolve the performance bottleneck

caused by extreme class imbalance between foreground and background during

training of single-stage detectors such as SSD. It was achieved by introducing a

new loss function known as Focal Loss which is an improved version of Cross

Entropy Loss so that the network will assign more weights on hard examples

such as targets that are partially visible while reducing the weight of background

since it represents as easy example (Anwla, 2020). Thus, RetinaNet is able to

achieve the optimal speed of one-stage detector while preserving the accuracy

of two-stage detectors.

The implementation of RetinaNet in retail product recognition can be

seen in the research conducted by Xie, Wang and Zhao (2021). RPC Dataset

mentioned in Chapter 2.2.1 was chosen for training of all three models. As the

training subset was incomplete with images to fully imitate the actual checkout

scenario, GAN was implemented through the method stated in Chapter 2.3.3 to

generate 30000 synthetic images with product occlusion and realistic lighting

effect for training purpose. To allow comparison on the same ground, backbone

structure of RetinaNet and Faster R-CNN was changed to ResNet-101 while

DarkNet-53 was remained unchanged for YOLOv3 in the research. Despite

training parameters was not mentioned in detailed, results were explicitly

analyzed in the paper. At IoU of 0.75, RetinaNet had achieved the highest

accuracy among three models with the mAP of 99.56% followed by Faster R-

CNN with slightly lower mAP of 96.98%. In contrast, YOLOv3 achieved the

lowest mAP with value of 82.32% in the benchmark. Besides that, RetinaNet

was further tested with three different stages of product occlusion as prepared

in the dataset. Based on a custom evaluation metric known as Checkout

Accuracy (cAcc) that indicates the success rate of model in actual checkout

process, RetinaNet achieved high cAcc of 91.65% at easy level but the value

dropped to 82.3% and 71.65% for medium and hard level respectively.

32

2.4.2.3 Summary

According to Table K-1 which summarizes all related works in deep learning-

based retail checkout system, it can be justified that most of the researchers were

adopting three types of deep learning models, including R-CNN family, YOLO

family and RetinaNet. Thus, RetinaNet will be used for further analysis along

with two representative models under YOLO family which are YOLOv3 and

YOLOv5.

 The reason of R-CNN models like Faster R-CNN and Mask R-CNN

are not chosen for further research is due to numerous research have been

conducted and explicitly reviewed in the field of computer vision-based retail

checkout system. Furthermore, due to the architecture as a two-stage object

detector, R-CNN based models are complex, making it impractical for

deployment on edge devices in this project. It can be justified in the bread

recognition and checkout system conducted by Liu et al. (2019), their Faster R-

CNN achieved a high mAP compared to single-stage detector like SSD but at a

cost of long inference time of above 100ms. As for Mask R-CNN, Rigner (2019)

stated that Mask R-CNN has similar drawbacks where its complex architecture

leads to slow inference speed compared to other single stage detectors like

YOLOv3 and RetinaNet. Moreover, according to the statement by Ning, Li and

Ramesh (2019), performance of Mask R-CNN will be limited during the

presence of distinct product size and occlusion. Thus, all two-stage object

detectors will not be further evaluated in this project since the models cannot

fulfill the requirements of a robust retail product recognition where overlapping

of products, distinct product size commonly occur.

 Thus, to ensure the product recognition model can be deployed on edge

devices with limited computing resource, YOLO families and RetinaNet will be

used for further analysis due to their high inference speed as single-stage

detectors. This is justified by the research by Rigner (2019) and Xie, Wang and

Zhao (2021) which showed that YOLOv3 and RetinaNet are advantageous in

terms of inference time compared to R-CNN series with slight sacrifice of

accuracy. Hence, for further testing of YOLO model series, YOLOv3 and

YOLOv5 will be chosen as they are the representative models in current deep

learning field. RetinaNet will also be added for comparison to justify its

performance against YOLO models under actual checkout scenario with several

33

challenges such as overlapping products, intraclass variation and distinct

product size.

2.5 Supportive Elements for Retail Checkout System

In the current field of retail product recognition, most of the approaches

emphasize on-shelf checkout rather than checkout conveyor. At the same time,

as mentioned in Chapter 1.2, there are only a few research that involved

hardware and software setup at the same time. One of them represents the ARC

proposed by Bukhari et al. (2021), the checkout system setup used in their

research was comprised of a checkout conveyor with a hood on top of it to

prepare a controlled environment for image acquisition for training and

inference of product images through a Logitech C310 webcam and Light

Emitting Diode (LED) strips. The conveyor was actuated by a single-phase

induction motor and controlled by an Arduino Mega 2560 through a 5V relay

circuit. Additionally, a Light Dependent Resistor (LDR) was used to sense the

presence of product in the hood and provide signal to computer for product

recognition through pySerial library. Besides, a printer was connected to the

computer for printing of payment bill.

 On the other hand, Graphical User Interface (GUI) was developed by

involving Tkinter to display the detected products along with their price.

Concurrently, the GUI consisted of several buttons such as start, checkout,

delete, print and exit to ease the interaction between user with the checkout

system.

34

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter will include a detailed methodology in developing a software

prototype of cashierless checkout system with product recognition as well as

price computation functionality. First of all, overall system architecture of the

proposed computer vision-based checkout system will be introduced followed

by the workplan in accomplishing the goal. After that, each process will be

described in depth, starting with preliminary model benchmarking, data

acquisition and pre-processing, image synthesis and rendering as well as model

optimization along with deployment on Jetson Nano which is a single-board

edge device that supports model inferencing.

3.1.1 Overall System Flow

The overall framework of our proposed computer vision-powered checkout

system is made up of two main stages which are backend and frontend that play

different roles as illustrated in Figure 3.1.

Figure 3.1: Proposed Cashierless Checkout System Architecture

35

In general, the backend framework acts as a platform that allows training and

deployment of deep learning model to database. Firstly, the backend will

involve acquisition process of training data where single product images and

their corresponding binary masks will be prepared and serve as training input.

Subsequently, the images will be fed to a custom image synthesis framework

similar to the approach in the paper by Li et al. (2019) and Wei et al. (2019)

where each of the images is pre-processed and rendered using a Generative

Adversarial Network (GAN) to simulate actual scenario of a checkout counter,

forming a reliable data for training. During the process, every instance in the

image will be labelled automatically by the algorithm to minimize human

workload in training a product recognition model. After that, training of an

improved YOLOv5 will be carried out using the dataset before the updated

weight to be uploaded to database after optimization by TensorRT runtime.

On the other hand, frontend of the proposed checkout system involves

inference and calculation of overall product prices based on the items placed on

retail store checkout counter by customer. The checkout process begins with the

placement of desired products under the camera. The inference will then be

executed using an edge device after all items are placed still on the counter.

With the predicted output by the product recognition model, price of each item

will be computed and displayed to customer for confirmation before proceeding

to payment gateway. Concurrently, when there is any updated weight or product

price available in the database, the edge device will fetch the latest model and

price to ensure a reliable checkout procedure.

3.1.2 Work Plan

Throughout this project, Waterfall methodology was adhered to ensure the

completion of computer vision-based checkout system within this Final Year

Project (FYP) period. According to Sherman (2014), Waterfall methodology is

essentially a linear approach used in software development, where the tasks are

split into phases and handled sequentially. This allows the understanding of

project scope, schedule and workload at initial stage of the project before

starting to move into development and technical part of the project. Additionally,

36

tracing of project status is simpler with a complete schedule as well as resource

plan.

Figure 3.2 illustrates the waterfall diagram along with detailed tasks associated

in each phase.

Figure 3.2: Waterfall Diagram for Project Prototype Development

3.2 Dataset Preparation

At the initial stage of the project, two datasets were being prepared before

conducting any development and experiment of image synthesis algorithm as

well as deep learning models where each of them was meant for different stage

of training and evaluation.

As mentioned in Chapter 2.2.5, the first dataset was based on MVTec

D2S Dataset as the publicly available dataset can provide a persuasive

preliminary benchmark among different product recognition models commonly

used in existing works because it fully represented product occlusion, variation

of lighting and intraclass products at checkout counter. In addition, with

consideration of time limit and hardware constraint, another small-scale dataset

was prepared by adopting the concept of both D2S and RPC Dataset so that it

can be used for training as well as evaluation of GAN-based image synthesis

algorithm and product recognition models.

The steps taken in preparing both datasets will be explicitly described

in the following subchapters.

37

3.2.1 MVTec D2S Dataset

Since the test set of MVTec D2S Dataset is incomplete, extraction was done in

similar method in Ning, Li and Ramesh (2019) which only involved validation

set because images in the subset can represent the characteristics of the entire

dataset, including occlusion of products, lighting and intraclass variation. By

constructing a modified python script, validation images were divided into 2

splits at a ratio of 8:1:1 under a random state of 12. As a result, an annotated

dataset with 2880 training images, 360 validation and 360 testing images was

formed where the image distribution was identical to the research by Ning, Li

and Ramesh (2019). Samples of each split can be observed in Figure 3.3 (a)

along with overall distribution of instances in (b).

(b)

Figure 3.3: Samples (a) and Instances Per Class (b) in MVTec D2S Subset

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Number of Instances Per Class in MVTec D2S Dataset

Train Validation Test

38

 After that, by utilizing the same python script and LabelImg by Dutta

and Zisserman (2019), 3 new annotation files were generated from the provided

validation JSON file (.json) in COCO format. However, in order to

accommodate distinct annotation file format and image directory requirements

between different deep learning models, the dataset was further processed

according to file structures shown in Figure 3.4.

Figure 3.4: File Structure of YOLO, PASCAL VOC and COCO Dataset

In YOLO format, bounding boxes information were stored as

normalized values of x, y center coordinate along with their normalized width

and height in text files (.txt) named according to image file name. Additionally,

all product classes were extracted and stored in classes.txt. With all the files

being generated, all images and their annotations were added into train, val and

test folders.

As for PASCAL VOC, bounding boxes were stored as non-normalized

coordinates of diagonal corners in Extensible Markup Language (XML) format

(.xml) along with image name, file path and image size as well as object class

name. After that, 3 text files that indicate the split of dataset were prepared

through python script before placing images, annotation XML files and their

split indication text files to corresponding folders named as ImageSets,

Annotations, and JPEGImages.

Concurrently, bounding boxes were stored in as minimum values of x

and y coordinates but along with their box width and height in a single JSON

format (.json) along with other information like object classes, image size and

39

name. Subsequently, all images were placed into corresponding child folders in

images while annotations were placed in annotations folder.

3.2.2 Custom Dataset Preparation

Additionally, another small-scale dataset was prepared from scratch for the

training of GAN-based image synthesis framework and subsequent

development of product recognition algorithm. The dataset consisted of 20

different classes of groceries that can be commonly found at retail store in

Malaysia. The products were selected in such a way that they will be distinct in

sizes, colors, and shapes in order to have a better representation of product range

available in common retail stores.

3.2.2.1 Image Acquisition Setup

A controlled image acquisition setup is crucial in preparing a dataset for any

deep learning models because uncontrolled setup will cause the images to be

susceptible to distortions like blur and noises which will reduce the performance

of deep learning models (Dodge and Karam, 2016). Thus, a controlled image

acquisition environment was set up by involving a portable photo booth with

plain white background and uniform lighting as shown in Figure 3.5:

Figure 3.5: Image Acquisition Setup

 By using a smartphone camera, each product was placed into the booth

before its front side and back side were captured at a resolution of 2976 × 2976,

forming a training subset with 37 images in total. As for validation set, 80

40

images were captured where each image was made to consist of 2 to 3 classes

of products that were randomly placed in the booth to imitate the actual

checkout counter scenario. Furthermore, test set was separated into scenarios

with overlapping and without occluded products to assess the effectiveness of

image synthesis algorithm in handling them, forming 40 images for each

scenario. Some samples in the raw dataset can be seen in Figure 3.6.

Figure 3.6: Samples in Raw Dataset

3.2.2.2 Annotation

After obtaining the raw dataset, annotation process of images was carried out.

Based on the definition by Potter (2021), annotation is about addition of

metadata to a dataset so that computer vision models can identify and

differentiate the objects during training and provide accurate predictions.

Concurrently, labelled images also serve as ground truth for evaluating the

model’s performance. In this project, 2 types of image annotations were

involved and each of them was used for image synthesis algorithm and product

recognition algorithm respectively.

 Firstly, segmentation mask was prepared by marking the boundary of

every individual product in each image using another online tool known as VGG

Image Annotator (VIA) released by Dutta and Zisserman (2019) shown in

Figure 3.7. When all the images were annotated, JSON file (.json) with COCO

formatting was exported.

41

Figure 3.7: VGG Image Annotator

 On the other hand, second type of image annotation which involved

labelling of product classes and location was done by utilizing same LabelImg

by Tzutalin (2015) mentioned in Chapter 3.2.1. Similarly, the dataset adhered 3

different annotation and file directory format so that they can be used for

different deep learning model architectures.

3.3 Development of Image Synthesis Framework

In order to simulate the actual checkout condition with occluded products,

intraclass variation and lighting differences, a novel image synthesis framework

was constructed based on the approach in Li et al. (2019), Rigner (2019) and

Wei et al. (2019). The framework was comprised of 3 main modules, starting

with binary mask extraction, crop and place algorithm, GAN model for shadow

synthesis, and image augmentation to include lighting variation. Each of them

will be described in detail in following subchapters.

3.3.1 Binary Mask Extraction

Extraction of binary mask played a crucial role in the GAN-based image

synthesis algorithm because products will need to be cropped according to their

packaging before they can be used to generate synthetic image that simulates

randomly placed products at checkout counter.

 To achieved this, a python script was constructed. Firstly, it will take

user input about the image directory and segmentation annotation in JSON

format (.json) generated from VIA annotator in Chapter 3.2.2.2. From the

42

annotation file, each point used to form segmented mask will be extracted.

Subsequently, binary mask can be created using cv2.fillPoly() function on a

blank, black image with the same resolution as raw image (2976 × 2976).

Generated binary mask will be as illustrated in Figure 3.8.

Figure 3.8: Binary Masks of Retail Products

3.3.2 Crop and Place Algorithm

Crop and Place Algorithm used in this project was developed based on the

implementation in Li et al. (2019). Firstly, by specifying number of pictures to

be generated and annotation file in JSON format (.json) to the script in

Appendix A, the algorithm will randomly pick 3 product classes to be included

in the synthetic image. For each selected product class, algorithm will read the

corresponding raw image and its mask before performing random rotation and

cropping of the product’s ROI. Then, instead of direct pasting of product onto

an empty checkout counter background, ROI will be used to calculate the

Intersection over Union (IoU) with existing objects placed in the image through

Equation 3.1 so that level of product occlusion can be controlled, and smaller

products will not be fully covered up.

 𝐼𝐼𝐼𝐼𝐼𝐼 =
 𝐴𝐴 ∩ 𝐵𝐵
𝐴𝐴 ∪ 𝐵𝐵

 (3.1)

where:

A = ROI of current product

B = ROI of existing products in background image

43

 After the computation of IoU, product will be masked and pasted into

the empty checkout counter background using the function, Image.paste().

Besides, information of bounding boxes and product classes will be written to

new COCO formatted JSON file (.json). Ultimately, a series of fully annotated,

synthesized training images that can simulate random placement of products on

a checkout counter as in Figure 3.9 with minimal human involvement.

Figure 3.9: Synthesized Training Images

3.3.3 GAN-based Shadow Synthesis

In order to construct a realistic training data that can imitate the real checkout

situation without requiring additional human involvement, shadow synthesis

was done using GAN similar to the approach Li et al. (2019) and Wei et al.

(2019). In this project, two state-of-the-art GAN(s) known as CycleGAN and

AttentionGAN were constructed based on their official repositories as in

Appendix E. Each of them was trained under the same hyperparameters to allow

a fair comparison. The model with higher performance will be used to construct

a reliable training set for product recognition models. The parameters that were

used are summarized in Table 3.1.

Table 3.1: Hyperparameters for GAN

Hyperparameters Description Value

netG Generator type ResNet-9

n_epochs Epoch number (No decay) 100

n_epochs_decay Epoch number (decay) 100

batch_size Batch size 4

preprocess Training image preprocess scale_width_and_crop

load_size image size 800

44

Table 3.1 (Continued)

crop_size cropped image size 256

lambda_identity Identity mapping loss scale 0.4

lambda_A Cycle loss weight (A to B) 8

lambda_B Cycle loss weight (B to A) 8

3.3.3.1 CycleGAN

CycleGAN represents an extension of GAN released by Zhu et al. (2020) that

utilizes the concept of 2 models in GAN known as generator and discriminator.

A generator plays the role in generating fake images while a discriminator will

evaluate the samples’ probability to differentiate between generated and real

images.

In terms of architecture, CycleGAN employs 2 pairs of generator and

discriminator models for translation of images from their corresponding domain

as illustrated in Figure 3.10. Generator A will take input from domain A to

generate images in domain B before passing to discriminator A for evaluation.

Oppositely, generator B will take input from domain B to generate images in

domain A and evaluation is done through discriminator B. Probabilities

calculated through both discriminators will be used to update generator models

to reduce dissimilarity between images.

Figure 3.10: Architecture of CycleGAN

3.3.3.2 AttentionGAN

AttentionGAN published by Tang et al. (2021) is a GAN variant that was meant

for translation task of unpaired images similar to CycleGAN. However, as the

45

name suggests, AttentionGAN included attention mechanism so that the

generators can effectively differentiate the foreground and background objects,

allowing a conservative translation between two image domains where the

change of background can be minimized. This feature is preferrable since image

synthesis algorithm involved in this project will only require rendering of

shadow without affecting the products in the image.

The architecture of AttentionGAN used in this project represents the

second scheme introduced in the paper that comes with two generators with

built-in attention layers. As shown in Figure 3.11, input image will be fed to one

of the generators, G where its Content Mask Generator, Gc will generate a

content mask, C f that represents the transformed foreground object while

Attention Mask Generator, GA will create Foreground, A f and Background

Attention Masks, Ab to differentiate them. Subsequently, both content masks

and Foreground Attention Masks, A f will be multiplied to mask out domain

transformation of background. Concurrently, Background Attention Masks, Ab

is multiplied with input image to obtain another intermediate image preserved

background. Finally, by fusing both intermediate images, a realistic transformed

image can be formed with minimal background alteration. After that, the image

will be fed to another generator with identical structure to revert the

transformation so that Cycle Consistency Loss can be computed and updated to

generators.

Figure 3.11: Architecture of AttentionGAN

46

3.3.4 Lighting Variation

After applying shadow synthesis using GAN, lighting variation was added to

each rendered image using conventional data augmentation approach similar to

Rigner (2019) to further extend the reliability of training dataset. In this project,

Albumentations data augmentation library by Buslaev et al. (2020) was used as

it encompasses vast amount of image augmentation operation while providing

support to bounding box augmentation.

 As attached in Appendix B, the python script will first read user input

about number of images to be generated per input image, as well as directory of

images and annotations. After that, for each input image in the directory,

multiple image and bounding box augmentation will be performed using

Albumentation.Compose() and Albumentation.transform() before each of the

augmented image and bounding boxes were written to a new directory. All

augmentation used in this project can be summarized in Table 3.2.

Table 3.2: Configuration of Data Augmentation

Function Parameters Value

RandomRotate90() probability 1.0

Resize() height 800

width 800

interpolation cv2.INTER_AREA

ShiftScaleRotate() rotate_limit (°) 5

border_mode cv2.BORDER_REFLECT_101

probability 1.0

ISONoise color_shift (0.01, 0.05)

intensity 0.1, 0.5

probability 0.5

RandomBrightness-

Contrast()

brightness_limit 0.2

contrast_limit 0.2

probability 0.5

47

Ultimately, the self-prepared dataset was expanded up to 3000 training

images, 600 of validation images, 600 test images of overlapped products and

600 images of non-overlapped products shown in Figure 3.12 followed by its

class distribution as in Figure 3.13.

Figure 3.12: Samples in Expanded Dataset

Figure 3.13: Instances Per Class in self-prepared dataset

3.4 Selection of Baseline Object Detection Model

As reviewed in Chapter 2.4.2, several types of models were used in the field,

including R-CNN series under two-stage detector category, YOLO models as

0
100
200
300
400
500
600
700
800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Instances Per Class in Self-Prepared Dataset

Train Validation Test (Non-overlap) Test (Overlap)

48

well as RetinaNet under single-stage detector. However, instead of choosing a

baseline model randomly for improvement, filtering will be required through

preliminary benchmarking of the models.

 Therefore, model architectures were analysed but single-stage models

were prioritized because deep learning-based retail product checkout asserts

high requirement on the accuracy and inference speed of the object detection

model as checkout process needs to be performed rapidly with adequate

accuracy (Xie, Wang and Zhao, 2021). Subsequently, benchmarking was

carried out to assess their actual performance in retail product recognition.

3.4.1 State-of-the-Art Model Architectures

3.4.1.1 YOLOv3

As stated by Redmon and Farhadi (2018), YOLOv3 represents an updated

algorithm based on YOLOv2 by updating the initial backbone known as

DarkNet-19 to a deeper structure named as DarkNet-53. This is because

YOLOv2 with DarkNet-19 is only comprised of 19 convolutional layers and 11

additional layers to perform object detection and continuous downsampling

further causes loss of fine-grained features and result in poor performance

especially in detecting small objects. In contrast, YOLOv3 improvised the

backbone network to 53 convolutional layers and included shortcut layers that

resembles the skip connection in ResNet which will add the output from

previous layer to subsequent layer. As claimed by Mantripragada (2020), this

configuration will aid the training of deep networks without resulting

diminishing gradient.

 After the backbone structure, YOLOv3 architecture is followed by

multi-scale detection head through another 53 convolutional layers. As

described by Redmon and Farhadi (2018), their algorithm performs detection at

three different scales by first downsampling feature maps by 3 different ratios

which are 8, 16, 32 for detection of small, medium and large object respectively

before each of them are pass for detection at respective convolutional layer with

1 x 1 filter. For detection of large object, it was done by taking feature map that

is downsampled by ratio of 32 in previous layers and passed to 82nd layer for

prediction. Subsequently, the previous feature map will be upsampled by 2

before detection of medium objects at 94th layer. Lastly, the feature map size is

49

further increased by ratio of 2 for small object detection at 106th convolutional

layer. Ultimately, the structure allows YOLOv3’s performance to surpass

YOLOv2 especially in detection of small-sized objects. Overall architecture can

be represented in Figure 3.14.

Figure 3.14: YOLOv3 Model Architecture

3.4.1.2 YOLOv5

As the name suggests, YOLOv5 represents the fifth architecture under YOLO

family that is written in Python language rather than C language adopted in

previous versions of YOLO. However, similar to YOLOv4 that was released by

Bochkovskiy, Wang and Liao (2020) in the same year due to parallel

commencement of research, YOLOv5 achieved similar results compared to

YOLOv4 but greatly shorten the training and inference time.

Figure 3.15: YOLOv5 Architecture

As shown in Figure 3.15, YOLOv5 can be decomposed into 3 modules,

namely backbone, detection neck and head. The backbone of the model is

50

composed of Cross Stage Partial Network (CSPNet) and Spatial Pyramid

Pooling (SPP) Layer. In CSPNet, the feature map will be directed into two paths

where one of them involves a dense block and a transition layer. The feature

map will pass through both paths and merge together for the next layer. This

configuration is claimed to reduce repeated gradient during training while

maintaining the model’s complexity (Wang et al., 2019). As for SPP, variable-

sized feature maps can be pooled with multiple kernel sizes (5 × 5, 9 × 9, and

13 × 13) to generate a fixed-sized output, making the backbone to be scale-

invariant (Jocher et al., 2021).

In detection neck, Path Aggregation Network (PANet) is used. It is an

enhanced Feature Pyramid Network (FPN) that introduces lateral connection

between a bottom-up and top-down pyramid structure that speeds up

information flow. Besides, it also includes adaptive feature pooling to extract

information from each feature level before each of the aligned feature map is

combined for enhanced object localization. As for the detection head, YOLOv5

will predict at different scales (18 × 18, 36 × 36, 72 × 72) similar to YOLOv3,

making it robust in handling objects of multiple sizes (Xu et al., 2021).

Additionally, as stated by Thuan (2021), YOLOv5 also introduces auto

learning anchors that can effectively compute the most suitable anchor sizes for

any custom dataset through K-means and genetic learning algorithms. The best-

fit anchor boxes will help to the model to converge faster, thus improving

training time and accuracy. Other than that, YOLOv5 is flexible by offering 4

models with different model complexity, namely YOLOv5s, YOLOv5m,

YOLOv5L and YOLOv5x. Each of them targets different computing platform

from edge devices to cloud deployment.

3.4.1.3 RetinaNet

RetinaNet represents a network that was designed to tackle the issue of low

foreground-background ratio which is commonly found in single-stage object

detectors. Hence, by proposing a new loss function in the existing single-stage

architecture, RetinaNet is able to achieve high accuracy as in two-stage object

detectors while attaining the simple structure and high speed of single-stage

models. According to Lin et al. (2018), the loss function can be referred as Focal

Loss which is based on Cross Entropy Loss. As shown in Equation 3.2, when

51

focusing factor 𝛾𝛾 is larger than 1, misclassified object will have a low 𝑝𝑝𝑡𝑡

probability value, hence increasing the coefficient to 1, leaving the weight

unaffected. Oppositely, weight will be downscaled to 0 for well-classified

object due to high 𝑝𝑝𝑡𝑡 value. As a result, the network will emphasize on

foreground objects that are hard to detect through larger weights while reducing

the importance of easy examples like background.

𝐹𝐹𝐼𝐼𝑐𝑐𝑎𝑎𝑎𝑎 𝐿𝐿𝐼𝐼𝐿𝐿𝐿𝐿 (𝑝𝑝𝑡𝑡) = −(1 − 𝑝𝑝𝑡𝑡)𝛾𝛾log (𝑝𝑝𝑡𝑡) (3.2)

In terms of architecture, RetinaNet can be dismantled into three main

components which consist of a backbone network and two sub-networks for

object classification and bounding box regression. At the beginning of the

network, a custom structure which involves combination of ResNet and FPN

are adopted. ResNet serves as a bottom-up pathway to efficiently generate

feature maps at different scales regardless of input image size. Subsequently,

the backbone is followed by FPN that adds a top-down pathway and form lateral

connection with ResNet. The FPN is composed of 5 different levels (P3 to P7)

and 256 channels to provide a rich feature map that is scale-invariant and boost

the speed and accuracy of the model. After that, two parallel and identical

subnetworks are connected to each FPN level as subnetworks. Both of them are

made of 3 × 3 convolutional layers with 256 filters and end with another 3 × 3

convolutional layer with the filters that varies in number according to object

classification or bounding box regression task (Deshmukh, 2020). The

architecture of RetinaNet can be summarized as in Figure 3.16.

Figure 3.16: Architecture of RetinaNet

52

3.4.2 Preliminary Benchmarking

By utilizing MVTec D2S Dataset prepared in Chapter 3.2.1, preliminary

benchmarking was carried out to justify their actual product recognition

performance. Similar to the approach by Bukhari et al. (2021), training of model

was carried out in a web IDE released by Google (n.d.) known as Google

Colaboratory due to the reason that it offers additional computing power

through professional graphics card such as NVIDIA Tesla K80 to NVIDIA

Tesla T4 with large VRAM to speed up training of deep learning algorithms

under python environment. To ensure that the results can be compared under

same fair ground between all models, training was done with the same GPU,

which is NVIDIA Tesla T4 equipped with 16GB of VRAM as illustrated in

Figure 3.17.

Figure 3.17: GPU Specification in Google Colaboratory

 Prior to training process, python codes for each model were

constructed as attached in Appendix C, D, F by referring to implementation on

each official repository as well as other repositories that allowed easier

implementation based on Pytorch framework due to higher flexibility and

friendly for developers supported by the statement of Dubovikov (2018). At the

same time, to ensure each model can be compared on the same grounds,

hyperparameters were configured as in Table 3.3 and remained constant

throughout the training of each model. Additionally, several model-specific

parameters were set due to difference in architectures.

Table 3.3: Hyperparameters for Product Recognition Model

Hyperparameters Value

Epoch / *Max Batches 150 / 27000

Classes / *Filter 60 / 195

53

Table 3.3 (Continued)

Batch Size / *Subdivision 16 / (4 × 4)

Input size 512 × 512

Learning rate 0.001

Optimizer Adam

* YOLOv3-specific hyperparameters

3.5 Model Optimization

Based on the results of preliminary benchmarking, YOLOv5 was selected as a

baseline model, and it was further optimized and fine-tuned to enhance its

performance on edge devices with limited computational power which is Jetson

Nano. In order to achieve this, backbone architecture of YOLOv5 which is

CSPNet mentioned in Section 3.4.1.2 will be substituted with three different

light-weight CNN architectures to reduce computational load so that retail

product recognition can be carried out on edge devices with the best trade-off

between accuracy and inference speed.

 Three backbone structures involved in this project were the latest

representative models from their family, which encompassed MobileNet V3,

ShuffleNet V2 and GhostNet. Each of the backbone were studied in terms of

their architectures and summarized in following sections before applying them

to YOLOv5 models as shown in Appendix G. After that, by using self-prepared

dataset in Chapter 3.2.2, each model was trained and evaluated. Additionally,

other components of YOLOv5 model were remained unchanged such as

hyperparameters were remained unchanged to ensure fair comparison.

3.5.1 ShuffleNet V2

ShuffleNet V2 represents another light-weight CNN introduced by Ma et al.

(2018) aimed to optimize speeds and Memory Access Cost (MAC) instead of

FLOPs. Hence, the model was constructed based on ShuffleNet V1 and adheres

4 rules of efficient CNN architecture. First rule asserts that the network should

possess same numbers of input and output channel to minimize the processing

time per batch. Additionally, group convolution should be avoided as it

increases MAC despite with the same FLOPs. Moreover, the network should

54

have less multi-path structure because it increases efficiency but greatly alters

the overall computing efficiency. Concurrently, the network should utilize less

element-wise operations such as Rectified Linear Unit (ReLU) as it requires

larger MAC.

 By complying to the 4 guidelines, ShuffleNet V2 possesses the

architecture in Figure 3.18. Firstly, the input feature map will be split to two

paths to avoid group convolutions. Both branches consisted of at least one 1 ×

1 convolutional layer and 3 × 3 depthwise convolutional layer. After that,

feature maps will be concatenated to form output feature maps with the same

channel as input. Besides, unlike ShuffleNet V1, subsequent element wise

operations were removed while preserving channel shuffle to allow information

sharing between channel groups to reduce computational load while improving

accuracy.

Figure 3.18: ShuffleNet V2 Architecture

 Despite ShuffleNet V2 comes with several scales, the lightest variant

(x1.0) was chosen to minimize the model complexity for deployment on Jetson

Nano. Figure 3.19 demonstrates the modified architecture of YOLOv5 with

ShuffleNet V2.

Figure 3.19: Proposed YOLOv5 with ShuffleNet V2 Backbone

55

3.5.2 MobileNet V3

MobileNet V3 represents the third version of MobileNet series which is a light-

weight CNN designed to uplift the performance of embedded systems in

carrying out model inferencing. As stated by Howard et al. (2019), MobileNet

V3 inherits the concept of MobileNet family with Depthwise Convolutional

Filters and Pointwise Convolution. As shown in Figure 3.20, in contrast to

traditional convolutional filters that directly applies kernel with same depth as

input image [W1×H1×N1] to obtain an output, depthwise convolutional filters

utilizes kernel with depth of 1 [K×K×1] and iterates through single channel of

image. After stacking up 3 channels of output, an intermediate representation

with size of [W’×H’×N1] can be formed. Subsequently, pointwise convolution

is applied by iterating a kernel with the size of [1 x 1 x N1] through the

intermediate image. As a result, an output of [W2×H2×N2] is obtained. This

implementation helps to reduce computational complexity since less

multiplications are involved during the process.

Figure 3.20: Depthwise and Pointwise Convolution Process

Furthermore, similar to its previous version, MobileNet V3 adopted

Inverted Residual Block to preserve useful information under low feature

dimension in such light-weight models. It was achieved by expanding feature

dimension through pointwise convolution before passing the feature map to

depthwise convolution layers. Besides, MobileNet V3 also implemented

56

Squeeze-and-Excitation (SE) layers which will compress and restore feature

maps to emphasize important features before feeding to subsequent layers. This

helps to increase accuracy while maintaining model size since SE layers are

small and computationally cheap. As for activation function, MobileNet V3

adopts hard-Swish illustrated in Figure 3.21 that is faster to compute since no

exponential function is involved compared to sigmoid loss function.

Figure 3.21: Hard-Swish Activation Function (Howard et al., 2019)

Despite there are two models available for MobileNet V3, smaller

variant with 12 layers was chosen as the backbone of YOLOv5 as it is targeted

for devices with limited computational resources will be used as backbone of

YOLOv5 model to maximize the inference speed, as shown in Figure 3.22.

Figure 3.22: Proposed YOLOv5L with MobileNet V3 Backbone

3.5.3 GhostNet

GhostNet was developed by Han et al. (2020) with the aim to allow efficient

deployment of CNN on devices with limited computation resources as well. In

contrast to traditional CNN, GhostNet introduces a plug-and-play ghost module

that is able to extract equivalent amount of feature maps during convolutional

operations with lower Floating-Point Operations Per Second (FLOPS) because

some of the feature maps will be similar and can be generated from other

57

essential feature maps using linear operations instead of using convolution that

is computationally expensive.

As shown in Figure 3.23, the Ghost Module can be separated into 2

processes where the first part represents a conventional convolution with less

channel to produce essential feature maps. After that, linear operation, Ф is

applied to each feature maps in order while identity mapping will be applied to

original feature map for preservation. Through concatenation, an output feature

maps can be formed.

Figure 3.23: Ghost Module (Han et al., 2020)

 After combining GhostNet with YOLOv5, the overall architecture will

look as in Figure 3.24.

Figure 3.24: Proposed YOLOv5 with GhostNet Backbone

3.6 Computing Platform

In this project, the software prototype of cashierless checkout was deployed on

a single-board computer developed by NVIDIA known as Jetson Nano, which

is shown in Figure 3.25. It is because the device comes with several advantages

compared to Raspberry Pi4 that is commonly used in the computer vision task.

According to Table 3.4 that was constructed based on NVIDIA (2014) and

58

Raspberry Pi (2019), Jetson Nano is equipped with NVIDIA Tegra X1 with 128

Compute Unified Device Architecture (CUDA) cores that helps to accelerate

inferencing performance compared to Broadcom Video Core VI that is meant

for multimedia streaming. Additionally, Jetson Nano is able to provide 0.5

TFLOPS of computing power, which is 37% higher than Raspberry Pi 4 despite

it requires an additional 1A of current.

Table 3.4: Raspberry Pi 4 and Jetson Nano Specifications

Raspberry Pi 4 Jetson Nano

FLOPS 13.5 G 0.5 T

CPU Quad-core ARM Cortex
A72 @ 1.5 GHz

Quad-core ARM A57
@ 1.43 GHz

GPU
Broadcom Video Core VI

(32-bit)
@ 500 MHz

NVIDIA Tegra X1 w/ 128
CUDA cores
@ 921 MHz

Memory 8GB LPDDR4 4GB LPDDR4

Input Power 5V 3A 5V 4A

Camera MIPI CSI Port / USB MIPI CSI Port / USB

Figure 3.25: Jetson Nano (NVIDIA, 2014)

3.6.1 TensorRT Acceleration

TensorRT is a runtime that provides optimization of deep learning models so

that inference process can be accelerated on devices powered by NVIDIA GPU

especially for those embedded systems with lower computing capability such as

Jetson Nano. According to documentation by NVIDIA (2016), TensorRT

involves 5 steps of optimization in maximizing the throughput of deep learning

models on embedded systems. Firstly, models are quantized from Floating Point

59

32 (FP32) format to Floating Point (FP16) or Integer 8 (INT8) format. Through

quantization, range of parameters can be reduced and result in smaller model

weights. Additionally, model accuracy can be preserved by adopting symmetric

quantization shown in Figure 3.26 where floating-point numbers in range are

rounded and outliers are clipped to maximum of minimum value.

Figure 3.26: TensorRT Quantization (NVIDIA, 2016)

 Furthermore, a deep learning model tends to have similar computation

blocks that can unnecessarily occupy the GPU memory and reduce the overall

efficiency. By using TensorRT, repetitive nodes can be fused together in

horizontal or vertical manner so that lesser amount of tensor data will need to

be read or write for each layer, making the model to be less memory intensive.

In addition, TensorRT offer automatic tuning of model parameters based on

kernel libraries of target platform to maintain the performance across different

GPU. Lastly, TensorRT will utilize CUDA cores for parallel computation and

dynamically allocate memory for each tensor for specific duration which will

ultimately boost the performance on edge devices while minimizing memory

usage as well as power consumption.

In this project, TensorRT was deployed to convert the proposed

YOLOv5 model to Engine file format where the model weights are quantized

to FP16 precision as it reduces the latency with minimal sacrifice of accuracy

compared to INT8 that requires calibration dataset to preserve the model

accuracy after quantization.

60

3.7 Evaluation Metrics

Several evaluation metrics were involved to analyse and compare between

different GAN(s) and product recognition models that were experimented in this

project. Each of the metrics will be described in the following subchapters.

3.7.1 Fréchet inception distance (FID)

In this project, Fréchet inception distance (FID) was used to evaluate the

effectiveness of GAN-based image synthesis framework along with qualitative

analysis. FID introduced by Heusel et al. (2018) represents an evaluation metric

that is commonly used to measure the performance of GAN(s) by comparing

the similarity between real and generated images. When the generated image is

having a low FID score, it is said to be similar to real images since feature

vectors are closely correlated and less noise is present in the image.

 Computation of FID Score involved a simplified Inception V3 model

where its output layer is removed. Then, generated and real images will be fed

to the model to generate feature vectors that represent them. After that, by

utilizing both feature vectors, FID Score can be calculated using sum squared

difference of two mean feature vectors and trace linear algebra, Tr in Equation

3.3.

𝐹𝐹𝐼𝐼𝐹𝐹 = �𝜇𝜇𝑟𝑟 − 𝜇𝜇𝑔𝑔�

2
+ 𝐺𝐺𝑟𝑟�𝛴𝛴𝑟𝑟 + 𝛴𝛴𝑔𝑔 − 2(𝛴𝛴𝑟𝑟𝛴𝛴𝑔𝑔)1/2� (3.3)

Where:

𝜇𝜇𝑟𝑟 = mean of real images (feature-wise)

𝜇𝜇𝑔𝑔 = mean of fake images (feature-wise)

𝛴𝛴𝑟𝑟 = Covariance matrix of real images

𝛴𝛴𝑔𝑔 = Covariance matrix of generated images

3.7.2 Mean Average Precision (mAP)

mAP represents an important metric used to evaluate the performance of an

object detection model and it was widely adopted in Follmann et al. (2018),

Rigner (2019) and Liu et al. (2020). However, calculation method of mAP can

be divided into two approaches depending on type of generic object detection

61

challenge which are PASCAL VOC and COCO. Due to different calculation

approach among them, PASCAL VOC was adopted for this project to ensure

the fairness of comparison.

Before mAP can be calculated, precision, 𝑃𝑃 and recall, 𝑅𝑅 will need to

be computed through Equation 3.4 and 3.5 by using three elements in confusion

matrix which are True Positives (TP), False Positive (FP), and False Negative

(FN). In this project, TP represents number of products that are correctly

identified while FP indicates the number of misclassified product or background

detected as product. As for the FN, it means the number of undetected products.

 𝑃𝑃 =
𝐺𝐺𝑃𝑃

𝐺𝐺𝑃𝑃 + 𝐹𝐹𝑃𝑃
=

𝐺𝐺𝑃𝑃
number of detection

 (3.4)

 𝑅𝑅 =
𝐺𝐺𝑃𝑃

𝐺𝐺𝑃𝑃 + 𝐹𝐹𝑁𝑁
=

𝐺𝐺𝑃𝑃
number of ground truths

 (3.5)

As summarized by Everingham and Winn (2012), mAP according to

PASCAL VOC standard can be calculated by first obtaining all the recall values,

𝑅𝑅 when there is a change of precision value, 𝑃𝑃 exceeding the current maximum

value through equation 3.4. Then, mAP can be calculated by obtaining the Area

Under the Curve (AUC) of the interpolated Precision-Recall (PR) Curve using

Equation 3.6.

 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑝𝑝(𝑅𝑅𝑖𝑖+1) = max
𝑅𝑅 ≥ 𝑅𝑅𝑛𝑛+1

(𝑅𝑅) (3.6)

3.7.3 Confusion Matrix

As claimed by Sammut and Webb (2017), Confusion Matrix can be defined as

a metric used to evaluate the classification performance of a machine learning

or deep learning model on a test set. As shown in Table 3.5, two axes of the

matrix are occupied by true and predicted class where the former can be

obtained from annotations while the latter is obtained from output of classifier.

The first row demonstrates that all 10 objects in class A are correctly predicted

while second demonstrates that there are two objects in class B that are

misclassified as class A objects.

62

Table 3.5: Example of Confusion Matrix

 Predicted

 A B

Actual
A 10 0

B 2 28

 Similar to Bukhari et al. (2021), Confusion Matrix was also adopted in

this project to evaluate the performance of product recognition model in

predicting handling each product category including those with intraclass

variation that can be easily misclassified.

3.7.4 Checkout Accuracy (cAcc)

cAcc represents an evaluation metric introduced by Wei et al. (2019) that was

designed specifically for checkout process. It indicates the success rate of a

product recognition algorithm and reflects the system’s practicality in the actual

checkout process because the metric will only consider the prediction as a

success if and only if all products in the image are predicted accurately in the

aspect of quantity and classes.

 cAcc can be calculated by first obtaining prediction error for all

product classes, CDi using Equation 3.7, followed by Equation 3.8. When all

products in an image is successfully predicted, CDi will be zero, and δ will

provide output of 1 for cAcc computation.

𝐶𝐶𝐹𝐹𝑖𝑖 = ��𝑃𝑃𝑖𝑖,𝑘𝑘 − 𝐺𝐺𝐺𝐺𝑖𝑖,𝑘𝑘�

𝐾𝐾

𝑘𝑘=1

 (3.7)

𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 =

∑ 𝛿𝛿(𝐶𝐶𝐹𝐹𝑖𝑖 , 0)𝑁𝑁
𝑖𝑖=1

𝑁𝑁

(3.8)

Where:

𝑃𝑃𝑖𝑖,𝑘𝑘 = predicted count of k-th product class in i-th image

𝐺𝐺𝐺𝐺𝑖𝑖,𝑘𝑘 = actual count of k-th product class in i-th image

𝑁𝑁 = number of images in test set

63

3.7.5 Training and Inference Time

Training and inference time are crucial metrics because it indicates the

practicality of a product recognition algorithm for the use in actual retail stores’

checkout operation. Hence, training time was recorded for every model when

their training of 150 epochs on Google Colaboratory was done. As for the

inference time, the value represents the average time required for Jetson Nano

to perform predictions of all 600 images of overlapped products in test subset.

3.8 Software Development

This project involved implementation of a python GUI that will make use of the

developed product recognition algorithm to provide prediction of products and

computation of its price. To achieve this, several components such as MongoDB

Database service and Tkinter were used for the development.

3.8.1 MongoDB Database

MongoDB represents a scalable NoSQL database that is suitable for data with

high volume. Unlike the conventional database service which make use of tables

and rows, MongoDB utilizes key-value pairs known as documents as their basic

data unit and sets of documents and function are contained in a structure known

as collections, which is shown in Figure 3.27 along with the MongoDB admin

portal.

Figure 3.27: MongoDB Admin Portal

64

 By including the python Application Programming Interface (API)

provided by MongoDB, the proposed product recognition application will be

able to fetch the latest model weight and product prices from the database to

minimize human involvement in checkout system maintenance and updates.

3.8.2 Tkinter

Tkinter represents an open-source built-in module that allows construction of

GUI application in python. A Tkinter-based GUI application is essentially made

up of a main window with interactive components known as widgets, which

include buttons, labels, trees, entry. Their arrangement can be adjusted by

specifying grid location in the window.

 Tkinter is used in this project due to its portability and availability.

According to Lutz (2006), Tkinter library is highly portable since it can run on

Windows, MacOS and Linux without any modifying source code of the

program. Additionally, Tkinter is already included in Python installation

packages and can be utilized out of the box after installation of Python.

65

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Preliminary Benchmarking

At the initial stage of the project, several single-stage object detection models

used in product recognition applications were being benchmarked using

validation subset of MVTec D2S Dataset that is identical to Ning, Li and

Ramesh (2019). The representative models involved in the evaluation process

were YOLOv3, YOLOv5 and RetinaNet. Their performance was recorded and

tabulated in Table 4.1 along with the two-stage Mask R-CNN used by the

authors to serve as a reference.

4.1.1 Quantitative Results

Table 4.1: Quantitative Performance of Representative Models

Model
Backbone

Type

mAP

(%)

Inference

Time (ms)

Training

Time (hrs)

Mask R-CNN

(Ning, Li and

Ramesh, 2019)

ResNet-50 (96.20) 75.00 -

YOLOv3 DarkNet-53 99.79 33.33 10.50

YOLOv5L CSPNet 99.50 12.20 5.69

RetinaNet ResNet-50 99.49 35.32 14.26

From the table, it can be observed that YOLOv3 achieved the highest mAP

score of 99.79% while YOLOv5L and RetinaNet are close to each other in terms

of their mAP with the value of 99.5% and 99.49% respectively. This result

indicates that YOLOv3 can provide accurate detections across all 60 classes of

retail products compared to YOLOv5L and RetinaNet. However, it can be

inferred that all of the models can adapt to the actual checkout situation where

66

overlapping of products and variable lighting conditions are present during the

inference process since all of the models achieved high mAP of above 99%.

Concurrently, in the perspective of average inference time, YOLOv5L

has the shortest inference time of 12.20ms, which is 2.73 times faster than

YOLOv3 with an inference time of 33.33ms. Meanwhile, RetinaNet requires

35.32ms for product detection which is slightly slower than YOLOv3 by 1.05

times and fall behind YOLOv5L by 2.895 times. This could be due to difference

in terms of architecture where YOLOv5L has adopted CSPNet as its backbone

which reuses gradients information from previous layers to update the weights

during backpropagation, which asserts a lower computational cost compared to

YOLOv3 and RetinaNet that utilize DarkNet-53 and ResNet-FPN as their

backbone structure respectively. As for the training time, YOLOv5L has

significantly low training time of 6 hours in contrast to YOLOv3 and RetinaNet

which require 10.5 hours and 14 hours to complete a training session of 150

epochs.

Concurrently, it can be noticed that all three single-stage models have

surpassed Mask R-CNN that was tested in Ning, Li and Ramesh, (2019) in terms

of mAP despite the comparison may not be fair because the reference model

was trained only for 10 epochs in their work. As for the average inference time,

all models also clearly outperformed Mask R-CNN that requires 75ms to

perform inference on 360 images in the test subset. This proves that single-stage

models are far more efficient compared to two-stage architectures.

4.1.2 Qualitative Results

On the other hand, each model was tested in terms of their qualitative

performance. It was done by choosing an unseen image to serve as constant

variable for inference of all three models. The image chosen for the analysis

was D2S_068214 which comprised of 13 highly occluded products placed on

checkout counter and all annotations were extracted from JSON annotation file

(.json) provided. The ground truth image with labelled product names can be

observed as in Figure 4.1 along with the images with predicted outputs

generated through YOLOv3, YOLOv5L, and RetinaNet.

67

Figure 4.1: Ground truth and Predictions of Representative Models

Table 4.2: Confidence Score of Detected Products

Items
Confidence Score

YOLOv3 YOLOv5L RetinaNet

adelholzener_alpenquelle_

naturell_075

0.93 0.97 0.97

augustiner_weissbier_05 1.00 0.98 0.99

suntory_gokuri_limonade 0.99 0.98 1.00

apple_granny_smith 1.00 0.97 1.00

apple_roter_boskoop 0.89 0.95 0.95

avocado 0.99 0.99 1.00

banana_single 0.98 0.97 0.97

kiwi 1.00 0.94 1.00

pasta_reggia_spaghetti 0.98 0.97 0.96 (0.69)

feldsalat 0.92 0.95 0.71

roma_rispentomaten 0.78 0.97 0.99

rucola 0.98 0.98 1.00

zucchini 0.98 0.98 0.91

68

According to Figure 4.1, it is observed that each model has successfully detected

all the products within the image and classified the correctly. However, there

are some variations in terms of product localization and product confidence

score between the models which can be seen through the bounding box location.

Out of all detected products by YOLOv3, there are some bounding boxes that

are misaligned compared to the ground truth images, especially for the long-

shaped products like pasta_reggia_spaghetti and roma_rispentomaten. In

contrast, bounding boxes generated by YOLOv5 and RetinaNet are able to

converge to the ground truth boxes closely compared to other representative

models.

At the same time, according to confidence score summary in Table 4.1,

it can be observed that RetinaNet and YOLOv3 achieved relatively maximum

confidence of 1.0 for several distinct products such as avocado, kiwi and

apple_granny_smith compared to YOLOv5. However, both models suffer from

poor performance for products that are partially visible in the image. For

instance, RetinaNet can only detect rucola with 0.71 confidence score while

YOLOv3 only achieve a confidence score of 0.78 for roma_rispentomaten.

Moreover, RetinaNet generates a duplicate prediction of pasta_reggia_

spaghetti on feldsalat due to occlusion between two products. This situation is

similar with the research by Rigner (2019) and it is likely to be resulted by

insufficient training of bounding box regressor in RetinaNet. In contrast,

YOLOv5 detects the products with a uniform and high confidence because all

scores are within 0.94 to 0.99 including those that are partially visible in the

image.

In brief, it can be inferred that YOLOv5L can generalize better and

outperforms YOLOv3 and RetinaNet in actual checkout situation with occluded

products. Thus, it is more suitable for computer vision-based retail checkout

applications and was used for subsequent development and analysis.

4.2 Effectiveness of Image Synthesis Framework

4.2.1 GAN-synthesized Images

In this section, two state-of-the-art GAN(s) which include AttentionGAN and

CycleGAN, were being evaluated qualitatively as well as quantitatively to

justify their effectiveness in simulating environmental features of real-world

69

checkout counter scenario. Qualitative analysis involves the observation and

comparison of several samples generated by each GAN under same

hyperparameters while quantitative analysis was done by comparing FID value

between models. Both measurements are being tabulated in Table 4.3.

Table 4.3: Shadow Synthesis Results of AttentionGAN and CycleGAN

 Generated Samples
FID

(↓)

Input

-

Attention

GAN

46.82

Cycle

GAN

40.99

By observing the generated samples, it can be noticed that both models

are able to simulate shadows of the products to some extent. However,

CycleGAN provides a smoother and realistic shadow compared to

AttentionGAN especially when the product’s packaging is irregular like

Nescafe and Mentos Mint. Additionally, CycleGAN tends to cause less details

degradation compared to AttentionGAN. It can be observed through the blurry

product details from the images generated by AttentionGAN, but these details

remained clear for the images rendered by CycleGAN. As for color degradation,

CycleGAN tends to cause less color degradation in contrast to AttentionGAN

for small-sized products. This can be observed through the color change of Halls

Black from black color to green color as well as Dequadin that changes from

dark blue to light blue in the leftmost image. Oppositely, when products occupy

larger portion of the image, such as Mentos Mint and Campbell Soup in the third

image, color degradation is more obvious for CycleGAN compared to

70

AttentionGAN. On the other hand, by looking at the background, it can be noted

that AttentionGAN is more advantageous as the background is nearly identical

to input image compared to CycleGAN that generates dark corners in the image.

These phenomena are likely due to inclusion of attention mechanism in

AttentionGAN where products will be focused as the foreground of the image

and more conservative in dealing with the background. In contrast, CycleGAN

is slightly more aggressive in general by causing noticeable changes to both

background and foreground.

 On the other hand, FID as the quantitative measurement shows that

CycleGAN has a lower score of 40.99 compared to AttentionGAN with the

value of 46.82. This indicates that the images generated by CycleGAN is highly

correlated to the real-world checkout condition than AttentionGAN, making the

CycleGAN to be more suitable for image synthesis framework in this project.

4.2.2 Effect on Model Performance

In order to evaluate the effectiveness of rendered images in detecting retail

products under actual checkout condition, YOLOv5L was trained using 3

datasets that indicates 3 different levels of image synthesis used in this project.

Single dataset involves one product placed randomly at the checkout counter

whereas Syn dataset only simulates the occlusion between products using Crop

and Place algorithm in Chapter 3.3.2. On the other hand, Render dataset adds

the presence of shadows and lighting variation through CycleGAN as well as

conventional image augmentation respectively. Each dataset was used to train

YOLOv5L and Data Priming Network (FPS), which is a Faster R-CNN-based

reference model by Li et al. (2019) that adopted similar image synthesis

approach for their retail product recognition applications. After training the

model for the same epoch number, both models were tested for scenes with and

without overlapping products to justify if their performance in handling the real-

world checkout condition. Their quantitative results are as tabulated in Table

4.4.

71

4.2.2.1 Quantitative Results

Table 4.4: Quantitative Results for Different Levels of Image Synthesis

Model

Non-overlapping Scene Overlapping Scene

mAP

(%)

cAcc

(%)

Inference

Time

(s)

mAP

(%)

cAcc

(%)

Inference

Time

(s)

DPNet

(Baseline)

Single 98.4 56.17 1.767 65.4 0.50 1.762

Syn 97.9 81.83 1.770 97.5 76.50 1.765

Render 98.8 83.83 1.767 97.8 79.67 1.781

YOLOv5L

Single 99.5 94.50 0.661 89.8 39.00 0.685

Syn 99.5 99.33 0.689 98.5 96.33 0.689

Render 99.5 99.83 0.682 98.5 97.33 0.681

Based on Table 4.4, when the models are trained with single dataset, YOLOv5L

outperforms DPNet in all aspects. However, it can be noticed that both models

show a decrement in mAP and cAcc with the presence of overlapped products.

YOLOv5L suffered a mAP drop from 99.5% to 89.8% and the cAcc decreased

drastically from 94.50% to only 39.00%. while DPNet has a drop of mAP from

98.4% to 65.4% as well as reduction of cAcc from 56.17% to only 0.50%. This

trend indicates that the dataset with only one product is ineffective in tackling

actual checkout scenario.

 Furthermore, when Syn dataset is used for training, YOLOv5L still

surpasses DPNet but both models demonstrate a performance improvement

especially in the aspect of cAcc where YOLOv5L and DPNet have the

increment of 57.33% and 76% in overlapping scene respectively. At the same

time, with Syn dataset, overall performance of YOLOv5L has been boosted to

a saturation point with (mAP, cAcc) of (99.5%, 99.33%) in non-overlapping

scene and (98.5%, 96.33) when overlapping products are present. This trend

proves that Crop and Place algorithm can help to increase the practicality of

model in detecting and counting products during occluded scene.

 Moreover, when Render dataset is applied, YOLOv5L still has an

advantage over DPNet with higher value in all aspects. However, both models

72

show a slight improvement compared to the scenario trained by Syn dataset.

Concurrently, with Render dataset, YOLOv5L successfully achieved a peak

performance where the value of mAP and cAcc are pushed to (99.5%, 99.83%)

and (98.5%, 97.33%) for overlapping and non-overlapping scene respectively.

The increment demonstrates that GAN-based shadow synthesis and lighting

variation through conventional image augmentation can boost the capability of

product recognition model in handling checkout scenario in real life.

 In brief, YOLOv5L performs better compared to DPNet in recognizing

and counting retail products. It is most likely because Faster R-CNN adopts

fixed, multi-scale anchor boxes while YOLOv5 family uses adaptive anchor

boxes that will compute for the anchors that can best fit the current dataset,

making it effective in learning and detecting variable-sized products and

occlusion compared to Faster R-CNN. On the other hand, YOLOv5L also

surpassed DPNet in terms of inference time by at least 60% for all three levels

of image synthesis since DPNet is based on Faster R-CNN with a two-stage

architecture. Thus, it can be inferred that GAN-based shadow synthesis and

lighting variation are effective in enhancing model’s practicality in real-world

checkout process while YOLOv5L is more relevant to be used in in this project

due to high performance with minimal inference time.

4.3 Model Improvement with light-weight backbones

In order to allow deployment of YOLOv5 model on Jetson Nano with limited

computational resources while preserving its recognition performance. Several

experimental models were developed by replacing backbone structure of

YOLOv5L with state-of-the-art light-weight CNN, including MobileNet V3,

ShuffleNet V2 and GhostNet. After the training using a similar set of

hyperparameters shown in Chapter 3.4.2, qualitative and quantitative evaluation

were carried out and the results were tabulated in the following sections.

73

4.3.1 Quantitative Results

Table 4.5: Quantitative Results for Light-Weight Experimental Models

Backbone GFLOPs
mAP

(%)

cAcc

(%)

Training

Time

(hrs)

Inference Time

Normal

(s)

TensorRT

(s)

CSPNet

(Baseline)
108.1 98.5 97.33 6.470 0.505 0.282

GhostNet 42.5 98.2 89.33 3.852 0.244 0.221

ShuffleNet

V2
40.7 98.2 87.83 2.891 0.217 0.154

MobileNet

V3
38.5 98.2 89.17 2.019 0.200 0.142

According to Table 4.5, it can be clearly observed that all light-weight

backbones have successfully reduced the FLOPs of YOLOv5L baseline model

to low values. In exchange, slight degradation of mAP and cAcc occurred.

Among all experimental models, GhostNet with 42.5 FLOPs has the smallest

degradation from the baseline performance where its mAP only falls by 0.3%

while still having a high cAcc value of 89.33%. Similarly, ShuffleNet V2 with

40.7 GFLOPs has a 0.3% drop in mAP but it has the most drastic decrement of

cAcc among all models, which is from 97.33% to 87.83%. Concurrently,

MobileNet V3’s performance is similar to GhostNet by achieving 98.2% in

mAP and 89.17% in cAcc while having a minimal FLOPs of 38.5 GLOPs

among all models.

 On the other hand, by looking into the training and inference time, all

experimental models require shorter training time of below 4 hours, which can

be advantageous compared to the baseline model that requires 6.470 hours for

training. Furthermore, among the three light-weight models, MobileNet V3 is

the most efficient in training since it only requires 2.019 hours while ShuffleNet

V2 and GhostNet require 2.891 hours and 3.852 hours respectively. As for the

normal inference time, all models are able to reduce the inference time from

0.505s to below 0.3s per image on Jetson Nano. The shortest inference time can

be observed for MobileNet V3 with only 0.2s per image in contrast to

74

ShuffleNet V2 as well as GhostNet with 0.217s and 0.244s respectively.

Furthermore, after model optimization using TensorRT runtime mentioned in

Chapter 3.6.1, inference time of each model has been greatly shortened on

Jetson Nano. The most significant improvement can be seen for baseline model

with 44.2% improvement. Besides, other experimental models also improved

by at least 29% and MobileNet V3 has achieved minimum inference time of

0.142s on Jetson Nano which is equivalent to 7 Frame Per Second (FPS).

On the other hand, performance of experimental models on every

product class can be assessed through Confusion Matrix in Figure 4.2.

Figure 4.2: Confusion Matrix of Experimental Models

From the figure, it can be noticed that all models have more

Background False Positive (FP) predictions where they detect background as

75

products compared to baseline model. This situation seems to be more serious

for model with MobileNet V3 backbone because Background FP is present for

most of the product classes compared to ShuffleNet V2 and GhostNet variant.

However, these FP predictions can be avoided by increasing the confidence

threshold in actual implementation. Meanwhile, ShuffleNet V2 and GhostNet

are weaker in handling intraclass variation compared to MobileNet V3 because

both models will have several misclassifications between Dutch Lady Full

Cream Milk and Dutch Lady Low Fat Milk. Thus, MobileNet V3 is still a more

relevant product recognition model compared to ShuffleNet V2 and GhostNet.

4.3.2 Qualitative Analysis

In this section, each light-weight model was assessed qualitatively to justify

their performance in handling actual checkout condition that includes lighting

variation and heavily occluded products. The analysis was done by performing

inference of an image with large quantity of occluded products as well as unseen

an unseen, low brightness image using each experimental model.

4.3.2.1 Performance in Extreme Condition

Figure 4.3: Prediction of Experimental Models in Extreme Condition

76

Table 4.6: Confidence Score of Detected Products in Extreme Condition

Items

 Confidence Score

MobileNet V3

+ YOLOv5L

ShuffleNet V2

+ YOLOv5L

GhostNet

+ YOLOv5L

Dequadin 0.96 0.95 0.98

Dutch Lady Full

Cream Milk
0.92 0.92 0.96

Dutch Lady Low

Cream Milk
0.97 0.96 0.95

Halls Black 0.95 0.95 0.99

HFT Black Soya 0.95 0.95 0.96

KitKat 0.97 0.90 0.98

Mentos Orange 0.91 0.89 0.95

NutriOne Nuts 0.95 0.96 0.96

Ricola Lemon 0.93 0.95 0.97

According to Figure 4.3, each of the experimental model successfully provides

prediction for every product in extreme condition where products are heavily

occluded with each other along with intraclass variation. However, it can be

observed that the predicted bounding box of ShuffleNet V2 is slightly

misaligned with the product compared to MobileNet V3 as well as GhostNet

variant.

On the other hand, based on confidence score of each detected product

shown in Table 4.5, it can be noticed that YOLOv5 with GhostNet backbone

can provide predictions with high confidences since all the values are above

0.95. Besides, confidence scores provided by MobileNet V3 variant are also

considered acceptable with the lowest score of 0.91. In contrast, ShuffleNet V2

gives predictions with lower confidences among all models especially for the

products that are overlapped such as KitKat and Mentos Orange. Thus, it can be

inferred that YOLO v5 with MobileNet V3 and GhostNet backbone are able to

adapt to extreme condition of real-world checkout counter scenario.

77

4.3.2.2 Adaptivity to Lighting Variation

Figure 4.4: Prediction of Experimental Models in Low Light

Table 4.7: Confidence Score of Detected Products in Low Light

Items

 Confidence Score

MobileNet V3

+ YOLOv5L

ShuffleNet V2

+ YOLOv5L

GhostNet

+ YOLOv5L

Dutch Lady Full

Cream Milk

0.78

0.88

0.87

0.84

(0.43)

0.96

0.85

Mentos Mint 0.40 0.98 0.92

Nescafe Coffee 0.85 0.98 0.94

From Figure 4.4 which demonstrates the prediction of each

experimental model in low-light condition, it is found that the bounding boxes

generated by ShuffleNet V2 and GhostNet are very similar with the ground truth

bounding boxes even in low-light condition. In contrast, the bounding boxes

78

generated by MobileNet V3 are distinct compared to ground truth boxes despite

all the products are predicted accurately.

Meanwhile, according to Table 4.5 which shows the confidence score

of each predicted product in the image, it is discovered that GhostNet is able to

maintain its performance by providing an accurate prediction at high confidence

score. In comparison, YOLOv5 model with MobileNet V3 backbone has low

confidence score in general whereas ShuffleNet V2 variant has higher

confidence score but the prediction is associated with a false positive of Dutch

Lady Low Fat Milk. Therefore, it can be inferred that GhostNet variant can adapt

to lighting variation effectively, followed by the model with MobileNet V3

backbone.

4.3.3 Training Loss

Furthermore, each experimental model can be evaluated and compared through

their training and loss curve. Based on Figure 4.5 to 4.8, it can be observed that

there is no overfitting occur for all models since their validation loss are able to

converge and no increment happened at the end of the training process.

However, in contrast to the loss curve of baseline model, all three models seem

to be underfit because their training loss did not fully converge but this can be

overcome by performing training for more epochs. Among all the light-weight

models, training loss of GhostNet is the fastest to converge. Hence it can be

inferred that GhostNet variant is more efficient in training compared to other

light-weight experimental models.

Figure 4.5: Loss Curve of YOLOv5 (Baseline)

0

0.02

0.04

0.06

0.08

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

YOLOv5 (Baseline) Loss Curve

Training Loss Validation Loss

79

Figure 4.6: Training and Validation Loss of YOLOv5 (MobileNet V3)

Figure 4.7: Training and Validation Loss of YOLOv5 (GhostNet)

Figure 4.8: Training and Validation Loss of YOLOv5 (ShuffleNet V2)

0

0.02

0.04

0.06

0.08

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

YOLOv5 (MobileNet V3) Loss Curve

Train Loss Validation Loss

0

0.02

0.04

0.06

0.08

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

YOLOv5 (GhostNet) Loss Curve

Train Loss Validation Loss

0

0.02

0.04

0.06

0.08

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

YOLOv5 (ShuffleNet V2) Loss Curve

Training Loss Validation loss

80

4.4 Software Prototype of Cashierless Checkout System

By using the weights of baseline YOLOv5 model as well as YOLOv5 with

MobileNet V3 backbone structure, a software prototype was developed in

Python language, and it involves MongoDB Application Programming

Interface (API) for database connection as well as Tkinter for GUI development.

Each of the feature will be demonstrated in the following sections.

4.4.1 Model Weights Update

In order to avoid human involvement in maintaining and updating the

cashierless checkout system, the proposed software prototype included a feature

that will keep the product recognition model up to date before daily operation.

When a model is trained with new product category, user will just have

to select the updated model weight through a python script and the file will be

uploaded to MongoDB database before the file name and unique id are written

into a Comma Separated Value (.csv) file. Subsequently, as shown in Figure 4.9,

Jetson Nano as the edge device will fetch the latest weight to the software

directory based on the file name and unique id in the Comma Separated Values

(CSV) file. If there is no updated model weight in the database, the software

will proceed to launch after providing a ‘No update’ output.

Figure 4.9: Model Weight Automatic Update Feature

4.4.2 Price Computation

As the fundamental feature of a checkout system, price computation function

was added to the proposed software prototype along with other supportive

elements to improve the accuracy of detection and price computation. When the

81

products are being placed under the camera, the software prototype compute for

frame difference and contour using createBackgroundSubtractor

MOG2() and findContours() shown in Figure 4.10 to detect for any object or

hand movement in the area. This helps to prevent pre-mature detection and price

computation that might result in false predictions and product price.

Figure 4.10: Frame Difference and Contour

 Moreover, the software prototype will allow users to continue their

checkout session when there are more products to be purchased. All detected

products will be listed in the shopping cart section and their price is updated in

real time based on the latest price fetched from MongoDB database, which is as

demonstrated in Figure 4.11.

Figure 4.11: Continuous Update of Shopping Cart

82

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In a nutshell, the ultimate goal of this project is achieved where a software

prototype of computer vision-based cashierless checkout system is developed

and deployed on Jetson Nano by using YOLOv5 as the state-of-the-art deep

learning model by fulfilling all the sub-objectives in this project.

 Firstly, an image pre-processing framework is constructed successfully

by involving a crop and paste algorithm to generate synthetic images with

randomly placed products, followed by CycleGAN and conventional image

augmentation to simulate shadows and lighting variation in images with

minimal human effort. With an FID of 40.99, the framework is proved to

generate training data that is closely correlated to real images. Besides, the

training data also boosted the performance of YOLOv5L to 98.5% in mAP and

97.33% in cAcc in scene with overlapping products.

 Subsequently, a deep learning-based product recognition model is

successfully built by involving YOLOv5L as its achieved uniformly high mAP

of 99.5% while maintaining short inference time of 12.20ms and training time

of 5.69 hours in the preliminary benchmark with other single-stage

representative models on MVTec D2S Dataset.

Moreover, YOLOv5L was further improved with several light-weight

backbone architecture, including MobileNet V3, ShuffleNet V2 and GhostNet.

The result demonstrates that the inference time was effectively shortened to

0.142s through TensorRT runtime with only degradation of 0.3% in mAP and

cAcc is maintained at 89.17% with the lightest MobileNet V3 architecture.

 Lastly, the product recognition model is successfully implemented in a

software prototype using Tkinter along with several features like price retrieval

and computation function as well as model weight update capability through

MongoDB database API. The results demonstrates that the software prototype

can run successfully even on edge devices like Jetson Nano and able to provide

accurate predictions and price computation.

83

5.2 Recommendations for Future Work

Due to time constraint, the results presented in this project may not be optimal.

There are multiple works that can be carried out to elevate the quality of this

project. First of all, the existing image synthesis framework can be further

enhanced by using adopting other GAN architectures or techniques that can

simulate more realistic shadow and lighting variation while having less

background and product color degradation.

Moreover, the light-weight models used for product recognition can be

further improved with state-of-the-art modules or functions to obtain a better

trade-off in terms of accuracy and inference time on edge devices. For instance,

attention module or model pruning can be applied to improve the accuracy while

maintaining the model size and FLOPs.

 Additionally, incremental learning can be applied in the training of

product recognition model as an effort in tackling the actual retail store

challenges where new products or package design are introduced continuously.

 Lastly, the software prototype of cashierless checkout system can be

enhanced by including more features like e-payment gateway and auto-

packaging system to further reduce the work force requirement at the checkout

counter.

84

REFERENCES

Amazon, 2016. Introducing Amazon Go and the world’s most advanced
shopping technology, [online] Available at:<https://www.youtube.com/watch?
v=NrmMk1Myrxc> [Accessed 16 August 2021].

Amsler, S. and Shea, S., 2021. What is RFID and how does it work?, [online]
IoT Agenda. Available at: <https://internetofthingsagenda.techtarget.com/
definition/RFID-radio-frequency-identification> [Accessed 10 August 2021].

Ananth, S., 2020. Faster R-CNN for object detection. Medium, [online]
Available at: <https://towardsdatascience.com/faster-r-cnn-for-object-detection
-a-technical-summary-474c5b857b46> [Accessed 28 August 2021].

Anwla, P.K., 2020. Focal Loss in Object Detection | A Guide To Focal Loss.
Analytics Vidhya, [online] Available at: <https://www.analyticsvidhya.com/
blog/2020/08/a-beginners-guide-to-focal-loss-in-object-detection/> [Accessed
30 August 2021].

Bocanegra, C., Khojastepour, M.A. (Amir), Arslan, M.Y., Chai, E., Rangarajan,
S. and Chowdhury, K.R., 2020. RFGo: a seamless self-checkout system for
apparel stores using RFID. In: Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. [online] pp.1–14.
https://doi.org/10.1145/3372224.3419211.

Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M., 2020. YOLOv4: Optimal
Speed and Accuracy of Object Detection. arXiv:2004.10934 [cs, eess], [online]
Available at: <http://arxiv.org/abs/2004.10934> [Accessed 2 September 2021].

Boesch, D., 2021. Object Detection in 2021: The Definitive Guide. [online]
Available at: <https://viso.ai/deep-learning/object-detection/>
[Accessed 1 September 2021].

Bukhari, S.T., Amin, A.W., Naveed, M.A. and Abbas, M.R., 2021. ARC: A
Vision-based Automatic Retail Checkout System. arXiv:2104.02832 [cs],
[online] Available at: <http://arxiv.org/abs/2104.02832> [Accessed 11 August
2021].

85

Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M. and
Kalinin, A.A., 2020. Albumentations: Fast and Flexible Image Augmentations.
Information, 11(2), p.125. https://doi.org/10.3390/info11020125.

Chauhan, N.K. and Singh, K., 2018. A Review on Conventional Machine
Learning vs Deep Learning. In: 2018 International Conference on Computing,
Power and Communication Technologies (GUCON), [online] IEEE.pp.347–
352. https://doi.org/10.1109/GUCON.2018.8675097.

Davis, B., 2021. What is the state of the art in research? – Mvorganizing.org.
[online] Available at: <https://www.mvorganizing.org/what
-is-the-state-of-the-art-in-research2/#What_is_the_state_of_the_art_in_
research> [Accessed 1 September 2021].

Deshmukh, A., 2020. RetinaNet Model for object detection explanation. [online]
Available at: <https://towardsmachinelearning.org/retinanet-model-for-object-
detection-explanation/> [Accessed 3 September 2021].

Dodge, S. and Karam, L., 2016. Understanding how image quality affects deep
neural networks. In: 2016 Eighth International Conference on Quality of
Multimedia Experience (QoMEX). [online] 2016 Eighth International
Conference on Quality of Multimedia Experience (QoMEX). Lisbon, Portugal:
IEEE.pp.1–6. https://doi.org/10.1109/QoMEX.2016.7498955.

Dubovikov, K., 2018. PyTorch vs TensorFlow — spotting the difference.
[online] Medium. Available at: <https://towardsdatascience.com/pytorch-vs-
tensorflow-spotting-the-difference-25c75777377b> [Accessed 17 April 2022].

Dutta, A. and Zisserman, A., 2019. The VIA Annotation Software for Images,
Audio and Video. In: Proceedings of the 27th ACM International Conference
on Multimedia, MM ’19. [online] New York, NY, USA: Association for
Computing Machinery.pp.2276–2279.https://doi.org/10.1145/3343031.335053
5.

Everingham, M. and Winn, J., 2012. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Development Kit. Pattern Analysis, Statistical
Modelling and Computational Learning, Tech. Rep, 8, p.32.

86

Farfan, B., 2020. What Is Retail? [online] Available at:
<https://www.thebalancesmb.com/what-is-retail-2892238>
[Accessed 5 September 2021].

Follmann, P., Böttger, T., Härtinger, P., König, R. and Ulrich, M., 2018. MVTec
D2S: Densely Segmented Supermarket Dataset. In: Proceedings of the
European Conference on Computer Vision (ECCV). [online] pp.581–585.
Available at: <http://link.springer.com/10.1007/978-3-030-01249-6_35>
[Accessed 29 July 2021].

Geng, W., Han, F., Lin, J., Zhu, L., Bai, J., Wang, S., He, L., Xiao, Q. and Lai,
Z., 2018. Fine-Grained Grocery Product Recognition by One-Shot Learning.
In: Proceedings of the 26th ACM international conference on Multimedia.
[online] pp.1706–1714. https://doi.org/10.1145/3240508.3240522.

Gollapudi, S., 2019. Artificial Intelligence and Computer Vision. In: Learn
Computer Vision Using OpenCV. [online] Berkeley, CA: Apress.pp.1–29.
https://doi.org/10.1007/978-1-4842-4261-2_1.

Google, n.d. Frequently Asked Questions. [online] Available at:
<https://research.google.com/colaboratory/faq.html>
[Accessed 14 November 2021].

Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C. and Xu, C., 2020. GhostNet: More
Features from Cheap Operations. arXiv:1911.11907 [cs], [online] Available at:
<http://arxiv.org/abs/1911.11907> [Accessed 17 April 2022].

Hashemi, M., 2019. Enlarging smaller images before inputting into
convolutional neural network: zero-padding vs. interpolation. Journal of Big
Data, 6(1), p.98. https://doi.org/10.1186/s40537-019-0263-7.

He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2018. Mask R-CNN.
arXiv:1703.06870 [cs], [online] Available at: <http://arxiv.org/abs/1703.06870>
[Accessed 29 August 2021].

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. and Hochreiter, S., 2018.
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. arXiv:1706.08500 [cs, stat], [online] Available at:
<http://arxiv.org/abs/1706.08500> [Accessed 17 April 2022].

87

Hirschmann, R., 2021. Malaysia: COVID-19 MCO movements 2020. [online]
Available at: <https://www-statista-com.libdb.njit.edu:8443/statistics/1117078/
malaysia-movement-and-behavior-during-mco-covid-19/>
[Accessed 26 August 2021].

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W.,
Zhu, Y., Pang, R., Vasudevan, V., Le, Q.V. and Adam, H., 2019. Searching for
MobileNetV3. arXiv:1905.02244 [cs]. [online] Available at: <http://arxiv.org/a
bs/1905.02244> [Accessed 6 April 2022].

IBM Cloud Education, 2020. What is Machine Learning? [online] IBM.
Available at: <https://www.ibm.com/cloud/learn/machine-learning> [Accessed
24 August 2021].

International Business Machine Corporation (IBM), n.d. What is Computer
Vision? [online] Available at: <https://www.ibm.com/topics/computer-vision>
[Accessed 16 August 2021].

Jocher, G., Stoken, A., Borovec, J., NanoCode012, Chaurasia, A., TaoXie,
Changyu, L., V, A., Laughing, tkianai, yxNONG, Hogan, A., lorenzomammana,
AlexWang1900, Hajek, J., Diaconu, L., Marc, Kwon, Y., oleg,
wanghaoyang0106, Defretin, Y., Lohia, A., ml5ah, Milanko, B., Fineran, B.,
Khromov, D., Yiwei, D., Doug, Durgesh and Ingham, F., 2021.
ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and
YouTube integrations. [online] Zenodo. https://doi.org/10.5281/zenodo.467965
3.

Jund, P., Abdo, N., Eitel, A. and Burgard, W., 2016. The Freiburg Groceries
Dataset. arXiv:1611.05799 [cs], [online] Available at:<http://arxiv.org/abs/161
1.05799> [Accessed 29 July 2021].

Khan, S., Rahmani, H., Shah, S.A.A. and Bennamoun, M., 2018. A Guide to
Convolutional Neural Networks for Computer Vision. Synthesis Lectures on
Computer Vision, 8(1), pp.1–207. https://doi.org/10.2200/S00822ED1V01Y20
1712COV015.

88

Koturwar, S., Shiraishi, S. and Iwamoto, K., 2019. Robust multi-object
detection based on data augmentation with realistic image synthesis for point-
of-sale automation. 33rd AAAI Conference on Artificial Intelligence, AAAI 2019,
31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019
and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, pp.9492–9497. https://doi.org/10.1609/aaai.v33i01.33019492.

Li, C., Du, D., Zhang, L., Luo, T., Wu, Y., Tian, Q., Wen, L. and Lyu, S., 2019.
Data Priming Network for Automatic Check-Out. arXiv:1904.04978 [cs],
[online] Available at: <http://arxiv.org/abs/1904.04978> [Accessed 7 August
2021].

Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollár, P., 2018. Focal Loss for
Dense Object Detection. arXiv:1708.02002 [cs], pp.1–29.

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X. and Pietikäinen,
M., 2020. Deep Learning for Generic Object Detection: A Survey. International
Journal of Computer Vision, 128(2), pp.261–318. https://doi.org/10.1007/s1126
3-019-01247-4.

Liu, W., Guo, J., Lin, H., Huang, L. and Gao, Z., 2019. A Bread Recognition
System Based on Faster R-CNN. Journal of Computers, 30(6), pp.216–222.
Lutz, M., 2006. Programming Python. 3rd ed ed. [online] O’Reilly. Available
at: <libgen.li/file.php?md5=9487d2bd841af34bd9034639df930683>
[Accessed 17 April 2022].

Ma, N., Zhang, X., Zheng, H.-T. and Sun, J., 2018. ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design. arXiv:1807.11164 [cs],
[online] Available at: <http://arxiv.org/abs/1807.11164> [Accessed 14 April
2022].

Mantripragada, M., 2020. Digging deep into YOLO V3 — A hands-on guide
Part 1. [online] Available at: <https://towardsdatascience.com/digging-deep-
into-yolo-v3-a-hands-on-guide-part-1-78681f2c7e29> [Accessed 3 September
2021].

Ministry of Health Malaysia, 2020. COVID-19: Management Guidelines For
Workplaces. Available at: <https://www.moh.gov.my/moh/resources/Penerbit
an/Garis%20Panduan/COVID19/Annex_25_COVID_guide_for_workplaces_
22032020.pdf> [Accessed 13 November 2021].

89

Moorthy, R., Behera, S., Verma, S., Bhargave, S. and Ramanathan, P., 2015.
Applying Image Processing for Detecting On-Shelf Availability and Product
Positioning in Retail Stores. In: Proceedings of the Third International
Symposium on Women in Computing and Informatics. pp.451–457.
https://doi.org/10.1145/2791405.2791533.

Ning, J., Li, Y. and Ramesh, A., 2019. Simplifying Grocery Checkout with
Deep Learning. [online] Available at: <https://www.semanticscholar.org/paper/
Simplifying-Grocery-Checkout-with-Deep-Learning-Ning-Li/975ff328a7c86b
593ed2501a1dd33a43e629b8bc> [Accessed 29 August 2021].

NVIDIA, 2014. Jetson Nano Data Sheet. [online] Available at:
<https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/
docs/JetsonNano_DataSheet_DS09366001v1.0.pdf > [Accessed 6 April 2022]

NVIDIA, 2016. NVIDIA TensorRT. [online] Available at: <https://developer.n
vidia.com/tensorrt> [Accessed 6 April 2022].

Oh, J.S. and Chun, I.G., 2020. Implementation of Smart Shopping Cart using
Object Detection Method based on Deep Learning. Journal of the Korea
Academia-Industrial cooperation Society, 21(7), pp.262–269. https://doi.org/10
.5762/KAIS.2020.21.7.262.

Ohri, A., 2021. YOLO Algorithm For Object Detection: A Simple Guide (2021).
[online] Jigsaw Academy. Available at: <https://www.jigsawacademy.com/blo
gs/ai-ml/yolo-algorithm/> [Accessed 29 August 2021].

O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V.,
Krpalkova, L., Riordan, D. and Walsh, J., 2019. Deep Learning vs. Traditional
Computer Vision. In: Science and Information Conference. pp.128–144.
https://doi.org/10.1007/978-3-030-17795-9_10.

Panasonic, 2018. RFID Based Walk-through Checkout Solution for Future
Retail. [online] Panasonic Newsroom Global. Available at: <http://news.panaso
nic.com/global/topics/2018/55288.html> [Accessed 14 August 2021].

90

Potter, R., 2021. What is the use and purpose of image annotation in object
detection? [online] Medium. Available at: <https://becominghuman.ai/what-is-
the-use-and-purpose-of-image-annotation-in-object-detection-8b7873a14cd0>
[Accessed 16 April 2022].

Raspberry Pi, 2019. Raspberry Pi 4 Datasheet. [online] Available at:
<https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf>
[Accessed 17 April 2022].

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You Only Look
Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs], [online]
Available at: <http://arxiv.org/abs/1506.02640> [Accessed 29 August 2021].

Redmon, J. and Farhadi, A., 2018. YOLOv3: An Incremental Improvement.
arXiv:1804.02767 [cs], [online] Available at: <http://arxiv.org/abs/1804.02767>
[Accessed 3 September 2021].

Ren, S., He, K., Girshick, R. and Sun, J., 2016. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks. arXiv:1506.01497 [cs],
[online] Available at: <http://arxiv.org/abs/1506.01497> [Accessed 11 August
2021].

Rigner, A., 2019. AI-based machine vision for retail self-checkout system.
Master’s Theses in Mathematical Sciences. [online] Available at:
<http://lup.lub.lu.se/student-papers/record/8985308> [Accessed 4 August
2021].

Sammut, C. and Webb, G.I. eds., 2017. Encyclopedia of Machine Learning and
Data Mining. [online] Boston, MA: Springer US. https://doi.org/10.1007/978-
1-4899-7687-1.

Saxena, P., 2020. Data Augmentation for Custom Object Detection | YOLO.
[online] Available at: <https://medium.com/predict/data-augmentation-for-
custom-object-detection-15674966e0c8> [Accessed 4 August 2021].

Seals, M., 2019. On the Robustness of Object Detection Based Deep Learning
Models. [online] University of Tennessee. Available at: <https://trace.tennessee
.edu/utk_gradthes/5487> [Accessed 21 August 2021].

91

Sherman, R., 2014. Business Intelligence Guidebook. 1st ed. [online] Morgan
Kaufmann. Available at: <https://www.sciencedirect.com/science/article/pii/B
9780124114616000186>.

Sweeney, P.J., 2010. RFID For Dummies. [online] Indiana: Wiley Publishing,
Inc. Available at: <https://www.wiley.com/en-us/RFID+For+Dummies-p-
9781118054475> [Accessed 10 August 2021].

Tang, H., Liu, H., Xu, D., Torr, P.H.S. and Sebe, N., 2021. AttentionGAN:
Unpaired Image-to-Image Translation using Attention-Guided Generative
Adversarial Networks. arXiv:1911.11897 [cs, eess], [online] Available at:
<http://arxiv.org/abs/1911.11897> [Accessed 16 April 2022].

Thuan, D., 2021. Evolution of yolo algorithm and yolov5: the state-of-the-art
object detection algorithm. [online] Available at: <http://urn.fi/URN:NBN:fi:a
mk-202103042892>.

Tzutalin, 2015. LabelImg. [Python] Available at: <https://github.com/tzutalin/la
belImg> [Accessed 5 September 2021].

Varol, G. and Salih, R., 2015. Toward retail product recognition on grocery
shelves. p.944309. https://doi.org/10.1117/12.2179127.

Wang, C.Y., Liao, H.Y.M., Yeh, I.H., Wu, Y.H., Chen, P.Y. and Hsieh, J.-W.,
2019. CSPNet: A New Backbone that can Enhance Learning Capability of CNN.
arXiv:1911.11929 [cs], [online] Available at: <http://arxiv.org/abs/1911.11929>
[Accessed 3 September 2021].

Wei, X.S., Cui, Q., Yang, L., Wang, P. and Liu, L., 2019. RPC: A Large-Scale
Retail Product Checkout Dataset. arXiv:1901.07249 [cs], [online] Available at:
<http://arxiv.org/abs/1901.07249> [Accessed 28 July 2021].

Wei, Y., Tran, S., Xu, S., Kang, B. and Springer, M., 2020. Deep Learning for
Retail Product Recognition: Challenges and Techniques. Computational
Intelligence and Neuroscience, 2020, pp.1–23. https://doi.org/10.1155/2020/88
75910.

92

Wu, B.F., Tseng, W.J., Chen, Y.S., Yao, S.J. and Chang, P.J., 2016. An
intelligent self-checkout system for smart retail. In: 2016 International
Conference on System Science and Engineering (ICSSE). IEEE.pp.1–4.
https://doi.org/10.1109/ICSSE.2016.7551621.

Xie, L., Wang, S. and Zhao, L., 2021. Analysis of Commodity image
recognition based on deep learning. In: 2021 6th International Conference on
Multimedia and Image Processing. [online] New York, NY, USA: Association
for Computing Machinery.pp.50–55. Available at: <https://doi.org/10.1145/344
9388.3449389> [Accessed 28 August 2021].

Xu, R., Lin, H., Lu, K., Cao, L. and Liu, Y., 2021. A Forest Fire Detection
System Based on Ensemble Learning. Forests, 12, p.217. https://doi.org/10.33
90/f12020217.

Yamashita, R., Nishio, M., Do, R.K.G. and Togashi, K., 2018. Convolutional
neural networks: an overview and application in radiology. Insights into
Imaging, 9(4), pp.611–629. https://doi.org/10.1007/s13244-018-0639-9.

Yi, W., Sun, Y., Ding, T. and He, S., 2019. Detecting retail products in situ
using CNN without human effort labeling. arXiv:1904.09781 [cs], [online]
Available at: <http://arxiv.org/abs/1904.09781> [Accessed 4 August 2021].

You, K., Long, M., Wang, J. and Jordan, M.I., 2019. How Does Learning Rate
Decay Help Modern Neural Networks? arXiv:1908.01878 [cs, stat], [online]
Available at: <http://arxiv.org/abs/1908.01878> [Accessed 1 September 2021].

Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M. and Lee, B.,
2021. A Survey of Modern Deep Learning based Object Detection Models.
arXiv preprint arXiv:2104.11892, [online] Available at: <https://arxiv.org/abs/2
104.11892v2> [Accessed 1 September 2021].

Zhong, S., 2021. Automatic Retail Product Identification System for Cashierless
Stores. [online] Available at: <http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-
52659> [Accessed 14 August 2021].

93

Zhu, J.Y., Park, T., Isola, P. and Efros, A.A., 2020. Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks. arXiv:1703.10593
[cs], [online] Available at: <http://arxiv.org/abs/1703.10593> [Accessed 7
August 2021].

Zou, Z., Shi, Z., Guo, Y. and Ye, J., 2019. Object Detection in 20 Years: A
Survey. arXiv preprint arXiv:1905.05055, [online] Available at:
<https://arxiv.org/abs/1905.05055v2> [Accessed 1 September 2021].

94

APPENDICES

Appendix A: Image Synthesis Script

95

96

97

98

99

Appendix B: Image Augmentation Script

100

101

102

Appendix C: YOLOv3 Training and Evaluation Codes

103

Appendix D: RetinaNet Training and Evaluation Codes

104

Appendix E: GAN Training Script

105

Appendix F: YOLOv5 Training Script

106

Appendix G: Light Weight Models Architectures

1. MobileNet V3

107

2. ShuffleNet V2

108

3. GhostNet

109

Appendix H: Tables

Table K - 1: State-of-Art Models for Retail Product Checkout

Author
Dataset

applied

State-of-Art

Model
Train Test Configuration

mAP

(%)
Precision Recall IoU

Run

time

(ms)

Liu et al. (2019)

Self-

captured

(Bread)

Faster R-CNN

(VGG-16)
452 3 Steps: 70 × 103 99.14 540

Koturwar,

Shiraishi and

Iwamoto (2019)

Self-

captured

(Groceries)

Faster R-CNN

(ResNet-101)
20000

300

Steps: 200 × 103

Learning rate: 0.003

0.93 0.84 0.86

 600 0.84 0.98 0.85

100 0.61 0.84 0.78

110

Rigner (2019)

Self-

captured

(Groceries)

Mask R-CNN

(ResNet-50)

2430

72.3 590

YOLOv3 59.9 127

RetinaNet

(ResNet-50)
71.8 257

Ning, Li and

Ramesh (2019)

D2S

Dataset

Mask R-CNN

(ResNet – 101)

2880 360

Learning rate: 0.002

Epochs : 10

Optimizer: SGD

0.788

Mask R-CNN

(ResNet –50)
0.753

111

Wu et al. (2016)
Web-

crawled

YOLO +

CaffeNet

YOLO

63271

CaffeNet

317593

YOLOv1

Iterations: 30 × 103

CaffeNet

Iterations: 100 × 103

Learning rate: 0.0005

Batch Size: 128

Momentum: 0.9

66.4

(One)

69.63

75

65.7

(Two)

64.1

(Three)

Oh and Chun

(2020)

Self-

captured

(Beverage)

YOLOv3 2800

Epochs: 16200

Learning rate: 0.001

Momentum: 0.9

Weight decay: 0.0005

82.28

112

Xie, Wang and

Zhao (2021)

RPC

Dataset

Faster R-CNN

(ResNet-101)

 6000

96.98

YOLOv3 82.32

RetinaNet

(ResNet-101)
99.56

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study
	1.6 Contribution of the Study
	1.7 Outline of the Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Existing Cashierless Checkout Approaches
	2.1.1 Radio Frequency Identification (RFID)
	2.1.2 Artificial Intelligence (AI) and Computer Vision

	2.2 Datasets of Retail Products
	2.2.1 Retail Product Checkout Dataset (RPC)
	2.2.2 Densely Segmented Supermarket (D2S) Dataset
	2.2.3 CAPG Grocery Product Dataset (CAPG-GP)
	2.2.4 Freiburg Groceries
	2.2.5 Dataset Comparison

	2.3 Image Synthesis
	2.3.1 Conventional Data Augmentation
	2.3.2 Mask based Synthesis
	2.3.3 Generative Adversarial Network (GAN)

	2.4 Detection Algorithm
	2.4.1 Classic Computer Vision Techniques
	2.4.1.1 SURF + Feature Matching
	2.4.1.2 Haar Features + Adaboost & SIFT + SVM

	2.4.2 Deep Learning based Computer Vision Techniques
	2.4.2.1 Convolutional Neural Network (CNN)
	2.4.2.2 State-of-the-Art Models
	2.4.2.2.1 Faster R-CNN
	2.4.2.2.2 Mask R-CNN
	2.4.2.2.3 YOLO
	2.4.2.2.4 RetinaNet

	2.4.2.3 Summary

	2.5 Supportive Elements for Retail Checkout System

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.1.1 Overall System Flow
	3.1.2 Work Plan

	3.2 Dataset Preparation
	3.2.1 MVTec D2S Dataset
	3.2.2 Custom Dataset Preparation
	3.2.2.1 Image Acquisition Setup
	3.2.2.2 Annotation

	3.3 Development of Image Synthesis Framework
	3.3.1 Binary Mask Extraction
	3.3.2 Crop and Place Algorithm
	3.3.3 GAN-based Shadow Synthesis
	3.3.3.1 CycleGAN
	3.3.3.2 AttentionGAN

	3.3.4 Lighting Variation

	3.4 Selection of Baseline Object Detection Model
	3.4.1 State-of-the-Art Model Architectures
	3.4.1.1 YOLOv3
	3.4.1.2 YOLOv5
	3.4.1.3 RetinaNet

	3.4.2 Preliminary Benchmarking

	3.5 Model Optimization
	3.5.1 ShuffleNet V2
	3.5.2 MobileNet V3
	3.5.3 GhostNet

	3.6 Computing Platform
	3.6.1 TensorRT Acceleration

	3.7 Evaluation Metrics
	3.7.1 Fréchet inception distance (FID)
	3.7.2 Mean Average Precision (mAP)
	3.7.3 Confusion Matrix
	3.7.4 Checkout Accuracy (cAcc)
	3.7.5 Training and Inference Time

	3.8 Software Development
	3.8.1 MongoDB Database
	3.8.2 Tkinter

	CHAPTER 4
	4 RESULTS AND DISCUSSION
	4.1 Preliminary Benchmarking
	4.1.1 Quantitative Results
	4.1.2 Qualitative Results

	4.2 Effectiveness of Image Synthesis Framework
	4.2.1 GAN-synthesized Images
	4.2.2 Effect on Model Performance
	4.2.2.1 Quantitative Results

	4.3 Model Improvement with light-weight backbones
	4.3.1 Quantitative Results
	4.3.2 Qualitative Analysis
	4.3.2.1 Performance in Extreme Condition
	4.3.2.2 Adaptivity to Lighting Variation

	4.3.3 Training Loss

	4.4 Software Prototype of Cashierless Checkout System
	4.4.1 Model Weights Update
	4.4.2 Price Computation

	CHAPTER 5
	5 CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusions
	5.2 Recommendations for Future Work

	REFERENCES
	APPENDICES

	MH_1702805_Front Cover.pdf
	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study
	1.6 Contribution of the Study
	1.7 Outline of the Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Existing Cashierless Checkout Approaches
	2.1.1 Radio Frequency Identification (RFID)
	2.1.2 Artificial Intelligence (AI) and Computer Vision

	2.2 Datasets of Retail Products
	2.2.1 Retail Product Checkout Dataset (RPC)
	2.2.2 Densely Segmented Supermarket (D2S) Dataset
	2.2.3 CAPG Grocery Product Dataset (CAPG-GP)
	2.2.4 Freiburg Groceries
	2.2.5 Dataset Comparison

	2.3 Image Synthesis
	2.3.1 Conventional Data Augmentation
	2.3.2 Mask based Synthesis
	2.3.3 Generative Adversarial Network (GAN)

	2.4 Detection Algorithm
	2.4.1 Classic Computer Vision Techniques
	2.4.1.1 SURF + Feature Matching
	2.4.1.2 Haar Features + Adaboost & SIFT + SVM

	2.4.2 Deep Learning based Computer Vision Techniques
	2.4.2.1 Convolutional Neural Network (CNN)
	2.4.2.2 State-of-the-Art Models
	2.4.2.2.1 Faster R-CNN
	2.4.2.2.2 Mask R-CNN
	2.4.2.2.3 YOLO
	2.4.2.2.4 RetinaNet

	2.4.2.3 Summary

	2.5 Supportive Elements for Retail Checkout System

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.1.1 Overall System Flow
	3.1.2 Work Plan

	3.2 Dataset Preparation
	3.2.1 MVTec D2S Dataset
	3.2.2 Custom Dataset Preparation
	3.2.2.1 Image Acquisition Setup
	3.2.2.2 Annotation

	3.3 Development of Image Synthesis Framework
	3.3.1 Binary Mask Extraction
	3.3.2 Crop and Place Algorithm
	3.3.3 GAN-based Shadow Synthesis
	3.3.3.1 CycleGAN
	3.3.3.2 AttentionGAN

	3.3.4 Lighting Variation

	3.4 Selection of Baseline Object Detection Model
	3.4.1 State-of-the-Art Model Architectures
	3.4.1.1 YOLOv3
	3.4.1.2 YOLOv5
	3.4.1.3 RetinaNet

	3.4.2 Preliminary Benchmarking

	3.5 Model Optimization
	3.5.1 ShuffleNet V2
	3.5.2 MobileNet V3
	3.5.3 GhostNet

	3.6 Computing Platform
	3.6.1 TensorRT Acceleration

	3.7 Evaluation Metrics
	3.7.1 Fréchet inception distance (FID)
	3.7.2 Mean Average Precision (mAP)
	3.7.3 Confusion Matrix
	3.7.4 Checkout Accuracy (cAcc)
	3.7.5 Training and Inference Time

	3.8 Software Development
	3.8.1 MongoDB Database
	3.8.2 Tkinter

	CHAPTER 4
	4 RESULTS AND DISCUSSION
	4.1 Preliminary Benchmarking
	4.1.1 Quantitative Results
	4.1.2 Qualitative Results

	4.2 Effectiveness of Image Synthesis Framework
	4.2.1 GAN-synthesized Images
	4.2.2 Effect on Model Performance
	4.2.2.1 Quantitative Results

	4.3 Model Improvement with light-weight backbones
	4.3.1 Quantitative Results
	4.3.2 Qualitative Analysis
	4.3.2.1 Performance in Extreme Condition
	4.3.2.2 Adaptivity to Lighting Variation

	4.3.3 Training Loss

	4.4 Software Prototype of Cashierless Checkout System
	4.4.1 Model Weights Update
	4.4.2 Price Computation

	CHAPTER 5
	5 CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusions
	5.2 Recommendations for Future Work

	REFERENCES
	APPENDICES

	MH_1702805_Final.pdf
	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 General Introduction
	1.2 Importance of the Study
	1.3 Problem Statement
	1.4 Aim and Objectives
	1.5 Scope and Limitation of the Study
	1.6 Contribution of the Study
	1.7 Outline of the Report

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Existing Cashierless Checkout Approaches
	2.1.1 Radio Frequency Identification (RFID)
	2.1.2 Artificial Intelligence (AI) and Computer Vision

	2.2 Datasets of Retail Products
	2.2.1 Retail Product Checkout Dataset (RPC)
	2.2.2 Densely Segmented Supermarket (D2S) Dataset
	2.2.3 CAPG Grocery Product Dataset (CAPG-GP)
	2.2.4 Freiburg Groceries
	2.2.5 Dataset Comparison

	2.3 Image Synthesis
	2.3.1 Conventional Data Augmentation
	2.3.2 Mask based Synthesis
	2.3.3 Generative Adversarial Network (GAN)

	2.4 Detection Algorithm
	2.4.1 Classic Computer Vision Techniques
	2.4.1.1 SURF + Feature Matching
	2.4.1.2 Haar Features + Adaboost & SIFT + SVM

	2.4.2 Deep Learning based Computer Vision Techniques
	2.4.2.1 Convolutional Neural Network (CNN)
	2.4.2.2 State-of-the-Art Models
	2.4.2.2.1 Faster R-CNN
	2.4.2.2.2 Mask R-CNN
	2.4.2.2.3 YOLO
	2.4.2.2.4 RetinaNet

	2.4.2.3 Summary

	2.5 Supportive Elements for Retail Checkout System

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.1.1 Overall System Flow
	3.1.2 Work Plan

	3.2 Dataset Preparation
	3.2.1 MVTec D2S Dataset
	3.2.2 Custom Dataset Preparation
	3.2.2.1 Image Acquisition Setup
	3.2.2.2 Annotation

	3.3 Development of Image Synthesis Framework
	3.3.1 Binary Mask Extraction
	3.3.2 Crop and Place Algorithm
	3.3.3 GAN-based Shadow Synthesis
	3.3.3.1 CycleGAN
	3.3.3.2 AttentionGAN

	3.3.4 Lighting Variation

	3.4 Selection of Baseline Object Detection Model
	3.4.1 State-of-the-Art Model Architectures
	3.4.1.1 YOLOv3
	3.4.1.2 YOLOv5
	3.4.1.3 RetinaNet

	3.4.2 Preliminary Benchmarking

	3.5 Model Optimization
	3.5.1 ShuffleNet V2
	3.5.2 MobileNet V3
	3.5.3 GhostNet

	3.6 Computing Platform
	3.6.1 TensorRT Acceleration

	3.7 Evaluation Metrics
	3.7.1 Fréchet inception distance (FID)
	3.7.2 Mean Average Precision (mAP)
	3.7.3 Confusion Matrix
	3.7.4 Checkout Accuracy (cAcc)
	3.7.5 Training and Inference Time

	3.8 Software Development
	3.8.1 MongoDB Database
	3.8.2 Tkinter

	CHAPTER 4
	4 RESULTS AND DISCUSSION
	4.1 Preliminary Benchmarking
	4.1.1 Quantitative Results
	4.1.2 Qualitative Results

	4.2 Effectiveness of Image Synthesis Framework
	4.2.1 GAN-synthesized Images

	4.3 Effect on Model Performance
	4.3.1 Quantitative Results

	4.4 Model Improvement with light-weight backbones
	4.4.1 Quantitative Results
	4.4.2 Qualitative Analysis
	4.4.2.1 Performance in Extreme Condition
	4.4.2.2 Adaptivity to Lighting Variation

	4.4.3 Training Loss

	4.5 Software Prototype of Cashierless Checkout System
	4.5.1 Model Weights Update
	4.5.2 Price Computation

	CHAPTER 5
	5 CONCLUSIONS AND RECOMMENDATIONS
	5.1 Conclusions
	5.2 Recommendations for future work

	REFERENCES
	APPENDICES

